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Abstract

In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input-output spike
trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron
to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the con-
version of spike trains into analogue signals and the application of the Widrow-Hoff learning rule. In this article
we present a mathematical formulation of the proposed learning rule. Furthermore, we extend the application of the
algorithm to train a SNN consisting of multiple spiking neurons to perform spatiotemporal pattern classification and
we show that the accuracy of classification is improved significantly over a single spiking neuron. We also investi-
gate a number of possibilities to map the temporal output of the trained spiking neuron into a class label. Potential
applications for motor control in neuro-rehabilitation and neuro-prosthetics are discussed as a future work.

Keywords: Spiking Neural Networks, Supervised learning, Spatio-temporal control, Temporal coding

1. Introduction

The perfection exhibited by living entities in carrying
out their daily natural activities is inspiring researchers
to adopt their behavior, deep to the cell level, as a model
to solve computational tasks that are considered com-
plex for machines to solve. The study of Spiking Neural
Networks (SNN) [2, 3, 4, 5] represents a significant step
in the path of learning from the brain. SNN is closer to
the real operational model of the brain than conventional
neural networks. This closeness is asserted in the use of
spikes as a form of communication between the neural
nodes similar to the brain. The shape of the spike seems
less relevant and has no importance in representing the
information, instead the time of spiking carries the in-
formation. How information is encoded in the spike
timing is a debatable issue as many theories exist. Tradi-
tionally, the commonly used neural code in SNN is rate
coding in which the information is encoded in the num-
ber of spikes over a small time window. Alternatively,
the temporal coding encodes the information in the ex-

act timing of the spikes. Information representation has
an important role in simplifying and speeding the com-
putation to achieve good results. In [6] it was argued
that the recognition of patterns such as colors, visual
patterns, odours and sound quality are solved rapidly
in neurobiology using temporal coding and could not
be solved using rate-based neural models. Furthermore,
temporal coding is supported by evidences observed in
different types of biological neurons, see [7] for a sur-
vey.

The other issue establishing the biological plausibil-
ity of SNN is the learning paradigm referred to as Spike
Time Dependent Plasticity (STDP) [8, 9, 2, 10]. The
STDP is an unsupervised learning process that adjusts
the synaptic weights based on the time correlation be-
tween the incoming spike (presynaptic spike) and the
emitted spike of the neuron (postsynaptic spike). In [11]
it was shown that STDP enables a neuron to perform a
complex recognition task: to localize a repeating spa-
tiotemporal spike pattern embedded in equally dense
distractor spike trains. In [12], an unsupervised learning
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algorithm based on STDP and Winner-Take-All (WTA)
paradigm is proposed for pattern recognition.

However, for specific task oriented engineering ap-
plications, supervised learning (training) or a combined
unsupervised-supervised, might be more favourable
over unsupervised learning. Supervised learning, com-
monly in the form of error back propagation [13], is
widely used in training conventional neural networks
to perform pattern recognition. Due to the nature of
spike-based communication and the complexity of SNN
(which requires tuning big number of parameters), no
efficient supervised learning techniques for SNN have
existed until recently.

One of the first supervised learning methods for SNN
is SpikeProb [14]. This uses a gradient descent ap-
proach that adjusts the synaptic weights in order to emit
a single spike at a specified time. The timing of the out-
put spike encodes specific information,e.g. the class la-
bel of the presented input sample. However, SpikeProp
cannot train SNN to emit a desired spike train consisting
of more than one spike.

An interesting learning rule for spatiotemporal pat-
tern recognition has been suggested in [12]. The so-
called Tempotron enables a neuron to learn whether to
fire or not to fire in response to a specific input stimu-
lus. Consequently, the method allows the processing of
binary classification problems. However, the neuron is
not intended to learn a precise target output spike train,
but instead whether to spike or not to spike in response
to an input stimulus.

