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Abstract. This paper re-examines the discrete-time Linear Quadratic Gaussian (LQG) 

regulator problem. The normal approach to this problem is to use a Kalman filter state 

estimator and Kalman control state feedback. Though quite successful, an alternative approach 

in the frequency domain was employed later. That method used z-transfer functions or 

polynomials in the z-domain. The transfer function approach is similar to the method used in 

Wiener filtering and requires the use of Diophantine equations (sometimes bilateral) to find the 

optimal controller. The contribution here uses a similar approach but uses lower triangular 

Toeplitz matrices instead of polynomials to gain advantage of eliminating the use of 

Diophantine equations. This is because the single Diophantine equation approach fails when 

the system has non-relative prime polynomials and the need for bilateral Diophantine equations 

is computationally far more complex. 

1. Introduction 

The first approach to a generic state-space  optimal control solution was obtained by Kalman[1] for the 

continuous time case. His method was based on minimising a quadratic cost function that penalises the 

error and output energy. It had a predecessor paper however in the form of a frequency-domain (also 

continuous-time) approach of Wiener [2], though Wiener only considered the optimal filtering case at 

the time. Whereas the Kalman approach needed a Ricatti equation to find the optimal state-feedback 

matrix, the Wiener approach found the transfer function of the optimal controller. The Wiener 

approach was not without its own difficulties in that it requires spectral factorization and the 

separation of causal from a mixture of causal and noncausal transfer functions to obtain a stable 

closed-loop system. Both approaches are essentially least-squares problems using differing system 

models. It was Kalman who first realised that the linear-quadratic (LQ) and the Linear-Quadratic 

Gaussian (LQG) problems could be found by treating the noise-free case and the filtering problems 

separately. Certainty equivalence as it was known means that for some time the LQG optimal control 

solution was that of a Kalman filter to estimates the noisy states followed by a state-feedback control 

law based on solving the LQ problem. The two problems were separable and the closed-loop poles 

were determined by a characteristic equation that involved both the Kalman filter and the state-

feedback control-law[3, 4]. Kalman also introduced the idea of controllability and observability. 

It took nearly another twenty years after Kalman’s seminal work for the frequency-domain 

approach to regain popularity with the work of Shaked (continuous-time)[5, 6] and Grimble[7] for 

discrete-time. Later, Kucera developed polynomial methods involving Diophantine equations to ease 

the problem of obtaining the causal realisation of the controller[8]. The causal realisation is just a 
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partial fraction expansion. Grimble introduced adaptive self-tuning methods using polynomial 

methods for the LQG case[9, 10]. Provided the polynomial of the plant are relative-prime (coprime) (a 

condition similar to controllability or observability in state-space approaches), only one ‘implied’ 

Diophantine equation[11] can be used to find a minimal degree solution. However, when the plant 

transfer function has common modes or there is an unstable signal source then two coupled 

Diophantine equations must be used[8, 12-14]. It is also worthy to note here that more advanced 

robust methods of controller design can also be solved using these Wiener polynomial methods using 

some novel extension methods[15].  

We consider the scalar LQG problem as solved previously many times using polynomial methods. 

However, here we investigate the possibility of using lower-triangular Toeplitz (LTT) matrices instead 

of polynomials to represent a discrete-time system. The method uses a convolution matrix which is 

LTT and these behave in a similar manner to polynomials. Although the solutions that such an 

approach gives is finite-impulse in nature (i.e., an all-zero transfer-function), such methods often have 

advantages with stability over pole-zero based methods at the expense of using larger system models. 

The author has already applied this method to a new method of adaptive least-mean-squares (LMS)[16] 

and to Optimal filtering, predication and smoothing[17]. A similar approach has been used before[18, 

19] for infinite dimensional Toeplitz spectra, that approach is more related to discrete state-space and 

not the polynomial Wiener LQG solution as given here. 

2. Mathematical preliminaries 

Before proceeding we need to consider discrete-time linear systems as applied to LTT matrices. We 

will show that the properties are almost identical to that of polynomials. We consider finite impulse 

response (FIR) transfer functions defined in negative powers of z, with polynomials of the 

 form 

    ( ) , 0-1 -n

0 1 n 0w z = w + w z +...+ w z w    (1) 

considered a causal FIR transfer function with all (n+1) zeros of z lying within or on the unit circle of 

the z-plane.  Likewise, the adjoint system 

    ( )1 n , 0− 0 1 n 0w z = w + w z+...+ w z w    (2) 

has  (n+1) zeros lying outside the unit circle in the z plane. The z-transform operator 
1z−

is commonly 

used interchangeably with the z-transform operator. A discrete time signal at time k can then be 

shifted one step backwards in time thus: 
1

k 1 ky z y−

− = . The opposite is true for shifts forward in time 

by using z instead of its inverse. 

