
Analyzing Complexity in Classes of Automatic

Structures

Jiamou Liu1, Mia Minnes2

1 Department of Computer Science, University of Auckland, New Zealand
jliu036@aucklanduni.ac.nz

2 Department of Mathematics, MIT, USA
minnes@math.mit.edu

Abstract. This paper addresses the complexity of several families of
queries in classes of unary automatic structures. The queries include
membership and isomorphism. In addition, we study the state complexity
of describing these classes. In particular, we focus on automatic equiv-
alence relations, linear orders, trees, and graphs with finite degree. A
unary automatic structure is one that can be described by finite au-
tomata over the unary alphabet. In each setting, we either greatly im-
prove on known algorithms (reducing highly exponential bounds to small
polynomials) or answer open questions about the existence of decision
procedures by explicitly giving algorithms.

1 Introduction

A (relational) structure is automatic if its elements can be coded in a way such
that the domain and all the relations of the structure are recognized by finite
automata (precise definitions are in Section 2). Automatic structures form a
large class of infinite structures with finite representations and effective seman-
tics. In particular, for any automatic structure A and first-order query ϕ, one
can effectively construct an automaton that recognizes all elements of A that
satisfy ϕ. Such useful algorithmic and model-theoretical properties of automatic
structures have led to extensive work in the area in recent years.

The field of automatic structures can be viewed as an extension of finite
model theory in which one studies the interaction between logical definability
and computational complexity. In a similar way to the use of finite model theory
in reasoning about databases [?], automatic structures have been applied to areas
where one is interested in the algorithmic properties of infinite structures such as
databases and computer-aided verifications [?,16]. However, this approach has
limitations. In particular, since the configuration space of a Turing machine can
be coded by a finite automaton [11], reachability is undecidable for automatic
structures in general. On the other hand, unary automatic structures, those
recognized by automata over an unary alphabet, have decidable monadic second-
order theories.

The restriction to a unary alphabet is a natural special case of automatic
structures because any automatic structure has an isomorphic copy over the bi-
nary alphabet [14]. Moreover, if we consider the intermediate class of structures

whose domain elements are encoded as finite strings over 1?2?, insufficient decid-
ability strength results: since the infinite grid can be coded automatically over
1?2? and counter machines can be coded into the grid, reachability is not decid-
able in this class of structures. Thus, the class of unary automatic structures is
a sensible context where reachability is decidable.

Much is known about the complexity of automatic structures. Various alge-
braic characterizations of special classes of automatic structures have demon-
strated their corresponding simplicity. For example, explicit descriptions of au-
tomatic Boolean algebras [11] and finitely generated automatic groups [13] are
known. Occasionally, these results have translated to information about the
computational content of these classes: the isomorphism problem of automatic
Boolean algebras was proved to be decidable. However, when we consider the
class of automatic structures as a whole, we find significant underlying com-
plexity. This complexity can be measured from a computability theoretic point of
view: the isomorphism problem and embedding problem for automatic structures
is Σ1

1 -complete [11, 17]. The model-theoretic complexity of automatic structures
also gives evidence to their inherent richness: [8] shows that the Scott ranks
of automatic structures can be as high as possible, fully covering the interval
[1, ωCK

1 + 1] of ordinals (where ωCK
1 is the first non-computable ordinal). Fi-

nally, there is a body of work devoted to the resource-bounded complexity of
automatic structures. A thorough study of the time and space complexity of
model-checking and query-evaluation on automatic structures for fragments of
first-order logic is given in [2]. In particular, when an automaton is fixed, the com-
plexity of model-checking for quantifier-free formulae is LOGSPACE-complete
and for existential formulae it is NPTIME-complete. On the other hand, there
are automatic structures whose first-order theories are nonelementary [?].

In this paper we restrict our attention to classes of unary automatic struc-
tures. We prove that in various senses, the complexity of these classes is quite
low. We consider two notions of complexity.

