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Abstract

A microgrid operated in stand alone mode is highly vulnerable to instability when

the integration of intermittent energy sources are considered. If a short circuit fault

occurs in a microgrid while operating at its design limit, often cost effective system

recovery becomes a challenging task. Under such contingencies predictive analysis can

be used to strengthen the system restoration schemes. In this study, a system based on

machine learning algorithm is implemented to forecast the security of a standalone

microgrid and based on the forecasting, schedule multiple backup diesel generators

under the contingency of loss of a major generating unit. The underlying objective is to

maintain the voltage stability with an optimized economic dispatch scheme, right after

clearing a critical three phase short circuit fault. Finally, a promising set of outcomes

are observed and discussed.
∗miftah.alkarim@aut.ac.nz
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1 Introduction

Maintaining bidirectional power flow often introduces security issues in the modern

microgrids [1]. The advent of large scale solar power generation in residential areas as well

as integration of large scale wind energy sources contribute even more to this security. A

three phase fault in such a stochastic scenario can easily cause protection system failure

leading towards cascading outages. Thus a renewable powered microgrid demands novel

ways of energy dispatching methods [2]. Traditionally, under these conditions a central

station addresses the tertiary regulation that typically has an interval of 24 hours. However,

in a modern microgrid integration of distributed generators (DG) is compelling to adopt a

more local, decentralized approach [3]. It is because long term planning often is prone to

large scale errors leading towards service interruptions. The alternate approach thus, would

be to build short term forecasting systems of the non dispatchable energy sources [4]. One

of the most sought out methods in this field is the application of machine learning

algorithms [5–7]. However, most study limits itself in analyzing the accuracy of the

algorithm by comparing actual and forecast data. Thus very few study has been conducted

to forecast power system security in order to take service restorative (SR) measures [8]. On

the other hand considerable efforts have already been made to improve SR plans by

implementing multi agent based systems (MAS), advanced metering infrastructure (AMI),

knowledge based systems, linear programming, progressive hedging (PH) etc [4, 9–11].

These methods are computationally complex and often are not suitable for uncertain fault

durations, involving integer decision variables such as a binary indication of the presence of

rotor angle instability. This issue can be resolved by taking into account two types of
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uncertainties, i.e., a critical fault during a vulnerable and non-vulnerable periods. These

periods then can be further decomposed into multiple scenario based stochastic

programs [8]. However, such method would demand accurate forecasting of the system

security and integration of that forecasting with the available data in an online basis. The

previous studies often ignored this integration of post fault security assessment with the

demand and generation data obtained from Distributed Resources (DR). Such integration of

data is carried out after the stability is achieved which means this relationship is ignored

during the period while addressing a critical fault [12]. This objective is attained mostly by

curtailing loads. To minimize the service interruptions understanding the security of the

system is a necessity. If the generation data is updated online, system security can be

measured dynamically [13, 14].

This study intends to bridge this gap between security forecasting and service restoration

plans by implementing a novel architecture. The key argument of this study is to take

advantage of heuristic search over the logic reasoning or empirical judgement [15]. The

study implements a predictive analytical method that forecasts the vulnerability of a system

if a critical three phase short circuit fault occurs at that instance. The prediction is made

online, based on the available wind power, solar power and the non critical (controllable)

loads. Machine learning driven optimization is used to implement an autonomous restoration

scheme after a critical three phase fault followed by loss of a generation. The proposed

method takes into account the distributed generations and demands in order to predict the

system security. The security assessment is carried out within short intervals considering the

possibilities of a major three phase fault takes place in the near future [16, 17].

This analysis explores the idea that under different energy demand and distributed energy

generation, the impact of a three phase fault can either be critical or non-critical [16]. The

proposed method figures out that criticality and prepares a set of optimized contingent
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scenarios for restoring the system. The algorithm is based on machine learning that

manipulates an optimization platform in order to achieve lowest possible operating cost after

ensuring voltage quality throughout the network in a post fault contingency [17]. The goal is

achieved by implementing an ensemble of bagged decision tree based system to do the

forecasting followed by a genetic algorithm (GA) for the service restoration. Many previous

studies have successfully implemented security and reliability indices for system

analysis [18]. This study takes a similar approach to measure system security by introducing

a binary security index called Probability of Stability (POS). The index considers several

scenarios of short circuit faults resulting in isolating a generator bus in the affected area [17].