A Hebbian based supervised learning algorithm
called Remote Supervised Method (ReSuMe) was pro-
posed in [15] and further studied in [16, 17]. ReSuMe,
similar to STDP, is based on a learning window concept.
Using a teaching signal a specific desired output is im-
posed on the output neuron. With this method, a neuron
can produce a spike train precisely matching a desired
spike train. It was shown that in combination with the
Liquid State Machine (LSM) [18], the algorithm is ef-
ficient for random mapping from any input spike train
to any output spike train or multiple spike trains. The
algorithm was mainly designed and applied for neuro-
prostheses control [19].

Recently, a method called Chronotron was pro-
posed [20]. Two versions of learning rules are described
therein; E-learning and I-learning. E-learning is based
on minimizing the error between the desired spike pat-
tern and the actual one. The error is measured using the
Victor-Purpura spike distance metric [21]. This met-
ric produces discontinuities in the error landscape that
must be overcome through approximation. E-Learning
surpasses ReSuMe in terms of the number of spike pat-

terns that can be memorized and classified. The other
version, I-Learning, is biologically more plausible but
less efficient.

In [22] the authors proposed a supervised learning
paradigm for SNN based on Particle Swarm Optimiza-
tion (PSO). PSO optimizes, according to a fitness func-
tion, the parameters of the dynamic synapses [23] which
connect the layers of the network. The fitness function
measures the similarity between the actual output spike
train and the target spike train. However, PSO becomes
less efficient at finding good solutions when the num-
ber of variables (i.e. the parameters of the synapses)
increases, limiting its applicability for large networks,
especially when the input stimulus is a spatiotemporal
spike pattern consisting of many spike trains. To over-
come this difficulty, the authors proposed in [1] a sim-
ple method to train a neuron to map (associate) an in-
put spatiotemporal spike pattern to a desired spike train
pattern. The method is based on the Widrow-Hoff (or
Delta) learning rule [24] commonly used in traditional
neural networks. The Delta rule adjusts the weight of
a synapse by scaling the error signal,i.e. the differ-
ence between the teacher signal and the actual signal, by
the value of the input at that synapse. The Delta rule is
inapplicable to SNN because spikes, unlike real-values
signals, cannot be subtracted or multiplied directly. In
the mentioned proposed learning rule, spike trains are
converted into continuous signals by convolution with
a kernel function. The Delta rule can then be applied
directly to adjust the synaptic weight for training pur-
poses. We refer to a spiking neuron trained via this
method by SPAN (Spike Pattern Association Neuron)
since the neuron is intended primarily for input/output
spike pattern association. SPAN was evaluated to be ef-
ficient in a synthetic spatiotemporal classification prob-
lem [1].

In this article, a mathematical formulation of SPAN
learning rule is provided. Furthermore, instead of a sin-
gle SPAN to perform spatiotemporal classification, we
train multiple SPANs in a single layer network to per-
form the classification task and compare the accuracy
with that of a single SPAN. Because SPAN is based on
temporal coding, we describe and test different ways to
transform the output spike pattern into a class label.

In the next section the learning rule is described and
derived mathematically. In section 3 we discuss the
multiple SPAN architecture. In section 4, the details
of the simulation experiments and results using multi-
ple SPANs are given. Section 5 concludes the paper and
highlights future research and applications.
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2. The SPAN learning rule

Similar to other supervised training algorithms, the
synaptic weights of the network are adjusted iteratively
to impose a desired input/output spike pattern associa-
tion to the SNN. To derive the learning rule, we begin
with Widrow-Hoff rule as follows. For a synapsei, the
weight change∆wi is defined as:

∆wi = λxi (yd − yout) = λxi∆i (1)

whereλ ∈ R is a real-valued positive learning rate,xi is
the input transferred through synapsei, andyd andyout

refer to the desired and the actual neural output, respec-
tively. Note that∆i = yd − yout is the difference or error
between the desired and the actual output of the neuron.