1. Time complexity. For a fixed class K of structures, we are interested in the
time complexity of solving the following natural decision problems.

Membership Problem. Given a unary automatic presentation of A, decide
if A ∈ K.
Isomorphism Problem. Given unary automatic presentations of A and B
from K, decide if A ∼= B.

For all the classes of unary automatic structures we consider, we give low
polynomial time solutions to the membership problem. For unary automatic
equivalence relations, linear orders, and trees we provide algorithms that
solve the isomorphism problem in low polynomial time. We show that the
isomorphism problem for graphs with finite degree is decidable with elemen-
tary time bound.

2. State complexity. The notion of state complexity measures the descriptive
complexity of regular languages, context-free grammars, and other classes of
languages with finite representations. The state complexity (with respect to
automata) of a regular language L is defined to be the size of the smallest

automaton with language L. Research into state complexity with respect to
automata has been well-established since the 1950s [3, 18, 19]. A key moti-
vation for it is in designing automata for real-time computation where the
runtime of algorithms operating on the automata depends on the number of
states.
In this paper, we generalize state complexity to structures (rather than sets).
The state complexity of a automatic structure (N, R) is the number of states
in an optimal automaton for R, a (unary) automaton recognizing R with
the fewest possible states. We prove that the state complexity of unary au-
tomatic equivalence relations, linear orders, and trees are each polynomial
with respect to a natural representation of the structures. (In each section,
we explicit describe this representation.) The study of state complexity of
automatic structures is a new, and hopefully fruitful, area. ”

Paper organization. Section 2 introduces the terminologies and notation used
throughout the paper. In particular it recalls the definitions of automatic struc-
tures and unary automatic structures and introduces the notion of unary state
complexity. Sections 3, 4, 5 and 6 discuss linear orders, equivalence relations,
trees and graphs of finite degree (respectively).

2 Preliminaries

We assume the basic terminologies and notations in automata theory and regular
languages (see, for example, [6]). For a fixed alphabet Σ, a finite automaton
is a tuple A = (S,∆, I, F) where S,∆, I, F are respectively the state space,
transition function, initial state and accepting states. In particular, if A is a
finite automaton over the unary alphabet {1} it is called a unary automaton.

We use synchronous n-tape automata to recognize n-ary relations. Such au-
tomata have n input tapes, each of which contains one of the input words. Bits
of the n input words are read in parallel until all input strings have been com-
pletely processed. Formally, let Σ� = Σ∪{�} where � is a symbol not in Σ. Given
an n-tuple of words w1, w2, . . . , wn ∈ Σ?, the convolution of (w1, . . . , wn) is a
word ⊗(w1, . . . , wn) over the alphabet (Σ�)

n with length max{|w1|, . . . , |wn|}.
The kth symbol of ⊗(w1, . . . , wn) is (σ1, . . . , σn) where σi is the kth symbol of
wi if k ≤ |wi|, and is � otherwise. An n-ary relation R is FA recognizable if the
set of convolutions of all pairs (w1, . . . , wn) ∈ R is a regular subset of (Σn

�)?.
A relational structure S consists of a countable domain D and atomic rela-

tions onD. A structure is called automatic overΣ if its domain is a regular subset
of Σ? and each of its atomic relations is FA recognizable. A structure is called
unary automatic if it is automatic over the alphabet {1}. A (unary) automatic
structure A isomorphic to a structure B is called a (unary) automatic presenta-
tion of B and B is (unary) automatically presentable. We sometimes abuse the
terminology to refer to B as simply (unary) automatic. The structures (N;S) and
(N;≤) are both automatic structures. On the other hand, (Q;≤) and (N; +) have
isomorphic copies which are automatic over {0, 1} but have no unary automatic

presentation. The structure (N;×) has no automatic isomorphic presentation.
For proofs of these facts, see the survey papers [9, 15].

