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Abstract 

Human activities and effects of global warming are increasingly changing the physical 

landscape. In view of this researchers have developed models to investigate the cause 

and effect of such variations. Most of these models were developed for specific 

locations with spatial variables causing change for that location. Also the application 

areas of these models are mainly binary transitions, not complex models which involve 

multiple transitions, for example deforestation models which deal with the transition 

from forest lands to non-forest areas and urban growth transition from non-urban 

areas to urban. Moreover these land simulation models are closed models because 

spatial variables cannot be introduced or removed, rather modellers can only modify 

the coefficients of the fixed variables. Closed models have significant limitations largely 

because geospatial variables that cause change in a locality may differ from one 

another. Thus with closed models the modellers are unable to measure and test the 

significance of variables before their inclusion. 

This work investigated existing land use cover change (LUCC) models and aimed to find 

a geospatial workflow process modelling approach for LUCC so that the influence of 

geospatial variables in LUCC could be measured and tested before inclusion. The 

derived geospatial workflow process was implemented in DINAMICA EGO, an open 

generic LUCC modelling environment. For the initial calibration phase of the process 

the Weight of Evidence (WoE) method was used to measure the influence of spatial 

variables in LUCC and also to determine the variables significance. A Genetic Algorithm 

was used to enhance the WoE coefficients and give the best fitness of the coefficients 
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for the model. The model process was then validated using kappa and fuzzy similarity 

map comparison methods, in order to quantify the similarity between the observed 

and simulated spatial pattern of LUCC.   

The performance of the workflow process was successfully evaluated using the 

Auckland Region of New Zealand and Rondônia State of Brazil as the study areas. The 

Auckland LUCC model was extended to demonstrate vegetative carbon sequestration 

scenario. Ten transitions were modelled involving seven Land Use Cover (LUC) classes 

and a complex dynamic LUCC for Auckland was generated. LUC maps for 1990 and 

2000 were used to calibrate the model and 2008 was used to validate the model. The 

static spatial variables tested were road networks, river networks, slope, elevation, 

hillshade, reserved lands and soil. The hillshade and soil variables were found to have 

no significant impact in the LUCC for the Auckland area, therefore they were excluded 

from the model. If a closed model had been used these insignificant variables would 

have been included. The calibration phase revealed that wetland and cropland LUC 

areas in Auckland have not changed between 1990 and 2000. The validated LUCC 

model of Auckland, served as a foundation for simulating annual LUC maps for advance 

modelling of Carbon Sequestration by vegetation cover.  

In order to test the generic nature of the workflow process model a second case study 

was introduced that had a different data resolution, area extent and fewer LUC 

transitions. Compared to Auckland, the new Rondônia case study was a simple LUCC 

model with only one transition, with coarse data resolution (250m) and large area 

extent. The evaluation of the Rondônia LUCC model also gave good result. It was then 

concluded that the derived workflow process model is generic and could be applied to 

any location. 
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Chapter 1   Introduction 

The challenge of modelling the ever changing physical landscape or land use cover 

(LUC) of the earth has resulted in the creation of diverse models to depict these 

variations. Most of the current models have been applied to urban growth, which is an 

expansion of only one LUC class, or at most two LUC classes to include rural terrain 

(Dietzel & Clarke, 2007; Huang, Zhang, & Lu, 2008; N, Sawant, & Kumar, 2011; Silva & 

Clarke, 2002; Soares-Filho, Coutinho Cerqueira, & Lopes Pennachin, 2002).  

Among the existing LUC change models, SLEUTH (an acronym for Slope, Land use, 

Elevation, Urban, Transportation and Hillshade) is the most commonly used  (Schock, 

2000). There are over 35 applications of SLEUTH to cities and regions globally (Verburg, 

Kok, Pontius(jr), & Veldkamp, 2006). The SLEUTH model incorporates a Land Cover 

Deltatron Model (LCD) and an Urban Growth Model (UGM). Most of the applications of 

SLEUTH used UGM model for urban growth (Clarke, 2012) .  

It is less difficult to model the change evolution of one LUC class, such as deforestation 

or urban growth, but it becomes increasing difficult when modelling five or more LUC 

classes because the transitions between classes become complex. The complexity 

arises because the number of transitions increases in the order of n2 –n (see Table 1.1), 

where n is the number of LUC classes. For example, for five LUC classes the model has 

to process (52-5) = 20 LUC transitions. 
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 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Class 1 ---------- 1-to-2(1) 1-to-3(3) 1-to-4(7) 1-to-5(13) 1-to-6(21) 1-to-7(31) 

Class 2 2-to-1(2) ---------- 2-to-3(4) 2-to-4(8) 2-to-5(14) 2-to-6(22) 2-to-7(32) 

Class 3 3-to-1(5) 3-to-2(6) ---------- 3-to-4(9) 3-to-5(15) 3-to-6(23) 3-to-7(33) 

Class 4 4-to-1(10) 4-to-2(11) 4-to-3(12) ---------- 4-to-5(16) 4-to-6(24) 4-to-7(34) 

Class 5 5-to-1(17) 5-to-2(18) 5-to-3(19) 5-to-4(20) ---------- 5-to-6(25) 5-to-7(35) 

Class 6 6-to-1(26) 6-to-2(27) 6-to-3(28) 6-to-4(29) 6-to-5(30) ---------- 6-to-7(36) 

Class 7 7-to-1(37) 7-to-2(38) 7-to-3(39) 7-to-4(40) 7-to-5(41) 7-to-6(42) ---------- 

Table 1.1 Maximum Number of Transitions of Seven LUC Classes 

An additional issue is that the inherent error of each transition contributes to the 

overall error of the calibration and validation of the model, making it difficult to arrive 

at a precise “best fit” result. For instance a LUC change model of seven classes will 

have a maximum of 42 transitions as shown in Table 1.1, therefore the best-fit value of 

such model will incorporate the sum of all inherent errors from the 42 transitions.  

Another challenge is the determination of reaching a satisfactory degree of 

significance for drivers/parameters/variable values for inclusion in a land use cover 

change (LUCC) model. Most of the LUC change models were developed for either 

specific projects or locations therefore they are not generic and cannot be adapted for 

other locations. Although the SLEUTH model and others (Mas et al., 2007; Verburg, 

Schot, Dijst, & Veldkamp, 2004) have been applied to many locations globally, 

modellers are unable to modify the drivers influencing the change because the 

assumption is that the drivers of change are the same at every location, this is a 

fundamental conceptual flaw. When applying such models to different locations, 

modellers can only adjust the coefficients of the parameters during the calibration 

phase. In such models the variables are predefined. For this reason a generic modelling 

environment and workflow process for LUCC, which will allow modellers to determine 

    To From 
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the significance of a driving force, would be a great improvement on the current 

models available.  

Landscape modelling is a dynamic field of study where many models are developed, 

tested, refined, adopted for further use or discarded. Despite some of the advances in 

the LUC modelling domain, there still seems to be a lack of generic 

platforms/software/tools that incorporate all the useful features and processes that 

have been developed to date. A modelling environment that combined these features 

would give modellers the control to design and implement their own LUCC models and 

scenarios. 

1.1 Goals 

The research described in this thesis aims to investigate existing LUCC methods, 

models and tools with a view to deriving a generic integrated workflow process for 

LUCC modelling. As a result of this investigation a generic LUCC model will be 

developed that can be used as a framework to investigate and model a broad range of 

possible LUCC scenarios. The framework’s effectiveness and the degree to which the 

framework is generic will be evaluated using three different case studies; the Auckland 

Region of New Zealand, the Rondônia State in Brazil and a Carbon Sequestration 

Scenario model for the Auckland Region. The evaluation will involve: 

 Conceptualizing and designing LUCC models for two study areas – Auckland 

Region and Rondônia State – based on the workflow process. 

 Calibrating the LUCC models  

 Validating the LUCC models 

 A comparative analysis of the results of the two case studies specifically 

examining the effect of resolution, scale, rate of LUCC and class complexity. 
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 Using a validated LUCC model, as a base model for advanced modelling and 

prediction using a carbon sequestration scenario model for the Auckland 

region.  

1.2 Research Questions 

The primary research questions for this research are:   

1. How can we measure the 'adequacy' of the components, variables and 

parameter sets, which combine to inform the development of an LUCC model?   

1.1 What approaches are appropriate for this measurement of adequacy? 

2. What are the core processes within a generic geospatial LUCC framework?  

2.1 How do we measure the performance of these processes? 

 

The framework that will be developed and evaluated in this research will be designed 

based on the following assumptions:  

 There is an integrated workflow process. 

 For LUCC modelling, there must be an interrelated set of variables influencing 

the change. These variables are inherently complex and the complexity arises 

from the number of transitional changes. 

 Selection of variables is not in any way constrained. Any variables can be 

included in the initial variable set. These variables are automatically evaluated 

and the ones that do not influence LUCC will be eliminated prior to modelling. 

1.3 Rationale 

LUCC simulation models play an important role in the analysis of causes and impact of 

change in the environment and landscape.  Geographic Information Systems (GIS) and 

Remote Sensing (RS) are becoming increasingly popular in landscape management 
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primarily because of their functionalities and capabilities. These techniques consist of 

functions that capture, store, analyse, manipulate and display spatial data. With GIS 

and RS it is relatively straight forward for users to identify what change has occurred 

and where it has occurred (Şatır & Berberoğlu, 2012). However, these approaches are 

limited because they do not have the capability to explicitly model LUCC transitions 

and therefore it is difficult for the users to formulate theories as to the reason for the 

change. In contrast, with the aide of LUCC models, modellers are more able to form 

theories as to “why” transitional changes have occurred. Therefore LUCC models can 

provide better support for decision makers such as planners, engineers and policy 

makers. The analysis of the driving factors in LUCC models is what assists modellers 

and users in understanding “why” a change has occurred. Since the cause of change is 

different for each location and or region there is the need for generic modelling 

environment which could be used by LUCC modeller to determine the cause of change 

at any location. 

The foremost of the many reasons for a generic modelling environment and workflow 

process is to determine the adequacy or significance of driving factors for change using 

a generic modelling environment. A generic modelling environment will not have 

predefined variables for every location; it rather allows the assessment of the 

influence of any set of variables for each specific location before inclusion.  Such a 

system should be able to model a wide range of systems from very simple systems 

(with a few parameters) to more complex systems with varying spatial resolutions. 
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1.4 Significance of the research 

The availability of generic workflow process and/or modelling environment for creating 

LUCC models has many applications.  For instance, it could enable historians to 

conduct empirical research on the history of the land use in relation to human 

settlement and economic change, and to visualize past landscapes and the change in 

the morphology of the built environment over time. Decision makers could analyse 

various critical incidences in a society and environment over time in a coherent and 

cohesive manner to investigate for example:  

1. Land use change  

2. changing employment patterns  

3. class consciousness and neighbourhood analysis and, 

4. the impact of planning processes in rural development  

A common framework could be of significant use to landscape planners, such as 

engineers, architects, and to a greater extent to policy makers, who are in urgent need 

of simulation models for visualizing the potential evolution scenarios of a landscape 

based on their current decisions made on the land use / development of a physical 

area.  

Typical contemporary examples can be drawn from what are famously referred to as 

“Cross-cutting issues” (Agarwal, Green, Grove, Evans, & Schweik, 2002). These models 

could be used to determine future scenarios, changes to the landscape of an area of 

interest under a given number of proposed developmental activities especially, in 

performing trade-off analysis studies on the options available to decision-making 

professionals, their potential benefits and disadvantages. 
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The potential, for decision making, of the generic framework developed in this work is 

demonstrated by applying the framework to a carbon sequestration study of the 

Auckland region.  

1.5 Structure of Thesis 

The thesis is made up of the following nine chapters as described in this subsection.  

Chapter 1: Gives an introduction of the thesis with a brief description of the existing 

work and some challenges faced. Also the goals, objectives and research of the thesis 

are outlined here. The significance and rationale of this research were included this 

chapter.  

Chapter 2: Provides a review the theoretical foundation and fundamental concepts for 

the “workflow processes” of Land-use/cover change (LUCC). The workflow processes 

of relevant LUCC models and their modelling methods were explored. The goal of 

investigation into the LUCC workflow process was to generate or derive an open LUCC 

workflow process model which could easily be used by users to measure the adequacy 

of variables or parameter set of a LUCC model.  

Chapter 3: Further explains with detailed equations the methodology used in designing 

and implementing LUCC model for the candidate area (Auckland Region). A description 

of integrated workflow process model to measure the adequacy and significance of 

LUCC model variables is outlined. Details of the Weight of Evidence (WoE) method, 

which is used in measuring the adequacy and significance of the LUCC model variables, 

are provided. Also the validation of workflow process model is discussed. 
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Chapter 4: This part of work describes the Genetic Algorithm method of LUCC 

calibration which is to enhance the results of the WoE method of calibrating the LUCC 

model variables. 

Chapter 5: Elaborates on the description of the study areas namely the Auckland 

Region and the amazon forest area of Rondônia state, on which the derived workflow 

process model will be applied for evaluation. 

Chapter 6: This chapter introduces the LUCC data used for LUCC model of Auckland 

Region and Rondônia state. A description of the LUC and variable maps is provided and 

their acquisition is detailed. . Additionally a description of the methods used for data 

format preparation is provided. 

Chapter 7: Describes the implementation and results of the workflow process model in 

Auckland Region. The method for evaluation and selection of the LUCC models 

variables is detailed and critically evaluated. This chapter discusses in detail the 

implementation of all the phases/steps in the workflow process model for the 

Auckland region and the Rondônia state case studies. 

It presents a demonstration of an advanced LUCC modelling of vegetation carbon 

sequestration model which is a built up on the LUCC model of Auckland. It reveals the 

effect of vegetation change on carbon removal from atmosphere. 

Chapter 8: Presents a summary of the results of this research. The contribution this 

work has made to existing knowledge is outlined and some limitations of the work 

were given. Some suggestions are made regarding further and future work. 
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1.6 Conferences and Publication 

Below are the conference proceedings, abstracts and posters published during the 

research for this thesis: 

1. Nti, I. K., & Sallis, P. (2013). Geospatial Modelling of Complex Land Use Cover 

Change: How to Determine the Adequacy and Significance of Variables. In A. Moore 

& P. A. Whigham (Eds.), Proceedings of the SIRC NZ Conference. Presented at the 

SIRC NZ - GIS and Remote Sensing Research Conference. 

2. Nti, I. and Sallis, P. (2012). Modelling Dynamic Land-Use/Cover Change in Auckland 

Region. Fourth Digital Earth Summit, Wellington, New Zealand, 2-4 September 

2012. 

3. Owusu-Banahene W., Nti I., & Sallis P. (2011). Integrating geo-spatial information 

infrastructure into conservation and management of wetlands in Ghana. Second 

International Conference on Intelligent Systems, Modelling and Simulation, 2011. 

24 & 27-28 JANUARY 2011, Kuala Lumpur, Malaysia & Phnom Penh, Cambodia 

ISMS2011. ISBN 978-0-7695-4336-9/11 © 2011 IEEE DOI 10.1109/ISMS.2011.24. 

pp. 91-94. 

4. Hock, B., Nti, I. and Sallis, P. (2010). Geovisualisation of land use in rivers: 

visualisations of the downstream effects of the rural lands of New Zealand. 

GeoCart’2010 and ICA Symposium on Cartography, Auckland, New Zealand, 1-3 

September 2010. 

5. Owusu-Banahene, W.; Nti, I.K.; Sallis, P.J.; , Developing a Geo-spatial Information 

Framework to Facilitate National Identification System (NIS) in Ghana, Computer 

Modeling and Simulation (EMS), 2010 Fourth UKSim European Symposium on , vol., 

no., pp.68-74, 17-19 Nov. 2010. doi: 10.1109/EMS.2010.112 

6. Nti, I., Sallis, P. and Shanmuganathan, S. (2009). Landscape visualisation for frost 

events in vineyards. New Zealand Postgraduate Conference 20-21 Nov 09, 

Wellington, New Zealand. (The above poster had been awarded the "University of 

Canterbury award for outstanding visual presentation" in the NZ Post Graduate 

Conference, 2009) 
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7. Nti, K., Sallis, P. and Shanmuganathan, S. (2009). A review on techniques applied to 

modelling, simulating and visualising evolution of physical landscape. 2009 

International Conference on Computational Intelligence, Modelling and Simulation. 

pp. 54-58. 
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Chapter 2   Literature Review 

In this chapter, the theories and foundations of the “workflow processes” of LUCC 

models are reviewed and summarised. In the many studies reviewed, the processes 

developed for modelling, simulating and visualizing a landscape have made use of a 

number of different frameworks and factors. These are investigated as a basis for 

constructing a unified framework designed especially for continuously monitoring the 

various changes that a physical landscape could undergo over a period of time. Many 

of these existing models are implemented using a Geographic Information System 

(GIS) but some utilise multi-agent based simulation software or integrate GIS with 

Cellular Automata algorithms.  

This chapter begins by examining the terminology used in LUCC modelling and the 

methodology used to assess the evolution of LUC (land use cover). Various working 

models developed over the past few years are then outlined and critiqued.  

2.1 Simulation and Modelling 

Bellinger (2004, p.1) refers to a model as being a “simplified representation of a 

system at some particular point in time or space intended to promote understanding 

of the real system” whilst “simulation is the manipulation of a model in such a way 

that it operates on time or space to represent it, thus enabling one to perceive the 

interactions that would not otherwise be apparent because of their separation in time 

or space”. Guizani et al. (2010, p.1)  also defines Simulation as the “imitation of a real-

world system through a computational re-enactment of its behaviour according to the 
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rules described in a mathematical model”. Simulation can or may replicate a real 

system or process. The process of simulation usually entails looking at a limited 

number of key features and functions within the physical or abstract system of 

interest, which is normally complex and detailed. A simulation enables users to analyse 

the system’s behaviour under varying scenarios, through the re-enactment within a 

virtual computational environment (Guizani et al., 2010).  

Simulation is applied in many contexts including natural systems such as LUCC to gain 

insight into its functioning. Regarding simulation the important issues include: 

 acquisition of valid source information about system of reference, example 

landscape 

 extraction of important features 

 simplifying approximations and assumptions 

 calibration and validation 

Simulation is an important approach in scientific research because it facilitates 

research involving systems and or processes with time dependent behaviour.  

Models can be classified as continuous or discrete state models based on the values 

of the state variables. A model is a continuous state model if the variable can assume 

any value at any instant in time and a discrete state model when it assumes a single 

value at a point in time. A discrete state model could further be classified as 

continuous or discrete time model. A continuous time model is when the state 

variable can change at any time and it is discrete time if the state variable can change 

their values at a discrete time instant. This research develops a discrete time model 
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where the state variable is the yearly LUCC. Most discrete time event driven 

simulations rely on underlying equations to manage the event in time but automata 

models (including agent-based cellular automata models) do not. In automata models, 

the automata – cell or agent (trees, humans, land use cover) – in the model are directly 

represented and possess an internal state and set of rules which determine how the 

agent state is update from one step to the next (Bellinger, 2004; Guizani et al., 2010). 

Deterministic and probabilistic models: If repeating the same input – starting 

conditions or initial state - always produces the same output then the model is 

deterministic whilst it is probabilistic or stochastic if the output keeps changing due to 

the randomness of variables. A deterministic model has no random variable(s) whilst 

probabilistic have at least one random variable as input (Gibb, St-Jacques, Nourry, & 

Johnson, 2002).  

A model is said to be open if it is able in take one or more external inputs, on the other 

hand it is called closed model if it has no external inputs (Guizani et al., 2010 p.5) . 

LUCC simulation models are mainly event-driven therefore dynamic (change over time) 

in nature. This research seeks to review LUCC simulation models in order to find an 

open and or generic modelling framework or environment which allows the external 

variables as input.  

2.2 Land-Use and Land Cover 

Even though land-use and land cover are definitely related the two are conceptually 

different (Gregorio & Jansen, 2005; Fisher & Unwin, 2005). Many researchers do not 

acknowledge this distinction and tend to use these terms interchangeably (Gregorio & 
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Jansen, 2005; Fisher & Unwin, 2005). I seek to reveal the difference and the 

relationship between land use and land cover. 

2.2.1 Definitions 

In terms of remote sensing and photogrammetry, Fisher and Unwin (2005) define land-

cover as “the physical material at the surface of the earth. It is the material that we see 

and which directly interacts with electromagnetic radiation and causes the level of 

reflected energy that we observe as the tone or the digital number at a location in an 

aerial photograph or satellite image”. According to Ellis and Pontius (2010) land cover 

refers to the physical and biological cover over the surface of land, including water, 

vegetation, bare soil, and/or artificial structures. 

In agriculture land-use is typically described in terms of the total activities (for example 

irrigation, crop rotation and other crop management practices) that individuals 

undertake within a specific land cover type (Swanson, Bentz, and Sofranko (1997). 

Land planners and social scientists generally refer to land-use as comprising of the 

social and economic practices on the land. Natural scientists categorise land-use in 

relation to the results of human activities such as forestry, agricultural and building 

(Ellis & Pontius, 2010). Therefore land-use is the classification of how the land is used. 

Despite the fact that land-cover and land-use are distinct in definition they have an 

intricate relationship. For example a land-cover type grass can occur in many land-

uses, built-up areas, parks, and croplands. However, only a few regions of homogenous 

land-use have a single land-cover; settlements for instance may have grass, shrubs, 

trees and buildings as land-cover. Also a parcel of land-cover can have multiple land-
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uses; a planted forest might be used for hiking, trekking and hunting and perhaps 

grazing. 

Land-cover is important for the design and implementation of physical and 

environmental models. Additionally, it is indirectly helpful for many policy and 

planning models where land-use is the appropriate concept. In view of this, the term 

land-use/cover (LUC) will be the term adopted in this thesis referring to the physical 

land-cover of the land-use practice. 

2.2.2 Land-use/cover Classification System 

LUC is usually categorised into various classes for the purposes of mapping, town and 

country planning, nature conversation etc. Sokal (1974, p.1116) defines classification 

as “the ordering or arrangement of objects into groups or sets on the basis or their 

relationships”. LUC classification describes a systematic framework with the names of 

classes and the standards used to differentiate them, and the relationships amongst 

the classes. It is often an extensive standardised a priori classification method 

developed to meet certain user specifications and made for mapping procedures, 

regardless of the scale or method used to map  (Anderson, Hardy, Roach, & Witmer, 

1976; Gregorio & Jansen, 2005; Şatır & Berberoğlu, 2012). There are several LUC 

classification systems used by remote sensing and LUC cartographers today; some are 

designed for national purposes while others have been adopted for global use due to 

the versatile nature of the classifiers. Two of the major LUC classification systems 

mostly used are:   
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1. USGS (US Geological Survey) (Anderson et al., 1976). This system has nine main 

classes and four different levels. It is used widely adopted mainly because it is easy 

to adapt to local needs.  

LEVEL I LEVEL II LEVEL III LEVEL IV 

1 Urban or 

Built-up Land 

   

2 Agricultural 

Land 

   

3 Rangeland    

4 Forest Land 41 Broadleaved Forest   

42 Coniferous Forest 
421 Upland Conifers 

4211 White Pine 

4212 Red Pine 

4213 Jack Pine 

4214 Scotch Pine 

4215 White Spruce 

4216 Other 

422 Lowland Conifers  

43 Mixed Conifer-

Broadleaved Forest 

  

5 Water    

6 Wetland    

7 Barren Land    

8 Tundra    

9 Perennial Ice 

or Snow 

   

Table 2.1 USGS Classification System for Level I Forest Cover                                  

(Source : Anderson et al., 1976).   
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2. CORINE (Coordination of information on the environment) land cover classification 

was a project commissioned by the EEA (European Environmental Agency) to 

provide a standardised and localised LUC for the European Community. This 

ontology includes local and regional scales across Europe for the purpose of 

resource management, urban planning and nature conversation. It distinguishes 44 

different types of land cover (Environment European Agency, 1984). 

2.3 Land-Use and Cover Change (LUCC) 

LUCC is a generic term which refers to the changes of the land cover caused by both 

nature and mankind. Although humans have been changing land to acquire basic 

needs in life for years, the present rates and extents of LUCC are considerably greater 

than in the past, causing remarkable modification in the environment and 

environmental processes locally, regionally and globally. These changes can impact on 

the environment for example LUCC may result in changes to climate, levels of pollution 

(air, water and soil) and biodiversity. Monitoring and modelling of historic trends could 

help in mediating the negative effects of LUCC whilst preserving the important 

resources. As a result finding appropriate methods for modelling LUCC this has become 

a goal for researchers and policy makers worldwide (Ellis and Pontius, 2010). 

2.3.1 Factors causing LUCC 

Although the increasing rates of deforestation are usually linked to population growth 

and poverty (Mather and Needle, 2000), Lambin et al. (2001) demonstrated that 

deforestation is largely driven by the changing economic opportunities influenced by 

infrastructural, social and political changes.  

In the case of grassland management specialists incorrectly hold the view that natural 

land cover will persist, even in harsh climate conditions, where there is an absence of 
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human impact (Lambin et al., 2001). It is highly likely that biophysical factors alone are 

enough to influence change. However in reality most areas of grassland are influenced 

by both human and biophysical factors. Both types of drivers may cause grassland to 

move through multiple vegetation states either in succession or randomly (Lambin et 

al., 2001). 

Ellis and Pontius (2010) believe that in recent times “industrialization has encouraged 

the concentration of human populations within urban areas (urbanization) and the 

depopulation of rural areas, accompanied by the intensification of agriculture in the 

most productive lands and the abandonment of marginal lands”. Lambin et al. (2001) 

argue that urbanisation affects land change elsewhere apart from the urban areas 

through the transformation of the urban-rural link. For example, residents of the Baltic 

Sea drainage city depend on agricultural, vegetated wetland and forest for livelihood 

which constitute about 1000 times larger than the city area itself. Therefore the rural-

urban linkage is important to LUCC. 

In recent times, globalisation has begun to be perceived as having an indirect effect on 

LUCC; the accelerated LUCC worldwide appears to coincide with the integration of 

localities and regions into a growing global economic climate (Feddema et al., 2005). 

The worldwide factors gradually substitute and or re-align the regional factors 

determining land uses. 

2.3.2 Effects 

LUCC have several impacts on the environment some of which are the loss of 

biodiversity, climate change and soil, water and air pollution. Whenever there is 

deforestation, the loss of forest species within the deforested locations are instant and 
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total. Existing habitat areas are reduced which results in the support of fewer species 

and for species requiring undisturbed core habitat, any fragmentation can cause local 

termination.  

Deforestation and intensive agriculture are the main causes of further emission of 

carbon dioxide and other greenhouse gases to the atmosphere therefore causing 

global warming. Also another driving force of global warming is the deflection of 

sunlight from land surfaces as a result of land cover change.   

One significant factor contributing to the impact of LUCC on the environment which is 

of great concern is the rapid rate of urbanisation which is resulting in productive land 

being converted to non-productive use. This is considered to be a threat to future food 

production and other basic needs (Ellis and Pontius, 2010). 

2.3.3 LUCC Variables (Driving Forces) 

Determination of the variables (driving forces) behind LUCC is vital if historical trends 

are to be explained and used when projecting future trends. Variables may include 

almost any factor that influences human activity, including local culture (food 

preference, etc.), economics (demand for specific products, financial incentives), 

environmental conditions (soil quality, terrain, moisture availability), land policy & 

development programs (agricultural programs, road building, zoning), and feedbacks 

between these factors, including past human activity on the land (land degradation, 

irrigation and roads). Investigation of these drivers of LUCC requires a full range of 

methods from the natural and social sciences, including climatology, soil 

science, ecology, environmental science, hydrology, geography, information systems, 

computer science, anthropology, sociology, and policy.  
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2.3.4 Detecting LUCC 

There are a variety of techniques used in determining LUCC which include remote 

sensing and spatio-temporal analysis, and modelling. In addition some approaches also 

integrate natural and/or social science approaches to determine the causes of change 

and their impact on change (Mimler & Priess, 2008; Ruiz & Domon, 2005; Verburg et 

al., 2006). 