The database of POS is prepared by a Monte Carlo simulation method. The stability analysis

carried out in this study, has a hierarchical structure with a primary goal of restoration and a

secondary goal of economic dispatch. The optimality is discussed in terms of stabilizing a

system with lowest possible operational cost.

2 The Micro-grid Model

Two different models have been used in this study. For building the method by a small scale

system is used. And in order to understand the impact of the proposed method in larger

networks an IEEE-39 bus 10 machine system is used. Both the network is shown in

Figure-1.

The smaller network has one hydro turbine based synchronous generator, two backup diesel

generators (synchronous) of G1=4MW and G2=3MW, one asynchronous generator

representing the wind farm 3MW and a voltage source converter based solar power plant

5MW. The loads are lumped on a common transmission grid. This distribution approach is

inspired by the microgrids used in [9, 19]. However, this model differs in dividing the loads

into two parts; critical and non critical loads [20]. The critical loads are comparable to the
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base load of a system that has to be met. On the other hand non critical loads are often

considered to have flexible levels in any demand response program, specially in an islanded

mode [21, 22]. Such flexibility allows load-shedding or curtailment at users discomfort. For

simplicity it is assumed that no curtailment cost has to be paid by the service provider. The

total demand in this microgrid is higher than the total capacity of the synchronous generator

models used as power plants. It signifies that the power quality and stability of the system

time to time depends on the wind power plant and the solar power plant. The wind power

plant is modelled as an induction generator-based variable speed wind turbine. The solar

power plant is modelled as a current source and placed closer to the residential load. The

three phase model has diodes, internal resistance and leakage current followed by a voltage

source converter (VSC) as presented in [23]. The VSC based solar plant is only

implemented as an intermittent energy source. These two distributed and intermittent

sources do not have any type of power system stabilizers installed in them thus maintaining

stability in the system is carried out through the synchronous generator based models. To

capture the full dynamics of bidirectional energy flow both the solar and wind turbine plants

are designed not to have any energy storage device.

Figure 1: The Micro-grid Model
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The generator buses are represented using the typical second order swing-equation;

Miδ̈i +Diδ̇i = Pmi − Pgi; i ∈ generator1:3 (1)

Here, δi is the generator rotor angle, Pmi is the mechanical power input, Pgi is the electrical

power output, Mi generator’s inertia coefficient and Di is the generator’s damping

coefficient. The overall operation is subject to [17];

Pgi − Pli −
3∑

j=1

UiUj(Gijcosδij +Bijsinδij) = 0, (2)

Qgi −Qli −
3∑

j=1

UiUj(Gijcosδij −Bijsinδij) = 0, (3)

In order to test the security of the system and develop the probability of stability (POS)

database, a critical three phase fault is placed near the hydro station.

3 Data Model

To build up the forecasting system three data models for wind power, solar power and non

critical load have been prepared. N number of random data points are generated using those

models. Then a Monte Carlo based simulation is used with the data points for developing

the Probability of Stability (POS) table. Each scenario has a three phase fault in it.

3.1 Wind Energy Model

For simplicity the wind power generator only considers wind speed as a variable.

PW =
1

2
ρAv3Ctotal (4)

Where, PW is active power output, Ctotal is overall efficiency of the wind turbine, ρ is air

density, A is swept area and v is the wind velocity. The wind velocity at any certain height is
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calculated by vh = vr(
h
hr
)α and α is the power law exponent. Where, vh is the speed at hub

height, vr is the speed at reference height.

3.2 Solar Energy Model (Photovoltaic)

To simulate the characteristics of solar power generation the following irradiance based

photovoltaic cell model of a solar cell is used;

I = Iph − Is[e
VOC+IRs

NVt − 1]− Is2[e
VOC+IRs

N2Vt − 1]− VOC + IRs

Rp

(5)

VOC(t, β) = VOC−STC −KV TC(t) (6)

Where VOC is the open circuit voltage of the PV-module, Iph is the solar-induced current

that can be further explained by Iph = Iph0
Ir
Ir0

Ir is the irradiance in W/m2, Iph0 is the solar

current obtained for irradiance Ir0; Is and Is2 are the saturation currents of the Diode-1 and

Diode-2 inside; N1 and N2 are the quality factors diodes; Vt =
kT
q

is the thermal voltage, (k

is Boltzmann constant, TC is device temperature in Kelvin) and KV is the open circuit

voltage temperature coefficient; TC = TA + (NOCT − 20 deg) Ir(t,β)
800

. Rs and Rp are the

series and parallel resistances [24]. β is the tilt angle and TA is the ambient temperature. The

overall output power from the plant is given as; Parray(t, β) = ηPVNSNPPPV (t, β). Here,

NS and NP are the total number of modules connected in series and parallel, η is the

conversion efficiency. PPV = VOCI; is the instantaneous power output from each

PV-module. The solar power plant is designed to have a maximum of 5 MW power capacity.