Define the output ky of a linear time-invariant system in terms of an input ku  

    ( )k ky = w z u       (3) 

or in terms of the convolution summation 

    
k

k k-i i

i=0

y = w u       (4) 

We can then write a matrix notation 

 

    y = Wu        (5) 

where 
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00 0

1 01 1

2 1 0

m m 1 0m m

w 0 . . 0y u

w w 0 . 0y u

w w w . 0. .

. . . . .. .

w w . . wy u−

    
    
    
    =
    
    
        

   (6) 

Bold letters here denote vectors or matrices. For convenience we omit the time dependence on k in 

the vectors. Note that W is a lower triangular square Toeplitz matrix (LTT) of dimension m>n. Such a 

matrix is characterized by the fact that each row is the previous one shifted to the right and a new 

value added in the preceding space of each row. The diagonal elements are all the same and all other 

elements are zero. Using this LTT matrix method a polynomial with a pure time-delay cannot be 

represented. Instead, a pure delay matrix must be cascaded with the LTT matrix. Consider a 

polynomial with a pure time-delay 

 

    
( )

( )
k k

k

−

− -1 -n

0 1 n

y = z w z u

= z w + w z +...+ w z u
    (7) 

We represent this in LTT form as follows 

 

    D
y = W Wu       (8) 

Suppose m=4, and the delay 2= . Then W becomes generally 

    

0

1 0

2 1 0

3 2 1

4 3 2 1 0

w 0 0 0 0

w w 0 0 0

w w w 0 0

w w w 0 0

w w w w w

 
 
 
 =
 
 
  

W

 
and we define the delay matrix as  

    

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 
 
 
 =
 
 
  

D
W

 
If we multiply from the left or right, we obtain 

    0

1 0

2 1 0

0 0 0 0 0

0 0 0 0 0

w 0 0 0 0

w w 0 0 0

w w w 0 0

D DW W = WW

 
 
 
 =
 
 
  

 

Which has shifted the columns of W to the left by two columns and left two zero columns at the far 

right. We can do this for any order delay but clearly, we must choose m   or too much 

information is lost. Also note that DW  is singular and cannot be inverted. The properties of LTT 

represented system are covered in more detail in references[17] and [20]. The essence is that when a 
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LTT is inverted, its contents become the power series expansion of the reciprocal original polynomial. 

For this to happen the roots of the polynomial must all lie within the unit circle of the z-plane. An 

unstable polynomial would give a divergent power-series expansion. This means that division of two 

polynomials become the multiplication of a LTT matrix with the inverse of the second. Furthermore, 

LTT matrices commute in the same way that multiplication of polynomials also commute. That is for 

two polynomials a and b we know that ab=ba and similarly their equivalent LTT matrices also 

commute in the form AB=BA[21]. As we are dealing with Wiener type solutions, we also need a 

method for separating causal from noncausal systems. This usually occurs from a Laurent series. For 

example, for the Laurent series 

    
3 2 -1 -2 -3

-3 -2 -1 0 1 2 3g = g z + g z + g z+ g + g z + g z + g z
 

A LTT matrix represents it below which can be split into causal and noncausal LTTs. 

 

    

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

g g g g

g g g g

g g g g

g g g g

− − −

− −

+ −

−

 
 
 = = +
 
 
 

G G G

 

Now a causal polynomial 
1 2 3

0 1 2 3g g g z g z g z− − −

+ = + + +  and a noncausal polynomial 

3 2

3 2 1g g z g z g z− − − −= + + are represented by their corresponding lower triangular Toeplitz matrices as 

follows: 

    

0

1 0

2 1 0

3 2 1 0

g 0 0 0

g g 0 0

g g g 0

g g g g

+

 
 
 =
 
 
 

G

 

1 2 3

1 2

1

0 g g g

0 0 g g

0 0 0 g

0 0 0 0

− − −

− −

−

−

 
 
 =
 
 
 

G

 
We make sure that −G   has zero as the leading diagonal since the noncausal terms of a Laurent series 

have no term in 
0z . 

Spectral factorization follows in a similar manner. For example, a typical polynomial  problem will 

produce a symmetrical factorization problem such as [22, 23] 

    
-1 -1w(z)qw(z )+r = Δ(z)Δ(z )     (9) 

where q and r are noise variances (or control and output weightings) and w(z) is the signal generating 

system. The spectral factor Δ(z)  is strictly Hurwitz so that its inverse is stable. Its adjoint spectral 

factor 
-1Δ(z )has all of its roots outside of the z-plane.  

The polynomial multiplications ( ) ( )-1w z qw z +r give rise to a Laurent series which is symmetrical 

for negative and positive values of z. 