These methodologies are often classified as; static or dynamic, spatial or non−spa�al 

(i.e. investigating patterns of change versus rates of change), descriptive or 

prescriptive (i.e. investigating the future versus optimisation), deductive or inductive 

(i.e. with model parameters based on statistical correlations versus process 

information), agent−based or pixel−based.  

The importance of these methods is in their use historic LUC data (through remote 

sensing and GIS) to investigate and model patterns of change over time to in order to 

make projections about future LUC patterns. These models are developed based on 

the analysis of sequential LUC maps (that is categorisation of LUC into classes) for a 

study area.  

The choice of a method for a particular purpose is largely dependent on the research 

or policy questions that need to be answered, while issues of data availability might 

also play a role (Ellis and Pontius, 2010; Lambin, 1997). In the concluding sections of 

this chapter, a review and evaluation of methods and models that are being applied to 

regional and global situations are presented. 
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2.4 Remote Sensing 

Remote Sensing (RS) is the use of cameras, multi-spectral scanners, RADAR and LiDAR 

sensors mounted on air and space borne platforms, producing aerial photographs and 

satellite imagery of the earth surface. RS performs an essential role in defining LUC and 

the observation of interactions between nature and the activities of humans. All of the 

methods used in LUCC detection mentioned in section 2.3.4 employ remote sensing 

imagery in the data acquisition phase (Şatır & Berberoğlu, 2012).  

In using RS for LUCC detection there are two types of approach; 

1. Those detecting change in a binary format as change/non-change information 

2. Those detecting detailed transitional information, “from-to” change. That is 

changing from one LUC to another. The most commonly used is the post-

classification comparison. 

In this work, the details of change are critical and therefore it is necessary to 

investigate the use of remote sensing to detect LUCC and identify the “from-to” 

transitions.  

Most RS data contains high levels of “noise” (the data includes large amounts of 

information that is irrelevant to the specific task/analysis) and needs to be processed 

(classified) for use in the detection of LUCC dynamics. RS image classification is a 

complex process that involves eight major steps namely: selection of remotely sensed 

data; determination of a suitable classification system; selection of training samples; 

image pre-processing; ancillary data integration; selection of suitable classification 

approaches; post-classification processing and accuracy assessment (Lu and Weng, 
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2007). The reliability of the classification  is dependent on factors such as the scale of 

the study area and the design of the classification procedure (Lu and Weng, 2007). 

Factors, such as user requirements, scale and characteristics of the candidate area, the 

availability of different RS data and their characteristics, and skill of the analyst in using 

selected image also influence the selection of images. 

2.4.1 Selection of Remotely Sensed Data 

Within user requirements, image resolution and scale are the most essential factors 

that affect the selection of RS data. The users’ requirements determine the nature of 

classification and the scale of candidate area, and in turn affect the choice of suitable 

spatial resolution or RS data. 

Quattrochi and Goodchild, (1997) explored the impacts of scale and resolution on 

remote-sensing image classification. Generally, a fine-scale classification system is 

required for classification at a local scale, thus high spatial resolution data such as 

IKONOS and SPOT 5 HRG data are helpful. At a regional level, medium spatial 

resolution data such as Landsat TM/ETM+, and Terra ASTER are the most commonly 

used data. At a continental or global scale, coarse spatial resolution data such as 

AVHRR, MODIS, and SPOT Vegetation are suitable (Lu and Weng, 2007). 

2.4.2 Determination of a Classification System 

The selection of a suitable classification system is a prerequisite for a successful LUC 

classification. In general, factors that influence the selection of a suitable classification 

system are the user requirements, spatial resolution of selected RS data, image 

processing and classification techniques available and compatibility with previous 
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projects (Gregorio & Jansen, 2005). Cingolani et al. (2004) identified three major 

problems when using medium resolution RS data in mapping vegetation: defining 

adequate hierarchical levels for mapping, defining discrete land-cover units discernible 

by selected RS data and selecting representative training sites. 

2.4.3 Image Pre-processing 

The goal of image pre-processing is to correct any distortions on the “raw” data due to 

characteristics of the imaging system and imaging conditions. This is performed before 

data analysis to ascertain consistency in the data. 

Image pre-processing includes image registration or geometric rectification, 

radiometric calibration and atmospheric correction, and topographic correction. In 

addition, detection and restoration of bad lines is applied if necessary. Data conversion 

amongst different sources and data quality of assessment is necessary if different 

ancillary data are used. Current RS satellites produce images that have undergone 

automatic geometric rectification. Images obtained from RS satellites can be corrected 

using either commercial or free software tools (Şatır & Berberoğlu, 2012). 

2.4.4 Feature Extraction and Selection 

The extraction of features of LUC of a multispectral remote sensing image is an 

important task before classifying the image. When land areas are categorised into 

classes of similar LUC, one of the most important things is to extract the key features 

of a given image. Usually multispectral remote sensing images have many bands, and 

there may be significant amount of redundant information and therefore there is a 

need to extract key features based on user requirements and classifier. 
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In feature extraction, suitable variables such as spectral signatures, vegetation indices, 

textual or contextual information, transformed images, multi-temporal images, multi-

sensor images and ancillary data may be used to achieve a successful classification. 

Due to the capability of land separability, it is critical to select only the variables that 

are useful in separating LUC classes when using multispectral and hyperspectral 

images (Lu and Weng, 2007). 

There are a number of methods typically used for feature extraction in order to extract 

specific LUC information. These methods include Euclidean distance, the discrete 

measurement criteria function, minimum differentiated entropy, the probability 

distance criterion, principle component analysis, minimum noise fraction transform, 

discriminant analysis decision boundary feature extraction, non-parametric weighted 

feature extraction, wavelet transform and spectral mixture analysis (Guo and Lyu, 

2005). Guo and Lyu, (2005) evaluated the advantages and disadvantages of such 

classification methods for classification.  

2.4.5 Selection of Suitable Classification Approach 

When selecting a classification method for use, factors such as classification system, RS 

data spatial resolution, different sources of data and the availability of classification 

software must be considered. Lu and Weng (2007) have detailed and summarised the 

major classification methods currently available. This research work, informed by Lu 

and Wang’s review, adopted the classification approach detailed in Table 2.2.  

Although there are several methods of LUC classification, the two most commonly 

used in LUCC classification process are: supervised and unsupervised. In supervised 

classification, there is a provision or statistical description of how the expected LUC 
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classes should appear in the imagery, and then a procedure (known as a classifier) is 

used to evaluate the likelihood that each pixel in the image belongs to one of these 

classes. 

Selection of an appropriate training data set is a prerequisite for successful supervised 

classification; a sufficient number of training samples and their representativeness of 

the candidate area are essential for RS image classification. The training samples are 

usually acquired as a result of either fieldwork or the analysis of very high resolution 

RS data (Chen & Stow, 2002).  When the terrain is heterogeneous it is difficult to select 

a sufficient number of training samples so that all the LUC classes are represented (Lu 

and Weng, 2007).  In situations where an LUC study area is large multiple RS images, 

joined as a mosaic, are required to represent the area. In some situations these images 

have different spatial resolutions and as a consequence variations in the accuracy of 

the training data occur between the selected samples. It is therefore essential to 

consider the spatial resolution of the RS data being selected, availability of ground 

reference data and the complexity of the landscape of the candidate area (Lu and 

Weng, 2007). 

In unsupervised classification a very different approach is used a different type of 

classifier is used to identify commonly occurring and distinctive reflectance patterns in 

the image on the assumption that these represent major land cover classes. The 

analyst then determines the identity of each class using a combination of experience 

and ground truth (i.e., visiting the study area and observing the actual cover types). 
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Criteria Categories Characteristics Example of 

Classifiers 

Whether 

training 

samples 

are used or 

not 

Supervised 

Classification 

approaches 

Land cover classes are defined. Sufficient 

reference data are available and used as 

training samples. The signatures 

generated from the training samples are 

then used to train the classifier to classify 

the spectral data into a thematic map. 

Maximum 

likelihood (MLC), 

minimum distance 

(MD), Artificial 

neural network 

(ANN), decision 

tree (DT) classifier. 

 Unsupervised 

classification 

approaches 

Clustering-based algorithms are used to 

partition the spectral image into a number 

of spectral classes based on the statistical 

information inherent in the image. No 

prior definitions of the classes are used. 

The analyst is responsible for labelling and 

merging the spectral classes into 

meaningful classes. 

ISODATA, K-means 

clustering 

algorithm. 

Table 2.2 Supervised and Unsupervised classification methods extracted from Image 

Classification Taxonomy (Lu and Weng, 2007) 

2.4.6 Uncertainty and Classification Accuracy Assessment 

Longley, Goodchild, Maguire and Rhind (2011 p.148) states that “It is impossible to 

make a perfect representation of the world, so uncertainty about it is inevitable”. They 

further explained that uncertainty amounts for the difference between a generated 

map and the real land cover. LUC Maps generated by remote sensing and GIS methods 

inherit an amount of uncertainty and ambiguity due to the processing and analysis of 

the image.  These errors and uncertainties vary spatially and temporally (Wang, 

Gertner, Fang, & Anderson, 2005). Longley et al. (2011) distinguish three uncertainties 

as:  
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1. uncertainty of location data, also known as positional uncertainty, refers to not 

knowing the exact location of a geographic feature  

2. temporal uncertainty, which is the inexactness of the temporal dimension of 

events that occur and vary through time, and  

3. attribute uncertainty, which refers to uncertainty of an attribute value of a 

pixel or area.   

In RS when resolution is insufficient to detect all the details of the LUC, a mixed pixel 

occurs whose area is divided among multiple land cover. The total number of mixed 

pixels is reduced as resolution increases (Lu & Weng, 2007). Therefore with image 

classification attribute uncertainty increases with low image resolution due to the 

mixed pixels and not knowing the true land cover. Also positional uncertainty, for 

example the boundary of a river, is higher in low resolution dataset because when 

large pixels are assigned to the river it loses its true boundary.  

Uncertainty at any level in classification of RS influences the accuracy of the generated 

map. The accuracy assessment of classification schemes generally may include; 

sampling phase, response phase, and estimation and analysis of accuracy. A suitable 

sampling strategy is very important, and includes a sampling unit (that is pixels or 

polygons), design and sample size. Some of the sampling strategies commonly used 

include cluster, double, stratified random and systematic sampling. 

According to Şatır and Berberoğlu (2012) an error matrix is a commonly used accuracy 

assessment method. From the error matrix, the following accuracy measurements can 

be derived; overall, producer and user accuracies, and the kappa coefficient, where 

Kappa is the difference between the observed accuracy and computed estimation 

divided by one minus the computed estimations (Stehman, 1996). 
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2.5 Ancillary Data Integration 

Most of the traditional classification approaches for LUC that use RS data rely heavily 

on the spectral information present in the images. For spectral methods that are based 

on LUC classification alone, the level of classification detail is determined primarily by 

the spectral and spatial resolution of the RS data. However, for a given spectral and 

spatial resolution, integrating ancillary data with spectral data might yield either 

greater classification accuracy or details (Lawrence & Wrlght, 2001). 

Ancillary data such as topography, vegetation climate, social geography and soil are 

useful in LUC classification mapping and many researchers have demonstrated that the 

proper integration of ancillary data to spectral data can lead to greater class distinction 

(Lu and Weng, 2007).  

Integration techniques for ancillary data include pre-classification stratification, logical 

channel addition and post-classification sorting. The use of ancillary data for pre-

classification stratification and post-classification sorting does not introduce additional 

data to the classification algorithm. Instead it increases the accuracy in the segregation 

reducing the number of uncertain classes. While these methods have been successful 

in increasing classification accuracies, failure to incorporate ancillary data into the 

classification algorithm might fail to fully exploit the range of information available 

(Lawrence & Wrlght, 2001; Lu & Weng, 2007; Şatır & Berberoğlu, 2012). 

2.6 Change Detection 

The post-classification methods for detecting LUC change include the following change 

detection techniques; comparison, spectral-temporal combined analysis, expectation-
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maximization algorithm, unsupervised change detection, hybrid change detection and 

Artificial Neural Networks (ANNs). These methods basically use classified images from 

RS data. The post-classification method of change detection in RS provides a matrix of 

change information. A detailed review of the various change detection techniques 

using remote sensing  can be found in Guo & Lyu (2005), Lawrence & Wrlght (2001),  

Lu et al. (2004) and Mas (1999). 

Amongst the classification methods for change detection, post-classification 

comparison is the most commonly used technique in practice, (Lu et al., 2004). Post-

classification comparison is a comparative analysis of independently classified LUC 

maps representing different times (t1 and t2). The accuracy of the classification of LUC 

is important when this technique is adopted because the errors in classification are 

propagated into the detection of change. In this approach classified images at different 

times (t1 and t2) are overlaid in order to generate the “changed” image. A change 

detection matrix of “from-to” change is generated that depicts the details of the 

number of pixels that have changed from t1 to t2 and the type of LUC. Most change 

detection is carried out within a specific time frame, from t1 (start time) to t2 (end 

time).  

Detection of LUCC using an RS approach can only help in detecting the change from 

one type of LUC to another type of LUC at time t1 and t2. The RS method cannot 

forecast or simulate future patterns unless coupled with other methods. The following 

sections reveal that RS is commonly used as a data acquisition phase in preparation for 

other change detection methods. In this research, remote sensing and 

photogrammetry are employed in the data acquisition and preparation stage. 
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2.7 Geospatial Analysis 

Geospatial Analysis is referred to as a descriptive collection of spatial modelling 

techniques and analytical tools provided by Geographic Information Systems (GIS) 

software (Smith, Goodchild & Longley, 2007).  Geospatial Analysis is a process that is 

central to GIS and is intended to add value to spatial data and extract useful 

information from it. Longley, Goodchild, Maguire and Rhind (2011, p.16) acknowledge 

that in modern times “everyone has a favourite definition for GIS and there are many 

to choose from”. Clarke (1986) defines GIS as “computer assisted systems for the 

capture, storage, retrieval, analysis and display of spatial data” and this is the 

preferred definition for this work. GIS technology integrates common database 

operations, such as, query and statistical analysis with the unique visualization and 

geographic analysis benefits offered by maps. GIS technology integrates common 

database operations, such as, query and statistical analysis with the unique 

visualization and geographic analysis benefits offered by maps.  

Geospatial analysis provides a distinct perspective on the world, a unique lens through 

which events, patterns, and processes that operate on or near the surface of our 

planet, could be examined. Geospatial analysis includes methods and transformations 

which aid in revealing patterns or information otherwise invisible, that is it makes the 

implicit explicit. With the use of a variety of geospatial analysis methods such as 

statistical methods and human interpretation, measurements of LUC and maps can be 

derived directly from RS data. As discussed in section 2.4, conventional LUC maps are 

classified, dividing land into categories of LUC (thematic mapping; land classification), 

while recent techniques allow the mapping of LUC as continuous variables or as 

fractional cover of the land using different LUC categories. With the use of spatial 
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analytical tools in current GIS software both continuous and classified LUC datasets can 

be compared over time periods using GIS to map and measure LUC at local, regional, 

and global scales (Ellis and Pontius, 2010).  

Integration of Geospatial analysis with RS helps in the interpretation of raw RS data 

into meaningful information (Longley et al., 2010). RS and GIS integration is commonly 

used as an effective tool for detecting change, where a GIS serves as a flexible platform 

for storing, analysing and displaying data essential for change detection and 

development of database. The advantage of using or incorporating Geospatial Analysis 

or GIS in change detection is the ability to integrate different source data into the 

change detection process. The change detection results are often affected by the 

accuracy of the source data. LUCC based on GIS and RS integration mainly provides 

information regarding 

i) how much 

ii) where 

iii) what type 

of LUCC has occurred (Weng, 2002). In addition to the “how much”, “where” and 

“what type”, there is the question of “why” the changes occurred. The key question of 

“why” such changes occurred is usually addressed when simulation models are 

coupled or integrated with GIS and RS.  

Currently many GIS techniques have limitations in simulating changes in the LUC over 

time period, but the integration of Cellular Automata (CA) and GIS has demonstrated 

considerable potential (Deadman, Brown & Gimblett, 1993; Itami, 1988).  
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When coupling GIS with CA, CA can serve as an analytical engine to provide flexible 

framework for the programming and running of dynamic spatial models. Though GIS 

lacks the ability to model a dynamic phenomenon in spatial temporal domain, it can 

act as a platform on which further modelling capabilities can be built. Through the 

coupling of GIS and CA, Novaline et al. (2008) developed “a suitability-based cellular 

automata model, which can evolve an organized global pattern from locally defined 

behaviour, because of the interaction between a site and its neighbourhood. State 

transitions are governed by transition rules, which are universally applied and are 

defined through multi-criteria evaluation procedures”. Weng (2002) demonstrated that 

the integration of RS and GIS was an effective approach for analysing the direction, 

rate, and spatial pattern of land use change and the further integration of these two 

technologies (GIS and RS) with Markov modelling was found to be useful in describing 

and analysing the land cover change process. To be able to understand the change 

process, model the dynamic phenomenon and simulate change into the future, it is 

critical to integrate GIS and RS with LUCC simulation models. In this research GIS and 

RS is used in preparing data for the LUCC simulation models and also for geospatial 

analysis of the simulated LUC maps of the model.   

2.8 LUCC Modelling  

The inadequacy of RS and GIS tools to aid planners and policy makers to understand 

and study the dynamics of the LUCC has necessitated the development of LUCC models 

which can address this issue. Sun, Deal and Pallathucheril (2009), asserted that there is 

still a relatively poor understanding of the mechanisms associated with the changes in 

the use of land and this is partly due to the complexities of the dynamic uses that 

result in LUCC. As a result, planners and policy makers have the task to make the 
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difficult decisions about the usage of land even though they are not equipped with 

sufficient analysis or vision.  

Computer based LUC simulation models are increasingly being employed to evaluate 

and forecast the changes in the usage of land (Sun et al., 2009). Jongkamp et al. (2004) 

claim that LUC simulation models are capable of helping in the improvement of 

experts’ fundamental understanding of the transformations as a result of the dynamics 

of land use and the complexities arising from these changes in landscape for better 

and sustainable land use of ecosystems. LUC and spatial dynamic modelling techniques 

are becoming useful and important elements in the Planning Support Systems 

(Hopkins, 1999; Kammeier, 1999). 

Currently, the spatial dynamic simulation and modelling of LUC is still in its infancy. 

Very few models have so far been developed that have the capability of representing 

the dynamics of land use and changes consistent with the observable data (Sun et al., 

2009). “As a result, few of such models are operational and are used to assist 

landscape planning practices” (Sun et al., 2009, p.57).  

The next section provides an outline of the various methods of modelling, advantages 

and weakness of the operational models, selection of the most appropriate method for 

building a generic framework and the fundamentals of such method. 

2.8.1 Diversity of LUCC Modelling Methods 

LUCC models are tools to support the analysis of the causes and consequences of land 

use dynamics. Scenario analysis with LUCC models can support land use planning and 

policy. Numerous land use models are available, developed from different disciplinary 
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backgrounds (Verburg et al., 2004). Over the past decade diverse modelling techniques 

have evolved that can be classified based on either the land-use change process 

addressed by the model, the simulation technique used in the model or a theoretical 

framework. This section aims to provide an overview of traditional and current LUCC 

modelling methods and suggests which technique is most appropriate for dynamic 

modelling and visualisation of the landscape and for used in this research. 

There are three main methods used by LUCC modellers; (i) statistical and algebraic 

(mathematical), (ii) Cellular Automata (CA) and (iii) Agent Based Modelling (ABM) 

sometimes referred to as Multi-Agent Simulation (MAS). In choosing a method or 

technique for a specific LUCC modelling task there are three major questions that need 

to be considered by the modeller and they are based on (Verburg et al.,2006): 

 Spatial or non-spatial modelling 

 Dynamic or Static modelling 

 Agent-Based or Pixel Based Representation 

The analysis and review presented by Agarwal et al. (2002), and earlier by Lambin et al. 

(2000), asserts that there are differences in the capabilities of modelling approaches to 

assessing changes and simulating them. Agarwal et al. (2002) reviewed 19 diverse 

LUCC models and methods in terms of dynamic (temporal) and spatial interactions, as 

well as human decision making and summarised their findings based on a three 

dimensional framework shown in Figure 2.1. Lambin et al. (2000) also examined 

various models and methods based on the change processes and classified them as:  

I. empirical – statistical  

II. stochastic  
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III. optimisation and  

IV. dynamic simulation models 

and concluded that dynamic process-based models are most suitable for predicting 

changes in land-use intensity than the others. However, stochastic and optimisation 

models are useful when describing the decision making processes.  

Therefore choosing a modelling method will depend on the research question(s), this 

research focuses on a dynamic landscape simulation modelling.  

 

Figure 2.1 Three Dimensional Framework for reviewing and assessing land use 

change models (Source: Agarwal et al., 2002) 

2.8.2 CA and ABM methods 

Cellular automata are mathematical models for complex natural systems, which allow 

spatio-temporal experiments to be undertaken, containing large numbers of simple 

similar components with local interaction. CA rules are applied to a dynamic and 

discrete spatio-temporal system and it consist of a regular grid of cells, each of which 
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can be in one of a finite number of “s” possible states, updated synchronously in 

discrete time steps according to a local, identical interaction rule (Wolfram, 1984). 

CA can be defined as a function of 

CA ={X, S, N, R}                  Eqn 2. 1 

where X = cell space, S = cell state, N = cell neighbourhood, R = Transition Rule and the 

state of a cell is defined as    

t+1
S

i,j
 = f((

t
S

i,j 
), (

t
N

i,j
 ),(

t
R

i,j
))                       Eqn 2. 2 

 

 

Figure 2.2 A visual representation of a cellular automata system 

 

A CA is a system of spatially located and interconnected finite cells (automata) which 

are arranged in a form of a regular tessellated space such as regular grid or raster 

image (Figure 2.2). It has been adopted successfully for simulating Urban and 

landscape phenomena (Al-ghamdi, 2012; Guan & Clarke, 2010; Jantz, Goetz, Donato, & 

Claggett, 2010). 
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The cell space on which a CA operates can be considered as equivalent, in a LUCC 

sense, to an environment, a landscape, or a territory. The cell space in a CA is assumed 

to be both regular in structure and infinite in extent. At any given time the CA cells in a 

LUCC has a discrete state such as forest or non-forest or any of the land use classes. 

Also each cell in CA is surrounded by adjacent neighbourhood cells. There two 

common types of neighbourhood, “Moore” (that is the cell in question and its eight 

surrounding cells that border it) or von Neuman” (the cell in question and its four 

cardinal neighbours) as shown Figure 2.3 (Benenson & Torrens, 2004). 

In CA, transition rules govern the state and evolution of a cell at any given time. These 

rules are typically applied synchronously and change the state of cells according to 

their individual state and the state neighbourhood cells. (Benenson and Torrens, 2004, 

p.21) 

Multi Agent Systems (MAS) possess characteristics that are analogous to those of CA. 

The crucial components of MAS are agents--pieces of software code with attributes 

that describe their condition and characteristics that govern their behaviour.  

Like CA, agents exist in some defined space. In a LUCC context, any number of artificial 

environments might be designed for agents to inhabit, from building spaces to cities. 

Agents are free to navigate and explore their spatial environments than the individual 

finite state machines that comprise CA are simply because their spatial behaviour is 

not constrained by a lattice and interaction can be mediated beyond the 

neighbourhood.  
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Figure 2.3  A Two-dimensional CA lattice (Source: Benenson & Torrens, 2004, p.23) 

Agents have sets of attributes or states that describe their characteristics. States can 

be formulated to represent the attributes of real urban entities, e.g., an agent 

designed to mimic a household could hold attributes such as median income, car 

ownership, etc. In many cases, attributes that lend agents some form of "agency" are 

also attributed to individual agents in a multi-agent system. 

In CA, information exchange is mediated by rules and propagated through a 

neighbourhood. In the case of MAS, the exchange of information is explicit. Specific 

computer languages such as, Knowledge Query and Manipulation Language (KQML) 

and protocols have been devised assist agent communication (Benenson and Torrens, 

2004, p.21).  
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Due to the sensitivity of raster CA to cell size and neighbourhood configuration 

Moreno, Wang, and  Marceau (2009) developed a vector based CA (VCA) to overcome 

the scale of sensitivity. In VCA space is represented as a collection of interconnected 

irregular geographic objects, corresponding to real-world entities, and neighbourhood 

is defined as an external buffer around each geographic object that represents an 

influenced area. The shape and area of the geographic objects change through time 

according to a transition function that incorporates the influence of the neighbours on 

the specific geographic object. Its application and results showed that vector based CA 

could produce realistic spatial patterns similar referenced LUC maps (Moreno et al., 

2009;  Shiyuan & Deren, 2004). Though the VCA seeks to overcome some of the 

limitations of raster base CA it has some limitations as well. Moreno et al. (2009 p.53) 

concluded that VCA models “still suffer some limitations, including a rigid and 

oversimplified definition of the objects and their neighbourhood based on topology, 

and the lack of a dynamic representation of the geometry of the objects”. Also the 

authors further stated VCA is computational intensive, their work considered three 

LUC and used about 48hrs for three iterations. Therefore for complex LUCC model with 

higher number of iterations (i.e.: 18 iterations) VCA will not be the most suitable 

approach. In view of the limitations and computational intensity of VCA it was not 

suitable for this work in modelling dynamic and complex LUCC model. 

The Recursive Porous Agent Simulation Toolkit commonly known as RePast (North et 

al., 2013) is an example of one of the many MAS tools available. Repast allows for the 

implementation of both classical cellular automata, vector based cellular automata 

and Agent-based cellular automata. Repast supports the integration of cellular 

automata with ESRI Arc Map thereby providing GIS capabilities. However the focus of 



Page | 40 

this research in is modelling spatial changes in land cover not the movement of agents 

and Repast does not directly provide a fully comprehensive platform for LUCC 

modelling.    

A spatial framework for modelling geographic systems called a Geographic Automata 

System (GAS) was proposed by Benenson & Torrens (2004). GAS is founded on objects 

in space, and knowledge and theories of how real systems function in space, rather 

than adhering strictly to the rules of a cellular automaton. The proposed framework 

was developed to mitigate the limitations CA and MAS modelling approaches and 

provided an integrated system. In the GAS both mobile agents and the fixed spatial 

space are considered to be automata. The GAS models changes the movement of 

mobile agents and their effects on the changes of land or the agents neighbourhood. It 

was not considered for this work because it is not a fully comprehensive LUCC model. 

 

 

Figure 2.4  Automata Movement in Multi-agent System (Source: Benenson & 

Torrens, 2004, p.23). 



Page | 41 

Of the three modelling techniques discussed in section 2.8.1 a hybrid of Cellular 

Automata (CA) modelling and statistical/algebraic techniques was considered to be 

the most suitable one for this research. The reason is that ABM simulates the mobility 

of agents, such as, humans and this research seek to visualise the changes on the 

landscape which CA simulates better. Also CA represents and displays/depicts space 

and resolution of the landscape better than ABM. The RS LUC data is grid based/raster 

data, this makes it more suitable for CA because CA has affinity for gridded data. 

Couclelis, (2001), who has almost 30 years’ experience in LUCC modelling, states that 

“CA may be seen as a spatial array of ABM” and that though “some researchers 

consider mobility to be the defining difference between the two kinds of models, in 

reality CA simulates movement in the same way your computer screen does, by 

spreading activation down a sequence of adjacent cells or pixels.” 