This rule was introduced for conventional neural net-
works where the input and output are real-valued sig-
nals. In SNN however, trains of spikes are passed be-
tween neurons rendering the Widrow-Hoff rule incom-
patible for SNN. More specifically, ifxi, yd andyout are
considered as spike trainss(t) defined by

s(t) =
∑

f

δ(t − t f ) (2)

wheret f is the firing time of a spike andδ(·) is the Dirac
delta functionδ(x) = 1 if x = 0 and 0 otherwise, then
the difference between two spike trainsyd andyout does
not define a suitable error landscape which can be min-
imized by a gradient descent method.

Here, we address this issue by proposing the follow-
ing idea. In order to define the difference between spike
trains, we convolve each spike sequence with a kernel
functionκ(t). This is similar to the binless distance met-
ric used to compare spike trains [25]. We define

x̃i(t) =
∑

t f
i ∈Fin

κ(t − t f
i ) (3)

ỹd(t) =
∑

tg
d∈Fd

κ(t − tg
d) (4)

ỹout(t) =
∑

th
out∈Fout

κ(t − th
out) (5)

with Fin, Fd and Fout being the input, the desired and
the actual output set of spike trains, respectively. Sub-
stituting xi, yd andyout with the kernelized spike trains
x̃i(t), ỹd(t) andỹout(t), a new learning rule for a spiking
neuron is obtained:

∆wi(t) = λx̃i(t) (ỹd(t) − ỹout(t)) (6)

This equation formulates a real-time learning rule such
that the synaptic weights change over time. By integrat-
ing Eq. 6, we derive the batch version of the learning
rule which is under scrutiny in this paper:

∆wi = λ

∫ ∞

0
x̃i(t) (ỹd(t) − ỹout(t)) dt (7)

A variety of kernel functionsκ(t) exist such as linear,
(double) exponential, alpha and Gaussian kernels. In
this study, we use anα-kernel,α(t) = e τ−1 t e−t/τH(t),
although many other kernels could have been chosen. A
convolved spike train ˜s(t) is then given as:

s̃(t) =
∑

t f

κ(t − t f )

=
∑

t f

e τ−1 (t − t f ) e−(t−t f )/τH(t − t f )

(8)

whereH(t) refers to the Heaviside function andτ ∈ R is
a real-valued time constant. Using this kernel function,
Eq. 6 is rewritten as follows:

∆wi(t) =

λ

( e
2

)2

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(9)

Now, we can integrate Eq. 7:

∆wi = λ

∫ ∞

0
∆wi(t) dt

= λ

( e
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(10)

Eq. 10 defines how the weight of a synapse changes
after presenting a training sample in each epoch.

In each iteration (or epoch), all input patterns are
presented sequentially to the system. For each pat-
tern the∆wi are computed and accumulated. After the
presentation of all patterns, the weights are updated to
wi(e + 1) = wi(e) + ∆wi(e), wheree is the current epoch
of the learning process.

Fig. 1 illustrates the functioning of the learning
method. An output neuron is connected to three in-
put neurons through three excitatory synapses with ran-
domly initialized weights. For simplicity, each input
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Figure 1: Illustration of the proposed learning rule SPAN. See Section 2 for detailed explanations of the figure.

sequence consists of a single spike only. However,
the learning method can also deal with more than one
spike per input neuron. The inputst( f )

i are visualized in
Fig. 1A. In this example, we intend to train the output
neuron to emit a single spike at a pre-defined timet(0)

d .
Assume that, as shown in Fig. 1B, the presented stim-

ulus excites the output neuron resulting in the genera-
tion of two output spikes at timest(0)

out and t(1)
out, respec-

tively, neither of them being the desired spike timet(0)
d .

The evolution of the measured membrane potentialu(t)
in the output neuron is shown in the upper section of
Fig. 1B above the actual and the desired spike trains.