Consider FO+ ∃∞ + ∃n,m, the first-order logic extended by ∃∞ (there exist
infinitely many) and ∃n,m (there exist n many mod m, where n and m are
natural numbers) quantifiers. The following theorem from [2, 4, 10, 14] connects
this extended logic with automata.

Theorem 1. For an automatic structure, A, there is an algorithm that, given
a formula ϕ(x̄) in FO + ∃ω + ∃n,m, produces an automaton whose language is
those tuples ā from A that make ϕ true.

In this paper we study automatic structures in the form (D;R) where R is a
binary relation. Suppose AD (m states) and AR (n states) are deterministic finite
automata recognizing D and R, respectively. Some first-order definable proper-
ties of binary relations are listed in Table 1. To check if R is reflexive, we con-
struct an automaton for {x : (x, x) ∈ R} and check if {x : (x, x) ∈ R} ∩D = D.
Similarly, to decide if R is symmetric, we construct an automaton A1 recog-
nizing the relation {(y, x) : (x, y) ∈ R} and check if R = L(A1). For antisym-
metry, we construct an automaton for S = {(x, y) : x 6= y} and determine
whether R ∩ R1 ∩ S = ∅. To decide if R is total, it suffices to check whether
R ∪ L(A1) = D2. Finally, to settle whether R is transitive, we construct the
automaton {(x, y, z) : R(x, y)&R(y, z)&¬R(x, z)} and ask whether its language
is empty. Note that if (D;R) is automatic over Σ and D = Σ?, then m = 1.

Table 1. Deciding properties of binary relations in automatic structures.

Property First-order definition Time complexity

Reflexivity ∀x (R(x, x)) O(mn)

Symmetry ∀x, y (R(x, y) =⇒ R(y, x)) O(n2)

Antisymmetry ∀x, y (R(x, y) ∧ R(y, x) =⇒ x = y) O(n2)

Totality ∀x, y (R(x, y) ∨ R(y, x)) O(m2n2)

Transitivity ∀x, y, z (R(x, y) ∧ R(y, z) =⇒ R(x, z)) O(n3)

We now turn our attention to unary automatic structures which is the focus
of this paper. Recall that a structure is unary automatic if it is automatic over
the alphabet {1}. We use x to denote the string 1x and N for the set of all such
strings {1}∗. By [1], a structure is unary automatic if and only if it is first-order
interpretable in the structure U = (N; 0, <, s, { mod m}m>1), where s is the
successor relation and x mod my if and only if x ≡ y mod m. Using a monadic
second order interpretation of U in (N; s), one easily get the following result.

Theorem 2. The monadic second order(MSO) theory of every unary automatic
structure is decidable.

The following lemma from [1] characterizes the regular subsets of {1}?.

Lemma 1. A set L ⊆ N is unary automatic if and only if there are numbers
t, ` ∈ N such that L = L1 ∪ L2 with L1 ⊆ {0, 1, . . . , t − 1} and L2 is a finite
union of sets in the form {j + i`}i∈N where t ≤ j < t+ `.

Proof. We describe the shape of an arbitrary deterministic 1-tape unary au-
tomaton A = (S, ι,∆, F). If n = |S| there are t, ` ≤ n so that the following
holds. There is a sequence of states S1 = {q1, q2, . . . , qt} such that ∆(ι, 1) = q1
and for all 1 ≤ i < t, ∆(qi, 1) = qi+1. There is another sequence of states S2 =
{qt+1, . . . , qt+l} such that for all t ≤ j < l, ∆(qj , 1) = qj+1, and ∆(ql, 1) = qt+1.
Every final state in S1 recognizes exactly one word less than t, and every final
state in S2 recognizes the set of all words t+ il+ k, i ∈ ω, for some fixed k < l.
The language of such an automaton has the form described in the statement of
the lemma; given an L from the statement of the lemma and its parameters t, `,
we can define the corresponding unary automaton. ut