During the calibration phase of this work, the statistical/algebraic technique will be 

used in determining the transition rules for the CA engine in the LUCC model.  

2.9  Cellular Automata LUCC Models 

Although there has been dozens of CA models developed over the years (for example 

see: Dietzel & Clarke, 2007; Huang, Zhang, & Lu, 2008; N, Sawant, & Kumar, 2011; Silva 

& Clarke, 2002; Soares-Filho, Coutinho Cerqueira, & Lopes Pennachin, 2002), to date 

only a few CA-based models are operational as productive tools to support regional 

planning practices. Most of these models integrate RS and GIS with CA, using RS and 

GIS for the data preparation and visualisation engine. In this section, an overview into 

the operational CA models and their workflow process is provided with suggestions for 

a generic framework for LUCC modelling. 
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Researchers have (Clarke, 2012; Lavalle, Barredo, Petrov, Sagris, & Genovese, 2005; 

Sun et al., 2009) indicated that to design and develop useful functional models, 

designers/modellers must experiment with loosening the constraints of CA and 

extending the concept of CA, and also consider integrating a variety of models, such as 

socioeconomic, regional and traditional models. 

“For land development, the cellular space is a grid of cells representing land parcels 

(unit for land development and land use analysis). Cell state describes the 

development status of a piece of land. Transition rule is a function that maps the state 

of a cell into a new state based on certain conditions that are embedded in the 

relationships between the cell and its neighbourhood. CA models articulate a concern 

that systems are driven from the bottom up, in which local rules generate global 

patterns.” (Hu and Xie, 2006, p. 2) 

Models of micro-macro dynamics based on the bifurcation paradigm have helped 

modellers in gaining some deep insights into the behaviour of complex systems, 

including land development systems. An alternative framework which was developed 

using cellular automata depicts an evolution of large scale urban residential areas 

represented as the result of a large number of interdependent investment decisions 

made by each developer. The exact relation of this model with bifurcation of the same 

process remains an interesting theoretical question (Couclelis, 1987). 

According to Mount et al. (2008), one of the operational models is the Land-use 

Evolution and Impact Assessment Model (LEAM). The LEAM developers aim was to, 

design a planning support tool that is focused on land use change which incorporated 

recent progress in complex systems analysis techniques, ecological modelling 
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concepts, geographic spatial analysis, and cellular automata modelling (Sun et al., 

2009). 

 

Figure 2.5  LEAM Framework (Source: Sun et al., 2009). 

LEAM consists of two major parts in the framework (Figure 2.5), a land-use change 

(LUC) model and an urbanization impact model (Sun et al., 2009). The LUCC model is at 

the core of LEAM and helps modellers generate answers to questions such as: How 

does land use change under certain assumptions and policies? The second part is the 

impact models and it aids in a further interpretation and analysis of urban land-use 

change and answers these questions: What does the resultant land-use change pattern 

mean? How does it affect water quality, air quality, traffic pattern, and property value, 
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etc.? Apart from these two views a hidden aspect exists involving dialogue, with 

planners and policy makers, which completes the workflow in a feedback cycle. This 

third aspect of feedback is very import to LEAM as a planning support tool. Basically, it 

asks planners these questions: are the land use change patterns observed within your 

evaluation criteria or expect outcomes/targets? If not, how should policies or decisions 

be revised, what are the alternatives? In principle these answers from planners are 

then used as the feedback input for running another iteration of the LUC scenario (Sun 

et al., 2009). 

In LEAM conceptually, the surface of the CA on which the cells evolve is constrained 

and is defined by factors such as, hydrology, soil, landform and geology. There are also 

some socioeconomic factors involved, such as census district and administrative 

boundary. Sun et al. (2009, p.60) suggest that for this reason, “the probability of each 

cell change is not only decided by the local interactions of neighbour cells, but also by 

global information. Therefore, cells in LEAM are intelligent agents that not only can get 

the local information, but also can sense the regional or global information, such as 

social environment and economic trends.” While most models are free or available to 

the public for research the LEAM is only available to research in the LEAM lab. 

The Project Gigalopolis led by Clarke (1996) resulted in the SLEUTH model. The name 

SLEUTH was derived from the model input data – Slope, Land cover, Exclusion, 

Urbanization, Transportation, and Hillshade. It is a combination of the Land Cover 

Deltatron Model (LCD) and Urban Growth Model (UGM). Both models LCD and UGM 

use CA for modelling and therefore SLEUTH also primarily uses CA to model the 

landscape. The work reported to date indicates that SLEUTH has mainly been used for 

modelling urban growth and its effects on the land cover or landscape when enabling 
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the simulation and prediction of land cover or urban growth (Dietzel and Clarke, 2007; 

Huang et al., 2008; Leão et al., 2004; Liu and Andersson, 2004; Lakshmi et al., 2011; Yin 

et al., 2008) 

The main purpose of SLEUTH was to model major USA cities – Detroit, Chicago, New 

York, Washington, San Francisco and Albuquerque – and to provide a tool for raising 

public awareness of rapid urbanization, that would allow stakeholders to anticipate 

and forecast future changes and trends (Lakshmi et al., 2011) . Current research shows 

that SLEUTH has been widely used for modelling major cities across the world – 

Netherlands, Porte and Lisbon in Portugal, Mexico City in Mexico, Yaoundé in 

Cameroun and Sydney in Australia (Clarke, 2012). Thus SLEUTH has been calibrated for 

many cities globally, Silva and Clarke (2002) showed greater details of the calibration 

of the model to Lisbon and Porto. The following four major findings were presented: 

1. SLEUTH is a universal portable model that can not only be applied to USA cities 

but to other cities internationally as well. 

2. SLEUTH becomes more sensitive to local conditions when the spatial resolution 

and detail of the input datasets are increased. 

3. using a multi stage Monte Carlo calibration method can better refine the model 

parameters to find those that best replicate the historical growth patterns of an 

urban system; and 

4. the parameters derived from model calibration can be compared between 

different systems and the interpretation can provide the foundation for 

understanding the urban growth processes unique to each urban system. 
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The “Modelling of Land Use/Cover Dynamics” (MOLAND) Project (Lavalle et al., 2005) 

is an urban modelling tool developed by Research Institute of Knowledge Systems 

(RIKS) for the European Commission of Joint Research (JRC), Institute of Environment 

and Sustainability (IES). According to IES one of the most potentially useful aspects of 

MOLAND is the capacity to simulate future urban and regional growth. The model is 

based on a spatial dynamics system and CA. It takes as input five different types of 

spatially referenced digital data for the study area: actual land use types; accessibility 

of the area to the transport network; inherent suitability of the area for different land 

uses; socioeconomic characteristics (population, income, production, employment) of 

the area. The model is able to project the likely future development of land use, for 

each year for the next 10 to 25 years, based on alternative spatial planning and policy 

scenarios.  

Most working LUCC models were designed and developed for a specific situation or 

location with specific variables (driving factors), because of this modellers do not have 

full control on determining the parameters causing LUCC and or fine tuning the models 

which mean the models are essentially a “black box”. For MOLAND and LEAM, like 

many LUCC working models, modellers do not have access to the source code and 

therefore cannot determine or control the parameters but the source code of SLEUTH 

is available and modellers have some control over the parameter but not full control.  

Because of the lack of flexibility of existing systems a model or a platform that gives 

modellers full control over their model will help modellers because the driving forces 

of change are not the same in every location. Modellers should be able to decide on 

the number of classes of LUC data and determine the adequacy or significance the 

variables/parameters before they are included in the LUCC model. For such new 
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research methods, tools and theory, modellers of ecological systems could potentially 

make major improvements to the dynamic changes in physical landscape. “A variety of 

sophisticated computational and theoretical tools exist for characterizing urban 

systems at a conceptual level, and for visualizing and understanding these 

characterizations” (Sun et al., 2009,  p. 58). 

The development of a comprehensive generic landscape simulation model requires 

collaboration between scientists from multiple and diverse disciplines. Guizani et al. 

(2010) suggested that, conventional methods of modelling an intricate 

multidisciplinary system or unit demand one or more programmers to program 

substantive contextual models developed by others. The programmers are tasked with 

the separation of the modellers from the original model implementation and these 

scientists are the ones who are in a better position to understand the base 

composition of the whole model (Guizani et al., 2010). 

In traditional methods, the process of model formulation, calibration, coding and 

integration are time-consuming and error-prone “The entire model ends up as a black-

box system to users, including the model developers. It is extremely hard to use and 

maintain” (Sun et al., 2009). 

Due to the problems described above, there is a need to develop another model or 

platform using an alternative format. The new strategy should be characterized by two 

key differences from the current set of approaches: Firstly, this alternative strategy 

must to involve a generic model building environment rather than a black box; 

secondly, it should allow for a disaggregated and distributed model integrating 

features developed by various subject experts. A generic model building environment 
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would allow for model parameters and drivers to be easily inspected and evaluated. 

Disaggregated and distributed model building would ensure that groups of experts 

could work directly on parts of the model with which they were most familiar (Sun et 

al., 2009). 

Due to the increased complexities in the issues involving contemporary LUC and the 

importance placed upon multi-functional LUC in sustainable LUC development is 

concerned, researchers are increasingly becoming aware of the need and significance 

of studying both the human processes and also the physical processes that cause for 

reshaping our LUC. There are two types of approaches which are used in the study of 

these processes and the approaches are derived from the natural and social sciences 

(Mimler and Priess, 2008; Pimentel and Vassiliadis, 2004). 

Multi-disciplinary studies have been identified as a necessity when researching 

complex landscape issues. In addition the concept of holism in this approach provides 

the opportunity to increase collaboration between different approaches in such a way 

that the human and physical dimensions of landscapes may be treated with the same 

degree of consideration and in a dynamic way (Ruiz & Domon, 2005). 

The Centro de Sensoriamento Remoto (Centre for Remote Sensing) of the 

Universidade Federal de Minas Gerais (UFMG), Brazil has developed a CA modelling 

platform or software known as DINAMICA EGO (Soares-Filho, 2012). EGO stands for 

Environment for Geoprocessing Objects. The software consists of a more advanced or 

sophisticated platform for environmental modelling with outstanding possibilities for 

the design from the very simple static spatial model to very complex dynamic ones, 

which could include nested iterations, multi-transitions, dynamic feedbacks, multi-
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region and multi-scale approach decision processes for bifurcating and joining 

execution pipelines, and a series of complex spatial algorithms for the analysis and 

simulation of space-time phenomena (Soares-Filho, 2012).  

DINAMICA EGO simulates landscape or LUC dynamics, using CA, ABM and statistical 

approaches to produce the changes in spatial patterns. The major difference between 

DINAMICA EGO and other LUCC models is that DINAMICA is not just a model but a 

platform. DINAMICA EGO provides modellers tools to model LUCC whilst most of 

existing LUCC models (such as SLUETH, LEAM, MOLAND) use a steady scheme with 

fixed parameters which could be changed by fine tuning the coefficients to suit a 

specific area. Mas et al. (2007) compared selected LUCC models with respect to 

amount of change estimated,) allocation of change, reproduction of change pattern, 

model validation and advanced simulations and concluded that of the models 

evaluated DINAMICA was the most sophisticated m.  

For the purpose of the research described in this thesis, the DINAMICA EGO 

software/environment will be used to build an LUCC model framework for two study 

areas, Auckland Region and Rondônia State, based on the derived workflow process. 

Further a vegetative carbon sequestration will be developed as an extension of 

Auckland LUCC model to demonstrate that the LUCC model can be used as a 

foundation for further studies. 

The description of the modelling software environment DINAMICA EGO used for this 

research can be found in Appendix 1. The main points worth highlighting are why it is 

generic/open modelling software environment, and also how it allows modellers full 

control in building models from the beginning to finish.  DINAMICA EGO has also has 
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CA modelling engines, Patcher and Expanders, which are suitable for this research. 

DINAMICA take any raster data format input data (Soares-Filho, 2012) . Furthermore 

since DINAMICA is not a model but a platform with many tools it should enable the 

creation of a unique and complex LUCC model. These are some of the reasons why 

DINAMICA was selected for this work. 

2.10  Summary 

In summary, after reviewing LUCC modelling methods – Statistics, CA and ABM – the 

combined method of Statistics and CA was viewed as most appropriate for this work. 

Also amongst the LUCC models investigated, SLEUTH and LEAM had the components 

to model LUCC but they were closed models not allowing introduction of additional 

variables. Their variables influencing change are predefined for all locations thus the 

adequacy of such cannot be determined before being introduced into the LUCC model. 

DINAMICA EGO modelling environment which uses all the 3 modelling methods (CA, 

ABM and statistics) was found to be suitable for the work.  
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Chapter 3   LUCC Workflow Process Model 

This chapter explains the methodology used in designing and implementing a LUCC 

model. To inform the development process a candidate area (the Auckland Region) 

was selected. The focus for development will be on the workflow process(es) involved 

in implementing the LUCC model. As mentioned in section 2.9 the workflow processes 

of some models such as SLEUTH, LEAM and MOLAND are specific and closed thus an 

open and generic workflow process will be advantage to modellers. One of the major 

challenges in developing a successful open and generic model is identifying and 

integrating a suitable method for measuring the adequacy and the significance of the 

input variables or drivers of LUCC before they are utilised in the modelling process. 

Figure 3.1 depicts an integrated workflow process for LUCC modelling from data 

preparation through to simulating future scenarios. The calibration processes which 

include three processes classification of continuous grey scale variables, computation 

of Weights of Evidence of Coefficients and analysis of correlated variables (discussed in 

sections 3.3 to 3.5) is designed to help to answer my primary research question: “How 

do we determine 'adequacy' when considering the variable and parameter set of 

components that describe a LUCC model? What are the measures we can use for this 

determination?” 

3.1 Data  

Data acquisition and preparation for the candidate area is very important in LUCC 

modelling. The source, type, resolution and projection of the data will be discussed in 

this section. The accuracy of land use cover (LUC) affects the accuracy of LUCC model 
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thus the importance of data preparation. There are two categories of input data in any 

LUCC models; they are classified/categorised LUC data and data for variables/drivers 

causing the change. Traditionally CA models are more closely associated with raster 

datasets thus all the datasets used in this work are in raster formats. Furthermore for 

registration of overlay data, all input data should be harmonised to be consistent with 

the spatial data format (any raster format), resolution, projection, and area extent 

(boundary). 

 

Figure 3.1 Flowchart of LUCC Workflow process 
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The LUC and variable maps used in this work are described in Chapter 6. For each of 

the study areas a three LUC maps at different times t1, t2 and t3 were used. The t1 

(initial time for the model calibration) and t2 (final time) LUC maps were used for 

calibration of model whilst the t3 data was used to validate the model (Clarke, 1996; 

Huang et al., 2008; Jantz, Goetz, Donato, & Claggett, 2010; Silva & Clarke, 2002; 

Soares-Filho, 2012; Soares-Filho et al., 2002; Sun et al., 2009; Verburg et al., 2006; 

Waddell, 2002; Yin et al., 2008). Several variables were tested for “adequacy and 

significance” before including them in the model. 

3.2 Determination of Transition Matrix 

In order to calibrate the LUCC model, the historical context of candidate area should 

be analysed within a specific time span, from start time (t1) to end time (t2). The older 

LUC map is considered the starting time whilst the recent the end time. In LUCC time 

could be defined in units of year, month, or day.  The LUC maps are regular lattice of 

cells with each cell belonging to a finite set of land use cover classes or states. To 

determine a transition matrix, time and land use cover states should be represented by 

discrete values. 

The transitions between the states of the system are recorded in the form of a 

transition matrix that records the probability of moving from one state to another in a 

discrete time period. The transition matrix describes a system that changes over 

discrete time increments, in which the value of any LUC class or state in a given time 

period is the sum of fixed percentages of the value of LUC classes in the previous time 

period. The sum of fractions along the row of the transition matrix is equal to one. The 

diagonal of the matrix is zero because the cells are unchanged (from = to). The 
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transition rates are then used in the model as a fixed parameter within a given time 

period. A discrete time step can comprise of any time span and this can be set 

externally in DINAMICA EGO. 

3.2.1 Definitions and Assumptions 

The LUCC model uses an overlay of raster maps with each map having the same 

number of total cells N. The cells of the LUC maps have the potential of having a finite 

number M of different and mutually distinct states and are collectively exhaustive 

(which means that the sum of the rows of the probability matrix must be one). Each 

cell (i) has a location (x,y); i(x,y), where x,y = 1,2,…, n. Each state of the cell is defined 

by an LUC type or class which is within the range k,l = 1,2,…, M; where k is the initial 

land use class of cell i at t1 and l  is land use class at t2.  

Thus, at time t it is assumed that each cell i has only one LUC type k which can be 

defined as shown in Eqn 3.1. 

��
�(�) = 1, ��

�(�) = 0, � ≠ �, � = 1,… ,�,���
�(�) = 1

�

									���	�.�	 

Where i is the current cell, k is the state of LUC, t is the time and M is the total number 

of LUC classes. Thus the definition for the aggregates in terms of cells and or LUC types 

may easily be derived from Eqn 3.1 as: 
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�(�)
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The total number of cells N in the LUCC model is fixed over time, that is  

�(�) = �, ���	∀�,				�ℎ���	� = 1,… , �	 

where τ is the total number of time periods. Although the model allows for 

representation of the changes between the total numbers of distinct land use cover 

types in cells the total number of aggregate cells of the model is preserved. Therefore 

the increase or decrease in a specific land use cover class k can be seen as a transition 

from one land use cover class k to another class l. Since each cell is uniform and of the 

same size, it is assumed that the density of the cells are the same. Thus the total 

density of any land use cover in the system is the proportion of the land use cover to 

total aggregate of cells. The density ρk(t) is defined as: 

��(�) =
��(�)

�
																																																																																																																���	�.� 

The transitional dynamics in the LUCC model may be expressed as the transitions from 

one distinct land use cover k at time t to another l at t+1. Thus the transition of cell i 

from land use cover k to l could be defined as: 

∆��
�� = 1, �ℎ���	��

�(�) = 1, ���			��
�(� + 1 ) = 1																																		���	�.� 

For the entire system, the aggregate transition from land use cover k to l is expressed 

as: 

∆��� = ���
�(� + 1 )

�

−���
�(�)

�

= ��(� + 1 ) − � �(�) = 	�∆��
��

�

													���	�.� 

For each land use cover k, the true aggregate change- increment or decrement- is: 
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∆�� = ��(� + 1 ) − � �(�), �ℎ���	�∆��

�

= 0																																											���	�.� 

Eqn 3.7 indicates the preservation imposed by having N cells with only one land use 

per cell. The model operates from the cellular level to regional, therefore it is 

important to take into account transitions at the aggregate level for this helps to 

express the long term dynamics of the LUCC model in a simplified way. The total land 

use cover l at t+1 can be computed as: 

	��(� + 1 ) = �∆���

�

																																																																																																���	�.� 

Thus Eqn 3.8 can be expressed in transition probability form as: 

��(� + 1 ) = ������(�)

�

																																																																																		���	�.� 

where the  probability is expressed as: 

��� =
∆���

��(�)
=

∆���

∑ ∆���
�

, ���	����

�

= 1																																												���	�.�� 

The process defined, in Eqn 3.8, can be rewritten in matrix-vector form as a first order 

Markov chain process, if the probability of each land use cover k or l at time t and t+1 

respectively is defined as: 

��(�) =
��(�)

�
	, ���			��(� + 1 ) = 		

��(� + 1 )

�
																																���	�.�� 
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Thus from the above equations the land use cover l at t+1 is a function of k at t, that is, 

���� = �(��)	 from definitions in Eqn 3.11, Eqn 3.8 can be rewritten as : 

�(� + 1 ) = �(�)�																																																																																																						���	�.�� 

Assuming, the transition probabilities are constant and the conditions of connectivity 

in the matrix P are relatively weak, then the limit of Eqn 3.12 will lead to  

�(� + �) = �(�)��																																																																																														���	�, �� 

From Eqn 3.13, as � approaches the limit, then �� → �  and Eqn 3.13 gives the steady 

state probabilities �	as	� = ��  (de Almeida et al., 2003).   

Eqn 3.13 has the structure of a Markovian chain process (Eastman, 2003; Weng, 2002), 

where �(�) is a vector with Mx1 dimension (where M is the total number of states, in 

this case land use cover classes), �(� + 1 ) is also an Mx1 dimension vector of the 

number of LUC states at time t+1 and an MxM matrix of transition probability �� 

which executes the probability of transition between each pair of land use covers, k 

and l. Thus the transition is expressed as: 
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where k,l = 1, … M and v is the time steps 

In DINAMICA EGO the diagonal values of the transition matrix are not used in the 

model because there is no change in the cell state. DINAMICA EGO allows for single-
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step and multi-step transition matrices to be computed; a single-step matrix 

corresponds to a time period (the calibration period is taken as single period) and the 

multi-step matrix corresponds to time unit specified by a time period divided by 

number of time steps within that time period. Since the time unit is an external 

reference, it can be of any size. The multi-step transition matrix is derived from an 

Ergodic matrix, which has real number Eigen values and vectors as defined in Eqn 3.15. 

A state k is said to be ergodic if it is aperiodic and positive recurrent. 

�� = � ∗ �� ∗ ���																																																																																																���	�.�� 

where H and V are Eigen vector and Eigen value matrices, P is the transition matrix 

and t is a fraction/multiple of its time period (Soares-Filho et al., 2002). 

To compute the transition matrices (single and multiple steps) in DINAMICA, the 

Determine Transition Matrix functor is used. It takes as input two land use cover maps 

and allows users to specify the time step. As shown in Figure 3.2 the DINAMICA EGO 

functor requires the Initial LUC and Final LUC (as start and end time respectively) 

inputs as well as a third input Time steps (Figure 3.3). The result is both a single-step 

and a multiple-step matrices in a tabular form.  

 

Figure 3.2  Determination of Transition Matrix, DINAMICA EGO 
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Figure 3.3 Determination of Transition Matrix Functor: Port View 

3.3 Classification of Continuous Grey scale Variables 

When considering a variable and parameter set of components for a LUCC model, one 

has to determine the adequacy and significance of each variable before including it 

into the system. In view of this the Weights of Evidence (WoE) (Agterberg & Bonham-

Carter, 1990; Goodacre, Bonham-Carter, Agterberg, & Wright, 1993) approach is used 

to measure the adequacy and significance of variables of the model. Weights of 

Evidence only applies to categorical data, thus it is necessary to categorise any 

continuous grey-scale maps – quantitative data, such as slope, distance maps (distance 

to rivers and roads), elevation/altitude. The key issue for any categorisation process is 

the need to preserve the original data structure because of the integrity and 

completeness of the data.  

The Bayesian method (Goodacre et al., 1993) is applied in computing Weights of 

Evidence, where the effect of a spatial variable on a transition is calculated 

independently of a combined solution. The Weights of Evidence represents each 

variable’s influence on the spatial probability of a transition k⇒l. Since Weights of 
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Evidence is the core approach I used in calibrating the LUCC I seek to discuss the 

assumptions and definitions used to derive the WoE in Section 3.3.1.  

3.3.1 Definitions and Assumptions: Weights of Evidence 

Given a binary map of spatial pattern, B (defining the presence or absence of spatial 

pattern) and a map of events D, such as land use cover change, the weighting factors 

W+ and W- can be calculated from the ratios of conditional probabilities and may be 

stated as follows : 

�� = �� �
�(�|�)

�(�|��)
� 				���					�� = �� �

�(��|�)

�(��|��)
� 																																			���	�.�� 

where B and ��  stand for the presence and absence of binary spatial map pattern 

respectively and, D and �� stand for presence and absence of land use cover change 

event respectively (Agterberg & Bonham-Carter, 1990; Goodacre, Bonham-Carter, 

Agterberg & Wright, 1993). The contrast, C, is a measure of the spatial association 

between the binary pattern and the events is given by  

� =	�� −� �																																																																																															���	�.�� 

To give an example, suppose we took all of the black pieces of a chess set and arranged 

them on a chess board. If all of the black pieces are placed on black squares, the 

contrast would be positive, if all the pieces are on white squares the contrast would be 

negative and if half of the pieces were on black squares and the other half on white 

squares, the contrast would be zero.  
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To determine whether the magnitude of the contrast is good enough to be statistically 

significant variance of the contrast s2(C) can be used and can be expressed as: 

��(�) =
1

����(� ∩ �)
+

1

����(� ∩ ��)
+

1

����(�� ∩ �)
+

1

����(�� ∩ ��)
					���	�.��� 

The contrast(C) indicating whether or not there is a relationship between B and D is 

said to be statistically significant with 95% probability if |C| > 1.96 s(C).  

The conditional probabilities used in these formulae are determined by measuring the 

overlapping areas between D and B where:  

�(�|�) =
����(�∩�)

����(�)
																																																																																																				���	�.��b 

is the conditional probability that a land use cover change event intersects with the 

binary pattern; in determination of this the ratio requires the measurement of  

i) the area where events occur on the binary pattern (the intersection), and 

ii) the total area occupied by all events. 

For cases where the events occur on the binary spatial pattern more frequently than 

anticipated W+ will be positive and W- will be negative, and the value or extent of the 

contrast, C, reflects the whole spatial relationship of the events with the binary 

pattern. 

The likelihood of an event D occurring in a spatial pattern B, can be expressed by the 

conditional or posterior probability (Eqn 3.19). 
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�{�|�} =
�{� ∩ �}

�{�}
																																																																																										���	�.�� 

where D is number of cells in a raster map and overlap with B as 

�{� ∩ �} =
����(� ∩ �)

����	�
																																																																															���	�.�� 

a fraction of the area occupied by B or D with respect to the entire area A is given as 

�{�} =
�

�
,								���								�{�} =

�

�
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In representing the conditional probability in terms of its odds as
�{�|�}

���{�|�}
, if (	��	) 

represents the absence of (D) and O{D} represents the prior odds ratio of event (D) 

then  

�{�} =
�{�}

�{��}
,								�ℎ��						�{�|�} =
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�{��|�}
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Then 

																��{�|�} = ��{�} +� �																																																																													���	�.�� 

where W+ is the Weight of Evidence of event D occurring, given a spatial pattern B, 

then the post probability of a transition k⇒l given a set of spatial data (B, C, D,... N) is 

expressed as follows: 

�	{� ⇒ �|� ∩ � ∩ �…∩ �} =
�∑ ��

�

���
∑ ��

� 																																																															���	�.���    
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Equation 3.24b is an extension of equation 3.23 to allow multiple predictive maps, so 

that each represents the degree of association of spatial pattern or variables with 

occurrence of event (� ⇒ �) is presented as  

�	{� ⇒ �|� ∩ � ∩ �…∩ �} = ��� +��
� + ��

� + ��
� + ⋯+��

�														���	�.��� 

Where B, C, D, and N are the values of spatial variables measured at location x,y and 

represented by its weights ��
�.  Thus the probability that a cell will transit from k->l is 

given by Eqn 3.24b. 

3.3.2 Application of WOE in Categorisation of Grey scale Variable 

The method used by DINAMICA EGO to categorise grey scale data is adapted from  

Agterberg and Bonham-Carter (1990), Weight of Evidence (WoE), which calculates 

ranges according to the data structure by establishing a minimum delta Dx for a 

continuous grey scale variable x, is used to build nx incremental buffers Nx comprising 

of intervals from Xmin to Xmin+ nxDx.  

