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Abstract 

Air quality and its effect on human health is an area of increased research and interest over the last 

twenty years. As the world’s population increases understanding the effects of human activity on the 

environment and air quality becomes even more important. The  health effects of PM10, the default 

priority pollutant for New Zealand, was quantified by Kuschel, et al. (2012). They estimated that in 

2006, over 600 premature deaths in Auckland were related to air quality. They also reported a cost of 

over $2 billion to the Auckland region in 2006 as a result of exposure to ambient PM10. Despite this high 

economic and social cost studies in the literature, both grey and white, related to prediction of 

Auckland’s PM10 are sparse. Most of the PM10 models in the literature are highly dependent on the input 

data used. Each model uses different inputs making it hard to compare the effectiveness and evaluate 

the generalisability of these models. The data used is largely opportunistic – use what we have – rather 

than informed. Moreover, for many regions including Auckland access to data such as detailed emission 

inventories, land use, and demographic distributions is not always possible. Hence, the methods in the 

literature have a limited practical use.  

This thesis aims to answer questions related to Auckland’s site-specific PM10 concentrations, including 

PM10 trends, relative contribution of meteorological sources, and one day ahead prediction of PM10 

concentration. Semi-empirical, statistical, and geo-statistical methods are explored. Attempts to tackle 

the challenges of modeling a nonlinear system by using Artificial Neural Networks (ANNs), Long 

short-term memory (LSTM), and Random Forest (RF) methods are reported. These models are 

parsimonious and make use of routinely available meteorological data collected from the six fully 

operational monitoring stations in Auckland during 2011-2016. 

It was found that Auckland’s PM10 has complex seasonal patterns and that PM10 concentration trends 

are very localized and cannot be fully explain by land usage (rural vs urban). Using GAM and GAMM 

models, not previously used for Auckland, a clear difference was found between the effects of temporal 

aspects of anthropogenic sources and atmospheric conditions on PM10. For modelling with linear 

statistics, the main challenge encountered was to find a way to characterise the spatio-temporal 

dependence structure. The inability to accurately and fully define this structure limits the usefulness of 

these linear approaches. In contrast it was found that machine learning (MLP, LSTM) and ensemble 

methods RF were able to account for this underlying structure and for the dynamism of the process. Of 

all the methods explored the RF model was found to be the most accurate and therefore the most 

promising avenue for future work. 
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Chapter 1  INTRODUCTION 

1.1 Background, Motivation, and Scope 

Atmospheric Particulate Matter (PM) is a gaseous suspension of solid or liquid particles in the 

earth’s atmosphere. It is common to classify PM based on their size into two main modes: The fine 

particles have a diameter of 2.5 μm (PM2.5) or less, and coarse particles a diameter of 10 μm (PM10) or 

less. Local meteorology, local emission sources and pollution micro-environments as well as 

characteristics such as land use and building heights impact micro-scale chemical and physical reactions 

that affect the pollution quantity, size, and composition (Galatioto et al., 2014). PM is known to have 

significant health effects, especially for infants and the elderly. High concentrations of PM can have 

environmental impacts such as reduced visibility and acid rain. While high air pollution levels in 

developing countries hits the headlines, the problem in other places where it has not hit the news 

headlines, has not disappeared. The problem of urban air pollution in many first world countries is 

increasing due to rapid population growth, urbanization, and industrialization. In New Zealand, human 

pressure including burning wood or coal for home heating, fossil fuel consumption by industry and 

motor vehicle emissions result in a notable rise the PM10 levels, therefore PM10 is the major air pollutant 

currently being monitored (PCE, 2015). In a review by EPAQS (2000) it was concluded that based on 

present evidence the appropriate measure on which to base for air quality standard in United Kingdom 

is by measuring PM10. In New Zealand, the significant association of PM10 with severe health effects 

and its frequent breaches of national standards and international guidelines makes it a pollutant of most 

concern (MfE, 2011b).  

Due to the adverse health effects of PM exposure, in many cities around the world the ambient 

concentrations of these pollutants are closely monitored and assessed. In 2016 (the most recent report 

to this date), an estimated 27 premature deaths, 14 hospital admissions and 31,800 restricted activity 

days per 100,000 people were attributed to human-made PM10 in New Zealand (MfE & Stats NZ, 2018). 

During 2014-2016, the national short-term standard guideline of 50 μg/m3 for PM10 (24-hour average 

between midnights) provided by the World Health Organization (WHO) was exceeded by 30 of 51 

monitored airsheds (MfE & Stats NZ, 2018). Exceedances of the short-term standard of PM10 are 

primarily a winter problem in most countries including New Zealand (MfE, 2012). Modeling the 

industrial air discharges in Auckland is not easy due to complex terrain of Auckland along with land-

sea breeze interactions and the calm or light wind cycles. The California Puff (CALPUFF) model, an 

advanced dispersion model, can overcome these limitations (Gimson et al., 2010) but it is a complex 

model and not practical in situations in which limited monitoring occurs such as is the case for 

Auckland..  
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The influence of meteorological factors on particulate pollution levels are well known in literature 

(Salmond et al., 2016). Therefore, identifying local atmospheric conditions that affect PM10 

concentrations level, both in general and quantitative manner, are necessary. From a general point of 

view, the analysis of atmospheric influences gives insight into underlying processes that impact to the 

observed meteorological variability of PM10 (Appelhans, 2010).There are number of studies that have 

investigated general meteorology controls on PM10 concentration in Wellington and cities in the South 

Island of  New Zealand where PM10 pollution is more commonly a problem (Appelhans, 2010; 

Appelhans et al., 2013; Fiddes et al., 2016; Pezza & Mitchell, 2016). For Auckland however, one case 

study predicting PM10 concentration based on a single air quality station using wind speed and wind 

direction within a short period of time has been published (M. Elangasinghe, 2014). A recent technical 

report by Talbot & Crimmins (2020) performed trend analysis and investigated the effect of wind speed 

and wind direction on PM10, PM2.5 and NO2 concentrations in the Auckland airshed. Apart from these 

as of April 2021, to this thesis author’s knowledge, no further examination of meteorological 

relationships with local concentrations of PM10 on larger spatial and temporal scales has been reported 

for Auckland.  To understand the physical nature of meteorological controls of air pollution, all space 

and time scales need to be considered (Appelhans et al., 2013). In part therefore, this research aims to 

provide a quantitative analysis of atmospheric influences on PM10 concentration in Auckland’s airshed 

within a broad range of spatial and temporal scales including local to regional and daily to inter-annual 

scale.  

The perspective of this thesis is atmospheric science and hence other air pollution related areas, such as 

PM10 emissions sources and health effects are briefly reviewed where applicable. Furthermore, 

meteorological investigations are used to identify the influence of climate on PM10 concentration only 

and therefore, potential transformations of pollutants in the atmosphere and their chemical and physical 

reactions are not investigated. 

1.2 Objectives 

Efforts have been made to analyze and model Auckland PM10 concentration. However, the previous 

section has also highlighted the knowledge gaps in quantitative analysis of meteorological impacts on 

larger spatial and temporal scales. This thesis aims to answer questions related to Auckland’s site-

specific PM10 concentration, including PM10 trends, relative contribution of meteorological sources, and 

one day ahead prediction of PM10 concentration. The objective of this thesis is to develop models built 

from pragmatic cost-effective data from existing low cost and low resolution (sparse) sensor networks 

as access to the high-resolution networks collecting different sets of predictors is not always possible. 

Exploring what type of parsimonious models are best for predicting and modeling PM10 in Auckland 

with its unique topology, island climate and geographical location. Specifically, we are interested in the 
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effectiveness of traditional geostatistical approaches and how they compare with machine learning 

approaches. Semi-empirical, statistical, and geo-statistical methods are explored in an attempt to 

estimate one day ahead PM10 concentration primarily based on routinely available meteorological data 

collected from the six monitoring stations in Auckland during 2011-2016.  

Unlike the theory-driven deterministic models, statistical models use a data-driven approach to 

modeling air quality. Variation analysis of observed measurements performed by statistical approaches 

are mainly quantitative extensions of the underlying analysis. Nevertheless, they are an essential 

progression to provide a basis for assessment of trends which need a quantitative reference. Therefore, 

Time Series Analysis (TSA) as a necessary step in modeling PM10, is another objective of this study 

aiming to detect the nature of the phenomenon characterized by the structure of PM10 observations over 

the Auckland airshed 

One well known but still to be addressed challenge in using sensor data, and in particular meteorological 

data such as rainfall, is quality in terms of missing data and incorrect measurements. Thus, another aim 

of this work is to evaluate the capability of these models to cope with such data issues. 

1.3 Research Questions 

To meet the objectives of this research the following research questions were framed: 

Q1. Data Exploration, Quality, and Imputation: 

Q1.1. What is the quality of the meteorological and PM data available for the Auckland 

airshed?  

Q1.2. What is the spatial/temporal relationship between Auckland’s PM10 site measurements 

and meteorological over the entire region in different time scales (daily, monthly, and yearly)? 

Q1.3. Can missing rainfall data be imputed from satellite-based sources for the Auckland 

airshed? and How accurate are these satellite rainfall measurements? 

Q1.4. How is PM10 concentration influenced by Aerosol Optical Thickness (AOT)? 

Q1.5. Do seasonality trends exist in Auckland’s PM10? And if these trends exist, 

a) What is the nature of seasonal patterns in Auckland’s PM10?

b) Which seasonality detection method should be used to account for any observed

seasonal trends in Auckland’s PM10?

Q2. Prediction Models: 

Q2.1. In the absence of comprehensive emission inventories or information on potential 

sources of emission affecting a particular site, to what degree can the daily concentration of 

PM10 in Auckland airshed be explained by site-specific predictors variables?  
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Q2.2. Can computationally simple semi-empirical models such as GAMs and GAMMS be 

used to model Auckland’s daily PM10 concentrations reliably? 

Q2.3. How can we, from a high-level perspective, use descriptive (marginal) models to 

characterize spatio-temporal dependence structures for PM10 modeling? 

Q2.4. How accurate are machine learning methods for predicting next day PM10 

concentration? 

Q2.5. How successful are non-linear statistical and ensemble approaches in predicting next 

day PM10 concentration? 

Q2.6. To what extent does data quality become a significant factor in determining the 

performance of PM10 concentration models? 

1.4 Methodology 

The thesis takes an exploratory and quasi-experimental methodological approach. A breadth of PM 

modeling approaches is explored in order to determine which types of models, if any, are best for 

understanding and predicting PM in Auckland, New Zealand. The methods explored need to perform 

with the data that is available. In Auckland, the PM monitoring sites are sparse and due to lack of 

funding not monitored and maintained as much as would be ideal. This means that the models need to 

be robust to missing data or alternative pragmatic and parsimonious measures, such as publicly 

available satellite imagery are needed. As part of this approach the data quality and trends within the 

data need to be explored and as appropriate data cleaning needs to take place. Once the data has been 

established, and fully understood, then different types of models are explored and evaluated. Details of 

the methods used are presented in the relevant Chapters. 

To compare and evaluate the accuracy and adequacy of the presented model, we used the results of 

those models available in literature. It should be noted that there are very limited studies on some of the 

models used in this thesis namely TBAT, (S-T) GAM, and (S-T) GAMM, and geostatistical S-T models 

for PM10 modeling reported in literature. Consequently, the comparison of the models in this thesis in 

terms of accuracy and adequacy is limited.  The bench-mark model that could be found for evaluating 

adequacy and accuracy was the CALPUF (Scire et al., 2000) s model. CALPUF is an advanced physical 

model with an extensive and complex set of inputs (Holmes & Morawska, 2006). CALPUF EPA 

recommended model for air quality modelling (Barclay & Scire, 2011) so can be considered to be a 

benchmark for PM10 model performance. In a study for modeling PM10 using CALPUF, two metrics 

namely IOA and FB were used for the purpose of evaluation of the model (Lee et al., 2014). The authors 

stated that their model showed ‘good’ agreement based on the 'typical' values of 0.284 to 0.850 for IOA, 

and 0.043 to 0.821 for FB. For want of a better measure, in this research a “moderate” performing model 
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is one that had an IOA between 0.284 and 0.850. This is a very large range of values but is the 

performance reported for CALPUF and accepted model. 

1.5 Contributions 

Considering all the above discussed, this study contributions can be summarised as below: 

• Identify the strengths and limitations of the existing state-of-the-art PM models through the 

related literature review. This thesis provides an evaluation of the strengths and limitations 

of existing PM models that are reported in the literature between 2000 and 2020. While 

others have attempted this, they have not included the grey literature related to New 

Zealand’s PM modeling efforts. Other works tend to focus on the regions within the 

Northern Hemisphere.   

• Provide a quantitative analysis of the available atmospheric influences on PM10 

concentration in Auckland’s airshed across a wide range of spatial and temporal scales, from 

site-specific to regional and daily to inter-annual to establish a quantitative relation between 

various atmospheric conditions and PM10 concentration. This quantitative analysis was 

either not applied in Auckland PM models that are reported in the literature between 2000 

and 2020 or were limited to only a few atmospheric variables such as wind direction and 

speed gathered from a single station over a short (few months) duration. 

• Evaluate nonparametric local smoothing methods as a means for identifying the predictors 

influencing the short-term variation of PM10 over the Auckland region. 

• Explore the potential of spatio-temporal statistical and geostatistical methodologies for 

modeling of PM10 concentrations over the Auckland urban area. These semi-empirical 

modeling approaches are rarely undertaken for New Zealand. For the Auckland air shed in 

particular the studies are limited over space and time. 

• Undertake scientific inference to determine the importance of covariates on PM10 

concentration in the presence of spatio-temporal dependence; and estimating the future 

value of the PM10 concentration at a specified predication grid, along with the uncertainty 

of that estimation. 

• Examine the feasibility of effectively modeling regional-scale urban air pollution using 

machine learning approaches such as: artificial neural networks (ANNs/MLP), Long 

Short-Term Memory (LSTM) and Random Forest (RF) as an ensemble method. This 

examination allows for the comparison of the modeling capacity of such models for short-

term prediction of PM10 over the study area. Another contribution of this thesis is to 

introduces an optimisation framework for tuning the LSTM model parameters to obtain a 

fair trade off between accuracy and generalization of the LSTM model. This includes tuning 
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the epochs, batch size and number of neurons parameters and running the diagnostics test 

on selected parameters. Such tuning process is lacked in literature for LSTM models on air 

pollution as these parameters were selected without tuning process.  

• Investigate data mining techniques for identifying the most influential meteorological and

temporal (day of the week, month) parameters on PM10 concentration and analyze how the

MLP based model performs with different combinations of input parameter. Additionally,

this investigation allows for an examination of the robustness of the MLP PM10 model to

input data errors.

1.6 Thesis Structure 

The second Chapter provides a general introduction to Particulate Matter (PM) and recent literature 

related to PM and factors which influence PM concentrations. However, it is important to note that 

because of the diverse and complex nature of the methods used in this thesis the literature reviews 

related to specific methods and their use in the modeling of air pollutants and/or PM is presented in 

each Chapter. 

The aims of this research will be delivered in the rest of this thesis, organised as follows: 

Chapter 2 introduces atmospheric aerosols and in particular PM. The chemical composition, size 

distribution and the natural and anthropogenic sources of PM are described. Subsequently an 

examination of the spatial distribution of PM on an international and national level is presented. Finally, 

the latest research on influencing factors on PM concentration such as topographical and climate 

characteristics are outlined and discussed in this Chapter, paving the way for a site-specific comparison 

in Chapter 3. 

Chapter 3 describes the data utilised in this thesis along with an exploration and analysis of the data. 

A comprehensive assessment of Auckland PM10 concentrations variation and associated trends through 

analysis of five years (2011-2016) of data is provided.  

Chapter 4 provides a general introduction to time series analysis followed by the results of an approach 

to time series analysis that will form the basis for much of what is done in Chapters 5, 6, and 7 which 

look at statistical models, and spatio-temporal statistical and geostatistical methods, respectively. The 

concept of dependence and stationarity is introduced, and site-specific stationarity test are provided in 

Section 4.3, prior to the reporting of time series analysis and modeling approaches. A review on methods 

for seasonally adjusting a time series followed by the results of performing site-specific seasonal 

decomposition analysis experiments are provided in Section 4.6. Time series analysis for such complex 

seasonalities are performed using dynamic harmonic regression with multiple seasonal periods and 
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adopts the use of a relatively new method, TBAT. Details of these method, and related experiments, 

and results are provided. 

Chapter 5 examines the use of nonparametric local smoothing methods based on Generalized Additive 

Models (GAMs) and Generalized Additive Mixed Models (GAMMs) to model the influence of 

meteorology on the distribution of daily average of PM10 concentration. These models are used as 

alternative analytic approaches to the advanced Auto Regressive (AR) models discussed in Chapter 4 

to avoid specification of a parametric form for seasonal trends allowing a more robust model against 

model misspecification. Section 5.2 provides a literature review on the use of GAM for modeling and 

predicting of air pollution including PM10, then the experimental method and smoothing parameter 

selection are discussed. Finally, the results of applying GAM to the Auckland airshed data are presented. 

Section 5.3 provides a literature review on GAMMs followed by a description of the experimental 

GAMM method used in this research. The main drawback with GAMMs – the assumption of 

independency between the observations of response – for use in Auckland is highlighted and discussed. 

Finally, site-specific experimental results are provided and discussed in Section 5.4. A conclusion and 

suggestions for future work using nonparametric local smoothing methods are provided in Section 5.5. 

Chapter 6 models and maps PM10 concentration by applying spatio-temporal statistical approaches 

namely Regression (Trend-Surface) Estimation, Spatio-Temporal (ST) GLM and ST-GAM. 

Exploratory analysis of spatio-temporal data and space-time modeling is described in Section 6.2. In 

Section 6.3, spatio-temporal PM10 prediction is obtained using a statistical regression model assuming 

that the “trend” terms can take all the spatio-temporal dependencies into account. The regression model 

that attempts to account for spatial and temporal trends is described followed by the results and a 

discussion of the findings. ST-GLM and ST-GAM are applied to explore the spatio-temporal patterns 

of the PM10 concentration integrating with secondary information at different spatial resolutions and 

temporal aggregations. Parameter inference for models using Ordinary Least Square (OLS) along with 

spatio-temporal analysis of residuals are performed by computing and visualizing the empirical spatio-

temporal semivariogram of the residuals. Section 6.4 provides the conclusion of this Chapter. 

Chapter 7 introduces a spatio-temporal geostatistical model which allows space-time predictions in 24 

hours temporal resolutions. The aim is to model and analyze spatio-temporal point referenced data, 

where PM10 measured over time at several spatial locations, which vary continuously over the study 

region. The model performance is analyesd and evaluated against both random and block test sets used 

in Chapter 6.  

Chapter 8 in this Chapter machine learning approaches  namely MLP and LSTM techniques and an 

ensemble method (RF) approach are applied, and their modeling capability are compared and evaluated. 

In Section 8.2, the input selection methods (forward selection and backward elimination) and PCA was 
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used to find the best sets that can describe the PM10 concentration as the model inputs. There site-

specific MLPs were obtained and performance of input selection on MLP were analyzed and the related 

model was selected as base model (Section 8.3). The best set of site-specific input sets are then used in 

LSTM (Section 8.4) and RF (Section 8.5). Since PM10 distribution are not even, K mean clustering was 

applied to ensure PM10 data are evenly distributed in train, test, and validation sets.  Mathematical 

formulation and literature review of each model is provided followed by experiment methodology and 

results and discussion.  Conclusion of the Chapter, limitation and future studies is provided in Section 

8.6. 

Chapter 9 discusses the model application and challenges in PM10 modeling. Research questions raised 

in Introduction Chapter are answered and discussion on limitations and future works are provided. 
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Chapter 2  ATMOSPHERIC AEROSOLS 

The aim of this Chapter is to provide an up-to-date general view of air quality. This Chapter is organised 

in five sub-sections. The first section introduces a brief history of air pollution episodes and major 

related events in Northern Hemisphere. The second section briefly describes different types of 

atmospherics particulate matters, their chemical composition and life expectancy. Section 2 also 

provides details of the instrumentation and measurement devices used to measure PM concentration 

and the recommended monitoring methods in New Zealand. The third section provides contextual 

information on air pollution at an international level. The fourth part describes the state of New Zealand 

ambient air (from the beginning of the monitoring up to present). Section five provides information on 

the legal and institutional arrangements for managing the environment in New Zealand as they relate to 

air quality. Efforts have been made to incorporate the available information up until mid-2017., 

Historical information, from the original sources, was hard to find and the author had to search earlier 

literature reviews for some of the information. Most of the information in this section was retrieved 

from regional councils and government department’s online archives. 

2.1 Introduction 

Air pollution is not a new phenomenon. Urban air pollution was referred as gravioris caeli (heavy 

heaven) or infamis aer (infamous air) by the ancient Romans (Hughes, 1993). The urban outdoor air 

pollution in large cities has emerged over the course of the millennia as civilisations became more 

organised. Historically, coal burning was the main source of PM and was measured as black smoke 

(Harrison, 2020). In the 9th century the problem of urban outdoor air pollution was first recognised 

in England. King Edward I established a community for redemption of pollution in 1285 (Markham, 

1994). However, by the mid-13th century, forest resources depletion forced London to shift to coal as 

the main source of energy, launching 700 years of pollution (Brimblecombe, 1999). In the 19th century, 

thousands of people died in London as a result of severe air pollution episode. Air pollution remained 

as a significant unaddressed challenge until the mid-twentieth century. Table 2.1 summarises the air 

pollution episodes and key historical milestones related to the history of air pollution highlighting the 

concerns and compliance strategies taken to action to address these issues. 

In the second half of the twentieth century, black smoke emissions from coal burning were reduced in 

developed countries. Road traffic exhaust emissions and secondary pollutants such as ammonium salts 

from agricultural activities and secondary organic carbon became the dominant sources of pollution 

(Harrison, 2020). Unbalanced urban development and the substantial growth of mobility and road traffic 

are the main factors attributed to the degradation of urban air pollution in the early twenty first century. 
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Moreover, pollution in urban areas has been shown to mainly consist of industrial and automobile 

emissions still in current years (Manoli et al. 2002). 

Table 2.1: Early history of severe air pollution, milestones, and compliance strategies (Morrison, 2016; 

Smith, 2017). 
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Year Event 

1157 “Unendurable” air pollution from 
wood smoke 

Henry II’s wife Elanor of Aquataine to flee 
Tutbury Castle. 

c.1590 Coal smoke Queen Elizabeth “greatly grieved and 
annoyed”. 

1880 “killer” fogs reported in London due to a January inversion. 

1892 London smog 1,000 deaths 

1898 Pittsburgh air pollution People leaving the city.  Appointment of 
Committee on Smoke Abatement by the 
chamber. The Engineer’s Society of 
Allegheny County rejected to collaborate 
emphasizing on Legislation and not 
engineering. 

1909 Glasgow, Scotland, winter inversions 
and smoke growths 

1,000 deaths in “Old Reeky” city. 

1930 Industrial Meuse River Valley, 
Belgium, 3-day weather inversion 

63 deaths and 6,000 made ill 

1939 St. Louis smog episode Lanterns were used in daylight for one 
week. The St. Louis Post Dispatch started a 
campaign due to the smog episode. 

1948 Donora, Pennsylvania smog incident. 

London killer fog 

22 deaths, 600 hospitalized, 1,000s ill. 

600 deaths 

1948 The New York Times urged women to participate an anti-pollution demonstration 
in New York city. 

1949 First US conference on air pollution sponsored by Public Health Service. 

1950 Mexico, Poza Rica, an oil refinery 
gas fumes caused killer smog. 

22 deaths, hundreds hospitalized 

1952 Dec4-Dec8: worst of the London 
“killer fogs.” 

4000 people deaths. 
Vehicles used lights in daylight. Busses run 
only with a guide walking ahead. 
By Dec. 8, all transportations except for the 
subway were prevented. 

1953 Smog incident in New York between 170 and 260 deaths. 

1954 Los Angeles Heavy smog conditions Schools closed for most of October. 
2000 auto accidents in a single day 

1955 New York City hosted the First International Air Pollution Congress. 

1956 London killer smog 1,000 deaths 
Clean Air Act was passed by British 
Parliament. 

1960 Two-year Public Health Service research on car emitted air pollution was funded by 
US Congress. 

1962 London smog 750 deaths 

1963 New York City, Major smog event. 
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1966 New York City, Major smog event during November 23–26. 

1970 Replacement of lead additives with catalytic converters was urged by General 
Motors president Edward Cole as he promised “pollution free” cars by 1980. 

1970 April 22- First Earth Day: Environmental concerns were raised by a national 
political member. Demonstration by Millions of Americans for clean air and water 
and preservation of nature. 

2017 March 28 — An executive order was signed by Donald Trump dismissing air 
pollution and greenhouse gas regulations. 

Ambient air quality denotes the near ground level outdoor air quality, that is away from direct sources 

of pollution. High concentrations pollutants that affect human health and/or the environment causes 

poor ambient air quality. An important factor influencing particles deposition in the respiratory tract 

affecting human health is the size of particle. Fine and ultrafine particles usually penetrate in lung 

whereas coarse particles accumulate mostly in the nose and throat. Fine and ultrafine particles are 

generally considered to be more toxic and appear in greater numbers with larger surface area than coarse 

particles of the same mass (Mahapatra et al., 2018). The unanimous scientific consensus on air quality 

degradation as a major environmental and health hazard, caused significant research efforts in the field 

of air pollution. Airborne PM exposure has been associated with increased mortality as well as adverse 

effects on respiratory, cardiovascular, and neurological conditions (Sun & Zhu, 2019). High 

concentration of PM can have both persistent and short-term effects on human health from respiratory 

irritation and cardiovascular disease, to cancer and premature death (Manisalidis et al., 2020). The 

findings of the Air Pollution and Health: A European Approach 2 (APHEA2) project on short-term 

effects of ambient particles on mortality showed a 0.8% increase in the daily deaths of the elderly was 

associated with a 10 μg/m3 increase in PM10 (0.7–0.9%) (Aga et al., 2003). A study by Sun & Zhu 

(2019) examined air pollution related health studies between 1992 and 2018 and concluded that the 

most common health related effect of outdoor air pollution was mortality rate.  
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Figure 2.1: Outdoor air pollution related health consequences presented in word cloud. The higher 
frequency of the outcome is presented in bigger font size (Sun & Zhu, 2019) permission granted from 
PlosOne journal .  

According to World Health Organisation (WHO) (2016) low- and middle-income countries account for 

nearly 90% of air pollution related deaths, with approximately two out of three taking place in WHO’s 

Western Pacific and South-East Asia regions. In 2019, seven million premature deaths, massive loss of 

crops, and declines in biodiversity across Europe, North America and East Asia were reported due to 

poor global air quality (David et al., 2020).  All impacts are caused by the accumulation of airborne 

particulate matter, both chemical and physicals making analysis and monitoring of these characteristics 

crucial. Local studies have reported various health effects of PM on New Zealanders (Emission 

Impossible Ltd, 2019; Fukuda et al., 2011; Hales et al., 2012; Wilton, 2005). In 2010, the Health and 

Air Pollution in New Zealand (HAPiNZ) study was established to investigate the environmental, health, 

social and economic costs of air pollution from all sources in New Zealand (Travis, 2012). The study 

revealed that anthropogenic PM10 pollution caused nearly two million restricted activity days. The 

HAPiNZ study approximated the total cost of air pollution in terms of restricted activity days and 

hospital admissions was nearly $1.3 billion per year. The HAPiNZ study also estimated that the most 

significant contributor to more than 1600 premature deaths was PM10 emissions (Kuschel & Mahon, 

2010). In New Zealand, anthropogenic PM10 was associated with 277 premature deaths (27.2 per 

100,000 people), 236 cardiac hospitalisations (5.0 per 100,000 people), 440 respiratory hospitalisations 

(9.4 per 100,000 people), and 1.49 million restricted activity days (31,839 per 100,000 people) in 2016 

(latest report to date). The South Island had the highest number of modelled cases of premature deaths, 

hospital admissions for cardiac and respiratory problems, and restricted activity days per 100,000 

people. The PM10 associated health effects (per 100,000) were decreased compared to 2006. This 

decrease however is likely due to increase in population in lower PM10 areas rather than a reduction in 

PM10 concentration (MfE & Stats NZ, 2018). 
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Figure 2.2: Estimated number of premature mortalities per 100,000 persons, by territorial authorities, 
in 2016 Adopted from (MfE & Stats NZ, 2018).  

The report discussed that between 2006 and 2016 there was a negative health effects per 100,000 

persons which was possibly due to more people living in lower PM areas, than an actual decrease in 

PM exposure (MfE & Stats NZ, 2018). The presence of high PM in the air also effects climate change 

as it changes the amount of incoming solar radiation and Outgoing Longwave Radiation (OLR) 

maintained in the earth's system. Particle properties such as composition and size have significant 

impacts on visibility degradation. Brown haze is a visual indication of degradation in air quality 

(Salmond et al., 2015).  In Auckland, brown haze builds up during the calm and cold winter mornings 

and nights (Senaratne & Shooter, 2004). According to Salmond et al. (2015), 88 haze events were 

observed intermittently in Auckland Central, 43 of them were categorised as severe. Visibility 

degradation due to brown haze was a major concern in Christchurch, New Zealand where PM has been 

shown to contribute to a significant amount of light extinction (Wilton 2003).  According to Ancelet 

(2012), the contribution of PM from motor vehicle emissions and secondary particles in poor visibility 

was more significant than the contribution of PM emitted from biomass burning. Atmospheric aerosols 

affect the ecosystem and vegetation. The effect of dust on ecosystem depends on the nature of the 

environment and the rate of dust transmission from the air to vegetation surfaces. This rate of dust 

transmission depends on the dust’s properties (Burkhardt & Grantz, 2016). In this Chapter, the focus is 



Page | 40  

 

primarily on PM10 which is PM with a diameter between 2.5 µm and 10µm. PM10 is the data that is 

explored, experimented with, and modeling in this thesis.  

2.2 Atmospheric Aerosols Background 

Atmospheric Aerosols are relatively small solid/liquid or mixed particles that are suspended in the 

atmosphere. Primary aerosols are emitted directly to the atmosphere whereas secondary aerosols are 

created from precursor gases (Fadnavis, 2020). Fossil fuel combustion are the main sources precursor 

gases followed by volatile organic compounds (VOCs) biogenic emissions and fires. Volcanic eruptions 

can also produce primary and secondary aerosols at the ground level as well as in the stratosphere 

(Boulon et al., 2011). Primary aerosols can consist of both inorganic (sea spray, mineral dust, and 

volcanoes) and organic (caused by anthropogenic sources) components. Anthropogenic sources include 

combustion engines, biomass burning for households and industry energy production, industrial 

activities such as building and mining, traffic related activities such as pavement destruction by vehicles 

and braking, and wearing of tyres (Silva & Mendes, 2011). 

2.2.1 Particulate Matter (PM) 

The term PM refers to any airborne material in the form of particles and includes pollutants which 

contains various mixture of solid and liquid particles. Airborne particles are complex and diverse in 

their: physical properties (see section 2.3.1), chemical composition (see section 2.3.2), and their 

mechanism of formation or origin (see section 2.3.3) and by what is measured by a particular sampling 

technique (see section 2.3.4).  

2.2.2 Physical Properties of Atmospheric Aerosol Particles: Size Distribution 

A principal common feature is particulate discrete units ranging in size aerodynamic diameters of 

several nanometers to about 100 µm in diameter. In general, particles are categorized into two modes 

based on their size. Particles with an aerodynamic diameter 2.5 μm < d < 10 μm (PM10) are coarse mode 

whereas a fine mode is made up of particles with aerodynamic diameters < 2.5 μm (generally denoted 

as PM2.5) (Travis, 2012) (Figure 2.3). The size of aerosol particles changes in the atmosphere through 

the processes of growth or removal. Coagulation and condensation increase the particle size whereas 

evaporation and removal processes cause reduction of PM size (Lu & Ren, 2014). 
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Figure 2.3:  Particle sizes (MfE, 2009). 

Fine mode particles can be subcategorised based on their size and formation process (Travis, 2012): 

Nucleation Mode corresponds to particles with diameters ranging from 0.005 and 10 nm, formed 

through nucleation processes. The nucleation process takes place when the number of particles is not 

sufficient to scavenge the molecule of interest and the liquid or solid phase for a molecule is more 

energetically feasible. The nucleation process can occur during condensation of hot gases or when the 

gas phase reactions create lower volatility or species that are highly hygroscopic. In each of these cases 

clusters of molecules lead to the production of a new particle, in a process known as gas-to-particle 

conversion (Seinfeld & Pandis, 1998). 

Aitken Mode made up of particles (with diameter between 10 nm < d < 100 nm) originating from vapor 

nucleation, condensation, or coagulation of particles. Particles grow through condensation to form a 

larger secondary particle when pre-existing particles make contact with reactive vapors which condense 

onto the particle surface. Coagulation results in a shift in the aerosol-size distribution toward larger 

particle sizes and increases particle mass effectively (McMurry et al., 2004) . The Aitken nuclei mode 

and coarse mode lifetime is largely determined by rain washout (Chatea & Praneshab, 2004). 

Accumulation Mode particles with diameter between 0.1 µm and 1 µm that are result of primary 

emissions and formed mainly by the coagulation of smaller particles or the condensation of organics 

from the gas phase or the vapor constituents.  

Ultrafine Particles: refers to particles in the Aitken and nucleation modes. Although the number of 

ultrafine particles is high, they have the smallest mass and volume.  



Page | 42 

In urban/industrial particle growth at high relative humidity and interactions of aerosols with clouds, 

are the main causes of aerosol size variation. Inorganic primary particles in coarse mode have short 

lifetimes, usually only a few days, in atmosphere due to gravitational settling. On the other hand, 

secondary aerosols, in fine mode, stay in the atmosphere longer, from days to weeks , and as a result 

can be transported over large distances (Griffin, 2013). During episodes of long-range transport of dust, 

particles from Sahara Desert can be transported as far as the United States and the Amazon (Chin et al., 

2007). The findings of a study by Masri et al., (2015) showed a sharp decrease in PM2.5 level compared 

to PM10 over time, suggesting that the significance of PM10 should be taken into account in future 

traffic-related air pollution policies. The concentrations of the ambient air PM are measured and 

recorded in term of the mass of PM in one cubic meter of air, mainly using the microgram per 

cubic meter (µg/ m-3) units. 

2.2.3 Chemical Composition and Sources of Atmospheric Aerosol Particles 

This thesis does not focus on PM10 chemical composition; however, it is crucial to recognize that PM10

is a complex mixture of chemical compounds with great dependency on the atmospheric conditions. 

Airborne particles include both major and minor components. Trace metals such as copper and lead are 

categorized as minor components and present at very low levels. The use of trace metals in industrial 

products or as impurities or additives in fuels can cause this rather small concentration to the 

atmosphere. The major components usually include (Laongsri, 2013): 

Sulphate arises from atmospheric oxidation of SO2. A small primary component arises from sea salt or 

mineral matter such as Gypsum. 

Nitrate normally present as NH4NO3, which results from the neutralisation of HNO3 vapor by NH3, or 

as sodium nitrate (NaNO3), due to displacement of hydrogen chloride from NaCl by HNO3 vapor. 

Ammonium generally present in the form of ammonium sulphate ((NH4)2SO4) or NH4NO3. 

Sodium and chloride found in sea salt. 

Elemental carbon high temperature combustion of fossil and biomass fuels forms the black, graphitic 

carbon. The organic carbon from organic compounds can form from automotive or industrial sources 

as primary source. The secondary organic carbon results from the volatile organic compounds oxidation 

(VOCs). 
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Mineral components Aluminum, silicon, iron, and calcium elements can be found in rock and soil as 

crustal materials. These generally appear in coarse dusts emitted from wind-driven entrainment 

processes, mining, construction, and demolition processes. 

Water Water soluble components of PM, mainly Ammonium sulphate ((NH4)2SO4), NH4NO3 and 

Sodium Chloride (NaCl), absorb water from air at high relative humidity, transforming from crystalline 

solids into liquid solution droplets. In a hysteresis effect, particles will still maintain bound water 

indicating a significant component of the mass, even after drying at 40–50% relative humidity.  

Various studies on source apportionment of ambient PM have been conducted around the world. Kim 

et al. (2004) studied the fine particles source apportionment in Washington, DC using the thermal 

optical reflectance (TOR) (Han et al., 2007) method. The authors identified 10 sources namely (SO4 2-

) rich secondary aerosol I, gasoline vehicle, (SO4 2-) secondary aerosol II, nitrate-rich secondary 

aerosol, (SO4 2-) rich secondary aerosol III, incinerator, aged sea salt, airborne soil, diesel emissions, 

and oil combustion.  Gugamsetty et al. (2012) conducted source apportionment study in New Taipei 

City, Taiwan on PM, PM10, PM2.5 and PM0.1 were collected simultaneously, using a dichotomous 

sampler and the Positive Matrix Factorization (PMF) (Lee et al., 1999) method. The authors found 

contribution of both anthropogenic and natural source processes in their study area. In the study by 

Marsi et.al., (2015) the PM chemical compositions and sources apportionment were investigated in 

Boston over nine years of simultaneous collection of 2000 samples of fine and coarse particles. The 

results suggested a significant difference in elemental compositions of coarse and fine particles, 

showing different sources and mechanisms of formation, as well as distinct annual trends and seasonal 

variation. The study showed that between 50 and 75% of Al, K, Br, and Ba elements (the major 

components of crustal and road dust) measured in PM10 were caused by the coarse mode. Over 75% of 

the elements found in the coarse mode included the crustal and road dust elements Ca, Si, Ti, Fe, and 

Mn as well as Cl (sea salt) (Figure 2.4).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740916/#R15
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Figure 2.4: Relative contributions of coarse and fine PM  to total PM10 mass (Masri et al., 2015) with 
permission. 

PMF identified six sources for PM2.5 including regional pollution (48%), motor vehicles (21%), sea salt, 

crustal/road dust, oil combustion, and wood burning (19%). The three source types reported for PM10 

included: crustal/road dust (62%), motor vehicles (22%), and sea salt (16%) (Figure 2.5). 

 

Figure 2.5: Results of mass closure for fine and coarse particles adopted from (Masri et al., 2015) with 
permission. 

Dust Deserts or semi-arid areas produce tons of dust particles which are dispersed into the atmosphere. 

Dust particles are generally categorized as PM10 as coarse mode mass concentrations are higher than 

those in the fine mode for soil dust aerosols over desert surfaces. The west coast of North Africa is a 

well recognised source of dust (León and Legrand, 2003; Prasad and Singh, 2007). The strong vertical 

thermal turbulence, caused by warming of the surface during the day, is usually followed by cycles of 

nocturnal stability. This cycle prevents the deposition of suspended particles to atmospheric height so 

that particle stays at these altitudes for weeks or even months distances, creating 'dry smog' events 

(EEA, 2012). In 1998 (from late April to early May) an Asian dust event resulted in 65 µg/m3 of 

PM10 concentrations over the entire area, whereas normal levels would be 20 µg/m3 (U.S. EPA, 2002). A 
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study by (Suzuki & Taylor, 2003) reported the continental effect of the Asian dust event in Chilliwack, 

British Colombia, during this period recording high PM10 concentrations of 120 µg/m3 and 44 µg/m3 

concentrations of PM2.5. In a study on African dust in the Mediterranean region seasonality of African 

dust episodes over the whole Mediterranean basin were summarised. The study revealed the African 

dust PM10 patterns are almost comparable with the increasing PM10 values from north to south and 

from west to east throughout the basin (Querol et al., 2019). In Auckland dust is a contributor to overall 

PM and tends to be a result of construction and road traffic (Davy et al., 2017). The composition of 

Auckland’s PM is discussed in detail in Section 2.5.1) 

Sea Salt The main source of salt aerosols in the atmosphere are the world’s oceans. Sea-spray aerosol 

is a mixture of inorganic sea salt and organic matter. In coastal regions such as Eastern Mediterranean 

,sea salt could contribute up to 80% of the annual mean particulate mass (Gerasopoulos et al., 2006). 

NaCl with traces of magnesium (Mg) and sulphate (SO2- 4) are the main component of sea salt. Sea 

spray can contribute to raise of PM10 concentrations in the air as sea-spray particle size varies from less 

than one micrometer to a few micrometers (EEA, 2012). As Auckland is located on two harbours and 

most areas are close to the sea, sea spray is a contributor to PM10. In a recent source apportionment 

study ((Davy et al., 2017)), PM concentrations dominated by sea salt in Auckland showed a downward 

trend for all sites in Auckland that can  be result of larger inter-decadal cycle related to Southern 

Hemisphere circulation patterns or a more permanent trend. 

Volcanic Emissions Precursor gases, water insoluble dust and ashes are emitted in the atmosphere 

during volcanic activities. These volcanic activities are mostly found in certain areas in Iceland and in 

the Mediterranean area especially Italy and Greece, where sudden eruption of volcanoes can potentially 

produce short-term peaks in PM10 levels within Europe (EEA, 2012). During April and May 2010 

(MACC, 2010) the plume of the Eyjafjallajoekull glacier eruption in Iceland reached altitudes of six to 

seven kilometers. The suspended ash increased the 24 hours mean concentration of PM10 t o  1230 µg/m 

in Vík, a small town located 38 km south east of the volcano. On the day after the volcanic activity 

ceased, the level of PM10 concentration was 25 times the health limit (Thorsteinsson et al., 2012). During 

eruption of Soufriere Hills volcano, located on Caribbean Island of Monserrat,  the volcanic ashes 

travelled 80 km at the south east of the volcano and reached the town of Pointe-a-Pitre in 2010 (Molinié 

et al., 2014). The study showed 11 hours after the major eruption, the mean hourly PM10 mass 

concentration increased to 271µg/m3 causing a partial dome collapse in the crater. Auckland is located 

in a volcanic field of over 50 volcanoes. The most recent eruption was Rangitoto which occurred around 

600 years ago. Because the field is not extinct there is the potential for a significant PM10 event linked 

to volcanic activity but during the period of this study there were no notable events. 
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Fires Pollutants emitted during a wildfire include atmospheric PM and gaseous compounds, such as 

carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nonmethane hydrocarbons (NMHC), 

nitrogen oxides (NOX), and nitrous dioxide (N2O). Results of the 3 years of air quality monitoring in 

the agglomeration of Porto Littoral showed forest fires contributed (35%, 8%, and 18% ) to PM10 

pollution episodes from 2001 to 2003, respectively (Miranda et al., 2008). In 2017, wildfires caused 

episodes of high PM concentration in the Iberian Peninsula. The measured daily mean PM10 

concentrations averaged over a region covering the Iberian Peninsula, France, Benelux and the south of 

Great Britain before and after the episode were 17 µg/m3. This average daily mean was increased 

26 µg/m3 during the fire episode (EEA, 2020).  Fires are events that affect local Auckland PM 

measurements, most notable in recent years was the Sky City Fire (an International Convention Centre). 

This event caused PM to exceed the National Environmental Standard for Air Quality for the first time 

in a decade. 

Most aerosol particles are unstable and can change by growing or might disperse from the atmosphere 

and sink on the surface. The aerosol particle lifetime varies from days in the troposphere to a year or 

more in the stratosphere (Griffin, 2013) and is determined by the efficiency of the removal 

mechanism. Wet, dry, and occult depositions are the three main mechanisms for particle deposition 

onto vegetative surfaces (Grantz et al., 2003). Wet deposition is mostly a function of PM concentration 

and precipitation rate. Dry deposition is the deposition of particles by convective transport, 

dispersion, and adhesion to the Earth’s surface. Dry decomposition acts as a sink for aerosol 

particles and therefore is more related to local air quality than a global scale (Janhäll, 2015).  

2.2.4 Concentration Measurement Methods 

In this section, special attention will be given to PM concentration measurement methods and 

equipment. PM concentration measurements are key to the standardization and regulation of emission 

thresholds. Several methods and instruments for measuring different characteristics of particulate matter 

are outlined below:  

2.2.4.1 Gravimetric Method 

The weight of filters before and after the sampling period are used to determine particle mass 

concentration. All available PM granulometric fractions (nucleation, accumulation, and coarse modes) 

are collected by the filters in a resolution time of 15 minutes or more. The filters are packed under 

controlled conditions of temperature and relative humidity. Cascade Impactor is one gravimetric 

instrument used for measuring PM mass (Amaral et al., 2015) in addition to size distribution methods 

(Giechaskiel et al., 2014). 
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2.2.4.2 Optical Methods 

Optical instruments can be used for real-time monitoring of PM10 concentrations. These instruments 

use the principles of scattering, absorption, and light extinction to conduct a measurement (Amaral et 

al., 2015). A light beam is used to light the PM and to scatter this light in all directions. Part of this light 

is transformed into other forms of energy (absorption) at the same time. The light extinction is calculated 

by adding the degree of scattering and absorption. The Optical Particle Counter (OPC) instrument uses 

a diode laser as a light source, to light a sample of particles from every angle. A photodetector is then 

used to measure the light that scattered from the particles. Particles are then counted and measured 

simultaneously based on the  intensity of the flash (Giechaskiel et al., 2014). 

2.2.4.3 Microbalance Methods 

Over the surface of an oscillatory microbalance element, microbalances use resonance frequency 

variation to find the PM properties. Tapered Element Oscillation Microbalance (TEOM®) and Quartz 

Crystal Microbalance (QCM) are the two common instruments that use the microbalance method. In 

TEOM, PM mass is measured based on the variation of resonance frequency of a tapered quartz wand, 

caused by particle buildup in a sampling filter. In QCM, the piezoelectric property of the quartz crystal 

is used for measuring PM mass. Resonance frequency changes when there is a small addition of mass 

to the quartz crystals surface. In QCMs particles are deposited by electrostatic precipitation in a fine 

quartz crystal resonator Microbalance. (Giechaskiel et al., 2014). Figure 2.6 illustrates PM measurement 

methods and instruments. 
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Figure 2.6: PM measurement methods and instruments (Amaral et al., 2015) with permission. 

In New Zealand, the recommended monitoring methods to establish compliance with the 2002 Ambient 

Air Quality Guidelines (AAGQ) were reviewed (MfE, 2002) and  a new PM10 monitoring method ,US 

40 CFR Part 50, is recommended. It is also stated that in case of using TEOM® for monitoring PM10 

and PM2.5, “another recommended monitoring method should be co-located at the site for at least one 

year to calculate an appropriate adjustment factor” MFE (2002, p. 32.) 

2.3 Air Particulate Matter Management at International Level 

The World Health Organization (WHO) guideline for a 24-hour average PM10 is 50 µg/m3, with three 

exceedances accepted per year (WHO, 2017). Any exceedances must be reported. The standards 

adopted by different countries may vary.  However, most countries implement the target standard of 50 

µg/m3 but differ on the number of permitted exceedance days. While some countries agreed that natural 

events should be excluded from the count of exceedances of because they are outside the control of the 

region,, New Zealand, however does not provide such exceptional event exclusions (MfE, 2011a). 

The ambient air quality directive (EU, 2008) places thresholds for both short term (24 hour) and long-

term (annual) PM10 concentrations. The EU 24-hour PM10 threshold (50 µg/m3) is often exceeded in 
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Europe. The EU annual PM10 threshold is 40 µg/m3. WHO sets stricter Air Quality Guidelines (AQGs) 

aiming to reach the lowest concentrations possible. A comparison of the two standards is provided in 

Table 2.2.  

Table 2.2: Air quality standards for protecting human health from PM10 (EEA, 2020). 

Averaging period Standard type: PM10 conc.  Comments 

1 day EU limit value: 50 μg/m3 max exceedance of 35 days per year 

WHO AQG: 50 μg/m3 9th percentile (3 days per year) 

Calendar year  Limit value: 40 μg/m3  

WHO AQG: 20 μg/m3  

Coal and biomass combustion in households, commercial, and institutional buildings are reported to be 

the most important contributors to total PM emissions in the EU. A study of PM10 concentrations 

showed in 2014 the PM10 daily threshold was widely exceeded in Bulgaria, Italy, Poland, Slovakia and 

the Balkan region as well as a number of urban areas across Europe, including in the Nordic countries. 

About 95% of the these exceedances happened in urban or suburban areas (Chlebowska-Styś et al., 

2017). According to Guardian (2017) for the first time in more than 130 years, Britain powered itself 

without coal for an entire day in April 2017.  According to EEA (2020), 20 Member States and six other 

reporting countries reported PM10 concentrations above the EU daily threshold during 2018 (Figure 

2.7). 
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Figure 2.7: Concentrations of PM10, 2018- daily limit value (EEA, 2020). 

In 2020 PM10 concentrations across Europe has changed (Figure 2.8) due to COVID-19 lockdowns 

(EEA, 2020).  
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Figure 2.8: Relative changes in PM10 concentration across Europe due to COVID-19 lockdown 

conditions (EEA, 2020). 

In US, the National Emissions Inventory (NEI)’s PM data, covering all 50 states and their counties for 

the 2010 to 2019 period, was analyzed. The results showed that estimated primary PM10 emissions from 

anthropogenetic sources had reduced 17% at a national level between 2010 and 2019. In 2014, it was 

estimated that primary PM10 emissions from miscellaneous and natural sources and fugitive dust 

accounted for 87% of total primary PM10 emissions  (EPA, 2018). 

2.4 Air Particulate Matter Research in New Zealand 

In New Zealand, the dominant and largely uncontaminated westerly winds, disperse air pollutants 

before they can become too concentrated. During calmer wintertime conditions, however, poor air 

quality can become a major concern in some cities (MfE, 2009). 

The historical monitoring of particles in New Zealand, was based on total suspended particulate (TSP) 

measurements, which involves all suspended particles in the air (MfE, 2002). During the 1990s 

monitoring methods were launched to capture the PM10 size fraction. A smoke monitoring methodology 

was also used as an alternative in most areas but was overlooked by late 1990s as it was biased towards 

elemental carbon measurements.  

New Zealand studies have shown that the relative contribution of different sources to the total PM10 

mass differs between sites. In Hastings (one of the two major urban areas in Hawke's Bay, North Island) 
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domestic home heating, marine aerosol, motor vehicles, sulphate, and soil were found to contribute to 

the PM10 concentrations (Wilton, Appelhans, Baynes, & Zawar Reza, 2009). Unusually, in their report 

the authors included outdoor burning of domestic waste in domestic heating sources. In more rural areas 

of New Zealand, the burning of domestic waste is fairly common. In Hastings, biomass burning, and 

domestic heating were reported to be the main contributors to PM10 concentrations. The concentrations 

of PM10 were notably higher during the colder months of April–October when household hearing is 

required. The total background or “natural” PM10 contribution (soil and sea spray) for Hastings during 

winter was estimated to be in the range of 13-15% of the total PM10.  