The lower parts of Fig. 1 (C,D,E) graphically illus-
trate Eq. 7. The input, actual and desired spikes trains
are convolved with theα-kernel as defined in Eq. 8
(Fig. 1B and C). We define the area under the curve of
the differenceyd(t) − yout(t) as an error between actual
and desired output:

E =
∫

|yd(t) − yout(t)| dt (11)

Although this error is not used in computing the weight
updates∆wi, this metric is an informative measure
of the achieved training status of the output neuron.
Fig. 1E shows the weight updates∆wi. We especially
note the large decrease of weightw0. The spike train
t(0)
0 of the first input neuron causes an undesired spike

at t(0)
out and lowering the corresponding synaptic efficacy

potentially suppresses this behavior. On the other hand,

the synaptic weightw2 is increased promoting the trig-
gering of spiket(1)

out at an earlier time.
We note that, unlike related methods such as Re-

SuMe [15], the defined learning rule employs no learn-
ing windows, rendering the method easy to comprehend
and to implement.

We demonstrate the spike pattern association func-
tion of SPAN in the following task. The task is to learn
a mapping from a random input spike pattern to spe-
cific target output spike train. This target train con-
sists of five spikes occurring at different times,i.e. ,
td = {33,66,99,132,165}ms. Initially, the synaptic
weights are randomly generated uniformly in the range
(0,25pA); the parameters of the simulation are given in
section 4.1. In 100 epochs, we allow the output neuron
to adjust its connection weights in order to produce the
desired output spike train. The experiment is repeated
for 100 runs, each of them initialized with different ran-
dom weights to guarantee statistical significance.

In Fig. 2, the experimental setup of a typical run is il-
lustrated. The left side of the diagram shows the SPAN
network architecture. The right side shows the desired
target spike train (top) along with the produced spike
trains by the output neuron over a number of learning
epochs (bottom). We note that the output spike trains
in early epochs are very different from the desired tar-
get spike sequence. In later epochs the output spikes
converge towards the desired sequence. Consequently,
the error as defined in Eq. 11 decreases in succeeding
epochs (right part of Fig. 2). We note that the neuron
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Figure 2: A single output neuron is trained to respond with a temporally precise output spike train to a specific
spatiotemporal input. The organization of the figure is inspired by [20].

reproduces the desired spike output pattern very pre-
cisely in less than 30 learning epochs. More complex
target trains, with more spikes or longer time, have also
been tested with considerable success (results are not
shown). However, it is necessary that enough spikes
are input to stimulate the neuron, otherwise the neuron
will not readily reproduce the target train in cases of
few synapses. This situation has been previously noted
in [17].

3. Training Multiple SPANs

With temporal coding, the label of a spike pattern is
determined by not only the occurrence or nonoccurence
of a spike, but also by the precise timing of the spike,
which can be anywhere within the time period of the
simulation. This introduces flexibility and redundancy
in deciding the class label from the spike output of the
neuron. The question arises as to how many spike pat-
terns the neuron can be trained to remember and conse-
quently to recognize. The answer, discussed in [12], is
that the memory capacity of the neuron depends on the
synapse number, quantified by a measurement called the
load factor, (defined as the ratio of the number of input
patternsp the neuron can classify correctly to the num-
ber of synapsesn, i.e. p

n ).
The memory capacity of SPAN has been studied

in [27]. The procedure followed to measure the memory
capacity, is similar to that presented in [12], is to gener-
ate a number of random spike patterns and assign them

randomly to several classes (five in this case). The task
is to train the neuron to classify the patterns correctly,
see [27] for more details. For example, the neuron is
able to learn and recognize, with high accuracy, a total
of 15 patterns with 200 synapses and 35 patterns when
assigned 600 synapses. Therefore, the memory capacity
of the neuron is expected to increase as the number of
synapses increases although more synapses means pat-
terns with more spike trains. Memory should also in-
crease if the class patterns are associated to each other
rather than being completely random.

In [1] we have used a single SPAN in a spatiotem-
poral spike pattern classification problem in which the
neuron is trained to recognize five classes by firing at
five time instances assigned to identify the classes.

Here, we investigate the spatiotemporal classification
based on different criterion to improve the classification
accuracy. The criterion is based on two key points: first,
instead of a single SPAN trained to classify all classes as
in our previous study [1], several SPANs are trained to
perform the classification cooperatively, each assigned
to recognize a single class only. Fig. 3 depicts the mul-
tiple SPAN architecture with five neurons. The hypoth-
esis is that a better accuracy will be achieved, also test-
ing the potential scalability of the method for large scale
applications.