The general shape of a 2-tape unary automata is given in Figure 1. We fix
some terminology. States reachable from the initial state by reading inputs of
type (1, 1) are called (1, 1)-states. The set of (1, 1)-states is a disjoint union of a
tail and a loop. We label the (1, 1)-states as q0, . . . , qt, . . . , q` where q0, . . . , qt−1

form the (1, 1)-tail and there is a transition from q` to qt to close the (1, 1)-loop.
States reachable from a (1, 1)-state by reading inputs of type (1, �) are called
(1, �)-states. The set of (1, �)-states reachable from any given qi consist of a tail
and a loop, called the (1, �)-tail and loop from qi, respectively. The (�, 1)-tails
and loops are defined similarly. The tail length of the automaton is t, the length
of its (1, 1)-tail; the loop length is `, the length of its (1, 1)-loop.

(1, 1)-tail

(1, �)-loop

(1, �)-tail

(1, 1)-loop

(�, 1)-tail

(�, 1)-loop

Fig. 1. General shape of a deterministic 2-tape unary automaton

Khoussainov and Rubin [12] and Blumensath [1] gave a characterization of
all unary automatic binary relations on N. Let B = (B,EB) and D = (D,ED)
be finite graphs. Let R1, R2 be subsets of D×B, and R3, R4 be subsets of B×B.
Consider the graph D followed by countably infinitely many copies of B, ordered
as B0,B1,B2, We define the infinite graph unwind(B,D, R̄) as follows. Its
vertex set is D∪B0 ∪B1 ∪B2 ∪ . . . and its edge set contains ED ∪E0 ∪E1 ∪ . . .
as well as the following edges, for all a, b ∈ B, d ∈ D, and i, j ∈ ω:

– (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,
– (ai, bi+1) when (a, b) ∈ R3, and (ai, bi+2+j) when (a, b) ∈ R4.

Theorem 3 ([1, 12]). A graph is unary automatic if and only if it is isomorphic
to unwind(B,D, R̄) for some parameters B,D, R̄.

The state complexity of a regular language L is the number of states of the
minimal deterministic finite automaton that recognize L [18]. We extend this
definition to the state complexity of automatic structures.

Definition 1. The state complexity of an (unary) automatic structure A is the
size of the smallest (unary) automaton M such that M recognizes a structure
B ∼= A. We call M the optimal automaton for A.

Let K be a class of automatic structures such that each member A of K have
a finite representation RA which is independent on the automatic presentations,
i.e., for B ∈ K, A ∼= B if and only if RA = RB. Let |RA| denote the size of RA.
The state complexity of the class K is a function f such that f(n) is the largest
state complexity of all A ∈ K with |RA| ≤ n.

In this paper we look at the state complexity of three classes of unary auto-
matic structures: unary automatic equivalence relations, unary automatic linear
orders and unary automatic trees. For members of each class, we define a finite
representation that is independent on the automatic presentations, and we show
that the state complexity for each class is polynomial with respect to the defined
representations.

We make the following assumptions for the rest of the paper.

1. All structures are infinite with domain N, the set of natural numbers. (See
Lemma 2 for a justification of this assumption)

2. All automata are deterministic.
3. Algorithm on unary automatic structures (N;R) have as input a synchronous

2-tape automaton recognizingR. The size of the input is the number of states
in the input automaton.

4. We assume the sets of (1,1)-, (�, 1)-, and (1, �)- states are pairwise disjoint.
Therefore no (1,1)-state is also a (�, 1)-state, etc.

Lemma 2. Let (D;R), D ⊂ N, be a unary automatic binary relation presented
by AD and AR. There is a deterministic 2-tape unary automaton AR′ , |AR′ | ≤
|AR|, such that (N;L(AR′)) ∼= (D;R).