In Christchurch, the largest city in Canterbury (population in 2015 was 367,800) , domestic fuel burning 

and temperature inversion frequently contribute to high wintertime smoke levels (Salomon & Smithson, 

2015).  In the larger Canterbury region, spatial variations of PM10 concentrations were studied in the 

small towns of Rangiora (population 19,250) and Kaiapoi (population 11,847) (Hamilton et al., 2004). 

The study found that older residential neighborhoods in both towns had extremely elevated PM10 

concentrations. During settled anticyclonic conditions, drainage movements during the night carried 

PM10 plumes from Rangiora to Kaiapoi, triggering rises in PM10 concentrations in Kaiapoi. Alexandra, 

also in the South Island, located in an inland basin in central Otago faces extremely poor air quality 

during the winter. A stable boundary layer forms in high pollution days for 18 hours from 17:00 to 

11:00 during the wintertime. 

Rotorua in the central north island also experiences high concentrations of PM10 that regularly exceed 

the National Environmental Standards for Air Quality (NESAQ) (Fisher et al., 2008). The high PM10 

concentration in Rotorua is attributed to the use of domestic wood burners (60%) during wintertime 

(BOPRC, 2014). 

Davy (2007) studied PM pollution sources in different areas within the Greater Wellington region using 

multi-element analyses. In Upper Hutt, road dust, soil, and sea salt (coarse) and sulphate, motor 

vehicles, wood burning, and sea salt (fine) sources were identified as PM sources. The dominant source 

during winter was biomass burning closely followed by motor vehicle emission. During the summer, 

secondary sulphate was found to be a significant contributor to the fine particle mass. In the industrial 

area of Seaview, sea salt, road dust, soil, and zinc (coarse) and sulphate, soil (fine) sources were 

identified. A local galvanizing operation in the region contributed to the zinc sources. The most 

significant contributor to fine particle concentrations was motor vehicle emissions.  

A source apportionment study from anthropogenic activities was conducted for towns of Napier (a 

coastal city in the Hawkes Bay region of the North Island). Hastings and Havelock (suburbs of Hastings) 

were the locations that the PM10 data was collected from for 2010 and 2015 (Wilton, 2015). For all three 

towns, the main source of PM10 particulates was domestic heating ranging from 88% in Napier to 98% 
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in Havelock North. In Napier and Hastings, the other main contributions were from transport and 

shipping was and industrial activities.   The second contributor to PM10 in Havelock North was transport 

which was accounted for only 2% of the PM10.  

PM10 elemental composition of samples collected in the three largest (by population) New Zealand 

cities of Christchurch, Hamilton, and Auckland for the winters of 2000 and 2001 were inspected 

(Senaratne, 2003). Sea spray, suspended soil/road dust, domestic emissions, diesel, and petrol emissions 

were identified as the main sources of PM10 mass.  Marine and crustal elements were dominant in the 

total elements mass across all four seasons. However, Elemental Carbon (EC) dominated all elements 

in the winter. In winter, similar contributions from both domestic and vehicle emissions were found in 

Christchurch. In contrast, in Hamilton vehicle emissions had a greater contribution when compared to 

domestic emissions even in winter. During winter, in Auckland suspended soil, road dust, and vehicle 

emissions had larger contributions than domestic emissions.  

Different conclusions have been drawn as to the composition of organic pollutants during the winter in 

Auckland (Krivácsy, Blazsó, and Shooter, 2006; Wang, Kawamura, and Shooter, 2006). One hundred 

organic compounds from PM10 samples were collected in 2001 and characterized by Krivácsy et al. 

(2006). They found that organic species accounted for 21–45% of PM10 during winter. They suggested 

that the most dominant source of carbonaceous PM was domestic wood combustion. Dehydroabietic 

acid, a tracer for biomass burning (Simoneit, 2002), was found to be the most abundant organic 

compound. The authors did not detect hopanes or steranes, indicators of vehicular emissions (Cass, 

1998). During the winter of 2004, 69 organic species in PM10 were collected and characterized (Wang, 

Kawamura, Shooter, 2006). Wang et al. found that both tracers for biomass burning plumes 

(levoglucosan and dehydroabietic acid) were the richest compounds of their PM10 organic species. Low 

concentrations of Hopanes were detected (0.02–0.05% of the total organic carbon (TOC)). Although a 

great abundance of biomass burning tracers were found, the authors decided that the most significant 

contributors to PM10 concentration in Auckland were motor vehicles.  

Studies of PM10 source apportionment have also been conducted in Nelson, South Island (Ancelet et al., 

2014) and  in Tokoroa, the fifth-largest town in the Waikato region of the North Island (Ancelet & 

Davy, 2014). Figure 2.9 summarises the results of these source apportionment analyses in wintertime 

from urban areas around New Zealand. It can be observed that in both the North Island and the South 

Island, biomass burning (wood-burners) are identified as the dominant wintertime source for PM10 

ranging from 50% in Auckland to 89% in Alexandra (Ancelet & Davy, 2014). 
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Figure 2.9: Comparison of source apportionment analyses from urban areas around New Zealand 

(Ancelet & Davy, 2014). 

The concentrations of different carbonaceous and ionic components in PM10 during the winter in 

Auckland and Christchurch was studied using principal components analysis (PCA). The most 

significant contributor to Auckland’s PM10 concentrations was marine aerosol followed by traffic 

emissions. Ambient  concentrations  of  carbonaceous materials in Christchurch was found to be 

significantly higher compared to Auckland due to Christchurch’s residential use of  wood  and  coal 

burners  in  winter  (Wang et al., 2005). Adverse effects from air quality can be also aggravated by land 

use. In New Zealand, the population is very unevenly distributed therefore the pressures from land use 

is more likely to be felt regionally than nationally. In New Zealand 75% of population live in the North 

Island (half in upper North Island), and the remaining 25% live in the South Island. Population increase 

has been particularly intense in the Auckland area, creating concerns on man-made contribution toward 

air pollutants. 

2.4.1  Auckland Regional Air Quality 

Some areas in Auckland are subject to the formation of localized micro-climates that can raise PM10 

concentrations significantly for few days (Ancelet et al., 2012). For Auckland water-soluble inorganic 

species were characterized in three separate studies (Wang & Shooter, 2001, 2002, 2005). Wang and 

Shooter (2001) characterized eight soluble ions in PM10 and found significant seasonal variations in Na, 

C, and SO4 concentrations with highest concentrations happening during the summer due to an 

increased marine influence. In a study of fine/coarse and day/night variations for eight water soluble 

ions during Auckland’s winter, Wang and Shooter (2002) found that PM10 concentrations did not show 
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a noticeable day/night change, but SO4 and NO3 concentrations were elevated during the day and night, 

respectively. Sea salt ions were found in coarse samples whereas fine samples were enriched with non-

sea salt ions. The primary marine aerosol generation and source regions identified by (Davy et al., 2011) 

were below Australia in the Southern Ocean and to the northeast of Auckland in the Pacific Ocean. 

Figure 2.11 shows source apportionment analyses of PM10 at the Takapuna monitoring site located in 

Auckland, New Zealand. The Takapuna site is considered by Auckland Council to be representative of 

the entire Auckland airshed (PCE, 2015). 

Figure 2.10: Source apportionment of PM10, Takapuna, Auckland from samples taken every third day 
between 2006 and 2013(PCE, 2015) with permission. 

A recent study by Davy et al. (2017) found that sea salt, motor vehicle exhaust emissions, residential 

wood burning, and crustal matter are the key contributing influences on ambient PM10 concentrations 

in Auckland (Figure 2.12). The marine aerosol component of urban air PM is part of the ‘natural’ 

background. 
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Figure 2.11: Source apportionment results on monthly average PM10 for Auckland monitoring sites. 

According to Davy et al. (2017), marine aerosol concentrations showed a statistically significant, 

decreasing trend from 2005 to 2015 across all sites in Auckland. The decreased trend could be either a 

permanent trend or be partially related to a larger inter-decadal cycle of Southern Hemisphere 

circulation climate patterns. Marine aerosol and motor vehicle emissions were the main sources of PM10 

in Auckland (Figure 2.14) while 72% of the wintertime increment was due to home heating. Analysis 

of crustal matter contributions in PM10 concentration at high density traffic sites in Auckland showed 

that road dust may be a major contributor. Other sources were windblown soil, earthwork, and 

construction dust. The PM10 crustal matter source contributions trend analysis showed that 

concentrations decreased over the monitoring period and was mostly site dependent. Temporal 

variations of crustal matter contributions showed lower concentrations during weekend suggesting the 
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influence of human activities on source of emissions.  Sea salt contributed about 60% to Auckland’s 

PM10 concentration over a year (Davy et al., 2017). 

 

Figure 2.12: Source contribution for PM10 particulate between 2006-2015 (Davy et al., 2017) 

The 2016 Auckland Air Emissions Inventory estimated the relative contributions from motor vehicles 

in PM10 concentration. The details are shown in Figure 2.13. 

 

Figure 2.13: Estimated annual PM10 emissions for 2016 by emission type (Sridhar & Metcalfe, 2018). 

During winter, domestic wood burners combined with poor meteorological dispersion conditions 

contribute to poor air quality, in urban areas. According to Auckland Council (2015) emissions from 

home heating fires, which are only lightly regulated, are the largest proportion of wintertime particulate 

emissions in most New Zealand regions including Auckland.   
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According to NIWA, who performed an analysis of PM10 and NO2 level during COVID-19 lockdown 

in Auckland showed over the five weeks at Level 4 (26th March 2020 – 27th April 2020 inclusive), PM10 

concentrations from traffic, heating, industrial and natural sources was reduced at all Auckland sites. 

This included a reduction of 14% at Queen St, 15% in Penrose, 28% in Takapuna, and 9% in Henderson 

(Figure 2.14). In the third week of lockdown, all sites except for Queen St, showed greater decreases in 

PM10 and NO2 concentrations when compared to weeks one and two (Longley, 2020). Levels of dust, 

sea spray and smoke, were only marginally down across Auckland suggesting the emission sources are 

other than traffic.  

Figure 2.14: Covid-19 lockdown under level 4 restrictions and its effect on air quality changes in 
Auckland 2020, (Longley, 2020) with permission. 

Another study showed 20.1% decrease in PM10 concentrations at the Auckland central, 16.2% at a sub-

urban site of Henderson and 6.6% at the rural background site of Patumahoe during the first COVID-

19 lockdown period (Patel et al., 2020).  

For most Auckland sites, a peak in concentrations is observed during the morning (07:00 and 09:00) 

‘rush hour’. PM10 concentrations in the afternoon are generally lower when compared to the morning 

due to increased mixing in the atmosphere. In the evening, a more stable atmosphere causes less 

dispersion hence an increase in concentrations. This natural process is worsened during winter with the 

increase in home heating emissions (Patel et al., 2020).  

Regional air quality targets are set to control ambient air quality pollutants in Auckland. This includes 

those that are not covered within the National Environmental Standards for Ambient Air Quality 

(AQNES) including ambient pollutants or averaging intervals. Although a gradual decrease has been 

observed in long-term trends, short-term air quality issues in Auckland are not yet fully. Auckland 

Region’s NO2, PM10 and PM2.5 emissions from domestic fires and mobile sources need to reduce 

significantly if the area is to meet the target of zero breaches of the standards in residential areas, 

workplaces, playing areas (Auckland Council, 2010). 
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2.4.2 New Zealand Guidelines and Regulations 

Development and application of guideline values is an iterative process due to the rapid growth of 

studies on air quality and the ongoing research findings on pollutants health effects. Air quality 

guidelines and their application are reviewed and updated by the Ministry for the Environment (MfE) 

at least every five years. The MfE cooperates with councils to improve air quality management. Most 

of the guideline values adopted in New Zealand have been taken from guidance provided by overseas 

organizations such as WHO (2006). Since 1994 local authorities have been operating under an air 

quality guideline of 120μg/m3 for 24 hours (Ministry for the Environment, 1994a). The national ambient 

air quality guidelines were last updated in 2002. In May 2002, the strength of the medical evidence of 

the acute health effects of PM10 persuaded the MfE to recommend a new air quality guideline for PM10. 

The annual average value was thus amended to reflect the chronic health effects of PM10. As the result 

the new PM10 guideline values changed to 50 μg/m3 (24-hour average) and 20μg/m3 (annual average). 

In addition to the ambient air quality guidelines, New Zealand has the National Environmental 

Standards for air quality (Air Quality NES) which was introduced in 2004 to assure a minimum level 

of health protection for New Zealanders. This was due to increasing level of PM10 in most parts of the 

country during winter. NES regulations are made under the Resource Management Act 1991 and came 

into effect on 8 October 2004. These air quality legislation, regulations, and guidelines are summarised 

in Table 2.3 (MfE & Stats NZ, 2018).  

Table 2.3: Air quality legislation, regulations, and guidelines (MfE & Stats NZ, 2018). 

 Guidelines Legislation and regulations 

International World Health Organization air 
quality guidelines (global update 
2005) 

 

New Zealand Ambient Air Quality Guidelines 
1994  

(Last updated 2002) 

 

Resource Management Act 1991 

National Environmental Standards (NES) 
for Air Quality 2004 (last updated 2011) 

Regional air plans (required under the 
Resource Management Act) (regional 
councils) 

NES is based on human health only and includes only five priority pollutants whereas ambient 

guidelines support both ecosystems and human health and cover wide variety of pollutants, including 

toxins. The ambient air quality standards permissible exceedance for annual average PM10 is zero. Since 

there is no NES for annual PM10 concentrations the same national ambient air quality guideline applies.  
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With the 2004 Regulations coming to force it was expected that all airsheds would meet the PM10 

standard by 2013. However, by late 2009, the MfE estimated that the air quality standards in 15 airsheds 

would not comply in time. The 2013 deadline was unachievable for the Auckland airshed that 

accommodated at the time nearly 30% of New Zealand’s population. Therefore, in 2009, the MfE 

reviewed the PM10 regulations addressing concerns regarding the perceived ‘stringency’ of the ambient 

standard, the absence of equity for industrial air pollution sources, and the unachievable original target 

timeline of 2013. On the 1st of June 2011 the revised regulations came into force. The 2011 amendments 

renamed these regulations to be the Resource Management (Air Quality NES) Regulations 2004 and 

changed the timeframes to be in line with those of the ambient PM10 standard. The Air Quality NES 

includes staggered transitional periods and exceedances periods. When the transitional periods ended 

(in September 2020) the number of allowed exceedances will decrease to one exceedance per 12 months 

(MfE, 2011a). The new allowances for meeting PM10 standard are provided in Table 2.4. 

Table 2.4: Allowances for meeting PM10 standard  (MfE, 2011a). 

Average number 
of exceedances 
per year (before 
start date) 

Transitional period Number of exceedances allowed 

1 or fewer Always 1 or fewer in 12 months 

2-9 1 September 2011 to 31 August 2016 

1 September 2016 onwards 

Unlimited 

1 exceedance per 12 months 

10+ 1 September 2011 to 31 August 2016 

1 September 2016 to 31 August 2020 

1 September 2020 onwards 

Unlimited 

3 exceedances per 12 months 

1 exceedance per 12 months 

Between 2006 and 2016, only 45 out of 93 monitoring sites had valid data for PM10 exposure. For 2006-

2016, 38 of 45 monitoring sites exceeded the national 24-hour average (Haenfling, 2020).  

2.5   Conclusion 

 Ambient air quality denotes the near ground level outdoor air quality, that is away from direct sources 

of pollution. High concentrations of pollutants lead to poor ambient air quality which affects human 

health and/or the environment. PM10 refers to particles with a diameter of less than 10 µg and is the 

major air pollutant monitored in New Zealand. These particles are derived primarily through suspension 

of dust and soil and other materials from roads, farming, construction, or mining activities, and 

combustion of coal. Other sources of PM10 include sea salts, dust, and secondary organic carbon results 

from the VOCs. Different PM10 measurement methods and instruments are used for measuring PM10 
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concentration and size. In New Zealand, the recommended monitoring methods to establish compliance 

with the 2002 AAGQ were reviewed, and the US 40 CFR Part 50 is now recommended as PM10 

monitoring method. 

 This Chapter also addressed air quality management in New Zealand. New Zealand is known for its 

clean and green credentials. Discharges to air such as products of combustion and particulate matter can 

be complex in nature and have the potential to cause adverse effects on ambient air quality and human 

health. In 2004, 14 national environmental standards relating to air quality using WHO guidelines were 

introduced to help reduce the negative effects of poor air quality. The primary purpose of the national 

ambient air quality standards is to set minimum requirements for outdoor air quality in order to provide 

a guaranteed level of protection for the health of all New Zealanders. In 2020, amendments to some 

provisions of the NES were proposed to better control the release of fine particles into our air. These 

national regulations place a requirement on regional councils to monitor air quality and to report 

ambient air quality exceedances under the Resource Management Act. The exceedances occur if annual 

average concentrations are greater than 20µg/m3) and number of monitored sites that exceeded the 

national environmental daily (24-hour) average standard for PM10 (exceedances occur when daily 

average concentrations are greater than 50µg/m3. From 1 September 2020 onwards one exceedance per 

12-month period is allowed.

While the airsheds are established in locations with high likelihood of exceedance of standards, the 

quality assurance of monitoring sites is seeming to be neglected. The costs of maintaining already 

installed monitoring sites could be a reason for poor data quality but should be reconsidered as the 

effects of PM10 on human health is the main concern. This cost could be negligible as a cost of over $2 

billion to the Auckland region in 2006 was reported as a result of exposure to ambient PM10. 
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Chapter 3  ANALYSIS OF PM10 AND METEOROLOGICAL DATA 

This Chapter provides an explanatory analysis of the PM10 concentrations and meteorological data 

used in this research. Descriptive statistical parameters and box plots of the data are constructed to 

illustrate the differences and similarities between the study sites. The Kruskal-Wallis (K-W) test is 

applied to show the statistical significance of changes over time for each site.  The general 

characteristics of local PM10 concentration are investigated by comparing the daily average PM10 data 

within the sites. An assessment of trends in PM10 concentrations is carried out considering the daily 

variations in meteorological conditions and their consequent impact on PM10 concentrations. The 

“openair” package (Team 2011, Carslaw 2012, Carslaw and Ropkins 2012) for ‘R’ statistical software© 

was used in all statistical analyses presented in this Chapter. 

Air quality data were supplied by Auckland City Council (AC).  AC is the authority responsible for air 

quality monitoring of the Auckland airshed.  A study by Aberkane et al. (2005) found that 90% of all 

particles measured as PM10 are made up of (PM2.5) during winter. Therefore PM2.5 was not included as 

a predictor to eliminate correlation in the dataset. 

3.1 Study Area and Data 

Air quality data usually includes pollutant concentrations and meteorological data of urban ambient 

air at a certain time. AC measure air quality in several stationary locations and with mobile stations. 

The AC network for continuous monitoring of PM10 is comprised of 13 permanent and two mobile sites. 

The PM10 monitoring network extends from Patumahoe in the south to the Whangaparaoa Peninsula in 

the north and from Glen Eden in the west to Botany Downs in the east. The locations of these PM10 

monitoring stations are presented in Figure 3.1.
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Figure 3.1: Auckland air quality monitoring network (AC, 2006). 

All stations use Beta Attenuation Monitors (BAM) instruments for measuring the concentration of PM 

in the lower atmosphere. AC provided the air quality data set in 1-hour and 24-hour averages. The size 

of the dataset is site specific with notable differences between each site. Among the 13 stations, some 

provide less than four seasons of data, which is insufficient for training a temporal prediction model. In 

addition to the short period of some of the site’s time series, missing data is also a problem. Even if the 

monitoring stations are available, system maintenance and incidental events can cause missing data.  

This research employed the most current data available from AC, at the time of writing, and covers six 

full years of data from 2011-2016 inclusive. Because of the variation in data quality from the various 

sample sites some sites in the AC were necessarily excluded. In mid-2014, three long-term monitoring 

sites at Botany Downs, Orewa and Whangaparaoa were decommissioned. The loss of these long-term 

sites is regrettable, as it represents the closure of an extended dataset, which was invaluable for the 

observation and analysis of long-term trends in ambient air quality. For this research, these sites 

decommissioned in 2014 were not included because of a lack of more recent data 2014-2016. Auckland 

Waterfront was also excluded as the sampling station was mobile and the location of the station changed 

during this research’s sampling period.  

The remaining six stations used in this study are Takapuna, Henderson, Glen Eden, Penrose, Pakuranga 

and Patumahoe.  In a region with heterogeneous land use, the spatial positioning of monitoring stations 

is important. The PM10 dataset used in this study has the geographical characteristics of urban 
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residential, urban industrial, urban traffic/residential and rural residential. These classes are the ones 

determined and reported by AC (AC, 2006). 

Glen Eden site is categorised by AC as existing in an urban background. The site is an air-conditioned 

shed at SE corner of a park and20m from the closest road. Most houses in the area were built in the 

1980s and rely on electric heating. However, in the north of Glen Eden there are many older houses 

(built in the 1960s) and about 75% of these houses still have the original wood fire heating. The site is 

surrounded by hills to northeast which tend to influence wind flows from this direction. 

Henderson is a suburb 13 kilometers west of Auckland’s city center. The monitoring site is 

approximately 10m from the western side of Lincoln Road. Lincoln Road is one of Auckland’s main 

arterial roads. Traffic volume is high, and the road suffers from congestion with an estimated 46,000 

cars a day travelling along it in 2016. Along with this traffic has come significant development in the 

area. In a source appointment study marine aerosol was found to be the main source mass contribution 

to PM10 at this site. Biomass burning and motor vehicles were identified as the predominant sources of 

pollutants during peak PM10 events and during winter. Houses in area were first built in the 1960’s and 

while building has continued; approximately 50% of homes still have chimneys and wood burning 

heating. In Henderson, there is a mixture of residential and commercial activities in terms of land use, 

with some industrial activities 500m to the northeast. Waitakere Hospital is located within 300m 

southeast of the site (Davy et al.,2017).  

Pakuranga is a southeastern suburb of Auckland. The station is sited at the south west corner of Bell 

Reserve; approximately 7.5m southeast of Pakuranga Highway. Pakuranga Highway is a major arterial 

route. Vehicle and residential home heating are the predominant sources of pollution. Houses in the 

area are of mixed ages; the earliest from the 1960s. 

Patumahoe village is located at the southern edge of the Auckland Region. The air-conditioned station 

is located approximately 2.5km west of the Pukekohe urban area. There are greenhouses and sheds 8m 

to the north and 20m to the west and southwest. Hedges surround the site on three sides: a 4m hedge 

30m to the south; an 8m hedge 40m to the east; and an 8m hedge 50m to the north. The surrounding 

area is used for horticulture and agriculture. The site is categorized as a rural background site. 

Penrose site is an industrial station in south-central Auckland with a different source of pollutant. The 

site is highly impacted by traffic as it is located only 50m northeast of the Auckland Southern 

Motorway. The motorway is approximately two meters lower than the ground level at the monitoring 

site and is the main route through Auckland to the rest of the North Island.  There are main roads within 

a range of 500m to 1km north of the site. There are no main roads within 1km to the east northeast. 

Industrial premises and a glass manufacturer are located from northwest-south to the northeast.  
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Residential houses dated from the 1930s onward are situated to the north and southwest (Davy et al., 

2017). 

Takapuna is a central-northern suburb of Auckland with mixture of residential and commercial land 

use. The coastline is complex and topography in this area is low-lying undulating. Therefore, the surface 

wind flow has a complex pattern, mainly during low synoptic wind flows conditions when sea-land 

breezes dominate the surface winds. The site is subjected to winds from all directions. As shown in the 

wind rose diagram in Figure 3.28 constructed based on the 2011-2016 data, the west and northeast 

winds are the dominant wind directions. The residential houses vary in ages spanning back to the 1960s, 

and 75% of the houses use fossil fuel for heating during the colder winter months. A concrete batching 

plant producing ready-mix concrete is located 100m southeast of the site. The site is located 3km east 

of the coastline of the Hauraki Gulf. There is a commercial centre in nearly 3.5km southeast. The site 

is 50m west of State Highway 1, the main motorway from the north into Auckland City, connecting the 

Southern and Northern suburbs. 

3.2 PM10 Data collection and processing 

The 24-hour averages of PM10 provided by AC is based on the available hourly measurements within 

that day (midnight to midnight). A few standards for determining the minimum amount of data collected 

from a station to estimate the average value of air pollutant concentration is provided by WHO (Tiwary, 

2010): 

• 1-hour average value must have at least 75% of the monitoring data.

• The 24-hour average value must have a minimum of 50% of hourly data in a day.

• The seasonal and yearly average values must have minimum 50% of daily data in a year.

To ensure compliance with WHO regulations, 1-hour data was checked to against the WHO criteria to 

determine whether they could be used to estimate average PM10 concentrations. Daily average 

concentration was calculated for a site only if the hourly concentration data in one day was available 

for at least 50% of the day (i.e., 12 hours in 24 hours). Any days where there was less than 50% of the 

data were excluded. A particularly extreme example of this occurred on the 18th of January 2012, when 

only four Takapuna PM10 measurements from 1 a.m. onwards were available. Even if the WHO 50% 

threshold is met, calculating daily average from midnight to midnight can cause overestimation of daily 

average PM10 concentration when only the evening data are available. The daily average maybe 

underestimated if only early morning/afternoon measurements are available.   Another extreme pattern 

occurred in May 2012, where PM10 measurements for Glen Eden where recorded only from 1 a.m. to 

10 a.m. Days with such missing patterns were identified and excluded from the averaging procedure. 

Several negative PM10 measurements (ranging from -6.00 µg/m3 to -0.1 µg/m3) were encountered 
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during data cleaning. Negative values are an indication that the actual PM10 concentration is below the 

detection limit of the BAM 1020  (Met One Instruments, 2016). If the monitoring device’ background 

offset is adjusted correctly during the initial setup, then the hourly concentration below -4 µg are 

statistically unlikely (Met One Instruments, 2016).  In this thesis these negative values were treated as 

missing values when processing the raw data. In the original AC data file however, these negative values 

were included in the calculation of daily average PM10, and where this occurred it led to underestimation 

of the daily averages.  

Apart from two days with remarkably high readings, BAM standard range is  0 - 1000 µg/m3 (Met One 

Instruments, 2016),  no obviously unusual reading were encountered. Notable events resulted in PM10 

exceedances was identified at Patumahoe during February 2013, the influence of which can be seen in 

the time-series plots of PM10 concentrations presented in Figure 3.2. The PM10 level increased from 

20.01 (µg/m3) at 2:00 a.m. to 404.50 (µg/m3) at 4:00 a.m. The concentration reached its highest of 3056 

(µg/m3) at 6:00 a.m. and then decreased to 44.35(µg/m3) at 8:00 a.m. An online search by the author to 

find the official reports for atypical influences (such as local burning near monitors, bonfires, and 

fireworks) did not provide any information to identify a possible cause for these unusual readings. These 

later measurements were considered in the explanatory data analysis presented in this thesis but were 

treated as outliers in the modeling approaches and models. Two relatively continues high measurements 

(449 µg/m3 and 329 µg/m3) were observed at the Takapuna site in March 2011. During 2011 the sports 

fields around the Takapuna monitoring station were substantially redeveloped and this may be the cause 

of these hourly outliers. Davy (2017) noted the effect of these field development activities in the source 

contribution data when reporting on a source apportionment study. 
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Figure 3.2: Final description of processed PM10 datasets. Daily average PM10 concentration in 
µg/m3 by year for each site. Notable exceedance at Patumahoe highlighted (red circle). Red bar in 
Henderson plot indicates a period of missing data. 

3.3 Exploratory Data Analysis  

PM10 Concentrations 

Site-specific summary statistics and temporal variation of PM10 concentration over the period of 

2011-2016 are shown in Figure 3.3. Each graph shows the median, 25th and 75th percentiles, 

concentration ranges within two standard deviations (indicated by whiskers), and extreme values 

(indicated by circles). Peak PM10 events are classified as those that were higher than 60% (30 µg/m3) 

of the National Environmental Standards (NES) 24-hour average.  
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Figure 3.3: Annual distribution of 24-hour average PM10 (µg/m3) concentration (2011-2016).
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Within the study area daily 24-h average PM10 ranged from 1.05 μg/m3 to 277.85 μg/m3 (Patumahoe in 

the year 2013). The mean and standard deviation of PM10 concentrations were overall higher in Penrose.  

During the study period, in the year 2013, a highest PM10 daily average of 277.85 μg/m3 was observed 

at the rural area of Patumahoe. The second highest daily average of 59.86 μg/m3 was observed at 

Pakuranga during 2012.  Descriptive statistics for PM10 concentration are summarized in Table 3.1. 

Table 3.1: Descriptive statistics for daily average PM10 concentration in μg/m3 within the study area, 
(2011-2016). 

 Mean Median Minimum                Maximum NO. Peak  

PM10 Events 

Glen Eden 13.52 12.41 2.99 42.16 14 

Henderson 13.21 12.55 2.98 35.06 1 

Pakuranga 14.91 13.73 3.95 59.86 30 

Patumahoe 11.82 10.97 1.05 277.85 5 

Penrose 15.42 14.85 1.53 44.01 10 

Takapuna 14.92 14.36 4.04 37.3 6 

The annual average concentration for each site was found to be following the NES and WHO prescribed 

standard of 20 μg/m3. The highest annual average of 16.43 (μg/m3) was observed at Penrose for year 

2013 (Table 3.2) 

Table 3.2: Annual average of PM10 concentrations. 

 Year 

 2011 2012 2013 2014 2015 2016 

Glen Eden 13.57 13.84 13.94 13.60 13.2 13.21 

Henderson 12.39 13.58 13.61 13.63 12.94 13.08 

Pakuranga 13.92 15.13 15.39 15.72 14.54 14.71 

Patumahoe 11.32 11.22 12.75 11.93 11.66 12.01 

Penrose 14.91 14.93 16.43 16.07 14.32 15.86 

Takapuna 16.13 15.27 15.25 14.96 13.54 14.4 

The correlation matrix plot of the daily PM10 concentration between the stations is provided in Figure 

3.4 (b) (page 71) showing the estimated Pearson product moment correlation coefficient. The obvious 

feature revealed by this comparison is the large difference in variability between the urban and the rural 

measurements. The variabilities are shown by the color, width, and direction of the ellipses in all 

subplots. A lower spatial variability is observed between Takapuna and Henderson sites.  The 
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corresponding results for the winter (Jun-August) daily PM10 averages in Figure 3.3(b) are also very 

similar. 
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Figure 3.4: (a) daily and (b) seasonal, using daily average data, matrix plot of pairwise scatterplot of 
PM10 concentrations (2011-2016). The lower variability the darker the color and narrower the ellipse.  
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Diurnal Analysis 

The highest pollution levels at the study sites were observed during the morning rush hour period (6:00-

10:00 NZST) on weekdays (Figure 3.5 to Figure 3.7). The afternoon (15:00-22:00 NZST) peak levels 

of PM10 concentrations can be due to school pick-ups which now blends into rush hour commuter traffic. 

The solid and biomass fuels from heating is seasonal as well as diurnal.  

The day-to-day pattern within a week indicated that mean PM10 concentration attained its lowest value 

on Sundays. The highest measurements are observed on Wednesdays at all sites except for Glen Eden. 

The highest concentration of PM10 at Glen Eden is observed on Saturdays and can be attributed to peak 

time activities in nearby Ceramco Park Function Center (Council, 2020). The weekly pattern of PM10 

levels is consistent for Penrose, Takapuna, Henderson, and Pakuranga as the emissions at these sites 

are predominantly from motor vehicles on nearby motorways and major roads. Although Takapuna, 

Henderson and Penrose are grouped as ‘Citywide’ background under the influence of traffic and 

industrial activities (Talblot & Crimmins, 2020), their diurnal and weekly analysis of PM10 show less 

similarity between them compared to Henderson and Glen Eden (see Appendix A (1)) therefore Glen 

Eden and Henderson are grouped together for purpose of comparison in Figure 3.5 and Figure 3.6.  

 

Figure 3.5: Temporal (2011-2016) variations in PM10 for Glen Eden and Henderson (the shades are the 
95 % confidence intervals of the mean). 
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Figure 3.6: Temporal (2011-2016) variations in PM10 in Pakuranga, Penrose, and Takapuna, (the 
shades are the 95 % confidence intervals of the mean). 
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Figure 3.7: Temporal (2011-2016) variations in PM10 at Patumahoe rural site (the shades are the 95 % 
confidence intervals of the mean). 

To test the significance of the observed “day effect” and to determine the seasonality given the days of 

the week, a nonparametric Kruskal–Wallis test (K-W) test for significant difference at a 99% confidence 

level was used.  A low p-value indicates a ‘significantly’ different concentration. 

Table 3.3 shows that there is no “day effect” in the daily PM10 concentrations for Glen Eden, Pakuranga 

and Patumahoe. This means that the 24-hour average concentrations of PM10 on Mondays are not 

significantly different than that on Tuesday or any other day of the week. The insignificance of diurnal 

changes in Patumahoe is notable as it is indicative of the absence of local emission sources at the 

background site. In contrast, daily variation of PM10 for Henderson, Penrose and Takapuna is significant 

and suggests that there are local emission sources. As mentioned previously, this local diurnal effect 

can be explained as the result of traffic emissions from nearby major roads and highways. 
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Table 3.3: Kruskal-Wallis test on day of the week on variation of PM10 concentrations (2011-2016). 
Significance is measured at the p < 0.05 threshold. 

Kruskal-Wallis Test 

p-value Remarks 

Glen Eden 0.88 Not significant 

Henderson 0.014 Significant 

Pakuranga 0.13 Not significant 

Patumahoe 0.12 Not significant 

Penrose 4.59e-11 Significant 

Takapuna 2.38e-07 Significant 

Monthly and Seasonal Analysis 

Figure 3.8 depicts daily PM10 variation over the study area, during the study period, with the cold winter 

months (May-August) highlighted by a gray box. The dominant feature of this plot is the obvious 

seasonal nature of the PM10 concentrations, with episodic high levels observed during the cold seasons 

(May-September)/ winter months (June - August) in urban residential sites.  The measurements less 

than or equal to target level of 50 µg/m3 are plotted under the redline.  
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Figure 3.8: Time-series of PM10 (24-hour average) during 2011-2016 in urban area. 

 

Figure 3.9: Time-series of PM10 (24-hour average) during 2011-2016 in rural area. 

Average PM10 concentrations during winter are higher than spring and summer for all urban sites 

(Figure 3.10-11). The instances surpassing the prescribed limit of PM10 were the minority. However, 

distinct peaks in PM10 concentrations during winter months (June – August) are detected.   
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Figure 3.10: Monthly distribution of 24-hour average PM10 concentration (2011-2016). 
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Figure 3.11: Seasonal distribution of 24-hour average PM10 concentration (2011-2016). 

Better understanding of dispersion characteristics of PM10 can be achieved by analyzing the data with 

respect to seasons. The peak levels of PM10 concentrations seen in cold seasons, in contrast to the 

summer, in Pakuranga and Glen Eden (Figure 3.12) can be attributed to residential heating with solid 

and biomass fuels. 
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Figure 3.12: Monthly PM10 concentrations for Glen Eden and Pakuranga (2011-2016). 

Peak PM10 concentrations are also evident at Penrose and Takapuna during spring. The summer-winter 

variations can be explained by the relative contributions to PM10 concentrations from different sources 

at different times of the year (Davy, 2017). The monthly and seasonal variations were analyzed using 

the K-W test for significance at a 99% confidence level.  The result of the K-W test (Table 3.4) showed 

that the difference in PM10 concentration in urban areas during both winter and summer months was 

statistically significant at the 99% confidence level. The variation observed at the rural site of 

Patumahoe was not significant during colder seasons (autumn p = 0.163 and winter p ≈ 0.02). This 

result can be explained by the lack of anthropogenic activities at Patumahoe. The variation between 

summer and winter concentrations was significantly different at the 99% confidence level for all sites 

(Table 3.4). 

Table 3.4: Kruskal-Wallis test on monthly and seasonal variation of PM10 concentrations. 

 Monthly p-value 
Seasonal p-value 

spring summer autumn winter 

Glen Eden < 0.01 0.334 < 0.01 < 0.01 0.000 

Henderson < 0.01 0.005 < 0.01 < 0.01 < 0.01 

Pakuranga < 0.01 0.004 < 0.01 < 0.01 < 0.01 

Patumahoe < 0.01 < 0.01 < 0.01 0.163 0.017 

Penrose < 0.01 0.009 < 0.01 < 0.01 < 0.01 

Takapuna < 0.01 0.001 < 0.01 < 0.01 < 0.01 

The yearly variations of daily PM10 concentration shown in Figure 3.3 were also analyzed using K-W 

test for significant difference at a 99% confidence level (Table 3.5). The results show that the variation 

of PM10 concentration is significant at all sites except for Glen Eden. 
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Table 3.5:  Kruskal-Wallis test illustrating the extent of the yearly variations in PM10 concentrations.  

  
Kruskal-Wallis Test 

p-value Remarks 

Glen Eden 0.72 Not Significant 

Henderson 0.000 Significant 

Pakuranga 0.001 Significant 

Patumahoe 0.012 Significant 

Penrose 1.04e-08 Significant 

Takapuna 2.913e-11 Significant 

Meteorological Data 

The lifetime of pollutant residence in the ambient atmosphere and the formation of secondary pollutants 

is typically controlled by wind speed, turbulence level, air temperature, and precipitation as well as the 

rate of source-emission. Wind velocity, wind direction, solar radiation, relative humidity and rainfall 

influence the concentration of TSP and PM10 concentrations in ambient air (Sumesh et al., 2017).  

Meteorological monitoring is undertaken at most PM monitoring sites as local meteorology provides 

insight into pollutant sources, short-term events, chemical reactions, data trends and possible causes of 

exceedances. The meteorological data for most of the sites was obtained from AC in 1-hour resolution. 

However, onsite meteorological data were not available for the Patumahoe station. For Patumahoe daily 

averaged data was collected by author from one of the nearby weather stations owned by the National 

Institute of Water & Atmospheric Research (NIWA), New Zealand through their “CliFlo” online data 

repository (CliFlo, 2015).  

In order to ensure only quality data was utilised in this research, the hourly meteorological data was 

cleaned by discarding obviously unreasonable data points. Mean wind direction was calculated by 

converting the wind vectors into its west-east (𝑢𝑢) and south-north (𝑣𝑣) components using the functions 

provided in the Openair R-package (Carslaw & Ropkins, 2012). 

In Henderson station onsite rainfall was not collected at all. In Takapuna station 85 days of continuous 

rainfall data were missing. In Penrose station 146 days of missing rainfall were observed. In Penrose, 

88 of these days were continuous missing days during 2015, 30 days during December 2013, and 21 

continuous missing days during August 2013. 

There is not a priori basis for excluding rainfall variables from a model because of the complex nature 

of atmospheric processes leading to PM10 formation. Therefore, to overcome the issue of missing 

rainfall data, satellite rainfall measurements were obtained from the National Oceanic and Atmospheric 
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Administration (NOAA) / National Environmental Satellite (NESDIS) website (NOAA, 2014). Data 

files contained one-hourly Hydro-Estimator (Hydro-Estimator, 2014) accumulations ranging from 0 to 

256. A value of zero is a missing value and a value of two means no rainfall.  The rainfall data was

provided on a latitude/longitude grid with 8001 columns and 3111 rows. Data were taken from the

nearest proximity to each of the AC station sites. These values were then converted to rainfall

accumulation in millimeters (mm) using the equation specified by NOAA (STAR, 2014) :

𝑅𝑅 = (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 2) ∗ 3048 

The satellite rainfall measurements were integrated with the AC meteorological dataset after 

conversion of rainfall values and adjustment of UTC time to NZ time.  

Table 3.6 summarizes the availability of the complete dataset of meteorological measurements used in 

this research. A key to the abbreviated meteorological variable names used in the table is provided in 

the table’s footnote. 
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Table 3.6: Summary statistics of available meteorological data after imputation of rainfall missing 
values (2011-2016). 

    Glen 
Eden 

Henderson Pakuranga Patumahoe Penrose Takapuna 

Rain 

  Min 0 0 0 0 0 0 

  Mean 0.03 0.06 0.02 3.43 0.03 0.02 

  Max 1.86 2.15 0.5 79.2 1.29 2.08 

RH 

  Min 52.71 50.6 49.07 40 50.12 49.2 

  Mean 78.24 75.58 74.87 83.39 75.73 74.24 

  Max 98.07 96.7 94.45 100 98.38 95.04 

Temp 

  Min 0 2 4.625 2.3 4.5 5.62 

  Mean 14.82 15.23 16.02 14.29 14.98 15.8 

  Max 23.04 23.88 25.12 22.8 23.12 23.62 

Solar 

  Min 0.45 0.1 0 5.44 0.2 0.24 

  Mean 168.15 175.8 177.6 164.54 172.37 174.61 

  Max 401.27 562.47 448.4 382.87 406.24 436.65 

WS 

  Min 0.38 0.1 0 0 0.24 0.56 

  Mean 2.07 1.7 1.1 2.29 2.42 2.52 

  Max 9.07 6.4 4.33 8.1 6.82 7.42 

WD        

  Min 0.53 0.30 1.69 0 0.06 0.03 

  Mean 192.89 204.56 183.35 152.52 189.80 194.64 

  Max 359.18 359.58 359.37 360.00 359.35 359.89 

Rain: Rainfall (mm), RH: Relative Humidity (%), Temp: Temperature (℃), Solar: Solar 
Radiation (W/m2), WS: Wind Speed (m/s), WD: Wind Direction (°), NA: Number of missing 
data points. 

3.4 Influence of Meteorological Factors on PM10 Concentration 

Partial regression plots were used to assess the usefulness of each meteorological variable once the 

effects of the other variables have been accounted for. Partial regression terms cannot be directly 

interpreted, and it is not easy to find other variables that the terms should be corrected for. Therefore, 

pairwise analysis and Principal Component Analysis (PCA) are considered as methods for parameter 

selection. 
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To assess temporal PM10 variations, daily time series data with information about local meteorological 

data and PM10 concentrations were created for the period of 2011–2016 using the guidelines described 

in section 3.2. Figure 3.13- 3.18 show matrix plots of the daily meteorological variables against the 

PM10 concentrations.  

It is very clear that daily mean temperature has a negative exponential relationship with the daily 

average PM10 measurements. A study by Zhou et al. (2020) found that precipitation had a significant 

role on wet removal of PM10 in days with low relative humidity (∼60%) and a lesser role in the near 

saturated relative humidity range (90–100%). Similarly, in this study rainfall appears to have some site-

specific predictive ability as shown by the low pairwise Pearson’s correlation coefficients (see Figures 

3.13- 3.181). Based on the matrix plots, solar radiation appears to have limited predictive ability except 

in the case of the Glen Eden site. Temperature is known to affect fuel usage and ambient chemical 

reactions and lower temperature result in higher PM10 concentrations (Czernecki et al., 2016; De Gooijer 

& Hyndman, 2006). In this dataset high PM10 concentrations also appear to correlate with low 

temperature days, that can be due to use of wood burners during cold seasons. The relationship between 

the wind speed and wind direction on PM10 concentrations are site-specific. The more complex effects 

of wind speed and wind direction on PM10 distribution are explored in more detail in section 3.3.3.1.  

 

Figure 3.13: Matrix plot, for Glen Eden (2011-2016), showing the distribution of each variable is on 
the diagonal.  

 
1 Under the diagonal bivariate scatter plots are depicted with a fitted line. Above the diagonal gives the 

Pearson’s pairwise correlation statistic and its significance level, where 𝑝𝑝 − values (0, 0.001, 0.01, 0.05) is 
denoted by the symbols (***, **, *, “.”) respectively. 
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Figure 3.14: Matrix plot, for Henderson (2011-2016), showing the distribution of each variable is on 
the diagonal.  

 

Figure 3.15: Matrix plot, for Pakuranga (2011-2016), showing the distribution of each variable is on 
the diagonal.  
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Figure 3.16: Matrix plot, for Patumahoe (2011-2016), showing the distribution of each variable is on 
the diagonal.  
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Figure 3.17: Matrix plot, for Penrose (2011-2016), showing the distribution of each variable is on the 
diagonal.  

Figure 3.18: Matrix plot, for Takapuna (2011-2016), showing the distribution of each variable is on 
the diagonal.  

3.4.1.1 Wind Speed and Wind Direction 

Wind speed and direction can provide insight into pollutant transport within a region and are typically 

used to measure the relationships between emission sources and pollutant levels (M. A. Elangasinghe, 

2014). Auckland mean wind speeds are relatively high due to Auckland’s isthmus geography and its 

maritime environment. The westerly and southwesterly winds are prevailing, but northeasterly flows 

are also important (Hessell 1988). Bivariate polar plots were used to show the source contributions as 

a function of both wind speed and direction. Wind speeds and directions were vector averaged using 

the R’s Openair package. For the readers reference, the vector averaging process adopted can be found 

in Carslaw’s work (2012).  

In Penrose, the southwesterly quarter wind direction is predominant (Figure 3.19). Indeed, the wind 

rose for both warm and cold months shows a predominant southwest wind component. In the colder 

season wind speed is lower and the southeast wind component has a greater spread. In the southeast, a 

sheltering effect is observed which may be caused by a nearby electricity substation. 
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Figure 3.19: Penrose wind rose (left); Seasonal wind rose (right) for 2011-2016. 

Figure 3.20: Penrose PM10 concentration (a); rose (b) conditioned by wind speed 2011-2016. 

In Henderson, a southwesterly quarter wind direction is predominant (Figure 3.21 (a)). The result of 

Figure 3.21(a) clearly shows highest PM10 concentrations when the wind is from the westerly directions 

aligning with marine areoles driven in from Tasman Sea.  
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Figure 3.21: Henderson wind rose (a); Seasonal wind rose (b) for 2011-2016. 

The prevalence of southwesterly winds is more significant during spring and winter. During the 

summer, east and northeast wind component are greater than those in other seasons. Figure 3.22(b) 

shows the variation of PM10 by wind speed, showing highest PM10 concentrations occur at the two 

extremes of wind speed. Peak PM10 are highest during cold calm winter days under inversion conditions 

or with a light southerly wind, particularly for anticyclones synoptic conditions.  
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Figure 3.22: Henderson PM10 concentration (a); rose (b) conditioned by wind speed 2011-2016. 

In Patumahoe the dominant wind is from easterly direction (Figure 3.23 (a)). During the summer months 

northeast wind component are predominant. Westerly wind component is weak during summer. The 

winter period has low wind speeds (4.9% calm). Wind directions are more spread from east in autumn. 

The highest PM10 concentrations are observed during occurrences of high wind speed when the wind 

prevails in the westerly directions (Figure 3.24). The high concentration of PM10 observed in Patumahoe 

during warmer months can be attributed to dust and soil sources originating from agricultural and land 

use activities in the area. This conjecture is supported by Davy and Trompetter (2018) who showed that 

the contribution of soil in PM10 concentrations reaches to its lowest during cold seasons. 
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Figure 3.23: Patumahoe wind rose (a); Seasonal wind rose (b) for 2011-2016. 

 

Figure 3.24: Patumahoe PM10 concentration (a); rose (b) conditioned by wind speed 2011-2016. 
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In Glen Eden the predominant wind directions are from the southeasterly and southwesterly quarters 

(Figure 3.25 (a)). During spring, the northwest wind component is predominant while north and 

northeast wind component are weak. During winter wind speeds are low with a greater spread of 

southeast wind directions. The wind rose shows possible sheltering of the monitoring site from wind by 

housing and hills to the northeast (Figure 3.25 (b)). 

 

Figure 3.25: Glen Eden wind rose (a); Seasonal wind rose (b) for 2011-2016. 
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Figure 3.26: Glen Eden PM10 concentration (a); rose (b) conditioned by wind speed 2011-2016. 

Figure 3.26 shows high PM10 concentrations to the northwest which aligns with high wind speeds. It is 

likely that the traffic to the west (Glendale Rd) as well as multi-functional conference center and local 

business activities along the road are contributors to the high PM10 concentrations. Peak concentrations 

are observed during periods of low to moderate wind speeds in Figure 3.26 (b). 

In Pakuranga, the wind direction from the southwesterly quarter is predominant (Figure 3.27). 

Predominant southwest wind component is observed in all seasons. The northwest sheltering effect is 

most likely due to the nearby residential buildings (approx. 2m) and in that direction. 
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Figure 3.27: Pakuranga wind rose (left); Seasonal wind rose (right) for 2011-2016. 

The highest PM10 concentrations are observed in the west and southwest directions under high wind 

speed conditions. Peak PM10 is observable in the southwest direction when calm to moderate winds is 

aligned with Pakuranga highway. Peak levels at the centerline of the polar graph with slow wind speed 

may be due to biomass burning by nearby residential houses in west side of the monitoring station.  

Figure 3.28: Pakuranga PM10 concentration (a); rose (b) conditioned by wind speed 2011-2016. 
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In Takapuna, the wind direction from the southwesterly quarter is predominant (Figure 3.29 (left)). In 

spring west to southwesterly winds are predominant, while during the summer the greatest components 

of winds are originating from the northeast and the southeast (Figure 3.29 (right)). 

 

Figure 3.29: Takapuna wind rose (left); Seasonal wind rose (right) for 2011-2016. 
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Figure 3.30: Takapuna PM10 concentration (a); rose (b) conditioned by wind speed 2011-2016. 

The moderate to strong winds from the west/southwest direction (aligns with the nearby motorway) 

causes the highest concentration observed Figure 3.30 (a). The easterly concentration is more likely 

attributed to emissions from ships operating at Port of Auckland as suggested by Davy (2017). The 

same study by Davy (2017), suggested that the marine aerosol from the Tasman Sea and Pacific Ocean 

are the primary source of PM10 concentration in the west-southwest and east-northeast directions, and 

are associated with incidences of high wind speed.  

3.5 Autocorrelation  

The correlation between values of a process, with itself, at different time points is known as the 

autocorrelation of a random process (Stark & Woods, 2012). A measure of autocorrelation as the mean 

over time is calculated using the auto-correlation function (ACF). ACF is gives the correlation 

coefficient between observations divided by the specified time lags. The Partial Autocorrelation 

Function (PACF) is used to determine the order of the correlation structure.  