3.3 Electrical Load Model

The electrical load model used in this study is a function of the base load as well as the

ambient temperature. The ambient temperature influences the residential or controllable
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loads while it is considered to have no impact on the critical loads. It is observed that the

impact of temperature on the residential loads is more prominent [25]. It is a motivation

behind considering the controllable load as a stochastic variable. The impact of temperature

on the residential load is modelled as a 3rd order polynomial system.

The controllable load model is assumed in MW as;

PLoad = f(T ) = BCL + a0 + a1T + a2T
2 + a3T

3 (7)

Where BCL is the base controllable load that is not influenced by temperature, a =

multiplying constants, T = temperature in degree Celsius. The coefficients are

a0, a1, a2, a3 = −0.5632,−1.185e−1, 1.09e−2,−1.8221e−4. The overall controllable

residential load model is shown in Figure-2.
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Figure 2: Controllable Load Model

The models are then used to generate random data points for a Monte Carlo simulation.

3.4 Security Index Probability of Stability (POS)

Due to the possibilities of having numerous post disturbance initial conditions, generalizing

service restoration plans is quite a challenge [15]. This study thus, assumes that the post

fault initial conditions only differ from the prefault operational conditions only in the

topological layer as a bus isolation at the affected segment. For further simplification, the

start up time of the backup diesel generators are considered negligible. A Monte Carlo

simulation based approach is taken to prepare the POS database [26] as shown in Table-1.
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Wind, solar and consumption data has been randomly selected within a predefined range and

fed to the simulation model to create a number of events. Overall 10000 simulation is

carried out to develop the POS for the 100 number of clusters [17]. The process of selecting

the number of clusters is based on the classification error observed from the classification

algorithm. Figure-4(a) shows the process. The POS database indicates which cluster has the

probability of being unstable after a critical fault. The first two columns represent generation

from wind and solar plants and the third column represents non critical loads right before the

three phase fault takes place. Column fourth is prepared using the unsupervised K-means

clustering algorithm based on the first three data columns. A total of 100 clusters have been

selected for this analysis. The aforementioned 10000 simulations and their associated

clusters are also used in training the machine learning platform.

Lowest : (
3∑

i=1

{Centroidki −DataColumni}) (8)

Here, Centroidki represents i− th | i ∈ {1, 2, 3} centroid for the k − th cluster.

The stochastic data of wind, solar and load can produce infinite combinations, therefore, the

unsupervised K-means cluster also serves the purpose of generating finite data segments.

The POS is calculated as; POSk =
∑Nk

i
Sik

Nk
. Here, k is the current data cluster, Nk is the

total number of simulations in each cluster. Sik is 1 if the system becomes unstable and 0 if

the system remains stable.

3.5 Data for Fault Analysis

The proposed microgrid considers four instances of the line voltage; pre-fault line voltage

Vpre, during fault line voltage Vflt, line voltage during the post fault restoration Vrst, line

voltage after the post fault restoration Vpost. The aim of this study is to accurately predict

system operation strategies that will lead towards achieving a stable and optimal post fault
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Table 1: POS Data Table With Clusters

Wind Power

MW

Solar Power

MW

Controllable

Load MW

Cluster POSk

1.73 3.47 8.31 1 16.00%

2.77 5.55 9.7 2 64%

... ... ... ... ...

... ... ... ... ...

2.17 4.3 9 45 80%

0.6 1.2 6.8 81 0.0%

2.93 5.87 9.91 96 48%

line voltage. The transition period from the fault state towards the restoration state has been

considered similar for all the operational strategies. Incidents such as starting up of a backup

generator is considered under the conditions when energy balance cannot be made.

∑ng

i=1 pgi +
∑nren

i=1 preni < Pdpfcl + Pdpfncl + PT loss. Where, Pdpfcl is post fault critical load,

Pdpfncl is the post fault non critical load, PT loss is the transmission line loss, preni power

generated from the renewable energy sources, ng is number of hydro generators, nren is the

number of renewable energy sources.