Where n is a threshold dividing the map into two classes: Nx and (	��
����). An is the 

number of cells for a buffer Nx multiple of n and dn is the number of occurrences for 

the modelled event D within this buffer. The quantities An and dn are obtained for an 

ordered sequence of buffers N(xminimum + n Dx). Subsequently, values of W+, C, 

and S2 for each buffer are calculated (see Eqn 3.16 - 4.18) (Goodacre et al., 1993; 

Soares-filho, Rodrigues, Costa, & Schlesinger, 2009). 
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A graph of the sequence of quantities An against 	�� ∗ ���
 is produced andthe 

breaking points of this curve are determined by applying a line-generalizing algorithm 

using three variables (Soares-Filho et al., 2009, p.63): 

i) mindx, is the minimum distance interval along x,   

ii) maxdx, is the maximum distance interval along x and 

iii) ft tolerance angle. (f is an angle between v and v’ - vectors linking the current to 

the last point and the last point to its antecedent, respectively) 

For any dx (a distance between two points along x), greater than mindx or lesser 

than maxdx, �� > �����	||	�� < �����, a new breaking point is placed whenever dx 

> maxdx or f exceeds the tolerance angle ft. Thus, the number of ranges decreases as a 

function of ft. The ranges are finally defined by linking the breaking points with straight 

lines, an example is shown in Figure 3.4.  

In Figure 3.4 : 

a) Is the graph of An against the continuous variable “distance to all roads” 

b) Shows the best fitting curve approximation, by straight-line segments, by 

applying a line-generalising algorithm to (a) which defines the breaking points 

and the category intervals for the variable “distance to all roads”.  
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Figure 3.4   Graph showing Breakpoints based on the Grey Scale Variable 

The implementation of the Categorisation of Continuous Grey-scale variable in 

DINAMICA EGO, employs the functor Weights of Evidence of Ranges as shown in 

Figure 3.6 and Figure 3.5. In Figure 3.6: 

 the event or transition ( � ⇒ � where k is the initial land use cover and l the 

land use cover a cell has transited to) is selected, and  

 the continuous grey scale variable to be categorised in relation to the event is 

also selected. 

 user inputs the following variables 

o of increment dx,  

o minimum (mindx) and maximum(maxdx) delta, and  

o tolerance angel ft 

3.4 Computation of the WoE Coefficients of Variables 

Based on the definitions and assumptions of Weights of Evidence as discussed in 

section 3.3.1, the Weights of Evidence Coefficients of variables causing change in an 

event D (where D is the change from land use cover class k to land use class l) can be 

computed.  
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Figure 3.5 Port Editor of Determine Weights of Evidence Ranges Functor 

 

Figure 3.6 Functor Editor of Determine Weights of Evidence Ranges Functor 
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This calibration phase is important in LUCC modelling because every variable which is 

introduced into the model should have a scientific basis for its inclusion (does the 

variable influence a change? and if it does what is the measure?). It is worth noting 

that a variable might cause a change in one event and not influence change in other 

events, for example the variable distance to roads may be significant in the change 

from vegetation to settlements but may not cause change in all the other transitions in 

the same LUCC. Thus it is important to determine the Weights of Evidence of 

Coefficients for variables in each transitional event.  

For the computation of Weights of Evidence (WoE) Coefficients of variables,  

 all variables anticipated to cause transitional change, are categorised into 

ranges 

 the ranges are specific for every transition, such that for each transition there is 

a new categorisation of the variable. 

 WoE coefficients are assigned to a range of values for the variable, which 

determines the influence of change of the variable within each range for a 

specific transition. 

Figure 3.7 presents a sample of the WoE coefficients results, for the candidate area, 

the first line represents the variable name with ranges, where 0:1, 1:101, 142:201 are 

ranges 0 to 1, 1 to 101, 142 to 201 respectively. The first column of the second line 

indicates the transitional event (e.g. 1,2 stands for transition from class 1 to 2) and 

subsequent numbers are WoE coefficients corresponding ranges of the variables in the 

above line. 
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Figure 3.7 Sample Results of WoE Coefficients 

 

Figure 3.8 Graphs of WoE vs. Ranges 



Page | 69 

Figure 3.8 is a graphical presentation of WoE of coefficients given in Figure 3.7. The 

graphs are plots of WoE coefficients (y axis) against ranges (x axis). For example Graph 

1 shows the influence of the variable distance to minor roads on transitional event 1-

>2 (forest to grassland), thus showing the trend of influence of change. Graph 1, shows 

that forest land very close to minor roads has an affinity (weighted) to change to 

grassland and this decreases further away from the road and then increases again.  

 

Figure 3.9  Message log of Weights of Evidence 

Figure 3.9 is a message log excerpt for the determination of WoE Coefficients in 

DINAMICA EGO. In this figure the first line shows the transitional event (from class 3 to 

6, vegetation to settlement) and the variable distance to roads. There are five columns, 

the first column displays the ranges, the second is the buffer size in cells (total number 

of cells which are possible to transit from 3 to 6), the third column is the number of 

transitions (executed/actual transitions) within the buffer, the fourth is the resulting 
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WoE coefficients, the fifth is the measure of contrast (� =	�� − � �) and the sixth is 

result of the statistical significance test. 

It can be deduced from the second transition (3->6 transition with distance to minor 

roads) presented in Figure 3.9 that the first and second ranges indicate positive 

association, which is favouring the transition, whilst the other five ranges give negative 

values and therefore are unfavourable to the change. The contrast is the measure of 

attraction/repelling effect, near zero values means the effect is almost zero or 

negligible whilst greater positive/negative values indicates greater attraction/repelling 

effect. Also the significant test shows “yes” for all the ranges which means all the 

ranges are significant for this transition 3->6, in case of “no” significant the modeller 

can fine tune categorisation of ranges. 

3.5 Analysis of Variable Correlation 

One of the advantages of Weights of Evidence over other statistical methods, such as 

Logistic or Linear Regression, is that it is not constrained by statistical assumptions of 

parametric methods (which spatial data violates). The only assumption for the 

application of the Weight of Evidence method is that all variables are spatially 

independent. As a result a pairwise test of categorical maps measuring Cramer’s 

Coefficients, the Contingency Coefficient and the Joint Information Uncertainty can 

be applied to assess the existence of a correlation between two variables. Both 

Cramer’s and Contingency tests are based on the chi-square statistic while Joint 

Information Uncertainty is based on the Joint Entropy measure (Bonham-Carter, 1994, 

p.243).  
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For chi-square statistic the area cross tabulation is applied in a similar way to a 

contingency table. Assuming the area table between map A and B is a matrix T with 

elements T ij, where  

i = 1, 2 …, n of map A and j = 1, 2, …, m of map B 

T i.  is the sum of the ith row  

T.j is the sum of the jth column 

T.. is the grand total of the sum of the rows and columns 

 

��.= 	∑ ���    and    �.�	= 	∑ ��� 																																																																	���	�.�� 

Thus the expected area for the ith row and jth column is:  

���
∗ =

��.	�.�
�..

																																																																																																						���	�.�� 

Thus the chi-square statistic can be expressed as  

�� = ��
(��� − ���

∗ )�

���
∗

��

																																																																																���	�.�� 

In comparing equation 3.27 with the usual [(observed-expected)2/expected] 

expression, which approaches 0 when the observed and the expected areas are equal 

and the two maps are completely independent, chi-square actually increases in 

magnitude as the observed areas become increasingly different from expected.  

Cramer’s coefficients V and Contingency coefficient C are expressed as  

� = �		
��

�..		�
																																																																																																							���	�.��		 
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where M is the minimum of (n-1, m-1) 

� = �		
��

�..	+ 	� �
																																																																																																���	�.��		 

The magnitude of Cramer’s coefficient �, varies between minimum value 0 (indicating 

no correlation between variables) and maximum value less than 1 depending on chi-

square χ2 and total area T... The contingency coefficient, C, also varies from 0 to less 

than 1, where 0 means no correlation and values close to 1 shows high correlation 

between variables. 

The Joint-Uncertainty information test, which employs an Entropy measure (known as 

Information Statistics), also uses an area cross tabulation matrix. Assuming the Tij 

values are transformed to area proportions, p, is expressed as: 

��� =
���

�..
       and    ��.=

��.

�..
    and   �.�=

�.�

�..
																																																								���	�.�� 

Using area proportions as estimates of probabilities the entropy of map A and B can be 

defined as: 

�(�) = −��.�	���.�
�

								���						�(�) = −���.	����.
�

																							���	�.�� 

The joint entropy H(A, B) of combining H(A) and H(B) is 

�(�, �) = −�����	�����
��

																																																																									���	�.�� 
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Then the joint information uncertainty, U(A,B), which measures the 

association/correlation can be defined as: 

�(�, �) = 2�
�(�) + � (�) − � (�, �)

�(�) + � (�)
� 																																																							���	�.�� 

Thus, 0 < U (A, B) < 1. When the two variable maps are completely uncorrelated then 

H(A,B) = H(A) + H(B) and U(A,B) = 0, and when completely correlated, H(A) = H(B) = 

H(A,B) =1 then U(A,B) = 1. Bonham-Carter (1994) interpreted joint information 

uncertainty as a symmetric combination of two uncertainty measures; the uncertainty 

with which variable map A predicts variable map B and vice versa. 

Figure 3.10 shows the results of the implementation of Cramer’s test, Contingency and 

Joint Information Uncertainty measures for the candidate area LUCC. In this figure the 

first and second columns show the first two variables to be compared, the fourth and 

fifth for Cramer’s and the Contingency coefficients respectively, whilst the last column 

represents the joint uncertainty information. In the joint uncertainty information 

values close to zero mean that the variables are less correlated and can be accepted. 
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Figure 3.10  Sample - Analysis of Variable Correlation 

The final phase in the LUCC calibration process involves improving the WoE 

Coefficients performance using a Genetic Algorithm (GA). A GA is recommended  

when the validation of the calibration process does not produce accurate enough 

results alone (Soares-Filho, Rodrigues, & Follador, 2013). In order to validate the 

calibration process, LUCC model was built and executed, and evaluated the simulated 

maps with observed maps for the year 2008 for the candidate area. 
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3.6 Building and Running LUCC Simulation Model 

This section describes and explains the integration of the various workflow 

processes/phases into a LUCC Simulation Model. The generic modelling environment 

and GUI of DINAMICA EGO makes it suitable and easier to integrate the workflow 

processes. Figure 3.11 is a DINAMICA EGO diagram showing integration of the 

processes of LUCC modelling and Figure 3.12 is the flow chart for LUCC simulation 

model which further explains Figure 3.11.  

3.6.1 LUCC Model Data 

As shown in Figure 3.11 the input data are: 

 Initial land use cover map 

 Multiple Transition Matrix 

 WoE Coefficients of Variables 

 Static and dynamic variable maps 

The variable (driving factors) maps are in two categories, static and dynamic variable 

maps. Static variables such as slope, elevation, distance to major and minor roads, 

distance to rivers, soil and reserved lands do not change in value through the iteration 

process because they are computed only once before running the simulation model. 

On the other hand dynamic variables such as distance to land use cover class (e.g. 

natural forest, planted forest, crop land, settlement and wetland) are computed 

before an iteration thus changing in values after each time step. The variable maps 

represent distance from a cell of a particular LUC class cell to the nearest cell of a 

different LUC class at a specific time step. 
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3.6.2 Computation of Spatial Transition Probabilities 

The spatial/local transition probabilities are computed for each cell in the LUC map for 

every specific transition considering the natural and anthropic state of cells. Using the 

WoE method (Eqn 3.16), which employs Eqn 3.24a and 4.24b, the probability of a cell 

to transit from land use class k ->l are computed. Using the values of W+ derived from 

Eqn 3.16 in  4.24a and 4.24b, the cells’ transition probabilities are computed (Maeda et 

al., 2011). Regarding Eqn 3.16 it can be interpreted as, the higher the value of W+ the 

greater the probability of that transition to occur compared to other computing 

transitions. Thus cells are assigned a value of probability for each transition and 

respective probability maps generated. It is worthy of note that the method models 

transitions and not the state frequencies. 

DINAMICA EGO computes spatial transition probability maps using the functor “Cal W. 

OF. E Probability Map” as in Figure 3.11. As an input, the functor uses WoEs of 

Coefficients of variables and LUC map at time t. 
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Figure 3.11  LUCC Simulation Model Implementation – DINAMICA EGO Design 
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Figure 3.12 Flowchart of LUCC Modelling 

3.6.3  Allocation of Simulated Land Changes   

For CA LUCC modelling, an issue to consider is the influence of neighbourhood cells in 

the transition probabilities.  DINAMICA EGO uses a local CA transition engine 

composed of two complimentary land use transition functions (allocation algorithms), 

Expander and Patcher, in dealing with this issue (Soares-Filho et al., 2002). The 

Expander is for the expansion or contraction of previous patches of given land use 

cover class whilst the Patcher algorithm generates or form new land use cover class 

patches through a seeding mechanism. Thus, the Expander algorithm executes 
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transitions from class k⇒l only in the vicinity of adjacent cells of class l and the Patcher 

executes transitions from class k⇒l only in the vicinity of adjacent cells of class other 

than l. The two algorithms can be combined and expressed as Eqn 3.34 (Soares-Filho 

et al., 2002). 

��� = � ∗(��������	��������) + � ∗	 (����ℎ��	��������)														���	�.�� 

where ���  is the total amount of transitions of type kl specified per simulation step, 

and r and s are the percentages of transitions performed by each function respectively, 

with r + s = 1.  

The Expander algorithm is expressed by equation 3.35 (Soares-Filho et al., 2002): 

��	�� > 3	�ℎ��	���
� (�, �) = ���(�, �),	 

����	���
� (�, �) = ���(�, �) ∗	�

��

4
� 																																			���	�.�� 

Where �� represents the number of cells of type l occurring in a 3-by-3 window;	���  

and ���
�  are the transition probabilities for a transition class � ⇒ �. This algorithm 

ensures that the maximum of  ���
�  will be equal to the original ���  whenever a cell of 

class k is surrounded by at least 50% of class l neighbouring cells (Figure 3.13). 

The Patcher Function is intended to simulate the patterns of LUCC by preventing the 

formation of isolated single cell patches whilst it generated diffused patches. This 

algorithm searches for cells around a selected location for a specific transition. This is 

achieved by allocating the core cell for the new patch first, and then selecting specific 



Page | 80 

number of cells around the core cell according to their Pkl transition probabilities as 

illustrated in Figure 3.14.  

 

Figure 3.13  Pkl arrays before [a] and after [b] convolution of Expander (Source : 

Soares-Filho et al., 2002, p.23). 

 

Figure 3.14 Generation of Cells around allocated core cell by Patcher 
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As outlined by Soares-Filho et al. (2002), for each simulation time step the percentages 

of transitions are computed and set for each of the functions (Expander and Patcher). 

Both transition algorithms employ a stochastic allocation method which is responsible 

for finding cells with the highest transition probabilities for each kl transition. The 

allocation method stores the cells and sorts them for subsequent selection. With this 

method, the newly selected cell becomes the core for a new patch or 

expansion/contraction edges which could be developed using transitional functions. 

The size of the new patches and expansion/contraction edges are set according to 

lognormal probability distribution. It is therefore imperative to set the parameters of 

the distribution, mean size and variance size, of each new patch or 

expansion/contraction edge to be created. 

In DINAMICA EGO (Figure 3.11), the Expander functor is executed first then the 

Patcher functor. The Modulate Change Matrix functor (see Eqn 3.34) regulates 

(dividing into r and s whereby r + s = 1) the quantity of change per transition between 

the Patcher and Expander functions. It is worth noting that in Figure 3.11 the quantity 

of change per transitions which are not executed by Expander are then passed onto 

the Patcher through the Add Change Matrix functor, to ensure that all the quantities of 

change are executed. 

3.6.4 Execution Process of the LUCC Simulation Model 

This subsection describes the execution of the integrated processes as presented in 

Figure 3.11. The LUCC simulation model takes as inputs the results of the following 

process: 

 Computation of Transition Matrix  - Multiple Transition Matrix 



Page | 82 

 Computation of Weight of Evidence Coefficients of Variables - WoE Coefficients 

of Variables 

 Data preparation – Static Variables and Land Use Cover Map 

Dynamic variables are derived from the initial LUC map through the Mux Categorical 

Map and then the various distance maps are computed.  

For each sojourn time, Calc Change Matrix computes the amount of change per 

transition by multiplying the transition rates (from the multiple transition matrices) by 

the number of cells of each land use cover class per each sojourn time (from the 

dynamic LUC map of the Mux Categorical Map). The amount of transitional change is 

regulated for the Expander and Patcher by the Modulate Change Matrix functor.  

The simulation engine of DINAMICA EGO is the Expander and Patcher and employs the 

CA modelling approach.  The Expander is executed using a percentage of the amount 

of change per transition (from the Modulate Change Matrix) and the local transition 

probabilities to simulate expansion/contraction of LUC class(es). The changes which 

are not executed by Expander are passed onto the Patcher for execution. The 

simulated map is saved and at the same time passed to be used as the initial LUC map 

(connects to Mux Categorical Map) for the next sojourn time iteration. The Repeat 

container (Figure 3.11) handles the number of iterations (time steps), this is entered by 

the modeller, and the model generates simulated maps after each iteration.  

3.7 Validation of the Simulation Model 

The working processes of the spatially-explicit LUCC simulation model begins with a 

digital LUC map of an initial time and then simulates transitions in order to generate 
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simulated/prediction map(s) for subsequent discrete time(s). The obvious questions in 

analysing the simulated map are: 

 How well did the model perform in measuring the prediction accuracy of the 

model? (Verburg et al., 2006) 

 Does the model generate the correct quantity in each LUC class? 

 Does the model place the specific LUC classes in the correct locations? (Pontius, 

2002) 

Thus, in LUCC modelling, it is important to validate the model before it is used to build 

scenarios. Rykiel(1996, p.5) states that “validation  is  a demonstration  that  a  model  

within  its  domain  of applicability  possesses  a  satisfactory  range  of  accuracy  

consistent  with  the  intended  application  of  the model”. Verburg et al. (2006) 

asserts that it is not useful to crown a model as valid or to condemn a model as invalid 

based on validation results, rather its more useful to state the degree to which the 

model is valid. Hence validation in this work measures the performance of the model 

to reveal the level of trust or confidence that one should put in the model.   

Map comparison is the method most used in validating LUCC models either 

qualitatively and or quantitatively (Visser, 2004; Verburg et al., 2006). Map comparison 

is a simple comparison of the simulated maps with observed/reference maps to 

measure similarity between the two maps. There are numerous mathematical 

methods used by LUCC modellers to quantify the similarity of maps such as the cell-by-

cell kappa and fuzzy sets map comparisons (Visser, 2004; Verburg et al., 2006).  

For most purposes, a careful visual inspection of maps (reveal many interesting 

characteristics) arguably performs better than mathematical procedures in validation 
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(Visser, 2004). The human observer takes many aspects (such as local similarities, 

global similarities, logical coherence and patterns) into consideration when comparing 

maps. Map comparison by mathematical procedures usually captures one of these 

aspects ignoring the others (Visser, 2004). Despite the rigidity of current mathematical 

methods of map comparison, in some circumstances it is preferred to a visual map 

comparison, for example for large area maps automated mathematical methods save 

time and are likely to be less error prone than human observation. 

 

Figure 3.15  Map Comparison of Checker Boards 

An example of the rigidity of mathematical methods is clearly illustrated by a  cell-by-

cell comparison of two checker boards as in Figure 3.15 in which it can be observed 

that (a) has a white cell at the top left corner whilst (b) has black. A cell-by-cell 

comparison method would find a white cell where black cell is expected and vice versa, 

however an average human observer would immediately appreciate that (a) and (b) 

are very similar qualitatively where a statistical method would only show that they are 

significantly different. 
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An automated map comparison within a neighbourhood context rather than a cell-by-

cell context will be more suitable for LUCC model because a neighbourhood context 

considers the similarity in the pattern of change. In an attempt to resolve the issue of 

vicinity-based comparison several methods have been developed.  

 Multiple Fitting Procedure which compares a map fit within increasing window 

sizes. This method quantifies the goodness of fit of LUCC models by measuring 

the similarity of the patterns at different resolutions in order to describe 

complexity of the spatial patterns (Costanza, 1989). 

 Pontius (2002) introduced a method similar to Multiple Fitting Procedure, but 

partitions the overall validation into six as; correct due to chance, correct due 

to location, correct due to quantity, error due to location and error due to 

quantity. 

 Power, Simms, and White (2001) presented a combined method of polygon 

mapping and hierarchical fuzzy pattern matching to compare maps on both 

local and global level.  

 Hagen (2003) developed a method applying fuzzy set theory (known as kfuzzy 

which is kappa statistic and fuzzy similarity), considering the fuzziness of 

location and LUC class/category within a cell vicinity. The method produces a 

map which specifies the degree of similarity, ranging from 0 to 1, of each cell. 

Overall value of similarity if derived from the local spatial assessment of 

similarity. 

  Soares-Filho et al. (2009) modified the method of Hagen (2003) and named it 

Reciprocal Similarity, employing exponential decay function using distance to 

weight the cell state distribution around the core cell. 

Since this work seeks to validate the process of change and not the maps themselves, a 

method which considers vicinity is preferred to cell-to-cell method. Also a method 

comparing the fitness of the model at different window resolutions will help to reveal 

the performance of the model at different resolutions. Thus a combination of 
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Reciprocal Similarity with Multiple-window size was used to validate the LUCC model 

by quantifying the similarity in the pattern of change. 

3.7.1 Fuzzy Set Theory Approach 

The concept of fuzzy similarity map comparison is based on the notion of fuzziness of 

location where the representation of a cell is influenced by the cell itself and, to a 

lesser extent, by the  cells in its neighbourhood (Hagen, 2003). The fuzzy 

neighbourhood vector represents fuzziness of LUC category/class and can represent 

fuzziness of location when category is not considered. Fuzziness is considered as a level 

of uncertainty or vagueness of a map. Fuzziness of category means that some of LUC 

classes are more similar to each other than others whilst fuzziness of location implies 

that the spatial specification is not always precise(Hagen, 2003). 

The fuzzy representation a cell means that the cell partially belongs to multiple 

categories and to achieve this each cell is assigned a set of membership vectors. These 

membership vectors are Crisp Vector (Vcrisp), the Fuzzy Category Vector (Vcat) and the 

Fuzzy Neighbourhood Vector (Vnbh). The vectors are expressed as  

	������ = 	�

������,�
������,�
������,�

⋯
������,�

� 				��������	� → 	 ������,� = 1, ������,� = 0, (� ≠ �)										���	�.��  

���� = �

����,�
����,�
⋯

����,�

� ��������	� → ����,� = 1, 0 ≤ ����,� ≤ 1, (� ≠ �)																				���	�.��  

Eqn 3.36 and Eqn 3.37 are associated to each cell in the map. Thus the Vnbh for each 

cell is determined as follows(Hagen, 2003): 
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���� = �

����,�
����,�
…

����,�

� 																																																																																																								���	�.�� 

����,� = |����,�,� ∗ ��, 	����,�,� ∗ ��, … , ����,�,� ∗ ��|���																														���	�.�� 

Where µnbh,k,l = membership of category k for neighbouring cell l in Vnbh, µcat,k,l = 

membership of category k for neighbouring cell l in Vnbh, ml = distance based 

membership of neighbourhood cell l. The extent to which neighbouring cells influence 

the fuzziness is expressed by a distance decay function (m, an exponential decay (m=2-

d/2). Although the decay function is spatially continuous, in its application it is only 

functional within the neighbourhood window n x n. The vagueness of the data, the 

nature of uncertainty and the allowed tolerance of spatial error determines the 

window size (resolution) and which decay function is suitable (Hagen, 2003).  

According to Hagen (2003) and Soares-Filho et al. (2009) there is no best alternative to 

experimenting with the size and form of the function. Soares-Filho et al. (2009) assert 

that in order to determine the LUCC model’s spatial goodness of fit at different 

resolutions, in addition to an exponential decay, a constant function equal to one 

inside the neighbourhood window and 0 outside of it must be applied. 

To determine the similarity of two maps, A and B, the fuzzy vectors assigned to all cells 

can be compared. Hagen (2003) expressed the similarity between a cell in map A and a 

cell in map B at the same location as: 

�(��, ��) = ����,�, ��,�����
, ���,�, ��,�����

,… , ���,�, ��,�����
	�
���

							���	�.�� 
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where VA and VB are the fuzzy vectors for maps A and B. According to Hagen (2003), 

S(VA,VB) has the tendency to produce relatively high values, to avoid this, the so-called 

two-way comparison (Eqn 3.41) is applied. 

�������(�, �) = �������,�, ������,��, ��������,�, ����,������
																		���	�.�� 

3.7.2 Validating Model Process or Simulated Map 

The map comparison method is usually used for validating two maps, A and B, where A 

is the reference map and B is the simulated map. For the work reported in this thesis 

the comparison will be used to evaluate the performance (how good does the model 

simulate LUC changes) of the model not only the maps.  

In view of this fact it is important to point out that validating simulated maps is not 

the same as validating model process. The validation of simulated maps, by 

comparing the actual map with the predicted map, only measures the accuracy of an 

instance of the model and not the overall model. It does not assess the accuracy or 

predictive capabilities of the entire transitional change process. Validating an LUCC 

model involves validating the process, the transitional changes executed by the model, 

in order to evaluate the performance of the model.   

How will this be achieved? The evaluation of the performance of LUCC model is 

achieved by using a two way similarity approach (Cal Reciprocal Similarity) in Eqn 3. 

41. The procedure is outlined as 

1. Compute the historical (not simulated) LUC map-of-changes from 1990 to 2008, 

shows areas where land use cover has changed over the period. For the 
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purpose of the work it is called the map-of-changes A. (Note that calibration 

process used data from 1990 to 2000). 

2. Compute the simulated LUC map of changes from 1990 (historical) to 2008 

(simulated map) as in (1), map-of-changes B,  as presented in Figure 3.16 and 

Figure 3.17 

3. Compute map similarity of A (historical/observed) and B (simulated). This is a 

two way similarity with two outputs maximum and minimum similarity.  

From Figure 3.16 and Figure 3.17 one can observe that there are two calculate 

Categorical Map functors which compute the map of changes for both (i) observed 

map-of-changes and (ii) simulated map-of-changes. These two map-of-changes, A and 

B, are the inputs for Calc Reciprocal Similarity Map which produces two values/results 

namely, a minimum and maximum. Figure 3.16 gives a comparison of the two values 

and saves the minimum value.  Figure 3.17 illustrates the multiple window of similarity 

and decay function, where the sizes of the window increases from 1, 3, ..., 2n+1 size. 

The maps used in this initial work have a resolution (cell size) of 100m, thus I used 

window size of 1 to 21 to compare the performance of the model from 100m to 2.1km.  

 

Figure 3.16 Validation of LUCC Model – Overall Similarity 
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Figure 3.17 Validation of LUCC Model - Multiple Window of Similarity
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Figure 3.18 Reciprocal Similarity Functor 

 

Figure 3.19 Reciprocal Similarity - Fuzzy comparison method (Source :Soares-Filho et 

al., 2009,  p.75) 
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An example of reciprocal similarity computation is given in Figure 3.19, showing the 

two way fuzzy applications. Details of the fuzzy, kappa and kfuzzy statistics are 

discussed in detail in Visser(2004) and Hagen(2003). 

In Figure 3.1, it can be seen that in the developed workflow process model if the 

validation of the initial model (with WoE method of calibration) is not satisfactory then 

the Genetic Algorithm is used to enhance the WoE of Coefficients of Variables.  