The NES target has been specified in terms of a daily average from midnight to midnight. This means 

that evening measurements will run into the next morning. This overlap has the potential to induce 

correlation in PM10 concentrations between neighboring days. To investigate the time-dependent 

correlation of PM10 among neighboring days, site-specific estimation of ACF and the PACF are 

generated and analyzed (Figures 3.31-36). In these correlograms, ACF starts with lag0 (the correlation 

of a value with itself) and PACF starts at lag1 (correlation with the previous day). 



Page | 96 

Figure 3.31: Auto-correlation Function of Glen Eden PM10 

The blue dashed lines represent lag wise 95% confidence interval signifying uncorrelated random 

variables within this limit. Nearby 5% of the estimated autocorrelations are likely to be outside of these 

limits. It is clear from the plots that the PM10 concentrations exhibit moderate positive autocorrelation 

at lag1 (yesterday’s PM10) varying between 0.3-0.6 within the sites. The complete year partial 

autocorrelation is negative but not significant at lag2 in all sites.  

Lag1 for Patumahoe (Figure 3.34) and Pakuranga (Figure 3.33) shows significant autocorrelation 

whereas for the remaining sites this correlation is considered to be borderline in terms of statistical 

significance. The differences observed between the autocorrelation in winter and that of the entire year 

may be due to the variability of meteorological conditions during in winter months. These differences 

are site specific with the lowest differences occurring at Patumahoe (Figure 3.34), Penrose (Figure 3.35) 

and Takapuna (Figure 3.36).  

The lag2 negative correlation in Takapuna, Pakuranga and Henderson during winter suggests that 

today’s concentrations are negatively related to the concentration of two days ago.  
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Figure 3.32: Auto-correlation Function of Henderson PM10 

Figure 3.33: Auto-correlation Function of Pakuranga PM10 
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Figure 3.34: Auto-correlation Function of Patumahoe PM10 

Figure 3.35: Auto-correlation Function of Penrose PM10 
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Figure 3.36: Auto-correlation Function of Takapuna PM10 

Because the PM10 at all this study’s sites all exhibit autocorrelation, PM10 lag variables will be 

considered as potential predictors for the next day prediction (24 hours ahead) in future Chapters.  

3.6 Long Term Trend Analysis 

In this section, the Theil-Sen method (Sen, 1968; Theil, 1950) is used in the assessment of long-term 

trends in PM10 concentrations over the study period (2011-2016). The Theil-Sen estimator is known to 

be unaffected by outliers and tends to yield correct confidence intervals in non-normal data, which is 

the case for the PM10 data used in this study. The analysis of seasonal effects revealed significant 

seasonality therefore the Seasonal and Trend decomposition using Loess (STL) is applied prior to trend 

analysis. The Theil-Sen estimate of the slope is calculated as the median of all the slopes between all 

pairs of points. Ignoring mild autocorrelation (as reported in the previous section) would tend to give 

an optimistic impression of uncertainties. To overcome this issue, bootstrap simulations were carried 

out to account for autocorrelation. The estimator is nonparametric, which means that it does not draw 

from any probability distribution.  

Trends in PM10 at the stations are presented in Figure 3.37 to Figure 3.41. The plots show the 

deseasonalised monthly PM10 concentrations. The solid red line shows the trend estimate. The 99.5% 

confidence intervals for the estimated trend using resampling methods are shown using dashed red lines. 



 

Page | 100  

 

The ∗∗∗ star symbols appearing next to a trend estimate, shown in green text at the top of the graph, 

shows that the trend is statistically significant at 𝑝𝑝 < 0.001. Only Takapuna was found to have a 

statistically significant trend at the 0.001 significance level (Figure 3.42). 

 

Figure 3.37: Deseasonalised monthly PM10 concentration and trend line, Glen Eden. 

Figure 3.37 shows the deseasonalised monthly concentrations of PM10 in Glen Eden. The overall trend 

is negative (-0.13 μg/m3) per year and the 95 % confidence intervals in the slope ranges between -0.29 

to 0.02 μg/m3/year.  

 

Figure 3.38: Deseasonalised monthly PM10 concentration and trend line, Henderson. 
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A slight upward trend is observed in Henderson (Figure 3.38). The results found in this research agree 

with a source apportionment study at the Henderson site that also noted an increase in PM10 up until 

2013. This increase was credited to an increase in biomass burning activities and vehicle emissions 

(Davy et al., 2017).  

 

Figure 3.39 : Deseasonalised monthly PM10 concentration and trend line, Pakuranga. 

The trend analysis for Pakuranga (Figure 3.39) shows no significant increase in PM10 concentrations 

during the study period. 

 

Figure 3.40: Deseasonalised monthly PM10 concentration and trend line, Patumahoe. 
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The rural site of Patumahoe, located in far south of the Auckland region, shows isolated peak PM10 

incidences but overall, the trend is not notable.  

 

Figure 3.41: Deseasonalised monthly PM10 concentration and trend line, Penrose. 

The trend at Penrose was not statistically significant (Figure 3.41). Decreases in contributions from 

motor vehicles, in secondary sulphate, and marine aerosol has been observed for 2007-2013 (Davey et 

al., 2017). However, the trend line from 2012 to late 2013 is almost unchanged but a slight increase can 

be seen from late 2013 onward (Figure 3.41). 
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Figure 3.42: Trends in PM10 concentrations at the Takapuna site (statistically significant at the 
99.9% confidence interval) 

Figure 3.42 shows the deseasonalised monthly mean concentrations of PM10 in Takapuna. There is a 

significant (at the 0.001 level) downward trend in PM10 concentrations. The increasing trends seen at 

all sites in this work except for Takapuna disagrees with the findings of the report by (Talbot et al., 

2017). This discrepancy could be due to their initial data processing and averaging processes which is 

likely to have resulted in an underestimation of their 24-hour daily average. Another possible 

contributor is the difference in the duration of observations used. However, the trend analysis result 

from this thesis’s work agrees with Davy et al. (2017) who reported an increasing trend in PM10 

concentrations which they attributed to an increase in biomass burning over the Auckland region. This 

research, while also extending the study period, confirms and gives weight to the findings of Davey et 

al. who explored data for a shorter period of PM10 concentrations at five of the six Auckland monitoring 

sites.  It should be noted that although these trends were not statistically significant at the 0.001 

threshold, a general upward trend in five stations is also visible in our study. The Takapuna PM10 

monitoring site was the only site to exhibit a downward trend.  

3.7 Conclusion 

In Auckland six monitoring stations continuously collected both atmospherics (same location or nearby 

stations) and PM10 concentration during 2011-2016. PM10 concentration was collected on hourly basis 

and were averaged from midnight-midnight by AC for analytical purposes. As part of data cleansing 

and exploration, it was found that the 24-hour average data does not comply with WHO regulations for 

estimating the average value of air pollutant concentration. It was observed that there were 20 days of 
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continuous missing data for Henderson during 2015. The number of peak PM10 events, those that were 

higher than 60% (30 µg/m3) of the NES 24-hour average, ranged between 1 (Henderson) to 30 

(Pakuranga) days amongst the monitoring sites. The 24-hour limit of 50 µg/m3 was breached twice in 

Pakuranga (2012 and 2013) and once in Patumahoe (2013). The six monitoring stations used in this 

study have the geographical characteristics of urban residential, urban industrial, urban 

traffic/residential and rural/residential. A large difference in variability between these stations was 

observed using an estimated Pearson product moment correlation coefficient, showing a distinct 

correlation (84%) between Henderson and two other stations, namely Takapuna and Glen Eden. 

Patumahoe had the lowest correlation coefficient with other stations that can be explained by its 

rural/residential background. The lifetime of pollutant residence in the ambient atmosphere and the 

formation of secondary pollutants is typically controlled by atmospheric parameters.  

There was a large amount of missing rainfall data for Henderson, Takapuna, and Penrose stations. There 

is not a priori basis for excluding rainfall variables from a model therefore satellite rainfall measurement 

for missing instances were obtained from the NOAA / NESDIS website.  

High negative correlations between temperature and PM10 concentration were observed for all stations 

during colder months that can be attributed to use of wood burners. This was in alignment with 

previously reported findings of the effect of temperature on PM10 concentrations due to use of fuel usage 

and ambient chemical reactions (Czernecki et al., 2016; De Gooijer & Hyndman, 2006). In this dataset 

high PM10 concentrations also appeared to correlate with low temperature days, that can be due to use 

of wood burners during cold seasons 

A study by Zhou et al. (2020) found that precipitation had a significant role on wet removal of PM10 in 

days with low relative humidity (∼60%) and a lesser role in the near saturated relative humidity range 

(90–100%). In this study, Auckland rainfall appeared to have some site-specific predictive ability. This 

could be due to low variability of rainfall in these stations.   

Based on the matrix plots created for this research, solar radiation appears to have limited predictive 

ability except in the case of the Glen Eden site. 

Polar plots of wind direction and speed were created and analyzed with respect to PM10 concentration. 

In Penrose, the southwesterly quarter wind direction was found to be predominant causing high 

concentration of PM10 at southwest of this station. In Henderson, a southwesterly quarter wind direction 

is predominant showing highest PM10 concentrations when the wind is from the westerly directions 

aligning with marine areoles driven in from Tasman Sea and Pacific Ocean. The highest PM10 

concentrations in Patumahoe are observed during occurrences of high wind speed when the wind 

prevails in the westerly directions. In Glen Eden, high PM10 concentrations to the northwest was aligns 
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with high wind speeds. In Pakuranga, peak PM10 is observable in the southwest direction when calm to 

moderate winds is aligned with Pakuranga highway. In Takapuna, the moderate to strong winds from 

the west/southwest direction (aligns with the nearby motorway) causes the highest concentration 

observed. The easterly concentration is more likely attributed to emissions from ships operating at Port 

of Auckland as suggested by Davy (2017). The same study by Davy (2017), suggested that the marine 

aerosol from the Tasman Sea and Pacific Ocean are the primary source of PM10 concentration in the 

west-southwest and east-northeast directions, and are associated with incidences of high wind speed.  

The NES target has been specified in terms of a daily average from midnight to midnight. This means 

that evening measurements will run into the next morning. To investigate the potential of this overlap 

in inducing correlation in PM10 concentrations between neighboring days, site-specific estimation of 

ACF and the PACF were generated and analyzed. As a result, PM10 at all this study’s sites exhibited 

autocorrelation, suggestive of using PM10 lag variables for next day prediction. 

Increasing trends seen at all sites in this work except for Takapuna disagrees with the findings of the 

report by (Talbot et al., 2017). This discrepancy could be due to their initial data processing and 

averaging processes which is likely to have resulted in an underestimation of their 24-hour daily 

average. Another possible contributor is the difference in the duration of observations used. However, 

the trend analysis result from this thesis’s work agrees with Davy et al. (2017) who reported an 

increasing trend in PM10 concentrations which they attributed to an increase in biomass burning over 

the Auckland region. This research, while also extending the study period, confirms and gives weight 

to the findings of Davey et al. (2017) who explored data for a shorter period of PM10 concentrations at 

five of the six Auckland monitoring sites.  It should be noted that although these trends were not 

statistically significant at the 0.001 threshold, a general upward trend in five stations is also visible in 

our study. The Takapuna PM10 monitoring site was the only site to exhibit a downward trend.  

As Auckland is a growing city in terms of population and density as well as the road traffic therefore 

the number of people exposed to locally emitted particulate matter will increase. For 2011-2016, most 

sites within the Auckland airshed complied with the NES-AQ requirement of one or fewer exceedances 

of the 24-hour average PM10 standard per year with the exception Pakuranga site during 2015. Given 

the number of days with short-term peak PM10 concentrations, there are possibilities of breaching the 

exceedances limits to happen. Therefore, efforts to reduce the PM10 peaks should be taken by reducing 

the use of wood/coal burners as well as introducing Clean Car standards to reduce the traffic related 

emissions.   
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Chapter 4  TIME SERIES ANALYSIS OF PM10 CONCENTRATION 

A general approach to time series analysis is provided in this Chapter to form the foundation for in the 

work presented in the remaining chapters. In this Chapter, the concept of dependence and stationarity 

is introduced prior to time series analysis and modeling approaches. Section 4.2 introduces details of 

the challenges encountered for time series where the seasonality is complex with multiple levels and 

reviews the relevant literature in the area. It should be noted that spatial features are not considered in 

the work presented in this Chapter, this work only investigates the effect of time on PM10 concentrations. 

The effect of time and space will be investigated in Chapter 6.   

4.1 Introduction 

Time series analysis aims to detect the nature of an event described by the structure of observations, 

and forecasting (StatSoft, 2013). To analyze characteristics of a time series (such as trend, seasonality 

and cycles) quantitative methods can be used (Wang & Chaovalitwongse, 2011). Linear Regression and 

Artificial Neural Networks (ANNs) are categorized as causal quantitative methods, where predictions 

are made using relevant influential factors. Moving Average (MA), Exponential Smoothing (Wang, 

2012) , Box-Jenkins (Box & Jenkins, 1990), State Space (De Gooijer & Hyndman, 2006) and Spectral 

Analysis, (Wang, 2012) are categorised as Non-causal methods.  

Since the time series of PM10 investigated in this research have complex seasonality (Section 5.6.5) it 

is necessary to explore recent, novel models that are designed to cope with such complexity. Thus, 

Section 4.7 of this Chapter describes in detail two new forecasting models, Harmonic Regression and 

TBATS, for seasonality complex time series. Performance of these two forecasting methods is 

compared and evaluated in 4.9. 

4.2 ARIMA and SARIMA models in air-pollution forecasting 

Autoregressive Integrated Moving Average (ARIMA) (Box and Jenkins, 1976) models are a type of 

linear model able to represent both stationary and non-stationary time series. Independent variables are 

not used in their construction only the variable of interest. These methods make use of the patterns in 

the time series itself to construct a model and are thus dependent on autocorrelation patterns in the 

model. Unlike most forecasting models, ARIMA models do not assume a certain pattern in the historical 

data of the time series to establish the forecasting model (Adhikari & Agrawal, 2013).  

The Box-Jenkins methodology (Box & Jenkins, 1990) provides a number of procedures for identifying, 

fitting and verifying ARIMA models. Forecasts are then made based on the form of the fitted ARIMA 



 

Page | 107  

 

model. This methodology is comprised of three key stages: identification, estimation and testing, and 

model application (Adhikari & Agrawal, 2013).  

In ARIMA model application of finite differencing of the data points make a non-stationary time series 

stationary. Section 4.3 discusses the concepts of stationarity and non-stationarity of a time series and 

some common approaches to transforming a non-stationary process into a stationary one. The Seasonal 

ARIMA (SARIMA) model was proposed by (Box & Jenkins, 1990) to deal with series containing 

seasonal fluctuations. In the SARIMA model seasonal differencing is used to transform a non-stationary 

model to a stationary one.  

Both the ARIMA and the SARIMA models have been used in air pollution studies to forecast different 

air pollutants. A SARIMA model was used to forecast CO and NO2 concentrations in Malaysia (Ibrahim 

et al., 2009). Another study reported very good performance for short-term predictions of ozone and 

PM10 (72 hours ahead) in Blagoevgrad, Bulgaria using SARIMA models (Gocheva-Ilieva et al., 2014). 

In a follow-on study the same research team developed high performance SARIMA models for 

forecasting concentrations of PM10 and sulfur dioxide (SO2) that included meteorological variables. 

These models were for the town of Kardzhali in Bulgaria and for 24, 48 and 72 hours in advance 

predictions. These researchers reported that SARIMA models built on transformed time series 

demonstrate better statistical performance with a coefficient of determination of up to 88% for SO2 and 

90% for PM10 (Doychin et al., 2015). 

ARIMA models were found to outperform SARIMA models in predicting the Air Quality Index (AQI) 

between 2012-2015 for Kerala in India (Naveen & Anu, 2017).   

A hybrid wavelet-ARMA/ARIMA model was used to forecast a PM10 time series for Taiyuan, China 

(Zhang et al., 2017). The hybrid model was found to effectively reduce forecasting error when compared 

with the ARMA/ARIMA method.  

In an attempt to improve on existing PM forecasts, a deterministic decomposition model was built based 

on CO concentration measurements from time series analysis (Guarnaccia et al., 2014). The 

deterministic model captured the average slope of the CO concentration with low mean error but 

performed poorly in predicting the local variations and fluctuations of CO.  

A more recent study on PM10 modeling and forecasting in Bulgaria, fitted SARIMA models  to historical 

data in an attempt to provide longer term, 120 hours (five days) forecasts (Gocheva-Ilieva & Ivanov, 

2019). The PM10 timeseries had no hourly trend however a 24-hour cycle was detected. The SARIMA 

model which used meteorological factors (wind speed, temperature, and pressure) fitted well to 

historical data (R2= 90%, RMSE=0.114). The R2 for the five-day forecast was reported to be 0.507 
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indicating that only 50% of the variance can be explained when the model is used forecasting. Another 

SARIMA model without meteorological factors showed an R2=0.888 and R2=0.195 for fitting to 

historical data and forecasting five days ahead respectively.  

4.2.1 Definition of the Box-Jenkins methodology, ARIMA and SARIMA Models 

In general, the Box-Jenkins methodology is a framework for the development of ARIMA models. It is 

this methodology which is followed in this research. The four-steps of the iterative procedure specified 

in the Box-Jenkins methodology are (Hu, 2008): 

i. Model Identification: Use the ACF and the PACF of the stationary data series to identify a 

suitable Box Jenkins Model. 

ii. Model Estimation: Use historical data to estimate the model’s parameters.  

iii. Model Diagnosis: Check the adequacy of the model using different diagnostics tests such as 

residuals’ autocorrelation. Find an improved model if necessary and treat it as the new identified 

model.  

iv. Forecasting: Use the final model to forecast future time series values. 

In ARIMA (𝑝𝑝, 𝑑𝑑, 𝑞𝑞) model, 𝑝𝑝, 𝑑𝑑 and 𝑞𝑞 denote the number of autoregressive terms, number of differences 

and number of moving average terms, respectively. The model is comprised of the following three 

components: 

i. Autoregressive (AR) Model: A regression model that uses the dependencies between an 

observation and its lag(s).  

ii. Integrated (I): In non-stationary time series the non-stationary pattern is removed to ensure 

that other correlation structures in the series can be seen prior to model building. This can be 

achieved by calculating the differenced time series. 

iii. Moving Average (MA): An approach that takes the dependency between observations and the 

residual error terms into account.  

The significance of the individual parameters in an ARIMA model are computed using the ACF and 

the PACF of the appropriately transformed/differenced series. According to Table 4.1 given by Janacek 

(as cited by Fauzi Raffee, Abdul Hamid et al. (2018)), a model has an appropriate 𝑀𝑀𝑀𝑀(𝑞𝑞) process if the 

autocorrelations are zero after lag 𝑞𝑞. The model is an 𝐴𝐴𝐴𝐴(𝑝𝑝) if the decay is exponential. In mixed model 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞), correlations will shrink after 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝 − 𝑞𝑞). 
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 Table 4.1: Behavior of the auto and partial correlation function. 

ACF PACF 

𝐴𝐴𝐴𝐴(𝑝𝑝) Exponential decay Zero after lag p 

𝑀𝑀𝑀𝑀(𝑞𝑞) Zero after lag q Exponential decay 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝, 𝑞𝑞) Exponential decay after lag (p-q) Decay after 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝 − 𝑞𝑞) 

With seasonal time series, both non-seasonal and seasonal factors are incorporated in a multiplicative 

model. This process is called SARIMA and is denoted as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑑𝑑, 𝑞𝑞) × (𝑃𝑃, 𝐷𝐷, 𝑄𝑄)𝑠𝑠 where 𝑝𝑝, 𝑞𝑞 and 

𝑑𝑑, are order of AR, MA and difference respectively. 𝑃𝑃, 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷, are 𝐴𝐴𝐴𝐴 order of the seasonal process, 

seasonal MA, and seasonal difference. The number of time steps in a single seasonal period is denoted 

by s.  

Most existing time series models such as the SARIMA and other Error Trend Seasonality (ETS) models 

can typically handle simple seasonal patterns with a small integer-valued period or seasonality at single 

levels. Some methods have been developed for producing forecast models for time series with two 

seasonal patterns (Pedregal & Young, 2008) but these methods are unable to cope with more than two 

seasonal patterns and are not able to accommodate for the nonlinearity found in air pollution time series 

(Foxall et al., 2001; Marra et al., 2003). 

The existing exponential smoothing models (Taylor, 2003; Taylor & Snyder, 2012) perform poorly 

when modeling time series with complex multiple levels of seasonality (De Livera et al., 2011) such as 

exhibited by Auckland’s PM10. The issues seen when adopting such methods for complex seasonal time 

series include :over parameterization, the failure to adapt both non-integer period, and dual calendar 

effects (De Livera et al., 2011). Forecasting problems involving high frequency time series data with 

complex multiple levels of seasonality investigated in literature are related to time series other than air 

pollution such as hourly electricity loads (Baek, 2008; Fan & Hyndman, 2015), gasoline supply, bank 

visitors and electricity demand (De Livera et al., 2011). According to Baek (2008), extremely wide-

ranging intervals are not appropriate for hourly electricity load prediction. The TBATS method 

proposed by De Livera et al., (2011) is claimed to be able to identify and extract hidden seasonal 

components in timeseries and can address the above-mentioned nonlinearity problem by using Box-Cox 

transformation. TBATS models are discussed in section 4.9.2 and used for modeling Auckland PM10 

concentration. To the author’s knowledge TBATS has not been previously applied for modelling of 

PM10 time series with complex seasonalities. 

4.3 Testing for (non)Stationarity 

The assumption of strict stationarity is that the statistical properties of the space-time are constant over 

time or between locations. The assumption of stationarity is often too strict (Storch & Zwiers 2002) and 



Page | 110 

difficult to be confirmed, so second-order stationarity is adopted in this research. Under the second-

order stationary assumption the expected value (mean) of random function is constant over the area and 

its space-time covariance function depends only on the spatial and temporal separation of points 

(Jentsch & Subba Rao, 2015). Since a Gaussian process is entirely specified by its mean and variance, 

the strict stationarity and second order stationarity are similar (Bruno et al., 2009a).  

In practice, many data sets do not meet the second order or intrinsic stationarity assumption. This 

problem is summed up by quote from Thompson (1994, p. VI-74) and still holds today (Thomson, 

1994):  

“Experience with real-world data, however, soon convinces one that both stationarity and 

Gaussianity are fairy tales invented for the amusement of undergraduates”.  

Examples of non-stationary processes are random walks with or without a drift and deterministic trends. 

In a pure random walk, the value observed at time t is the value of last period plus an independent and 

identically distributed (mean of zero) and variance (σ2) white noise stochastic component. A pure 

random walk can be a process of some order, with unit root or stochastic trend. According to Box and 

Jenkins (1990) differencing should be applied to homogeneous nonstationary sequences to make a 

process difference stationary. In this method, the difference of consecutive terms in the series is 

computed. Differencing is typically performed to remove a varying mean.  

A time series that can be made strict stationary by differencing is considered to be difference stationary. 

In time series with a deterministic trend, detrending can be applied to remove the trend and drift. 

However, the variance will continue to go to infinity. Hence, applying differencing will remove the 

trend in the variance. Sometimes a non-stationary series may combine a stochastic and deterministic 

trend at the same time. In such cases, differencing and detrending together can avoid obtaining 

misleading results. The trend in the variance will be removed by differencing and detrending will 

remove the deterministic trend. A random walk with a deterministic trend can be transformed by 

detrending (Durlauf & Peter, 1988). 

There are several methods that can be used to identify the stationarity /non-stationarity of data based on 

either the unit root hypothesis or on the stationary null hypothesis. Unit root indicates that the statistical 

properties of a given series are not constant with time this means the data contains a systematic pattern 

that is unpredictable. Early and pioneering work on testing for a unit root in time series was undertaken 

by Dickey and Fuller (1976). The Dickey-Fuller test is testing if 𝜃𝜃 = 0 in this model of the data (Dickey 

& Fuller, 1976): 
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𝑦𝑦𝑡𝑡 =∝ +𝛽𝛽𝛽𝛽 + 𝜃𝜃𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 Eq. 4.1 

which is written as: 

∆𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1=∝ +𝛽𝛽𝛽𝛽 + 𝛾𝛾𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡       Eq. 4.2 

where 𝑦𝑦𝑡𝑡 is the time series. 

A linear regression of ∆𝑦𝑦𝑡𝑡 against t and𝑦𝑦𝑡𝑡−1 is used to test if γ is nonzero. If γ = 0, then the process is 

random walk and non-stationary. If not and −1 < 1 + 𝛾𝛾 < 1 , then the process is stationary (Holmes 

et al., 2019). The Augmented Dickey-Fuller (ADF) test is the basic autoregressive unit root test 

augmented to accommodate ARMA(p, q) models with unknown orders (Said & Dickey, 1984). The 

null hypothesis in ADF is that a time series 𝑦𝑦𝑡𝑡 , with ARMA structure, is 𝐼𝐼(1) and the alternative 

hypothesis is that it is 𝐼𝐼(0). Large p-values (p-values > 0.05) are indicative of non-stationarity. We fail 

to reject the null hypothesis, if the test statistic is larger than the critical values. The ADF test is also 

known as a difference stationarity test. Using the usual 5% threshold, differencing of the time series is 

required if the ADF p-value is greater than 0.05.  

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al., 1992) tests the null-

hypothesis that the process is stationary around a mean or a deterministic trend (i.e. trend-stationary), 

the alternate hypothesis is that of a first difference stationary time series. Assuming a time series; 𝑡𝑡 =

1,2, . . . , 𝑁𝑁; can be written as summation of deterministic trend (𝛽𝛽𝑡𝑡), a random walk(𝑟𝑟𝑡𝑡), and a stationary 

error (𝜀𝜀𝑡𝑡), using the regression equation (Das & Bhattacharya, 2014): 

𝑥𝑥𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛽𝛽𝛽𝛽 + 𝜀𝜀𝑡𝑡       Eq. 4.3 

The series is trend stationary if the intercept is a fixed element. In a level stationary, the series is 

stationary around fixed level, the null hypothesis would be 𝛽𝛽 = 0 (Wang, 2006). If the test statistic is 

greater than the critical value, then the null hypothesis is rejected; the series is non-stationary. Table 4.2 

shows the alpha values for critical values of 10%, 5% and 1%.  
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Table 4.2: Table of KPSS critical values (Kwiatkowski et al., 1992). 

Critical Values 

0.1 0.05 0.01 

Intercept Only 0.347 0.463 0.739 

With Linear Trend 0.119 0.146 0.216 

4.3.1  Identifying (non)Stationarity in Auckland’s PM10 

The ADF test was applied to the daily PM10 time series using the R ‘urca’ package (Pfaff et al., 2016). 

To include both trend and drift, the ADF test was performed with trend and the test statistics present in 

the time series. The test statistics were compared against the critical values presented in Table 6.3.  

Table 4.3: Critical values for ADF test statistics 

Critical Values 

0.1 0.05 0.01 

tau3 -3.96 -3.41 -3.12

phi2 6.09 4.68 4.03

phi3 8.27 6.25 5.34

Test statistics greater than the critical values indicate that null hypothesis was not rejected. Failing to 

reject the tau3, means there is unit root (𝛾𝛾 = 0) and the process is a random walk. The null hypothesis 

for phi2 implies a unit root (𝛾𝛾 = 0), no trend (𝑎𝑎𝑡𝑡 = 0) and no drift(𝑎𝑎2 = 0). The phi3 hypothesis 

implies 𝛾𝛾 =  𝑎𝑎2 = 0. 𝑃𝑃 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of less than 0.05 means that the phi3 null hypothesis is rejected 

meaning at least one of these two terms are not zero.  

Phi2 tests the hypothesis that there is a unit root, no time trend, and no drift term. The results for the 

phi2 test on daily mean PM10 time series for Auckland by station are presented in Table 4.4. For all 

sites, the phi2 value (T-statistic) is greater than the corresponding 1% critical value of 4.03. Thus, the 

ADF test results indicate that the null hypothesis should be rejected in favor of the alternative hypothesis 

that the time series are stationary around a deterministic linear time trend.  
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Table 4.4: Results of ADF tests on daily PM10 time series. 

Site Type=” trend” 

p-value* T-statistic 

Glen Eden 0.01 36.48 

Henderson 0.01 47.63 

Pakuranga 0.01 42.98 

Patumahoe 0.01 59.57 

Penrose 0.01 48.29 

Takapuna 0.01 53.84 

As discussed in above section unit root is one of the reasons that a process exhibits non-stationarity. 

Therefore, it is possible for a time series to be non-stationary without having a unit root and for the 

ADF to indicate that the time series is trend stationary. 

The KPSS test was performed using R’s VGAMextra package (Miranda & Yee, 2018). The outcomes 

of the KPSS tests on the same PM10 time series (see Table 4.5) indicate that considering the ‘intercept’ 

alone, the time series at all sites are level stationary. The results also show three of the six sites are 

stationary around a deterministic trend while the rest reject the null hypothesis of trend stationary in 

favor of the presence of unit root. 

Table 4.5: Results of KPSS tests on daily PM10 time series. 

 

Site 

Level Stationary Trend Stationary  

p-value T-statistic p-value T-statistic Conclusion 

Glen Eden 0. 24 0.169 0.24 0.081 Trend stationary 

Henderson 0. 23 0.181 0.02 0.184 Unit root 

Pakuranga 0. 24 0.173 0.03 0.168 Unit root 

Patumahoe 0. 32 0.103 0.41 0.053 Trend stationary 

Penrose 0. 10 0.229 0.01 0.22 Unit root 

Takapuna 0. 10 1.53 0.30 0.07 Trend stationary 

For the KPSS test, we failed to reject the null hypothesis of stationarity around a deterministic trend 

where p-values are greater than 0.05 and the test statistics are smaller than the critical value (0.146) in 

Glen Eden, Patumahoe and Takapuna. The null hypothesis is rejected in the Henderson, Pakuranga, and 

Penrose time series where the respective T-statistic is greater than the 5% critical value (Table 4.3).  

After discussing with one of the package authors (Miranda & Yee, 2018), it was concluded that the 

contradictory results observed could be due to the presence of multiple seasonality in time series. A 



 

Page | 114  

 

possible explanation would be that unlike KPSS, the ADF test did not observe the seasonality in the 

time series and thus the ADF results for all stations indicated stationarity when in fact that is unlikely. 

4.3.2 Autocorrelation Functions 

In autocorrelated time series, the time series itself is correlated with its lagged (1, 2, or more periods) 

time series. Computing the sample autocorrelation (covariance) function (sampleACF) of the observed 

data helps to assess the data dependency and to select a model that reflects this dependency. Assuming 

that the data are realized values of a stationary time series {𝑋𝑋𝑡𝑡}, then the sampleACF provides an 

estimate of the ACF of {𝑋𝑋𝑡𝑡}. If the sample ACF, denoted as ( |𝜌𝜌ˆ (ℎ)|), exhibits a slow decay as ℎ 

increases this is an indicator of data containing a trend. Moreover, for data with a significant 

deterministic periodic component, the sampleACF function will show similar performance within the 

same periodicity. As a rule of thumb, the sample ACF and PACF can be used as ACF and PACF 

representative of a stationary process for lags no more than a third of the sample size.  

Figure 4.1 to Figure 4.6 show the empirical autocorrelation plots for the PM10 time series, at each 

station, before any differencing is performed. The autocorrelation analysis, made by means of 

correlograms, suggest that the time series are not independent. It is notable from the ACF plot that 

autocorrelations are significant for many lags. However, the autocorrelations observed at lag2 and above 

maybe due to propagation of the autocorrelation at lag1. This was confirmed by the sharp cutoff 

observed in the PACF plot between lag1 and lag2. The slow decay observed in the ACF plots is sign of 

trend in time series and can be a useful indicator of non-stationary.  

 

Figure 4.1: ACF plot (a) and PACF plot (b) of daily average PM10 in Glen Eden. 
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Figure 4.2: ACF plot (a) and PACF plot (b) of daily average PM10 in Henderson. 

 

Figure 4.3: ACF plot (a) and PACF plot (b) of daily average PM10 in Pakuranga. 

 

Figure 4.4: ACF plot (a) and PACF plot (b) of daily average PM10 in Patumahoe. 
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Figure 4.5: ACF plot (a) and PACF plot (b) of daily average PM10 in Penrose. 

Figure 4.6: ACF plot (a) and PACF plot (b) of daily average PM10 Takapuna. 

Approximately 95% of the sample autocorrelations lie between the ±1.96/√𝑛𝑛 bounds, indicated by 

the dashed horizontal lines in the plots in Figure 4.2 to Figure 4.6, where 𝑛𝑛 is the number of observations 

in the series. Because 95% of the sample autocorrelations are within these bounds the autocorrelation 

observed may be attributed to white noise. However, large, and repeating deviations from the bounds 

is indicative of the need for model to explain the autocorrelation dependency. As a rule of thumb, an 

𝑀𝑀𝑀𝑀(𝑞𝑞) model is recommended if the sampleACF of a stationary series falls between the plotted bounds 

±1.96/√𝑛𝑛 for lags ℎ >  𝑞𝑞, while if the sample PACF of stationary series falls between the plotted 

bounds ±1.96/√𝑛𝑛 for lags ℎ >  𝑝𝑝, then an 𝐴𝐴𝐴𝐴(𝑝𝑝) model is suggested (Brockwell & Davis, 2002). The 

sharp cutoff observed in the PACF plots between lag1 and lag2 and the gradual decrease in ACF values 

in the ACF plots is suggestive that the autocorrelation pattern for Auckland’s PM10 concentrations may 

be explained better by adding 𝐴𝐴𝐴𝐴 terms rather than 𝑀𝑀𝑀𝑀 terms.   
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4.4 Time Series Models 

The combination of one or more of the following typical components can be detected in time series data 

(A. M.  Denham, 2012) : 

1. Trend: a long-term increase or decrease in the mean that may appear in a linear or 

curvilinear form. The data is stationary if no trend is detected. 

2. Seasonal effects: variations with weekly, monthly, or annual episodes. These intra-year 

fluctuations are almost stable year after year with regards to the time, direction, and scale of 

the effect. Seasonality of a time series can reveal normal variations that repeat every year 

(e.g., high exceedance of air pollution during winter months) or calendar related systematic 

effects. 

3. Cyclic changes: variations occurring over a fixed period. Cyclic changes usually last longer 

than a year and are typically due to some physical influence rather than seasonal effects. 

4. Residual or error fluctuations or noise: the unpredictable changes within a time series that 

do not follow a certain pattern. 

To overcome the problem of non-stationarity caused by trend and seasonality, it may sometimes be 

necessary to apply a preliminary transformation to the data to produce a stationary series. This process 

as mentioned previously allows other correlation structures in the data to be identified prior to model 

building. One such method, differencing to remove seasonal patterns has already been discussed in 

Section 4.3. In this case the residual component is the data component that is removed from the data 

during the differencing transformation. Trend or regular pattern in residual indicates features which 

have not been attributed to the other components. 

Trend and seasonality removal can be performed by estimation and subtraction of the trend/seasonal 

components from the data (Brockwell & Davis, 2002). There are two distinct purposes for performing 

such a decomposition of a time series. Firstly, to provide a summary description of time series 

significant features. The second purpose is prediction of the future values by forecasting the residuals 

and then inverting any data transformations, such as differencing, to get a forecast based on the original 

(untransformed) time series. 

Additive models and multiplicative models are two classes of time series decomposition models. The 

decision of which type to use is a critical aspect of performing the analysis of a time series from the 

point of view of calculating the seasonal component. The trend, seasonal, and random components of a 

time series can be described using an additive model as follows (Hyndman, 2018): 
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𝑌𝑌(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) + 𝐶𝐶(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑅𝑅(𝑡𝑡)             Eq. 4.4 

Where 

 𝑇𝑇(𝑡𝑡) is the long-term trend, 

𝐶𝐶(𝑡𝑡) is cyclic changes, 

𝑆𝑆(𝑡𝑡) is seasonal effects and  

𝑅𝑅(𝑡𝑡) is residual. 

The assumption in additive model is that the difference between the trend and observed data is almost 

constant in similar periods of time (months, quarters) regardless of the trend tendency. This model is 

applicable when the seasonal component changes with the variations in the trend. The components are 

linked through multiplication as (Hyndman, 2018): 

𝑌𝑌(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) ∗ 𝐶𝐶(𝑡𝑡) ∗ 𝑆𝑆(𝑡𝑡) ∗ 𝑅𝑅(𝑡𝑡)       Eq. 4.5 

An alternative approach is to transform the data to stabilize the variation in the series over time, then 

use an additive decomposition (Hyndman, 2018).  

A trend can be linear or curvilinear, cycles can have different durations and might appear at irregular 

intervals (Gaynor & Kirkpatrick, 1994). Therefore, modeling seasonality is easier than trend or cycle 

modeling as seasonality has an obvious frequent pattern (Dokumentov & Hyndman, 2015). A trend or 

cycle component may or may not be presented in a seasonal series. The effect of seasonality is assumed 

to be constant when performing a deterministic analysis of a time series. In the stochastic analysis 

method, moving seasonality is considered, thus avoiding the possible under/over correction made by a 

fixed seasonal pattern. Seasonally adjusted series can be useful if the variation in seasonality is not of 

primary interest. A seasonally adjusted time series is calculated by deducting or dividing the seasonal 

effect value of the given period from the initial time series. As a result, the obtained time series 

comprises the trend/cycle and random components.  The next section of this Chapter outlines several 

different approaches to removing seasonality from Auckland PM10 time series. 

4.5 Seasonally Adjusted Time Series 

4.5.1 Decomposition of PM10 for the Auckland area using STL 

The classical decomposition method (Persons, 1919) still forms the basis of many time series 

decomposition methods (Dagum, 2010). In classical decomposition, MA method is used for trend-cycle 
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estimation. However, using this method means that a trend-cycle estimate for a specified number of 

first and last observations are not obtainable. In addition, the trend-cycle estimate has a tendency toward 

over-smoothing the data thus removing possible significant rapid changes in the data. In classical 

decomposition methods it is assumed that the seasonal component recurs in successive years which is 

not a sensible assumption for some longer series (Hyndman, 2018). Unusual observations can occur for 

a period which is relatively short in relation to the overall time series and affect the seasonal patterns 

during that time. For example, a building being constructed would result in not only significant PM10 

readings during groundworks but also higher than normal air pollutant values being recorded from the 

increase in traffic volume due to construction vehicles (Chapter 3 describes such a situation at the 

Takapuna site during construction of new sports facility for a nearby school). Such an affect is a one-

off event over a single period within the time series. Another PM10 example is the reduction in traffic 

related PM10 level during the COVID-19 lockdown, a situation that is different from the norm (Chapter 

3). The classical method is not robust to these kinds of unusual values (Hyndman, 2018).   

The STL method developed by Cleveland et al. (Cleveland et al., 1990) employs an iterative Locally 

Estimated Scatterplot Smoothing (LOESS) to obtain the trend estimate and then a subsequent LOESS 

process to remove a changing additive seasonal component. The LOESS procedure employs a 

nonparametric method to estimate local regression surfaces by fitting a simple model to localized 

subsets of the data and creating a function that explains the deterministic part of the data variation at 

each point. A wider window, an odd number not less than seven, results in a smoother LOESS curve. 

The rate of seasonal change and the trend-cycle smoothness can be controlled by seasonal and trend-

cycle window parameters, respectively. STL only directly supports additive decomposition. In order to 

use STL for multiplicative decomposition first logs of the data must be taken prior to using LOESS, 

and later the components must be transformed back to their non-logarithmic form (Hyndman, 2018). 

4.5.2 Seasonal Decomposition of PM10 for the Auckland area using STL 

STL decomposition of Auckland PM10 data was applied using R’s ‘forecast’ package. The type of 

seasonality was identified as additive as no exponential growth was evident in the time series.  The 

seasonal window was set to be ‘periodic’ and the default of next odd (ceiling((1.5*period) / (1-

(1.5/s.window)))) was used. This window is used because it allows for a periodic seasonal window to 

be used to control the rate of the trend-cycle. This is based on the previous evidence presented in Section 

4.3.1 which points to existence of seasonalities in the Auckland data. 

Figure 4.7 shows the STL decompositions of the Auckland PM10 concentration time series into seasonal 

and local trend components. The expected variation in daily PM10 concentrations during the cold season 

is detected by the seasonal component which exhibits a peak concentration during mid-winter. The 

relative scales of the components are shown by the grey bars on right of each panel representing the 
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same length. Vertical axis scales of each subplot should be used to interpret each plot. The variation 

in the gray bar sizes to different scales of the plots. The large grey bar in trend panels shows small 

variation in the trend component compared to variation in the data. Strong variability was found in 

winter seasonal components (see Figure 4.7, seasonal panels). However, the real seasonal variation is 

expected to be smoother in nature. Similar findings of rapid seasonal variation was reported through 

LOESS decomposition of PM10 data collected from a monitoring station in Christchurch (Scarrott et al., 

2009). In the more complex modeling, which is presented in Chapter 5 this real seasonal component 

will be shown to be captured by the meteorological variables themselves.  
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Figure 4.7: STL decomposition of daily average log PM10 series.
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Distinct peaks of trend are present in the Glen Eden and Henderson 2012-13 time series with a 

substantial trend of decreasing PM10 concentration since 2014 at all the urban study sites. In contrast, 

an increasing trend was observed for Patumahoe rural site, between 2012 and 2015.  Across the entire 

study area PM10 concentrations have notably increased in 2016.  The clustering of the residuals (shown 

on the remainder) can be attributed to the autocorrelation in the PM10 concentration, therefore proving 

the significance of taking this lag structure into account when modeling the trend and testing for 

evidence of trend.  

4.5.3 Seasonal Decomposition via Dummy Variables 

Another method for removing the seasonal factor is the use of dummy variables (Hyndman, 2018). 

Dummy variables are categorical variables and are most commonly used in conjunction with regression 

analysis methods. Dummy variables are used to separate data into mutually exclusive classes for 

example weekday vs weekend day.  

4.5.4 Seasonal Decomposition using Fourier Terms 

Fourier terms can be used as an alternative to seasonal dummy variables, especially for long seasonal 

periods. Based on Fourier’s theory a periodic function can be approximated using a series of sine and 

cosine terms of the right frequencies (Emmanuel Hernández Mayoral, 2017). Periodic seasonality with 

seasonal period of 𝑚𝑚, can be handled using pairs of Fourier terms (Hyndman, 2018):  

𝑥𝑥1,𝑡𝑡 = sin �
2𝜋𝜋𝜋𝜋
𝑚𝑚

� , 𝑥𝑥2,𝑡𝑡 = cos �
2𝜋𝜋𝜋𝜋
𝑚𝑚

� , 𝑥𝑥3,𝑡𝑡 = sin �
4𝜋𝜋𝜋𝜋
𝑚𝑚

� , 𝑥𝑥4,𝑡𝑡 = cos �
4𝜋𝜋𝜋𝜋
𝑚𝑚

� , 𝑥𝑥5,𝑡𝑡 = sin �
6𝜋𝜋𝜋𝜋
𝑚𝑚

� , 𝑥𝑥6,𝑡𝑡

= cos �
6𝜋𝜋𝜋𝜋
𝑚𝑚

� , 𝑥𝑥6,𝑡𝑡 

Maximum (𝐾𝐾 = 𝑚𝑚/2) pairs of sine and cosine terms are the same as those achieved by seasonal dummy 

variables. 

4.6 Time Series with Complex Seasonality 

Time series with higher frequency, here daily observation of PM10 observations, often exhibit more 

complicated seasonal patterns. Figure 4.8 shows decomposition of the PM10 time series taking multiple 

seasonality in account. There are two seasonal patterns shown in site specific plots, one for the day of 

the week, labeled as ‘Seasonal7’ (the third red panel), and one for the year, labeled as ‘Seasonal365’ 

(the fourth green panel). 



 

Page | 123  

 

 

Figure 4.8: Multiple decomposition of the PM10 time series.
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It is worth noting that the trend has relatively narrow ranges when compared to the other components. 

The weekly seasonality is also weak as result of the insignificant trend. 

4.6.1 Multi Seasonal Adjustment Using Fourier Terms 

To handle multiple seasonality time series, all the frequencies that might be relevant should be specified 

using dummy variables. These seasonalities may be represented through 𝑆𝑆 𝑘𝑘 , 𝑘𝑘 =  1, . . . , 𝑚𝑚. Strong 

seasonality at multiple levels is commonly present in air pollution concentration and road traffic 

volume.  Diurnal fluctuation of meteorological conditions, seasonal fluctuation in solar radiation, and 

human activities cause clear yearly, seasonal, weekly, and daily periodicities in the time series. The 

initial explanatory analysis in Chapter 3 showed daily PM10 concentration exhibiting both a weekly and 

a monthly (winter months) elevation pattern. These patterns are mostly associated with anthropogenic 

resources. In time series with multiple seasonalities, Fourier terms are added for each seasonal period 

(see Section 4.7).   

4.7 Trend Modeling without Meteorological Variation 

The consistency in air pollution rates rising over previous years is a concern for environmental and air 

quality management. Trend results which provide a reliable uncertainty estimation and are able to be 

clearly communicated are vital for proper management of environmental planning. In this section, the 

aim is to look for evidence of trends in the daily PM10 concentrations and to explore the possible sources 

of uncertainties. The idea behind this exploration is to analyze possible trends in PM10 concentrations, 

prior to capture the meteorological impacts on the PM10 concentrations (Chapter 5) which is a rather 

complex process.  

There are several statistical modeling techniques with parametric and nonparametric tests for trend 

detection and analysis. The use of these tests supports the interpretation of the results among existing 

uncertainties predictions (Zuma-Netshiukhwi et al., 2013). 

Trend estimation is a complex approach as it is greatly influenced by the characteristics such as 

persistence and data irregularities in form of ties (Kisi & Ay, 2013). Parametric approaches such as 

Ordinary Least Squares (OLS) regression requires assumptions of normality in the distribution of 

residuals, no heteroscedasticity or autocorrelation, and a linear relationship to be valid. The assumption 

of no autocorrelation is frequently violated in time series analysis using OLS regression, which affects 

statistical inference through underestimating the standard errors, and hence the confidence intervals. 

The non-normal distribution of PM10 data could therefore lower the accuracy of the parametric test 

results.  
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There are two data-related assumptions that underlie nonparametric trend tests. Firstly, data point 

occurrences are assumed to be independent and identically distributed over time. Ties and degrees of 

persistence in time-series data can falsify this assumption which in turn influences the test statistic 

variance. Like the effect of anti-autocorrelation, increases in the data ties reduces the variance of the 

test statistic. The commonly used model to address the influence of short-term persistence on trend is 

the lag1 autoregressive 𝐴𝐴𝐴𝐴(1) process (Yue et al., 2002). Secondly, the collected data points should 

hold the characteristics of the population. Insufficient sampling coverage, results in trends that are very 

likely biased and cannot represent the true value of the population of interest (Lang et al., 2019). A 

general process for determining trend assessment provided by NZ-Stats (2019) is based on at least three 

years of sub-annual data points, or at least six years of consecutive annual data points (with maximum 

missing data tolerance of 25%). According to New Zealand’s Environmental Reporting Series, the 

seasonal Theil-Sen test should be carried out if there is at least three years of sub-annual data points. 

The Mann-Kendall (MK) test is only carried out if there are at least six years of consecutive data points 

available. The third test assumption is that the data are assumed to be collected under the “real 

conditions” of the sampling times. Imprints of anthropogenic influences and/or climate variability on 

air pollution levels are violation of this assumption and adds to the complexity of trend analysis in time 

series.  

In New Zealand, a seasonal MK test for monotonic trends was used to detect any underlying trends in 

PM10 time-series data sets for 2016 in the Waikato region (Wilton & Caldwell, 2018). The authors 

discussed that reasonably long historical data is required to confirm or exclude the existence of trend in 

their study area thus their results are limited. 

New Zealand’s Environmental Reporting Series is produced by the MfE and Statistics New Zealand. In 

their 2018 report, one of two methods of parametric or non-parametric statistical approaches was used 

to determine the direction of the PM trends. In their study, the trend analysis on monthly PM10 

concentrations in Auckland’s airshed with varying time ranges was performed using the Theil-Sen 

function (MfE & Stats NZ, 2018). It was reported that the sites with the longer periods of historical data 

showed statistically significant declines in concentrations. The authors argued that the decreasing trends 

at most sites was suggestive of a reduction in home heating contributions to ambient PM10 

concentrations. However, the authors highlighted that their finding disagreed with rising trend from 

biomass burning over the Auckland region (Davy et al., 2017). The latest available report on Auckland’s 

PM10 trend used a de-seasonalised Theil-Sen analysis without taking the autocorrelation into account 

(MfE & Stats NZ, 2018). The results of this report therefore may be limited as the presence of 

autocorrelation in Auckland’s PM10 may effect inference of Theil-Sen estimates. Consensus is required 

on how to make such adjustments (Stats, 2019) – this consensus has yet to be reached at the time of 

writing this thesis. 
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4.7.1 Mann-Kendall (MK) Test 

Rank-based tests are often preferred over parametric approaches in air pollution studies, and the 

exploration of method-related uncertainties are purposefully biased towards Mann Kendall (MK) 

(Mann, 1945; Kendall, 1955) and SMR tests (Onyutha, 2016). The non-parametric MK test is 

commonly used for monotonic trend detection in series of environmental data, climate data or 

hydrological data (Onyutha, 2016). The null hypothesis (H0) is that the data are identically distributed 

and come from a population with independent realizations hence there is no trend or serial correlation 

structure among the observations. The alternative hypothesis, HA, is that the data follows a monotonic 

trend (Pohlert, 2018). The Mann-Kendall test statistic is calculated according to (Mann, 1945; Kendall, 

1955): 

𝑆𝑆 = ∑ ∑ sgn�𝑋𝑋𝑗𝑗 − 𝑌𝑌𝑘𝑘�𝑛𝑛
𝑗𝑗=𝑘𝑘+1

𝑛𝑛−1
𝑘𝑘=1              Eq. 4.6 

with  

sgn(𝑥𝑥) = �
1            if    𝑥𝑥 > 1
0            if     𝑥𝑥 = 0
−1         if    𝑥𝑥 < 1 

    

The mean of 𝑆𝑆 is 𝐸𝐸[𝑆𝑆]  =  0 and  

the variance σ2 is 

𝜎𝜎2 = �𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) − ∑ 𝑡𝑡𝑗𝑗
𝑝𝑝
𝑗𝑗=1 (𝑡𝑡𝑗𝑗 − 1)(2𝑡𝑡𝑗𝑗 + 5)�/18          Eq. 4.7 

where  

𝑝𝑝 is the number of the tied groups in the data set and 

 𝑡𝑡𝑗𝑗 is the number of data points in the 𝑗𝑗𝑡𝑡ℎ tied group.  