4 Proposed Algorithm

4.1 Data Preparation for Classification

In the development phase of this study sixteen probable classes have been selected for the

algorithm. Each class represents a post fault decision indicating the energy dispatch scheme.

These classes become relevant only if a three phase critical fault occurs. If such a fault
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occurs the system invokes the POS database shown in Table-1. POS database gives an

indication of instability based on the measured wind power, solar power and non critical

loads at that instance. These three instance data is compared to the cluster centroids for

labelling. If the probability of instability is higher than 5% for the identified cluster, it has

been considered as a potential candidate for the proposed optimized restoration method. For

other events the method is ignored. The sixteen classes or decisions are defined in Table-2.

The actions are represented using a set of binary numbers, where for the backup generators 1

means start and 0 means do not start. And for the non critical loads 1 means shedding loads

and 0 means not shedding loads. The diesel generators are presented as to the swing

equation model where the capacities are subject to; Pgimin ≤ Pgi ≤ Pgimax,

Qgimin ≤ Qgi ≤ Qgimax, 0 ≤ Pli ≤ Pdi, 0 ≤ Qli ≤ Qdi, Vtimin ≤ Vtimax. Here, Pli and Qli

are the load after system restoration and Pdi and Qdi are the actual active and reactive

demand, Vt is the generator terminal voltage. So the overall load shedding under any of the

sixteen actions is Pdi − Pli.

Table 2: Sixteen Probable Restoration Schedules

Decision Start Diesel-1 Start Diesel-2 Shed 1.5 MW Shed 2.5 MW

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

.. .. .. .. ..

.. .. .. .. ..

15 1 1 1 0

16 1 1 1 1

The post fault restoration scheme executes one of these sixteen actions. The primary
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objective of taking any decision is to maintain as small distance as possible between the pre

and post fault voltage states. The objective is achieved by implementing an exhaustive

search based optimization technique. This exhaustive search is carried out using the 3482

cases from the 10000 data points where, the system becomes unstable. Which means energy

flow from the renewable energy sources alone is not adequate. For each of these cases the

optimization routine finds the best decision. The fitness function chosen, is minimizing the

sum of squared differences between pre and post fault transmission line voltages.

Objective : min(ϵV =
N∑
i=1

[Vprefault − Vpostfault(i)]
2) (9)

Here i is the data point in consideration. N is the total number of data points considered once

the fault is cleared. Vprefault is the stable line voltage before the fault and Vpostfault is the

post fault stable line voltage. Any contingent scenario represented by one row in Table-1

could have only one decision that yields the lowest voltage deviation. That decision or

action is considered to be the optimized target decision for that particular row which belongs

to a particular cluster. This cluster based decision mapping is then used to train the

classification algorithm where the decisions are set as the target class.

4.2 Preparing the Classification Tree

Once the optimized restoration actions are mapped against the data clusters an ensemble of

bagged decision trees has been trained. The tree is trained with four data column as

attributes and one as target. The attribute columns are wind power, solar power, demand and

the data cluster and the target column is the decision classes. The above 3482 data points

including the POS clusters and the target decisions mapped against those clusters have been

used to train the tree.

In Figure-3 one limited instance of the ensemble tree is shown;
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Figure 3: The Decision Tree Classifier (Limited Scenarios)

However, the classification algorithm is not immune to classification errors [27]. A

microgrid operated at its design limit is highly vulnerable. Thus any misclassification may

lead towards further instability. Therefore, decision ranking system is used for validating the

predictions made by the proposed algorithm. The ranking system is a cluster of decision

hierarchy exclusively prepared based on the order of optimality. Which means the sixteen

decisions have been ranked in an ascending order on a basis of their increasing magnitude of

voltage deviation. To prepare this rank, Table-1, Table-2 and the voltage deviations ϵV are

used. The ranking table only considers the top five decisions yielding the lowest voltage

deviation under any scenario. In the previously mentioned 3482 cases a total of thirteen

different combinations have been identified. Based on these thirteen observed combinations,

an unsupervised hierarchical cluster is prepared. The purpose of having a hierarchical

cluster is to validate the predicted decisions made by the ensemble tree. Table-3 shows the

ranking using the unsupervised hierarchical cluster. The dendrogram prepared from the

hierarchical cluster is shown in Figure-4(b). The hierarchical cluster is also used to find out

a decision boundary. It gives an idea which of the additional clusters residing in proximity
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of the target cluster can also be considered for a particular scenario in order to minimize the

cost. For example in Figure-4(b) if cluster-3 fails to restore the system with a lower cost the

proposed algorithm will move to cluster-4.