In summary the working processes for modelling LUCC in DINAMICA EGO have been 

explained including the underlying formulae. The WoE method was used for initial 

calibration (fitness of parameter sets) and a fuzzy multiple-window-similarity approach 

used in the validating the process. The Genetic Algorithm (GA) method can be used to 

enhance the coefficients of parameters if the validation results of the initial calibration 

are not acceptable. This GA method section of the process workflow model is 

explained in the next chapter. 
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Chapter 4   Calibration of LUCC - GA Approach 

Cellular Automata LUCC models employ transition rules and parameters to model 

change from time t1 to t2. In the real world these transition rules and parameters are 

not known but in LUCC models modellers have to choose or compute transition rules 

for specific land use change classes of interest “ignoring” the rest. In order to ascertain 

that the chosen transition’s rules and parameters are acceptable, a comparison of the 

simulated maps with the observed (reference) maps is carried out in order to measure 

the goodness-of-fit of the parameter set (Visser, 2004, p.85). For example, in 

calibrating the LUCC model for Auckland from 1990 to 2000 (see section 7.6.1), the 

observed (reference) land use cover change from 1990 - 2000 is compared with the 

simulated land use cover change 1990 – 2000 and the result quantified. This result 

informs the modeller of the level of uncertainty (goodness-of-fit) of the transition rules 

and parameter sets used. Thus the LUCC model calibration process is aimed at finding 

the optimal or most realistic transition rules and suitable parameter sets so that the 

modelled change matches the actual observed change. The work reported in 0 

resulted in the finding that this calibration process is sensitive to transition rules and 

WoE of Coefficients variables. Therefore the calibration of the LUCC process aims to 

find the optimal combination of transition rules and WoEs in a way that the modelled 

change can match the real change. Thus the calibration process (to determine realistic 

transition rules and parameter sets) is critical in validating (predictive power) the 

model and is a challenge in LUCC modelling (Visser, 2004). One of the challenges in 

choosing a suitable calibration method for cellular automata LUCC is the large 

tessellated search area and the exponential rise in effort which occurs as the number 
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of variables increases and wider variable ranges are required for the transition rules. 

For example, in the SLEUTH model, which employs a Monte Carlo approach to 

calibration, the time to run the model increases (can take days to complete) as the 

variable ranges increase (Clarke, 2012). Among the class of hard predictors, the 

Genetic Algorithm(GA) method had been found to be a powerful means for calibrating 

land use models (Eastman, Van Fossen, & Solorzano, 2005). GA uses a large amount of 

computer resources and employs heuristics to search for the global optimum solution 

for a set of model parameters by replicating the principle of biological evolution (Koza, 

1998, p.430).  

In light of the reported success in using GA’s to calibrate land use models it was 

considered appropriate to use a GA approach to help improve the WoE coefficients of 

parameters calibration method.  

One of the known issues with GA is the potential to overspecialise the parameters of a 

model. If overspecialisation occurs the forecasting (future scenario) accuracy is 

affected. Thus it is important to validate the generated GA parameters over different 

time periods to avoid over specialisation. This research will adopt a comparative 

analysis of the calibration and validation results of both the WoE and the GA methods 

to verify whether or not there is any improvement in model accuracy using the GA 

method.  

4.1 Definitions 

The terminologies used in this thesis to explain the GA methodology are defined in this 

section.  
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Individual: An individual refers to a set of WoE coefficients of parameters, for example 

the set of WoE coefficients for distance-to-roads, distance-to-rivers, soil, and elevation 

and other variables of LUCC model.  

Population: Population is a set of individuals. The GA process sets an initial population 

and population size at the start of iteration. The population (content) is randomly 

generated for every iteration but size remains constant throughout.   

Generation: The population generated for each iteration is a generation, thus the 

number of generations determines the number of iterations in the GA process. If 

convergence limit is not set then the number of iteration is used as the stopping 

criteria. 

Fitness: Is the result given by map comparison fuzzy similarity in order to evaluate the 

fitness or appropriateness of an individual to continue on into the next generation. 

4.2 GA Working Process for LUCC 

Figure 4.2 represents the design of the GA calibration for LUCC and Figure 4.1 shows 

the working process of the GA method. The set of WoEs coefficients of the LUCC 

model variables are assembled into tables which serve as genomes/chromosomes 

input for the GA process (Figure 4.2).  

The population size and number of generations are initially configured before the 

commencement of the GA process (Figure 4.1), thus the inputs for the GA process are:  

 Genes (WoE coefficients of variables) 

 Population size 
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 Setting stopping criteria (either number of generation or convergence limit) 

 LUCC reference map 

 

 

Figure 4.1 Workflow of GA Process 
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Figure 4.2 Design of GA LUCC Calibration Process
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The DINAMICA EGO uses two different modes of termination as the fitness value 

becomes asymptotic it either (a) iterates until number of iterations is equal to the 

number of generations set by the user and/ or (b) iterates until convergence is 

achieved. Whichever condition is met first terminates the execution of the 

optimisation process. 

During the GA process execution, the initial population of individuals (Population Size) 

using the initial individual as a seed ("Individual Genotype") is generated and lower 

and upper bounds of genes are set. These boundaries (lower and upper) constrain the 

search for new genes within the boundary, thus optimising process time and providing 

a trend for the finding the global optimum solution.  

A seed (set of parameters) is used in running the model and its fitness value computed 

using map comparison of fuzzy similarity approach. For every generation each of the 

individuals of the population is used to run the model independently and its fitness 

determined, then the fitness of all the individuals are compared and the individual 

with the best fitness is saved internally for that generation. A meta heuristic 

estimation method is used as the fitness function (k-Nearest Neighbour(KNN) 

algorithm,  Using KNN enables the model to compute fitness for a percentage of the 

individuals and saves computer time and resources (Bremner et al., 2005; Soares-Filho 

et al., 2009).  

For the next generation a percentage of individuals from the current generation are 

selected for reproduction using a Tournament Selection method (Miller & Goldberg, 

1995). The GA process continues iteratively until the termination condition is met. The 
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fittest individual from the all the generations is returned as the optimal solution (see 

Figure 4.1 and Figure 7.66). 

The best individual parameter set as determined by the GA process will then be 

validated and its result compared with those of WoE coefficient parameters (without 

GA). If the validation results of GA parameter set is better than without GA then it 

could be concluded that GA has helped in improving the calibration of the LUCC model 

and as a consequence has improved the accuracy of the LUCC work flow process 

model.   

Figure 7.65 gives an example of the calibration of LUCC model using GA tool in 

DINAMICA EGO whilst Figure 7.66 shows the details of the GA tool modelling.   

This chapter has explained the process of Genetic Algorithm Calibration. This process 

seeks to enhance on prime WoE coefficients of the parameter set by generating new 

set of coefficients. Section 7.6 describes the implementation and evaluation of this 

proposed GA-WoE approach to model calibration.  
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Chapter 5   Study Areas 

In order to test the generic nature of the model and its performance, two different 

geographic locations were chosen the Rondônia State of Brazil and the Auckland 

Region of New Zealand as well as a specialised extension of the Auckland LUCC model 

in order to model carbon sequestration.  

In the Auckland Region though there are LUCCs, the rate of change is slow relative to 

most largely urban regions (example Rondônia State). As a consequence the Auckland 

region was a good choice for testing whether or not the proposed workflow modelling 

process is sensitive to slow changes. The deforestation area of Rondônia State was 

selected as a case study because of the rapid LUCC as a result of the deforestation of 

the Amazon forest; this case study provides a means of testing the performance of the 

model in a region subject to rapid changes.  

These case studies were also used to evaluate the sensitivity of the proposed workflow 

modelling process to the number of LUC classes.  The LUC map for the Auckland region 

consisted of seven classes with 42 possible transitions (a relatively complex LUCC 

model) in contrast the Rondônia forest region had three classes and six possible 

transitions (a simple LUCC model). The carbon sequestration is an extension of the 

Auckland LUCC model which will be developed using the novel LUCC modelling 

framework developed as part of this research (See Chapters 3 and 4). The Carbon 

sequestration case study was included in order to demonstrate that the models 

developed using the generic LUCC modelling framework can be used as a base models 

for further study. The carbon sequestration case study LUCC model itself will also be 
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developed using the generic LUCC modelling framework, where the Auckland base 

maps themselves generated by the LUCC modelling framework are used as input along 

with LUC inputs related to Carbon Sequestration. These LUC inputs include vegetative 

coverages such as such as natural forest, planted forest and grassland.  

5.1 Auckland Region - Description 

Auckland is the fastest growing metropolis in New Zealand and an inventory conducted 

by Demorgraphia (2012) ranked Auckland among the world’s largest urban areas. The 

“Quality of Living Survey Worldwide” conducted by Mercer (2012) ranked Auckland 

city 3rd whilst The Economist’s Liveability Ranking and Overview (Economist Intelligent 

Unit, 2012) in August placed Auckland in the 9th place. These are indications that 

Auckland is an attractive city which is growing rapidly, thus the need to study its 

growth dynamics that will enable decision makers to develop strategies to mitigate its 

impact.  

The Auckland Region is one of 16 regions and is located in the North Island as shown in 

Figure 5.1. It is located between latitudes 36⁰ 09′ 00″South and 37⁰ 35′ 50″South, and 

longitudes 174⁰ 09′ 00″East and 175⁰ 34′ 00″East. It encompasses the Auckland 

Metropolitan area, rural towns, large areas of farmlands and vegetation, and the 

Hauraki Gulf and Waiheke islands (Figure 5.1).  It is by far the most populous region in 

New Zealand with about 32.4% of country’s population and one of the smallest regions 

(5,600km2 which is about 2% of 268,700 km2 of the total area of New Zealand).  
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Figure 5.1 Location of Auckland Region in New Zealand and Land Use Map 

It is arguably the fastest growing region in New Zealand, according to the 2006 

population census 1,303,068  people dwell in Auckland Region which is 12.4% increase 

on the 2001 census (Statistics New Zealand, 2009a) and the population for June 2012 

was estimated to be 1,507,700 (Statistics New Zealand, 2012) an increase of 15.7% 

based on the 2006 census. According to Statistics New Zealand (2012) projections, the 

medium-variant scenario estimates the population to be 1.93 million, whilst the high-

variant scenario  predicts over 2 million, by 2031 (Figure 5.2).  
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Figure 5.2 Population of Auckland Region : 1991 -2006 Cemsus, 2011 -2031 

Projections (Source : Statistics New Zealand, 2009a) 

Figure 5.3 shows the increase in population density for the Auckland region from 1991 

to the projected density for 2013. The most notable increase over time in population 

density is observed in the existing urban areas. The population dynamics of the region 

is or will have a significant impact on LUC, especially urban sprawl, transportation 

network and other infrastructure, thus it is necessary to address this proactively in 

planning policy. 

Over the years, measures to limit the regional growth and check urban sprawl has 

been unsuccessful as the region has its unique dynamics in addition to population 

growth (Statistics New Zealand, 1999). In addressing the future growth this research 

work can help policy makers understand the driving factors of both historic and future 

growth. 
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Figure 5.3 Population Density (persons per km2) Auckland Region. Census 1991-2006, 

projection 2011 -2031. (Source : Statistics New Zealand,2009a) 

5.1.1 The Land and Environment 

The nature of land and its environs can contribute to the changes that occur on the 

landscape. For example urban growth is usually found in low lying areas whilst steep 

slopes do not encourage settlements, also the type of soil and climate could determine 

which vegetation or crops can grow in the area. A good knowledge of the land and 

environment helps in determining or “selecting” some of the driving factors for the 

model. 
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Topography: The length of the region stretching from north to south is approximately 

120km and its breadth measures 60km from the west to east. The region has a long 

stretch of coastal land on both the east and west so there are several harbours and 

bays. The northern boundary is defined by the Kaipara Harbour inlet and the southern 

boundary is marked by the Bombay and Pukekohe Hills. On the western side lies the 

Waitakere Ranges which is favourable for native forests consisting of subtropical and 

temperate rainforests species. On the eastern side is the Hauraki Gulf made up of 

many islands. The landscape of the region is punctuated with more than 50 volcanic 

cones, lakes, lagoons islands and depressions with the oldest volcano over 150,000 

years and the most recent volcano (Rangitoto) is approximately 700 years old and its 

last eruption according local Māori iwi was 600 years ago (Smith & Allen, 2010). 

Climate: Auckland climate is characterised as warm-temperate with mild, damp 

winters and warm, humid summers. According to the National Institute of Water and 

Atmospheric Research (NIWA New Zealand, 2012), frequent and high levels of rainfall 

are recorded in Auckland Region throughout the year with an average of 1240mm per 

annum. Snowfall in Auckland is very rare but recorded an instance was recently on 15th 

August 2011 in the suburb of Henderson Heights.  In mid-summer Auckland records an 

average daily maximum temperature of around 23⁰C and in mid-winter a minimum of 

8⁰C.  

Soil: The soil composition of an area determines the way in which the land is likely to 

be used. For example a land rich in loamy soil might be suitable for growing crops, 

rocky (granite) land could be used as a quarry whilst sedimentary rocks might be good 

for mining minerals or oil. Consequently, the type of soil is a potential predictive 

variable in LUCC. The soil of the Auckland Region is generally lime deficient and the 
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western and southern zones are potassium deficient. However, deposits of lava from 

volcanic activity has resulted in distribution of rich fertile loams (an even composition 

of sand, silt and clay and decay of organic matter) resulting in soil with a high nutrient 

content(Statistics New Zealand, 1999).  

Environment: The discussion in 2.3.1 illustrated that human interaction with land and 

its environments results in changes in land use and cover therefore population growth 

is of concern for many towns and regional councils because of its potential impact on 

the environment. In the Auckland region, this concern is elevated due to the rapid 

population growth over the recent years. This unprecedented growth has placed 

significant pressure on the existing transportation network, sewage treatment and 

refuse disposal infrastructure. Expansion of these infrastructures may result in a 

significant increase in the level of air, water and soil pollution if measures are not put 

in place to ensure that the expansion is planned to minimised the environmental 

impact. These effects on the environment especially land could result in major changes 

in the landscape. For example if expansion of transportation network comprises of 

widening and increasing roads, rather than public transport, it is likely that many more 

cars will use the road resulting in an increase in release of CO2 into the atmosphere. 

This may negatively affect the environment of the region. Polluted soil and/or water 

may affect crop growth which in turn affects the viability of the land for growing crops 

resulting in a change of land usage in the region. 

Land Use/Cover: The New Zealand Ministry for the Environment (MfE) has developed 

spatial Land Use Map (LUM) data for the entire country. This data  is generally 

accepted by land use professionals as the standard reference map  from New Zealand 

(Ministry for Environment, 2011). This data is composed of 12 land use classifications 
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nominally at three set dates; 1st January 1990, 1st January 2008 and 31st December 

2012 (at the time of this experiment the 2012 data was not available). Figure 5.4 

shows the LUM for the Auckland Region with 12 classes of LUC generated from the 

MfE’s LUM.  

As the focus of this research is the “integration of the working processes in modelling 

and simulating land use/cover changes” it is imperative to understand or have an idea 

of the land use/cover of the study area. The land use/cover of the region (Figure 5.4) is 

dominantly grassland (for grazing) and forest (both natural and planted) whilst 

settlements are centred on the Auckland Metropolitan area. 

Reclassified LUM 

Classes 

LUM Class(MfE) 

Natural Forest Natural Forest 

Planted Forest Planted Forest - Pre 1990, Planted Forest - Post 1989 

Grassland Grassland - Woody Biomass, High Producing, Low Producing 

Cropland Cropland – Perennial, Cropland - Annual 

Wetland Wetland – Open water, Wetland – vegetated Non forest 

Settlements Settlements 

Other Lands Others 

Table 5.1 Reclassification of Land Use Map Classes NZ 
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Figure 5.4 Land Use Map of Auckland Region 

5.1.2 Why Auckland Region? 

In recent past the human activities in Auckland Region have increased significantly and 

the council is faced with managing the growth and having in place policies and plans 

for future growth. In view of this many researchers have studied the growth and 

shared their thoughts on how to manage the growth and mitigate future scenarios. 

Most of these researches focused on the expansion of housing units, transportation 

network and managing urban land. There is no published research in the area of land 

use/cover change simulation models for the Auckland Region and no work has been 

reported that investigates the drivers of land use/cover change with the aim of 
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developing future projections/scenarios. As a contribution to knowledge and research 

it was prudent to select Auckland Region as the study area for this work.  

As stated in paragraph one of Chapter 1  , most of the LUCC models, to date have been 

applied to study areas where there are at most two land use/cover changes (usually 

urban growth) have occurred or are considered. However, to build a LUCC model 

which could be applied to complex land use/cover type transitions then the study area 

should have changes occurring in a variety of LUC types. The Auckland Region has a 

vast area of land with various land use/cover types with different transitional changes 

which make this area worth investigating as an example of a complex LUCC model.  

Moreover most of the LUCC models are applied to areas which have undergone rapid 

LUCC or growth thus it’s difficult to measure how sensitive they are to small 

transitional change. The Auckland Region was found to be most suitable since the rate 

of transitional change has been quite slow over the past. 

5.2  Rondônia State – Description 

Rondônia is a state located in the north-western part of Brazil, between 7° 58' and 13° 

43' South latitude and 59° 50' and 66° 48' West longitude. It is bordered by the state of 

Amazonas to the North, the state of Mato Grosso to the East, Bolivia to the South, and 

a short boundary of the state of Acre to the West. It covers an area of 243,044 km2 

and contains 52 municipalities (as in Figure 5.5) and 1.3 million inhabitants (IBGE, 

2013).  
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Figure 5.5 Rondônia state its regional blocks. The insert map, the red is Rondônia 

location in Brazil. 

(Source: http://www.mapsofworld.com/brazil/state/Rondônia.html). 

 

There has been very rapid deforestation of the region since 1978.This case study will 

be used to model the deforestation of this region of the Amazon forest. Figure 5.6 

shows the study area with respect to Rondônia state. The study area is predominately 

Amazon forest and from Figure 5.6 three LUC class were considered.  
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Figure 5.6 Study area with respect to Rondônia state and Brazil 

5.2.1 The Land and Environments  

Climate: The state's climate is predominantly equatorial, with a tropical transition. It is 

hot and humid throughout the year, with a large yearly temperature range. The daily 

temperature ranges are also notable, especially during the winter. Throughout the 

summer, convective activity, caused by a greater incidence of solar radiation, is high. 

The winter season is characterized by fluvial winds and increased rains influenced by 

ecosystems in the Inter-tropical Convergence Zone and the Bolivian Highlands. The 

rainiest period in the region is between November and March (winter). The driest 

period (with less convective activity) is between May and September (summer). The 

region's annual rainfall is approximately 1800. (www.rondomia.ro.gov.br)  

Landform: The region contains five main geomorphological environments which 

include areas of regional surface levelling domain divided into levels I, II and III; 
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mountain chains composed of old sedimentary rock in the form of tabular surfaces; 

areas of tertiary sedimentary rock; slopes and hills associated with the presence of 

erosion resistant rock that highlight the regional levelling surface and the Madeira 

river system, including the Mamoré, Guaporé, Ji-Paraná and Roosevelt subsystems. 

Soil: The soils in Rondônia are predominantly Argisols, Combisols, Gleisols, Latosols 

and Neosols. Approximately half of the state land is Latosols; of which 26% are Red-

Yellow Latosols and 16% are Red-Yellow and Red Latosols. Most of the amazon tropical 

rain forest is on Latosols soil. It has rich fertile top layer due to falling leaves and 

branches from the rain forest. Deforestation is the major cause of leaching of nutrients 

leaving high mercury concentrations in the latosols which does not support farming(M. 

Almeida, Lacerda, Bastos, & Herrmann, 2005).   

Land Use Cover: The state which 30 years ago consisted of about 208,000 square 

kilometres of rain forest has become one of the most deforested parts of the Amazon 

forest. There has been rapid clearing and degradation of the natural forest in the past 

three decades: about 4,200 square kilometres had been cleared by 1978; 30,000 by 

1988; and 53,300 by 1998. An estimated 67,764 square kilometres was cleared by 

2003. The LUC map of the study area, shown in Figure 5.7, is classified into three 

classes namely; forest land, deforested land and non-vegetation. The flora of the 

region is made up of a large biodiversity of species because the region is in a transition 

area between the Cerrado, Pantanal, and Amazon regions (NASA, 2013).  
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Figure 5.7 LUC map (2000) of Study Area Rondônia State (red is non-vegetation land, 

green is forest land and blue is deforested land) 

5.2.2 Why the Amazon Forest of Rondônia State? 

Although there have been several studies that investigated the deforestation of the 

Amazon forest in the  Rondônia region (Bowman et al., 2012; Jongkamp, van  ’t Zelfde, 

& de Groot, 2004; Lambin, 1997; Lu et al., 2004; Soares-filho, Lima, Bowman, & Viana, 

2012; Yanai, Fearnside, Graça, & Nogueira, 2012),  this area is chosen in addition to the 

Auckland region in order to the evaluate the generic nature of the workflow process 



Page | 114 

model. This case study is less complex with fewer transitions to consider than for the 

Auckland study.  

5.3 Vegetation Carbon Sequestration 

The Kyoto protocol, an international agreement concluded in 1997 addressed global 

warming and introduced measures to reduce the rate of climate change. Its main aim 

was to reduce the human emitted greenhouse gases of developing and developed 

countries to 5% below their 1990 emission baseline (Grubb, 2004). One of the 

anthropogenic greenhouse gases is carbon dioxide (CO2) and the removal of carbon 

from the atmosphere is known as carbon sequestration or carbon sink. In the context 

of this thesis carbon sequestration refers to the natural biochemical cycling of carbon 

between the atmosphere and vegetation. Vegetative carbon sequestration is the 

process by which carbon dioxide is absorbed by plants during photosynthesis and is 

stored in their leaves, branches, trunks and roots. One possible way of mitigating or at 

least slowing the amount of human carbon emissions is via afforestation or 

reforestation of land in order to incorporate carbon from atmospheric CO2 into 

biomass. Of course this approach is only successful if the carbon is not then returned 

to the atmosphere as a result of burning or rotting when the trees die. To prevent the 

return of carbon trees must grow in perpetuity (with no deforestation) or the carbon 

from them must itself be sequestered by some other means.   

In this research the Vegetative Carbon Sequestration Scenario will be used to project 

annual carbon sequestration, for the Auckland region, based on historic trends in 

natural forest, planted forest and grassland LUC changes. Forest Carbon stock 

computation is contentious because of differences in absorption rates for different 
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species and types of vegetation., In view of the differences between species flat rates 

of carbon sequestration provided by  Ministry of Primary Industries (2011) were used 

for this case study. 

5.3.1 Why Carbon Sequestration? 

If the proposed framework is truly generic and performs well, then the generated 

annual simulated LUC maps should provide a suitable base map for further studies. 

Therefore the carbon sequestration scenario modelling is included in this research to 

demonstrate that the LUCC model could be used as basis for advance study.  

5.4  Summary 

The two selected study areas are well suited for this work because the model can be 

said to be generic if it performs well for different geographical locations with differing 

numbers of model parameters and different spatial resolutions. Because of the 

different number of LUCC transitions in the two areas, one for Rondônia and seven for 

Auckland; it is also possible to test the performance of the model with scenarios of 

different complexities.  
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Chapter 6   Land Use/Cover Change Model Data 

This chapter gives an overview of the data used in modelling the LUCC for the Auckland 

Region, Rondônia Amazon forest, and Carbon sequestration. It details their sources, 

acquisition and preparation. 

Spatial datasets form the foundation for LUCC modelling and the choice of spatial data 

structure is dependent on the modelling method. In GIS there are two basic spatial 

data models vector and raster. The Spatial Vector Data Model represents geographic 

objects as points, lines and polygons with associated tabular attribute data. The 

geographic object used typically reflects the dimension of the attribute, for example 

cities and towns are represented as points; rivers, roads and elevation as lines; areas of 

land use/cover as polygons. The Raster Spatial Data Model uses a grid of cells (pixels) 

to represent geographic data. A raster cell is often also referred to as a pixel (picture 

element). A raster data pixel stores data values within a specified range or colour 

depth. These values may represent a value within a colour scale or within a grey scale, 

as well as depth or height, or any other thematic value, such as a land use/cover class 

index (Longley et al., 2010, p. 87-88). Two categories of raster data used are:  

 Thematic/Categorical – land use/cover and soil data 

 Continuous – slope, elevation and distance maps 
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Figure 6.1 Rasterisation of Vector Data 

All the vector data acquired for this work were rasterised (see Figure 6.1, for an 

example of conversion of vector to raster data model) because CA modelling has 

affinity for raster data set.  

The LUC mapping, classification, monitoring, modelling and projections are all 

important functions of environmental and land management systems. Such systems 

are used by both government and non-governmental planners and policy makers. Land 

use/cover data gives straightforward, unbiased evidence of the impacts of LUCC(s) on 

the environment (Eastman, 2003). This data is useful in analysing how environmental 

systems function and the assessment of change over specific time period for 

meaningful projections of change effects on land, ecosystems and biodiversity. The use 

and application of land use/cover data provides a good foundation for understanding 

and analysing geospatial relationships of the trends, drivers and impact of change on 

the landscape (O’Connell, Jackson, & Brooks, 2000). 
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6.1 Data Description 

The monitoring and modelling of land use/cover change requires empirical spatial data 

spanning a period of time. For this research the land use/cover data for Auckland for 

the years 1990, 2000 and 2008 was used. LUC Data for 1990 and 2000 was used for 

calibration of the model whilst for validation of the model, 1990 and 2008 data was 

used; this is illustrated in Figure 6.2. For Rondônia LUC maps for 1997, 2000 and 2003 

were used and the data from 1997 to 2000 was used for calibration. Data covering the 

period of 1997 to 2003 was used to validate the Rondônia deforestation LUCC model. 

For the LUC model to make reliable projections it was imperative to validate it with 

LUC data beyond (ahead) the time frame of the calibration thus the use of 2008 LUC 

data, for Auckland and 2003 for Rondônia.  

 

Figure 6.2 Illustration of LUC Data and Time Frame 

In addition to LUC data, ancillary data digital elevation model (DEM), slope, major and 

minor roads, rivers, soil, population and reserved lands were considered as drivers of 

LUCC  
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6.2 Data Acquisition 

All the Rondônia data used in this work was collected and prepared by Centro de 

Sensoriamento Remoto (CSR), Brazil. The data set has already been reported and used 

in several research projects (Agarwal et al., 2002; Soares-filho et al., 2012, 2009). The 

average accuracy assessment for the thematic maps of Rondônia has been measured, 

as part of a NASA funded study, as 86% (Powell et al., 2004). The overall accuracy, was 

found to be in the range of 83.2% to 92.5%. These accuracies were achieved by seven 

different expert interpreters who compared the observed remote sense images with 

the LUC maps. For the Auckland Region, the 1990 and 2008 land use/cover maps were 

derived by rasterisation of the Land Use Map (LUM) of New Zealand developed by the 

LUCAS (Land Use and Carbon Analysis System) team. LUCAS is a programme approved 

and funded by Government with the intention that much of the data acquired and 

generated by LUCAS would be made free to general public.  For the study of carbon 

sequestration of Auckland, the data used were the rate of sequestration (Table 6.1) 

and Auckland simulated LUC maps were used. 

Land Use/Cover Carbon Sequestration 

Natural Forest 525tCO2/ha 

Planted Forest 18tCO2/ha/yr 

Grassland 11tCO2/ha 

Table 6.1 Carbon Sequestration Rates(Source: Ministry for Primary Industries, 2011) 

The current version, LUM-v011 consists of a map of 12 land use/cover classifications 

for New Zealand nominally recorded on the 1st of January 1990 (for LUC map see 

Figure 6.3) and the 1st of January 2008 (LUCAS, 2009; Ministry for Environment, 2011). 
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The LUM version used in this work is LUM-v003 which was the latest at the time of 

data preparation, covering 1990 and 2008.  