The statistic 𝑆𝑆 is approximately normal distributed provided that the following 𝑍𝑍-transformation is 

employed: 

𝑍𝑍 =

⎩
⎪
⎨

⎪
⎧

𝑆𝑆 − 1
𝜎𝜎

         if      𝑆𝑆 > 1

0                 if      𝑆𝑆 = 0
𝑆𝑆 + 1

𝜎𝜎
         if      𝑆𝑆 > 1
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The statistic S is associated with Kendall’s τ: 

𝜏𝜏 = 𝑆𝑆
𝐷𝐷

                  Eq. 4.8 

where:𝐷𝐷 = �1
2

𝑛𝑛(𝑛𝑛 − 1) − 1
2

∑ 𝑡𝑡𝑗𝑗(𝑡𝑡𝑗𝑗 − 1)𝑝𝑝
𝑗𝑗=1 �

1
2�

�1
2

𝑛𝑛(𝑛𝑛 − 1)�
1

2�
           Eq. 4.9 

The trend analysis was applied for the log transformed PM10 of all sites. For the significance level (α = 

0.05), the threshold value is 1.96. A positive (negative) value of Z signifies an upward (downward) 

trend. An absolute Z value higher than 1.96 indicates a significant changing trend (Ye et al., 2015). 

According to (Pohlert, 2018) 𝑆𝑆 and the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 can also be used to detect the direction and 

significance of a trend. The non-parametric Cox and Stuart trend test examines the first third of the 

series with the last third used to detect a monotonic trend. Results of both Mann-Kendall and Cox and 

Stuart trend test are presented in Table 4.6: 

Table 4.6: Mann-Kendall and Cox and Stuart trend test on log of daily PM10. 

Non-parametric Tests 

Mann-Kendall trend test Cox and Stuart trend test 

 s z p-value z p-value 

Glen Eden -3.339800e+04 -1.04 0.30 3.2 0.001 

Henderson 1.053300e+04 0.33 0.74 1.16 0.25 

Pakuranga 4.685400e+04 1.46 0.14 0.70 0.48 

Patumahoe 5.742700e+04 1.78 0.07 0.78 0.43 

Penrose 1.706700e+04 0.53 0.60 0.02 0.98 

Takapuna -2.142820e+05 -6.66 2.765e-11 6.37 1.903e-10 

 

Table 4.6 shows that the absolute Z-value calculated in Mann-Kendall test for the first five stations did 

not reach 1.96, indicating no significant changing trend in PM10. The negative Z-value of Takapuna (-

6.66) with absolute value above the 1.96 indicates a significant decreasing trend. The S and p-value also 

indicate a significant decreasing trend (𝑆𝑆 =  −2.14, 𝑝𝑝 <  0.001) in Takapuna.  

Like results of Mann-Kendall test, the Cox and Stuart test showed p-values smaller than Z-value for the 

first four sites accepting the null hypothesis of no monotonic trend in these sites. With the Z-value of 

6.37 we reject the null hypothesis on a level of 𝑝𝑝 <  0.0001 concluding the existence of a monotonic 

trend in Takapuna. However, the results showed monotonic trend in Glen Eden (𝑝𝑝 <  0.05) which is 

in contradiction with the Mann-Kendal test. The Cox and Stuart test is slightly weaker than the Mann–



Page | 128 

Kendall test (Rutkowska, 2014) as “Positive serial correlation among the observations would increase 

the chance of significant answer, even in the absence of a trend” (Stuart,1955), p.95 ). 

Therefore, the conclusion of a monotonic trend in Glen Eden may not be properly supported. To further 

investigate the existence the trend, a modified MK test is used to deal with autocorrelation in Auckland’s 

PM10 time series.  

4.7.1.1 Modified Mann – Kendall Test with Adjusted Auto Correlation 

In the case of true correlation between the PM10 time series, the Modified Mann-Kendall Test (Hamed 

& Rao, 1998) for serially correlated data should be used in order to account for the existing serial 

correlation in the daily PM10 concentration values. The variance correction approach considers only the 

significant lags of autocorrelation coefficients. In such approach, the trend is removed, and the ranks of 

significant auto-correlation coefficients are used to calculate the effective sample size which is then 

used to adjust the inflated (or deflated) variance of the test statistic. According to Hamed, Rao and Chen 

(2003) only the first three auto-correlation coefficients are used in their proposed function. The 

autocorrelation and partial auto-correlation plots of the time series of daily PM10 concentration time 

series presented in Chapter 4 show a weak autocorrelation for two days and therefore the Modified 

Mann-Kendall test with 95% confidence interval for the slope of the trend is calculated.  The result of 

the Modified M-K test is presented in Table 4.7.  

Table 4.7: Modified Mann-Kendall Test. p-value is the original Mann-Kendall p-value. p-valueb is 
the p-value after variance correction. Decision on significance is based on p-valueb. 

tau p-value p-valueb trend significant? 

Glen Eden -0.016 0.30 0.55 Negative No 

Henderson 0.004 0.78 0.87 Positive No 

Pakuranga 0.021 0.16 0.41 Positive No 

Patumahoe 0.025 0.07 0.34 Positive No 

Penrose 0.007 0.63 0.76 Positive No 

Takapuna -0.097 2.1883e-11 4.309396e-05 Negative Yes 

The reported p-value after variance correction (valueb) shows a significant downward trend for 

Takapuna. Glen Eden also shows a negative but not significant trend. The trend for the remaining sites 

is positive but not significant. 
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4.7.2 Spearman’s Rho  (SMR) Test 

SMR was applied as a comparison to the Mann-Kendall tests. The SMR test assumes that time series 

data follows an identical distribution and are independent. The null hypothesis signifies no trend over 

time; the alternate hypothesis shows existence of an increasing or decreasing trend.  

Table 4.8: SMR tests results for Auckland’s PM10 time series. 

 p-value rho 

Glen Eden 0.31 -0.02 

Henderson 0.72 0.01 

Pakuranga 0.15 0.03 

Patumahoe 0.26 0.04 

Penrose 0.58 0.01 

Takapuna 5.525e-11 -0.14 

The results of SMR test presented in Table 4.8 agrees with MK tests showing a negative trend at the 

Glen Eden and Takapuna sites. The trend however is again only statistically significant for Takapuna 

site only. 

The time series of PM10 investigated in this research was shown in section 4.6 to have complex 

seasonality so a decision was made to explore recent, novel models that are designed to cope with this 

complexity. Thus, Section 4.8 of this Chapter describes in detail two relatively new, at the time of 

writing, forecasting models: Harmonic Regression and TBATS, for complex seasonality time series. 

Performance of these two forecasting methods and a combination model are compared and evaluated 

in discussed in Section 4.9. 

4.8 Time Series with Complex Seasonality 

Harmonic Regression Models: Harmonic regression is referred to as a regression model with Fourier 

terms where the consecutive Fourier terms signify the harmonics of the first two Fourier terms. For long 

seasonal periods, such as daily data that has an annual seasonality (365 days), seasonal differencing 

involves comparing today’s event with last year’s events on the same day even if the seasonal pattern 

is not smooth.  For such time series, a harmonic regression approach can model the seasonal pattern 

using Fourier terms and handle the short-term time series dynamics with an ARMA error. The harmonic 

regression approach has advantages over ARIMA models as it can handle multiple seasonality of any 

length. The number of Fourier sine and cosine pairs (𝑘𝑘) can control the seasonal pattern smoothness so 

that the smaller values of 𝑘𝑘 the smoother the seasonal pattern. The only disadvantage would be the 
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assumption of fixed seasonality over time. However, this drawback is minimal in impact as seasonality 

is usually and remarkably constant in practice, except for long time series (Hyndman, 2018). 

TBATS model is a relatively new state space modeling framework developed by De Livera (2011).  

TBATS uses a Box-Cox transformation to tackle the non-linearity in data. To capture the 

autocorrelation in the residuals TBATS use the ARMA model. In TBATS notation, (w, p, q, φ, {m1, 

k1}, {m2, k2} … {mM, kM}), w and  𝜑𝜑 indicate the Box-Cox and damping parameters, respectively. The 

error is modeled as an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝, 𝑞𝑞) process, the seasonal periods are listed as m1, ..., mM and k 1, ..., k M 

is the number of Fourier terms for each seasonality.  

The accuracy of forecast methods is commonly measured by the Root Mean Squared Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) metrics. In the following experiments these are the 

measures that will be reported. 

4.9 Experiments and Results 

In order to identify the best method for forecasting Auckland’s PM10 concentration the Dynamic 

Harmonic Regression and TBATS model were used. In these experiments the training set contains the 

daily data for the period from 2011 to 2015 for the purpose of model development and training. The 

test set (the data from 2016 is used) is used for model validation. A clear weekly seasonality as well as 

annual seasonality (average annual year length of 365.25 days) was evident in ACF and PACF plots 

reported in Section 4.3. Therefore, the existing frequencies in the PM10 series are 𝑚𝑚1 = 7, 𝑚𝑚2 =

 365.25. 

4.9.1 Dynamic Harmonic Regression with Multiple Seasonal Periods 

Fourier terms are used for each seasonal period as discussed in Section 4.6.1. For the Auckland PM10 

time series, the seasonal periods are identified as 7 and 365.5 therefore the Fourier terms are derived 

as: 

sin �
2𝜋𝜋𝜋𝜋𝑡𝑡

7
� , cos �

2𝜋𝜋𝜋𝜋𝜋𝜋
7

� , sin �
2𝜋𝜋𝜋𝜋𝜋𝜋
365.5

� , cos �
2𝜋𝜋𝜋𝜋𝜋𝜋
365.5

� , … 

The model with an ARMA error structure is fitted. The total number of Fourier terms for each seasonal 

period have been chosen to minimize the AIC. The R code for tuning the number of Fourier terms based 

on lowest AIC values is provided in Appendix B (1). Two variables were used generate Fourier series 

with a period of 7 days and 365.5 days. ARIMA model was fitted using the two variables as external 

regressors and the corresponding AIC value was calculated. Once all the AIC values were obtained, the 

best parameters corresponding to the minimum AIC value was chosen. The value of lambda was set to 
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zero so that the forecasts and prediction intervals stay positive. The effect of both day-of-week and 

national holidays were included by bonding the two regressors as a new parameter. Once the final model 

was fitted to the time series, the fitted model was then trained on the training set. A combination of 

terms from the two variables was used as an external regressor for the prediction using the training data 

as the input as suggested by Denham (2012b). 

The best fit was returned with an ARIMA (1, 0, 1) error, including three autoregressive terms and three 

moving terms, with three Fourier terms corresponding to a period of 7 days and three Fourier terms 

corresponding to a period of 365.5 days. The coefficients and the standard errors (s.e.) for the various 

terms for Glen Eden are shown in Table 4.9 . The results for the other sites are provided in Appendix B 

(2). 

Table 4.9: Estimated coefficients and the standard errors, Glen Eden. 

 coefficients standard errors 

intercept 13.60 0.17 

ar1 0.21 0.05 

ma1 0.28 0.05 

s1_7 0.13 0.20 

c1_7 0.20 0.20 

s2_7 0.08 0.14 

c2_7 -0.12 0.14 

s3_7 0.14 0.09 

c3_7 0.05 0.09 

s1_365.25 -0.64 0.24 

c1_365.25 -3.02 0.24 

s2_365.25 0.01 0.24 

c2_365.25 1.66 0.24 

s3_365.25 0.85 0.24 

c3_365.25 -0.38 0.24 

To test the dependency of the residuals, the Ljung-Box test was performed on residuals. A p value 

greater than 0.05 indicates that the residuals are independent. Results of Ljung-Box test on residuals 

from the Dynamically Harmonic Regression with ARIMA(1,0,1) errors is provided in Table 4.10. The 

p-values returned by the test are all greater than 0.05 (Table 4.10) for all sites and are indication of the 

residuals being independent. 



 

Page | 132  

 

Table 4.10: Results of Ljung-Box test on residuals from Dynamic Harmonic Regression with ARIMA 
(1,0,1) error for the predicted year, 2016. 

 df  p-value 

Glen Eden 350 0.208 

Henderson 353  0.06 

Pakuranga 352 0.40 

Patumahoe 353 0.15 

Penrose 351 0.15 

Takapuna 350 0.23 

Figure 4.9 shows the residual plots of the Harmonic Regression for the Glen Eden site. From the 

residuals plot it can be concluded that some information has not been captured with this model that 

relies solely on Fourier terms as predictors. Using other predictors such as meteorological data might 

improve the results. The plots for the remaining sites are provided in Appendix B (2). 

 

Figure 4.9:Plots of residuals from Regression with ARIMA (1,0,1) error, Glen Eden. 

It can be observed, from the results in Table 4.10, that Harmonic regression using Fourier terms should 

forecast one day ahead with reasonable accuracy for the Auckland sites under investigation due to the 

fact that there are no correlated residuals (Hyndman, 2018). It can also be observed that the values of 

RMSE and MAPE provided by models is low in horizon 1. The forecast accuracy decreases in h=7 

which could be due to the weekly seasonality period not being captured by the model. The accuracy 

improves for h=120 when compared with h=7 but marginally decreases at h=365. This could be due to 

harmonic regression terms that force the seasonal patterns to repeat periodically without changing. 

Two error components RMSE and MAPE were computed to check the out-of-sample performances for 

the different forecasting horizons: h=1, 7, 120 and 365. Table 4.11 shows the comparison between the 
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RMSE and MAPE error components obtained from the site-specific Harmonic Regression models using 

the Fourier terms. 
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Table 4.11: Dynamic Regression measure error for different horizons. 

Glen Eden Henderson Pakuranga Patumahoe Penrose Takapuna 

Horizon RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

1 0.83 7.32 0.33 2.93 0.19 1.60 4.30 42.95 2.67 16.49 3.44 22.10 

7 3.03 29.39 3.23 35.6 2.82 26.21 6.12 92.16 4.78 50.19 4.51 36.46 

120 3.53 27.57 3.24 27.35 3.99 24.80 5.16 39.96 5.90 69.85 3.74 23.23 

365 5.22 32.90 4.49 29.63 6.01 30.57 5.32 46.26 6.05 45.12 3.39 28.13 
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4.9.2 TBATS 

The TBATS models was applied to the PM10 time series and an error analysis was performed. The 

TBATS model was applied to the training data set repeatedly. The obtained TABTS (1, {1,1}, −, {<

7, 3 >, <   365.25, 3 >}) model for the Glen Eden represents 𝑤𝑤 = 1 (no Box-Cox transformation), 

the order of ARMA error is (1, 1), with no damping parameter. The number of harmonics is k1 = 3, 

k2 = 5.  The total number of original seasonal values were 12, calculated as  (2 × (3 +  3)).  

Decomposing the PM10 time series allows inferences to be drawn about patterns of change over time, 

leading to physically interpretable latent processes underlying the data. Decomposition of Glen Eden 

PM10 data by the TBATS model is represented in Figure 4.10. Figures of remaining sites are provided 

in Appendix B (3). 

 

Figure 4.10: Decomposition from TBATS model, Glen Eden. 

The decomposition generated from the TBATS (1, {1,1}, −, {< 7, 3 >, <  365.25, 3 >}) is divided into 

four parts including observed data, trend component, and two seasonality components namely season1 

and season2 representing weekly and yearly seasonality, respectively (Figure 4.10). The pattern of 

weekly seasonal component changes with time, while pattern of yearly seasonal component stays 

relatively more stable. The obtained TBATS models are provided in Table 4.12. 
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Table 4.12: Site specific TBATS models. 

 TBATS Models initial seasonal values 

Glen Eden TBATS (1, {1,1}, -, {<7, 3>,   < 365.25, 3>}) 12 

Henderson TBATS (1, {2,1}, -, {<7, 2>,   < 365.25, 6>}) 16 

Pakuranga TBATS (0.99, {4,0}, -, {<7, 3>,   < 365.25, 3>}) 12 

Patumahoe TBATS (1, {3,1}, -, {<7, 1>,   < 365.25, 4>}) 10 

Penrose TBATS (1, {4,0}, -, {<7, 2>,   < 365.25, 5>}) 14 

Takapuna TBATS (1, {4,0}, -, {<7, 2>,   < 365.25, 7>}) 18 

TBATS models were also applied on training data to generate forecast values for four different 

forecasting horizons as h=1, 7, 120 and 365. Two error components RMSE and MAPE were computed 

to check the test performances for these forecasting horizons.  Table 4.13  shows  the RMSE and MAPE 

metrics obtained from site specific TBATS models for different horizons.  The observed value of RMSE 

and MAPE provided by TBATS model for the shorter forecasting horizon is lower than the RMSE 

value for the longer forecasting period for all sites. The TBATS model accommodated non-integer 

seasonality as well as a lesser number of initial parameter estimation.



Page | 137 

Table 4.13: TBATS measure error for different horizons. 

Glen Eden Henderson Pakuranga Patumahoe Penrose Takapuna 

Horizon RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

1 0.20 1.65 0.15 1.36 0.003 0.02 3.45 34.48 3.30 20.36 3.07 20.33 

7 3.09 30.87 3.19 35.39 2.83 27.07 4.84 71.32 3.79 38.07 4.07 35.99 

120 3.50 27.78 3.18 25.37 4.04 29.59 5.02 33.38 5.92 63.46 3.99 25.33 

365 4.96 33.80 4.48 28.53 5.58 33.30 5.56 41.64 6.44 42.02 5.34 28.58 
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4.10 Conclusion 

Complex seasonality is often present in long time series including Auckland’s daily PM10 

concentration. As traditional forecasting methods fail to handle such complex seasonality, new 

forecasting methods like Dynamic harmonic regression and TBATS become more valuable. In this 

Chapter, both Dynamic harmonic regression and TBATS methods have been applied to Auckland’s 

daily PM10 time series. The analysis exposed both weekly, and yearly multiple seasonality in the 

Auckland PM10 time series. Two error components RMSE and MAPE were studied at different 

forecasting horizon to compare the forecasting accuracies of these two models. The TBATS model with 

a lesser number of parameters was found to be a more accurate technique for forecasting of this data set 

with minimum error when there is the presence of complex seasonality. This could be because 

seasonality can change slowly over time in a TBATS model. Performance of TBATS however was 

subject to the forecasting horizon itself. Considering different forecasting horizons, the result can be 

explained by the ability of the TBATS model containing trigonometric terms to accommodate non-

integer seasonality as well as a lesser number of initial estimate parameters. Thus, it is concluded that 

TBATS is a better technique, when compared with the other time series models considered in this 

research, for forecasting PM10 with complex seasonality at least for the available training and test data 

set used here. Future work in this area should include examining the effect of other predictors such as 

meteorological parameters on PM10 concentration forecasts. 
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Chapter 5  STATISTICAL ESTIMATION AND MODEL BUILDING 

In this Chapter two different statistical model building approaches, that were applied to provide 

statistically rigorous descriptions of the effect of meteorological variables and trends on Auckland’s 

PM10 concentration, are discussed. The model building stages are described and insights into the 

features of the developed models are provided. The assumptions made when building the models are 

outlined and reasonability of violation of the assumptions are discussed.  

5.1 Introduction 

In Chapter 4 trend detection approaches were explored to detect the trend and serial autocorrelation 

features of the PM10 concentration time series, without taking meteorological effects into account. To 

examine this in more depth the work reported in this Chapter looks at Generalized Additive Models 

(GAMs) and Generalized Additive Mixed Models (GAMMs). These methods are alternative analytic 

approaches to the inclusion of autocorrelation and they use nonparametric local smoothing methods 

(Scarrott et al., 2009). Both GAM and GAMMs bypass the requirement of specifying a parametric form 

for seasonal trends and improve the level of robustness against model misspecification. The ability to 

smooth concurrent input variables in order to simulate nonlinear relationships in statistical models 

(Hastie & Tibshirani, 1986), makes GAMs a standard analytic tool in time-series studies for many 

environmental problems (Belušić et al., 2015). GAM has been found to be exceptionally beneficial for 

handling the complex nonlinearity associated with air pollution data (Belusic et al., 2015; Shuang et al., 

2017; Wu & Zhang, 2019). However, there is very little work in the literature that looks at GAM as a 

method for modeling PM10. 

Performance of GAMs was found to be similar to ANN models for predicting Ozone concentration 8-

hours in advance (Schlink et al., 2003). In work more similar to the work presented in this thesis, GAMs 

was employed to model PM10, PM2.5 and coarse PM concentration using different meteorological 

variables (Aldrin & Haff, 2005). The authors noted that both PM10 and PM2.5 concentrations increased 

with decreasing temperature. However, PM10 concentration decreased with an increase in relative 

humidity whereas an increase in RH resulted in increase in PM2.5 concentration. In another study, GAM 

analysis demonstrated that the largest influence on air quality in Melbourne, Australia was attributable 

to local-scale meteorological conditions (Pearce, Beringer, Nicholls, Hyndman, & Tapper, 2011). 

It has only been in recent years, that researchers have tried to use GAMMs to explain air pollution and 

its relationship with epidemiological problems (W. Li et al., 2018). As a result, there is a lack of 

literature reporting the use of GAMMs for studying the short-term health effects of air pollutants, and 



 

Page | 140  

 

in particular of PM10 and PM contributors such as traffic and meteorology. One of the few papers using 

a GAMM model to assess the impact of both meteorology factors and traffic density on ultrafine 

particulate matter (UFP) and PM2.5 concentrations is that of Zwack et al. (2011). They examined these 

phenomena in Brooklyn, New York (USA). A more recent paper details a hybrid model containing both 

a dispersion model and GAMM to estimate contributions of traffic to daily PM2.5 concentration in China 

(Fang et al., 2016). Clearly while the few papers using GAM and GAMMs to model PM promote the 

use of these methods further work is warranted in order to evaluate their general usefulness across 

different geographical areas. 

In this Chapter the influence of meteorology on the distribution of daily PM10 concentration is modelled 

using both GAMs and GAMMs. If consistency in results from these two complex models occurs, then 

it will provide a degree of confidence in any conclusions drawn. These models will be fitted to the 

meteorological dataset explored in Chapter 3.  

5.2 Generalized Additive Models (GAMs) 

GAMs are an extension of Generalized Linear Models (GLMs) where the linear predictor 

incorporates smoothing of the predictor to allow for nonlinear relationships between the predictor and 

the target variable. 

The nonparametric function of l has a structure of (Belusic et al., 2015): 

log(𝑦𝑦𝑖𝑖) = 𝑠𝑠0 + ∑ 𝑠𝑠𝑗𝑗(𝑥𝑥𝑖𝑖𝑗𝑗)𝑛𝑛
𝑗𝑗=1 + 𝜀𝜀𝑖𝑖                 Eq. 5.1 

Where 

 i varies from 1 to n and n is the number of observations,  

j is number of predictors in the model,  

𝑦𝑦𝑖𝑖  is the ith PM10 concentration, 

 𝑠𝑠0 is the overall mean of the response, 

𝑠𝑠𝑗𝑗�𝑥𝑥𝑖𝑖𝑖𝑖� is the smoothing function of the i-th value of covariate and 

𝜀𝜀𝑖𝑖 is the ith residual. 

In generalised models the difference between the observations and the fitted values is measured using 

deviance which is considered to be equivalent to variance in a linear regression (Murase et al., 2009). 
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A GAM model can find and describe the relationships between complex variables using smoothing 

functions (Green & Silverman, 1993), or locally weighted smoothers (LOWESS)  (Cleveland et al., 

1990; Cleveland & Devlin, 1988). The use of splines for non- and semi-parametric modeling  to smooth 

curves, surfaces and non-linear covariate effects is well established (Clifford, 2013). The simplicity of 

splines, their flexibility to include penalties to tune the amount of smoothness, and include periodic 

bases to avoid non-smooth joins in periodic data (Eilers & Marx, 2010) has led to their implementation 

as  ‘basis functions’ for GAM  (Hart et al., 2009; Li et al., 2012; Q. Li et al., 2018). 

The choice of smoothing term in practice does not usually result in any significant change to the final 

GAM outcome (Scarrott et al., 2009). In contrast, the choice of smoothing parameter is critical. In a 

study by Wood (2017) penalized thin plate splines are used as basis functions, as they retain the above-

mentioned advantage of using splines and are computationally efficient. Another study has looked at 

using both a Self-Organizing Map (SOM) and GAM in an attempt to study the influence of synoptic-

scale circulations on some air pollutants including PM10 (Pearce, Beringer, Nicholls, Hyndman, Uotila, 

et al., 2011). In their study, the authors used a sub-set of their data to develop the GAM model because, 

according to the authors, GAM was not practical to implement on their complete datasets. 

In a GAM model, concurvity can be presented between smooths of space or time covariates (Wood, 

2013). A major statistical concern has been raised in the literature in regards to the suitability of GAMs 

concurvity as it can cause overestimation of the GAM model parameters and underestimation of their 

variances (He et al., 2006; Ramsay et al., 2003).   

5.3 Generalized Additive Mixed Models (GAMMs) with Autocorrelated Errors 

The main drawback with GAMs is the assumption of independence between the observations of 

response. Spatially dependent or environmental data may be autocorrelated and using models that 

ignore this dependence can lead to inaccurate parameter estimates (the standard errors of the estimated 

regression coefficients) and inadequate quantification of uncertainty (Latimer et al., 2006). The results 

of the explanatory analysis in Chapter 3 showed a correlation between PM10 concentration and previous 

days’ lag. This observed autocorrelation may be attributed to the meteorological driving factors that are 

also correlated with prior days. Therefore, is reasonable to assume that some correlations exist amongst 

observations from the same feature. According to Lin and Zhang (1999), the over-dispersion and 

correlation issues observed in GAM and GLMM can be overcome by adding random effects to the 

additive predictors. 

Generalized Additive Mixed Models (GAMMs) (Lin & Zhang, 1999) is extension of GAM that contains 

both fixed and random effects hence the term mixed model. 
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“As an innovative and outstanding model in the modern era, the GAMM seems not to be widely 

applied to most areas because of the inconvenience of software support” (Chien, 2009, p. 30).  

5.3.1 Smoothing Term Selection Methods 

Shrinkage methods have received notable interest for variable selection in GAMs and are considered to 

be a valid alternative to more traditional subset selection and stepwise methods. Shrinkage approaches 

have been shown to be more stable when compared with stepwise and selection methods as they do not 

depend on the path chosen through the variable space (Marra & Wood, 2011). Furthermore, variable 

selection in shrinkage procedures is achieved in one step as opposed to the multiple steps required by 

subset selection and stepwise procedures (Hesterberg et al., 2008). The shrinkage approach has been 

proposed as a mechanism for smooth component selection in GAMs and operates by adjusting the 

smoothing penalty. The level of shrinkage component is set in such a way that it has an insignificant 

contribution to the model penalization and only activates when the term is effectively ‘completely 

smooth’ according to the conventional penalty. Another approach is to construct an additional penalty 

for each smoothing function instead of changing the original smoothing penalty. This penalty penalizes 

only completely smooth functions. A term will be eliminated if all the smoothing parameters have a 

tendency to infinity (Wood, 2017a).  

Prediction error criteria or likelihood-based methods can be used to choose the proper smoothness of 

each term. Using Generalized Cross Validation (GCV) saves computational time/effort as it can be 

calculated without preforming cross-validation. Lower values of the GCV score indicate better fitting 

models. GAMs fitted using GCV smoothness selection can suffer from under-smoothing and may 

present local minima that can trap the minimisation algorithms (Wood, 2017b). Alternatively using 

REML of maximum likelihood (ML) has been shown to be much more robust to under smoothing, but 

at computational expense (Wood et al., 2016).  

5.4 Experiments and Results 

5.4.1 Modeling Process 

GAM and GAMM models were used to explain the variation of log transform of the response variable 

(PM10 concentration) using meteorological and trend terms. These model then were used to estimate the 

log transform of PM10 concentration based on selected meteorological and temporal (Julian Day and 

DOW) variables. 

The use of log transformation is sensible for various reasons. The exploratory analysis results in Chapter 

3 revealed the negative exponential impact of some meteorological variables (e.g., temperature) on 

PM10 concentration. Using a log transform will make the relationship closer to linear and make model 
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fitting simpler. The log transformation also changes the additive meteorological effects in linear models 

to multiplicative effects on the transformed scale. In addition, classical statistical inferences are usually 

based on the assumption that observations are normally distributed (Scarrott et al., 2009). The log 

transformation of air pollutants is also used widely in literature for similar reasons (Chaloulakou et al., 

2003; Schlink et al., 2003) 

A regression model was fitted to the available datasets and tested for heteroscedasticity of residuals. 

Figure 5.1 shows plots of residuals vs fitted values and standardised residuals on the Y axis for 

Penrose’s linear regression model. To interpret the plot distribution of points throughout the range of X 

axis values and the shape of red line are observed. Homoscedasticity is indicated if flat red line and a 

completely random, equal distribution of points. The plots in shows a slightly curved red line and 

decrease in residuals as the fitted Y values increase are observed in Figure 5.1 (a) indicating presence 

of heteroscedasticity in Penrose PM10 concentration.  

 

Figure 5.1: Linear regression plots of Penrose PM10 on (a) original scale and (b) log transformed scale. 

The results of both the Breush-Pagan test (Breusch & Pagan, 1979) and the Non-constant Variance 

Score (NCV) test (Cook & Weisberg, 1983) gave a p-value for Penrose that is less than the 0.05 

significance level (Table 5.1) therefore we fail to reject the null hypothesis that the variance of the 

residuals is constant, thereby confirming the graphical inference observed in Figure 5.1(a). Log 
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transformation of PM10 data ensures homoscedasticity and that predicted values are positive after back 

transforming on the original scale. The result of a linear regression model fitted to the log transformed 

Penrose PM10 is presented in Figure 5.1(b). With a p-value of 0.1229, the null hypothesis is supported 

(that the variance of the residuals is constant) and therefore we can infer that the residuals are 

homoscedastic. The plots, for the log transformed model, also show a much flatter line for the 

standardized residuals (bottom-right plot) and more evenly distributed residuals (bottom-left plot) than 

the original untransformed scale model. 

Table 5.1: p-value of heteroscedasticity tests on PM10. 

 p-value  

Breush-Pagan  NCV  

Glen Eden 2.2e-16 3.32e-65 

Henderson 2.12e-16 2.02e-36 

Pakuranga 3.28e-16 2.78e-45 

Patumahoe 1.02e-16 1.19e-18 

Penrose 6.917e-09 2.14e-23 

Takapuna 3.74e-11 1.56e-17 

 

Normal, gamma and Poisson distribution are amongst the most frequently used distributions for 

modeling of air pollution data. Choosing the normal distribution yields constant variance in the response 

errors even in case of increments in PM10 concentration level. Acceptable approximation to normal and 

log normal distribution can be provided by gamma family (Scarrott et al., 2009). The effects of using 

gamma distribution methods instead of normal distributions were investigated in this study, however 

no significant changes in the results were observed. Given the reliability of the inference results in GAM 

and GAMM, it was decided to use the normal distribution models in the research reported herein. 

Smoothly varying trend will capture the variation in PM10 concentrations due to anthropogenic sources 

(Scarrott et al., 2009). Modeling these smooth functional forms can be done through different statistical 

methods. The degree of smoothness can be decided from the data itself (Scarrott et al., 2009). The only 

assumption taken in this study’s nonparametric approach is that the functional form is smooth in nature.  

5.4.1.1 Concurvity Check 

To ensure that a GAM was appropriate for modeling of Auckland’s PM10 concentration, a concurvity 

check was performed using Wood’s method (Wood, 2013). In this method a relative index of 

concurvity, bounded between 0 and 1, is used to measure the degree of identifiability of the covariates. 

In this method an index near to 1 indicates a total lack of identifiability while 0 indicates that there is 
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no concurvity issue and the covariates are identifiable. The concurvity values of the models in this study 

were found to be within the acceptable range (see Table 5.2).   

5.4.1.2 Smoothing Term Selection 

In this thesis’s research, the penalized approach is implemented using the select argument in R’s msgv 

package (Wood, 2017b). In practice the upper limit on the Degrees of Freedom (DF) coupled with a 

smooth term are set using the knots (k or k-1). The choice of 𝑘𝑘 is important, and the default is arbitrary. 

However, the recommendation is to set 𝑘𝑘 to be large enough to contain the envisioned dimensionality 

of the underlying function that is being recovered from the data (Simon N Wood, 2018). Additionally, 

the GCV score of a fitted GAM is used for smoothness selection to avoid the computational cost of ML. 

To overcome the issue of local minima using GCV extreme smoothing parameters were used as initial 

values in optimization and big leaps in smoothing parameters during optimization was avoided, as 

suggested by Wood (2018). 

5.4.1.3 Modeling the Short-Term Effect of Meteorological and Temporal Variables on PM10 

Concentration Using GAM 

In the GAM modeling  procedure, a GAM model is constructed fitting the predictors into formula (1) 

for each station area using the GAM function available in package mgcv (Wood, 2017b) in R. The 

GAM can be mathematically expressed as follows: 

𝑔𝑔(𝜇𝜇𝑡𝑡) =  𝛽𝛽0 + 𝑓𝑓1�𝑥𝑥𝑖𝑖,1� + 𝑓𝑓2�𝑥𝑥𝑖𝑖,2� + 𝑓𝑓3�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,1� + … + 𝑓𝑓𝑝𝑝(𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑓𝑓𝑝𝑝+1(𝐽𝐽𝐽𝐽)                          Eq. 5.2 

Where  

n is the observation number day, 

 𝑔𝑔(𝜇𝜇𝑖𝑖) is the “link” function (here, a log link is used),  

𝑥𝑥𝑖𝑖,𝑗𝑗 are meteorological and lag1 and lag2 predictors,  

𝑓𝑓𝑗𝑗�𝑥𝑥𝑖𝑖,𝑗𝑗� is an initially unknown smooth function of 𝑥𝑥𝑖𝑖,𝑗𝑗 obtained from a thin-plate spline basis set.  

To adjust for seasonal cycles and other temporal trends, a smoothing function of days using natural 

splines with 28 DF as a base model is included. During the sensitivity analysis, different DFs may be 

replaced to find the best knot if necessary. This 28-day range covers the extent of temporal smoothing 

used in most published time-series studies. A second time predictor represented as a smooth function 

𝑓𝑓𝑝𝑝(𝐷𝐷𝐷𝐷𝐷𝐷, 𝑘𝑘 = 7) for the day of the week was included in the model in a similar to manner to that 
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reported in literature (Belusic et al., 2015; Bertaccini et al., 2012). The significance of coefficients for 

the DOW term in each GAM model is presented in section 6.4.2. The EDF value for the smoothing of 

DOW suggests whether DOW should be used as a linear parametric term or not. That is evaluated by 

plotting the fitted smoothed model as reported later in section 6.4.1. The selected meteorological terms 

by GAMs are statistically significant at the 𝛼𝛼 = 0.001 level.  

In this research, the GAMM building process undertaken and reported in this Chapter was designed to 

encapsulate the First-Order Auto-Regressive (AR(1)) error structure into the GAM model given in Eq. 

5.3 and replace the GAM with a GAMM model with auto-correlated errors. The meteorological terms 

were included as fixed effects. An AR(1) with a site specific estimated autocorrelation was included in 

the model to represent for the random effect. Hence, the estimated smooth trend from the GAMM 

captures less variability than the GAM with no AR(1) component.  

5.4.2 Model Validation Method 

Performance of the GAMs and the robustness of the results for the functional relationships between the 

meteorological predictors and PM10 was evaluated by performing a 10-fold cross-validation (Stone, 

1974) for each GAM. Using the “CVgam” function in the R package the cross validation returns two 

measures namely GAMscale and CV-mse-GAM. The GAMscale is the mean of the squares of the errors 

of the original GAM fits. The CV-mse-GAM is the mean of the squares of the errors calculated for the 

10% of data not included in the fit for each of the 10 cross validation GAMs. The CV-mse-GAM is 

expected to be larger than the GAMscale. However,  large differences between these values would 

suggest that the GAMs are over-fitting the data, as the performance is much poorer on the data not 

included in the fit during the cross-validation (McVey et al., 2018). In addition to CV-mse-GAM and 

GAMscale, several other metrics were calculated to assess model performance, their tendency toward 

over/under prediction and overfitting. These metrics are: Root Mean Square Error (RMSE), Coefficient 

of determination (R2), Fractional Bias (FB) used as measure of mean relative bias, Factor of 2 (FAC2) 

used as fraction of data satisfying the FB (Legates & Maccabe, 1999). Index of Agreement (IOA) 

(Willmott et al., 2011) is used to calculate the model’s prediction error degree and for comparing the 

performance of models.  In the case of inconsistency in the results using these measures a majority rules 

approach will be adopted. 

The site specific standard diagnostic plots of GAM are presented in Figure 5.13 to Figure 5.18. The 

plots are interpreted according to Wood’s guidelines (Wood, 2017c). 
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5.4.3 Auckland PM10 GAM Models 

PM10 for each of the six stations was modelled independently using the model given by Eq. 5.4 using 

both meteorological and temporal (DOW and Julian day) variables.  Although Aldrin and Haff (2005) 

collinearity test was exclusively based on correlation coefficients, in this study concurvity of each term 

with the rest of the GAM model is calculated. For all variables, the estimated values were smaller than 

one, with a maximum value of 0.5 found between relative humidity and solar radiation in Takapuna 

(Figure 5.2). Therefore, it was assumed that the meteorological and temporal variables are not collinear, 

and that a GAM method could therefore be used.  

Figure 5.2: Concurvity plot of Takapuna’s GAM model. 

Three related indices of concurvity, ranging between 0 (different) and 1 (totally identical) were 

computed. In all the three indices a smooth term, f, in the model is decomposed into a g part (that lies 

entirely in the space of one or more other terms in the model) and a remainder part that is completely 

within the term's own space. If a large part of f is made up from g then there is a concurvity problem.  

“The indices used are all based on the square of ||g||/||f||, that is the ratio of the squared Euclidean 

norms of the vectors of f and g evaluated at the observed covariate values.” (S. N. Wood, 2018)  

Table 5.2 shows the three indices of concurvity test for Takapuna. The value of the first row (worst, 

Table 5.2) is a pessimistic measure (largest value that the square of ||g||/||f|| could take) showing the 

worst case possible irrespective of data. Temperature has the highest value (0.91) in this row. The 

second row contains the value of (||g||/||f||)2 according to the estimated coefficients which in some cases 

could somewhat underestimate the possibility of concurvity. The third row measures the extent that the 
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g basis can explain the f basis and does have the pessimism or potential for over-optimism of the other 

two. The estimated results show a weak concurvity between the meteorological terms for all sites, and 

therefore are not shown here as they are nearly identical. Table 5.3 shows the parametric component 

(para) and the estimated pairwise concurvity measures between each smooth term for Takapuna’s GAM 

model. The moderate concurvity found between time and two meteorological terms (solar and 

temperature) are likely due to the seasonal trends of these two terms. 
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Table 5.2: Concurvity indices for Takapuna’s GAM model (para is the parametric component and JD is the Julien Day). 

 para Rain RH Solar Temp WD WS DOW JD 

worst 4.7e-19 0.56 0.718 0.813 0.909 0.406 0.533 0.052 0.9 

observed 4.7e-19 0.289 0.668 0.608 0.439 0.253 0.247 0.038 0.3 

estimate 4.7e-19 0.286 0.584 0.699 0.797 0.310 0.405 0.033 0.0 

Table 5.3: Concurvity results of Takapuna GAM model (R: s(RAIN), RH: s(RH), S: s(SOLAR), T: s(TEMP), WD: s(WD), WS: s(WS), DOW: s(DOW), JD: (JD)). 

 para Rain RH Solar Temp WD WS DOW JD 

para 1 1.9e-24 7.1e-26 3.3e-31 9.5e-25 3.2e-31 1.0e-24 1.1e-31 9.9e-25 

Rain 1.0e-19 1 2.2e-01 1.8e-01 2.1e-02 3.8e-02 6.8e-02 8.2e-03 9.0e-03 

RH 2.4e-23 1.3e-01 1 3.3e-01 1.6e-02 6.2e-02   1.9e-02 3.6e-03 2.9e-03 

Solar 2.3e-28 7.2e-02 3.4e-01      1 2.1e-01 5.5e-02   2.7e-02 1.4e-03 3.4e-03 

Temp 3.0e-22 1.1e-02 2.0e-02   2.0e-01      1 7.1e-02   4.0e-02 3.3e-03 7.5e-03 

WD 1.2e-28 3.6e-02 1.4e-01   6.0e-02   8.2e-02      1 8.8e-02 4.0e-03 6.8e-03 

WS 2.1e-22 2.9e-02 3.3e-02   7.3e-02   6.3e-02   3.8e-02       1 6.9e-03 5.3e-03    

DOW 1.0e-27 3.8e-03 2.7e-03   1.5e-03   3.2e-04   1.1e-03   1.1e-03     1 4.1e-05 

JD 3.5e-19 1.3e-01 2.0e-01   5.3e-01   7.3e-01   1.8e-01   1.7e-01 1.1e-03     1 
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The association of PM10 with the meteorological and temporal factors in the GAM modeling was 

examined by individually extracting the partial responses of PM10 to these factors. The estimated partial 

response functions for the site-specific GAM models are presented in Figure 5.3- Figure 5.12. The 

partial effects of each predictor on PM10 concentration are shown by the curves. The dashed lines show 

the 95% confidence intervals. The input variables value is shown by the thick marks on the X axis. The 

error bars are wider for fewer observations. The vertical scales show the original scale. Estimated 

smooth relationships which have been penalized out of the model are blank (e.g., Pakuranga in Figure 

5.3). 

 

Figure 5.3: Estimated smooth relationships with 95% confidence intervals between PM10 and 
temperature. For Pakuranga, blank plot, temperature has been eliminated from the model.  

As depicted in Figure 5.3, the partial response is non-linear, with an apparent decline when temperatures 

increase from 5 °C to 15 °C. All other predictors are constant for the urban sites where temperature was 

selected as a significant covariant by GAM. In contrast, a trend of an increase in partial response with 

an increase in temperature is observed for Patumahoe, a rural site, within the same temperature range. 

The effect of RH on PM10 concentration is obvious for Glen Eden, Henderson, Penrose, and Takapuna 

where concentrations initially increase with rising RH until a RH of around 65% is reached. A decrease 

in PM10 concentration beyond this 65% RH threshold is observed for Henderson and Penrose. This 

decrease at over 65% RH could be the result of the wet deposition of pollutants, in which PM10 reacts 

with water vapor (H2O(g)) in the atmosphere. A similar observation was also found by Klaić et al. 

(2012) for residential Zagreb. As illustrated in Figure 5.4, the positive impact on PM10 concentration is 

clear for extremely high RH values (≥ 80%) at both Glen Eden and Takapuna.   
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Figure 5.4: Estimated smooth relationships with 95% CI are between PM10 and RH. It should be noted 
that RH was not selected as a smoothing term in Pakuranga by GAM. 

All sites except for Pakuranga exhibited the highest PM10 concentrations for wind directions of around 

210º (SSW) and lowest concentrations at around 110º (ESE) (Figure 5.5). As discussed in Chapter 3, 

Penrose with industrial background is located on the southeast of Auckland close to the Southern 

motorway and is subject to pollutant transport by southeasterly winds.  

 

Figure 5.5: Estimated smooth relationships with 95% CI between PM10 and wind direction. 

The decreasing effect of north and northeasterly flows on PM10 concentrations is obvious in all sites. 

Furthermore, the same decreasing effect was also found for easterly flows. The west and south westerly 

patterns were found to have a large impact on the concentrations of PM10, (in agreement with Chapter 

3/wind polar results). When considering the position of the Penrose site with respect to the southern 
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motorway, one would expect the maximum pollutant concentrations to be associated with traffic 

emissions. Similarly, westerly winds should therefore contribute to an increase in concentrations from 

road traffic in Henderson.  

Pollutant concentrations and wind speeds for Pakuranga exhibit mainly a negative correlation clearly 

showing the effect of local ventilation. Maximum PM10 concentrations occur as wind speeds increase 

from 2 ms-1 in the remaining sites demonstrating that PM10 transportation to the sites via advection 

dominates the local ventilation. Similar results were also found for western winds and their influence 

on CO2 over Zagreb (Belusic et al., 2015). This hypothesis was also further confirmed by the analysis 

of the relationships between pollutant concentrations and both wind speed and direction which is 

presented in Chapter 3.3.1.1.  

 

Figure 5.6: Estimated smooth relationships with 95% CI’s between PM10 and wind speed. 

The nonlinear relationship between rainfall and PM10 captured by the GAM model is illustrated in 

Figure 5.7. At weaker rainfall intensities, PM10 concentrations decrease in Glen Eden and Patumahoe – 

this trend could be due to pollutant foraging by rain drops. In contrast, larger rainfall intensities 

corresponded to elevated concentrations. Similar findings were also reported by Aldrin and Haff (2005). 

It is notable that, periods of high rainfall intensity (rainfall of more than 0.4 mm per day) occurred less 

frequently than those of weaker intensity during the study period. The confidence intervals given in 

Figure 5.7 are sufficiently large, suggesting that the curvature in the relationship between rain and PM10 

concentration is true. Takapuna, however, did not exhibit a clear pattern possibly due to the consistently 

low daily mean rainfall values. GAM eliminated rainfall as a factor in the models for Henderson and 
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Pakuranga. This also illustrates the localized (micro scale) effect of weather within Auckland which 

poses challenges for environmental modeling. 

Figure 5.7: Estimated smooth relationships with 95% CI’s between PM10 and rainfall. 

During weekdays, PM10 concentrations show a slight increase across all the available sites, probably 

due to people travelling to work and school (Figure 5.8). PM10 concentrations were almost unchanged 

from Monday (2) to Friday (6). PM10 concentrations declined during weekends and this finding agreed 

with reports by Chaloulakou et al. (2003). The only PM10 levels increasing on a weekend day were 

those on Sunday at Patumahoe. Patumahoe is rural area and is less subject to the effects of commuter 

traffic.  
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Figure 5.8: Estimated smooth relationships with 95% CI’s between PM10 and the day of week (Sunday 
(1) – Saturday (7)). 

 

Figure 5.9: Estimated smooth relationships with 95% CI between PM10 and JD. 

Note for the s(JD) trend model estimated over the whole year, the partial effect plots (Figure 5.9)  show 

a distinct seasonality as higher PM10 are observed during cold seasons. Analysis of the day number 

curve showed the highest PM10 concentration during winter and a minimum level during summer. These 

higher concentrations can be explained by the increase in emissions associated with fuel consumption 

and wood burners during winter (Chapter 3). 
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Figure 5.10: Estimated smooth relationships with 95% CI’s between PM10 and solar radiation. 

It was expected, based on prior studies (for example see (Afzali et al., 2014) and (Mao et al., 2018)), 

that solar radiation would have a negative correlation with PM10. However, a slight increase is observed 

in Figure 5.10 as solar radiation increases to 100. The curve levels off when solar radiation reaches 

around 200. A more obvious second increase is observed as the solar radiation rises above 300. This 

positive correlation may be explained by the windy conditions that are normal for Auckland during 

sunny days (warm season) and the slight positive correlation with wind speed and PM10 concentration 

during some warmer seasons (as discussed in Chapter 4’s section 4.3.2). 
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Figure 5.11: Estimated smooth relationships with 95% CI’s between PM10 and PM10 lag1 

 

Figure 5.12: Estimated smooth relationships with 95% CI’s between PM10 and PM10 lag2 

5.4.3.1 Model Evaluation  

In all sites the normal QQ-plot (A) is close to a straight line which supports the reasonable 

distributional assumption. The variance (B) is virtually unchanged as the mean rises. The histogram of 
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residuals (C) seems consistent with normality. A positive linear relation with a fair deal of scatter is 

presented in response versus fitted values (D). 

Figure 5.13: GAM standard diagnostic plots, Glen Eden. 

Figure 5.14: GAM standard diagnostic plots, Henderson. 
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Figure 5.15: GAM standard diagnostic plots, Pakuranga. 

The Figure 5.16 plots indicate a poor fit as residuals do not follow a normal distribution. 

 

Figure 5.16: GAM standard diagnostic plots, Patumahoe. 
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Figure 5.17: GAM standard diagnostic plots, Penrose. 

 

Figure 5.18: GAM standard diagnostic plots, Takapuna. 

The residual plots for all sites, except Pakuranga, indicate a good fit as the histogram of residuals follow 

a normal distribution. The majority of residuals cluster around zero as evidenced by the diagnostic plots 

(Figures 5.11-5.18). Table 5.4 depicts the result of fitted basis GAMs for each individual site and for 

the entire dataset. The results of the GAMs show that the selected terms explained 47.1% of the deviance 

in PM10 at Glen Eden and Patumahoe. The GAM relating meteorological and lag variables to the total 

daily average PM10 for Pakuranga explained only 23% of the PM10 deviance, and generally has a much 

poorer fit. The result is comparable with finding of Pearce et.al., (2011) with GAM explaining 41.4% 
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of PM10 variation and Hart et.al., (2009) with 49% of PM10 deviance explained. The AIC value obtained 

is used for comparison of the selected terms and should not be used to evaluate model performance. 

 

Table 5.4: Statistical evaluation of the GAM model on the log scaled PM10 concentrations for the 

entire dataset. 

 MAE MSE RMSE MAPE AIC R2 (adj) 
Deviance 

explained (%) 

Glen Eden 0.25 0.10 0.31 0.11 12629.59 0.44 47.1 

Henderson 0.21 0.07 0.26 0.09 11125.09 0.38 45.01 

Pakuranga 0.27 0.12 0.35 0.11 13458.16 0.20 23.00 

Patumahoe 0.24 0.10 0.31 0.11 11495.77 0.38 42.80 

Penrose 0.21 0.07 0.26 0.08 11978.17 0.42 46.12 

Takapuna 0.20 0.07 0.26 0.08 11887.70 0.40 44.10 

Over fitting in the GAMs and the robustness of the results of the functional relationships between the 

predictors and PM10 were tested through 10-fold cross-validation for each GAM. The result of cross 

validation of the fitted GAMs on the test data for all sites is presented in Table 5.5. A comparison of 

the GAM-scale and the MSE values in all GAM fits shows MSE is larger than the GAM-scale value as 

expected. However, both values were found to be very close to each other suggesting that the models 

are not over-fitting. The negative values of Fractional Bias (FB), for Henderson, Pakuranga, Patumahoe 

and Penrose suggest a tendency toward over prediction whereas the positive values indicate under-

prediction. However, the calculated values of FB are small and close to zero confirming that there is no 

systematic tendency to over or under prediction. Patumahoe shows the highest Pearson coefficient and 

IOA of 0.69 and 0.64, respectively. 
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Table 5.5: Statistical evaluation of the GAM model on the log scale for test set. 
 Glen Eden Henderson Pakuranga Patumahoe Penrose Takapuna 

MAE 0.26 0.22 0.28 0.26 0.22 0.22 

MSE 0.11 0.08 0.13 0.11 0.08 0.08 

RMSE 0.33 0.28 0.35 0.33 0.28 0.28 

MAPE 0.11 0.09 0.11 0.12 0.09 0.09 

GAM scale  0.10 0.07 0.12 0.10 0.07 0.07 

FB 2.06E-08 -4.72E-09 -8.26E-08 -5.70E-08 6.08E-08 -6.00E-08 

R2
(adj) 0.43 0.40 0.15 0.47 0.44 0.42 

IOA 0.63 0.62 0.58 0.64 0.63 0.62 

The values of the model performance metrics (Table 5.5) and the graphical comparison (scatter plots, 

Figure 5.19) give a level of confidence in the models’ performances. Figure 5.19 illustrates the site-

specific scatter plots of the predicted versus observed values of PM10 concentrations. The center line 

(1:1) is given to assist with comparison of the GAM with the ideal linear model. The dashed lines show 

the within FAC2 region, the top line is 0.5:1 and bottom is the 2:1 line. The closer the FAC2 values to 

one indicates the closer match between observed and modelled values and therefore better model 

performance (Barmpadimos et al., 2011); (Sayegh et al., 2014). The added Pearson correlation 

coefficients (r) show the strength of the linear relationship between the observed and predicted values. 