In our Toeplitz matrix notation, we have an equivalent 

     
T + =WQW R S       (10) 

where Q and R are noise covariance matrices and W is the signal generating matrix. The Matrix S is a 

full-rank Toeplitz Sylvester matrix[20, 24] formed from the symmetric Laurent series of 
-1s = w(z)qw(z )+r  which is 

   
m 2 -1 -2 -m

-m -2 -1 0 1 2 ms = s z +...+ s z + s z+ s + s z + s z +...+ s z   (11) 
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0 1 m

1 0 1

1

m m

m

1

m 1 0

s s . . . s 0 . . . 0

s s s . . . . .

. s . . . .

. . . . . .

. . . . 0

s . s .

0 s . .

. . . . . . .

. . . . . . .

. . . . . s

0 . . . 0 s . . . s s

−

−

−

−

− −

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

S

    (12) 

Any spectral factorization must split S into a lower and upper-triangular Toeplitz matrix, since the 

result must represent a polynomial impulse-response. Fortunately such a technique has been known for 

some time as the method of Cholesky decomposition[23].  We factor accordingly. 

     
T

S = LL      (13) 

Here L is lower triangular Toeplitz. For such a factorization to exist, S must be full rank. We should 

also note that the diagonal elements of L are all unity so that it is unique. Ordinary, Cholesky 

factorization requires 

3m

3

 
 
 

O  operations, however fast methods using FFTs now exist to perform 

this factorization[24]. Clearly L represents the causal spectral factor, and its transpose the noncausal 

spectral factor. The spectral factor polynomial can be read off the bottom row of the matrix in reverse 

order as per our definition in (6). Although it is not by any means compulsory to use the Cholesky 

method, it seems obvious since the solution is given naturally in lower triangular Toeplitz format. 

Spectral factorization as applied to Toeplitz matrices was first explored by Pousson [25]. 

Autoregressive moving average (ARMA) models are also easily put into LTT form since the two 

transfer functions share the same denominator polynomial. For example, for the transfer function 

k k

d(z)
y = u

a(z)
. Provided a(z) is stable, it can be written Ay = Du . Then 

1

n

−
y = A Du = W u . Hence 

the ARMAX model  

    
− + +k k k k

b(z) c(z)
y = z u ξ v

a(z) a(z)
    (14) 

which by using spectral factorization can be simplified to innovations format, 

    
− +k k k

b(z) d(z)
y = z u ε

a(z) a(z)
      (15) 

can also be written in in the LTT form  

    ny = Wu + W ε       (16) 

To be valid, the poles of a(z)  must all lie within the unit circle of the z plane and p DW = W W  

includes the time-delay. 

3. LQG control problem 

Figure 1 shows the regulator LQG problem in LTT format. All terms are LTT matrices and signals are 

vectors. 
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W
+u

nW

0-C

ε

y
+

η

 
 

Figure 1. LQG Control problem 

 

Minimise the LQG regulator criterion[10]  

   uu
 + yy

= tr Φ ΦJ E q r      (17) 

The solution to the controller LTT matrix is found to be 
1

0 p D

−

 − C = M I W W M  where the closed 

loop optimal system is 
1 T T T 1

p D n n2

ε

q

σ

− − −

 +
 =  

-T
M Δ Δ Φ W W W W and the control spectral factor LTT 

satisfies 
T= =T T

Δ Δ ΔΔ W W + Iq r .  

Example: non-relative prime polynomials. 

An example is now shown of an ARMAX model where ( )( )-1 -1a(z)= 1-0.6z 1-0.7z ,

( )( )-2 -1 -1b(z)= z 1-0.6z 1+2z , ( )-1c(z)= 1-0.5z   and all the process and measurement noise 

variances are unity. Consider the case when the weightings are q=1, r=10. The system has clearly 

non-relative prime polynomials and is non-minimum phase. As can be seen from Figure 2 such a 

difficulty does not pose any problem with this approach. Although mathematical models rarely suffer 

from this problem, when extended recursive least squares is used to estimate the parameters of an 

ARMAX model, if the system is over-parametrized, the problem of common factors (greatest common 

divisors) arises. Whilst the bilateral Diophantine approach can cope with this problem, the simpler and 

less computationally demanding one Diophantine solution (the so-called implied Diophantine equation) 

is singular and has no solution. 

 
Figure 2. Non-relative prime polynomial example. Observations, (top) plant output (middle) and 

control signal (bottom) when q=1, r=10. 
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4.Conclusions 

An alternative approach to LQG controller design has been shown using a lower triangular Toeplitz 

matrix method. The technique does not require Diophantine equations but relies on an FIR controller 

rather than the usual pole-zero approach. It will easily solve problems with systems that are non-

relative prime but fails if the system is open-loop unstable. 
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