In the training phase, a neuron learns to fire at a spe-
cific time when the patterns of the respective class are
supplied to its input synapses. For example, for the five
class problem there are five neurons, the first neuron is
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Table 1: Tabular description of the experimental setup as suggested in [26].

Model Summery
Neural model Leaky integrate-and-fire
Synaptic model α shaped synaptic currents
Input Random input
Connectivity All input neurons are connected to a single output neuron

Neural Model
Type Leaky integrate-and-fire (LIF) neuron
Description Dynamics of membrane potentialu(t):

• Spike times:t( f ) : u(t( f )) = ϑ

• Sub-threshold dynamics:τm
du
dt = −u(t) + R Isyn(t)

• Reset & refractoriness:u(t) = ur∀ f : t ∈ (t( f ), t( f ) + τref)

• exact integration with temporal resolutiondt

Parameters Membrane time constantτm = 10ms
Membrane resistanceR = 333.33MΩ
Spike thresholdϑ = 20mV, reset potentialur = 0mV
Refractory periodτref = 3ms
Time resolutiondt = 0.1ms, simulation timeT = 200ms

Synaptic Model
Type Current synapses withα−function shaped post-synaptic currents (PSCs)
Description Synaptic input currentIsyn(t) =

∑

w
∑

f α(t − t( f ))

α(t) =















e τ−1
s t e−t/τs , if t > 0

0, otherwise
Parameters Synaptic weightw ∈ R, uniformly randomly initialized in [0,25]

Synaptic time constantτs = 5ms
Input Model

Type Random input
Details Population of 200 input neurons each firing a single spike at a randomly chosen time in the period

(0,T )

1 2 3 4 5

1 input n

SPAN

w

Figure 3: Architecture of the multiple SPANs network.
Each neuron is trained to recognize one class by firing
at specific time instance.

assigned to class one and spikes at 33ms, the second
neuron spikes at 66ms to identify the second class, the
third neuron spikes at 99ms to identify the third class
and so on. We allow the synaptic weights of the neuron
to be adjusted by its assigned class patterns,i.e. only
the patterns of class 1 are used to adjust the weights of
neuron 1, the patterns of class 2 are used to adjust the
weights of neuron 2 etcetera. In this way, the neuron,
after training, will be selective to the patterns of its as-
signed class, (equivalent to training each neuron inde-
pendently of other neurons).

This mechanism is feasible because the training is
based on temporal coding and the synaptic weights
are adjusted based on the temporal structure of the in-
put patterns. Considering spike patterns, this temporal
structure is likely to be unique to every input class. The
neuron, after training will be selective to respond prop-
erly to this structure. When the neuron is stimulated by
other patterns from different classes that have different
temporal structure, it will fire in a different way, for ex-
ample at different time instance or to fire more spikes or
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even not to fire. A similar mechanism was used in [17]
to train the readout neurons of a reservoir (LSM) struc-
ture in a spike pattern classification task that originally
proposed in [28, 18]. The task was to train the readout
neurons to recognize segments of a single long spike
train. Each segment represents a specific spike category
that the readout neurons are trained to recognize by fir-
ing certain spike patterns.

However, it is noted that there are few factors might
affect the recognition performance. For example, the
different classes might have a very similar temporal
structure or quite complex (dense) spike patterns that
is hard for the neurons to capture and learn. Therefore,
the performance highly depends on the application and
the data.