For low concentrations, the values fall within the FAC2 region, whereas for higher concentrations 

scattering is more evident.  
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Figure 5.19: Scatter plot of observed and predicted PM10 concentrations using cross-validation. Glen 
Eden (A), Henderson (B), Pakuranga (C), Patumahoe (D), Penrose (E) and Takapuna (F). 
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Figure 5.20: Observed and predicted PM10 concentrations of each model versus time on test dataset, 
Glen Eden. 

 

Figure 5.21: Observed and predicted PM10 concentrations of each model versus time on test dataset, 
Henderson. 

 

Figure 5.22: Observed and predicted PM10 concentrations of each model versus time on test dataset, 
Pakuranga. 
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Figure 5.23: Observed and predicted PM10 concentrations of each model versus time on test dataset, 
Patumahoe. 

Figure 5.24: Observed and predicted PM10 concentrations of each model versus time on test dataset, 
Penrose. 

Figure 5.25: Observed and predicted PM10 concentrations of each model versus time on test dataset, 
Takapuna. 
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Figure 5.20 to Figure 5.25 show observed and predicted PM10 concentrations of each model on the 

test dataset depicting the under-prediction of PM10 at lower values. 

In these GAMs it was assumed that the errors were independent and identically normally distributed for 

inference purposes.  

5.4.3.2 Discussion 

The ACF and PACF presented in Chapter 4 showed that the PM10 concentrations exhibit mild 

autocorrelation. The fitted GAM model assumed the errors are independent and not correlated. The 

residual autocorrelation plots (Figure 5.13- Figure 5.18) of the GAM outlined above suggests that there 

is a fair amount of positive autocorrelation (0.421) in Pakuranga at lag1. This confirms our suspicion 

that there are patterns in the residuals of the model and that these patterns are likely affecting the model’s 

outputs. The lag1 value for the other sites is rather less significant ranging from 0.24-0.32. The lag2 

autocorrelation values are not significant with low values mainly between -0.036 and 0.86 as presented 

in Table 5.6.  

Table 5.6: Estimated auto-correlation value for the residuals of GAM models. 

 𝒓𝒓𝒓𝒓𝒓𝒓 

Lag1 Lag2 

Glen Eden 0.297 -0.012 

Henderson 0.319 -0.002 

Pakuranga 0.421 0.086 

Patumahoe 0.344 0.0578 

Penrose 0.242 0.002 

Takapuna 0.272 -0.036 

The slight observed correlation between neighboring days is probably due to the auto-correlated data 

generating process (midnight-midnight). In addition, there are some lagged meteorological effects 

(which are not currently encapsulated within these models) that might affect the PM10 concentrations 

on subsequent days. As the autocorrelation appears to be rather weak it was decided to neglect it in the 

models at this stage. However, to address this issue a GAMM model is applied where the GAMs are 

coupled with an AR(1) error model within the time series. The ACF plots (presented in Chapter 4) 

suggested that the AR(1) is likely sufficient to capture the remaining autocorrelation.  

The partial effect results presented in section 5.4.2 showed differences between the effects of 

anthropogenic sources (crudely assimilated in the model by temporal variables) and those of 

atmospheric conditions, with the former.  
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To the author’s knowledge, this is the first effort to use GAMs to model PM10 concentration in the 

Auckland airshed, where multiple sources contribute to the observed PM10 concentrations. Further work 

is required to quantify the contribution of traffic sources, being the second largest source for several air 

pollutants in Auckland’s airshed. To do this improved monitoring is needed to provide higher quality 

emission data over the airshed. 

5.4.4 GAMM Model Results and Discussion 

In this study as in recent work investigating PM10 trends in Christchurch  (Scarrott et al., 2009), the 

meteorological and lag PM10 terms in the model are included as fixed effects while the random effect 

component of the model is representative of the AR(1) structure and the smooth trend. The idea is that 

by modeling the time of year (JD) and autocorrelation properly, then we should be in a good position 

to establish whether there is a significant overall PM10 trend.  Similar to the GAM (Section 5.4.2), the 

association of PM10 with meteorological and PM10 lag factors in the GAMMs was examined. The 

individual partial responses of PM10 to these terms were extracted and are presented in Figure 5.26 to 

Figure 5.30. The curves illustrate the partial effects of each predictor on PM10 concentration. The dashed 

lines show the 95% confidence intervals. The error bars are wider where there are fewer observations. 

The vertical scales show the original scale. Estimated smooth relationships which have been penalized 

out of the model are not presented, only those acceptable to the model are shown. 

 

Figure 5.26: Partial responses of PM10, Glen Eden. 
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Figure 5.27: Partial responses of PM10, Henderson. 

 

Figure 5.28: Partial responses of PM10, Patumahoe. 
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Figure 5.29: Partial responses of PM10, Penrose. 

 

Figure 5.30: Partial responses of PM10, Takapuna. 

For all urban sites, a non-linear partial response is depicted with an apparent decline when temperatures 

increase from 5 °C to 15 °C. All other predictors are constant for the urban sites. In contrast, an increase 

in partial response is observed with an increase in temperature, within the same temperature range, for 

the rural Patumahoe site. The effect of RH on PM10 concentration is obvious for Glen Eden, Henderson, 

Penrose, and Takapuna where concentrations initially increase with rising RH up until about 75%. For 

higher RHs, above ~75%, PM10 starts to decline. A negative correlation between PM10 concentrations 

and wind speeds is observed for Pakuranga showing the effect of local ventilation. Maximum PM10 

concentrations occur as wind speeds increase in the remaining sites showing the effect of stronger winds 

is the opposite of that recorded for lighter wind speeds; that is, pollution transport to the site via 

advection predominates over local ventilation. Similar results were also found for GAM. A nonlinear 

relationship between rainfall and PM10 is observed. At lower rainfall intensities, the presence of rainfall 

reduces PM10 concentrations in Glen Eden and Patumahoe. The large confidence intervals suggest that 
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the curvature in the relationship between rainfall and PM10 concentration is real. Takapuna exhibited 

no clear pattern, probably due to the low daily mean rainfall values. Like GAM, GAMM eliminated 

rainfall as a factor in the models for Henderson and Pakuranga. 

5.4.4.1 Model Evaluation and Discussion 

The site-specific standard diagnostic plots of the GAMM models are shown in Figure 5.31. A reasonable 

distributional assumption is suggested by the QQ-plot (A). Variance is nearly constant Plot (B), and the 

residuals histogram (C) seems consistent with normality. Response versus fitted values (D) confirms a 

positive linear relation with reasonable scatter. 

 

Figure 5.31: GAMM diagnostic plots. 

Table 5.7 depicts the result of fitted GAMMs by site. Results shows the selected terms explained 50% 

of the variance in Glen Eden. The GAMM relating meteorological and lag variables to the total daily 

average PM10 for Pakuranga explained only 37.4% of the PM10 deviance.  

Table 5.7: Statistical evaluation of the GAMM model on the log scaled PM10 concentrations for the 

entire dataset. 
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MAE MSE RMSE MAPE R2 (adj) Deviance explained (%) 

Glen Eden 0.23 0.09 0.30 0.10 0.48 50.00 

Henderson 0.2 0.06 0.25 0.08 0.43 44.80 

Pakuranga 0.25 0.10 0.32 0.10 0.36 37.40 

Patumahoe 0.23 0.08 0.29 0.10 0.48 50.70 

Penrose 0.21 0.07 0.26 0.08 0.46 50.00 

Takapuna 0.20 0.06 0.25 0.08 0.47 0.49 

Performance of the GAMMs was evaluated using a 10-fold cross-validation. The statistical evaluation 

of the GAMMs, for all sites, is presented in Table 5.8 and shows the result of cross validation of the 

fitted GAMMs on each site’s testing dataset. The positive values of FB indicate under-prediction. 

However, the calculated values of FB are too small and close to zero indicating that there is no 

systematic tendency to under prediction. Glen Eden shows the highest R2 of 0.48. 

Table 5.8: Statistical evaluation of the GAMM model on the log scale for test set. 

MAE MSE RMSE MAPE R2 (adj) FB 
Glen Eden 0.24 0.09 0.31 0.10 0.48 1.99E-07 
Henderson 0.21 0.07 0.26 0.09 0.40 -7.33E-08
Pakuranga 0.25 0.10 0.32 0.10 0.32 -1.81E-07
Patumahoe 0.23 0.09 0.30 0.11 0.47 -2.1E-07

Penrose 0.21 0.07 0.27 0.08 0.44 -1.9E-08
Takapuna 0.21 0.07 0.26 0.08 0.42 4.0E-05

5.5 Conclusion 

In the GAM/GAMM models (normal family with log link) investigated the mean of the distribution of 

PM10 concentration varied in a log linear form with the meteorological and temporal terms. The GAMM 

model included an AR(1) with a site-specific estimated autocorrelation and explained some of the 

smooth variation in the PM10 concentrations in urban sites. The GAMM’s estimated smooth trend 

captured less variability when compared to that of the GAM. The terms selected by the GAM were 

verified again for the GAMM with an AR(1) component. However, some of the terms that were 

identified as insignificant in the GAMs, were selected for the GAMMs.  

The predictive ability of the GAMM models, developed in this doctoral research, for Auckland’s PM10 

was lower (0.36 < R2 <0.48) than those reported for modeling PM10 in the Northeastern and Midwestern 

U.S. (R2 = 0.58) (Yanosky et al., 2014). The GAM model in this research  (0.20 < R2 < 0.44) was 

comparable to the GAM model (R2 = 0.49) for estimating annual average PM10 concentration in the U.S. 

(Yanosky et al., 2014) using rich dataset of both meteorological and geographical data. The R2 values 

for hourly PM10 GAM models for a few different sites in Oslo by Aldrin and Haff (2005) were reported 
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to have ranged between 0.48 and 0.72. In the Oslo models both meteorological and traffic volume 

variables were employed.  

The relatively poor performance of the GAM model developed in this research when compared to those 

reported by Aldrin and Haff (2005) could be due to lack of geographical and emission information in 

Auckland PM10 models. This data was not available at a matching temporal resolution to provide 

analytical results for this study. However, in the future additional data on the emissions inventory and 

mechanism of conversion and deletions as well as distance to road and land use could be incorporated 

into the model to further investigate their impact on the Auckland PM10 concentrations.
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Chapter 6  SPATIO-TEMPORAL STATISTICS AND MODELS 

This Chapter provides an overview of statistical Spatio-Temporal (S-T) modeling techniques for 

analysis and prediction of continuous S-T PM10 data over the Auckland urban area. Various 

approaches exist for building statistical models to facilitate this analytical process. These 

approaches include techniques for determining model parameters and estimating model outcomes 

in the form of occurrence predictions. This Chapter surveys these methods and conclude with the 

identification of the most suitable or fit-for-purpose approaches and models in the context of this 

research. S-T statistics is a vast field that it cannot be explored in its entirety. Therefore, in this 

study the focus is mainly on data with spatial reference as point, without exploring issues 

associated to the “change-of-support” problem or dealing with S-T point processes. 

This Chapter is structured to reflect the way that statistical modeling in general and S-T modeling 

in particular are typically approached. The first stage of data exploration is presented, and the 

results reported in Section  6.2. S-T statistical models are then reviewed from an introductory 

point of view in Section 6.3. In Section 6.3.2 a deterministic approach on modeling PM10 

concentration is discussed through Inverse Distance Weighting (IDW). IDW is the simplest 

method to implement S-T prediction. Spatial prediction experiments based on basic statistical 

models, those that do not account for S-T structure (linear regression with trend, GLM, and 

GAMs), are subsequently presented in Section 6.3.3. Fitting these simple statistical models to the 

PM10 data using the spatial properties of data helped to reveal potential patterns and check for any 

violation of assumptions.  

In this Chapter, to facilitate connections between the theoretical basis of methods and the models 

developed, the experiments and results are provided at the end of each section after describing the 

relevant method. The models reported in this Chapter were developed using R and MATLAB 

R2020b.  

The results presented in graphical format in this Chapter are for the colder months (May-Aug) 

(year-specific). The choice of colder months was due to the presence during these months of 

higher PM10 variation (discussed in Chapter 3). Since the interpretation of graphs are typical for 

these months, May 2015 was selected as an example as it exhibited more distinct color variations 

making it easier for the reader to interpret. The numerical results for the entire dataset are 

presented as a summary for all years (and months if applicable) in tabular format. The graphical 

results (graphs) are accessible via (Dropbox link) due to high volume of generated graphs (each 

experiment generated (6 years × 12 months = 72) graphs) and practically they could not be 

presented in this thesis in their entirely. 

https://www.dropbox.com/sh/us03189tdbag5wf/AAAr-tVIeZz2f9pNbxbWmXgUa?dl=0
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6.1 Introduction 

While scientists have always been interested in S-T data (e.g., Kepler 1571-1630 ), it is only 

recently, in the last three decades, that statisticians have focused in depth on this area of statistics 

(Cressie & Christopher, 2011). Spatio-temporal statistical properties are ubiquitous in real world 

data and have been recognised as a statistical challenge because of the nature of spatial statistical 

dependence and its associated errors. The issue of spatial dependency was noted by Fisher, a 

pioneer in statistics: 

 “…After choosing the area we usually have no guidance beyond the widely verified fact that 
patches in close proximity are commonly more alike, as judged by the yield of crops, than those 
which are further apart.” (Fisher, 1935, p. 66). 

To overcome errors related to spatial dependence Fisher (1935) introduced randomization into his 

experimental design. This randomization helped to avoid confounding plot and treatment effects. 

The pollution process can be perceived as the realisations of random or stochastic processes in 

geostatistical terms, assuming PM10 is a partial realisation of a S-T random function (De Iaco & 

Posa, 2012), a random process (𝑍𝑍) of PM10 can be written as: 

𝐙𝐙 = 𝐙𝐙{𝐳𝐳(𝐬𝐬, 𝐭𝐭), (𝐬𝐬, 𝐭𝐭) ∈ 𝐃𝐃 × 𝐓𝐓}                               Eq. 6.1 

where  

D ∈ R2 and T ∈ R.  

To accommodate both non-constant spatial and temporal trends, the S-T random function can be 

decomposed into a mean and a residual component (De Iaco & Posa, 2012):  

𝐙𝐙(𝐬𝐬, 𝐭𝐭) = 𝐦𝐦(𝐬𝐬, 𝐭𝐭) + 𝐑𝐑𝐞𝐞𝐞𝐞(𝐬𝐬, 𝐭𝐭)                                           Eq. 6.2 

where  

𝑚𝑚(𝑠𝑠, 𝑡𝑡) is a space time deterministic mean model and 

𝑅𝑅𝑒𝑒𝑒𝑒(𝑠𝑠, 𝑡𝑡) is residual component with assumption of a stationary random field  

The deterministic S-T mean component 𝑚𝑚(𝑠𝑠, 𝑡𝑡) can then be decomposed into a spatial trend 

𝑚𝑚1(𝑠𝑠) and temporal trend 𝑚𝑚2(𝑡𝑡)  (Kyriakidis  & Journel, 1999): 

𝒎𝒎(𝒔𝒔, 𝒕𝒕) = 𝒎𝒎𝟏𝟏(𝒔𝒔) + 𝒎𝒎𝟐𝟐(𝒕𝒕)                                Eq. 6.3   
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The estimated S-T mean component is then deducted from the full dataset to return the S-T 

residuals component 𝑅𝑅𝑒𝑒𝑒𝑒(𝑠𝑠, 𝑡𝑡)  which is used in later analyses. Such deterministic trend functions 

of the S-T coordinates have been implemented in previous studies (Spadavecchia & Williams, 

2009). 

6.2 Exploratory Analysis of Spatio-Temporal Data 

The work that follows in this section explores the empirical S-T means and covariance estimates 

of the Auckland PM10 data set used in this thesis. 

6.2.1 Empirical Spatial Means and Covariances 

The empirical spatial mean 𝜇̂𝜇𝑧𝑧,𝑠𝑠(𝑠𝑠𝑖𝑖)  for location 𝑠𝑠𝑖𝑖 is formulated as (C. K. Wikle et al., 2019c):  

𝛍𝛍�𝐳𝐳,𝐬𝐬(𝐬𝐬𝐢𝐢) = 𝟏𝟏
𝐓𝐓

∑ 𝐙𝐙�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣�  𝐓𝐓
𝐣𝐣=𝐳𝐳                                Eq. 6.4 

where  

𝑍𝑍�𝑠𝑠𝑖𝑖; 𝑡𝑡𝑗𝑗� are the PM10 observations,  

{si : i = 1, . . . , m} are spatial locations, and  

{tj : j = 1, . . . , T} are observations time. 

The spatial mean as an m-dimensional vector can be written as: 

𝛍𝛍�𝐳𝐳,𝐬𝐬(𝐬𝐬𝐢𝐢) = 𝟏𝟏
𝐓𝐓

∑ 𝐙𝐙𝐭𝐭𝐣𝐣
𝐓𝐓
𝐣𝐣=𝐳𝐳                                  Eq. 6.5 

where 

𝐙𝐙𝐭𝐭𝐣𝐣 ≡ �𝐙𝐙�𝐬𝐬𝟏𝟏; 𝐭𝐭𝐣𝐣�, … , 𝐙𝐙�𝐬𝐬𝐦𝐦; 𝐭𝐭𝐣𝐣��
′
                  Eq. 6.6 

The mean vector is a spatial quantity indexed by a relevant location. The number of observations 

at each location may not be the same due to missing or incorrect values. To calculate the average 

in such situations the mean vector should be calculated for each location separately: 

𝛍𝛍�𝐳𝐳,𝐬𝐬(𝐬𝐬𝐢𝐢) = 𝟏𝟏
𝐓𝐓𝐢𝐢

∑ 𝐙𝐙�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣�
𝐓𝐓𝐢𝐢
𝐣𝐣=𝟏𝟏                                                     Eq.6.7  

where 𝑇𝑇𝑖𝑖 is the number of time points at location 𝑠𝑠𝑖𝑖. 
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The computed empirical spatial mean of PM10 concentration is calculated according to Eq.6.7 and 

the result is illustrated in Figure 6.1. A slight trend in the empirical spatial mean of PM10 with 

longitude can be observed Figure 6.1 (a), but no trend can be detected for latitude Figure 6.1 (b). 

Figure 6.1: Empirical spatial mean of PM10 concentration in the Auckland study area as a 

function of (a) site longitude, (b) site latitude. 

The empirical temporal mean, for time 𝑡𝑡𝑗𝑗 , 𝜇̂𝜇𝑧𝑧,𝑡𝑡�𝑡𝑡𝑗𝑗� was calculated by taking the average across 

spaces follows: 

μ�z,t�tj� = 1
m

∑ Z�si; tj� m
i=1           Eq. 6.8 

The empirical temporal mean for Auckland’s PM10 was computed according to Eq. 6.8. The plot 

shown in Figure 6.2 can be used in order to visualise the seasonal variation of PM10 concentration 

over the study area.  The plot shows time series of the Auckland PM10 data set averaged across 

all available site’s spatial locations where the blue line resembles an individual site, and the black 

line signifies the empirical temporal mean. A slight variation in PM10 concentration (higher during 

winter) can be seen. Variations in the seasonal pattern in each year were also noted as part of the 

time series analysis presented in Chapter 4. 



 

Page | 176  

 

 

Figure 6.2: The empirical temporal mean (black line) and time series of PM10 (blue line). Each 
blue line corresponds to each site. 

These empirical results reveal the existence of spatial and temporal co-variability in the PM10 

concentration over the study area that must be considered in the S-T modeling of PM10. In 

addition, the joint S-T dependence structure of the PM10 S-T process needs to be characterised in 

order to be able achieve the best predictive models possible (this aspect is discussed in Chapter 

7). 

6.3 Spatio-Temporal Statistical Models 

6.3.1 Evaluating Spatio-Temporal Statistical Models 

Model building is an iterative process in the sense that models are built around the data and/or a 

scientific assumption. The appropriateness of the model representation of the real world is then 

evaluated and modified accordingly if it is not. The model-evaluation approach taken in this 

Chapter involves the steps of model checking, model validation, and model selection. There is 

very limited discussion of the topic in the S-T modeling literature hence the citations included in 

this section are not extensive.  

Model Checking: Models are evaluated to check the underlying assumptions and model output 

sensitivity to these assumptions and/or model choices. In this study, the S-T models are evaluated 

using statistical tests. In S-T regression models and S-T GLMs, analysis was first performed by 

evaluating the residuals. For additive Gaussian measurement error, the S-T residuals were 

evaluated. Quantitative summaries, such as with the PACF, Moran’s Index, and S-T co-

variogram, to evaluate residual temporal, spatial, and S-T dependence are also considered as 

measures of model performance. The changes in predictions made by the models were evaluated 

by altering the number of the basis functions or the degree of spatial dependence in an error 

distribution. For IDW, the optimal value was selected using cross-validation. 
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Model Validation: Spatio-temporal processes have a unidirectional time dependence and 

different degrees of spatial dependence that should be considered during S-T model evaluation. 

In this research the validation sets were obtained by leaving out data at random (random set).  The 

random validation set was created by randomly sampling 30% of the data from the PM10 

observations. To ensure that the S-T dependence structure is characterised in such way that it 

sufficiently fills in large gaps for S-T processes a second validation set was created by leaving 

out blocks of data (temporally sequential blocks) from the original data set (block set).  In other 

words, a second validation set (block set) was created by leaving out a period of PM10 data prior 

to fitting the model. The indices of the observations, collected at seven arbitrary time points within 

each month, were selected and the data at those indices was removed.  

All models presented in the following sections are fitted to the training data sets and their 

performance is validated using their related validation sets. In S-T models with complex 

dependence, the cross-validation scheme should respect the dependence structure. In this study 

the metrics suggested in literature  (C. K. Wikle et al., 2019a) namely the bias, the Predictive 

Cross-Validation (PCV) and the Standardized Cross-Validation (SCV) measures (Kang et al., 

2009), and the Continuous Ranked Probability Score (CRPS) (Zamo & Naveau, 2018) were 

considered for model validation. The most common scalar validation statistic for continuous-

valued S-T processes is the Mean Squared Prediction Error (MSPE) as it is an empirical measure 

of expected squared error loss which, when minimized, results in the S-T kriging predictor.  

Therefore, in addition to the above-mentioned diagnostics MSPE was also calculated and used as 

validation statistics in this Chapter.  

6.3.2 Deterministic Methods 

Pure spatial interpolation is the process of forming a prediction of the values of unknown points 

using measurements at isolated points within the same area and forming a prediction surface. The 

theoretical basis of  spatial interpolation is Tobler’s First Law (TFL) of geography: “Everything 

in space is related to every other thing but points close together are more likely to be similar than 

the points which are far apart”. (Tobler, 1970) 

There has been an increasing interest in the use of S-T interpolation of ambient air quality levels 

in recent years. The primary strategy adopted by researchers, as identified by a survey of the 

literature, is to reduce  the S-T interpolation task to a sequence of spatial interpolation snapshots 

(Li, 2008; Li & Revesz, 2004; Yu & Wang, 2013). 

IDW was used by Krasnov et al. (2016) to analyze distributions of PM2.5 and PM10 during the dust 

storm events in Israel. Li et al. (2016) reported on an extension of IDW used on PM2.5 data within 
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a space-time domain. Their extended method integrated space and time simultaneously by 

considering time as another dimension in space.  

In this section the IDW method is described and applied to Auckland PM10. In this case IDW is 

developed by considering nearby observations in both space and time with the aim of predicting 

the next day’s PM10 concentration over the entire study area. This is one of the advantages of such 

an approach as most other methods produce a set of models were each model is specific and local 

to a specific monitoring site. Such approaches do not provide a holistic view of the PM10 situation 

over a wider area.  

The IDW method is a deterministic exact interpolation model that follows Tobler’s first law. To 

perform S-T prediction using IDW the data is averaged so that more weight is given to the nearest 

observations in space and time. Suppose we have S-T data such that for each time 𝑡𝑡𝑗𝑗 there is 𝑚𝑚𝑗𝑗 

observations. The IDW predictor at location s0 and time 𝑡𝑡0 is calculated according to (C. K. Wikle 

et al., 2019c) : 

𝐙𝐙�(𝐬𝐬𝟎𝟎; 𝐭𝐭𝟎𝟎) = ∑ ∑ 𝐰𝐰𝐢𝐢𝐢𝐢(𝐬𝐬𝟎𝟎; 𝐭𝐭𝟎𝟎)𝐦𝐦𝐣𝐣
𝐢𝐢=𝟏𝟏

𝐓𝐓
𝐣𝐣=𝟏𝟏 𝐙𝐙�𝐬𝐬𝐢𝐢𝐢𝐢; 𝐭𝐭𝐣𝐣�               Eq. 6.9 

where 

𝐰𝐰𝐢𝐢𝐢𝐢(𝐬𝐬𝟎𝟎; 𝐭𝐭𝟎𝟎) = 𝐰𝐰�𝐢𝐢𝐢𝐢(𝐬𝐬𝟎𝟎;𝐭𝐭𝟎𝟎)

∑ ∑ 𝐰𝐰�𝐤𝐤(𝐬𝐬𝟎𝟎;𝐭𝐭𝟎𝟎)𝐦𝐦𝐤𝐤
=𝟏𝟏

𝐓𝐓
𝐤𝐤=𝟏𝟏

                 Eq. 6.10 

and 

𝒘𝒘� 𝒊𝒊𝒊𝒊(𝒔𝒔𝟎𝟎; 𝒕𝒕𝟎𝟎) = 𝟏𝟏
𝒅𝒅(�𝒔𝒔𝒊𝒊𝒊𝒊;𝒕𝒕𝒋𝒋�,(𝒔𝒔𝟎𝟎;𝒕𝒕𝟎𝟎))∝                              Eq. 6.11 

where  

𝑠𝑠𝑖𝑖𝑖𝑖; 𝑡𝑡𝑗𝑗 is the S-T location,  

(𝑠𝑠0; 𝑡𝑡0) is the prediction location,  

𝑑𝑑(�𝑠𝑠𝑖𝑖𝑖𝑖; 𝑡𝑡𝑗𝑗�, (𝑠𝑠0; 𝑡𝑡0)) is the distance between the S-T location and prediction location and the 
power coefficient ∝ is the smoothing parameter. 

In deterministic interpolators, ∝ is usually selected through cross-validation. Measurement 

uncertainties are not considered in deterministic methods nor is the resultant prediction 

uncertainty. To overcome the problems associated with measurement uncertainty in exact 

interpolators, Cressie and Huang (1999) suggested to make the weights in Eq. 6.11 proportional 

to:  
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 𝟏𝟏
(𝐝𝐝(.,.)+𝐂𝐂)∝                     Eq. 6.12 

where 

 𝐶𝐶 > 0 and 

𝑑𝑑(. , . ) is the distance. 

The overall prediction performance can be evaluated using cross validation. Inexact interpolators, 

such as that of Cressie and Huang (1999), have the capability to apply a smoothing operation to 

remove any measurement errors by iteratively cross validating the output surfaces and thus 

minimising the Root Mean Square Prediction Error (RMSPE). 

6.3.2.1 IDW Experiments and Results 

Parameter Selection: The smoothing parameters for both IDW and the Gaussian kernel are 

chosen in a way that minimizes the Leave-One-Out Cross-Validation (LOOCV) MSPE scores. 

To perform LOOCV the pairwise distances between observed locations and the related kernel-

weight matrix were calculated. For every observation, prediction at a left-out observation was 

performed by selecting rows and columns from the resulting matrix. The LOOCV score was 

calculated for a set of five plausible bandwidths. The IDW’s optimal inverse-power (α) and the 

Gaussian kernel smoother’s bandwidth (θ) were selected based on minimum LOOCV score. The 

lowest cross-validation score for IDW was lower than the lowest cross-validation score for the 

Gaussian kernel smoother (Table 6.1), suggesting that the IDW performs better than the Gaussian 

kernel smoother on PM10 data for all the years in the case study. 

Table 6.1: Optimal power, bandwidth parameter and minimum LOOCV score for IDW and 
Gaussian Kernel Smoother. 

Year IDW Kernel 

 
CV-score α CV-score θ 

2011 10.76 1.72 10.98 0.34 

2012 12.90 1.56 14.41 0.40 

2013 12.37 1.56 13.38 0.45 

2014 11.50 1.75 12.48 0.47 

2015 7.65 1.87 8.35 0.35 

2016 9.10 1.87 9.66 0.35 

The scores obtained were then plotted as a function of α and θ for PM10. As an example, the results 

for 2016 are presented in Figure 6.3. The plots indicate that α = 1.87 and θ = 0.35 may give the 
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best out-of-sample predictions for the 2016 dataset. The plots of remaining years are provided in 

Appendix C (1). 

 

Figure 6.3: The LOOCV score on different range of α and θ for IDW prediction (a) and 
Gaussian kernel prediction (b) of PM10, 2016. 

 

Figure 6.4: The LOOCV score on different range of α and θ for IDW prediction (a) and 
Gaussian kernel prediction (b) of PM10, February 2016. 
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Figure 6.5: The LOOCV score on different range of α and θ for IDW prediction (a) and 
Gaussian kernel prediction (b) of PM10, Jun 2016. 

To perform a prediction of PM10 concentration over the study area a 10 by 10 three-dimensional 

S-T prediction grid in longitude, latitude and a sequence of 365 days regularly arranged in year

was created. Due to lack of high spatial resolution for meteorological factors only spatial (latitude

and longitude) and temporal variables (days) were used as input variables.  Figure 6.6 to Figure

6.11 show the IDW predictions of PM10 concentration within the prediction grid enclosing the

domain of interest for a random week spanning the temporal window of May to August for each

year using the α parameter obtained via LOOCV.
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Figure 6.6: IDW prediction map of PM10 concentration, May-Aug 2011. 
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Figure 6.7: IDW prediction map of PM10 concentration, May-Aug 2012. 
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Figure 6.8: IDW prediction map of PM10 concentration, May-Aug 2013. 
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Figure 6.9: IDW prediction map of PM10 concentration, May-Aug 2014. 
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Figure 6.10: IDW prediction map of PM10 concentration, May-Aug 2015. 
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Figure 6.11: IDW prediction map of PM10 concentration, May-Aug 2016. 

It can be observed from the IDW prediction maps that the predicted PM10 concentration on test 

sets (17 and 19) look smoother (less variation in predicted PM10 and hence less variation in 

predicted map color) than those on days for which we have data. Measurement uncertainty in the 

data and model-based estimates of the prediction uncertainty are not provided in traditional 

implementations of deterministic methods (C. Wikle et al., 2019). Therefore, prediction 

uncertainty of IDW on prediction of Auckland PM10 concentration was calculated using the 

estimates of the overall quality of predictions using cross-validation. The results for IDW 

performance in terms of MSPE score on the full dataset using LOOCV are presented in Table 6.2. 

The year specific optimal α-values used were selected the results reported in Table 6.1. 
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Table 6.2: The leave-one-out cross-validation score for IDW using the optimal α value 
obtained from Table 6.1. 

Year LOOCV Score 

MSPE (μg/m−3) 

2011 10.75 

2012 12.87 

2013 12.44 

2014 11.78 

2015 9.64 

2016 10.01 

Model precision across years was varying between 9.64 (μg/m−3) and 12.87 (μg/m−3) though 

slightly better in 2015 at 9.64 (μg/m−3) on average. 

6.4 Regression (Trend-Surface) Estimation 

In order to investigate if the regression errors are statistically dependent in space and time a 

descriptive approach is taken to study the influence of S-T covariates in a regression model on 

PM10 concentration. Spatio-temporal data prediction is obtained using a basic statistical 

regression model based on the assumption that the trend terms can take into account S-T 

dependence. Such a regression model can be expressed as (C. K. Wikle et al., 2019a):  

𝐙𝐙�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣� = 𝛃𝛃𝟎𝟎 + 𝛃𝛃𝟏𝟏𝐗𝐗𝟏𝟏�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣� + ⋯ + 𝛃𝛃𝐤𝐤𝐗𝐗𝐤𝐤�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣� + 𝐞𝐞�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣�                         Eq. 6.13 

where 

𝛽𝛽0 is the intercept, 

𝛽𝛽𝑘𝑘 (k > 0) is a regression coefficient associated with 𝑋𝑋𝑘𝑘�𝑠𝑠𝑖𝑖; 𝑡𝑡𝑗𝑗�, the kth covariate at spatial 

location 𝑠𝑠𝑖𝑖 and time 𝑡𝑡𝑗𝑗, and 

errors are assumed to be iid such that 𝑒𝑒�𝑠𝑠𝑖𝑖; 𝑡𝑡𝑗𝑗� ∼ indep.N(0, 𝜎𝜎𝑒𝑒
2 ) for all �𝑠𝑠𝑖𝑖; 𝑡𝑡𝑗𝑗�  

where 

data is available, and 

N(μ, σ2) corresponds to a normal distribution with mean μ and variance σ2.  
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The covariates 𝑋𝑋𝑘𝑘�𝑠𝑠𝑖𝑖; 𝑡𝑡𝑗𝑗� can be descriptive features such as elevation that vary spatially but are 

temporally invariant; temporal trends that vary temporally but are spatially invariant; or other 

variables such as meteorological variables that are spatially and temporally varying. In addition, 

S-T basis functions can be used to reconstruct the observed data. In S-T statistics, the basis

functions take their values over both the space and time dimensions. As noted previously,

investigating the possibility of error dependency in space and/or time between observations is an

important aspect of the statistical modeling of S-T data (RESSTE, 2017).

The potential relationship between time and space as a function of spatial and temporal lags can 

be explored by calculating the S-T covariogram/semivariogram from the residuals (C. K. Wikle 

et al., 2019b): 

𝐞𝐞��𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣� = 𝐙𝐙�𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣� − 𝐙𝐙��𝐬𝐬𝐢𝐢; 𝐭𝐭𝐣𝐣�         Eq. 6.14 

Apart from the above S-T covariogram/semivariogram diagnostics, statistical tests can be used to 

measure the spatial or temporal autocorrelation in residuals. The Durbin–Watson (1950) (DW) 

test is statistical test for measuring the temporal autocorrelation in the residuals. Moran’s Index 

(IM) (Moran, 1950) can be applied into datasets in two-dimensional space to measure the spatial 

dependency between points. The Space-Time Index (STI) measure was proposed by Knox (1964) 

and Griffith (1981) to assess S-T dependency for areal regions that have a known adjacency 

structure. The Griffith (1981) formulation joins the IM with the DW (Henebr, 1994). Alternatively, 

a S-T analog to the DW test based on the spatial semivariogram can be extended to the S-T setting 

(C. K. Wikle et al., 2019b): 

𝑭𝑭 = 𝛄𝛄�𝐞𝐞(||𝐡𝐡𝟏𝟏||;𝐭𝐭𝟏𝟏)
𝛅𝛅�𝐞𝐞

𝟐𝟐 − 𝟏𝟏         Eq. 6.15 

where 

𝛾𝛾�𝑒𝑒(||ℎ1||; 𝑡𝑡1) is the estimation of empirical semivariogram at the smallest spatial ��|ℎ1|�� and 

temporal 𝑡𝑡 lags, and  

𝛿𝛿𝑒𝑒
2
 is the regression-error variance estimate. 

The 𝐹𝐹 statistic is calculated for the randomly permuted data in space and time. An 𝐹𝐹 value that 

is below the 2.5th percentile or above the 97.5th percentile of these permutation samples is 

evaluated as “large” and the null hypothesis of S-T independence is rejected (at the 5% level of 

significance). A ‘large’ 𝐹𝐹   therefore suggests that the data are dependent.  
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6.4.1 Regression Trend-Surface Estimation Experiments and Results 

A linear model was fitted to the training set using longitude, latitude, day, and all the interactions 

between them, as well as the basis functions without interactions and meteorological data as 

covariates. The formula can be written as: 

 𝐳𝐳 ~ (𝐥𝐥𝐥𝐥𝐥𝐥 + 𝐥𝐥𝐥𝐥𝐥𝐥 + 𝐝𝐝𝐝𝐝𝐝𝐝)∧𝟐𝟐 + ∙              Eq. 6.16 

where z is the PM10 value and the convenient notation “∙” denotes the covariates.  

Spatial trends were considered by allowing the covariates to correspond to the S-T coordinate, 

and/or their transformations and interactions in addition to meteorological variables.  

Parameter Inference of Model: The ordinary least squares (OLS) parameter estimates and 

related standard errors from the OLS fit of the regression model are presented in Table 6.3. These 

estimates are based on the assumption that the errors are independent. The resultant standard 

errors suggest that the effect of choice of basis function was not significant in the model given all 

the other covariates involved in the model. It is also notable that the effect of latitude is not 

considered significant aligning with the findings of no latitudinal trend in the empirical spatial 

mean of PM10 (see Figure 6.1 in section 6.2.1). The interaction of the latitude by day is also not 

captured by the linear model.  

The interaction between latitude and longitude was ignored in the model and this could possibly 

be confounding the results. Confounding factors can affect the inference and mean that the 

interpretation or significance of a model is substantially different if a significant variable is 

disregarded, or possibly an unnecessary variable is incorporated in the model. To examine the 

possibility of confounding the basis functions were removed from the model. The OLS parameter 

estimates, and related standard errors provided in Table 6.4 show the significance of latitude and 

longitude interaction after eliminating the basis functions from the model, indicating that latitude 

and longitude are indeed confounding factors for the model. 

Spatial analysis of residuals: Having fitted the S-T LM model on both training sets, their related 

residuals were checked for S-Tl correlation. Spatio-temporally correlated residuals are indicators 

that the spatial and temporal variability in the data was not effectively captured by the model. The 

residuals plots showed that the residuals were strongly spatially correlated however the degree of 

spatial correlation changes daily, monthly, and annually. 

The residual plots of fitted S-T LM on both block and random training sets for May 2015 are 

presented in Figure 6.12 and Figure 6.13 respectively showing strongly spatially correlated 

residuals. 
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Table 6.3: Estimated regression coefficients and the standard errors (SE) using OLS including basis function on full dataset and train sets (block and random). 

 Full Dataset Train set 
  Block Random 
 𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜� 𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜�  𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜�  
(Intercept)   -3.85e+02 1.57e+02 * -5.27e+02 1.94e+02 ** -4.08e+02 1.82e+02 * 
Lon 2.27e+00 9.83e-01 * 3.27e+00 1.22e+00 ** 2.22e+00 1.14e+00 . 
Lat    -5.13e-03 1.30e+00  9.21e-01 1.62e+00  -8.32e-01 1.50e+00  
Day   -3.73e-01 1.14e-01 ** -2.70e-01 1.42e-01 . -3.78e-01 1.30e-01 ** 
Lag1 5.22e-01 8.60e-03 *** 5.35e-01 1.07e-02 *** 5.25e-01 1.01e-02 *** 
Lag2 -1.97e-02 8.57e-03 * -3.42e-02 1.06e-02 ** -1.59e-02 9.90e-03  
Temp  -1.37e-01 1.19e-02 *** -1.31e-01 1.47e-02 *** -1.37e-01 1.37e-02 *** 
Rain   -6.50e-02 1.25e-02 *** -7.01e-02 1.49e-02 *** -6.82e-02 1.42e-02 *** 
RH      -4.49e-02 5.47e-03 *** -3.50e-02 6.71e-03 *** -4.41e-02 6.29e-03 *** 
SR   2.08e-03 5.56e-04 *** 1.95e-03 6.87e-04 ** 1.47e-03 6.38e-04 * 
WD         2.48e-03 4.55e-04 *** 2.90e-03 5.65e-04 *** 2.57e-03 5.21e-04 *** 
WS    4.33e-01 3.79e-02 *** 4.03e-01 4.70e-02 *** 5.14e-01 4.28e-02 *** 
B1           1.75e+01 2.70e+01  1.31e+01 3.33e+01  3.65e+01 3.10e+01  
B2       -3.07e+01 4.61e+01  -2.41e+01 5.67e+01  -8.33e+01 5.28e+01  
B3           1.46e+01 2.43e+01  1.12e+01 2.99e+01  4.24e+01 2.79e+01  
Lon: Lat NA NA  NA NA  NA NA  
Lon: Day 2.13e-03 6.94e-04 ** 1.42e-03 8.63e-04 . 2.15e-03 7.89e-04 ** 
Lat: Day -1.48e-05 5.20e-04  -5.85e-04 6.41e-04  -3.60e-05 5.90e-04  
Adjusted R-squared 0.34 0.35 0.34 
Observations: Signif. (p-value) codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
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Table 6.4: Estimated regression coefficients and the standard errors (within parentheses) using OLS without basis function. 

Full Dataset Train set 
Block Random 

𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜� 𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜� 𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜� 
(Intercept)  -2.22e+05 -2.06e+05 *** -2.23e+05 5.61e+04 *** -.2000e+005 5.5120e+004 *** 

Lon 1.27e+03 1.18e+03 *** 1.28e+03 3.21e+02 *** 1.2590e+003 3.1530e+002 *** 

Lat   -6.02e+03 -5.56e+03 *** -6.04e+03 1.52e+03 *** -.9520e+003 1.4940e+003 *** 
Day  -3.76e-01 -2.71e-01 *** -3.82e-01 1.33e-01 ** -3.8220e-001 1.2950e-001 ** 
Lag1 5.21e-01 5.35e-01 *** 5.46e-01 1.01e-02 *** 5.1570e-001 8.5270e-003 *** 
Lag2 -1.97e-02 8.565e-03 * -3.03e-02 1.01e-02 ** -1.594e-02 9.895e-03 
emp -1.35e-01 -1.30e-01 *** -1.19e-01 1.40e-02 *** -1.3270e-001 1.3670e-002 *** 
Rain  -6.47e-02 -6.99e-02 *** -6.42e-02 1.49e-02 *** -6.7320e-002 1.4240e-002 *** 
RH     -4.61e-02 -3.61e-02 *** -4.61e-02 6.33e-03 *** -4.6200e-002 6.2330e-003 *** 
SR  2.00e-03 1.89e-03 *** 2.20e-03 6.48e-04 *** -2.013e-003 6.453e-04 ** 
WD        2.53e-03 2.95e-03 *** 3.41e-03 5.30e-04 *** 2.6390e-003 5.1990e-004 *** 
WS   4.09e-01 3.82e-01 *** 4.37e-01 4.03e-02 *** 4.7170e-001 3.8970e-002 *** 
Lon: Lat 3.44e+01 3.82e-01 *** 3.45e+01 8.70e+00 *** 3.4060e+001 8.5430e+000 *** 
Lon: Day 2.15e-03 1.43e-03 ** 2.18e-03 8.10e-04 ** 1.855e-03 7.904e-004 * 
Lat: Day -1.73e-05 -5.96e-04 -3.81e-05 6.08e-04 -5.340e-04 5.915e-04 

Adjusted R-squared 0.34 0.35 0.36 
Observations: Signif. (p-value) codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
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Figure 6.12: Spatial residuals from fitting the regression (trend) model to the train block set for May 2015. 
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Figure 6.13: Spatial residuals from fitting the regression (trend) model to the train random set for May 2015. 
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In addition to visual inspection of plots, the Moran’s I statistic was calculated to test for spatial 

dependence in the residuals on individual days. Details of the test are provided in Appendix C. 

The distances for each day were calculated to form a weight matrix. Moran’s I test using the 

function Moran.I from the R package “ape” was used (Paradis & Schliep, 2019). The results of 

the Moran’s I (IM) test statistics, for all years, are low and therefore the H0 of no spatial correlation 

at 5% can be rejected at each time point. As an example, the calculated p-value for May 2015 on 

block and random train sets were 1.44e-07 and 1.29e-06 respectively indicating spatial 

dependency between residuals as suggested by the plots (Figure 6.12 and Figure 6.13). These 

results imply that the S-T LM failed to capture the spatial variability in the data at each time point. 

The performance of S-T LMs with respect to capturing the temporal correlation between the 

residuals were investigated using the DW test. The DW test for the residuals at every station was 

performed by grouping data using spatial coordinates and creating a nested data frame containing 

one row for each group. A function was defined to take the data frame associated with a single 

group and perform the DW test.  

The autocorrelation in the residuals was then tested using the “dwtest” function  available in R’s 

“lmtest” package  (Zeileis & Hothorn, 2002) after removing a temporal trend. The low Bonferroni 

correction value (0.06% and 0.03% for block and random sets); as proportion of p-values below 

the 5% significance level divided by the number of tests; provided evidence that there is not 

temporal autocorrelation in the residuals of the train sets. Table 6.5 presents, as an example, the 

results of the DW test on the residuals of both the block and random training sets for May 2015. 

The results imply that the DW H0 of no temporal autocorrelation between the residuals should be 

accepted for May 2015. 
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Table 6.5: DW test on residuals of fitted S-T LM model on block and random train sets, May 
2015. 

 Bock set Random set 

DW statistics p-value DW statistics p-value 

Glen Eden 2.39 0.83 2.56 0.91 

Henderson 2.85 0.98 2.91 0.99 

Pakuranga 2.93 0.99 2.98 0.99 

Patumahoe 2.60 0.93 2.50 0.88 

Patumahoe 2.92 0.99 3.16 0.99 

Takapuna 2.88 0.98 2.87 0.98 

Bonferroni Value 0 0 

Alternative hypothesis (Ha) = "true autocorrelation is greater than 0" 

These temporal residuals were also plotted for visual inspection. The plots did not show a 

temporal correlation in the residuals. The residuals however were correlated between the stations 

meaning at the same time point the nearby stations’ residuals were more similar than at other time 

points. This agrees with results of the tests for spatial correlation in the residuals. The PM10 

residuals for May 2015 at all six stations are illustrated in Figure 6.14. 

 

Figure 6.14: Temporal residuals from fitted T-S LM on (A) block and (B) random train sets, 
May 2015. In the legend, [1]– [6] correspond to Glen Eden; Henderson; Pakuranga; Patumahoe; 
Penrose and Takapuna stations, respectively. 
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Extending the IM test to the S-T setting was a challenge in terms of appropriately scaling time to 

form a Euclidean distance through space and time with a sensible interpretation. One approach to 

overcome this challenge is to fit a dependence model that allows for scaling in time, and then to 

scale time by an estimate of the scaling factor prior to computing the Euclidean distance (C. K. 

Wikle et al., 2019b). This approach is reported in the next Chapter where a kriging model is 

developed that uses an anisotropic covariance function. In the method initially taken here 

however, time is not scaled and distances on the S-T domain are calculated. In this approach, the 

weights from the distances were computed and the diagonal was set to zero prior to calling the 

Moran.I function in R. The p-value calculated for S-T IM was very small (max p-value = 0), 

strongly suggesting that there is a S-T dependency between residuals in the residual data for both 

training sets.  

Further S-T analysis of residuals was performed by computing and visualizing the empirical S-T 

semivariogram of the residuals. To calculate the empirical S-T semivariogram spatial bins were 

set to 20 km and the cutoff point was set to consider points that are 50 km apart. Figure 6.15 

shows the empirical S-T semivariogram of the original data set (A) and the residuals after fitting 

on the block training set (B) and the random training set (C) for May 2015. Comparison of the 

semivariogram plots in Figure 6.15 (A), (B) and (C) shows the original data set has a lower sill. 

This means that the time and spatial covariates, along with the rest of the covariates, explained 

little of the S-T variability in the data set. The highest variance for (A) is 30 (light yellow, top 

right hand of the figure), for (B) and (C) the highest variance value is just over 20. 

 

Figure 6.15: Empirical S-T semivariogram of daily PM10 (A) and Empirical S-T semivariogram 
of residuals after fitting the linear model on train sets: (B) block and (C) Random, May 2015. 

Prediction from the constructed S-T LM was performed at the prediction locations where 

covariate values were available. For each test set the computed p-value from the spatio- temporal 

IM test was low therefore the IM test H0 was rejected in favor of the Ha that the residuals values 

appear to be correlated with their S-T location. Prediction errors of the fitted S-T LM model on 

block and random test sets during May 2015 are presented in Figure 6.16 and Figure 6.17 

respectively.  The spatial correlation in the residuals is evident between the nearby stations; that 

is, at the same day, the residuals are more similar than at different time points.  
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Figure 6.16: Residuals of predicted PM10 from fitted S-T LM on block test set. 
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Figure 6.17: Residuals of predicted PM10 from fitted S-T LM on random test set. 
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Temporal correlation between the residuals was analyzed visually and by calculating the p-value 

of DW test. Temporal plot of residuals and the DW statistics by station for May 2015 are provided 

in Figure 6.18 and Table 6.6, respectively. The results showed no temporal autocorrelation 

between the residuals of fitted S-T LM tests on both sets as the Bonferroni correction value was 

close to 0 for both sets. It should be noted that the calculated p-value on block set was high except 

in the cases of the Pakuranga and Takapuna stations therefore the H0 of no temporal 

autocorrelation between the residuals at 5% for these two stations is rejected. However, the low 

value of Bonferroni correction for both sets, suggests that the temporal autocorrelation in the 

residuals is not significant.  

Table 6.6: DW test on residuals of fitted S-T LM model on block and random test sets, May 
2015. 