Table 3: The Thirteen Combinations based Hierarchical Cluster

1st 2nd 3rd 4th 5th HCluster

5 4 9 7 11 1

9 7 11 6 10 2

.. .. .. .. .. ..

.. .. .. .. .. ..

9 5 2 1 6 11

7 3 13 2 15 12

13 15 14 12 16 13
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Figure 4: (a) Selection of Number of K-means Clusters (b) Hierarchical Cluster

Furthermore, Two additional ensemble of bagged decision trees have been trained using the

identical data set with two different target decisions. These targets are the 2nd and the 3rd

ranked decisions. Afterwards a temporary decision set is prepared using the decisions

D1st, D2nd, D3rd. The decision set is then compared with the hierarchical ranking Table

(Table-3).

DSETi = {1stP ∩ 1stRi, 2
nd
P ∩ 2ndRi, 3

rd
P ∩ 3rdRi}; i ∈ HC1:13 (10)
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Here N th
P stands for the probable predicted decision, N th

Ri is the combination of decisions

observed in the ranking table from the historical data and HC stands for the hierarchical

clusters. DSETi is then used for validation. If validation is failed for any test incident, the

training process is repeated.

4.3 Process for Economic Dispatch

The final step of the proposed method is to cater the secondary objective of this study, which

is the post contingent economic dispatch (ED). The objective function considers that the

aforementioned classification and validation is accurate and therefore the predictions can be

used to manipulate the constraint boundaries. The cost function for ED problem is to

minimize the total operational cost of the microgrid after clearing the fault and stabilizing

the system. The objective is achieved by optimizing the generation from the diesel

generators and/or optimizing shedding of non-critical loads. The costs are calculated by

using different quadratic functions for the generators.

min :
∑
t

∑
i∈G

Ci(pgi,t) +
∑
t

∑
k∈D

Ci(pdi,t); ∀t ∈ T (11)

Where, Ci(pgi,t) is the cost function of the i-th generator at t-th half hour. Ci is formulated

as a quadratic function Ci(pgP i, t) = a0,i + a1,ipgi,t + a22,ipgi,t , where, a0, a1 and a2 are the

coefficients. A similar approach has also be taken for the cost of shedding load Ci(pdP i, t).

The ED is subject to an inequality constraint. The inequality constraint considers that the

total demand and line losses have to be either equal or less than total generation from the

renewable sources preni and the diesel generators pgi after shedding loads if required. The

load shedding is represented as pLi

Pdpfcl + Pdpfncl + PT loss ≤
ng∑
i=1

pgi +
nren∑
i=1

preni +
nren∑
i=1

pLi (12)
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Where Pdpfcl and Pdpfncl are the critical and non-critical loads. The post fault demands are

kept constant and any large deviation is neglected. Thus pgi,t − pgi,t0 is considered zero.

Therefore, the upper ramp rate URi and lower ramp rate LRi have also been neglected. The

spinning reserve of the generators are considered sufficient.

∑
i∈G

SRi,t ≥ SSRt;∀t ∈ T (13)

Where, SRi,t is the available spinning reserve of individual diesel generator, and SSRt is

the system wide required spinning reserve. Each generators also follows the generator

output constraints, which means the generation does not exceed its upper limit

pgi,t ≤ PGi,max; ∀t ∈ T and also for the renewable energy generators

pgreni,t ≤ PGreni,max;∀t ∈ T [28, 29].

The ED is then solved using genetic algorithm (GA). Here the GA applies five standard

steps; population initialization, evaluation, selection, crossover and mutation. The GA used

maximum 51 generations to reach convergence. The GA is used on the dataset preprocessed

by the ensemble of bagged decision trees mentioned earlier. This is the key proposal of this

algorithm that shows while optimizing the dispatch in a post contingent scenario, supervised

or preprocessed variable vectors yield better outcomes in finding a global minima. The

preprocessing is done based the classification process mentioned in the earlier sections. The

classifier introduces an upper boundary vector for the design variables namely, the dispatch

from two diesel generators and shedding two loads. The upper boundary is prepared based

on the decision table (Table-2). For example if the classifier takes Decision-13 (1100) then

the two diesel generators will be switched on under the condition of

0 ≤ pgi,t ≤ PGi,max; ∀t ∈ T and no load shedding will take place thus, pdi,t = 0; ∀t ∈ T

and i ∈ {1, 2} [30].