The second key point regarding classification using
multiple neurons is how to decide the class label of a
pattern given the actual spike output of the neurons. In
our previous paper [1], if the neuron fired a spike with
an absolute temporal distance larger than 3ms from the
desired spike or fired more than one spike or did not fire
at all, the classification was deemed incorrect. For ex-
ample, if the neuron fired two spikes, one at 32ms and
the other at 34ms, in response to a pattern from class
1 (with desired spike at 33ms), the input pattern is not
considered as a class 1 pattern. This is a restricted cri-
terion designed to assess the precise performance of the
neuron. However, because the task is a classification
one, wherein the classification accuracy is more impor-
tant than the precise time of spiking, a more flexible
approach is followed here. This approach is based on
computing the difference between the neuron’s actual
response and the desired response using Eq. 11, then as-
signing the pattern to the class that produces the small-
est error. For the above mentioned example, the pattern
causing the neuron to fire two spikes at 32ms and 34ms
will be labeled as class 1 provided that other neurons
produced a response with a larger error.

Given the above two points, a number of approaches,
based on the time of the firing spikes and the criterion
to decide the class label, are valid for spatiotemporal
spike pattern association using multiple SPANs. These
approaches are evaluated in the next section.

4. Spike Pattern Classification and Spike Pattern
Generation with Multiple SPAN

4.1. Experimental Setup

We follow the initiative recently proposed in [26] for
promoting reproducible descriptions of neural network
models and experiments. This initiative suggests the

use of specifically formatted tables outlining neural and
synaptic models and their parametrization,cf. Table 1.

The multiple SPAN network shown in Fig. 3 is used
in the simulation.

We employ 200 input neurons that stimulate the
synapses of each output neuron. The spike trains for
each input neuron are sampled from a uniform random
distribution in the interval [0,200]ms. For simplicity,
we allow only a single spike for each input neuron. Each
output neuron is fully connected to all of the 200 input
neurons with randomly initialized connection weights.

The same training and testing patterns generated
in [1] are utilized here so that comparison may be
drawn. The training patterns comprise of 5 classes, each
with 15 samples generated by adding a Gaussian jitter
with a standard deviation of 3ms to a randomly created
base pattern. The testing set consists of 25× 5 = 125
spike patterns generated in the same way [1]. Only
the training set is used during training, while the test-
ing set is used to determine the generalization ability of
the trained network. The spike time of the output neu-
ron encodes the class label of the presented input pat-
tern. We allow 200 epochs for training and we repeat
the experiment in 30 independent runs. For each run, a
different set of random initial weights is selected.

All of our experiments employ the SNN simulator
NEST [29].

4.2. Methods for Encoding Class Labels as Output
Spike Sequences and Experimental Results

As pointed out in section 3 the class label from the
spike output of the neurons can be determined by sev-
eral means. We evaluate these approaches in the follow-
ing tests:

Method 1: Multiple SPANs firing at di fferent time
instances. In [1] a single SPAN is trained to classify
five classes of spatiotemporal spike patterns by firing
at different time instances, namely 33, 66, 99, 132 and
165ms. The classification accuracy of that experiment
is shown in the first row of Table 2.

We repeat the experiment using the multiple SPANs
architecture shown in Fig. 3. Each neuron is trained
to fire a single spike at one of the specified times,{33,
66, 99, 132, 165} ms, to recognize a class. A pattern is
deemed to belong to a specific class if the neuron fires
a single spike within 3ms of its target spike. The results
of this experiment are shown in Fig. 4b and are sum-
marized in Table 2. Obvious improvement in the classi-
fication accuracy is obtained when multiple SPANs are
used, especially in the testing phase. The testing accu-
racy is raised above 90% level for all of the classes ex-
cept class 1 (which gained an improvement of 4% over
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Table 2: Comparison of classification results using a synthetic benchmark problem. See the text for details on the
different test scenarios investigated for the Multiple SPAN. Shown are the accuracies of the testing and training data
(training accuracies are in brackets).