 Bock set Random set 

statistics p-value statistics p-value 

Glen Eden 2.27 0.66 2.07 0.55 

Henderson 2.02 0.62 2.40 0.75 

Pakuranga 0.89 0.03 1.62 0.26 

Patumahoe 1.98 0.49 3.18 0.98 

Penrose 1.18 0.11 1.42 0.16 

Takapuna 0.95 0.04 2.09 0.56 

Bonferroni Value 0.67 0 

HA = "true autocorrelation is greater than 0" 

The plots show no temporal correlation between the residuals (except for Pakuranga and 

Takapuna stations on block sets) but there is ample spatial correlation suggested by the IM test and 

the spatial residual plots.  
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Figure 6.18: Temporal residuals from fitted T-S LM on (A) block and (B) random test sets, 
May 2015 where [1]:[6] corresponds to Glen Eden; Henderson; Pakuranga; Patumahoe; Penrose 
and Takapuna stations, respectively. 

The p-value from the S-T IM on residuals of predicted PM10 on both block and random test sets 

was low (1.44e-07 and 5.04e-11) therefore the H0 of no spatial correlation between the residuals 

was rejected.  

These results suggest that simple geographical and temporal trend terms and a linear model of 

these covariates is not capable of explaining all the observed S-T variability of such a complex 

environmental process. Thus, fitting the S-T LM model resulted in residuals that were spatio 

temporally correlated. This S-T dependency in residuals may indicate that a more refined S-T 

random-effects model should be considered for these data. Therefore, it is reasonable to conclude 

that the dependent errors in these S-T models represent the effects of confounding between the S-

T dependent random errors and the covariates.  

6.5 Generalized Linear Model (GLM) 

A basic Generalized Linear Model (GLM) consists of a random and a systematic component. The 

random component assumes that observations are independent, and their distributions are from 

exponential family.  The relationship between the mean response and the covariates is specified 

by the systematic component. This is achieved by transforming the mean response using a link 
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function and then expressing it in terms of a linear function of the covariates (McCulloch et al., 

2008). It is assumed that conditional on the presence of covariates (or functions of these in the 

case of GAMs), any location in the space-time domain S-T GLMs or S-T GAMs can be used for 

S-T prediction. Performance of the S-T GLMs and S-T GAMs in terms of sufficiently 

accommodating the dependence in the observations are subject to the data set and the available 

covariates. The next section reports on experiments in which S-T GLMs and GAMs are explored 

for the Auckland PM10 data. 

6.5.1 S-T GLM Experiments and Results 

A S-T GLM was fitted to daily PM10 data. The same class of covariates were used in the S-T 

GLM model as were employed in the S-T LM model presented in Section 6.3.3. To fit the S-T 

GLM function, both Gamma and Gaussian family models as well as the log link function were 

used. The results of these initial experiments resulted in the Gamma family ultimately being 

selected over Gaussian family as it had slightly lower AIC. The results of the S-T GLM model fit 

on the full dataset as well as both training data sets are provided in Table 6.7. 

 

Similar conclusion to that formed for S-T LM can be drawn for S-T GLM including the fact that 

the basis function’s covariates could not explain the interactions of latitude and longitude with 

PM10. This lack of explanation suggests that the basis function covariates should be discarded 

from the model. Therefore, the models were rebuilt without the basis functions as covariates. The 

results of these experiments are provided in Table 6.8. 

 

Spatial Analysis of Residuals on Test Sets: Prediction from the constructed S-T GLM was 

performed on both test sets (random and block). Prediction plots for the block and random sets 

are provided in Appendices G and H respectively. Figure 6.19 (page 205) and Figure 6.20 (page 

206) shows the PM10 prediction error for May 2015 on (A) block and (B) random test sets. 

 



Table 6.7: Estimated regression coefficients and the standard errors for the S-T GLM with the basis functions as covariates. 

 Full Dataset Train set 
  Block Random 
 𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺� 𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺�  𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺�  
(Intercept)   1.12e+10 1.36e+10  4.81e+10 6.16e+10  -1.67e+11 1.83e+11  
Lon -8.61e+07 1.05e+08  -2.29e+08 3.12e+08  1.20e+09 1.31e+09  
Lat    -1.06e+08 1.29e+08  2.21e+08 7.48e+08  1.15e+09 1.26e+09  
Day   -3.06e-02 8.22e-03 *** -2.99e-02 9.54e-03 ** -2.99e-02 9.46e-03 ** 
Lag1 3.50e-02 6.20e-04 *** 3.69e-02 7.23e-04 *** 3.60e-02 7.26e-04 *** 
Lag2 -2.09e-04 6.18e-04  -9.55e-04 7.25e-04  1.43e-04 7.21e-04  
Temp  -9.30e-03 8.58e-04 *** -8.31e-03 1.01e-03 *** -9.27e-03 1.00e-03 *** 
Rain   -6.53e-03 9.03e-04 *** -6.57e-03 1.07e-03 *** -6.00e-03 1.02e-03 *** 
RH      -3.59e-03 3.94e-04 *** -3.46e-03 4.58e-04 *** -3.11e-03 4.69e-04 *** 
SR   1.38e-04 4.01e-05 *** 1.47e-04 4.66e-05 ** 1.44e-04 4.72e-05 ** 
WD         2.09e-04 3.28e-05 *** 2.74e-04 3.82e-05 *** 2.09e-04 3.85e-05 *** 
WS    3.16e-02 2.73e-03 *** 3.38e-02 3.18e-03 *** 3.18e-02 3.20e-03 *** 
B1           1.09e+10 1.32e+10  -1.18e+09 2.36e+10  -3.47e+10 3.79e+10  
B2       -1.20e+09 1.46e+09  1.97e+10 1.47e+11  1.74e+10 1.90e+10  
B3 1.91e+08 2.32e+08  -1.04e+10 7.78e+10  -7.73e+09 8.44e+09  
B5 -7.65e+08 9.32e+08  -9.33e+08 7.31e+09  NA NA  
B9           NA NA  1.85e+08 6.11e+08  7.59e+08 8.29e+08  
Lon: Lat NA NA  NA NA  NA NA  
Lon: Day 1.76e-04 5.01e-05 *** 1.70e-04 5.82e-05 ** 1.64e-04 5.76e-05 ** 
Lat: Day 1.80e-06 3.75e-05  -5.11e-06 4.36e-05  -3.50e-05 4.31e-05  
AIC 74367   54931 53305 
Observations: Signif. (p-value) codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1    
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Table 6.8: Estimated regression coefficients and standard errors for the S-T GLM without the basis functions as covariates. 

 Full Dataset Train set 
  Block Random 
 𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺� 𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺�  𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆�𝛽̂𝛽𝐺𝐺𝐺𝐺𝐺𝐺�  
(Intercept)   -1.55e+04 3.46e+03 *** -1.54e+04 4.02e+03 *** -1.50e+04 4.04e+03 *** 
Lon 8.89e+01 1.98e+01 *** 8.80e+01 2.30e+01 *** 8.59e+01 2.31e+01 *** 
Lat    -4.20e+02 9.38e+01 *** -4.16e+02 1.09e+02 *** -4.06e+02 1.09e+02 *** 
Day   -3.10e-02 8.20e-03 *** -3.04e-02 9.52e-03 **  -3.04e-02 9.43e-03 ** 
Lag1 3.50e-02 6.18e-04 *** 3.68e-02 7.21e-04 *** 3.60e-02 7.23e-04 *** 
Lag2 -1.97e-04 6.16e-04  -9.47e-04 7.23e-04  1.66e-04 7.19e-04  
Temp  -9.15e-03 8.52e-04 *** -8.10e-03 1.00e-03 *** -9.09e-03 9.98e-04 *** 
Rain   -6.54e-03 9.00e-04 *** -6.56e-03 1.07e-03 *** -6.00e-03 1.02e-03 *** 
RH      -3.70e-03 3.90e-04 *** -3.59e-03 4.53e-04 *** -3.27e-03 4.63e-04 *** 
SR   1.31e-04 3.99e-05 ** 1.39e-04 4.64e-05 **  1.34e-04 4.69e-05 ** 
WD         2.15e-04 3.26e-05 *** 2.79e-04 3.80e-05 *** 2.16e-04 3.83e-05 *** 
WS    2.99e-02 2.48e-03 *** 3.16e-02 2.88e-03 *** 2.96e-02 2.90e-03 *** 
Lon: Lat 2.41e+00 5.37e-01 *** 2.38e+00 6.23e-01 *** 2.33e+00 6.26e-01 *** 
Lon: Day 1.78e-04 5.00e-05 *** 1.73e-04 5.80e-05 **  1.67e-04 5.74e-05 ** 
Lat: Day 2.73e-06 3.74e-05  -3.74e-06 4.35e-05  -3.37e-05 4.30e-05  
AIC 74365   54926 53303 
Observations: Signif. (p-value) codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
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Figure 6.19: Residuals of predicted PM10 from fitted S-T GLM on block test set. 
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Figure 6.20: Residuals of predicted PM10 from fitted S-T GLM on random test set.
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Spatial correlation of the residuals of the fitted S-T GLMs on both test sets was tested using the 

IM test on the spatial residuals. The calculated p-value for IM  test was 9.57e-08 and 1.26e-11 for 

block and random test sets respectively. The results (Table 6.9) show that at the 5% level of 

significance, the p-value is statistically significant. Therefore, the null hypothesis of no spatial 

correlation between residuals is rejected. This finding is in agreement with the visualizations 

presented in Figure 6.19 and Figure 6.20.  

To investigate the temporal dependency between the residuals visually and statistically S-T plots 

of residuals and DW were created and analysed in the same manner as for the S-T LM model. 

The results showed ample spatial and low temporal dependence between the residuals in both 

sets. Temporal plots of the residuals for May 2015 are provided in Figure 6.21 as an example. 

Since the difference of the residuals of S-T LM and S-T GLM were close, their temporal plot 

should look very similar. Therefore, the residual plots of both S-T LM and S-T GLM on block 

and random sets were produced to check this assumption. In the plots the thicker lines indicate 

the S-T GLM residuals.  

 

Figure 6.21: Temporal residuals of fitted S-T LM and S-T GLM on (A) block and (B) test sets. 
Thicker lines show the residuals of S-T GLM. In the legend, [1]– [6] correspond to Glen Eden; 
Henderson; Pakuranga; Patumahoe; Penrose and Takapuna stations, respectively. 

The plots show no temporal correlation between the residuals (except for Pakuranga and 

Takapuna stations on block sets) but ample spatial correlation as suggested by the IM test and the 

spatial residual plots (Figure 6.16 (page 198), Figure 6.17 (page 199), Figure 6.19 (page 205), and 

Figure 6.20 (page 206)). 
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The DW test was carried out on the residuals from the fitted S-T GLM on both test sets. The null 

hypothesis (H0) of no temporal dependency between the residuals was accepted at 5%. The low 

value of Bonferroni correction for both sets suggests that the temporal autocorrelation in the 

residuals is not significant. The plot shows no temporal correlation between the residuals (except 

for Pakuranga and Takapuna stations on block sets) but ample spatial correlation as suggested by 

the IM test and the spatial residual plots.  

Table 6.9: DW test on residuals of fitted S-T GLM model on block and random test sets, May 
2015. 

 Bock set Random set 

statistics p-value statistics p-value 

Glen Eden 2.23 0.64 1.97 0.48 

Henderson 2.12 0.57 2.95 0.69 

Pakuranga 0.94 0.42 1.63 0.27 

Patumahoe 1.84 0.40 3.13 0.98 

Penrose 1.93 0.10 1.50 0.19 

Takapuna 1.014 0.06 2.13 0.58 

Bonferroni Value 0.01 0 

Ha = "true autocorrelation is greater than 0" 

The p-value from the S-T IM on residuals of predicted PM10 on both block and random test sets 

was low except for two months in the block set (Mar.2016 p-value 0.80 and Aug. 2011 p-value 

0.15) and one month in the random set (Nov.2014 p-value:0.65).  The calculated p-value for May 

2015 on block and random sets were 9.60e-08 and 1.25e-11 respectively and as a result the H0 of 

no spatial correlation between the residuals is rejected. These results suggest that S-T GLM did 

not explain all the observed S-T variability of the PM10 concentration even though it captured the 

temporal correlation for Pakuranga station which was missed by S-T LM.  

The empirical semivariogram of the residuals for May 2015 is presented in Figure 6.22. A clear 

decreasing in spatial dependency as distance increases was noted in plot (A) (c.f.  plot (B)).  Both 

plots appear noisy in terms of temporal dependency especially in (B) this may be due to the fact 

that for training set C, which is depicted in plot (B), the time points are randomly selected.  
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Figure 6.22: Empirical S-T semivariogram of residuals after fitting the S-T GLM model on (A) 
block and (B) random test sets, May 2015. 

The developed S-T GLM model was a linear mixed model with random effects by day. However, 

presence of S-T dependency in the residuals showed this model could not describe the complex 

inter-relationships among the covariates and possible nonlinearities between them and PM10 

concentration. Hence, it was concluded that a more sophisticated S-T random-effects model was 

needed, at least in the context of this study, for modeling PM10. The nonlinear smoother 

components of GAMs can be viewed as random effects for estimation purposes, so the next 

logical step was to extend this work to S-T GAMs. 
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6.6 Spatio-Temporal Generalized Additive Model (S-T GAM) 

An S-T GAM model was fitted to the PM10 data set, with a Gamma response and a log link to 

accommodate nonlinear structure in the mean function. The same classes of covariates used in 

the above S-T LM and S-T GLM models were again considered for the development of an ST-

GAM, where the response was PM10 concentration within the study area. To combine interacting 

covariates with space and time, a tensor-product structure was implemented in which the basis 

functions smoothing the individual covariates are combined product-wise. The product from the 

marginals in this experiment was achieved by using function “te” from R’s “mgcv” package 

(Wood 2019) using te(lon,lat,t). In this study a thin-plate spline basis over space ("tp") 

and a cubic regression spline over time ("cr") were fitted. Sensitivity analysis in the context of S-

T modeling was performed by evaluating the AIC as specific aspects of the model are varied. The 

term selection and number of knots (k) were established based on the steps described in Chapter 

5.  

6.6.1 S-T GAM Experiments and  Results 

Prediction from the constructed S-T GAM was performed on both test sets (random and block). 

Prediction plots for the block and random sets are provided in appendices G_A and G_B 

respectively. The PM10 prediction error for May 2015 on (A) block and (B) random test sets are 

shown in Figure 6.23 and Figure 6.24, respectively.
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Figure 6.23: Residuals of predicted PM10 from fitted S-T GAM on block test set. 
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Figure 6.24: Residuals of predicted PM10 from fitted S-T GAM on random test set.
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Spatial correlation of the residuals of the fitted S-T GAM on both test sets was evaluated using the IM 

test. The results show the p-value is statistically significant at 5% level of significance. Therefore, the 

null hypothesis of no spatial correlation between residuals is rejected. This conclusion is consistent with 

the visualizations presented in Figure 6.23 and Figure 6.24. The p-value from the S-T IM on residuals 

of predicted PM10 on both block and random test sets was low except for two months in the block set 

(Mar.2016 p-value 0.80 and Aug. 2011 p-value 0.15) and one month in the random set (Nov.2014 p-

value:0.65). The calculated p-value on the block and random sets indicated that the H0 of no spatial 

correlation between the residuals should be rejected. Temporal plots of residuals were used to 

investigate the temporal correlation between the residuals. The temporal plots showed high spatial and 

low temporal between the residuals of most stations in both sets. Temporal residuals of fitted S-T GAM 

for May 2015 is provided in Figure 6.25. 

Figure 6.25: Temporal residuals of fitted S-T GAM on (A) block and (B) test sets. In the legend, [1]– 
[6] correspond to Glen Eden; Henderson; Pakuranga; Patumahoe; Penrose and Takapuna stations,
respectively.

The plot presented in Figure 6.25 shows no temporal correlation between the residuals but sufficient 

spatial correlation (except for Pakuranga) as suggested by the IM test and the spatial residual plots in 

Figure 6.23 and Figure 6.24 where Pakuranga’s residual color was in high contrast with other stations 

on the 7th and 8th time points. DW test was carried on residuals of the fitted S-T GAM on both sets, and 
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Bonferroni value was calculated. The low ratio of Bonferroni value provided evidence that the temporal 

autocorrelation in the residuals is not significant.   

Table 6.10: DW test on residuals of fitted S-T GAM model on block and random test sets, May 
2015. 

 Bock set Random set 

statistics p-value statistics p-value 

Glen Eden 2.37 0.71 1.11 0.06 

Henderson 2.67 0.85 1.99 0.50 

Pakuranga 0.87 0.05 1.64 0.27 

Patumahoe 1.99 0.50 3.14 0.90 

Penrose 0.89 0.05 1.19 0.08 

Takapuna 1.45 0.20 1.85 0.40 

Bonferroni Value 0 0 

Ha = "true autocorrelation is greater than 0" 

From Table 6.10 high p-value on both block and random sets can be noted therefore the H0 of no 

temporal autocorrelation between the residuals at 5% for all stations are accepted.  

 

Figure 6.26: Histograms of residuals at test sets for the fitted S-T LM (blue), S-T GLM (green) and S-
T GAM (red) models when the data are missing in a block (A) or at random (B). 
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Histograms of the S-T prediction errors using validation data for both block and missing at random sets 

were plotted to visually inspect the distributions of these errors from the S-T LM, S-T GLM, and S-T 

GAM models (Figure 6.26). The histograms reveal that the errors from the S-T LM model have a 

marginally larger spread. This is a first disadvantage of S-T LM when predicting the process across 

time points for which we have no data especially when missing at random.  The variance of the residuals 

based on the S-T GAM model is slightly lower than the other two specially for missing at block set.  

Scatter plots showing the degree of correlation between the predictions and the observations are 

presented in Figure 6.27.  The errors distribution between the models for data points missing at random 

do not vary as much as they do for the test set where data are missing in multiple blocks, emphasizing 

the effect of missing time points on the quality of the predictions.  

Figure 6.27: Scatter plots of the observed and predicted PM10 for the S-T LM (top/blue), S-T GLM 
(middle/green) and S-T GAM (bottom/red) models fitting block set (A) and random set (B). 

Cross-validation diagnostics for each model were calculated and are summarized in Table 6.11. The S-

T GAM model outperforms the S-T GLM and S-T LM models on most of the diagnostics for both block 

and random sets. The lower value of the MSEP for block sets is an indicator of sensitivity of missing 

data patterns on the performance of the models. For all models, it was noted that the SCV and CRPS 
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need to be treated with care in a spatial or S-T setting, due to the correlation in errors that are not taken 

into account when computing these measures (C. K. Wikle et al., 2019b). 

Table 6.11: Cross-validation metrics for the models fitted to the Auckland PM10 data set where data 
has been left out for two entire time intervals (resulting in two ‘missing blocks’) and where data has 
been removed at random. The bias (better when closer to zero), the predictive cross-validation 
measure (PCV, better when lower), the standardized cross-validation measure (SCV, better when 
closer to 1), and the continuous ranked probability score (CRPS, better when lower) are presented 
as performance metrics. 

 Bock set Random set 
 Bias PCV SCV CRPS MSEP Bias PCV SCV CRPS MSEP 

 S-T LM 0.27 19.15 0.96 -0.16 19.15 -0.26 21.28 1.01 0.16 21.28 
S-T GLM 0.28 19.91 1.65 -0.17 19.91 -0.25 22.10 1.71 0.15 22.10 
S-T GAM 0.17 18.92 2.13 -0.11 18.92 -0.36 20.43 1.79 0.22 20.43 

The AIC and BIC for all three models were computed using the number of estimated parameters and 

the size of the training set used to fit the models. Both the AIC and BIC presented in Table 6.12 are 

lower for the S-T GAM model than for the S-T GLM and S-T LM models.  

Table 6.12: AIC and BIC for three models. 

 Block set Random set 
 AIC BIC AIC BIC 
S-T LM 56322 56437 54582 54697 
S-T GLM 54926 55041 53303 53417 
S-T GAM 50534 51821 51147 51697 

Because the difference between the criterion for the models is large it is safe to conclude that the S-T 

GAM model is a more accurate representation of the PM10 data and is preferable to the S-T GLM 

and S-T LM model for modeling and predicting the Auckland PM10 data set. 

6.7 Conclusion  

The main aim of this Chapter was to report on the exploration of two objectives of spatio-temporal 

statistical modeling – interpolation of the PM10 concentrations in the study area using the S-T data and 

performing parameter inference. The uncertainty in the predictions and parameter estimates were also 

quantified. Two potential modeling solutions that initially consider the S-T error process were 

investigated. This enables the benefits and weaknesses of standard commonly used modeling 

approaches in modeling and predicting Auckland PM10 concentration to be investigated.  

Section 6.3.2 presented deterministic prediction in order to obtain PM10 predictions at spatio-temporal 

locations using Auckland PM10 S-T data set. The IDW model precision across years was shown to vary 

between 9.64 μg m−3 and 12.87 μg m−3, though this was slightly better in 2015 at 9.64 μg m−3 on average.  
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There are a very limited number of spatio-temporal models for prediction of PM10 in the current 

literature with which to compare the results of the models developed in this research. Yanosky et al. 

(2008) used IDW to predict monthly PM10 concentrations for 13 states in the northeast of the US. They 

mention in their report that a model with monthly spatial terms performed better than one with seasonal 

terms. Although they reported good model performance for their monthly model, both in rural and urban 

locations, they did not provide details of the IDW parameter values nor the feature/variable selection 

approach used. Because of the lack of model details, it was not possible to meaningfully compare the 

results reported here for Auckland with those of Yanosky et al. 

In Section 6.3.3 a statistical regression model was used to obtain predictions for Auckland PM10 

concentration, assuming that all the S-T dependence can be considered by using the trend terms. Such 

a model explicitly accounted for model error. The obtained model-based prediction-error variance 

provided useful insights into the model’s performance. The assumption was that these trend terms can 

capture the PM10 concentration’s large-scale S-T variability leaving behind the smaller-scale variability 

that can be statistically modeled using S-T covariances. The results of these experiments however, 

showed that the S-T linear regression model with trend terms was not capable of explaining the S-T 

variability of PM10 concentration over the study area. To accommodate the nonlinear structure in the 

mean function, S-T GAM model were further developed so that transformation of the mean response 

has an additive form. The difference between the AIC/BIC criterion for the S-T GAM model was 

notable compared to other two (S-T LM and S-T GLM) models concluding that S-T GAM model is a 

better representation of the data and is preferable to the S-T GLM model for modeling and prediction 

of Auckland PM10 data. 
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Chapter 7  DESCRIPTIVE SPATIO-TEMPORAL MODELING 

The work reported in this Chapter discusses descriptive approaches to S-T modeling from a high-level 

perspective and the study undertaken to develop descriptive (marginal) models by characterizing the S-

T dependence structure through S-T covariances. This study in turn leads to models that are analogous 

to the ubiquitous geostatistical models that are employed in section 7.4.  

Geostatistics distinguishes itself within the general field of statistics by having at its foundation, the 

theoretical principle of random spatial processes. Such random spatial processes are commonly 

present in environmental phenomena.  In this Chapter separable and non-separable model are described 

and investigated. The best fitted model is then used to perform S-T Universal kriging as a means of 

modeling PM10 concentrations.  

7.1 Introduction 

Descriptive and dynamic approaches are able to address S-T statistical model problems by capturing 

statistical dependencies in S-T phenomena in two different ways although both have a common 

underlying probability model (C. K. Wikle et al., 2019b). Chapter 5 on time series analysis showed that 

both stationary AR(1) process models performed better (0.62 < GAMM R2 <0.67) if not comparable 

(0.32 < GAM R2 < 0.47) compared to those reported for modeling PM10 in the Northeastern and 

Midwestern U.S. (GAMM R2 = 0.58 and (GAM R2 = 0.49) (Yanosky et al., 2014). From the dynamic 

point of view, the model stated that the value of PM10 at time t is equal to a transition factor times the 

value at the t-1, combined with an independent error. Descriptively, similar probability structures can 

be achieved by identifying the correlation between two values at any two given time points to be an 

exponentially decreasing function of the lag between the two time points (C. K. Wikle et al., 2019b). 

This descriptive approach can be more fit for purpose when full knowledge of the dynamics of the 

system are not available (C. K. Wikle et al., 2019b).  As part of the descriptive approach attempts are 

made to characterize the S-T process in terms of its mean and its covariance function. This approach 

has been recognized historically in spatial statistics and is the basis of the Kriging (Cressie, 1990) 

methods (C. K. Wikle et al., 2019b). Using the mean and covariance functions a good fit to the data can 

be achieved and therefore the S-T variability can be appropriately described. In this research, in an 

attempt to provide comprehensive coverage, three commonly used S-T variogram models including the 

metric model (Myers, 2004), sum-metric model (Myers, 2004) and the product-sum model (Myers , 

2004) are used. 
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Exploratory analysis of the marginal spatial and temporal variogram of PM10 is conducted for modeling 

the S-T empirical variograms. This analysis fulfills the second objective of the descriptive approach 

which is to discover the best variogram model for explaining PM10. The best model as defined by Guo 

et al. (2015) is one that is flexible and efficient enough to measure the characteristics of S-T correlation 

structure of atmospheric PM10 and to provide the best prediction accuracy in creating the interpolation 

surfaces using S-T kriging. S-T geostatistics using relevant S-T variogram is adopted as a model for 

estimating PM10 concentration at daily and monthly scale.  The methods and experiments detailed in 

this section focus on determining the statistically “optimal” weights using kriging which is a 

geostatistical linear combination method (Krige, 1951). Kriging uses statistical dependency properties, 

such as covariances between observed locations, to determine the weights while still respecting the 

measurement uncertainty (Smith et al., 2007).  

7.2 Geostatistical Methods 

The major challenge in S-T interpolation is identifying the S-T dependence structure (Li et al., 2016). 

Geostatistical methods include and model the spatial correlation between variables resulting in an 

unbiased estimation with a lowest and known variance (Oliver & Webster, 2015). In a purely spatial 

interpolation approach, time can be included by performing series of spatial interpolation snapshots and 

a one-dimensional slice of the space-time variogram that corresponds to zero-time lag is employed. 

Similar to a spatial variogram or covariance, the S-T dependency can be quantified by estimating and 

modeling S-T variogram functions that are conditionally negative definite (Donald E. Myers, 2004). 

Verifying such a condition is not straightforward in cases such as the Auckland PM10 dataset used in 

this research as the number of time points is larger than the number of spatial data points. Also, given 

that this study’s focus within the descriptive approach is on the first two moments, means, variances, 

and covariances of Y (·; ·), it is assumed that the underlying process is Gaussian (C. K. Wikle et al., 

2019c).  

Time is implicitly treated as another dimension in simple S-T kriging, and covariance functions define 

co-variability among any two space-time locations in the domain of interest. In S-T kriging, the 

weighted residuals between the observations and their marginal means are taken by the conditional 

mean and the results are added back into the marginal mean related to the prediction location. These 

weights are functions of the covariances and the measurement error variance (C. K. Wikle et al., 2019c). 

To implement optimal prediction using geostatistical methods such as kriging, the joint S-T dependence 

structure of a S-T process needs to be described. Empirical S-T co-variograms are typically used to 

measure this joint S-T dependency. Unlike the spatial covariance estimates presented in Chapter 6, co-

variability in S-T data is described as a function of specific lags in time and in space where the time lag 

is a scalar value and the lag in space is a vector.  
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The experimental S-T semivariogram 𝛾𝛾𝑠𝑠𝑠𝑠(𝐡𝐡𝑠𝑠, ℎ𝑡𝑡) is the primary tool for verifying the applicability of 

S-T geostatistics. Assuming a spatial dependency for first moment and lag differences in space and time 

for the second moment the empirical semivariogram can be defined as: 

𝛄𝛄𝐬𝐬𝐬𝐬(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝟏𝟏
𝟐𝟐𝟐𝟐(𝐡𝐡𝐬𝐬,𝐡𝐡𝐭𝐭)

∑ �𝐳𝐳(𝐬𝐬, 𝐭𝐭)𝐢𝐢 − 𝐳𝐳((𝐬𝐬, 𝐭𝐭)𝐢𝐢) + �(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭)��𝟐𝟐𝐍𝐍(𝐡𝐡𝐬𝐬,𝐡𝐡𝐭𝐭)
𝐢𝐢=𝟏𝟏                                         Eq. 7.1 

where  

𝐍𝐍(hs, 𝐡𝐡𝐭𝐭) is the number of any two locations parted by the vector h= (hs, 𝐡𝐡𝐭𝐭), 

hs is the spatial lag, 

𝐡𝐡𝐭𝐭 is the temporal lag and  

𝑧𝑧(𝑠𝑠, 𝑡𝑡)𝑖𝑖is the value of the variable at the S-T location (𝑠𝑠, 𝑡𝑡)𝑖𝑖. 

Spatio-temporal kriging predictors require knowledge of the S-T covariances among the hidden random 

process evaluated at pairs of space and time locations. The covariance function must be non-negative-

definite to guarantee non-negative kriging variances. The experimental S-T covariance Cˆst (h) for shs 

and 𝐡𝐡𝐭𝐭 is defined as : 

𝑪𝑪ˆ𝒔𝒔𝒔𝒔(𝐡𝐡𝒔𝒔, 𝒉𝒉𝒕𝒕) = 𝟏𝟏
𝟐𝟐𝟐𝟐(𝐡𝐡𝒔𝒔,𝒉𝒉𝒕𝒕)

∑ 𝒛𝒛𝒊𝒊(𝐬𝐬, 𝒕𝒕)𝒊𝒊. 𝒛𝒛((𝐬𝐬, 𝒕𝒕)𝒊𝒊) + �(𝐡𝐡𝒔𝒔, 𝒉𝒉𝒕𝒕)� −𝑵𝑵(𝐡𝐡𝒔𝒔,𝒉𝒉𝒕𝒕)
𝒊𝒊=𝟏𝟏 𝒎𝒎−𝒉𝒉

ˆ . 𝒎𝒎+𝒉𝒉
ˆ                         Eq. 7.2  

where  

mˆ-h is the mean of the tail values and  

mˆ+h is the mean of the head values. 

A valid semivariogram may present a discontinuity in zero called nugget that quantifies the 

discontinuity among the observation and the smooth underlying process that may be due to the 

measurement error or to dynamics on a smaller scale than the one of our measurement grids. The 

distances between pairs of observed data at which the variogram is calculated are called lags. Another 

related property of the semivariogram is the sill value where the semivariogram model attains at the 

range. The relative nugget, ratio of the nugget to the total sill, tends to increase as the data scatters 

(Goovaerts, 1997). The semivariogram range quantifies the range of influence of the Gaussian process. 

The two elements of the process are uncorrelated when the distances are greater than the range.  

Fitting a variogram model in the semivariogram modeling process always involves uncertainty related 

to the choice of the semivariogram model parameters. A model must generate variogram value for all 

separation distance. Next step is to select the best fitted function that captures the overall features of the 

experimental semivariogram (Αινσλιε Μ.  ∆ενηαµ, 2012). Figure 7.1 shows variogram parameters 
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and semivariogram modeling steps. The term semivariogram and variogram are often used 

interchangeably in literature. By definition, γ(h) is the semivariogram and the variogram is 2γ(h). 

Figure 7.1: Semivariogram modeling steps: (a) data shown as circles are plotted as function of 
separation distance between each point. The separation distance is partitioned into lag bins. (b) calculate 
the empirical semivariogram for each bin and plot it as a function of h. (c) Model semivariogram fitted 
to empirical semivariogram data. (d) Model parameters for spatial structure of the data. Adopted from 
(Hanke et al., 2018) with permission. 

In an isotropic phenomenon spatial continuity pattern is independent from the spatial direction, 

otherwise it is anisotropic. Temporal anisotropy is not applicable as there is only one temporal 

dimension. In geometric anisotropy, shape and sill of directional semivariograms do not change, but the 

value of the spatial range varies in different spatial directions. In a zonal anisotropic semivariogram the 

sill value depends on the spatial direction as well as the distance.  

Isotropic case: 

𝛚𝛚(𝛉𝛉) = ∑ 𝛚𝛚𝐥𝐥[𝛄𝛄ˆ(𝐡𝐡𝐥𝐥) − 𝛄𝛄(𝐡𝐡𝐥𝐥, 𝛉𝛉)]𝟐𝟐𝐋𝐋
𝐥𝐥=𝟏𝟏   Eq. 7.3 
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where 

θ is a parameter vector usually containing the range and sill for a given semivariogram model  

γˆ(hl) is sample semivariogram at lag distance hl = |hl|, 

γ(hl; θ) is model semivariogram at lag distance hl, 

ωl = weight for l-th squared error value [γ^ (hl) − γ(hl; θ)]2 at lag distance hl 

Anisotropic case:  

𝛚𝛚(𝛉𝛉) = ∑ ∑ 𝛚𝛚𝐥𝐥
𝐤𝐤𝐋𝐋

𝐥𝐥=𝟏𝟏
𝐊𝐊
𝐤𝐤=𝟏𝟏 �𝛄𝛄ˆ(𝐡𝐡𝐥𝐥

𝐤𝐤) − 𝛄𝛄�𝐡𝐡𝐥𝐥
𝐤𝐤, 𝛉𝛉��

𝟐𝟐
                                    Eq. 7.4 

where 

γˆ(𝐡𝐡𝑙𝑙
𝑘𝑘) is sample semivariogram at lag hl for k-th direction,  

𝛾𝛾�𝐡𝐡𝑙𝑙
𝑘𝑘 , 𝜽𝜽� is model semivariogram at 𝐡𝐡𝑙𝑙

𝑘𝑘for k-th direction  

𝜔𝜔𝑙𝑙
𝑘𝑘 is weight for l-th squared error value �γˆ(𝐡𝐡𝑙𝑙

𝑘𝑘) − 𝛾𝛾�𝐡𝐡𝑙𝑙
𝑘𝑘 , 𝜽𝜽��2at lag distance 𝐡𝐡𝑙𝑙

𝑘𝑘 along k-th direction. 

A general approach has been proposed to distinguish between isotropy and anisotropy by fitting a 

variogram model along four spatial directions (Chappell & Agnew, 2012; Eriksson & Siska, 2000). In 

this approach, the spatial correlation structure is isotropic if the regularity parameter changes in all 

variograms are all the same; otherwise, it is anisotropic. However, the challenge in this thesis’s study 

area is the low number of data locations. In data sets where the total number of pairs is determined by 

the number of data locations, the directional sample variogram splits the pairs into four sets. Hence, 

having small number of pairs per distance class, as in the case of this research, makes it difficult to use 

the plotted sample directional variograms to fit models. To overcome this problem spatial trend analysis 

was performed using the ESRI Spatial Analyst by Esri. ArcGIS®. 

7.3 Spatio-Temporal Variograms and Covariance Models 

7.3.1 Separable Spatio-Temporal Variograms  

Estimation of the mean and spatial structure function are the two key sequential steps involved in 

geostatistical interpolation in a purely spatial situation (D. E.  Myers, 2004). Space-time interpolation 

involves similar steps but the estimation the structure function is more complex. Spatial-temporal 

models can be constructed by treating the space and time separately, or by including time as an 
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additional dimension with a different unit of measurement (A. M.  Denham, 2012).  In a separable S-T 

covariance function the S-T process is a joint process of two individual, a purely spatial and a purely 

temporal process (De Cesare et al., 1997).  

Separable classes of S-T covariance functions offer a convenient way to meet the space-time covariance 

function validity criteria. The valid separable class is given by (D. E.  Myers, 2004): 

𝐜𝐜(𝐡𝐡; 𝛕𝛕) = 𝐜𝐜(𝐬𝐬)(𝐡𝐡). 𝐜𝐜(𝐭𝐭)(𝛕𝛕)                                                           Eq. 7.5 

where 

𝑐𝑐(𝑠𝑠)(ℎ) denotes a spatial covariance function, and 

𝑐𝑐(𝑡𝑡)(𝜏𝜏) denotes a temporal covariance function. 

The structure of separable models suggests that the spatial structure is unchanged during the time and 

the temporal structure fixed at all locations (Cressie & Huang, 1999). The separability property also 

implies that the two are separate processes acting independently from each other, which is an unrealistic 

assumption that is very seldom true in the case of real-world processes (Bruno et al., 2009a). The joint 

S-T correlation function is obtained by using the marginal spatial and temporal correlation functions. 

Thus, instead of identifying realisations of two separate processes, only the joint process is observed 

(A. M.  Denham, 2012). The separable S-T covariance models need to estimate a small number of 

parameters. This has led to use of separable S-T covariances where they are not physically reasonable 

(Bruno et al., 2009a; Cressie & Huang, 1999). Significant effort has been directed towards the 

development of non-separable S-T variograms and covariance models to model the space time 

interactions in environmental processes. A comparable list of valid spatial-temporal covariance 

functions was provided by De Iaco and Myers (2002). Various non-separable S-T models have been 

proposed by authors and researchers (De Iaco et al., 2002a; Gneiting, 2002; Mateu et al., 2008). A 

comparative review of many of these accepted and implemented models was performed in 2010 (De 

Iaco, 2010).  

The product-sum model (De Iaco et al., 2002a) was found to give a marginally better fit than the 

Cressie–Huang model in a hydrological study estimating the runoff along a stream network topology 

(Skøien & Blöschl, 2005). Spatio-temporal analysis of daily Ozone data collected in Milan (Italy) 

showed, based on mean square error (MSE) values, that the product-sum model gave a better fit than 

Cressie–Huang’s and Geniting’s models (De Iaco, 2010). The S-T experimental semivariogram of the 

NO2 emissions of soil from a tea plantation in central China was obtained using separable, product-

sum, metric and sum-metric S-T semivariogram models. The sum-metric model was reported in this 

case to perform the best (Liu et al., 2016). The Sum-metric and product-sum models were used by 
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Menezes et al. (2017) to model the S-T concentration of NO2 over Portugal’s mainland. The models 

were compared using the ME and MSE metrics. The results for each of the models were very similar. 

The advantage of an extra parameter (anisotropy) in the sum-metric to deal with spatial and temporal 

distances as well as using particular variogram for space, time, and space–time resulted in the authors 

ultimately choosing the sum-metric model over the product-sum model. In the study by Ahmed et al. 

(2018) different covariance functions were utilized to model the S-T variogram of monthly averages of 

PM10, NO2 and sulfur dioxide (SO2). They reported that in all cases the sum-metric model outperformed 

the separable, metric, and product-sum models.  

Non-separable S-T models for nonstationary data have been proposed in recent years. However, only 

limited practical applications of these non-stationary covariance models are available in literature. Some 

researchers have implemented these models to model Ozone concentrations (Bruno et al., 2009b; Das 

& Bhattacharya, 2014; Fuentes et al., 2007). In another study, analysis of S-T changes in 

neurodegeneration related to Alzheimer’s disease using a non-separable, nonstationary model was 

performed (Marco et al., 2015). 

An overview of the mathematical descriptions of the most used separable and non-separable model is 

provided in the following subsection of this thesis. These models are employed in this study to explore 

the potential of commonly used S-T methods for daily PM10 measurements across Auckland. The choice 

of method was based on its widespread prior use and this choice was made to allow for comparison 

with other studies in literature, so this overview is by no means exhaustive. Finally, the results of 

applying each of these models to the case studies PM10 data are reported. 
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7.3.1.1 Sum Model 

In the sum model (aka the zonal model), time is treated as another dimension resembling a ‘zonal 

‘anisotropy. The sum model CST is computed according to Myers (2004) as follows: 

𝐂𝐂𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝐂𝐂𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝐂𝐂𝐓𝐓(𝐡𝐡𝐭𝐭)                               Eq. 7.6 

or 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝛄𝛄𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝛄𝛄𝐓𝐓(𝐡𝐡𝐭𝐭)                               Eq. 7.7 

where  

CS(hs) is spatial covariances,  

CT(ht) is temporal covariances,  

𝛾𝛾𝑆𝑆(𝐡𝐡s) is spatial variogram, and 

𝛾𝛾𝑇𝑇(ℎ𝑡𝑡) is temporal variogram.  

The issue with the sum model is that the obtained spatial-temporal covariance/variogram may not 

comply with strict definiteness and strict conditional negative definiteness even if the individual spatial 

and temporal covariances and variograms meet the criteria (Myers & Journel, 1999).  

The sum model is unbounded when either a component in right side of the Equation 7.24 is unbounded 

(Myers 2004) and the spatial component can be combined with a geometric anisotropy as it is a 

separable model. According to Myers (2004) this will produce uncertainty in the results. However, some 

authors have suggested that using such a model is reasonable as the coefficient matrix may be invertible 

for some data locations. One such example is that of the ozone concentration model reported by Buxton 

and Pate (1994).  
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7.3.1.2 Metric Model 

In this research the metric space-time covariance model and variogram are generated according to 

Myers (2004) in which Rd ×T is a d+1 dimensional space. The model is formulated as follows: 

𝐂𝐂𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝐂𝐂(𝐚𝐚𝟏𝟏|𝐡𝐡𝐬𝐬| + 𝐚𝐚𝟐𝟐|𝐡𝐡𝐭𝐭|)  Eq. 7.8 

and 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝛄𝛄(𝐚𝐚𝟏𝟏|𝐡𝐡𝐬𝐬| + 𝐚𝐚𝟐𝟐|𝐡𝐡𝐭𝐭|)   Eq. 7.9 

where 

C(ST) is a strictly positive definite function on Rd+1, 

𝛾𝛾(ST) is strictly conditionally negative definite on Rd+1, and 

the coefficients a1, a2 ∈ Rd facilitate the comparison between space and time. 

7.3.1.3 Sum-Metric Model 

Myer’s Sum model can be combined with a metric model (D. E.  Myers, 2004) to provide the sum-

metric model 𝛾𝛾𝑆𝑆𝑆𝑆 as follows: 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝛄𝛄𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝛄𝛄𝐓𝐓(𝐡𝐡𝐭𝐭) + ϒ(𝐚𝐚𝟏𝟏|𝐡𝐡𝐬𝐬| + 𝐚𝐚𝟐𝟐|𝐡𝐡𝐭𝐭|)  Eq. 7.10 

As with the sum-model it is possible to replace 𝑎𝑎1|𝐡𝐡𝑠𝑠| + 𝑎𝑎2|h𝑡𝑡| as a distance function on Rd ×T, with  

𝑎𝑎1|𝐡𝐡𝑠𝑠 |2 + 𝑎𝑎2|h𝑡𝑡|2 such that 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝛄𝛄𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝛄𝛄𝐓𝐓(𝐡𝐡𝐭𝐭) +  ϒ(𝐚𝐚𝟏𝟏|𝐡𝐡𝐬𝐬 |𝟐𝟐 + 𝐚𝐚𝟐𝟐|𝐡𝐡𝐭𝐭|𝟐𝟐)               Eq. 7.11 

where  

𝛾𝛾𝑆𝑆(𝐡𝐡𝑠𝑠) and 𝛾𝛾𝑇𝑇(ℎ𝑡𝑡) denote the space and the time variograms, respectively. 

The respective marginals are given as: 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝟎𝟎) = 𝛄𝛄𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝛄𝛄𝐚𝐚𝟏𝟏|𝐡𝐡𝐬𝐬|       Eq. 7.12 

and 

𝛄𝛄𝐒𝐒𝐒𝐒(𝟎𝟎, 𝐡𝐡𝐭𝐭) = 𝛄𝛄𝐓𝐓(𝐡𝐡𝐭𝐭) + 𝛄𝛄𝐚𝐚𝟐𝟐|𝐡𝐡𝐭𝐭|   Eq. 7.13 
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In a bounded model, the sill parameter in both space and time marginal will have a similar type of sill 

but the range of the parameter varies. Therefore, it is feasible to choose a sum-metric model with distinct 

marginals. As the strict conditional negative definiteness is guaranteed by 𝛾𝛾, the remaining components 

can be semi-definite (D. E.  Myers, 2004).  

7.3.1.4 Product Model 

In a product model the strictly positive definite covariance function is calculated according to Myers 

(2004) as follows:  

𝐂𝐂𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝐂𝐂𝐒𝐒(𝐡𝐡𝐬𝐬)  × 𝐂𝐂𝐓𝐓(𝐡𝐡𝐭𝐭)             Eq. 7.14 

The variogram and marginal are given by:  

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝐂𝐂𝐓𝐓(𝟎𝟎)𝛄𝛄𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝐂𝐂𝐓𝐓(𝟎𝟎)𝛄𝛄𝐓𝐓(𝐡𝐡𝐭𝐭) − 𝛄𝛄𝐒𝐒(𝐡𝐡𝐬𝐬) × 𝛄𝛄𝐓𝐓(𝐡𝐡𝐭𝐭)                                  Eq. 7.15 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝟎𝟎) + 𝛄𝛄𝐒𝐒𝐒𝐒(𝟎𝟎𝐬𝐬, 𝐡𝐡𝐭𝐭) − [𝟏𝟏/𝐂𝐂𝐂𝐂(𝟎𝟎)𝐂𝐂𝐂𝐂(𝟎𝟎)]𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝟎𝟎) × 𝛄𝛄𝐒𝐒𝐒𝐒(𝟎𝟎𝐬𝐬𝐡𝐡𝐭𝐭)           Eq. 7.16 

7.3.2 Non-separable Models 

7.3.2.1  Product-Sum Model 

The product-sum model (De Iaco et al., 2001) is constructed by combining both “sum” and the 

“product” of the spatial and temporal covariance functions and can overcome the limitations related to 

separate models. A strictly positive definite CST(𝐡𝐡s, ht) the on Rd ×T is given by: 

𝐂𝐂𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝐊𝐊𝟏𝟏𝐂𝐂𝐒𝐒(𝐡𝐡𝐬𝐬) × 𝐂𝐂𝐓𝐓(𝐡𝐡𝐭𝐭) + 𝐊𝐊𝟐𝟐𝐂𝐂𝐒𝐒(𝐡𝐡𝐬𝐬) + 𝐊𝐊𝟑𝟑𝐂𝐂𝐓𝐓(𝐡𝐡𝐭𝐭)                          Eq. 7.17  

where 

CT and CS are strictly positive definite temporal and spatial covariance models, respectively. 

The variogram is given by: 

γST(𝐡𝐡s, ht) = [K1CT(0) + K2]γS(𝐡𝐡s) + [K1CS(0) + K2]γT(ht) − K1γS(𝐡𝐡s) × γT(ht) 

  Eq. 7.18 

or 

𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝐡𝐡𝐭𝐭) = 𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝟎𝟎) + 𝛄𝛄𝐒𝐒𝐒𝐒(𝟎𝟎𝐬𝐬, 𝐡𝐡𝐭𝐭) − 𝐊𝐊𝐊𝐊𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝟎𝟎) × 𝛄𝛄𝐒𝐒𝐒𝐒(𝟎𝟎𝐬𝐬, 𝐡𝐡𝐭𝐭)  Eq. 7.19 

The sufficient condition for K is given by (De Iaco et al., 2001): 
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𝟎𝟎 < 𝐊𝐊 ≤ 𝟏𝟏/𝐦𝐦𝐦𝐦𝐦𝐦 (𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝛄𝛄𝐒𝐒𝐒𝐒(𝐡𝐡𝐬𝐬, 𝟎𝟎), 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝛄𝛄𝐒𝐒𝐒𝐒(𝟎𝟎𝐬𝐬, 𝐡𝐡𝐭𝐭)  Eq. 7.20  

Unlike the sum, metric, and sum-metric models the assumption of second order stationarity is needed 

in such models (Myers 2004). This model does not need the use of a space–time metric and is more 

accommodating than the non-separable covariance models for estimating and modeling S-T correlation 

structures (De Iaco et al., 2002b). 

7.4 Spatio-Temporal Interpolation Methods 

Once a semivariogram or covariance model of S-T dependence is identified, estimation of the attribute 

value at the unsampled location (h,t) can be applied. In Kriging, the unknown value is estimated using 

weighted linear combinations of neighboring data, or a subset of the residuals, that are subject to the 

mean function definition. Selection of neighboring data is based on the spatial and temporal distance 

from the estimation data point (h,t) and weighted by including the closeness of each sample data to the 

location of prediction. Linear kriging methods are a Simple Kriging (SK) with known and constant 

mean, Ordinary Kriging (OK) where mean is not known but is constant and Universal Kriging (UK) 

where the mean is an unknown linear combination of random functions (Li et al., 2015). All kriging 

methods are modifications of the basic linear regression estimator Z*(h,t) Denham (2012): 

𝐙𝐙∗(𝐡𝐡, 𝐭𝐭) − 𝐦𝐦(𝐡𝐡, 𝐭𝐭) = ∑ 𝛌𝛌𝛂𝛂(𝐡𝐡, 𝐭𝐭)[𝐙𝐙(𝐡𝐡, 𝐭𝐭)𝛂𝛂 − 𝐦𝐦(𝐡𝐡, 𝐭𝐭)𝛂𝛂
𝐧𝐧(𝐡𝐡,𝐭𝐭)
𝛂𝛂=𝟏𝟏 ]   Eq. 7.21 

where 

𝑍𝑍(𝐡𝐡, 𝑡𝑡)𝛼𝛼 denotes realization of the (𝐡𝐡, 𝑡𝑡)𝛼𝛼, 

𝜆𝜆𝛼𝛼(𝐡𝐡, 𝑡𝑡) denotes the weight assigned to the 𝑍𝑍(𝐡𝐡, 𝑡𝑡)𝛼𝛼, 

𝑚𝑚(𝐡𝐡, 𝑡𝑡) denotes the expected value of the random variable 𝑍𝑍(𝐡𝐡, 𝑡𝑡), and 

𝑚𝑚(𝐡𝐡, 𝑡𝑡)𝛼𝛼  denotes the expected value of the random variable 𝑍𝑍(𝐡𝐡, 𝑡𝑡)𝛼𝛼  
. 

The number of neighboring data used in the estimation and the weights allocated to each data point 

could vary in different directions. Kriging is an unbiased method, as the errors mean is zero, aiming at 

reducing the estimation or variance of the errors. The variance is given by  

𝛅𝛅𝐄𝐄
𝟐𝟐(𝐮𝐮, 𝐭𝐭) = 𝐕𝐕𝐕𝐕𝐕𝐕[𝐙𝐙∗(𝐮𝐮, 𝐭𝐭) − 𝐙𝐙(𝐮𝐮, 𝐭𝐭)]                                                                    Eq. 7.22           

which is reduced under the constraint that  

 𝐄𝐄[𝐙𝐙∗(𝐮𝐮, 𝐭𝐭) − 𝐙𝐙(𝐮𝐮, 𝐭𝐭)] = 𝟎𝟎                                                                                         Eq. 7.23             

SK does not adjust to local trends; instead, it relies on a constant, global mean. The assumption of 

second-order stationarity in SK allows the random functions to be defined as residuals with a zero mean 
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(Mpanza, 2015). Prior to estimation, the mean is deducted from the observations. The prediction surface 

is adjusted using the residual values. The weights in SK are defined so that the error variance is reduced 

under the constraint of the unbiasedness of the estimator (Ainslie M.  Denham, 2012).  