The overall restoration procedure is triggered once a major fault is identified and the POS
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indicates high probability of instability [12]. The end to end architecture of the proposed

algorithm is shown in Figure-5.

Figure 5: Work-Flow of the Proposed Algorithm

4.4 Exploring Dimensionality

The performance of the proposed algorithm heavily depends on the accuracy of

classification. On the other hand the classification relies on the hierarchy of decisions. When

the number of decisions and combinations in their hierarchy increases, the risk of

classification errors and complexity increase. It is therefore, imperative to understand the

role of the proposed method in a larger network. Figure-1 shows an IEEE-39 bus

10-machine test system, which is used to understand the ramifications of dimensionality. In

order to maintain coherency the model is modified by introducing a wind power plant in

bus-36 at the proximity of Generator-7 [31, 32]. The system like the previous one also

considers two types of loads; critical invariant and non-critical variable load. The fault
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location is represented as fault in the figure. To clear the critical fault the transmission line

where the fault has occurred is disconnected. When the fault is cleared a rotor angle

instability is observed in the network. To eliminate the instability the grid is sectionalized

into two areas. The two areas are stabilized and then restored. Area two has a wind power

plant of 1000MW and area one has two non critical or controllable loads of 300MW each.

Depending on randomly chosen wind power and non critical load the restoration schemes in

different areas of the network vary. Generator-9 in the area-1 and generator-4, generator-5 in

area-2 have been considered as the backup diesel generators and also area-1 has the two non

critical loads to be shed. For testing the performance of the proposed method Nine limited

scenarios of a random combinations of wind power and demand have been chosen. The

combinations are prepared by dividing wind power and the controllable demands into three

segments High, Medium and Low. Based on these stochastic scenarios target classes have

been prepared for the classification algorithm. All the generators and loads are considered to

have a quadratic cost function similar to the functions mentioned in the previous sections.

The Table-4 shows some of the distributed control incidents for the Generator-4, 5, 9 and

load-1, 2.

Table 4: Stochastic Data Preparation Stage (Selected Scenarios)

Wind

Power

Demand G4 G5 G9 L1 L2

Low Low 0 0 0 0 0

Low Low 0 0 0 0 1

Low Low 1 1 1 1 1

... ... . . . . .
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5 Results

5.1 Estimation of Instability

The Monte Carlo simulation is carried out with 10000 data points. Out of the 100 data

clusters, 6 randomly selected clusters have been chosen to analyze the overall outcome of

this study.

Figure-6 shows the POS of all the proposed clusters as well as how simulated data is

converging towards obtaining the POS data.
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Figure 6: POS of the 100 Clusters and the Monte Carlo method of convergence

Any data cluster having a low POS is ignored in the process of training the ensemble of

bagged decision tree. For example POS cluster-13 has a zero probability of being unstable.

Therefore, no restorative measured has been taken for all the instances in POS cluster-13.

5.2 Selection of Restorative Action

The proposed ensemble of bagged decision tree method is invoked if the threshold

probability of 5% is crossed. Figure-7 demonstrates the result of the classification algorithms

in finding out the the 1st, the 2nd and the 3rd top decisions with the lowest possible errors.

The top decision database is used in order to control the upper bound of the GA.

The GA is applied to observe the lowest possible operational cost. The results are explained

with the previously mentioned six POS clusters. The key observation is made in this study is

that economic dispatch under duress is not always producing the best possible voltage
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Figure 7: Top Three Decisions after 10k simulations

profile. It means, decisions taken based on the lowest operational cost right after clearing a

critical fault may not maintain voltage quality of the system. Thus, taking restorative actions

a supervised optimization technique based on previously obtained stability data produces

better outcome.

Table-5 shows the three different possibilities while making a decision and Table-6 shows

the comparisons between the operational costs. The comparison is made with actions only

considering economic dispatch, actions considering the voltage quality and the proposed

method.