Proof. Let t and ` be as described in Lemma 1. We outline the proof in the case
when the parameter t associated with D is 0. Since R is a binary relation over
the domain D, AR must satisfy the following requirements: the (1, 1)-tail has
length c′` for some constant c′; the (1, 1)-loop has length c` for some constant c;
the lengths of all loops and tails containing accepting states are multiples of `;
and, there are no accepting states on any tail or loops off any (1, 1)-states of the
form qi`+h where h 6= kj (where kj is as defined in Lemma 1). The isomorphism
between D and N will be given by i`+kj 7→ ir+j. Therefore, define AR′ to have
a (1, 1)-tail of length c′r, a (1, 1)-loop of length cr, and copy the information
from the state i`+j in AR to state ir+j in AR′ (modifying the lengths of (�, 1)-
and (1, �)-tails and loops appropriately). Then, (N;L(AR′)) ∼= (D;R) and since
r ≤ `, AR′ has no more states than AR. ut

3 Linear Orders

This section studies unary automatic linear orders. A linear order is L = (N;≤L)
where ≤L is total, reflexive, anti-symmetric, and transitive. The following is
immediate by Table 1.

Proposition 1. The membership problem for automatic linear orders is decid-
able in time O(n3).

The following theorem was proved by Blumensath [1] and Khoussainov and
Rubin [12] and characterizes unary automatic linear orders. We use ω to denote
the order type of the positive integers, ω∗ to denote the order type of the negative
integers, ζ to denote the order type of the integers (ω? followed by ω), and n to
denote the finite linear order of length n.

Theorem 4 ([1, 12]). A linear order is unary automatic if and only if it is
isomorphic to a finite sum of linear orders of type ω, ω∗ or n.

Corollary 1. The isomorphism problem for unary automatic linear orders is
decidable.

Proof. Let L = (N;≤L) be a unary automatic linear order. We will define ϕL

such that a linear order L1 is isomorphic to L if and only if L1 � ϕL. To do so,
we define the following auxiliary formulas. For x, y ∈ N, let FinDis(x, y) be

x <L y ∧ ¬(∃∞z)[x <L z ∧ z <L y].

For x ∈ ω, let Inω(x) be the formula

(∃∞y)[x <L y ∧ FinDis(x, y)] ∧ (∀z <L x)[¬FinDis(z, x)]

Let Inω∗

(x) be the formula

[(∃∞y)y <L x ∧ FinDis(y, x)] ∧ (∀z >L x)[¬FinDis(x, z)]

Let InZ(x) be the formula

(∃∞y)[x <L y ∧ FinDis(x, y)] ∧ [(∃∞z)z <L x ∧ FinDis(z, x)]

For any n ∈ ω, let Inn(x) be the formula

(∃y1, . . . , yn−1)[x <L y1 ∧
n−2
∧

i=1

(yi <L yi+1) ∧ (∀z)[¬FinDis(z, x)]∧

(∀z)[FinDis(x, z) → z = x ∨
n−1
∨

i=1

(z = yi)]

By Theorem 4, L can be uniquely described up to isomorphism by its canonical
word αL = α0 · · ·αk−1 ∈ {ω, ω∗, ζ, (n)n∈ω}?, where αL has no substring of the
form ω∗ω, nω or ω∗n. Hence, we define ϕL as follows

(∃x0, . . . , xk−1)[

k−2
∧

i=0

(xi <L xi+1) ∧
k−1
∧

i=0

Inαi(xi)∧

(∀y)
k−1
∨

i=0

(FinDis(xi, y) ∨ FinDis(y, xi))]

ut

The sentence ϕL contains three alternations of quantifiers. To decide whether
automatic linear orders L,L′ are isomorphic, we check if L′ � ϕL (by Theorem
1. An exponential runtime blow-up occurs for each alternation of quantifiers in
ϕL [10]. We now significantly improve this bound by providing a quadratic time
algorithm for the isomorphism problem for the isomorphism problem for unary
automatic linear orders.

3.1 Efficient solution to the isomorphism problem

Theorem 5. The isomorphism problem for unary automatic linear orders is
decidable in quadratic time in the sizes of the input automata.