OK assumes that random variables are stationary where the mean is not known (Armstrong, 1998). 

Local mean is used for approximating the mean at each weighting the search neighborhood. The 

unknown mean is estimated alongside the residual component. The kriging weights are forced to sum 

to 1 resulting in filtering the unknown local mean from the estimator (Ainslie M.  Denham, 2012): 

𝐙𝐙𝐎𝐎𝐎𝐎
∗ (𝐡𝐡, 𝐭𝐭) = ∑ 𝛌𝛌𝛂𝛂(𝐡𝐡, 𝐭𝐭)[𝐙𝐙(𝐡𝐡, 𝐭𝐭)𝛂𝛂 − 𝐦𝐦(𝐡𝐡, 𝐭𝐭)𝛂𝛂

𝐧𝐧(𝐡𝐡,𝐭𝐭)
𝛂𝛂=𝟏𝟏 ] +  𝐦𝐦(𝐡𝐡, 𝐭𝐭) Eq. 7.24 

 = ∑ 𝝀𝝀𝜶𝜶(𝐡𝐡, 𝒕𝒕)𝒁𝒁(𝐡𝐡, 𝒕𝒕)𝜶𝜶 + �𝟏𝟏 − ∑ 𝝀𝝀𝜶𝜶(𝐡𝐡, 𝒕𝒕)𝒏𝒏(𝐡𝐡,𝒕𝒕)
𝜶𝜶=𝟏𝟏 �𝒏𝒏(𝐡𝐡,𝒕𝒕)

𝜶𝜶=𝟏𝟏 𝒎𝒎(𝐡𝐡, 𝒕𝒕)  Eq. 7.25 

𝒁𝒁𝑶𝑶𝑶𝑶
∗ (𝐡𝐡, 𝒕𝒕) = ∑ 𝝀𝝀𝜶𝜶

𝑶𝑶𝑶𝑶(𝐡𝐡, 𝒕𝒕)𝒁𝒁(𝐡𝐡, 𝒕𝒕)𝜶𝜶 𝒏𝒏(𝐡𝐡,𝒕𝒕)
𝜶𝜶=𝟏𝟏                            Eq. 7.26

                       

Like SK, the weights are determined so that the error variance is minimized. (Ainslie M.  Denham, 

2012).  

7.5 Experiments and Results 

The empirical variogram surface was calculated and utilized as input for the fitting of the different 

models. Figure 7.2 shows the empirical variogram as perspective wireframe with spatial bin set to 10 

km apart.  
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Figure 7.2: Empirical spatio-Temporal variogram, April 2012. 

In addition to the selection of the S-T variogram, each component of this model was selected from two 

commonly applied one-dimensional variograms, namely Exponential (Exp) and Spherical (Sph) 

variograms. A selection of time specific fitted models (residuals compared to the sample variogram 

surface) are shown in Table 7.1. The same procedure was performed for each month of the year to find 

the best model for each variogram family. The result of the best fitting S-T model for the April 2012 

time point shown in Figure 7.2 is highlighted in bold in Table 7.2.  

Table 7.1: Weighted MSE (fit.method = 8) for different selections of the one-dimensional variogram 
components and different S-T variogram families.  

 Year 2012- April 

 Joint Exp+Exp Exp+Sph Sph+Exp Sph+Sph 

Metric - 0.40 NA NA 0.46 

Product-sum (K=20) - 0.83 1.15 15.56 15.36 

Sum-metric Exp 0.034 0.035 0.1074 0.1075 

Sph 0.04 0.041 15.56 0.1 

Separable - 1.21 1.26 15.79 15.78 

Fitting routines these variogram models were implemented in R using the gstat library. To meet the 

criteria for some of the parameters, such as non-negative nuggets and positive ranges, the L-BFGS-B 

optimisation routine was used to enforce limits on the search space. In this study, the applied fitting 
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routines were based on the (weighted) MSE of the model and sample variogram. Given the relatively 

small neighborhood size of the study area we needed to ensure that the model is fitted to the differences 

over the actual space and time that is used in the interpolation. Therefore, the spatial and temporal 

distances were reduced, and a cutoff measure was introduced. This adjustment also lowers the 

possibility of overfitting the variogram model. The S-T anisotropy was estimated in advance and fixed 

at 30 km/day. Different weighting schemes generate different model parameters and consequently result 

in different interpolation values. The best fitting S-T variogram of each family for April 2012 is shown 

in Figure 7.25.  

Table 7.2: Best fitting S-T model for April 2012. 

Metric model (weighted MSE: 0.40) 

 partial sill  model range nugget anisotropy 

Join 13.5711 (Exp, Exp) 43.62386  36.78 km/day 

Product-sum model (weighted MSE: 0.72) 

 partial sill  model range nugget k 

Space 0.01 Exp 40.87 0.001 16.57 

Time 21.47 Exp 6.47 0.95  

Sum-metric model (weighted MSE: 0.03) 

 partial sill  model range nugget anisotropy 

Space 5.77 Exp 56.62 0.10  

Time 16.55 Exp 17.39 0.03 

Join 8.46 Exp 68.32 0.02 68.43 km/day 

Separable model (weighted MSE: 1.22) 

 partial sill  model range nugget sp.-temp. sill 

Space 0.994 Exp 2326.756 0.01 211.30 

Time 0.99 Exp 63.78 0.009 

The month-specific Exponential model parameters were obtained in two stages: with and without the 

covariant as secondary information. The model parameters were estimated for each month of data at a 

time, to consider the possible device drift and seasonal variability in the regression coefficients and 

semi-variance parameters. The same approach was taken by Zoet, Osei, Hoek & Stein (2020) for S-T 

modeling of NO2 concentration in city of Eindhoven, the Netherlands. Our results showed changes in 

the range of nugget value that indicate the degree of non-spatial variability of the observations. It can 

be concluded that adding the covariant to the model might improve the model by reducing the non-

measurement error in the observed data. Table 7.3 shows the parameters after fitting the best model 

(sum-metric) with and without covariant for April 2012.  
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Figure 7.3: Best fitting S-T variogram of each family (April 2012). 

The surface plot of predicted standard error is presented in Figure 7.4 showing a decrease in prediction 

standard errors while increasing the information in the model. Data for 15 April 12 (randomly selected) 

was also deliberately omitted from the original data set to investigate how predictions on a day with 

missing value are affected. It can be observed from the plots that prediction standard errors are 

significantly larger for 15 April 2012. 

Table 7.3: Fitted Exponential Model parameters with and without covariant. 

Sum-metric model without covariant (weighted MSE: 0.04) 

 partial sill  model range nugget anisotropy 

Space 3.49 Exp 25.76 0.50  

Time 16.46 Exp 16.53 0.02 

Join 8.51 Exp 66.64 0.021 72.35 km/day 

Sum-metric model with covariant (weighted MSE: 0.034) 

 partial sill  model range nugget anisotropy 

Space 1.04 Exp 23.45 1.09  

Time 20.71 Exp 17.52 0.00 

Join 7.98 Exp 58.18 0.00 68.43 km/day 
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Figure 7.4: Spatio-temporal kriging prediction standard errors of PM10 with covariates (A) and without 

covariates (B) within the Auckland study area for six days in April 20122.  

 

The month-year specific variogram models that obtained the smallest RMSE (Table 7.2) were then used 

to produce a gridded prediction using Universal S-T kriging where the latitude was used as a covariate. 

The interpolation domain consists of spatial locations between 174.42° and 175° west, and 37.3° and -

36.7° north extended to 80 km apart. For the temporal grid, six equally spaced days were considered. 

Figure 7.5 shows the interpolated grid of prediction and prediction standard errors for six continuous 

days alongside the sampling locations for April 2012. The maps visualise prediction standard errors 

associated to the prediction location’s proximity to an observation. It is also notable that the interpolated 

surface for the omitted day is much smoother than the observed days. 

 

2 Data for 15 April 2012 was excluded from the original data set (see discussion in page 229). 
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Figure 7.5: Spatio-temporal kriging prediction (A) and prediction standard errors (B) of PM10 over the 
Auckland study area for six days in April 2012.3  

The predictive performance of the kriging procedure within the study area was performed using 

KrigeST function of gstat package. Similar to approaches taken in literature  (Gräler et al., 2016; D. Hu 

et al., 2017; Van Zoest et al., 2020) for measuring the accuracy of predicted PM10, using the KrigeST 

function and LOOCV , the accuracy of predicted PM10 at all observed space-time locations were 

measured. Actual and predicted values were then assessed to measure the model performance by 

calculating the errors of the interpolated values. The diagnostic measures employed were the RMSE, 

ME and MAPE of the residuals to the prediction errors. The value of MAPE should be 0 as the residuals 

from cross-validation should be equal to prediction errors at each point that was held out. Results of 

cross-validation on 2012 showed RMSE 0.692, average standard error 1.60, and the MSPE of the 10.42, 

than was higher than the ideal 0, meaning that the predictions are rather less variable than the true value; 

this is to be expected, as kriging is a smoothing estimator. The year-specific cross-validation metrics 

are presented in Table 7.4. 

 

3  Note: Data for 15 April 2012 was excluded from the original data set (see discussion in page 229). 
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Table 7.4: Year-specific LOOCV cross-validation results. 

RMSE Average Standard Error MSPE 

2011 0.72 1.40 10.07 

2012 0.69 1.60 10.44 

2013 0.77 1.15 11.84 

2014 0.91 1.45 12.02 

2015 0.33 1.24 7.185 

2016 1.22 1.47 10.14 

Although spatio-temporal kriging modeling is generally accepted as an effective tool for modeling air 

pollutant concentrations (Van Zoest et al., 2020), the cross-validation results in Table 7.4 showed that 

spatio-temporal kriging only performed marginally better when compared to IDW for predicting 

Auckland  PM10 concentration. The prediction quality of spatio-temporal kriging is known to improve 

if sufficiently strong correlated locations are added with the temporal dimension (Gräler et al., 2016). 

However, for Auckland given the monitoring networks limitations, with few stations at a low spatial 

density, including more stations is not currently possible. 

7.6  Conclusion 

In this Chapter we sought to describe the space time interactions of Auckland’s PM10 through a marginal 

model developed by spatio-temporal covariances. The descriptive approach was chosen as the dynamic 

systems that drive the spatio-temporal PM10 concentration in the Auckland study area was not clearly 

understood or indeed even known.  

In this Chapter, the dependent random process was identified in terms of first-order and second-order 

moments in terms of covariances of its marginal distribution. In the S-T kriging process for modeling 

and predicting Auckland PM10 concentration, it was assumed that the true process can be described in 

terms of S-T fixed effects combined with a S-T dependent random process. The S-T kriging in Section 

7.4 aimed to specify the dependence structure in the PM10 random process aiming to achieve the second 

goal of S-T modeling as discussed in Section 7.1, that is, S-T prediction. The causal structure that causes 

the dependence in a random process was not of concern. Four models for spatio temporal variograms 

were examined in this Chapter. These stationarity assumptions were taken in determining the 

experimental marginal spatio-temporal variograms.  The spatio-temporal variogram for the sum-metric 

was found to be the best fitted model compared to metric, product-sum and separable models based on 

the weighted MSE metric. The spatial and temporal dependencies were not only modelled 

independently, but also their joint dependencies. In our case of a pure nugget spatial variogram, these 

joint dependencies were stronger than the purely spatial dependencies.  



 

Page | 236  

 

The main challenge in characterising the spatio-temporal dependence structure using the marginal 

covariance model is its ability to model real-world spatio-temporal interactions according to the rules 

that govern the spatio-temporal variability. These rules make the underlying process a dynamical 

system. Chapter 8 uses machine learning and ensemble methods to account for these dynamics and 

therefore is attempted to provide more realistic and generalisable models.  
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Chapter 8  MACHINE LEARNING AND MODEL BUILDING 

The overall goal of this Chapter is to describe work towards the development of a model, using data 

from routine monitoring networks, from which inferences can be drawn about site specific PM source 

characteristics and dispersion mechanisms. In that sense, it is important to utilise simple modeling 

techniques that depend only on data from routine and cost-effective monitors. Specifically, the non-

linear statistical approaches of artificial neural networks (ANN), Long short-term memory (LSTM) and 

Random Forest (RF) were chosen and used for further evaluation. This Chapter is divided into two main 

sections: feature selection and forecasting.  

Each of the subsections of this Chapter provides a theoretical background to these techniques with a 

summary of their current applications in air pollution modeling. These modeling techniques were then 

used to model the concentrations of PM10 pollutants collected from the monitoring sites in Auckland. 

The results are presented and discussed as a basis of the analyses presented in the subsequent sections.  

8.1 Introduction 

An approach in modeling of atmospheric pollutant concentration is to employ deterministic models that 

are based on the governing dynamic and chemical transformation procedures. Deterministic models are 

limited by their requirement for such detailed knowledge. In Chapter 5, purely statistical models were 

investigated with the aim of providing reasonable predictions using Auckland’s routinely available data. 

However, these models were restricted by their incapability to provide insight into dispersion 

mechanisms and hence did not perform well.  The challenge therefore remains. How do we create air 

quality models to effectively obtain the variability in observed concentrations using the available 

meteorological and temporal data? 

The traditional methods presented in Chapters 5, 6 and 7 often require hand-crafted features, and expert 

knowledge of the field. As elaborated in Chapter 5, autoregressive models involve either strict or weak 

stationarity in the data, which does not hold in real world time series. This means that before we can 

apply traditional methods, we need to transform our data with techniques such as detrending algorithms, 

which introduce their own set of problems. It was concluded that the ARIMA class of models only 

perform well on linear processes. ANNs do not suffer from these problems since they are non-linear in 

nature and data driven. ANNs learn to model processes based on example input and output values, and 

performance gets better when more data is used in the training of the models (though one has to be 

careful of the risk of overfitting). This shifts the required expert knowledge, that was required with 

techniques such as ARIMA presented in Chapter 5, from the working field of the data to knowledge of 

the algorithm. This inherently makes it cheaper and easier to make meaningful predictions from time 

series data. 
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In this Chapter the use machine learning techniques, namely ANN Multilayer Perceptron (MLP), 

LSTM, and RF (an ensemble method) to forecast PM10 concentrations in Auckland study area is 

explored through experiments. These models can incorporate as many parameters as predictor variables. 

However, the complexity and multivariate behavior of environmental models require additional 

techniques to involve the appropriate variables within the modeling structure. Very few studies have 

given attention to understanding the meteorological variables that are the most important predictor 

variables for determining PM10 concentrations and identifying the influential time scales on the 

emission patterns; whether daily, weekly, or monthly, for example. Therefore, the site-specific most 

influential meteorological variables in determining PM10 concentrations and the important time scales 

which influence the emission patterns (daily or monthly) are identified using two common input 

optimization techniques, namely forward selection, and backward elimination. Inputs from these two 

methods are then used to build the models and to investigate to what extent these models can learn the 

time variation of concentrations through training without the need for comprehensive air pollution data. 

The quality of MLP output can be enhanced by de-correlating the input variables prior to the MLP 

training process stage (Yu et al., 2004). Intelligent hybrid systems are generally used for the finding the 

optimised ANN parameters and input selection. In this Chapter, a hybrid system is used through 

combinations of ANNs with the data mining technique, Principal Component Analysis (PCA), for 

eliminating correlation in the sample data before they are being presented to an MLP. Performance of 

these hybrid PCA-MLP time series modeling technique and to understand the complex time series of 

PM10 concentrations in a different site located in Auckland were analyzed.  

Sections 8.2 to 8.4 describe the datamining and machine learning methods utilized in this Chapter. The 

similarities and differences of machine learning modeling approaches are discussed. Section 8.5 

presents the experiment methodologies followed by section 8.6 presenting the results of the machine 

learning technique to understanding site-specific air pollution dispersion mechanisms.   

8.2 Data Mining Techniques for Input Parameter Selection 

8.2.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multivariate statistical analysis method built on feature 

extraction aiming to find a new set of uncorrelated variables to explain the maximum variance. The 

PCA enables extraction of the main patterns in the matrix in terms of a complementary set of score and 

loading plots. In analysis of environmental data calculation of the principal components (PCs) is mostly 

performed using the solution of an eigenvalue problem through the matrix of covariances of anomalies 

of the dataset (Hannachi et al., 2007). The first PC accounts for the main proportion of variability, whilst 

the subsequent PCs explain the remaining variability which have not been explained by their 

predecessors (Sun & Sun, 2017). For every eigenvalue, there is an eigenvector that is not zero. Factor 
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loadings provide an indication of the degree of correlation between a PC and a variable where sum of 

the squares of coefficients of correlation between a variable and all the components is equal to one 

(Abdi & Williams, 2010). Deciding on the number of retained principal components is a challenging 

factor as it may lead to information loss or overfitting. The two commonly used criteria in the literature 

are the Kaiser criteria and the Percentage of Accumulated Variance (PVA) criteria (Lau et al., 2009; 

Pearce, Beringer, Nicholls, Hyndman, & Tapper, 2011). In the case of the Kaiser criteria only the PCs 

with eigenvalues larger than one are retained (Jolliffe, 2011). A less restricted threshold was suggested 

by Lau et al. (2009) by retaining the PCs whose eigenvalues are equal to or greater than 0.7. The PVAn 

criteria retains the PCs with accumulated percentages of variance exceeding the value n. 

Forward Selection (Greedy Search): Forward selection, or greedy searching, is an incremental linear 

search approach that chooses input variables one by one (Olden et al., 2004). It starts by building single 

input networks and choosing the variable that maximizes the performance of model based on the 

selected optimality criteria (the lowest MSE in this case). The network iteratively trains by adding the 

remaining input to the previous input sets. The procedure continues until introducing another input 

variable does not enhance model performance. 

Backward Elimination: In contrast with forward selection, backward elimination begins by training a 

network with all input variables and successfully eliminates inputs one at a time (Olden et al., 2004). 

The process is stopped when the removal of an input variable does not improve the model performance. 

K-mean Clustering of PM10 Concentrations 

K-means clustering is one of the most commonly used unsupervised machine learning algorithms and 

aims to split a dataset into 𝑘𝑘 distinct groupings (Steinbach et al., 2000). Due to uneven distribution and 

lack of extremes in PM10 concentration, k-means clustering was used to ensure samples are evenly 

selected during partitioning data into train, test, and validation. The cluster rankings were used for 

partitioning the dataset for train, test, and evaluation. A k-means cluster analysis of the concentration is 

performed by randomly selecting k data points from the space of PM10 data that are being clustered into 

groups. The selected data points are taken as initial centroids. Each data point is then allocated to the 

cluster with the closest centroid. The position of the centroid is recalculated by finding the mean of the 

cluster once all points are allocated to a cluster. The last two step are repeated until the centroid no 

longer moves. K-means clustering require a pre-specified number of clusters, which in this Chapter’s 

case study was set to the number of seasonal variations for each station identified in our primally data 

exploration presented Chapter 4. The clusters of PM10 concentration for each station are presented using 

a colour index plot (Appendix D). 



Page | 240 

8.3 Artificial Neural Networks (ANNs)  

Artificial Neural Networks (ANNs) learning capability, generalization, and extracting important 

features from inputs makes them an efficient modeling approach (Liu, 2001). Neural networks are 

comprised of one input layer with neuron(s), at least one hidden layer and one output layer that provides 

the output result(s). The connections between the neurons are weighted. Neural networks are trained by 

adjusting these connecting weightings so that the best relationship between the input and the output 

signal is established. The output of each neuron is produced from weighted inputs that are summed and 

passed through the transfer functions. Log-sigmoid is a commonly used transfer functions in Multilayer 

Perceptron (MLP) networks with backpropagation. The generated output by log-sigmoid function is 

within the range of zero to one (Dorofki et al., 2012). Learning in a neural network can be stated as 

search for weights for the network which can optimally model the data based upon certain criterion. 

This is usually referred to as a function of the training data that represents a gain to be maximized or 

loss to be minimized. Learning procedures in neural networks can be divided into three broad classes: 

Firstly, Supervised Learning in which the desired outputs of the input vectors are known throughout the 

learning procedure. Secondly, Unsupervised Learning in which the desired outputs of the input vectors 

are unknown and regularities within the input vectors are captured during the learning process. Thirdly, 

Reinforcement Learning which only requires a single scale evaluation of the generated output and if 

considered "good" then the network is "rewarded"; otherwise, the network is "penalized". Thus, 

reinforcement learning is sometimes referred to as reward-penalty or learning with critic. Depending 

on the neural network architecture and training method, ANNs can be divided into many sub categories 

(Haykin, 1999). 

The architecture of an ANN defines the connection pattern and arrangement of neurons in relation to 

each other. Feedforward neural network (no feedback link) and feedback or Recurrent Neural Network 

(RNN) are the types of ANN architecture. One-layer perceptron, MLP, and Radial Basis Function 

(RBF) are types of ANNs using feedforward neural networks. The main networks using multiple-layer 

feedforward architectures are MLP and RBF with the generalized delta rule and the competitive/delta 

rule learning algorithms, respectively (Silva et al., 2017). The case studies in this Chapter address the 

MLP architecture with a hyper tangent sigmoid function. The hyper tangent sigmoid function is known 

to be a popular choice in multivariate functions approximation (Anastassiou, 2011; Reyes et al., 2013; 

Sramka et al., 2019) and PM10 modeling (Saufie et al., 2015; Valencia et al., 2006) as its learning rate 

is faster than sigmoid activation function in terms of number of training iterations.  

The ANN modeling technique is known to be an effective nonlinear statistical modeling approach in 

air quality studies when compared with other approaches. ANN modeling was first used for the 
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prediction of air pollutants in 1993. This was an ANN model for predicting SO2 concentrations in an 

industrial area of Solvenia (Boznar et al., 1993).  

An MLP neural network was used by Abdebrahim et al. (2016) to forecast the daily averaged 

concentration of the PM10 in Algiers (Algeria) using various meteorological parameters collected over 

four contiguous years. The authors compared the model’s overall performance using different numbers 

of neurons and hidden layers. A recent study reviewed air pollution models and reported that ANN 

performed better than other statistical techniques in forecasting outdoor air pollutants (Cabanerosa et 

al., 2019). The authors selected 139 peer-reviewed articles (from January 2001 to February 2019) with 

28% focusing on PM10 modeling and prediction. Few recent studies have investigated the relative 

contribution of meteorological parameters to the observed levels of air pollution concentrations (Singh 

et al. 2012; Yan Chan and Jian 2013), though some studies have used basic meteorological parameters 

and pollutants as predictor variables, without considering or justifying the parameter choices, to model 

the concentration of several pollutants in the model (Singh et al. 2012). The approach in general to 

inclusion of parameters in pollutant models appears to be opportunistic – if we have it use it – rather 

than considered.  

A number of ANN models were used to analyze and predict PM10 concentration up to three days ahead 

using variety of pollutant measurements such as PM2.5 and CO concentrations, O3, NO, NO2, SO2, 

benzene as well as meteorological factors from Pescara, Italy (Biancofiore et al., 2017). The recurrent 

ANN (RC ANN) was reported to have performed the best when compared to a feed forward ANN and 

a MLR model. The authors noted that the inclusion of CO as a parameter in PM10 forecasting 

significantly improved the results in their models. This is not entirely surprising as typically CO is 

highly correlated with PM. Time-lagged models have also been found to give reliable predictions 

(Elangasinghe et al., 2014) but have limited practical use when missing data is presented in a dataset.  

Perez (2001) used an ANN to predict hourly mean SO2 concentrations eight hours ahead in Chile using 

hourly average temperature, RH, and wind speed. They reported an average error of 30%. In similar 

work, Chelani et al. (2002) used ANN to predict SO2 concentrations at three sites in Delhi using wind 

speed, a wind direction index, RH, and temperature. Another study used a large number of predictor 

variables including date, maximum and average temperatures, pressure, humidity, wind, cloud coverage 

and daily precipitation as input to an ANN model. The aim was to forecast daily average total suspended 

particles for SO2, PM10 and NO2 (Jiang et al., 2004). The correlation between predicted and observed 

concentrations was found to be 0.7.  

A PCA based ANN model was used by Karatzas and Kaltsatos (2007) to model hourly ozone 

concentration in Thessaloniki, Greece. The reported Index of Agreement (IA) for the two locations 

investigated in this study was reported 83 and 83.7 %. 
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The diverse studies noted in this section have used various input parameters to improve the forecasting 

accuracy. While the accuracy of ANN forecasts was found to be higher than traditional statistical 

forecasts in the literature reviewed here, ANN has its own shortcomings subject to their input variables. 

ANN models can show tendency to perform poorly and mislead due to noise in all the parameters from  

adding an excessive number of input parameters (M. A. Elangasinghe, 2014). These shortcomings of 

ANNs facilitated the development of the RNN models. As noted earlier, RNN has been shown by one 

2017 study to outperform other forms of ANN when modeling PM2.5 (Biancofiore et al., 2017). 

8.4 Recurrent Neural Network (RNN):  Long Short-Term Memory (LSTM) Models  

Design of a Recurrent Neural Network (RNN) is similar to feedforward neural networks, where 

neurons’ outputs are used as response inputs for other neurons. The recurrent component modifies these 

networks for active information processing and adaptive control. During back propagation, RNNs suffer 

from vanishing gradient-values which are used to update a neural network’s weight. This may lead to 

increasing the learning time, or worse, result in the RNN not working (Akbari et al., 2014). Figure 8.1 

illustrates the back propagation in a recursive module in a standard RNN with a single 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer.  

 

Figure 8.1: RNN with back propagation unfolded in time Adopted from (Colah, 2015) with 
permission. 

The recursive RNN formulas are as follows (Pascanu et al., 2014): 

ℎ𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡)                                                                                                          Eq 8.2 

𝑦𝑦𝑡𝑡 = 𝑊𝑊ℎℎ𝑡𝑡                                                                                                                                        Eq 8.3 

where 𝑥𝑥𝑡𝑡  , ℎ𝑡𝑡, 𝑦𝑦𝑡𝑡, and 𝑊𝑊ℎ are input vector, hidden layer, output vector and weighted matrix, 

respectively. 
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Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) are a modified version 

of RNN, that resolve the vanishing gradient problem by removing/adding information in a single cell 

through ‘gates’. There are three gates namely input, forget, and output gates within an LSTM. LSTM 

are best suited for processing and predicting time series with time lags of unknown duration as well as 

deep neural network architectures composed of several LSTM layers and other types of layers (Rosato 

et al., 2019). Like standard RNN, LSTM trains the model by using back-propagation however, the 

repeating module in LSTM has different structure from RNN. Figure 8.2 shows an LSTM. The vector 

from each node’s output is carried via the solid line to the inputs of others.  

 

Figure 8.2: LSTM structure with four neural network layers. Adopted from (Colah, 2015) with 
permission. 

The hidden states in an LSTM architecture is calculated as below (Graves et al., 2013): 

𝜎𝜎 = 1
1+𝑒𝑒−1                    Eq 8.4 

𝑖𝑖𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖�                  Eq 8.5 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�                               Eq 8.6 

𝑐̃𝑐𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�𝑊𝑊𝑓𝑓[𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐�                 Eq 8.7 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑐̃𝑐𝑡𝑡                  Eq 8.8 

Where σ denotes the logistic sigmoid function. The input, forget, and output gates are presented by i, f, 

and o, respectively. Information from cell to gate vectors are transformed through weight matrix (W). 

The new candidate value (𝑐̃𝑐𝑡𝑡) is created by hyperbolic tangent function (tanh) layer. To calculate the 

output, a sigmoid layer is run to decide the part of the new cell state (𝑐𝑐𝑡𝑡) to be used as output. In final 
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step, tanh is applied to the cell state and multiply it by the sigmoid layer’s output to calculate the output 

of a hidden state (𝑦𝑦𝑡𝑡) (Graves et al., 2013): 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏0)      Eq 8.9 

𝑦𝑦𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑡𝑡)    Eq 8.10 

Stacked LSTM (Graves et al., 2013), is an LSTM model with multiple LSTM layers where the output 

of the each neuron’s hidden state in the first LSTM layer is used as an input to the next LSTM layer. In 

such structure, a sequence output is provided by the prior LSTM that is one output per input time step, 

instead of one output time step for all input time steps. The stacked LSTMs can significantly increase 

the network’s generalization capability (Sagheer & Kotb, 2019). 

Recently, the use of deep learning in urban air pollutant studies has become prevalent in 

interdisciplinary research (Ong et al., 2016; Qin et al., 2019). An LSTM model was developed by Kim 

et al. (2019) for daily prediction of PM10/2.5 concentration. The model used 11 input parameters including 

observations for PM10/2.5, various meteorological parameters as well as concentrations of several 

pollutants including SO2, O3, NO2 and CO. Measurements (January 2014 to April 2016) that were 

collected from seven monitoring sites located in the major cities of South Korea were used as a model 

training set. The model was optimized by providing a validation set and tested using a bench dataset 

used for evaluating models in South Korea. According to the authors, the model’s structure was limited 

to three to five hidden layers with 100 hidden nodes. The authors reported an IOA, between 62% and 

79%, and relatively high prediction errors and biases which were attributed to the high PM10 events 

which caused notable spikes in the concentration. The authors suggested that adding more informative 

input parameters would improve the model performance. A study by Wu et al. (2020) used multivariant 

LSTM model to predict PM10 concentrations using 12 months of PM10, AOD, rainfall, evaporation 

capacity, relative humidity, sunshine intensity, wind velocity, SO2, CO, and O3 values collected during 

2017 for Wuhan, China. The predicted value by LSTM for the maximum and minimum values were 

below average. The proposed multivariant LSTM algorithm was not optimized and that could be the 

cause of the reported underprediction (below average) of maximum and minimum values. In another 

recent study, PM10 concentrations in the Upper Hunter valley, Australia was forecasted using LSTM 

for  October 2019 using the PM10 (only) values (from 30 September 2012 to 30 September 2019) as the 

network input (Delgado et al., 2020). To detect PM10 they used 60-day lags with 130 iterations. The 

graphical results in their paper showed that the model detected a ‘quite close to actual behavior’ trend 

of PM10 for the next month. No numerical measure of accuracy or closeness was reported.  

LSTM has also been applied by Xayasouk et al. (2020) to forecast PM10 concentrations ten days ahead. 

The input data was collected from 25 monitoring stations in Seoul, South Korea reporting PM2.5, 

meteorological measurements (rainfall, wind speed and direction, temperature, and relative humidity), 
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and sky condition. The network was optimised by obtaining the lowest RMSE value while using 

different batch sizes and keeping the learning rate and epoch constant at 0.01 and 100, respectively. 

Communication with the first author of the paper clarified that the average of hourly data from 25 

stations were used as input data – this information was missing from the paper.  

LSTM have also been used for shorter term prediction (12, 24, 48, and 120 hours) of PM10 

measurements (Becerra-Rico et al., 2020). The input datasets contained 12 months (for 2016) of hourly 

SO2, CO, NO2, ozone, PM10 and PM2.5 measurements obtained from few monitoring stations located in 

Mexico City. The model was trained using 3000 epochs based on the asymptote given around 3000 

epochs and 4000 batch sizes. Their results showed the lowest RMSE was obtained for 12 hours ahead 

prediction. The second lowest RMSE belonged to the 120 hours forecast while the highest RMSE was 

for the 24-hour forecast. The authors concluded that the inconsistency between the prediction results 

needed to be investigated further. 

8.5 Random Forest (RF) 

Random Forest (RF) is an ensemble learning method that trains several decision trees and constructs an 

ensemble of them. The RF is random as bootstrap samples of the data are used to build each tree, and 

the nodes are divided based on the best subsets of randomly selected features. The average of each tree’s 

output is used to get a final RF ensemble prediction once the training is finalized (L.  Breiman, 2001). 

The ensemble method enables the time of training to be consistently tuned. Variable importance 

measures provided by RF determines the prediction power of each variable, thus producing more 

interpretable results than neural networks (X. Hu et al., 2017). 

RF with ensemble decision tree ML method was used by Grange et al.  (2018) to perform daily PM10 

trend analysis using meteorological variables (wind speed, wind direction, and atmospheric 

temperature), daily boundary layer heights, synoptic weather pattern, air mass cluster and seasonal 

terms collected from 31 stations across Switzerland. The R2 value for their predictive RF models ranged 

from 54% to 71%. The application of the RF model for daily 24h averaged PM2.5 concentration using 

meteorological measurements (temperature, dew point, visibility, pressure, potential evaporation, 

downward longwave radiation flux, downward shortwave radiation flux, RH, and wind vectors), AOD, 

land use and the GEOS-Chem model (GEOS-Chem, 2017) has been evaluated by Hu et al., (2017). 

Their results achieved an overall CV R2 value of 0.80 using a convolutional layer. AOD, land use and 

meteorological variables were used as predictor variables.  

A RF was able to explain 78% of daily PM10 variation using AOD, land use information, weather data, 

and MODIS active fire data in China (Chen et al., 2018). An RF model was reported to have captured 

PM10 variability in Italy, with a CV R2 of 0.75 (Stafoggia et al., 2019). The study used a rich set of 
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predictors namely meteorological data, AOD, Planetary boundary layer (PBL), monthly estimates 

of MODIS Normalized Difference Vegetation Index (NDVI) at 1-km2 spatial, desert 

dust advection days, emission data (SO2, NO2, CO and NH3), road density, elevation, satellite-based 

nighttime imagery, land based data, land cover, imperviousness surface areas, population, geo-climatic 

zones, and administrative areas (Regions, Provinces, Municipalities).  The results showed temperature, 

PBL, wind components, AOD and Julian day as well as elevation, spatial coordinates, and 

administrative regions were the most important predictors. A RF model was reported that described 

around 64% of PM10 variability (Sweden, during 2005–2016 ) in test set using meteorological, AOD 

and 16 spatial (including residential population, road lengths, % green space, % residential space, and 

% forest space) predictors (Stafoggia et al., 2020). To the author’s knowledge RF has not been used for 

modelling Auckland PM10 data to this date. In this Chapter, Auckland PM10 concentration is modeled 

using RF method and its performance is evaluated and compared to those which used a rather rich set 

of input variables. 

8.6 Experimental Methods 

PCA: To perform site specific PCA, all predictive variables were first included in the analysis. KMO 

(Kaiser, 1970) and Bartlett’s test of sphericity (Tobias & Carlson, 1969) were used to test whether the 

data were fit for PCA. Extraction analysis was performed based on correlation matrix to extract based 

on eigenvalues greater than one.  To find the number of PCs the Kaiser rule and PVA70, as suggested 

by Lau et al. (2009), as well as PCA scree plots are used in this study as an indication to select the 

number of PCs to keep for each site. 

MLP: A multilayer perceptron ANN topology was selected to build a functional relationship between 

PM10 concentration and other inputs as baseline. The month and DOW variables were introduced to the 

model in their respective discrete numbers (months 1-12 and weekday 1-7) as temporal inputs.  Model 

predictions are site-specific and, once trained to a particular site, can confidently be used to predict 

concentrations only at that site. The time series of data is first randomized to ensure that a normally 

distributed sample of data covering all seasons is drawn for training. The data set was then divided into 

a training set (70% of the data), a validation set (15%) and a test set (15%) using the cluster numbers 

as partitioning value. The best-found multilayer perceptron model consisted of one hidden layer 

network with a Levenburg Marquardt back propagation algorithm, hyperbolic tangent transfer function 

in the hidden layer and bias transfer function in the output layer. To test if the ANN model was capturing 

any non-linearity that was not picked up by MLP model, a site-specific ANN-PCA hybrid model was 

developed using the PCs as inputs. The ANN model performance was then compared against the results 

of ANN-PCA hybrid model.  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/normalized-difference-vegetation-index
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/advection
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LSTM: The LSTM experiments were programmed in Python’s SciPy environment using the Keras 

package (Falbel et al., 2020). Prior to fitting the LSTM model to the Auckland PM10 dataset, the time 

series were transformed into a supervised learning problem. Data was organised into input and output 

patterns so that the lagged observation is used as an input to forecast the observation at the current time 

step. All observations were then scaled between -1 and 1 to meet the requirements of the models’ default 

hyperbolic tangent activation function. These transforms are then inverted on prediction values to 

rescale them into the original scale prior to calculating an error score to evaluate the model. To avoid 

bias with knowledge from the test set the scaling coefficients (RMSE) were calculated on the training 

set and were used to scale the test dataset. In this study, Auckland PM10 concentration is analyesd 

using an n=1 time-step of multiple (PM10 and meteorological) features. Hyper tangent activation 

function is used to activate output layer because it has a steady state at 0 (Witten et al., 2017); also 

sigmoid function suffers from vanishing gradient problem due to continuous multiplication of gradients 

(Witten et al., 2017). 

8.6.1 Model Configuration and Tuning of the LSTM Parameters 

LSTM was set to LSTM ‘stateful’ to give it control when the LSTM layer state is cleared. A batch size 

holding a fixed-sized number of train dataset was used to define the number of processing patterns prior 

to updating the network’s weights. 

The structure of the LSTMmulti was determined from the iterative training multiple repeats using walk-
forward validation in a loop of 30 repeats.  A cost function was used to measure model performance 
based on training samples and the related prediction outputs. To meet the purpose of minimizing the 
regression cost, the RMSE was used as a cost function. RMSE is commonly chosen in literature as it 
retrains the model to have small errors at each point (Lin & Huang, 2020) , (Yadav et al., 2020). The 
RMSE score for each iteration was calculated and their distribution was analysed to find the optimal 
configuration. Adaptive Moment Estimation (ADAM) was applied to train the neural networks 
(Kingma & Ba, 2015). The ADAM approach combines the advantages of Adaptive Gradient Algorithm 
(Liu et al., 2020), and the Root Mean Square Propagation (e.g. how quickly it is changing). To obtain 
a fair trade off between precision and generalization the LSTM model parameters were tuned in 
following three stages. Given its obvious advantages, in this research ADAM method is therefore 
adopted. 

Number of Epochs- The initial LSTMmulti model was constructed based on two batch sizes (number of 

training examples in one forward/backward pass of an RNN before a weight update) and one single 

neuron. Thirty runs were completed for epoch values of 50, 100, 120, and 180 and RMSE summary 

statistics were used to find the best epoch configuration (EpochOptim). The metrics in summary statistics 

includes the mean (the average expected performance of a configuration), standard deviation (SD) (the 

variance), and min and max RMSE scores (the range of possible best and worst-case examples).  
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Batch size- Once the EpochOptim is selected, the impact of different number of batch sizes in the network 

is investigated while keeping the number of epochs constant at EpochOptim. The batch size must be a 

factor of the test and training sets to meet the Keras requirement (Falbel et al., 2020). The average test 

RMSE performance was utilized to find the optimal batch size number (BatchOptim).  

Number of Neurons- The impact of differing the number of neurons in the network was investigated 

while keeping the EpochOptim and BatchOptim constant. The number of neurons influences the learning 

capability of the network. Usually, increasing the number of neurons increase the learning of structure 

from the problem at the cost of the rise in training time and potentially the training data overfitting. The 

effect of rising the number of neurons, in the range of 1 to 5, was empirically evaluated. The average 

test RMSE performance was used to find the optimal number of neurons whilst other network 

configurations are kept unchanged.  

Random Forest: According to Breiman (2001) the use of bagging appears to improve accuracy when 

used in tandem with random features and provides continuing estimates of the correlation and 

generalization error of the combined ensemble of trees out-of-bag (OOB). In the case studies presented 

in 8.7.5, two different approaches were used to assess the performance of the site-specific RF models 

through cross-validation. Firstly, predictions and observations from the OOB data of the RF were 

compared. Bagging is used in conjunction with random feature selection at each node. The “in-bag” 

samples held two thirds of the observations to train the model. Each new training set is drawn, with 

replacement, from the original training set. The RF implementation uses CART to grow the trees. 

Because RF is an ensemble method trees are grown on the new training set without pruning.  The 

remaining third OOB is used for model validation. Second approach was taken by using random 80% 

of the data for training set. The test set of 20% was then put down each forest to get a test set error for 

both. Random forest was run using 100 iterations and the size of randomly selected attributes of the 

group was set to the first integer less than log2m+1, where m is the number of predictors. The Random 

Forest classifier of Weka which implements Breiman’s RF algorithm (L Breiman, 2001) was used to 

build the RF model.  

8.7 Results and Discussion 

8.7.1 Input selection Results and Discusion  

The descriptive analysis provided in Chapter 3 formed the basis for using input parameters in the MLP 

model. To make good model predictions, the emission patterns included in the model by including a 

numeric value for ‘month of the year’ (1 [January] -12 [December]) and DOW (1 [Sunday]to 

7[Saturday]) as inputs, along with other meteorological input parameters, including wind speed, wind 

direction, temperature, relative humidity, rainfall, and solar radiation. Table 8.1 provides the results of 
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site-specific model input feature selection using forward selection and backward elimination methods. 

Different inputs were selected when forward selection and backward elimination were applied to 

Henderson, Pakuranga, and Takapuna and Patumahoe. In the case of Patumahoe backward elimination 

selected all the predictor variables as important in making the best PM10 prediction
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Table 8.1: Site-specific forward and backward optimization technique. 

Site 
Optimization Technique 

    Forward     Backward 

Glen Eden Lag1, Temp, Rain, DOW Lag1, Lag2, Temp, WD, Solar, DOW 
Henderson Lag1, RH, Temp, Month, WS, Rain Month, DOW, Solar, WD, WS, Lag2, Rain, Lag1, Temp 
Pakuranga Lag1, WD DOW, Lag2, Rain, WD, Lag1, RH 
Patumahoe Lag1, WD, RH, Temp, Rain, WS, Month Month, DOW, Solar, WD, WS, Rain, Lag1, RH, Temp 
Penrose Lag1, RH, Temp, WS, Month, Rain, WD, Solar Month, Solar, WD, WS, Rain, Lag1, Temp, RH 
Takapuna Lag1, WD, WS, RH, Temp, month, Solar, Lag2 Month, Solar, WD, Lag2, WS, Lag1, Temp 
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8.7.2 PCA Method Reuslts and Discussion 

The initial site-specific PCA gave a KMO value of  ≥ 0.5 at the p < 0.0001 significance level  for all 

sites, suggesting the sample is adequate for PCA (Kaiser, 1970)  The initial PCA for Glen Eden (PCAGE) 

showed that there are four distinct constructs explaining 64.75% of the total variance for eigenvalues 

of greater than one (Table 8.2). The same conclusion was drawn using the scree plot as at fourth PC the 

plot starts to taper off gradually (Figure 8.3).  

Table 8.2: Eigenvalues results, Glen Eden 

Component 
Initial Eigenvalues 

Total % of Variance Cumulative % 
1 2.391 23.907 23.907 
2 1.601 16.013 39.921 
3 1.374 13.740 53.661 
4 1.109 11.085 64.746 
5 0.999 9.9920 74.738 
6 0.775 7.7500 82.489 
7 0.570 5.7030 88.192 
8 0.536 5.3560 93.548 
9 0.434 4.3410 97.889 
10 0.211 2.1110 100.000 

 

 

Figure 8.3: Scree Plot of PCs Eigenvalue, Glen Eden 

The four constructs identified by PCAGE are presented in rotated component matrix sorted by size in 

Table 8.3. For the first component, explaining ~ 24% of the variance, three items RH, solar radiation 

and rain have high communalities (> 0.7). Any items with communalities less than 0.3 are considered 

too low to load on the factor (Osborne, 2008). For component 2 only lag1 and lag2 have a high loading 
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with temperature having a weak loading just exceeding the communality cut-off. Because this 

component is hypothetically related the previous two day’s PM10 lag, temperature is not considered to 

be part of the construct and a communality value cut-off of 0.5 is employed. The third component, 

explaining ~ 14% of the variance, has only wind speed and direction loading on the factor. While 

component four which represents seasonality showing strong loading between month and temperature 

and their effect on PM10 concentration. It is notable that DOW does not load on any of all four 

components.  

Table 8.3: Rotated Component Matrix, Glen Eden 

Item 
Component 

1 2 3 4 
RH .830 .112 -.199 .003 
Solar -.791 -.295 .099 -.167 
Rain .717 -.126 .297 -.119 
Lag1 .054 .852 .018 .065 
Lag2 .076 .839 .107 .017 
Dow -.020 -.056 .008 .052 
WS -.025 -.109 .867 .011 
WD -.021 .209 .705 .125 
Month -.029 -.134 .214 .859 
Temp -.195 -.413 .126 -.735 

In next step, the DOW item, with low factor loadings in all components, was removed and the 

experiment is repeated to investigate its impact on the component structures within the data. It is worth 

noting that KMO value improved from 0.5 to 0.64 (p < 0.0001). Table 8.4 shows that the number of 

distinct components remains the same and the total variance explained is increased to 71.92%. 

Table 8.4: Rotation Sums of Squared Loadings 

Component Total % of Variance Cumulative % 
1 1.881 20.895 20.895 
2 1.775 19.727 40.623 
3 1.463 16.259 56.882 
4 1.354 15.042 71.924 

The rotated component matrix (Table 8.5) showed almost the same loading pattern for each component. 

The same steps were taken for each site and the final site-specific PCs were generated (Table 8.5). 
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Table 8.5: Site-specific rotated components using Varimax rotation with Kaiser Normalization. 

Site Rotated Components 
1 2 3 4 5 

Glen Eden 0.83RH-0.79Solar+0.72Rain 0.85Lag1+0.84Lag2 0.87WS+0.70WD 0.86Month-0.74Temp - 
Henderson -0.85Solar+0.84RH+0.6Rain 0.86Lag1-+86Lag2 -0.75Temp+0.76Month+0.51WD 0.85WS 0.98DOW 
Pakuranga 0.92Rain+0.67RH-0.53Solar 0.86Temp+0.73Solar 0.89Lag1+0.88Lag2 0.86WS+0.74WD - 
Patumahoe 0.88Lag1+0.83Lag2 0.82Solar-0.82RH 0.97WS - - 
Penrose -0.84RH+0.83Solar-0.66Rain 0.84Lag1+0.84Lag2 -0.78Temp+0.74Month+0.5WD 0.53Rain+0.84WS - 
Takapuna 0.87RH-0.85Solar-0.50Rain -0.81Temp+0.74Month+0.57WD 0.84Lag1+0.83Lag2 0.82WS+0.56Rain - 
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The site-specific PCs are presented in Table 8.5, showing the variables with the highest loading 

(cut off > 0.5) in each component identified by PCA. Henderson and Patumahoe had the highest 

(5) and lowest (3) number of PCs. number of PCs (5 PCs) It is notable that relative humidity, 

solar radiation, and rain were selected by first PCs in all sites except for Patumahoe with rural 

background where lag1 and Lag2 were selected in its first PC. Both lag1 and lag 2 were selected in 

second PCs for Glen Eden, Henderson, and Penrose.  The wind components were included in the 

3rd PC for Glen Eden, Henderson, Patumahoe, and Penrose. The temporal variable, month, was 

only included in Henderson, Penrose, and Takapuna. DOW was selected in Henderson’s fifth PC 

only.  

8.7.3 MLP Results and Discussion 

The ANN model gave the best predictions for PM10 at the Pakuranga site for backward and PCA 

input selection methods. The PM10 concentrations at this site are mainly affected by emissions 

from traffic as well as nightly home heating during the winter. It is notable that, given the presence 

of mixed effects from these two sources, the relationship between PM10 concentrations and 

meteorology is not detected by the ANN model at the Henderson site which is also a similar urban 

environment to Pakuranga site. However, a similar relationship was for both Henderson and 

Takapuna: these two sites also showed similar variation in PM10 concentration (Chapter 3). 

Overall, the results of the time series predictions of PM10 for Auckland using MLP showed a 

moderate level of accuracy for all the site’s models. These findings agree with Elanasinghe’s MLP 

model (2014) to predict hourly PM10 concentration which reportedly gave a RMSE of 8.2 μg/m3 

and an R2 of 0.66.   

Table 8.6: Performance of MLP model (forward selected inputs) 

 

Train Validation Test  
RMSE R2 RMSE R2 RMSE R2 IOA 

Glen Eden 4.50 0.61 4.82 0.46 4.45 0.62 0.63 
Henderson 3.58 0.57 3.88 0.54 3.97 0.59 0.59 
Pakuranga 3.85 0.58 3.94 0.57 4.09 0.61 0.65 
Patumahoe 4.91 0.57 5.67 0.52 5.06 0.63 0.66 
Penrose 4.72 0.53 4.77 0.50 4.50 0.53 0.54 
Takapuna 4.30 0.54 3.99 0.53 4.29 0.56 0.58 
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Table 8.7: Performance of MLP model (backward selected inputs) 

Train Validation Test 
RMSE R2 RMSE R2 RMSE R2 

Glen Eden 4.36 0.64 4.38 0.62 4.72 0.52 
Henderson 3.57 0.57 3.92 0.58 3.59 0.58 
Pakuranga 3.90 0.60 3.99 0.61 3.92 0.64 
Patumahoe 4.88 0.59 5.20 0.50 5.37 0.63 
Penrose 4.71 0.53 4.70 0.51 4.51 0.53 
Takapuna 4.30 0.53 4.05 0.57 4.07 0.60 

Table 8.8: Performance of MLP model (PCA inputs) 

Train Validation Test 
RMSE R2 RMSE R2 RMSE R2 

Glen Eden 4.21 0.66 4.36 0.59 4.90 0.60 
Henderson 3.81 0.53 3.83 0.49 4.08 0.55 
Pakuranga 4.96 0.59 5.21 0.43 4.82 0.65 
Patumahoe 3.76 0.58 3.89 0.59 4.54 0.62 
Penrose 4.69 0.51 4.72 0.48 4.53 0.52 
Takapuna 4.28 0.53 4.28 0.47 4.23 0.56 

The modest prediction results shown in Table 8.6 to Table 8.8 achieved for PM10 could be because 

of lack of data related to additional gaseous co-pollutants to represent the contributions of home 

heating and traffic, as well as the effects of removal mechanism such as rainfall washout, re-

suspension and depositing on surface. These factors are also suggestive of dispersion complexity 

that cannot be explained solely by meteorological and temporal parameters making modeling of 

PM10 a challenging task. 