A LUCAS developed LUM from a range of satellite imagery using the NZGD2000 datum 

and the New Zealand Transverse Mercator Projection. LUCAS derived the 1990 LUM 

dataset from 30m spatial resolution LandSat4 and LandSat5 satellite imagery from a 

range of dates between 1988 and 1993. After orthorectification and atmospheric 

correction, the satellite imagery was standardised for spectral reflectance using Ecosat 

algorithms (Dymond & Shepherd, 2004). These standardised images were the used for 

land use/cover classification. This classification process was validated and improved 

using 15 m resolution Landsat 7 ETM+ imagery  and SPOT 2 and 3 datasets coupled 

with aerial photography (Ministry for Environment, 2011). 
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Figure 6.3 LUCAS land Use Map of New Zealand – 1990, red box indicates the 

Auckland case study region. 

The 2008 LUM was developed by LUCAS from 10m spatial resolution SPOT 5 satellite 

imagery. The imagery was standardised for reflectance using the same algorithm as 

was used for the 1990 imagery. The SPOT 5 imagery was taken during the summer 

periods between November 2006 and April 2008, in order to establish a national set of 

cloud-free imagery. Where the SPOT 5 imagery pre-dates the 1st of January 2008, a 

combination of aerial photography, Moderate Resolution Imaging Spectroradiometer 
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(MODIS) satellite imagery and field verification was used to identify locations where 

deforestation has occurred, so that the 2008 land-use map is as up-to-date as possible. 

Since the 2000 LUC map was not included in the LUM-003 data, this work generated it 

using 15m LandSat7 ETM+ imagery for 2000-2001 coupled with aerial photography. 

For data consistency the same the same methodology used by LUCAS was used in 

deriving the LUC map. 

 

Figure 6.4 Digital Elevation Model (2m), Auckland Region 
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In addition to the LUC dataset ancillary data for the study areas such as; elevation, 

slope, hillshade, soil, rivers, roads, and reserved lands.  Thus ancillary  data was 

employed as the drivers for  the LUCC model. A 2m Digital Elevation Model (DEM) was 

obtained from the Auckland Regional Council. The Regional Council derived the DEM 

image, in Figure 6.4, from LiDAR (Light Detection And Ranging) imagery. The Regional 

Council provided a dataset for the protected/reserved lands and parks of Auckland. 

 

Figure 6.5 Hillshade, Auckland Region 
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As part of the data pre-processing for this research work the slope (Figure 6.6) and 

hillshade (Figure 6.5) datasets were extracted from the supplied DEM using ArcGIS 

Spatial Analyst tool, . The road and river network data of Auckland region were 

obtained from the Land Information New Zealand’s website, www.data.linz.govt.nz , 

which is a repository of government funded land information datasets for New 

Zealand.  

 

Figure 6.6 Slope, Auckland Region 
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6.3 Data Preparation 

The modelling software, DINAMICA-EGO, used in this work uses raster data formats – 

jpeg, tiff, png, bmp, ers, etc - and/or joined tables as input data and generates the 

same data formats as output. This format is required due to the modelling engine 

containing a CA. The execution/analysis of the model will be performed on a pixel-by-

pixel basis therefore all input data must be of the same number of pixels (rows and 

columns), pixel size and geographic projection.  All raster files used for this LUCC 

model were processed to be consistent with the following attributes in Table 6.2. 

Compared with the Rondônia data the Auckland data has a finer resolution and smaller 

area of extent (see Table 6.2). 

File Attribute Auckland and Carbon Sequestration Rondônia  

files format .tiff and .ers (ERMapper files) .tiff and .ers 

Cell Size 100 x 100m 250 x 250m 

Number of rows 1531 pixels 748 pixels 

Number of columns 1251 pixels 818 pixels 

Map projection NZGD2000 Transverse Mercator WGS 84 

Null Cell/NoData -100 0 

Table 6.2 Attributes of the raster files used for the LUCC models 

6.3.1 Land Use/Cover Maps 

The original dataset of Auckland LUC map for 1990 and 2008 consist of 12 land use 

classes (see Figure 6.3) however there were seven major land cover classes and since 

the focus of this research in on land cover and not land use, the dataset was 

reclassified into 7 classes as in Table 5.1.  The reclassification was performed in ArcGIS 

using the “Reclassify” tool and the file attributes reconfigured to be consistent with 
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Table 6.2.  The LUC map for the year 2000 was developed using GIS and RS with using 

“ENVI EX” (for RS designed to enable feature extraction and classification) and ArcGIS 

software.  

Table 6.3 is a quantitative representation of the Auckland LUC classes for 1990 and 

2000 which shows the total area in pixels of the class for each year. For example in row 

one of Table 6.3 it can be seen that Natural Forest (LUC Class 1) covered an area of 

145, 587 pixels in 1990 and 145,207 pixels in 2000 indicating that there was a loss of 

380 pixels to other LUCs over this ten year period. Table 6.4 provides similar details for 

the Rondônia forest area.  

Table 6.3 provides a comparison of the total number of pixels for each Auckland LUC 

class for the years 1990 and 2000 and Table 6.4 gives a summary of the number of 

transitional pixels per LUC class from 1997 to 2000 for the Rondônia Forest area. The 

difference between the cell counts is the “cell count latter year” minus “cell count 

former year”, where positive values indicate growth in land use whilst negative values 

indicate a reduction in land use for each class. An example is provided in Table 6.3 

where the difference from 1990 to 2000 in Natural Forest (class 1) is -380 cells, 

meaning that there was 380 hectares (one cell is 100x100m) loss of Natural Forest and 

an increase of 6,112 hectares of Planted Forest. It is important to note from Table 6.3  

that for Auckland there was no transitional change observed in Cropland and Wetland 

and for Rondônia   the non-vegetation land did not undergo any change between 1997 

and 2000. 
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Class Cell Count 

1990 

Cell Count 

2000 

Difference 

[2000 - 1990] 

Class Name 

1 145,587 145,207 -380 Natural Forest 

2 43,864 49,976 6,112 Planted Forest 

3 247,056 240,723 -6,333 Grassland 

4 9,454 9,454 0 Cropland 

5 3,825 3,825 0 Wetland 

6 49,678 50,398 720 Settlements 

7 3,709 3,590 -119 Others 

Table 6.3 Summary of Changes in LUC 1990-2000, for Auckland 

Class Cell Count 

1997 

Cell Count 

2000 

Difference 

[2000 - 1997] 

Class Name 

1 85,412 113,199 27,787 Deforested Land 

2 331,010 303,223 -27,787 Forest Land 

3 26,501 26,501 0 Non-vegetation 

Table 6.4 Summary of Changes in LUC 1990-2000, for Rondônia Forest 

Although Table 6.3 and Table 6.4 show the gain/loss of each LUC class, it does not give 

any information of the LUC classes the gain/loss is from/to. However when a discrete 

Markov Chain process is applied to LUC between states t1 (start year) and t2 (end year), 

the number of cells involved in each transition can be calculated as shown in Table 6.5 

and Table 6.6. Cells on the diagonal of the transitional matrix represent cells for which 

there is no change in land use and therefore no transition has occurred.  Additionally, 

all the transitions with zero values indicate that no change has occurred and they are 

excluded in this model. Table 6.3 shows the loss of 380 hectares of Natural Forest and 

in Table 6.5 the first row gives the break-down of the loss of 380 cells of Natural forest.  

Of these 380 cells 30 were lost to settlement while 70 were lost to Planted Forest 
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(managed rather than native) and 280 cells to Grassland.  Details of change and the 

drivers of these LUC transitions are very important in modelling LUCC.   
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LUC Map for t2 = 2000 

 1 2 3 4 5 6 7 

1 xxxx 70 280 0 0 30 0 

2 0 xxxx 60 0 0 0 0 

3 0 6052 xxxx 0 0 640 10 

4 0 0 0 xxxx 0 0 0 

5 0 0 0 0 xxxx 0 0 

6 0 0 0 0 0 xxxx 0 

7 0 50 29 0 0 50 xxxx 

Table 6.5  Auckland, Transitional Matrix 

  LUC Map 2000 

    1 2 3 

LU
C
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ap

 

1
99

7
 1 xxxx 0 0 

2 27,787 xxxx 0 

3 0 0 xxxx 

Table 6.6  Rondônia, Transitional Matrix  

As a result of the Markov Chain process, see Table 6.5, for the complex model only ten 

LUC transitions have occurred. These transitions are the ones that were considered for 

modelling the LUCC for the Auckland region, these key transitions are further detailed 

in Table 6.7. Only one transitional change namely deforestation was discovered, using 

the Markov Chain process, for Rondônia. This means that the Rondônia forest area is a 

relatively simple, one transition LUCC model (Table 6.6).  

 

To 
From 
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Transition [1990 to 2000 ] Count Per Cells Description 

1->2 70 Natural Forest to Planted Forest 

1->3 280 Natural Forest to Grassland 

1->6 30 Natural Forest to Settlements 

2->3 60 Planted Forest to Grassland 

3->2 6052 Grassland to Planted Forest 

3->6 640 Grassland to Settlements 

3->7 10 Grassland to Others 

7->2 50 Others to Planted Forest 

7->3 29 Others to Grassland 

7->6 50 Others to Settlements 

Table 6.7 LUCC Transitions - Auckland Region 

6.4 Drivers of LUCC  

There are two categories of drivers/variables influencing LUCC, they are static and 

dynamic variables. Dynamic variable data, “distance-to-LUC type(s)”, are derived from 

the LUC Map 1990 during the execution of the model. Unlike the dynamic variables the 

LUCC model takes in the static variables as input, hence static variable data files were 

processed to have the attributes given in Table 6.2. The static variable data files that 

will be used are: elevation, slope, hill-shade, distance-to-rivers, distance-to-major 

roads, distance-to-minor roads, soil, and reserved lands. These variables were selected 

from the available set of variables based on past research that indicates that these 

variables are the most useful for LUCC modelling (Jantz et al., 2010; Lavalle et al., 2005; 

Sun et al., 2009).  

The variables elevation and slope were selected because LUC  varies with a change in 

elevation. Vegetation in mountainous areas is different to that in low lying regions 
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(Shrestha & Zinck, 2001; Xie, Sha, & Yu, 2008). There are many agricultural practices in 

the catchment area of rivers and water bodies, also the banks of rivers naturally 

support vegetation/forest. Therefore the distance-to-rivers was considered because of 

its influence on the LUCC. The distance-to-roads variables were selected because the 

accessibility and or proximity of roads to land influences human activities on the land 

thus impacting on the land cover. The texture and fertility of soils determines the 

vegetation that could be supported thus its inclusion. Crop growth is influenced by the 

direction of the sun therefore the hillshade variable was also considered for the model. 

The slope and hillshade data was derived from the elevation raster data.  Distance-to-

major roads, distance-to-minor roads and distance-to-rivers were computed using the 

map algebra method “compute distance maps” available in DINAMICA EGO. The 

resultant distance map arises from a computation of the distances from a reference 

point to each cell of a map. These distance maps help determine how the distance to 

roads and rivers influences land use/cover change.  Figure 6.7, Figure 6.8 and Figure 

6.9 provide three distance maps for distance-to-major, distance-to-minor roads and 

distance-to-rivers respectively.   



Page | 131 

 

Figure 6.7 Distance-to-Major Roads 

 

Figure 6.8 Distance-to-Minor Roads 
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Figure 6.9 Distance-to-rivers 

Reserved lands are areas protected from any development and supervised by the 

Regional Council; these are usually reserved parks, forestry and ancestral lands. The 

variable data “reserved areas” usually influences the transition of LUC within their 

neighbourhood (Jantz et al., 2010). 

The static variables – elevation, slope, hillshade, soil, reserved lands, distance-to-rivers, 

distance-to-major roads, distance-to-minor roads – were organised into a stack raster 

dataset (multi-layer raster file), as shown in Figure 6.10 . The stack raster dataset is an 

appropriate structure for organising datasets and accessibility data. 
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Figure 6.10 Creating Stack Map of Static Variables in DINAMICA EGO 

6.5 Summary 

The LUC maps for Auckland and Rondônia used in this work have been described with 

exemplar maps and tables. Also the source of data for carbon sequestration scenario, 

is discussed. In addition a description of the ancillary data and static variable data is 

provided.  

In order to test the generic nature of the model the datasets selected were for 

locations for which properties, such as spatial resolution, the rate of LUCC, area of 

extent and quantity of LUC transitions were different. These differences should help to 

reveal how well the model can perform or how sensitive the model is to a range of 

data attributes and properties. A Markov chain process was used to calculate a 
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transitional matrix to determine which LUC transitions occur for the Auckland and 

Rondônia case study areas. And this approach confirmed that the Auckland LUCC is a 

relatively complex model when compared with the deforestation of the Rondônia 

Amazon forest. The variety in the level of complexity modelled will allow for the 

performance of the model in both simple and complex simulation models to be 

evaluated. Moreover the rate of deforestation in amazon forest of Rondônia is very 

rapid when compared with the rate of LUC change in the Auckland region. As a result 

these two study areas provide suitable cases to evaluate the generic nature of the 

proposed LUCC model. 
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Chapter 7   Implementation and Results 

The sensitivity of any set of variables to transitional change is the core task in 

developing a spatio-temporal LUCC model. In light of this the performance of the 

entire modelling processing depends mainly on the reliability of the set of variables per 

transition. As mentioned earlier in the introductory chapter, the challenge for an LUCC 

modeller is to adequately determine the set of variables for a specific location. Most 

modellers use existing models with predefined variables that may or may not be 

adequate for their purposed and adjust the coefficients for these predefined variables 

during the calibration phase to adjust the influence of these variables. The proposed 

workflow process model in 0 could help modellers determine the adequacy of the 

variables used in a LUCC model. In order to evaluate this approach, the generic 

workflow process model developed in this research was applied to Auckland and 

Rondônia state forest and the Auckland case study was extended to model carbon 

sequestration for the region.  

This chapter presents the implementation of the workflow process explained in 0 and 

an analysis of the results of applying this novel process to three case studies. The work 

flow process model presented in Chapter 3 is a sequence of integrated working 

processes (see Figure 3.1), in order to analyse and discuss all of the phases in the 

workflow process, each phase is modelled separately. The integrated process is 

analysed and discussed at the end of the chapter. The simulation platform adopted for 

implementation is DINAMICA EGO (see Section 2.9 for a discussion of this).  

The LUC maps used in the model have the following classes in Table 7.1 and Table 7.2. 
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Class/Key Class Name 

1 Natural Forest 

2 Planted Forest 

3 Grassland 

4 Cropland 

5 Wetland 

6 Settlements 

7 Others 

Table 7.1 Auckland LUC Classes and Names 

Class/Key Class Name 

1 Deforested land 

2 Natural Forest 

3 Non-vegetation 

Table 7.2 Rondônia LUC Classes and Names 

7.1 Computation of Transition Matrix of LUCC 

What follows is a discussion of the calculation of the LUC transition matrices for the 

Auckland and Rondônia case study areas. These matrices will be used to determine the 

quantity of change from one LUC to another at the specified time unit. 

7.1.1 Auckland Region 

The “Determine Transition Matrix” operator in DINAMICA EGO was used to compute 

historic LUC transition matrices for Auckland. The details of the formula underlying the 

computation can be found in section 3.2.  

 A single-step and a multi-step matrix were generated, using the land use/cover maps 

described in Section 3.2 (see Figure 7.1 for generation of transition matrices process). 

The single-step matrix was generated to show the LUCC transitions which occurred 



Page | 137 

over a 10 year time interval from 1990 to 2000 (Table 7.3). The multiple-step matrix 

gives the annual rate of transitional change and this is used as an input to determine 

the probable change annually per transition (Table 7.4). 

The unit time used for the multi-step matrix is a year because this work sought to 

simulate annual changes for the third case study modelling carbon sequestration. 

Arguably it is also accepted by most LUCC modellers that a year is a reasonable time 

frame to study and investigate land cover change because of this most of the working 

LUCC models use a year as the unit time step for modelling (Maeda et al., 2011; J. Mas 

et al., 2007; Jean-François Mas, Pérez-Vega, & Clarke, 2012; Verburg et al., 2004; Yin et 

al., 2008). Thus this work used the multi-step transition matrix for the analysis and 

simulation of yearly change(s). 

 

Figure 7.1 DINAMICA EGO - Determination of Transition Matrices 
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From \ To 1 2 3 4 5 6 7 

1 xxxx 0.0004808 0.0019232 ---- ---- 0.0002061 ---- 

2 ---- xxxx 0.0013679 ---- ---- ---- ---- 

3 ---- 0.0244965 xxxx ---- ---- 0.0025905 0.0000405 

4 ---- ---- ---- xxxx ---- ---- ---- 

5 ---- ---- ---- ---- xxxx ---- ---- 

6 ---- ---- ---- ---- ---- xxxx ---- 

7 ---- 0.0134807 0.0078188 ---- ---- 0.0134807 xxxx 

Table 7.3  Auckland - Single-Step Transition Matrix – Rate of change for ten years 

From \ To 1 2 3 4 5 6 7 

1 xxxx 0.000046 0.0001949 ---- ---- 0.0000204 ---- 

2 ---- xxxx 0.0001386 ---- ---- ---- ---- 

3 ---- 0.0024816 xxxx ---- ---- 0.0002622 0.0000042 

4 ---- ---- ---- xxxx ---- ---- ---- 

5 ---- ---- ---- ---- xxxx ---- ---- 

6 ---- ---- ---- ---- ---- xxxx ---- 

7 ---- 0.0013615 0.0008035 ---- ---- 0.0013687 xxxx 

Table 7.4  Auckland - Multi-Steps Transition Matrix – Annual rate of change 

Table 7.4 provides details of the transitions that occurred in Auckland between 1990 

and 2000 these transitions are:  

1. 1 to 2, natural forest to planted forest 

2. 1 to 3, natural forest to grassland 

3. 1 to 6, natural forest to settlements 

4. 2 to 3, planted forest to grassland 

5. 3 to 2, grassland to planted forest 

6. 3 to 6, grassland to settlements 

7. 3 to 7, grassland to other lands 

8. 7 to 2, other lands to planted forest 

9. 7 to 3, other lands to grassland 
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10. 7 to 6, other lands to settlements 

These are the 10 transitions modelled for the Auckland Region. The transition rates 

represent the net quantity of change, as the percentage of land that will change from 

one state of land use/cover to another state. For example, the transition rate 

0.0001386 (from states 2 to 3) indicates that 0.01386% of planted forest was lost to 

grassland annually between 1990 and 2000. Like interest rates, the transition rates are 

superimposed on the remaining stock of LUC annually. In this case there are 43,864 

acres (see Table 6.3) of planted forest in 1990, then in 1991 there will be a loss of 

0.01386% of 43,864 acres (6.08) to grassland leaving (43,864 – 6.08 = 43,857.02) acres 

of planted forest. In 1992 there will be (43,857.02 - (43,857.02 * 0.0001386)) = 

43850.94 acres of planted forest left. 

7.1.2 Rondônia State  

Using the same procedure (as applied to Auckland) the Rondônia LUC maps for the 

years 1997 and 2000 were used to compute the single (Table 7.6) and multiple (Table 

7.7) transitional matrices. Examining these two tables it’s obvious that only one 

transition has occurred from forest to deforested land indicating deforestation. Table 

7.6 reveals that from 1997 to 2000 almost 8.4% the Amazon forest of Rondônia was 

lost and Table 7.7 indicates that the rate of deforestation was 2.88% annually. When 

compared to the transitional rates in Auckland region this is a significant rate of 

change. 
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Class/Key Class Name 

1 Deforested land 

2 Forest land 

3 Non-vegetated Land 

Table 7.5 Rondônia - LUC Classes and Names 

From \ To 1 2 3 

1 xxxx 0 0 

2 0.0839461 xxxx 0 

3 0 0 xxxx 

Table 7.6  Rondônia – Single-step Transition Matrix - Rate of change over three years 

(1997-2000)  

From \ To 1 2 3 

1 xxxx 0 0 

2 0.0288037 xxxx 0 

3 0 0 xxxx 

Table 7.7  Rondônia - Mutiple-step Transition Matrix - Annual rate of change over a 

three year period (1997 – 2000) 

7.2 Computation of Weight of Evidence Coefficients 

As explained in sections 3.3 and 3.4, the Weight of Evidence (WoE) reveals the 

influence of each variable on the spatial probability of a transition occurring from one 

LUC class to another. For the work flow process model developed in this research WoE 

is therefore used to determine the adequacy and significance of each variable before 

including it into the LUCC model. Table 7.8 gives a summary of the variables, static and 

dynamic, considered for use in the Auckland region case study.  
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Static Variables Dynamic Variables 

Elevation Distance to natural forest 

Slope Distance to planted forest 

Hillshade Distance to grassland 

Reserved lands Distance to cropland 

Soil Distance to wetland 

Distance to rivers Distance to settlements 

Distance to major roads Distance to Other lands 

Distance to minor roads  

Table 7.8 List of Static and Dynamic Variables 

The Weight of Evidence method employed in this work is only applicable to categorical 

datasets/maps. Therefore all continuous grey scale variables for each case study were 

categorised using the WoE Ranges tool (Figure 7.3) in DINAMICA (see section 3.3 for 

details).  

Static variables such as slope, elevation, distance-to-roads, distance-to-rivers and all 

dynamic variables (distance-to-natural forest, distance-to-planted forest, distance-to-

grassland etc.) are continuous grey scale data. In order to be able to use the WOE 

method to evaluate the adequacy and significance of these variables they must be 

transformed into categorical data.  The WoE ranges and coefficients calculation and 

relevant parameters are shown in Figure 7.2 (see Figure 3.7 for sample results). 

For each transition from LUC class k to l all the variables, both static and dynamic, were 

applied to determine the WoE. The variables that showed no significant influence of 

change on a specific land use/cover transition from class k to l were removed from the 

set of variables; therefore each transition has a unique set of WoE coefficients of the 
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variables. For example, to determine the set of variables for the transition from state 3 

to state 2 (grassland to planted forest), all the variables were applied to this transition 

as shown in Figure 7.2, then the variables having no influence on the transitions were 

deleted from the list/set of variables and the ones showing strong influence are kept. 

 

 

Figure 7.2 Categorisation of grey scale variable elevation for the transition 3->2. Red 

circle indicates the parameters for categorisation. 
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Figure 7.3  Computation of Weights of Evidence Ranges and Coefficients 
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Figure 7.4 is an excerpt from the results of WoE of the Auckland region variables, 

showing that the variables which have a significant influence on the state transition from 

state 3 to state 2, are flagged YES in the “Significant?” field. On the other hand Figure 7.5 

shows that the variables distance-to-rivers and reserved lands had NO significant 

influence on the transition from “1 to 2”. For this reason these two variables are omitted 

from the modelling process for this transition.  

 

Figure 7.4 Example of WoE of Variables showing Influence on transition 
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Figure 7.5 Example of WoE of Variables showing no influence on transition 

Table 7.9 presents a summary of set of variables used for each of the transitions for the 

Auckland Region, it is important to note that two variables, hillshade and soil, were not 

included in any of the transitions because the WOE method proved that these variables 

did not have any significant impact on the transitions to be included in the model. 

Hillshading is the cast of sunlight on relief features (hills or valleys) and typically has a 

significant impact on the degree of crop growth on specific areas due to sunlight. The 

Hillshade variable had no influence on any of the transitions under investigation; this 
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could be due to the exclusion of the LUC type – cropland - which did not undergo change 

in the 1990 to 2000 period.  

The cells containing “red” ticks in Table 7.9 were not included in the LUCC model due to 

their correlation with other variables. Variables are checked for correlation (see section 

3.5) and if any variables are correlated one of them is removed and the other used. If 

both are kept it causes double influence in a specific transitional change and will violate 

the WoE assumption (see section 3.3.1). 

Table 7.9 Summary of Variable List per Transition for Auckland LUCC Model 

 

 

Variables\Transitions 1->2 1->3 1->6 2->3 3->2 3->6 3->7 7->2 7->3 7->6 

Elevation          

Slope          

Hillshade          

Reserved           

Soil          

Distance to Rivers          

Distance to Major Roads          

Distance to Minor Roads          

Distance to 1(Natural Forest)          

Distance to 2(Planted Forest)          

Distance to 3(Grassland)          

Distance to 4(Cropland)          

Distance to 5(Wetland)          

Distance to 6(Settlements)          

Distance to 7(Other lands)          
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Table 7.10 gives the list of variables used for modelling the Rondônia region. 

Interestingly the soil variable did not have any influence on the LUCC for Auckland but it 

had a significant influence on the deforestation transition in the  Rondônia area. Just as 

for Auckland, the Rondônia transitions were not significantly influenced by hillshade. 

Therefore both the soil and the hillshade variables were not utilised in the LUCC 

modelling process. 

 

 

 

 

 

 

Table 7.10 Summary of Variable List per Transition for Rondônia LUCC Model 

7.2.1 Weights of Evidence Coefficients – Results and Discussions 

This section presents the results of the WoE coefficients for each transition. In order to 

explain the results, some examples are used in discussing the trends and impacts of the 

variables on a specific transition.  

The WoE coefficients for every transition are presented in graph form (See Figure 7.6 -

Figure 7.48 for Auckland and Figure 7.49 to Figure 7.59 for Rondônia. The WoE 

Variables\Transitions 2->1 

Elevation 

Slope 

Hillshade 

Reserved  

Soil 

Urban attraction 

Distance to Major Rivers 

Distance to Trans Rivers 

Distance to All Roads 

Distance to 1(deforested land) 

Distance to Settlements 

Distance to vegetation 
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coefficients are shown on the vertical axes and the number of cells is shown on the 

horizontal axes. Positive values of WoE favour a transition whilst negative values hinder 

the transition. 

For example, in Figure 7.9 within the range of 0 and 1320 cells there is a positive 

coefficient however above 1320 the coefficient is negative. This means that cells within 

the 0 to 1320 range for the variable “distance to planted forest” favour the transition 

from natural forest to planted forest. For values above 1320 this transition is hindered. 

This implies that within the buffer of 0 - 1320 cells from planted forest any Natural Forest 

land parcel could change to planted forest whilst this transition is repelled beyond this 

buffer. 

Figure 7.31 is a graphical representation illustrating the influence of slope on the 

transition from grassland to planted forest. This graph shows that of the transition from 

grassland to planted forest (afforestation) is hindered when the range (in cells) of slope 

(rise in degrees) is below 10 beyond this range afforestation of grassland is favoured. 

Thus within the LUCC model for grassland in the slope range beyond 10 there is a 

probability for this grassland to undergo afforestation.  

7.2.1.1 Auckland Region 

Transition 1-to-2, Natural Forest to Planted Forest: The graphs from Figure 7.6 to Figure 

7.9 show the set of WoE coefficients for the variables which had a significant influence 

on the transition from natural forest to planted forest in Auckland. Figure 7.6 and Figure 

7.8 shows that natural forest LUC close to the geographic feature represented by these 

variables (minor roads and settlements) is not found to undergo this transition to 

planted forest. There is an optimal range of distances to each variable where natural 
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forest has a high affinity for change to planted forest. Beyond this range the impact of 

the geographical feature (variable) on change reduces, for example where the distance 

of natural forest to a minor road is between 0 and 260. The transition from natural forest 

to planted forest is not observed whereas in at distances between 260 and 900. Figure 

7.7 and Figure 7.9 reveal that natural forest LUC cover within the close vicinity of these 

variables are most likely to have a LUC change to planted forest but the probability of 

such as change gradually reduces as the distance from the variables increases. 

 

 

Figure 7.6 Dist. to Minor Roads [1->2) 

 

Figure 7.7 Dist. to Others 

 

Figure 7.8 Dist. to Settlements 

 

Figure 7.9 Dist. to Planted Forest 

 

Transition 1-to-3, Natural Forest to Grassland: The WoE coefficients of the variables 

from Figure 7.10 to Figure 7.17  show that all the significant variables except distance to 

rivers (Figure 7.15) show a general trend where the likelihood of change is inversely 

proportional to the distance from the variable. It is possible that such a trend does not 
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exist for the distance to rivers due to the environmental management practices in place 

in the Auckland region. 