We use the notation from Section 2: given a unary automaton A it has
parameters t, ` which are the lengths of its (1, 1)-tail and -loop. From now on,
we will decompose the unary automatic linear orders as a sequence of copies of
ω, ω∗,n (with no ζ).

Lemma 3. Suppose A is a unary automaton that represents a linear order L =
(N;≤L). For any t ≤ j < `, the sequence (j+ i`)i∈N is either an increasing chain
in a copy of ω in L or a decreasing chain in a copy of ω∗ in L.

Proof. If ∆(qj , (�, 1)`) ∈ F then j + i` <L j + (i+ 1)` for all i so (j + i`)i∈N is
an increasing chain in L. Otherwise, totality of L implies that ∆(qj , (1, �)`) ∈ F
hence (j + i`)i∈N is a decreasing chain in L.

Suppose (j + i`)i∈N forms an increasing chain. Let t1, t2 be the lengths of
the (�, 1)- and (1, �)- tails off qj ; let `1, `2 be the lengths of the (�, 1)- and
(1, �)- loops off qj . We consider two cases. First, suppose `1 = `2 = 1. Since
(j + i`)i∈N is increasing, ∆(qj , (�, 1)c`) ∈ F for all c. Hence, ∆(qj , (�, 1)t1) ∈ F .
Similarly, ∆(qj , (�, 1)t2) /∈ F . Therefore, each x > j + (i + 1)` + max{t1, t2}
satisfies x >L j + (i + 1)` and there are only finitely many elements <L-below
j + (i+ 1)`. This leaves only finitely many possible elements <L-between j + i`
and j + (i+ 1)`.

On the other hand, suppose `1`2 > 1. Let k = max{t1, t2}+ `. Suppose there
is i ≥ 0 and r = j + i`+ k + s, s ≥ 0 such that

j + i` <L r <L j + (i+ 1)`.

The first inequality is equivalent to ∆(qj , (�, 1)k+s) ∈ F and hence for any c,
j + i`+ c` <L r + c`. The second inequality implies that ∆(qj , (1, �)k+s−`) ∈ F
and is in the (1, �)-loop off qj . So, for any c′ ≥ 0, r + c′`2 <L j + (i + 1)`.
Therefore,

j + i`+ (`1`2)` <L r + (`1`2)` = r + (`1`)`2 <L j + (i+ 1)`.

This is a contradiction because (j + i`)i∈N is increasing whereas `1`2 > 1. Thus,
any element <L-between j + i` and j + (i + 1)` must be smaller than r; there
are only finitely many such elements. ut

Proof (Proof of Theorem 5). Suppose L = (N;<L) is a unary automatic linear
order represented by a unary automaton A with parameters t, `. We will extract
its canonical word αL ∈ {ω, ω∗,n}?. To do so, we need only determine the
relative ordering of the at most ` many copies of ω and ω∗ given by Lemma 3
and the elements 0, . . . , t− 1.

For t ≤ j < t+ `, we can use Lemma 3 to decide in linear time whether the
sequence (j + i`)i∈N is in a copy of ω or ω∗. We say two sequences (j + i`)i∈N

and (k + i`)i∈N (j < k) interleave if they belong to the same copy of ω or ω∗ in
L. Given j < k, the corresponding sequences interleave if and only if

– both are increasing, there is c1 larger than the length of the (�, 1)-tail off qj

and c2 larger than the length of the (�, 1)-tail off qk satisfying ∆(qj , (�, 1)c1)
and ∆(qk, (�, 1)c2) are both in F , c1 ≡ (k − j) mod `, c2 ≡ (j − k) mod `;

– or, both sequences are decreasing chains and the above conditions hold when
we substitute the (1, �) states for the (�, 1) ones.