Figure 8.4: Daily average observed versus predicted PM10 concentrations using MLP with 
forward input selection (Glen Eden). 
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The impact of the three input selection methods on performance of MLP models are slightly 

different on different sites with MLP-PCA performing best on Pakuranga.  Only insignificant 

differences in performance statistics of the models were found between forward selection and 

backward elimination techniques for Takapuna site with R2= 0.56 and RMSE=4.29 μg/m3; and 

R2=0.60 and RMSE= 4.07 μg/m3, respectively. The MLPfw and MLPbck performed better in Glen 

Eden with 0.23 μg/m3 decrease in RMSE and 0.10% increase in R2. It is notable that DOW was 

selected in the backward elimination method for Pakuranga. This led to the expectation that the 

model would serve well for such site because it is influenced by local traffic sources like the case 

raised by Carslaw et al.’s model (2006). However, there was only a marginal improvement in the 

model using the MLPbck features (a 0.17 decrease in RMSE μg/m3 and a 0.02 increase in R2) when 

compared to MLPfw. This lack of notable improvement when including DOW in the model, could 

be due to introducing noise as the number of inputs increased. Based on these results and 

considering the impact of size of dataset on LSTM models to be implemented in this Chapter, it 

was decided to choose inputs selected by the forward selection method.   

8.7.4 LSTM Results and Discussion 

Number of Epochs: Table 8.9 shows the RMSE summary statistics from each population of 

results for the Pakuranga Site. The mean RMSE scores suggest that epoch configured to 100 is 

better than the other alternatives. The best possible performance might accomplish by using 

epochs of 180, but this improvement is at the expense of poor performance on average (the mean 

RMSE almost doubles). 

Table 8.9: Summary statistics for different four epochs. 

RMSE 

 Number of Epochs 

  50 100 120 180 

Count 30 30 30 30 

Mean     5.89 5.83 5.86 10.20 

SD      0.53 0.19 0.50 24.35 

Min      5.22 5.25 5.21 5.17 

25% 5.83 5.83 5.83 5.83 

50% 5.83 5.83 5.83 5.83 

75% 5.83 5.83 5.83 5.83 

Max 8.62 6.58 8.35 139.11 

Batch Size: The results of mean performance (Table 8.10) suggest a lower RMSE is achieved 

with a batch size of one. Depending on the site-specific results, this might improve further by 

increasing training of the epochs. For Pakuranga station (Table 8.9), a batch size of one is an ideal 
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result, this size affording a low mean error (8.94) with low variability (0.54) indicating that the 

tuned network is reproducible. 

Table 8.10: Summary statistics for each of the three batch size configurations. 

RMSE 

 Batch Size 

  1 2 4 

Count 30 30 30 

Mean     8.94 11.22 12.46 

SD     .54 1.462 1.04 

Min      7.23 9.67 11.58 

25% 7.27 9.76 11.82 

50% 10.02 11.39 11.90 

75% 10.09 12.64 12.92 

Max 10.09 12.64 14.09 

Number of Neurons: From the mean performance alone, see Table 8.11, the experimental results 

suggest using three neurons has the best performance with lowest variance over 100 epochs and 

batch size of one. 

Table 8.11: Summary statistics for each of the four neurons. 

 RMSE 

 Number of Neurons 

 
1 3 4 

Count 30 30 30 

Mean 1.24 0.79 1.49 

SD -0.71 -0.89 -0.79 

Min 0.93 0.45 1.32 

25% 0.95 0.45 1.36 

50% 1.28 1.00 1.38 

75% 1.53 1.02 1.58 

Max 1.53 1.02 1.82 

The same diagnostic steps were taken for the remaining five sites to objectively compare the 

impact of different number of epochs, batch size and neurons on the tuning of the site-specific 

LSTM networks.  
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Table 8.12: Statistical analysis with modelled and observed PM10 

 MAPE RMSE R2 

Glen Eden 35.28 5.21 0.45 

Henderson 22.37 3.77 0.59 

Pakuranga 30.84 5.30 0.56 

Patumahoe 29.42 3.90 0.56 

Penrose 24.78 4.56 0.52 

Takapuna 24.03 5.06 0.48 

In final step, a many-to-one LSTMmulti model is developed where input time-steps have multiple 

(m) features, based on the input selection method presented in section 8.7.1, with 𝑛𝑛 = 1 time-

steps. The framed dataset in LSTMmulti contains  𝑛𝑛 × 𝑚𝑚 + 𝑚𝑚 columns where 𝑛𝑛 ∗  𝑚𝑚 columns are 

taken as input for the observation of all features across the previous 𝑛𝑛 days. The input data is then 

reshaped to a three-dimensional structure (samples, timesteps, and features) to reflect the actual 

timesteps and features. The PM10 data is taken as output at the following day.   

The results from these experiments are tabulated in Table 8.12. The RMSE between the LSTM 

predictions and observations ranged from 3.77 to 5.21 µg m−3. Among the six sites, the 

PM10 predictions at Henderson showed the lowest error (3.77 μg/m3). The highest RMSE belongs 

to Glen Eden site (5.21 μg/m3).  

8.7.5 RF Results and Discussion 

Site specific RF models for prediction of PM10 concentration were grown using the same 

explanatory variables as for LSTM. Figure 8.5 shows the site-specific explanatory variable 

importance for PM10 concentrations. Generally, lag1 had greatest importance for prediction of 

PM10 concentrations. DOW contributed to the models’ predictive ability despite being, in general, 

the least important of the variables in the RF models. Amongst the meteorological variables, wind 

direction was the most important variable for Penrose and Patumahoe. This observation agrees 

with the Explanatory analysis performed as part of this research and is reported in Chapter 4 of 

this thesis.  The performance of an RF model, unlike ANNs and LTSMs, is not negatively affected 

by the inclusion of attributes that have lower predictive power (Grange et al., 2018) and therefore 

these variables were not removed from the RF models developed as part of this research.  
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Figure 8.5: Importance of parameters based on average impurity decrease and number of nodes 
using that parameter. Y axis represents the importance.  

The comparisons of both validation approaches are summarized in Table 8.13 in terms of R2, 

RMSE, as well as IOA, obtained from linear regression between observations and CV predictions. 

The R-squared values for OOB and test set ranged from 0.56 to 0.71 and 0.52 to 0.71, respectively.  

The results show that for most sites in Auckland, between 56%-65% of PM10 concentration were 

explained using simple meteorological and temporal variables. Unlike when using random left 

out samples as train-test sets where bias is presented at unknown extend, the OOB estimates are 

unbiased as it runs past the point where the test set error converges (L.  Breiman, 2001). These 

experimental results, shown in Table 8.13, also provide empirical evidence, over and above that 

of Breiman, that the OOB estimate is as accurate as using a test set if not better concluding that 

using the OOB error estimate removes the need a test set.  
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Table 8.13: RF Statistical Metrics on OOB and Test Set. 

  OOB  Test Set   
  R2 RMSE RAE RRSE IOA  R2 RMSE RAE RRSE IOA  
Glen Eden 0.71 3.03 0.70 0.70 0.79 0.71 3.00 0.71 0.71 0.79 
Henderson 0.63 3.47 0.76 0.78 0.69 0.62 2.77 0.78 0.79 0.70 
Patumahoe 0.66 3.69 0.75 2.85 0.72 0.66 3.82 0.75 0.76 0.73 
Pakuranga 0.56 5.05 0.83 0.83 0.69 0.52 4.92 0.88 0.86 0.69 
Penrose 0.64 4.18 0.77 0.77 0.72 0.66 4.38 0.76 0.76 0.72 
Takapuna 0.63 3.92 0.79 0.78 0.73 0.64 3.88 0.78 0.77 0.73 

Performance of the site-specific MLP models varied with respect to their generalization 

capability, which in turn was dependent upon the data representation. The MLP models explained 

53 to 63 % of PM10 concentration variability in selected sites. In comparison to related work (see 

section 8.5) the proposed model performed relatively poorly. We believe that this poor 

performance may be due to nature of Auckland PM10 concentration distribution as well as a 

limitation in the variety of predictors available for Auckland. The most relatable MLP model was 

developed by Elangasinghe (2014) to predict hourly PM10 concentration in a traffic/residential 

background site (Mt Wellington Highway Interchange on SH 1) in Auckland for nearly 3 months 

during autumn and winter (April to July) in 2010. Elangasinghe’s model gave an  𝑅𝑅2 =  0.66. In 

comparison similar sites with a traffic/industrial and traffic/residential background, in this 

research, at Penrose and Pakuranga gave a prediction performance of 𝑅𝑅2 = 0.53 and 𝑅𝑅2 = 0.61 

respectively.  

An empirical approach was taken in for tuning site-specific LSTM models to provide diagnostic 

examination of different experiment designs over time, along with objective analysis of test 

RMSE. The optimised LSTM model showed minimum RMSE values (3.77) for Henderson and 

highest RMSE value (5.21) for Takapuna site. Based on the R2 value ranging between (0.45-0.59), 

performance of the LSTM for Auckland PM10 time series problems were not as satisfactory as 

expected when considering LSTM results provided in the reviewed literature (Section 8.4). The 

Auckland LSTM models could not characterize the complex features of the sequential data 

efficiently as they learnt long-interval time series PM10 data with high non-linearity. A deep multi-

layer LSTM model with varied numbers of neurons in each layer may overcome this problem and 

this may be worth exploring in future work. In contrast, the site-specific RF models developed 

and presented in this study proved to be the most efficient and effective – giving improved the 

model fit when compared with MLP models. Despite the limited number of key predictors used 

when compared to those used in other similar studies (Section 8.5) the RF models performed 

relatively well (R2: 0.63-0.71) in the main urban areas as well as rural Patumahoe (R2: 0.66) which 

is characterized by a very different background when compared to Auckland’s urban areas.  
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For comparison of the accuracies of these models the IOA (Table 8.14) was used to provide an 

overall measure and determine which method is applicable for daily operational PM10 predictions. 

Based on IOA, RF outperformed both MLP and LSTM model. The LSTM model had the lowest 

IOA in the range of 0.51 to 0.62. 

Table 8.14: Index of Agreement for all methods. 

                         Index of Agreement 
 MLP LSTM RF  
Glen Eden 0.63 0.51 0.79 
Henderson 0.59 0.57 0.69 
Patumahoe 0.65 0.59 0.72 
Pakuranga 0.66 0.62 0.69 
Penrose 0.54 0.53 0.72 
Takapuna 0.58 0.51 0.73 

 

8.8 Conclusions 

This Chapter reports on the experiments that investigated methods based on routinely available 

and parsimonious meteorological and temporal parameters, to build PM10 forecasting models 

in two ways. Firstly, the application of two input selection algorithms was evaluated. It was found 

that the best method differed and that a case-based selection of which approach is suitable is 

required when determining whether to use features selected by forward selection or backward 

elimination. Secondly, a PCA dimension reduction approach was evaluated to determine the most 

influential meteorological and temporal variables with regards to the underlying structures in the 

data. The components that contributed the most towards explaining the variance in the data were 

used as inputs to the models and helped to examine the primary relationships among variables. In 

this study, predictive models of one day ahead PM10 concentration using three different machine 

learning approaches were developed and their site-specific performance evaluated. 

In recent years, large numbers of studies have started to utilize machine-learning methods to 

predict PM10 daily concentrations over large geographical domains. A comparison of previous 

studies with the one proposed here is not easy due to the unique and (un)known microclimate 

characteristics of Auckland area (Chapter 3) and the limitations of in the data sources which are 

used as predictors. The outcomes of prediction using the RF models developed in this study 

suggest that RF can help to understand the extent of the variability in concentrations that can be 

explained by the governing meteorological variables. The RF method based on the findings of 

this research is the most promising of all the approaches investigated. It is likely that the main 

limitations of the Auckland case study area such as the little variability in observed PM10 
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concentrations, and the lack of key predictors including traffic and population data resulted in the 

RF ensemble method being a more effective approach. RF’s can, unlike LSTM and MLP, handle 

missing data, automatically balance datasets, is good at training using a small number of samples. 

This means RF is a model worth considering in cases like predicting Auckland’s PM10 where air 

quality management is carried out using few air quality measurement sites, and where the data is 

simply not available to have the detailed emission inventories that are essential for the 

implementation of complex physically based dispersion models. 

Given the characteristics of the Isthmus city, use of emission rates might increase model 

performance by capturing the complexities that have not been depicted in the present model. In 

this study, injecting the bagging and random features as the only kind of randomness made RF 

models accurate classifiers and regressors compared to the MLP and LSTM models. As suggested 

by Breiman (2002) other types of injected randomness such as use of random Boolean 

combinations of features may improve the results.  

It is important to note that RF is not good at detecting rare items or events such as the Auckland’s 

Sky Tower fire in 2019 and the Australian bush fires which both resulted in high spikes in PM 

concentrations in Auckland. Using data stream mining methods such as change detection along 

with RFs would be one avenue worth exploring though the current state of work in this area means 

that change detection approaches are still not effective in detecting rare and extreme events.   
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Chapter 9  CONCLUSIONS AND SIGNIFICANT OUTCOMES 

In the 2020’s there is almost undisputed scientific consensus that air quality degradation is a 

significant environmental and health hazard and, thus, a great deal of investigation is being 

conducted in this field. New Zealand is perceived as a green and clean country when compared 

to the rest of the world. However, it is important to recognise that population growth and 

urbanisation are major contributors to rising levels of air pollutants. These drivers are being seen 

in the Auckland region with infill housing and high-density housing along with a rapidly 

increasing population. While the COVID19 pandemic of 2020-21 has slowed this rapid growth, 

the growth continues, and it is expected that a rapid and sudden growth will occur once 

international travel and immigration is opened up again. 

A general view of air quality at the global level, the state of New Zealand ambient air (from the 

start of monitoring until the present) and for the Auckland region in particular was provided in 

Chapter 2. Apart from the prevailing weather conditions, the main source of PM10 concentration 

in New Zealand is clearly related to anthropogenic activities (e.g., traffic flows, domestic heating 

patterns).  

From the literature review on recent PM10 modeling approaches it was concluded that there is a 

general lack, apart from a few short-term single-site case studies (of at most a year in length), of 

PM10 studies in Auckland. There are certainly, as of the time of writing this thesis, no other longer-

term studies located in either the white or grey literature.  The first running and still-current 

monitoring site in Auckland’s airshed, namely Penrose, has been operating since 1994. Over the 

last ten years, the number of PM10 monitoring stations in Auckland’s network has been reduced. 

Consequently, the network collecting PM, weather and other gaseous pollutants that contribute to 

PM10 concentration is sparse. This has the consequence that any models developed for Auckland 

are site-specific. While the reduction of monitoring sites might help to reduce, at least in the short-

term, operational costs, it also results in limitations with respect to models of and estimations of 

PM10 concentration. In some cases, temporary dense small area monitoring networks have been 

implemented in Auckland by research institutes, such as Universities and NIWA, as part of 

government funded short term projects. Such sites are only live for the term of the project which 

may be from a few months to three years. Consequently, these initiatives do not contribute 

significantly to the monitoring efforts or to the development of models for understanding and 

forecasting Auckland’s PM. Because of the challenges in maintaining and growing these 

monitoring networks this research has focused on parsimonious models which use readily 

available data rather than specialized research monitoring stations.  

What follows is a discussion of the key findings, contributions and ideas for future research listed 

by research question. 
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9.1 Research Questions: Data Exploration, Quality, and Imputation 

Q1.1. What is the quality of the meteorological and PM data available for the Auckland 

airshed?  

The quality of both PM10 and meteorological data was addressed in Chapter 3.  The analysis of 

the data found that on the whole the quality of the data available was relatively poor. Rainfall in 

particular was missing completely for one station (Henderson, onsite rainfall was not collected) 

and missing most readings for two another stations (Takapuna, 85 continuous days with missing 

data points and Penrose with missing 72, 30 and 22 continuous days). In order to ensure that the 

data used in the models reported in this thesis was as complete and as accurate and reliable as 

possible WHO guidelines for PM10 were adopted and methods for obtaining or imputing the 

missing data were explored.  

To ensure compliance with WHO regulations, 1-hour data was checked against the WHO criteria 

to determine whether they could be used to estimate average PM10 concentrations. Daily average 

concentration was calculated for a site only if the hourly concentration data in one day was 

available for at least 50% of the day (i.e.,12 hours in 24 hours). Any days where there was less 

than 50% of the data were excluded. Even if the WHO 50% threshold is met, calculating daily 

average from midnight to midnight can cause overestimation of daily average PM10 concentration 

when only the evening data are available. To address this issue, data with such missing patterns 

were identified and excluded from the averaging procedure. The site with highest missing days 

was Penrose (1.4%). There was notable unexplained exceedance of PM10 at Patumahoe and 27 

days of continuous missing PM10 data in Henderson. In total, 65 days of peak PM10 events were 

observed.  

The meteorological data for all of the urban sites was obtained from the Auckland City Council 

and was provided in 1-hour resolution. For the rural Patumahoe station, daily averaged data was 

collected from another nearby weather station owned by NIWA, New Zealand through their 

“clifo” database. Quality control of hourly meteorological data was carried out by eliminating 

missing data and obviously unreasonable data. Missing rainfall values were calculated using the 

National Oceanic and Atmospheric Administration (NOAA)’s Hydro-Estimator data which is 

derived from satellite images. 

 

Q1.2. What is the spatial/temporal relationship between Auckland’s PM10 site 

measurements and meteorological over the entire region in different time scales (daily, 

monthly, and yearly)?  
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Daily mean temperature showed a negative exponential relationship with the daily average PM10 

measurements. Seasonal and yearly analysis showed high PM10 concentrations also appear to 

correlate with low temperature days, that can be attributed to the use of wood burners during cold 

seasons. Rainfall appeared to have some site-specific predictive ability as shown by the low 

pairwise Pearson’s correlation coefficients. Solar radiation had limited predictive ability except 

in the case of the Glen Eden site. The relationships between the wind speed and wind direction 

on PM10 concentrations were site-specific. Highest PM10 concentrations were observed in 

Henderson when the wind is from the westerly and easterly directions. This aligns with marine 

aerosols driven in from the Tasman Sea and Pacific Ocean. Analysis of the seasonal variation of 

PM10 by wind speed, showed highest PM10 concentrations occur at the two extremes of wind 

speed in Henderson. Peak PM10 are highest on cold calm winter days under inversion conditions 

or with a light southerly wind, particularly for anticyclones synoptic conditions. The high 

concentration of PM10 was observed in Patumahoe during warmer months that can be attributed 

to dusts and soil sources originated from agricultural and land use activities in the area. 

 

Q1.3. Can missing rainfall data be imputed from satellite-based sources for the Auckland 

airshed? and How accurate are these satellite rainfall measurements? 

Since there was not a priori basis for excluding rainfall variables from a model, satellite rainfall 

measurements were collected from the nearest proximity to each site through the procedure noted 

on the National Oceanic and Atmospheric Administration (NOAA) website. So, rainfall data can 

be imputed for Auckland’s airshed using this method, which was originally implemented for use 

largely in the Northern Hemisphere. While computing these values this thesis researcher noted 

inconsistencies in the results and communicated with the NOAA researcher who worked on the 

original method (mathematical equations) – it was found that a value had not been negated for the 

Southern Hemisphere. This oversight was corrected, and the rainfall values appeared to be within 

reasonable and known ranges for the Auckland region. As a test of the accuracy of the rainfall 

data ground truth rainfall gauge data was compared with the rainfall in millimeters predicted by 

the NOAA Hydro-Estimator method there was only on average 60% agreement but given this 

was the only source of data available it was employed in the models with this known caveat.  

So, in answer to this question satellite imagery can be used to impute rainfall – other researchers 

have also used this approach – however, more work needs to be done to improve this approach 

and its accuracy for the Southern Hemisphere. This is a thesis in itself and was considered to be 

outside of the scope of this thesis. 

 

Q1.4. How is PM10 concentration influenced by Aerosol Optical Thickness (AOT)? 
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As part of the research undertaken during this thesis work code was written to obtain and extract 

AOD data ranging from 0.47- 2.13 microns along with Cloud fraction from the land aerosol cloud 

mask (MODIS satellite imagery). However, exploration of the data extracted revealed very poor-

quality data due to missing values and also low values for the “quality” flag parameter included 

in the data. This appears to be an issue unique to NZ as the AOT measures obtained from MODIS 

is used widely for studies in the Northern Hemisphere. It was not clear why the data is so poor 

for Auckland but in any case, it was decided not to use it this data in this thesis’s research. As a 

result, this question remains a question for future researchers to investigate with a specific focus 

first on the estimation of AOT from satellite imagery and later once this is reliable for NZ and 

Auckland in particular the role of AOT in PM10 prediction can be explored. 

 

Q1.5. Do seasonality trends exist in Auckland’s PM10? And if these trends exist what is the 

nature of seasonal patterns in Auckland’s PM10? Which seasonality detection method 

should be used to account for any observed seasonal trends in Auckland’s PM10? 

The time series analysis presented in Chapter 3 was intended to form the basis for further 

modeling approaches conducted in remaining Chapters and (non)stationarity of the time series 

were examined through KPSS and ADF tests. Unlike ADF test, we failed to reject the null 

hypothesis of stationarity around a deterministic trend in KPSS test.  After discussing this result 

with one of the package’s authors (Miranda & Yee, 2018), it was concluded that the contradictory 

results observed could be due to the presence of multiple seasonality in the time series that was 

not observed by ADF. To answer the question in regard to detecting the nature of seasonality and 

its pattern seasonal decomposition were carried on in Chapter 4. The seasonal component of 

Auckland PM10 time series captured the expected variation in the mean of the daily PM10 

concentrations during the cold season by exhibiting a peak in mid-winter using STL 

decomposition method. Auckland time series with higher frequency of daily observation of PM10 

observations, exhibited complicated seasonal patterns that could not picked up by classical 

decomposition methods such as STL. The two distinct weekly and yearly seasonal patterns were 

identified using the TBATS model for each site.  

So, in conclusion seasonality pattern do exist in Auckland’s PM10 and these patterns are a 

result of multiple complex seasonalities including daily, weekly, and annual trends. Of the 

seasonality detection methods explored it appears that TBATS is the best method for detecting 

seasonal trends in Auckland PM10 timeseries. 
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9.2 Research Questions: Prediction Models 

Q2.1. In the absence of comprehensive emission inventories or information on potential 

sources of emission affecting a particular site, to what degree can the daily concentration 

of PM10 in Auckland airshed be explained by site-specific predictors variables?  

To handle multiple seasonality in the estimation of next day PM10 concentration, harmonic 

regression using the Fourier terms (seasonal periods of 7 and 365 days based on the generated 

ACF and PACF plots), and two relatively new state-space modeling frameworks namely 

harmonic regression with Fourier terms and TBATs were employed in Chapter 4. The TBATS 

model differed from dynamic harmonic regression in that the seasonality was changed gradually 

over time, while seasonal patterns were forced by the harmonic regression terms to replicate 

periodically without changing. Site specific TBATS models with a lesser number of 

parameters and non-integer seasonality were found to be a more suitable technique for 

forecasting of Auckland’s PM10 with minimal errors, when compared to harmonic 

regression models, when there is the presence of complex seasonality.  

In order to explore these findings further the literature in the area was examined. It is clear from 

the literature that, at this point in time, there is no one single model that is globally suitable for 

PM10 prediction/forecasting and that different models performed differently in different regions. 

These differences appear to be related to data quality, choice of variables and in particular one of 

the most influencing factors appears to be seasonality and temporal cycles in the data. Perhaps in 

the end the best that we can hope for is a set of heuristics for selecting a model based on recent or 

historic trends in a region and one possible avenue for future research should be examining 

machine learning approaches for model learning so that the models are learnt and change with the 

changing input data. In this thesis, in Chapter 8 a Random Forest ensemble machine learning 

approach is evaluated and showed promising results – this suggests that further exploration of 

real-time streaming data and a machine learning approach in which models are learnt on the fly 

might be in the end the best approach to forecasting PM10. This is of course with the proviso that 

data of sufficient quality is available. Advances in modeling need to be considered hand in hand 

with improvements in monitoring – especially in the case of Auckland. 

In this research, the non-parametric Mann-Kendall tests indicated no significant changing trend 

in PM10 for Henderson, Patumahoe and Penrose sites. The Box Cox test also accepted the null 

hypothesis of no monotonic trends in Glen Eden, Henderson, Patumahoe and Penrose sites. The 

Modified Mann-Kendall Test for serially correlated data was used to account for the serial 

correlation present in the daily PM10 concentration values. The reported p-value after variance 

correction (valueb) concluded that there was a significant downward trend for Takapuna and a 

negative but not significant trend for Glen Eden. The trends for the remaining sites were positive 
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but not significant. This illustrates the very localised nature of PM concentration trends which 

cannot be explained fully by land usage (rural vs, urban). 

The relationship between the simple and routinely available meteorological factors and PM10 

concentrations is relatively underexplored in literature and the significance of this relationship to 

assign site-specific source contributions is not well understood. In Chapter 5 and 6 the influence 

of meteorological and temporal factors on the distribution of the daily average of PM10 

concentration is modelled using GAMs and GAMMs. PM10 concentrations for each of the six 

stations were estimated separately using various models, with all available meteorological 

variables included.  Although prior research examined collinearity solely based on correlation 

coefficients, in this research concurvity of each term with the whole the GAM model was 

calculated with assumption of independent and identically normally distributed errors for 

inference purposes. For all input variables, the estimated values were lower than 1, with a 

maximum value of 0.5 found between relative humidity and solar radiation in Takapuna that are 

likely due to the seasonal trends of these two terms. Therefore, it was assumed that collinearity 

do not exists and that a GAM method can therefore be applied. The partial effect results showed 

a clear difference between the effects of anthropogenic sources (crudely adapted using temporal 

variables) and atmospheric conditions. To the author’s knowledge, this study is the first effort 

to use GAMs and GAMMs to model PM10 concentration in the Auckland airshed, where 

multiple sources contribute to the observed PM10 concentrations.  

Chapter 8 further investigated how to extract the key information required from routinely 

available meteorological and temporal parameters, to build PM10 forecasting models in two 

manners. Application of input selection algorithms to identify the optimal set of model inputs 

showed different results, therefore a suitability study was carried out using a case-specific 

analysis. Different inputs were selected when forward selection and backward elimination were 

applied to Henderson, Pakuranga, and Takapuna and Patumahoe. In the case of Patumahoe 

backward elimination selected all the predictor variables as important in making the best PM10 

prediction. Penrose selected the same features in both forward selection and backward elimination 

(Lag1, relative humidity, temperature, wind speed, month, rain, wind direction, and solar 

radiation). The results of PCA showed the first component in all urban sites included relative 

humidity, solar radiation, and rainfall. The first component for Patumahoe included lag1 and lag2. 

It was noted that day of week was only selected in fifth component of Henderson. 

At an early point in this research elevation was considered as a predictor variable. The range in 

elevations within the study regions is relatively small. It was found that elevation did not 

contribute to the models. However, it may be that in topologies with a greater range of elevations 

that elevation does become important.  
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Q2.2. Can computationally simple semi-empirical methods such as GAMs and GAMMS 

be used to model Auckland’s daily PM10 concentrations reliably?  

As presented in Chapter 5, GAM model showed a moderate strength of the linear relationship 

between the observed and predicted values (R2) ranging from 0.55 to 0.69 for Pakuranga and 

Patumahoe stations, respectively. For low concentrations of PM10, the values fall within the FAC2 

region, whereas for higher concentrations of PM10 scattering was more evident. The GAM model 

in this study performed in a similar manner (0.20<R2<0.44) to a GAM model (R2 = 0.49) for 

estimating annual average PM10 concentration in the U.S. using several geographic information 

systems–derived covariates. They used number of meteorological, geographical and traffic 

volume variables. In the research for this doctoral thesis traffic volume was not readily/openly 

available and therefore not included. In Auckland traffic volume is monitored by Waka Kotahi 

(The NZ Transport Agency) and is only available as summarized data and only key sites such as 

the Water View tunnel are monitored and often for only short periods of time. 

GAMM modeling was applied to the Auckland case with the assumption that the errors can 

exhibit a particular form of dependence and the smooth functions can allow much more flexible 

functional forms than simple linear terms can. These conclusions were confirmed based on the 

GAMM results, where autocorrelation was also modeled. The result of cross validation of the 

fitted GAMMs on each site’s testing dataset showed positive values of Fractional Bias (FB). 

However, the calculated values of FB are too small and close to zero indicating that there is no 

systematic tendency to under prediction. The predictive ability of GAMM models for Auckland’s 

PM10 was comparable (0.36<R2<0.48) than those reported for modeling PM10 in the Northeastern 

and Midwestern U.S.  (R2=0.58). 

While simple semi-empirical methods can be used to model Auckland’s PM10 concentrations 

and on the whole these models perform better for Auckland’s PM10 prediction than for other 

countries and regions (as reported in the literature), the performance is not sufficient to be 

able to forecast with sufficient confidence. For example, it would not be recommended on this 

basis of this thesis’s work that semi-empirical models are used to report future concentrations in 

order to high light periods of risk for citizens with respiratory conditions.  

Q2.3. How can we, from a high-level perspective, use descriptive (marginal) models to 

characterize spatio-temporal dependence structures for PM10 modeling?  

Due to a lack of high spatial resolution of meteorological data, IDW was used to interpolate the 

PM10 concentrations between the air quality monitoring stations. This interpolation was 

conducted without considering potential influencing factors such as weather/meteorological 

conditions. Instead, only spatial (latitude and longitude) and temporal variables (days) were used 

as input variables. Three other spatio-temporal statistical models (regression with trend, ST_GLM 
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and ST-GAM) were also considered in order to be able to account for the meteorological factors 

as well as spatial coordinates in their data driven models. Using the S-T approach and considering 

these covariates in form of basis functions, these S-T models were found to provide a better 

representation of the current situation in the study area with S-T GAM outperforming S-T 

GLM, regression with trend, and IDW.  

In Chapter 7, descriptive approaches were used to obtain statistical dependencies in spatio-

temporal distribution of PM10. Different S-T variograms were fitted to the data and the best model 

was used in Kriging to model and predict PM10 concentration in study area. The advantage of 

the S-T kriging over deterministic methods (Chapter 6) was its ability to provide a better 

prediction precision by describing the spatio-temporal dependence structure through the 

inclusion of spatio-temporal covariances.  

Further work to improve the performance of S-T kriging for modeling of Auckland PM10 data set 

should be undertaken in future work and include careful consideration of the data preprocessing 

steps such as: employing additional covariates in linear modeling step and use of a temporal AR-

model in preprocessing step followed by spatio-temporal residual kriging. 

 

Q2.4. How reliable and efficient are machine learning methods for predicting next day 

PM10 concentration? 

In Chapter 8, predictive models of one day ahead PM10 concentration using three different 

machine learning approaches were developed and their site-specific performance evaluated. In 

the last ten years, there has been a proliferation of studies using machine-learning methods to 

predict PM10 daily concentrations over large geographical domains. It is difficult to compare the 

performance of the methods used in previous studies with the one proposed here due to unique 

and well-known microclimate characteristics of Auckland region and differences in predictor data 

sources. Given the main limitations of the research presented in this thesis such as the low 

variability in observed PM10 concentrations and the lack of key predictors including traffic and 

population data, the predictive outcomes of the RF models developed in this thesis suggest 

that RF can help to explain the extent variability in PM10 concentrations that can be 

explained by the governing meteorological variables.  

 

Q2.5. How accurate are non-linear statistical and ensemble approaches in predicting next 

day PM10 concentration? 
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In Chapter 8, injecting the bagging and random features as the only kind of randomness made RF 

models accurate classifiers and regressors compared to the MLP and LSTM models. As suggested 

by Breiman (2002) other types of injected randomness such as use of random Boolean 

combinations of features may improve the results. Using data stream mining methods such as 

change detection along with RFs would be one avenue worth exploring though the current state 

of work in this area has reported that change detection approaches are still not effective in 

detecting rare and extreme events.  The random forest methodology was determined to be the 

best option for modeling/predicting PM10 of the methods explored in this research.  

 

Q2.6. To what extent does data quality become a significant factor in determining the 

performance of PM10 concentration models? 

Given the characteristics of the isthmus as a predominant geographical feature of Auckland city 

the use of emission rates might improve model performance by capturing the complexities that 

have not been depicted in the models built in this thesis’s research. While statistical approaches 

are restricted in their ability to explain the physical parameters controlling the pollutant 

dispersion, development of models to successfully simulate atmospheric processes require an 

understanding of the fine detail of dispersion processes, and to develop source receptor 

relationships. The practical application of such techniques is however limited due to their 

extensive data requirements.  

It should be noted that the traffic characteristics and other anthropogenic source were not directly 

included as predictors for modeling PM10. Accordingly, further investigation using these factors 

over a longer period to be directly included in the models is suggested. Use of 

imputation/interpolation methods for replacing missing PM10 concentration and meteorological 

measurements is also suggested for future work. In this study it was presumed these missing data 

are missing completely at random, and therefore this will influence the trend estimates and test.  

Similarly, another notable limitation of the work presented in this thesis is related to the of lack 

of rainfall data for Henderson (no availability), Takapuna and Penrose site (Chapter 3), rainfall 

data was imputed based on satellite imagery provided by NOAA/NESDIS. As a test of the 

accuracy of the rainfall data ground truth rainfall gauge data was compared with the rainfall in 

millimeters predicted by the NOAA Hydro-Estimator method there was only on average 60% 

agreement but given this was the only source of data available it was employed in the models with 

this known caveat. This could explain why Henderson rainfall was not selected by the GAM and 

GAMM smooth terms in Section 5.4. Also, Henderson rainfall was found to have the lowest 

importance level (17.1) compared to remaining sites’ rainfall level (above 24) when used in RF 
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model (Section 8.7.5). Imputing missing data almost always adds some uncertainty to any model 

developed. 

9.3 Final Thoughts 

Modeling and prediction of PM10 is not straight forward there are a number of key aspects that 

make this challenging. Those aspects that are in control of the stakeholders include: 

• Sensor choice, maintenance, and calibration. Obviously, there is still a need for the 

development of more reliable and cost-effective sensors for both pollution and weather 

monitoring. 

• Sensor network density – It is clear that due to the localized nature of PM that denser 

networks are required for the purposes of modeling and predicting PM. Other regions in 

New Zealand (for example Canterbury in the South Island) have more comprehensive 

monitoring in place. 

• Consistency in same data collection across stations in the network. 

• Lack of open data sources. Many data collections are proprietary with respect to data and 

access is difficult for researchers. Different data is held by different entities – sharing of 

this data would enable better imputation of missing data points. Only some of the data 

from organizations such as Auckland Council is shared. However, with the advent of 

their new data portal the data is becoming more open and readily available to researchers. 

• Improvement of satellite imagery and methods for extracting features such as 

precipitation and AOT from these images for the Southern Hemisphere. Much of the 

work in this area has been conducted and fully evaluated only in the Northern 

Hemisphere. Improving computations in for example the Hydro-Estimator would 

improve and help: triangulate and verify ground truth readings impute data  

Once these issues are addressed then while modeling will still be challenging the data quality will 

result in better performance of the models. This is critical when key policies and decisions are 

being made both at a local and national level based on these models. 

Finally, machine learning approaches should be considered as methods for validating sensor data 

and as a means to correct questionable readings. It is clear from this research that ensemble 

machine learning methods – methods that learn models as new data is introduced – are the way 

forward. 
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Appendix A 

1) Temporal variation of PM10 for all urban sites  
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Appendix B 

1) Harmonic Regression Model Details 

Glen Eden 

Series: msts_train  

Regression with ARIMA(1,0,2) errors  

Box Cox transformation: lambda= -0.9999242  

Coefficients: 

         ar1      ma1      ma2  intercept     S1-7    C1-7   S2-
7 

      0.8180  -0.3723  -0.2517     0.9135  -0.0011  0.0023  9e-0
4 

s.e.  0.0569   0.0636   0.0396     0.0015   0.0012  0.0012  1e-0
3 

       C2-7   S3-7   C3-7   S1-365   C1-365 

      0.000  9e-04  8e-04  -0.0036  -0.0167 

s.e.  0.001  7e-04  7e-04   0.0021   0.0021 

 

sigma^2 estimated as 0.00095:  log likelihood=3768.49 

AIC=-7510.98   AICc=-7510.78   BIC=-7439.36 

 

Henderson 

Series: msts_train  

Regression with ARIMA(1,0,2) errors  

Box Cox transformation: lambda= 0.1355062  

Coefficients: 

         ar1      ma1      ma2  intercept     S1-7    C1-7    S2
-7 

      0.7563  -0.2306  -0.2266     3.0280  -0.0510  0.0218  0.01
64 
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s.e.  0.0673   0.0753   0.0479     0.0204   0.0162  0.0162  0.01
18 

        C2-7    S3-7     C3-7  S1-365   C1-365 

      0.0167  0.0200  -0.0036  0.0166  -0.1572 

s.e.  0.0119  0.0081   0.0081  0.0289   0.0288 

 

sigma^2 estimated as 0.1547:  log likelihood=-880.93 

AIC=1787.86   AICc=1788.06   BIC=1859.48 

 

Pakuranga 

Series: msts_train  

Regression with ARIMA(3,0,1) errors  

Box Cox transformation: lambda= -0.9498489 

Coefficients: 

         ar1      ar2     ar3      ma1  intercept     S1-7    C1
-7 

      1.2442  -0.4435  0.0950  -0.7438     0.9603  -0.0030  0.00
19 

s.e.  0.0969   0.0556  0.0243   0.0955     0.0017   0.0012  0.00
12 

       S2-7    C2-7    S3-7    C3-7   S1-365   C1-365 

      9e-04  0.0019  0.0017  -7e-04  -0.0021  -0.0116 

s.e.  9e-04  0.0009  0.0006   6e-04   0.0024   0.0024 

 

sigma^2 estimated as 0.0008656:  log likelihood=3853.97 

AIC=-7679.93   AICc=-7679.7   BIC=-7602.8 

 

Patumahoe 

Series: msts_train  

Regression with ARIMA(3,0,0) errors  
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Box Cox transformation: lambda= 1.745064 

Coefficients: 

         ar1      ar2     ar3  intercept     S1-7    C1-7    S2-
7 

      0.5027  -0.0337  0.0737    45.5444  -1.8453  0.6573  0.769
2 

s.e.  0.0235   0.0263  0.0235     1.4922   1.1465  1.1464  0.856
0 

         C2-7    S3-7     C3-7  S1-365  C1-365 

      -0.2532  1.2164  -1.1790  1.0747  8.1250 

s.e.   0.8564  0.6337   0.6343  2.1103  2.1075 

 

sigma^2 estimated as 857:  log likelihood=-8751 

AIC=17528   AICc=17528.2   BIC=17599.63 

Penrose 

Series: msts_train  

Regression with ARIMA(3,0,2) errors  

Box Cox transformation: lambda= 1.226444 

Coefficients: 

         ar1      ar2      ar3      ma1      ma2  intercept     
S1-7 

      1.1517  -0.1967  -0.0147  -0.7004  -0.1647    22.7266  -1.
7708 

s.e.  0.5381   0.7526   0.2265   0.5369   0.5168     0.4626   0.
3660 

        C1-7    S2-7    C2-7    S3-7     C3-7  S1-365   C1-365 

      0.0568  0.0195  0.9996  0.6025  -0.4426  0.5780  -1.5193 

s.e.  0.3661  0.2562  0.2564  0.1988   0.1990  0.6485   0.6457 

 

sigma^2 estimated as 77.82:  log likelihood=-6559.61 

AIC=13149.22   AICc=13149.49   BIC=13231.87 
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Takapuna 

Series: msts_train  

Regression with ARIMA(5,1,0) errors  

Box Cox transformation: lambda= -0.0861932  

 

Coefficients: 

          ar1      ar2      ar3      ar4      ar5     S1-7    C1
-7 

      -0.4148  -0.4287  -0.3184  -0.1961  -0.1286  -0.0506  0.00
40 

s.e.   0.0232   0.0248   0.0257   0.0247   0.0232   0.0097  0.00
97 

        S2-7    C2-7    S3-7    C3-7   S1-365   C1-365 

      0.0034  0.0221  0.0125  0.0001  -0.0016  -0.0544 

s.e.  0.0069  0.0069  0.0048  0.0048   0.1880   0.1876 

 

sigma^2 estimated as 0.05918:  log likelihood=-3.53 

AIC=35.06   AICc=35.29   BIC=112.19 
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2)  Plots of Residuals from Obtained Harmonic Regression Models  
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3) TBATS Decomposition Plots 
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Appendix C 

1) The LOOCV score on different range of α and θ for IDW prediction (a) and Gaussian 

kernel prediction (b) of PM10 
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Appendix D 

Site-specific K-mean clustering results 
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Appendix E (Image copyrights) 

1) Figure 2.1: PLoS ONE Copyright: © 2019 Sun, Zhu. This is an open access article 

distributed under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited. 

2) Figure 2.2: Ministry for the Environment MfE & Stats NZ, 2018 Crown copyright ©. 

Unless indicated otherwise for specific items or collections of content (either below or 

within specific items or collections), this copyright material is licensed for re-use under 

the Creative Commons Attribution 4.0 International licence. 

In essence, you are free to copy, distribute and adapt the material, as long as you 

attribute it to the Ministry for the Environment and abide by the other licence terms. 

Please note that this licence does not apply to any logos, emblems and trade marks on 

the website or to the website’s design elements or to any photography and imagery. 

Those specific items may not be re-used without express permission. 

3) Figure 2.3: Ministry for the Environment (MfE) Crown copyright ©. 

Unless indicated otherwise for specific items or collections of content (either below or 

within specific items or collections), this copyright material is licensed for re-use under 

the Creative Commons Attribution 4.0 International licence. 

In essence, you are free to copy, distribute and adapt the material, as long as you 

attribute it to the Ministry for the Environment and abide by the other licence terms. 

Please note that this licence does not apply to any logos, emblems and trade marks on 

the website or to the website’s design elements or to any photography and imagery. 

Those specific items may not be re-used without express permission. 

4) Figure 2.4 and Figure 2.5: 

From: Shahir Masri <sfm392@mail.harvard.edu> 
Sent: Monday, 12 April 2021 4:57 PM 
To: Sara Zandi <sara.zandi@aut.ac.nz> 
Subject: Re: Permission on Using Your Journal Paper Figures 

 Hello Sara,  

Thank you for your email. Yes, you may use the figures as long as they cite our 

original paper. Good luck with your thesis! 

Kind regards, 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216550
http://creativecommons.org/licenses/by/4.0/
https://www.mfe.govt.nz/about-site/copyright
https://www.mfe.govt.nz/about-site/copyright
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Shahir  

Shahir Masri, Sc.D., M.S. 
Author of Beyond Debate: Answers to 50 Misconceptions on Climate Change  

Assistant Specialist in Air Pollution Exposure Assessment & Epidemiology 

University of California, Irvine 

On Sun, Apr 11, 2021 at 5:47 PM Sara Zandi <sara.zandi@aut.ac.nz> wrote: 

Dear Shahir, 

My name is Sara Zandi and I am undertaking my PhD program in Auckland 

University of Technology (AUT), New Zealand. I am writing to ask for 

your permission on using two of the Figures (Figure 1. Relative contributions of 

coarse and fine particles to total PM10 mass. and Figure 2. Mass closure results for 

(a) fine and (b) coarse particles.) from the published journal article" Composition and 

sources of fine and coarse particles collected during 2002–2010 in Boston, MA" in 

my PhD thesis. 

As part of our University's copyright rules, I am allowed to use the Figures (with 

citation) subject to the author's permission. 

Could you please advise. 

Kind regard, 

Sara Zandi 

Auckland University of Technology 

New Zealand 

5) Figure 2.6  

No special permission is required to reuse all or part of article published by MDPI, 

including figures and tables. For articles published under an open access Creative 

Common CC BY license, any part of the article may be reused without permission 

provided that the original article is clearly cited. Reuse of an article does not imply 

endorsement by the authors or MDPI. 

6) Figure 2.7 and Figure 2.8: Copyright notice © European Environment Agency, 2020 

Reproduction is authorised provided the source is acknowledged. 

7) Figure 2.9 

From: Tony Edhouse <Tony.Edhouse@aucklandcouncil.govt.nz> 
Sent: Thursday, 15 April 2021 12:45 PM 
To: Sara Zandi <sara.zandi@aut.ac.nz> 
Subject: Approval for use of figures from Auckland Council technical reports 

https://shahirmasri.com/book-1
mailto:sara.zandi@aut.ac.nz
https://www.mdpi.com/openaccess
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Research and Evaluation Unit    RIMU 
Auckland Council 
___________________________________________________________ 
  
Hello Sara 
  
Thanks for your messages. 
  
Yes, you are approved to use selected figures from two Auckland Council technical 
reports: 
  
Auckland air emissions inventory 2016 – transport (revised), TR2018/016-2 
  
Source apportionment and trend analysis of air particulate matter in the Auckland 
region, TR2017/001 
  
Please ensure that appropriate acknowledgements (citations) are included in your 
PhD thesis. 
  
Regards 
  
Tony Edhouse 

 

8) Figure 2.10 

Ministry for the Environment MfE & Stats NZ, 2018 Crown copyright ©. 

Unless indicated otherwise for specific items or collections of content (either below or 

within specific items or collections), this copyright material is licensed for re-use under 

the Creative Commons Attribution 4.0 International licence. 

In essence, you are free to copy, distribute and adapt the material, as long as you 

attribute it to the Ministry for the Environment and abide by the other licence terms. 

Please note that this licence does not apply to any logos, emblems and trade marks on 

the website or to the website’s design elements or to any photography and imagery. 

Those specific items may not be re-used without express permission. 

9) Figure 2.15 

From: Ian Longley <Ian.Longley@niwa.co.nz> 
Sent: Wednesday, 23 December 2020 9:57 AM 
To: Sara Zandi <sara.zandi@aut.ac.nz> 
Subject: RE: [NIWA] Permission for use of work in my thesis 

 Hi Sara 

I'm perfectly happy for you to use that material as you suggest. 

https://www.mfe.govt.nz/about-site/copyright
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All the best 

Ian 

-----Original Message----- 

From: webmaster@niwa.co.nz <webmaster@niwa.co.nz> On Behalf Of 

szandi@aut.ac.nz 

Sent: Wednesday, 23 December 2020 9:15 AM 

To: Ian Longley <Ian.Longley@niwa.co.nz> 

Subject: [NIWA] Permission for use of work in my thesis 

 

Hello Dr Ian Longley, 

 

Sara Zandi (szandi@aut.ac.nz) has sent you a message via your contact form 

(https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.

nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co

.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6a

afd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d

8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D

%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4

%3D&amp;reserved=0) at NIWA. 

 

this is a message forwarded from contact form on the NIWA website 

 

Message: 

Dear Ian Longley, 

I am a Doctoral student at Auckland University of Technology and am writing a 

thesis on PM10 concentration modeling in urban area for my PhD degree. 

I am writing to request permission for the following work, for which I believe you 

hold the copyright, to be included in my thesis: 

Longley, I. (2020, 30/04/2020). Pollution levels soar in Level 3, says NIWA. 

 

A digital copy will be made available online via the University's digital repository 

Tuwhera. This is an open access research repository for scholarly work, intended 

to make research accessible to as wide an audience as possible. 

I am seeking from you a non-exclusive licence to include these materials in my 

thesis. The materials will be fully and correctly referenced. 

If you agree, I should be very grateful if you would reply to me via email. 

If you do not agree, or if you do not hold the copyright in this work, would you 

https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fniwa.co.nz%2Fuser%2F449%2Fcontact&amp;data=04%7C01%7CIan.Longley%40niwa.co.nz%7C8d73bac2c7ef400d500b08d8a6b652e1%7C41caed736a0c468aba499ff6aafd1c77%7C0%7C0%7C637442649346834215%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&amp;sdata=tbYv0i5BolM6ktfMG%2FMWa9QE3PsI4qZ2J1OkDP9RhR4%3D&amp;reserved=0
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please let me know. 

I can most quickly be reached by email. Thank you for your assistance. I look 

forward to hearing from you. 

 

Yours sincerely, 

Sara Zandi 

10) Figure 7.1 

From: Mark Fischer <mfischer@niu.edu> 
Sent: Wednesday, 20 November 2019 4:27 PM 
To: Sara Zandi <sara.zandi@aut.ac.nz> 
Subject: {Spam?} Re: Permission on Using Your Journal Paper Figures 

Hello Sara, 

You are more than welcome to use that figure in your thesis.  You may want to contact 
the journal and request permission from them too, as they are the official copyright holder 
on that paper.  You may need to speak with your advisor or a university representative to 
determine whether you actually need to do that. 

If for some reason you need or would like to have the original Adobe Illustrator 
version of the figure, just let me know and I can send it to you.  Having that file might 
make it easier to edit the figure to your needs.  You are welcome to do that too, as long 
as you cite the original paper. 

Best of luck on your research. 

—Mark 

Professor Mark P. Fischer, Ph.D. 
Chair, Geology and Environmental Geosciences 
Northern Illinois University 
DeKalb, IL 60115-2828, USA 
Phone:  815.753.0523 
FAX:  815.753.1945 

On Nov 19, 2019, at 2:40 PM, Sara Zandi <sara.zandi@aut.ac.nz> wrote: 

Dear Mark, 

My name is Sara Zandi and I am undertaking my PhD program in Auckland University 
of Technology (AUT), New Zealand. I am writing to ask for your permission on using 
one of the Figures (Fig. 7. Schematic illustration of the steps involved in the 
semivariogram modeling) from your published journal article" Directional 
semivariogram analysis to identify and rank controls on the spatial variability of fracture 
networks” in my PhD thesis.  

As part of our University's copyright rules, I am allowed to use the Figures (with 
citation) subject to the author's permission. 

mailto:mfischer@niu.edu
mailto:sara.zandi@aut.ac.nz
http://www.niu.edu/geology
mailto:sara.zandi@aut.ac.nz
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Could you please advise. 
Kind regards, 
Sara Zandi 

11) Figure 8.1 and Figure 8.2

From: Christopher Olah <christopherolah.co@gmail.com>

Sent: Saturday, 19 September 2020 2:55 AM

To: Sara Zandi <sara.zandi@aut.ac.nz>

Subject: Re: Your permission on adopting the LSTM images in my thesis

 Dear Sara, 

You are very welcome to use my LSTM diagrams. Please cite the blog post. 

All the best with your writing your thesis. 

Chris 

On Thu, Sep 17, 2020 at 11:50 PM Sara Zandi <sara.zandi@aut.ac.nz> wrote: 

Dear Christopher, 

My name is Sara Zandi and I am undertaking my PhD study at AUT University. I found 

your post on Understanding LSTM Networks (Posted on August 27, 2015) very useful, so I 

am writing to ask for permission of adopting the LSTM images in my thesis. As part of 

AUT University referencing regulation I must get your permission on using graphs and 

images.  Could you please let me know if I get your permission and if you have used these 

images in other publications so I can cite them? Otherwise, I will cite your blog as online 

resource. 

Kind regards, 
Sara Zandi 

mailto:sara.zandi@aut.ac.nz
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