Method
Class

Average
1 2 3 4 5

Single SPAN [1] 47% (81%) 92% (100%) 87% (100%) 78% (100%) 94% (93%) 80% (94%)
Multiple SPAN

Method 1 51% (99%) 92% (98%) 95% (100%) 91% (100%) 95% (99%) 84% (99%)
Method 2 99% (100%) 92% (100%) 81% (99%) 86% (100%) 94% (99%) 90% (100%)
Method 3 99% (100%) 96% (100%) 96% (99%) 93% (100%) 99% (100%) 96% (100%)
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Figure 4: Spatio-temoral classification results using multiple SPANs. (a) Evolution of the average errors computed
using Eq. 11. (b) The average accuracies obtained.

the single neuron accuracy). The over all accuracies for
the training and testing phases are 99% and 84.8% re-
spectively compared with 94.8% and 79.6% for the sin-
gle neuron case. Fig. 4a quantifies the time difference
between the output spikes and the desired spikes com-
puted from Eq. 11. Although at the end of the training
epochs the neurons do not spike precisly at the desired
times, the training is performed correctly, evidenced
by the classification accuracy approaching 100% during
training. The results of the test show that using multiple
SPANs improves the performance over a single SPAN.

Method 2: Multiple SPANs firing at single time
instance. In this experiment all neurons are trained
to fire a single spike at 165ms in response to a pat-
tern belonging to the assigned class. If a neuron

fires a single spike within 3ms of the target spike
(165ms) the pattern is labeled with the class of that neu-
ron. For this test, the obtained training accuracies are
{100%,100%,99%,100%,99%} and the testing accura-
cies are{99%,92%,81%,86%,94%} for the five classes
respectively. The overall testing accuracy of classifica-
tion has improved from 84.8% to 90.4%. This is due
to the increase in the classification accuracy of the first
class from 51% to 99%, because of the timing of the tar-
get spike has been shifted from 33ms to 165ms. How-
ever, the time shift of the target spikes for classes 3 and
4 causes a slight drop in the accuracy of these classes.
Overall, this test highlights the importance of proper
timing of the desired spikes in improving classification
accuracy.
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jitter to the training and testing patterns.

Method 3: Multiple SPANs firing at single in-
stance with Eq.11 to determine the class label.
Test 2 is repeated, but the label of the pattern is
identified by applying Eq.11 to the output spike re-
sponse of the neuron. The neuron that produces
the minimum error is used to label the input pat-
tern. The obtained accuracies of the training patterns
are {100%,100%,99%,100%,100%} while those of
the testing patterns are{99%,96%,96%,92.8%,99%}.
Thus, using Eq.11 to identify the class rather than the
3ms time difference has improved the testing accuracy
from 90.4% to 96.6%.

The results of these three tests are summarized in Ta-
ble 2.

Method 4: Multiple SPANs with more complex
stimulus. This test evaluates the network using more
complex patterns. The complexity of the input patterns
is increased by increasing the amount of the time jitter
added to the spikes (see section 4.1). The spikes of the
patterns (both testing and training) are shifted by adding
a jitter drawn from Gaussian distributions with differ-
ent standard deviations. The criterian based on Eq. 11
is used to assign the class label from the neuron output.
The overall training and testing classification accuracies
as a function of the added jitter are plotted in Fig. 5.
With a mean jitter of 6ms, the neurons retain testing ac-
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curacy above 90%. At jitter of 9ms the accuracy drops
to 76%, and declines to below 40% at 15ms jitter.

To visualize the effect of the learning algorithm on
the synaptic efficacy of SPANs, the average weight dis-
tribution before and after training for each of the five
SPANs is illustrated in Fig. 6. Neural inputs are aver-
aged and chronologically sorted according to their spike
firing times. Each bar in the figure reflects the synaptic
strength of a particular synapse of a SPAN trained on
samples of a specific class. To gain an impression of the
temporal causality of the weight changes, we overlay
the plot with the desired firing times of the neuron (red
vertical lines at 165ms in each plot). The figure presents
the weight changes averaged over all 30 runs.

As discussed in the experimental section, the
synapses are assigned positive weights distributed uni-
formly in the interval [0,25]pA at epoch 0. After the
training, in epoch 200, the weights assume Gaussian-
like distributions especially around the target spikes,
and some weights become negative. As expected,
synapses that transfer input spikes which are tempo-
rally close to the desired target spikes are potentiated.
On the other hand, synapses that transfer spike inputs
at undesired times are inhibited. The high proportion
of negative weights following tranining implies that the
inhibition effect is rather strong. In the presented bench-
mark study, this observation did not adversely impact on
the classification performance. However, future studies
should investigate the configuration of the learning rate
carefully to counteract an overly influence of the weight
update rule devined in Eq. 10.