Table 5: Comparison Between Three Different Decisions

POS Cluster 13 44 60 95 97 99

Decision With the Lowest Cost but poor voltage

pofile

NA 11 1 8 10 10

Decision With the Best Voltage Profile NA 5 3 12 5 7

Acceptable Voltage Profile at Lower Cost NA 9 3 9 11 9

Depending on the available wind, solar power and controllable loads the above mentioned

actions can either be different or can be overlapping. Figure-8 elaborately shows all three

decisions and their impacts on the SIX clusters. In cluster-13 the probability of system

instability is zero. Thus the post fault restorative actions are not invoked. For the other

clusters like cluster-44 the algorithm is applied. In all the cases the decisions with the lowest
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Table 6: Normalized Operational Costs

POS Cluster 13 44 60 95 97 99

Decision With the Lowest Cost NA 0 0 0 0 0

Decision With the Best Voltage Profile NA 1 1 1 1 1

Acceptable Voltage Profile at Lower Cost NA 0.96 1 0.62 0.89 0.13

cost has the highest voltage deviation. It is a clear indication that GA for cost optimization

alone is not sufficient in order to maintain voltage quality. On the other hand the exhaustive

optimization method for maintaining post fault voltage quality based on the decision

hierarchy recommends decisions those have the highest operational costs. The proposed

algorithm is mitigating these two extrema by taking appropriate actions that produce stable

output at a lower cost.
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Figure 8: Different Decision Making Processes and Impacts
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5.3 Understanding the Combinatorial Explosion

It is quite necessary to understand the ramification of implementing the proposed method in

a larger network. For analysing it, one incident with the IEEE-39 bus system has been

observed in Figure-9(a). In this event both the wind power and demand is low. The

Figure-9(a) shows the impact of dimensionality on the accuracy of the proposed method. In

a two area system at first the sectionalized grid has to be stabilized and then restored. In the

field of machine learning if dimension of the attributes increases the associated data also

increases manifold [27]. Therefore, compare to the smaller network the accuracy of the

classification is less in a larger network. Because here the algorithm has to exhibit accurate

prediction of two events while in the experimental model shown in the previous sections the

prediction has to be for one event. Such expansion leads towards a complex training and

testing procedure. This can eventually cause significant decrease in accuracy.
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Figure 9: Application of the proposed algorithm on a larger network

The second phenomenon observed is the timing of decision making. In Figure-9(b) two

scenarios are shown where the timing of decision making plays two different roles. Due to

the increased number of areas the timing of restoring the grid becomes crucial. The

restoration should be carried out only if all the areas in the segmented grid are stable.

Depending on different stochastic scenarios the periods of achieving stability becomes

different.

Thus, the curse of dimensionality would compel to train the machine learning platform with

exponentially increased data set in order to reach equal level of accuracy in a larger
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network [33].

6 Conclusion

This study demonstrates a probabilistic optimization model for restoring a power system

after a major three phase fault. The underlying objective of managing resource under a

contingent scenario with a machine learning based system is analyzed and presented. The

standard GA based optimization system is manipulated using the machine learning based

classifier and comprehensive results are achieved.

The control strategies adopted in this study is grid specific. Therefore, data preprocessing

plays a vital role in this study. The analyses advocates for considering different approaches

for different systems. However, the Monte Carlo simulation based approach is implemented

in this study in order to understand the feasibility of developing a data driven generic

restoration strategy. The challenge is to bridge between a finite numerical simulation and

infinite post fault scenarios.

The proposed classifier also considers classification errors and a simplified rectification

technique. The rectification process is an important factor while considering a machine

learning algorithm for maintaining a system-wide stable operation under all the stochastic

scenarios. The method for rectification implemented in this study was comprehensive.

However, such a simplified technique whether is adequate for a larger context or not, need to

be evaluated. Also further investigations need to be carried out in order to understand the

full ramifications of misclassifying data.

Curse of dimensionality plays a vital role while applying this algorithm. It is observed that

for a larger network with multiple areas the training and testing steps increases

exponentially. Thus it would be recommended to implement the algorithm in a distributed

platform for intra area grid restoration rather than inter area grid restoration.
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The performance of the GA is quite satisfactory for the proposed micro grid and the

contingencies observed. More scenarios would help comparing and understanding the

performance of the GA optimization method not considered in this study. Specially a monte

carlo simulation with a larger network would be interesting for future studies. Overall it can

be stated that, the proposed Monte Carlo simulation and machine learning algorithm driven

optimization model for restoring a stand alone micro grid after a major short circuit fault, is

demonstrating a very promising outcome.
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