 

Figure 7.10 Elevation [1->3] 

 

Figure 7.11 Dist. to Grassland [1->3] 

 

Figure 7.12 Dist. to Major Roads [1->3] 

 

Figure 7.13 Dist. to Planted Forest [1->3] 

 

Figure 7.14 Reserved Lands [1->3] 

 

Figure 7.15 Dist. to Rivers [1->3] 

 

Figure 7.16 Dist. to Settlements [1->3] 

 

Figure 7.17 Slope [1->3] 
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Transition 1-to-6, Natural Forest to Settlements: For this transition only one variable, 

Figure 7.18, showed significant evidence that natural forest lands close to settlements 

have a high probability of changing to settlements and this decreases in probability with 

increase in distance from settlements.  

 

Figure 7.18 Dist. to Settlements [1->6] 

Transition 2-to-3, Planted Forest to Grassland: From the WoE coefficient of the 

variables, Figure 7.19 to Figure 7.22, it can be seen that the transitional change from 

planted forest-to-grassland has a general pattern of a higher probability that planted 

forest may change grassland when close to the influencing variables than when they are 

further apart. Only Figure 7.21, distance to other lands deviates from this trend. Given 

that other lands is a variable that is comprised of all the minor LUC classes not explicitly 

named in the data set due to their relatively small area or contribution to the region it is 

not surprising that this variable influences LUC differently. 

 

Figure 7.19 Dist. to Major Roads 

 

Figure 7.20 Dist. to Natural Forest 
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Figure 7.21 Dist. to Other lands 

 

Figure 7.22 Dist. to Settlements 

 

Transition 3-to-2, Grassland to Planted Forest: The following figures, Figure 7.23, Figure 

7.25, Figure 7.28, Figure 7.30 and Figure 7.31 indicates that for the transitional change of 

grassland LUC to planted forest, where grassland is close to the vicinity of these variables 

there is a high tendency to hinder the transition and the probability of change increases 

as one moves away from the variable. However two variables Figure 7.26 and Figure 7.27 

have a reverse trend and Figure 7.24 shows no specific trend.   

 

Figure 7.23 Elevation [3->2] 

 

Figure 7.24 Dist. to Major Roads [3->2] 

 

Figure 7.25 Dist. to Minor Roads [3->2] 

 

Figure 7.26 Dist. Natural Forest [3->2] 
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Figure 7.27 Dist. to Planted Forest [3-

>2] 

 

Figure 7.28 Reserved lands [3->2] 

 

Figure 7.29 Dist. to Rivers [3->2] 

 

Figure 7.30 Dist. to Settlements [3->2] 

 

Figure 7.31 Slope [3->2] 

 

 

Transition 3-to-6, Grassland to Settlements:  Figure 7.32 to Figure 7.41 shows the WoE 

of the variable set and its influence transitional change from grassland to settlements. It 

is obvious that there are two distinct patterns of influence of the variables; one category 

reveals an increase in probability of this transitional change ranging from repulsion to 

attraction (Figure 7.35 and Figure 7.39) whilst the reverse is true in the other category 

(Figure 7.32, Figure 7.34, Figure 7.36, Figure 7.38, Figure 7.40 and Figure 7.41). The 

others have no regular pattern. 
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Figure 7.32 Elevation [3->6] 

 

Figure 7.33 Dist. to Major Roads [3->6] 

 

Figure 7.34 Dist. to Minor Roads [3->6] 

 

Figure 7.35 Dist. to Natural Forest [3->6] 

 

Figure 7.36 Dist. to Other [3->6] 

 

Figure 7.37 Dist. to Planted Forest [3->6] 

 

Figure 7.38 Reserved lands [3->6] 

 

Figure 7.39 Dist. to Rivers [3->6] 
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Figure 7.40 Dist. to Settlements [3->6] 

 

Figure 7.41 Slope [3->6] 

  

Transition 3 to 7, Grassland to Other lands: There is no general pattern in the set of 

variables influencing this transitional change. In spite of that Figure 7.42 shows that 

grasslands close to major roads have a high likelihood to change to other lands and also 

at a far distance, but negative influence within certain range of distance in the middle. 

Figure 7.43 reveals a steady trend of increase in the chance of grassland changing to 

other lands with distance from rivers, starting from negative to positive.  

 

Figure 7.42 Dist. to Major Roads [3->7] 

 

Figure 7.43 Dist. to Rivers [3->7] 

 

Transition 7 to 2, Other lands to Planted Forest: The two WoE coefficients of the 

variables, Figure 7.44 and Figure 7.45, show similar pattern of rise from negative to 

positive with increase in distance from these variables.   
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Figure 7.44 Dist. to Minor Roads [7->2] 

 

Figure 7.45 Dist. to Settlements [7->2] 

 

Transition 7 to 3, Other lands to Grassland: This set of variables shows a remarkable 

pattern of evidence in their influence in this transition because the two show the same 

pattern. 

 

Figure 7.46 Dist. to Planted Forest [7->3] 

 

Figure 7.47 Dist. to Settlements [7->3] 

Transition 7 to 6, Other lands to Settlements:  Figure 7.48 reveals that other lands close 

to settlements have a high chance of changing to settlements but this tendency reduces 

with distance from settlements. 
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Figure 7.48 Dist. to Settlements [7->6] 

7.2.1.2 Rondônia State  

As indicated in section 7.1.2 there is only one transition, deforestation, was considered 

for Amazon forest zone of Rondônia state. For this transition 11 variables were found to 

have a significant influence on the transition. Figure 7.49 to Figure 7.59 are the graphs of 

WoE coefficients of the variables. With the exception of urban attraction (Figure 7.58) 

and soil (Figure 7.57) the variables show a general trend of high level of deforestation of 

forestlands that are very close to these variables but the trend decreases as the distance 

increases.  

 

Figure 7.49 Distance to deforested lands 

 

Figure 7.50 Elevation 
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Figure 7.51 Distance to all roads 

 

Figure 7.52 Distance to major rivers 

 

Figure 7.53 Distance to settlements 

 

Figure 7.54 Distance to trans-rivers 

 

Figure 7.55 Protected areas 

 

Figure 7.56 Slope 

 

Figure 7.57 Soil 

 

Figure 7.58 Urban Attraction 
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Figure 7.59 Vegetation 

 

 

7.3 Analysing Correlation of Input Variables 

To test the assumption in WoE that “the input variables are spatially independent”, the 

pairwise testing (discussed in section 3.5) was used. For each transition the variable set 

was tested for independence and if there is a high level of correlation between a pair 

of variables one of them is deleted.  Figure 7.60 presents the diagram of map 

correlation in DINAMCA EGO, the tool “Determine Weights of Evidence Correlation” 

takes in WoE Coefficients of the variables and maps of all the variables, the message 

log displays the results of the pairwise tests displayed in the message log, as in Table 

7.11.  

Table 8.6 provides an excerpt showing the results of the variable comparison for 

transitions 1-to-2 and 1-to-3.  The first column is the first variable and the second 

column the second variable and the other columns are the results of the test methods 

(discussed in section 4.5). In this work for “Joint Information Uncertainty” (the last 

column) values greater than 0.5 are flagged as having very high correlation and one of 



Page | 160 

the pair variables is therefore deleted.  All the Joint Uncertainty values in Table 8.6 are 

less than 0.2 showing weak correlation, thus acceptable.  

After the map correlation analysis, the WoE Coefficients table is used as an input for 

the LUCC model. 

 

 

Figure 7.60 Determining Correlation of Variables
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Figure 7.61  LUCC Model Execution in DINAMICA EGO
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Transition: 1->2 

      

 

Crammer Entropy 

First Variable Second Variable Chi^2 Crammer* Contingency Joint Entropy Joint Uncertainity* 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

distance_other/distance_to_7 distance_planted_forest/distance_to_2 559553.5671 0.471603661 0.725621372 1.955349681 0.027590294 

distance_other/distance_to_7 distance_settlement/distance_to_6 549645.6002 0.52257992 0.722544506 1.247168287 0.04421062 

distance_other/distance_to_7 static_variables/distance_minor_roads 522591.7773 0.455761483 0.713768528 2.268815544 0.009432732 

distance_planted_forest/distance_to_2 distance_settlement/distance_to_6 522163.5718 0.509348023 0.713625008 1.943463186 0.016694661 

distance_planted_forest/distance_to_2 static_variables/distance_minor_roads 519540.7902 0.414835138 0.712742686 2.952389348 0.007853779 

distance_settlement/distance_to_6 static_variables/distance_minor_roads 532926.6766 0.514570719 0.717187912 2.231462485 0.022356184 

              Transition: 1->3 

     

 

Crammer Entropy 

First Variable Second Variable Chi^2 Crammer* Contingency Joint Entropy Joint Uncertainity* 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

distance_grassland/distance_to_3 distance_planted_forest/distance_to_2 106234.5545 0.229744033 0.417521634 2.666182691 0.073617907 

distance_grassland/distance_to_3 distance_settlement/distance_to_6 40538.5415 0.141920587 0.27305478 2.906053404 0.028348245 

distance_grassland/distance_to_3 static_variables/distance_major_roads 57891.90147 0.169597813 0.321219836 3.300875127 0.03426445 

distance_grassland/distance_to_3 static_variables/distance_rivers 34101.51404 0.130166183 0.251935119 3.384439553 0.018729816 

distance_grassland/distance_to_3 static_variables/elevation 63213.89817 0.177253176 0.334131606 3.022821942 0.03692823 

distance_grassland/distance_to_3 static_variables/reserved 4167.417672 0.245328901 0.238263559 1.714361119 0.034466867 

distance_grassland/distance_to_3 static_variables/slope 32247.60101 0.126600798 0.245455611 3.102673198 0.019900367 

distance_planted_forest/distance_to_2 distance_settlement/distance_to_6 543721.6201 0.367523102 0.72067062 3.515874171 0.023334152 

distance_planted_forest/distance_to_2 static_variables/distance_major_roads 147158.0051 0.191200176 0.47569076 3.844752468 0.062098353 

distance_planted_forest/distance_to_2 static_variables/distance_rivers 428644.6278 0.326321009 0.678239738 4.001618337 0.012100312 

distance_planted_forest/distance_to_2 static_variables/elevation 42444.99272 0.118591986 0.278958336 3.652208192 0.020000594 

distance_planted_forest/distance_to_2 static_variables/reserved 1524.65777 0.148388889 0.146781676 2.243569988 0.009916717 

distance_planted_forest/distance_to_2 static_variables/slope 31817.06835 0.102676768 0.243909702 3.713760612 0.015766804 

distance_settlement/distance_to_6 static_variables/distance_major_roads 50170.09846 0.105254957 0.301110034 4.096814787 0.024545181 

distance_settlement/distance_to_6 static_variables/distance_rivers 459785.956 0.318638267 0.690993501 4.151608083 0.025741911 

distance_settlement/distance_to_6 static_variables/elevation 99151.25446 0.167809994 0.405786647 3.76137688 0.055816397 

distance_settlement/distance_to_6 static_variables/reserved 7046.493944 0.319008121 0.303918419 2.187865699 0.046624203 

distance_settlement/distance_to_6 static_variables/slope 66910.74118 0.137853131 0.342646282 3.856044872 0.034402154 

static_variables/distance_major_roads static_variables/distance_rivers 30193.65253 0.077463865 0.23792764 4.585142381 0.013505747 

static_variables/distance_major_roads static_variables/elevation 26279.60038 0.086392908 0.222827322 4.25242484 0.012560352 

static_variables/distance_major_roads static_variables/reserved 17270.62756 0.499423826 0.446801177 2.777661485 0.099933716 

static_variables/distance_major_roads static_variables/slope 35483.96169 0.093905016 0.256703197 4.299371119 0.015737274 

static_variables/distance_rivers static_variables/elevation 52090.62143 0.121632178 0.306336954 4.285819932 0.023684879 

static_variables/distance_rivers static_variables/reserved 9867.729754 0.377505968 0.353178025 2.884825095 0.05108327 

static_variables/distance_rivers static_variables/slope 30100.45764 0.086488684 0.237620361 4.361593713 0.013553486 

static_variables/elevation static_variables/reserved 18222.35219 0.513159424 0.456555373 2.159462167 0.120599446 

static_variables/elevation static_variables/slope 154544.1725 0.209505308 0.484802858 3.903394722 0.074949173 

static_variables/reserved static_variables/slope 6476.205167 0.305921775 0.292538814 2.654893991 0.034888875 

Table 7.11 Excerpt of Message log file - Correlation of Variables 

7.4 Model Execution – Build and Run  

After executing the processes of the calibration phase, the following outputs were 

obtained:  

 multi-step transition matrix 

 WoE Coefficients of variables 

In addition to these outputs the LUC map for t1 and static variable maps were used as 

input data to set up and run the LUCC model (presented in Figure 7.61  and detailed in 

section 4.6). In Figure 7.61 the direction of the arrows represents data flow and the 
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repeat container iterates the process 18 times for the period 1990 – 2008 (Auckland) 

and six times from 1997-2003 (Rondônia).  

The Mux Categorical Map operator dynamically updates the input LUC map, at the 

start of the simulation model it takes  the LUC map for t1 as the initial map and then 

updates with the yearly simulated “landscape_##.ers” maps from the Patcher 

operator. The Calc W. Of E Probability Map (see section 3.6.2) computes the transition 

probability map for each specific transition. The Patcher allocates simulated land use 

change by using the quantity of cells to change produced by the Calc Change Matrix 

operator and probability maps. The simulated LUC map “landscape_##.ers” is saved at 

end of each loop, for Auckland 18 simulated LUC maps for each year 1990-2008 were 

generated and six simulated LUC maps for each year xxxx-xxx were generated for 

Rondônia. 

7.5 Validation – Multiple Windows 

The goal is to validate the process and not the maps, therefore a method deemed 

suitable for LUCC model validation must be neighbourhood based rather than a cell-

by-cell evaluation (see section 3.7). Thus a multiple window approach was 

implemented with window sizei (cell size) varying from 1 to 21 for Auckland Region and 

1 to 11 for Rondônia State. The range of windows sizes were selected to determine the 

variation of the fitness of the model within a 2km size, in addition to that the similarity 

fitness yields asymptotic values after 2km (see Figure 7.64). Figure 7.62 illustrates is 

                                                        

i Window size is a multiple of cell size. For Auckland it’s a multiple of 100m whilst for Rondônia multiple 
of 250m. Multiple of odd numbers is used for the varying size  
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the model diagram for LUCC validation for the period 1990 -2008. The changes in LUC 

(map of changes) between t1 and t2 are computed for both observed and simulated 

maps. The simulated “maps of changes” is compared with the observed. 

 The validation model used (Figure 7.63) is a two-way approach to measuring 

similarities between maps and yields both minimum and maximum similarities. The 

results of this approach are given in Table 7.12 and Table 7.13 for Auckland and 

Rondônia respectively. The minimum similarity is used in the analysis because 

probability maps tend to produce high fitness when compared apodictically. 

 Window Size [Cells] Minimum Similarity Maximum Similarity 

1 0.175363890 0.175404631 

3 0.239934964 0.341826067 

5 0.303964076 0.432354991 

7 0.371322391 0.504762642 

9 0.441700217 0.564469914 

11 0.508981109 0.611321924 

13 0.564725921 0.651978626 

15 0.614663983 0.686594904 

17 0.660808300 0.713776814 

19 0.699597399 0.737551305 

21 0.731186126 0.756989081 

Table 7.12 Results of Multiple window Similarity Method – Auckland 

Window Sizes Minimum 
Similarities 

Maximum Similarities 

1 0.203728 0.203728 

3 0.44564 0.661172 

5 0.660705 0.810883 

7 0.802462 0.862418 

9 0.889193 0.890272 

11 0.905135 0.936769 

Table 7.13 Results of Multiple window Similarity Method - Rondônia



Page | 165 

 

Figure 7.62 Multiple Windows Validation
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Figure 7.63 LUCC Model Fitness – Auckland Region 

From Figure 7.63 it can be asserted that the fitness of LUCC model of Auckland Region 

goes from 17% at 1-by-1 cell to 73% at 21-by-21 cell. It is important to note that the 

cell resolutionii is 100m and search radius is 50m. From Figure 7.63 it can be concluded 

that at a spatial resolution of ≈1.1km the LUCC model reached a fitness of 50%. 

The graph in Figure 7.64 illustrates the minimum similarity of fitness of the LUCC 

model of Rondônia. From the graph it can be asserted that the fitness reached a value 

of 50% at a resolution of ≈850km and having a remarkable performance of about 90% 

after 2km window resolution. 

                                                        

ii For the search window, cell resolution is referred to half the size of the search window 
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Figure 7.64  LUCC Model Fitness – Rondônia Region 

7.6 Enhancement of WoE Coefficients Using GA Tool 

The WoE Coefficients are the main source of drivers of change in the LUCC model, 

therefore the performance of the LUCC model depends on the WoE coefficients. In 

order to improve the performance of the LUCC model in section 7.4 the GA tool 

(described in Chapter 3) was used to enhance the WoE coefficients for optimal 

“goodness of fit”. The performance of the deforestation LUCC model of Rondônia 

(Figure 7.63) showed excellent results thus the GA was not applied to it but rather to 

Auckland to find out if there could be an improvement. The GA tool sometimes “over 

specialises” the WoE coefficients to yield the best “goodness of fit” but might not give 

better projection into the future compared to the performance of the primal WoE 

coefficients. To check for over specialisation, upper and lower boundaries (of 0%, 20%, 

40%, 50%, 60%, 80%, 100% and 120%) were used and the GA tool used to run a range 
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of variations of the characteristics of the primal individual gene. After the search of the 

optimal individual for the period 1990-2000, the individual set of coefficients was 

validated. This was carried out for all the boundary limits. To determine which 

boundary limit performed well, a comparative analysis of performances of the optimal 

individuals (of the boundary limits) at both calibration and validation phases were run 

and the best individual was selected.  

The performance of the selected individual was then compared with the original set of 

WoE coefficients (before GA calibration) and the one with better performance result 

chosen as the optimal set of WoE coefficients to use in the work process flow model to 

generate the LUCC projections. 

Figure 7.65 illustrated the GA calibration model (executed in DINAMICA) and Figure 

7.66 illustrates the GA Tool process. 

The primal WoE coefficients (from Figure 7.6 to Figure 7.48) were converted into 47 

tables (genes) of the WoE Coefficient which serves as input genes for the GA Tool 

(Figure 7.65). The GA tool was configured as follows (see section 4.2): 

 Population size = 100 

 Convergence Stopping Criteria = 30 generations  
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Figure 7.65 GA Calibration Model - DINAMICA EGO 



Page | 170 

 

Figure 7.66  The GA Tool 

7.6.1 Result of GA Calibration  

The GA calibration fitness of the best individual at each boundary limit are tabulated in 

Table 7.14 and presented as a curve in Figure 7.67. The curve ranges between 0% and 

120%, which implies the wider the limit range the better the fitness of GA calibration 

for Auckland. The 120% boundary limit gave the highest fitness value of 0.479260159.  

Boundary[%] Best-Fitness 

0 0.472699761 

20 0.473112375 

40 0.474625230 

50 0.475863010 

60 0.476563920 

80 0.477715440 

100 0.478751212 

120 0.479260159 

Table 7.14 Best-Fitness of the Boundaries. 
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Figure 7.67 Graph of Best-Fitness of the Boundaries 

The multiple windows (cell sizes) kfuzzy map comparison method with constant decay 

function was used to validate the best individuals of the boundary limits and the 

results are shown in Table 7.15. Figure 7.68 gives a graphical presentation. It can be 

seen in Figure 7.68 that the 120% boundary limit gave the best performance from 

window size 1 through to 21. The set of WoE coefficients from the 120% boundary 

limit yielded best performance at both calibration and validation phases, thus this 

was selected.  

CELL 

SIZE 

Validation - Using Multiple Window Constant Decay Function 

0% 20% 40% 50% 60% 80% 100% 120% 

1 0.1760242 0.175172 0.1721286 0.1758199 0.1809804 0.1734686 0.1764114 0.177805319 

3 0.2405858 0.237077 0.2351986 0.2404084 0.2446866 0.2371686 0.2389586 0.243974954 

5 0.3073764 0.302023 0.2995826 0.3043781 0.307357 0.30245 0.3038897 0.308137715 

7 0.3740896 0.366194 0.3658216 0.3712871 0.3724406 0.3664134 0.3713002 0.374256641 

9 0.4444444 0.433465 0.4370073 0.4428372 0.4435189 0.4372771 0.441965 0.443583727 

11 0.5093755 0.496474 0.502396 0.5086634 0.5081354 0.5017057 0.5099953 0.512519538 

13 0.5668681 0.554212 0.5635338 0.5665223 0.5648112 0.5583036 0.5681078 0.571439743 

15 0.6207191 0.607378 0.6186427 0.6157178 0.6145582 0.6085439 0.618937 0.626291096 

17 0.6663567 0.654344 0.6657134 0.6618966 0.6596341 0.6551403 0.6655819 0.672613442 

19 0.7040911 0.693947 0.7055959 0.7008045 0.6997275 0.6929756 0.7025415 0.710954607 

21 0.7366341 0.727428 0.7372855 0.7321318 0.7318801 0.7253838 0.7341546 0.743348956 

Table 7.15 GA Performance with respect to Boundary Limits of primal set of WoE.  
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Figure 7.68 Comparison of Boundary limits of GA Tool 

7.7 Compare GA Calibration with the Primal WoE 

The comparison of the GA result with the original (initial) WoE is to check if the GA 

calibration process produced a better set of WoE coefficients.  Table 7.16 and Figure 

7.69 revealed that the WoEs coefficients generated from GA tool performed better 

than the original set of coefficients however the improvement observed was minimal . 

It was concluded the GA tool, for these case studies, enhanced the original WoE 

coefficients. It is important to note that though GA could optimise the WoE 

coefficients from t1 to t2 and yield very high fitness values, it is not always true that it 
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will give high performance values during validation with t3 LUC (Soares-filho et al., 

2009).  

Window Size Original GA 

1 0.175363890 0.177805319 

3 0.239934964 0.243974954 

5 0.303964076 0.308137715 

7 0.371322391 0.374256641 

9 0.441700217 0.443583727 

11 0.508981109 0.512519538 

13 0.564725921 0.571439743 

15 0.614663983 0.626291096 

17 0.660808300 0.672613442 

19 0.699597399 0.710954607 

21 0.731186126 0.743348956 

Table 7.16 Performance Comparison of Primal-WoE and GA-WoE 

 

Figure 7.69 Performance Comparison of Original WoE and GA generated WoE 
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7.8 LUCC Projected Simulation  

After concluding the calibration and validation phases of the model process, the 

selected coefficients were used to run a projected simulation from the year 1990 to 

2050 for Auckland Region and from 1997 to 2018 for Rondônia.  The simulation 

projection for Auckland was designed to generate simulated base maps for carbon 

sequestration (in order to demonstrate a further application of the LUCC model). For 

Rondônia the projection was used largely to validate the model and compare it with 

Auckland to ascertain the generic nature of the workflow process model. The output 

formats were static and animatediii LUC simulated maps of each year.  

The number of cells for each simulated LUC class for the years 1990, 2008, 2031 and 

2050 for Auckland Region is presented in Table 7.17. The percentage of transitional 

change with reference to 1990 LUC is shown in Table 7.18, where positive is equal to 

percentage gain and negative is percentage loss. The quantified simulated cells per 

LUC class for Rondônia can be seen in Table 7.19 and percentage change in Table 7.20. 

These tables are graphically represented by Figure 7.70 and Figure 7.71 and show the 

overall trend in LUCCs for Auckland and Rondônia respectively.   

 

 

 

                                                        

iii Animated video showing LUC maps from start year to end year of simulation. 
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LUC Classes Cell Count For  

1990 2008 2031 2050 

Natural Forest 145,587 144,903  144,029 143,307 

Planted Forest 43,864 54,754 67,912 78,168 

Grassland 247,056 235,782 222,200 211,633 

Cropland 9,454 9,454 9,454 9,454 

Wetland 3,825 3,825 3,825 3825 

Settlements 49,678 50,962 52,524 53,740 

Others 3,709 3,493 3,229 3,046 

Table 7.17 Cell count of simulated LUC maps - Auckland  

LUC Classes 

Percentage of Change [%] 

2008 2031 2050 

Natural Forest -0.46982 -1.07015 -0.46982 

Planted Forest 24.82674 54.824 24.82674 

Grassland -4.56334 -10.0609 -4.56334 

Cropland 0 0 0 

Wetland 0 0 0 

Settlements 2.584645 5.728894 2.584645 

Others -5.82367 -12.9415 -5.82367 

Table 7.18 Percentage of Simulated Change based on the 1990 LUC of Auckland.  

            Cell Count For 

LUC Classes 1997 2000 2003 2006 2009 2012 2015 2018 

Deforested 85,412 113,199 138,653 161,971 183,331 202,899 220823 237243 

forest 331,010 303,223 277,769 254,451 233,091 213,523 195599 179179 

Non-
vegetation 26,501 26,501 26,501 26,501 26,501 26,501 26501 26501 

Table 7.19 Cell count of simulated LUC maps – Rondônia 

  Percentage of Change [%] 

LUC Classes 2000 2003 2006 2009 2012 2015 2018 

Deforested 
32.53 62.33 89.63 114.64 137.55 158.54 177.76 

Natural forest -8.39 -16.08 -23.13 -29.58 -35.49 -40.91 -45.87 

Non-vegetation 
0 0 0 0 0 0 0 

Table 7.20 Percentage of Simulated Change based on 1997 LUC map of Rondônia 

In examining Figure 7.70, it can be concluded that cropland and wetland are constant 

showing no change. The area of LUC attributed to grassland rapidly declining whilst 
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forest plantations seem to be expanding at a high rate. Settlement is projected to have 

a steady growth whilst natural forest being lost but at a slow rate. 

 

Figure 7.70 Trend of LUCC Simulation 1990-2050 

The LUCC model for Rondônia reveals in Figure 7.71 that if the trend of deforestation 

between 1997 and 2003 persists then around 2013 the amount of deforested and 

forest LUC will be for about the same for the study area, whilst non-vegetated LUC 

remain constant in LUCC model. By 2018 the proportion of forest in the case study 

region is projected to be less than that present in 1997. 

0

50000

100000

150000

200000

250000

300000

1980 1990 2000 2010 2020 2030 2040 2050

N
u

m
b

e
r 

o
f 

C
e

lls

Year

Auckland LUCC 1990-2050

Natural Forest

Planted Forest

Grassland

Cropland

Wetland

Settlements

Others



Page | 177 

 

Figure 7.71 The Trend of LUCC for the central Forest Region of Rondônia 

The LUC maps in Figure 7.72 are sample maps of the simulation of LUCC model for 

Rondônia. From the images it can easily be seen that time progresses there is an 

increase in deforestation that is the forest LUC (green) decreases whilst the deforested 

land (blue) increases.  