5. Conclusion and Future Work

Learning is an important process that allowes intelli-
gence to emerge, empowering living entities to perform
their natural daily activities. Although, the mechanisms
of how learning reflects physiological change at the neu-
ron level are complex, artificial neural networks mimic
this process by iteratively adjusting synaptic weights in
the direction of gradient of error function that quantifies
the difference between the actual output behavior and
the desired behaviour. Similarly, SPAN learning method
for SNN [1] is based on minimising the difference (er-
ror) between a teacher spike signal and the actual spike
signal to train a spiking neuron to recognize spatiotem-
poral spike patterns.

In this article we have applied SPAN [1] learning rule
to a multiple-neuron network in which, each neuron is
trained to recognize a single class rather than a single
neuron being trained to recognize all classes. Thus, the

burden of the learning task is distributed among the neu-
rons. A single neuron is limited in its capacity to mem-
orize and recognize spike patterns. Multiple neurons
were shown to perform more accurately accuracy than
a single one. Using spike timing to encode informa-
tion,(such as class label) provides more flexibility and
more options for temporal classification. Hypotheti-
cally, a single neuron can be trained to classify many
classes, and is limited only by its memory capacity. In
contrast, a neuron with binary output can recognise only
two classes, characterised by the firing or non firing of a
spike. Furthermore, temporal encoding suggests differ-
ent ways to perform training.

In the multiple neurons experiment of section 4 each
neuron was trained to patterns of a single class,i.e. each
neuron was locked onto one class and when excited by
a different pattern from a different class, the neuron is
highly unlikely to fire accurately. When two samples
belonging to two different classes are presented, the la-
bel of the sample will be decided by the closeness to the
desired spikes. However, this response might depend
on the stimulus and the application. In fact, more op-
tions are available to perform the classification, for ex-
ample the neuron may be trained to produce a spike train
rather than a single spike. Another option is increasing
the number of neurons assigned to a class, and training
each neuron to fire at a different time. These options
increase redundancy and may help to accommodate the
temporal structures of the stimulus.In all experiments
in this paper we talked about classification of spatio-
temporal input patterns and how the desired class label
can be represented (as a single spike or trains of spikes
at different times). But the scope of interpreting these
methods and experiments is broader. The methods can
be used to model complex systems of motor control as
a result of perception recognition and classification of
input stimuli.

Our future work is to apply the network to a real-
world scenarios. In addition to the batch mode learn-
ing, incremental learning is being developed [30],
i.e. weights are adjusted after each incoming spatio-
temporal pattern rather than waiting until the end of pre-
senting all the patterns.On-line learning is also being ex-
perimented, where weights would change at each input
spike rather than after the whole pattern is presented.
Hardware implementation of the SPAN algorithm on
the INI SNN chip [31] is being tested. A challenging
application problem is the use of the SPAN algorithm
for motor control to achieve smooth control of neuro-
prosthetics [32] and neuro-rehabilitaion robots [33]. In
this case brain signals are measured and a SPAN-based
system is trained to generate spike sequences to con-
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trol a device for a complex, smooth movement. The
prospect of using the recently proposed Neurogenetic
Brain Cube (NeuCube) [34] that can learn to map brain
signals into a 3D SNN Cube, and then use SPAN for
recognising the NeuCube spatio-temporal spiking pat-
terns and for generating spiking sequences for control
is very promising. The idea is that instead of measur-
ing brain spikes in an invasive way as in [32] and us-
ing them to control an object and movement, to cre-
ate a brain model of the subject in a NeuCube, to train
the NeuCube on different brain signals form the sub-
ject (e.g. EEG. MEG, etc) and then to train an output
SPAN model to transfer the NeuCube internal spiking
sequences into control signals.
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