Figure 7.83 Simulated LUC Maps 1991 and 2050 shows the simulated LUC maps of 

1991 and 2050 put side by side to aid visualisation of Auckland LUCC between the two 

maps. The amount of transitional LUCCs is very small and difficult to visualise from the 

maps at such a scale. However, to present transitional changes in the maps, the areas 

within the red boxes indicate some changes in LUC.  For further illustration of 

simulated LUC changes Figure 7.73 to Figure 7.82 shows the spatial distribution of each 

of the ten LUC transitions from 1991 - 2050. The white patches depict the transitional 

changes. 
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1997 2003 

2009 2012 

2015 2018 

Figure 7.72  Sample of Simulated LUCC Maps of Rondônia 
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Figure 7.73 Natural Forest to Planted 

Forest 

 

Figure 7.74 Natural Forest to Grassland 

 

Figure 7.75 Natural Forest to 

Settlements 

 

Figure 7.76 Planted Forest to Grassland 
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Figure 7.77 Grassland to Planted Forest 

 

Figure 7.78 Grassland to Settlements 

 

Figure 7.79 Grassland to Other lands 

 

Figure 7.80 Others to Planted Forest 
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Figure 7.81 Others to Grassland 

 

Figure 7.82 Others to Settlements 
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Figure 7.83 Simulated LUC Maps 1991 and 2050 
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7.9 Scenario Description 

Due to the changes in natural forest, planted forest and grassland (see Figure 7.70), it 

seems prudent to assess the impact of such changes on greenhouse gases. Though 

natural forest and grassland shows decline in area, planted forest shows significant 

increase in land over the period. The Auckland region is an environmentally managed 

region and it would be interesting to be able to demonstrate the effect of currently 

policies such as infill housing on the level of carbon emissions. The goal of the third 

case study presented, using the maps produced by the novel workflow process model 

for Auckland, is to estimate the carbon sequestered annually by the vegetation based 

on sequestration rates given by the New Zealand Ministry for Primary Industries,. The 

sources of annual LUC map for the scenario model are the simulated maps from the 

Auckland LUCC model, indicated in Figure 7.85 by a red bounding box. The scenario 

model initially extracts natural forest, planted forest and grassland LUCs from the 

simulated LUC map of each year, then computes the total number of cellsiv of each LUC 

class multiplied by their respective carbon sequestration rate. This results in the 

amount of carbon sequestered per LUC type for the year. The model repeats using a 

time step of one year starting from the year 1990 through to 2050v. From the LUM 

data used in this work plantation began in 1989, thus all planted forest were one year 

old in 1990. When the right age of planted forest for 1990 is known the results can be 

scaled by a factor. 

                                                        

iv Area of each cell is 100m by 100m = 1hectare 

v Time frame given in Kyoto Protocol for assessing the performance of countries 



Page | 184 

Land Use/Cover Carbon Sequestration 

Natural Forest 525tCO2/ha 

Planted Forest 18tCO2/ha/yr. 

Grassland 11tCO2/ha 

Table 7.21 Carbon Sequestration Rates(Source: Ministry for Primary Industries, 2011) 

Table 7.21 shows the sequestration rates used in this model, units measure tonnes of 

carbon dioxide per hectare (tCO2/ha). It is important to note that the carbon 

sequestration rate for the planted forest considers the age of the plant, which means if 

the plantation is 6 years old it will be able to absorb (18*6)tCO2/ha. 

 

Figure 7.84  Annual Carbon Sequestration by Vegetation 
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Figure 7.85 Carbon Sequestration Scenario Model

LUC map from 

LUCC MODEL 
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7.9.1 Results and Interpretation 

The graph in Figure 7.84 shows the result of the carbon sequestration model. The 

carbon sequestered by natural forest and grassland is decreasing slowly annually 

however; this decrease seems to be compensated for by planted forest which has a 

rapid increase in carbon stock. The shape annual increase in carbon stock of planted 

forest can be accounted for by the afforestation and reforestation of natural forest and 

grassland areas as seen in Auckland LUCC model.  

The curve of the annual “total” carbon stock by the three LUCs indicates a steep rise 

from 80MtCO2 in 1990 to about 144MtCO2 in 2050. “With all other things being 

equal” and the past trend in change of LUC remains the same then projected 

estimation of carbon stock annually will be similar to the graph. 

It is worth mentioning that there might be other sources of carbon removal method 

practices in Auckland but this work looked into only carbon removal by vegetation. It 

could be said from Figure 7.84 that management of planted forest in Auckland Region 

has made major contribution to removal of carbon dioxide from atmosphere. Also 

from the same graph, even though sequestration from natural forest is decreasing 

gradually it recorded the highest values of sequestration whilst grassland registered 

the lowest figures. 

7.10 Summary 

In summary the workflow process (see Figure 3.1) was applied to Auckland and 

Rondônia, and LUCC Model was achieved. Also the was shown that the simulated 

Auckland LUC maps (red insert in Figure 7.85) can be used meaningfully in the context 
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of further modelling such as the presented carbon sequestration model. This shows 

the applicability of the framework to more elaborate and extended LUCC based 

studies. 

The WoE method was initially used in calibrating the LUCC model for both study areas 

and the WoE coefficients of Auckland were further improved using the GA method. 

Using the WoE method the variables which had no significant influence on a specific 

transition were removed thus for each specific transition the set of variables were 

unique (see Table 7.9 and Table 7.10). 

The performance of the LUCC model process was evaluated using the multiple 

windows fuzzy map comparison method which yielded very good results for Auckland 

region with fitness of over 51% at a window of 11-by-11 cell ( i.e. resolution of 550m)  

to almost 75% at 21-by-21 cell window search (resolution 1,050m). For Rondônia the 

process model gave an excellent performance result with fitness level of above 90% at 

11-by-11 cell window search (resolution of 1,375m). Since the model performed well in 

both study areas with varying location attributes it can be concluded that the workflow 

process model is reasonably generic. Furthermore the model performed well in both 

complex and simple LUC transitional changes with varying map resolutions; this 

provides evidence that the model is able to project and simulate LUCC for very 

spatially different areas and for scenarios of varying levels of complexity again 

demonstrating not only the generic nature of the model developed in this research but 

also the robustness of the model. 
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Chapter 8   Conclusions and Recommendations 

This chapter briefly summaries the contributions to existing knowledge and findings of 

this doctoral research. The limitations of the work are discussed and recommendations 

are made for future research in the domain of LUCC modelling. 

 The research, reported in this thesis, involved and in depth investigation of existing 

LUCC models and modelling methods. As a result of this investigation it was concluded 

that there was a need for a generic integrated-working-process for LUCC modelling. 

The research also attempted to answer the major question, “how can we measure the 

'adequacy' of the components, variables and parameter sets, which combine to inform 

the development of an LUCC model?” and the adequacy of these variables was then 

evaluated using the novel LUCC process model developed as part of this work. The 

WoE method reported in sections 3.3 and 3.4 was proven to be a successful method 

for measuring the adequacy and significance of variables. The performance of the 

derived integrated-working-process model was evaluated by applying it to the 

Auckland Region case study from which an advanced model of carbon sequestration 

was subsequently developed.  The following are the key findings and deductions that 

arose as a result of this research:  

8.1.1 Investigation of LUCC Modelling Methods 

It was found that GIS and RS techniques have the capability to detect LUCC (see 

section 2.7). However, these techniques are limited when it comes to answering 
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questions about WHY the change occurred. One of the strengths of LUCC modelling is 

that such a model is able to answer the WHY questions.  

Three categories of LUCC modelling methods were investigated (i) statistics (ii) CA and 

(iii) ABM or Multi-agent Systems (see section 2.8). Each of these methods has 

strengths and weaknesses. CA uses cells which are spatially interconnected as 

automata and each cell state is updated every discrete time step according to a set of 

predefined rules. Therefore, CA is suitable for simulating LUC as they change. In this 

research CA was selected in combination with statistics, in order to draw on the 

strengths of both methods, to determine the transition matrix and WoE coefficients of 

variables of each LUC transition. 

The CA approach was limited because it does not allow the introduction or inclusion of 

mobile agents for change such as human beings. Since the properties of raster CA does 

not accommodate mobile agents an integration of the three LUCC modelling methods 

– statistical, CA and ABM – will be valuable to LUCC modelling.  

8.1.2 Review of CA LUCC Models/Software  

Even though there are many working CA LUCC models most of them were designed for 

binary LUC transition simulation or urban growth, however, SLEUTH, LEAM and 

MOLAND do have the capability to simulate complex LUCC. These models were 

originally designed with parameters for specific locations; therefore modellers are 

unable to introduce new parameters into these models to even determine their 

“adequacy” for causing change in LUC, users can only change the coefficients of 

parameters during calibration to suite new locations.   



Page | 190 

In section 2.9, DINAMICA EGO was found to be a CA modelling platform, but not a 

model, that integrates all the tools required to implement any of the existing LUCC 

model and environmental modelling tasks. DINAMICA EGO gives user the freedom to 

introduce variables and determine the significance of those variables.  The generic 

workflow process model developed in this research was successful implemented in 

DINAMICA and it evaluated using two study areas. 

8.1.3 LUCC Working Processes 

Step-by-step integrated working processes (see Figure 3.1) for LUCC modelling was 

derived from a unique combination of DINAMICA EGO and SLEUTH processes. This 

novel work flow process model was successfully applied to Auckland Region and 

Rondônia State and its performance evaluated. The model performed very well in both 

simple and complex transitional LUCC (see section 7.5). An advanced scenario model of 

vegetative carbon sequestration based on Auckland LUCC was implemented, this is an 

instance indicating that a complex LUCC could be developed from the workflow 

process model and used for further studies. 

The Weights of Evidence method, Bayesian approach, was successfully used to 

measure the adequacy and significance of each variable before including into the LUCC 

model. This WoE method has an advantage over other statistical methods, such as 

Logistic and Linear Regression, because it is not constrained by statistical assumptions 

of parametric methods which violate spatial data.  In section 3.3, the effect of each 

variable on a specific transition was computed independently of the combined 

solution, so that the WoE represents the variable’s influence on a single specific 

transition.  
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The evaluation of the performance of the variables for each transition revealed that 

each transition has a unique set of variables influencing it (see Table 7.9 and Table 

7.10). Furthermore, the trend of influence of each variable in any specific transition 

was found to be unique, for example distance-to-major roads is unique each transition 

it had influence on (see Figure 7.6 to Figure 7.59). This remarkable result was 

anticipated because each transitional change is unique therefore each variable 

influence should be unique per transition. 

8.1.4 Validating Maps versus Validating Model process 

In LUCC modelling, typically map comparison methods are usually used to validate two 

maps A and B, where A is the observed map and B is the simulated map. However, a 

better is to evaluate the simulation process rather than the maps. In order to evaluate 

a simulation process, the reference process of change is compared with the simulated 

one for the same time period. Process of change is the transition that has occurred in 

an area between time t1 and t2, resulting in a “map of change” (i.e. changes between 

map[t1] and map[t2]). Thus the observed-map-of-change is compared with the 

simulated-map-of-change to evaluate the performance of the simulation model. In this 

research the simulation process if change itself was evaluated. 

8.1.5 Qualitative vs. Quantitative Validation 

The qualitative visual inspection (of maps by a human observer (expert) usually reveals 

interesting characteristics – such as local similarities, global similarities, logical 

coherence and patterns – and to the best of my knowledge performs better than the 

mathematical procedures (here in described as quantitative) for validating small area 

maps. However, mathematical procedures are preferred to visual inspection when the 
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area/map is large and with too much information because of the time required to 

undertake a qualitative evaluation.  

It was found that the mathematical procedures using a cell-by-cell approach does not 

consider the similarities of LUC patterns on regional scale which a visual inspection 

could capture. Additionally, current automated validation methods such as multiple 

fitting window, hierarchical fuzzy and KFuzzy (kappa and fuzzy) similarity attempt to 

resolve the issue of spatial pattern using vicinity based comparison rather than cell-by-

cell (see section 3.7). Whilst the multiple window similarity method considers spatial 

pattern when quantifying the similarities between two maps the cell-by-cell approach 

does not, thus is approach resolves the limitations regarding visual inspection and cell-

by-cell.  

8.1.6 Validation Method 

Section 6.3 reports on the rasterisation of the 1990 and 2008 LUC maps from vector 

based LUC data using a 100m resolution. The vector-to-raster method used usually 

determines which LUC class to assign to cells that lie along the boundary of two LUC 

types. This raises data integrity concerns (boundary precision), despite the 

preservation of spatial patterns. For example during the vector-to-raster conversion 

along the boundary of the natural forest and grassland LUC, a cell assigned natural 

forest may overlap the grassland area in the vector data. The conversion methods 

usually capture the pattern of LUC area and not the exact boundaries, in view of this it 

was deemed appropriate to use Kappa and Fuzzy similarity comparisons to validate the 

spatial pattern.  
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A vector based CA approach would have been suitable but because all the input 

datasets were in raster format this approach was explored. 

8.1.7 Auckland Data Issues 

Three LUC maps -1990, 2000 and 2008 – were used for this work. As mentioned in 

section 8.1.6 the integrity of the data for 1990 and 2008 on the boundaries is uncertain 

due to the vector-to-raster conversion method. On the other hand, the 2000 LUC map 

was acquired and prepared using a GIS and RS procedure detailed in section 2.4. This 

approach also has its own inherent errors (e.g. as a result of incorrect image 

classification). Thus the error introduced in 1990 and 2008 LUC maps could be 

different from errors in 2000 map. This was of concern because of a potential lack of 

temporal data consistency, a 2000 LUC map derived from the same source as the 1990 

and 2008 would have been more suitable and minimised the level of error introduced 

by the data harmonisation process. 

Although there might some data issues for the Auckland case study the goal this 

research is to test the performance of LUCC workflow process model using real study 

areas. Data for real study areas have never being perfect so measuring the 

performance of the system on a clean dataset is not realistic. Therefore the model 

executes based on input data and the assumption is that the data is “correct”.  

As mentioned in section 6.2 the data for Rondônia State was provided by CSR and used 

for their successful projects, therefore it was assumed that data integrity was good 

enough for this project. However due to the low spatial resolution (250m) of the data  

Powell et al. (2004) report that there are mixed pixels along the boundary of two 
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classes.  Again, the application to Rondônia State performed well, thus data issues did 

not have significant impact on the performance of the model. 

8.1.8 Calibration and Performance of the LUCC Model 

After the computation of transition matrix in section 7.1, it was found out that 

cropland and wetland in Auckland Region remained unchanged between 1990 and 

2000. This was indeed a remarkable finding because the assumption was that all the 

LUC classes have undergone change. 

In section 7.2 the WoE method was applied successfully resulting in the WoE 

coefficients of the variable set for LUCC. In order to find out whether or not a GA could 

improve the performance of the WoE coefficients in LUCC simulation model, the GA 

tool was applied to the prime WoE coefficients using various boundary limits (see 

section 7.6). It was found that for the Auckland Region the 120% boundary limit 

performed the best (see section 7.7). It is worth noting that other boundary limits, for 

instance 100% or 50%, might perform better in other locations or with a different 

variable set for the same LUC transition. 

The generic nature of the workflow process was tested by using the model to 

undertake two case studies. The case studies were selected to demonstrate the 

applicability of the model to modelling scenarios where the data informing the 

modelling process is very different. It was found that the model performed well: 

 in both simple and complex LUCC transitional changes, however it performed 

better with simple LUCC transition (with only one transition). The complex 

LUCC model involved ten transitions and the overall error is the total of the 

errors in each transition. The goodness of fit performance of the model 
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reached 50% at a resolution of 1.1km for Auckland (the complex transitions) 

and 0.85km for Rondônia (see section 7.5). 

 over different rates of LUCC - the rate of LUCC, Auckland’s change was slower 

than Rondônia’s (see Table 7.4 for Auckland and Table 7.7 for Rondônia) 

 with different map resolutions - for Auckland the spatial resolution was 100m 

and for Rondônia 250m. 

 with very large area extents, 1,915,281ha for Auckland and 3,824,150ha 

Rondônia. 

These results showed that the workflow process model is generic and can be applied 

to study areas with varying level of transitional complexity and with a wide variety of 

dataset attributes. 

For the Auckland Region, the GA set of coefficients performed better than the prime 

WoE coefficient when a comparative analysis of the two sets was carried out. 

Therefore it was concluded that for Auckland Region GA calibration was able to 

enhance the coefficients of WoE method. For Rondônia study area, the prime WoE 

coefficients performance in LUCC was excellent (see Figure 7.64), therefore the GA tool 

was used to improve their performance. 

8.2 Limitations of this Work 

Although this research was carefully prepared and has reached the set goals (see 

section 1.1), there are a number of limitations. 

First of all due to limited availability of data, the calibration period of 1990-2000 for 

the Auckland region and 1997-2000 for Rondônia state, were not long enough to 

capture adequate empirical change for longer projection, a wider time range of 

empirical datasets would have been more appropriate.    
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Secondly, the multiple transition matrices and change rates were based on the 

assumption of section 3.2.1 that the transition rates per year are uniform for the 

calibration period, which in reality is not true, and this could introduce an error. Such 

errors could be minimised if there are more empirical LUC maps introduced for the 

calibration period, for instance t1-t2-t3-t4 instead of t1-t2 used in this work, to capture 

the variations in the transition rates rather than assuming uniformity. 

8.3 Contribution 

The contribution and significance of this thesis to the existing body of knowledge in 

field of geosimulation and land use cover simulation is:  

 An effective WoE method for determining the adequacy and significance of 

LUCC variables by applying it to Auckland. 

 a generic integrated-work-flow-process for LUCC modelling. 

8.4 Future Work 

As mentioned in section 8.2 the available empirical spatio-temporal LUC maps were 

limited. To further enhance the work done in this thesis regarding the evaluation 

performance of the workflow process a future work could include the following: 

1. Increasing the number of empirical LUC maps for calibration and validation, at 

least five of them at times t1, t2, t3, t4 and t5. Where t1, t2 and t3 could be 

used for calibration and another three set t1, t4 and t5 for validation. 

2. Using LUC maps covering larger extent, for example national maps since this 

work was done on a regional level. 
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This research used a combination of statistical and cellular automata because the focus 

was to simulate the LUCC and not the agents. For future work an incorporation of 

agent base modelling method or tight coupling of the three methods into the LUCC 

workflow process model will aid modellers to include mobile agents and other 

socioeconomic variables and to visualise their effects on LUCC. 

8.5 Conclusion 

In conclusion LUCC modellers could adopt the novel and generic integrated workflow 

process model developed as a result of this doctoral research to investigate the 

parameters that are driving changes in any locality or region. Such an investigation 

could serve as an input into the decision making process and assist stakeholders with 

the development and implementation of LUC policy. Also LUCC modellers could use 

this workflow process for building LUCC model frameworks for further investigation 

and projections of the impact of LUCC. 
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Appendix 1 :  Dinamica EGO Modelling Software 

This appendix describes the modelling environment of DINAMICA EGO, which is used 

for this research. Highlighted points are why it is generic/open modelling software 

environment, and also how it allows modellers full control in building models from the 

beginning to finish.  A description of these features makes it clear why the software is 

suitable for the research work outlined in this thesis.  

A0.1 Overview 

DINAMICA EGO (Environment for Geo-processing Objects) is an environmental 

modelling platform designed for analytical and space-time models. It has been applied 

in the study of many environmental impact situations such as deforestation, logging, 

hydrology and landscape changes (Bowman et al., 2012; Carlson et al., 2012; Giudice, 

Soares-Filho, Merry, Rodrigues, & Bowman, 2012; Leite, Costa, Soares-Filho, & de 

Barros Viana Hissa, 2012; Jean-François Mas et al., 2012; Soares-filho et al., 2012; 

Yanai et al., 2012). This software operationalises a sophisticated environmental 

modelling platform with capabilities for designing and implementing a spectrum from 

very simple static spatial models to highly complex dynamic ones. Its main features 

include the following 

 Graphical User Interface (GUI) – using data flow language as diagrams in 

designing model 

 Nested iterations 
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 Multi-transitions 

 Dynamic feedbacks 

 Model wizards 

 Decision processes for bifurcating and joining execution pipelines 

 Multi-region and multi-scale approach 

 Sub models 

DINAMICA EGO is a high performance platform which employs a 64-bit architecture, 

multi-processor computing architecture, a library of algorithms for analysis and 

simulation of space-time phenomena, dynamic compilation of logical and 

mathematical equations, smart handling of raster datasets, such as cellular automata 

transition functions and calibration and validation methods(B. Soares-Filho et al., 2009; 

B. S. Soares-Filho et al., 2002). In view of these features DINAMICA EGO is considered a 

suitable tool (and indeed a methodological approach) for my research. The underlying 

modelling technique uses CA transition functions and it is very smart in processing and 

visualising raster images

 

Figure A1.1 DINAMICA EGO Overview (Source: Soares-Filho, 2012) 
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A0.2 Software Architecture 

DINAMICA EGO software architecture is made of two main parts, the core and 

graphical user interface as shown in Figure A1.2 . The core is written in C++ and is 

responsible for the creation and execution of models, while the graphical user 

interface is written in Java. The core can be used directly to perform simulations, 

without the “overloading” of a graphical interface, through a command line version.  

The core consists of the functor, simulation, tasks and image viewer frameworks.  

 

Figure A1.2 DINAMICA EGO Software Architecture 

 

The functor framework is a group of operators (functors). The  DINAMICA guide book 

(Soares-Filho et al., 2009) explains functor as procedure which operates on a set of 

input data, either raster dataset/values/matrices/tables, which applies specific 

operation(s) producing a new data set(s), raster or tables as it output. Each functor 

performs a specific task, including a range of cartographic algebraic operators, such as 
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calculating the categorical (reclassifying) map using arithmetic and logical expressions, 

identifying the most probable area for the occurrence of a given phenomenon, 

calculating lower cost path, and calculating distance maps. In this regard, functors can 

be considered as the basic elements of a cartographic model. Most of the basic spatial 

analysis operators available in commercial GIS software are available plus a number of 

operators specifically designed for spatial simulation, including methods of calibration 

and validation (Soares-Filho, 2012). Apart from data preparation, I was able to 

implement every step of the LUCC simulation model using this software, including 

visualisation of result in animated format. 

A special functor called “container”, as shown in Figure A1.1 and Figure A1.3, envelops 

a series/collection of functors and other containers. The containers are special because 

they group and determine behaviour to the set of operators contained therein. 

Examples of containers are the operators “Repeat” that iterate the execution of the 

sub-model built into it, "Group" that simply groups functors and "Region", used for a 

particular operation only affects a specific region on a map. The functors and 

containers receive and send data to other functors and containers by means of a set of 

inputs and outputs called ports. Each port has an associated data type, e.g. table, map, 

array, value, etc.as shown in Figure A1.3.  The port type determines its editing and 

viewing modes, and for each type of port there is a specific editor and viewer as in 

Figure A1.4. 

The Graphical User Interface (GUI) is intuitive and user friendly to operate thus models 

can be designed easily without going through any “hard coding”. By use of the GUI 

models are designed by simply dragging, dropping and connecting functors via ports 

with the appropriate data types. The models are designed in the form of diagrams, 
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where functors and containers are sequenced in a data flow and execution follows the 

chain of data flow. 

 

Figure A1.3 Basic Dataflow Structure 

With some of the existing LUCC, for example SLEUTH, MOLAND and others, data flow 

is hidden from the modeller but not so with DINAMICA EGO, the GUI helps users to see 

and understand the flow of data thus assisting the modeller in building a model. Thus 

increasing the flexibility as a user builds are complex models. The  developers of 

DINAMICA EGO explained the goal for adding GUI to DINAMICA EGO in an in academic 

publication in Portuguese(Rodrigues, Soares-Filho, & Costa, 2007). Rodrigues et al. 

(2007) asserts that the premise of developing programming software based on data 

flow language and GIS applications  is that they should be simple enough to allow 

people with little or no programming experience to be able to build applications.  They 
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pointed out that, a major challenge to the development of such an environment is to 

maintain its traditional simplicity as this tool becomes more sophisticated and the 

models grow in complexity (Abran et al., 1996). This is the point where there is a need 

for a powerful and user-friendly interface that allows the user, whether beginner or 

advanced, to implement models of cartographic algebra quickly and / or intuitively. 

Therefore, the nature of Dinamica EGO graphical user interface (GUI) was based on the 

theory of directed graphs, in which information starts from a point, follows a path 

guided by the connections of nodes in the graph (functors) and arrives at another point 

in the graph, not necessarily different from the original. Thus, by means of the arrows 

the functors are connected through its input and output ports, according to the 

processing order desired (Rodrigues et al., 2007). 

 

 

 

 

 

 

Figure A1.4 Functor Port Editor of Determine Transition Matrix 

 

Port Editor 

Each port editor has input and out 

port for input and out data 

respectively. The Determine 

Transition Functor Port Editor takes 

in two data, that are initial map 

and final map. Time steps port can 

edited with discrete time step. 

Outputs are tables/matrices. 

 



Page | 214 

The “Dinamica” data flow language describes the thread and the relationship between 

the operators. The benefit of this internal representation is to simplify the analysis of 

the time needed for a result to be kept in memory since the dependencies between 

the operators can be obtained quite trivially, even when the dependencies involve 

containers with an arbitrary level of nesting. Thus Dinamica balances computational 

resource use rationally, utilising little memory even in very complex models. Moreover, 

the analysis of the dependencies assists in calculating the execution order of the 

operators. This approach differs from the traditional approach that uses a table to 

determine when an operator can run(Johnson, Hanna, & Millar, 2004). The previous 

calculation of the execution order allows operators to be grouped so that an operator 

runs close to that which uses its result, thus avoiding a large data structure, such as a 

map, being retained in the memory longer than necessary. This calculation is also 

compatible with the conditional execution of functors, allowing operators that perform 

one or more functors/containers based on an intermediate result to be easily 

defined.(Rodrigues et al., 2007) 

The models created by combining these operators are written in the form of textual 

scripts. Scripts can be created in two different formats, XML Script or EGO.  

Most of Dinamica operators execute its internal operations in parallel and take 

advantage of execution environments with multiple processors or cores, for example, 

dividing the task applied on a given map between multiple processors(Rodrigues et al., 

2007), thus the Auckland Region LUCC model  implemented in DINAMICA with input 

data 1251x1531 pixels executes faster (about 100 times)  compared to SLEUTH. For 

comparison, a model implemented in Dinamica EGO that calculates the lowest cost 

route on a map with 900x900 cells is sixty times faster than the same model 
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implemented on the MacroModeler Idrisi (Eastman, 2003). With regard to the 

computational model performance, another great advantage is that while other 

modelling environments in GIS (e.g. MacroModeler and the Idrisi ModelBuilder of 

ArcGIS) use modules that write their results in the disk to be read again at a later step, 

thereby penalizing its performance, Dinamica uses a continuous flow of data that is 

held in memory only as needed to run the model. 

DINAMICA EGO is not an actual model like SLEUTH, LEAM and or MOLAND but a 

modelling software environment with the requisite tools for environmental modelling. 

Thus this makes it open for modellers to build their own models from start to finish, 

also existing models can be rebuilt in DINAMICA EGO. The most commonly used 

operators (functors) by environmental modellers are predefined and there is the 

option for user defined operator (functors), this capability of DINAMICA gives users the 

degree of freedom for selecting operations and techniques to use. For example a user 

can choose to use weights of evidence of coefficients in calibrating or use the Genetic 

Algorithm approach or custom made functor for calibration.  

DINAMICA EGO was found to be more suitable for this research because of its 

architectural environment and functions.  That is: 

 DINAMICA EGO uses CA transition function as the engine for simulation 

models, such as LUCC, and the modelling technique adopted for this research is 

CA.  

 DINAMICA EGO is not a model but modelling software environment therefore 

gives modellers degree of freedom to test many variable as possible through 

the functors. Unlike other models with fixed variables and modellers can only 
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change the coefficients and not the variables. Therefore modellers cannot test 

the significance of the variable before including in the model, but this can be 

done in DINAMICA. 

 It is simple and easy to use through the GUI. There is no programming skill 

needed, just drag and drop the functors whilst with SLEUTH some programming 

skill is need in creating “scenario” files. 

 Its flexibility increases as model becomes complex. This research is to 

investigate ten LUCC transitions and which is complex to build. 

 Its performance is high due to optimization of speed and computation 

resources such as use of memory and parallel processing. This favours the huge 

data size (1251x1531 cells) per map or input data and ten (10) LUCC transition 

of this work.  

 