To check if the above conditions hold, we can read the states∆(qj , (�, 1)k−j+d1`),
∆(qk, (�, 1)j−k+d2`) for increasing values of d1, d2 until we either find an appro-
priate state or loop back to a state we already visited. Thus, we read at most
as many states as there are in the (�, 1) loops (thus, fewer than n) and deciding
interleaving takes O(n2) time.

Notice that while considering the cases above, we also determine the relative
order of (j+i`)i∈N and (k+i`)i∈N if they do not interleave. That is, (j+i`)i∈N <L

(k + i`)i∈N if and only if there is c greater than the length of the (�, 1)-tail off
qj such that ∆(qj , (�, 1)c) ∈ F and c ≡ (k − j) mod `. Thus, in O(n2) time, we
can partition {t, . . . , t + ` − 1} into V0, . . . , Vs such that if j < k and j, k ∈ V`

(0 ≤ ` ≤ s) then (j+ i`)i∈N and (k+ i`)i∈N interleave. We simultaneously define,
for t ≤ j < t + `, Left(j) = {k : (k + i`)i∈N <L (j + i`)i∈N}; since we have to
consider all j, k jointly, this takes O(n2) time.

It remains to define Left(j) for 0 ≤ j < t. If there is t ≤ k < t+ ` and d1, d2

such that ∆(qj , (�, 1)d1) ∈ F and ∆(qj , (1, �)
d2) ∈ F and d1 ≡ d2 ≡ (k − j)

mod ` then j is <L-between elements of (k + i`)i∈N and we will determine its
representative’s position in αL when we consider qk. Therefore, in this case,
leave Left(j) undefined. Otherwise, the elements <L-below j are obtained by
examining the (1, �)-tail and -loop of qj and the (�, 1)-tails and loops of q′j for
j′ < j and putting k in Left(j) if the state corresponding to it is accepting. We
can define all Left(j) for 0 ≤ j < t simultaneously in O(n) time.

We are now ready to give an algorithm for extracting αL from A. We iterate
through processing each (1, 1) state which has a defined Left set. Initialize the
set B to empty and the word α = λ. Let qj be least state that remains to be
processed such that Left(j) = B. If j < t add j to the set B and update α = α1.
However, if j ≥ t then let i be least such that i, j ∈ Vr for some r. If (j+i`)n∈N is
increasing, update B = B ∪Vr and α = αω. Otherwise, (j+ i`)n∈N is decreasing
and we update B = B∪Vr and α = αω∗. Remove qj and all states in Vr from the
list of states which remain to be processed. Once we have processed all states,
we smooth α: set αL to be the result of replacing all 1ω in α to ω, all ω∗1 in
α to ω∗, and all sequences of 1s of length n to n. This algorithm has runtime
quadratic in the size of A. Since any two unary automatic linear orders L1,L2

are isomorphic if and only if αL1
= αL2

, running this algorithm on each input
automaton and then comparing the results gives a quadratic time solution to
the isomorphism problem. ut

3.2 State complexity

Let L = (N;≤L) be a unary automatic linear order. By Theorem 4, the order
type of L is specified by αL ∈ {ω, ω∗, {n}n∈N}?. Let mL be the number of
instances of ω or ω∗ in αL and let kL be the sum of all n such that n appears
in wL. We will express the state complexity of L in terms of the pair (mL, kL),
whose size is defined to be max{mL, kL}.

Theorem 6. The (unary) state complexity of a unary automatic linear order
L = (N;≤L) is less than 2m2

L+k2
L+2kLmL+kL and more than 2m2

L−k2
L+kL.

Proof. By Lemma 3, the optimal automaton A for L has mL + kL (1, 1)-states:
kL many states on the (1, 1)-tail and mL many states on the (1, 1)-loop. Each
state on the (1, 1)-loop represents a copy of ω or ω∗ in L and since this is the
minimal automaton there is no interleaving. To specify whether each copy of ω
or ω∗ is increasing or decreasing and the relative ordering of copies of ω and
ω?, we need 2` = 2mL (1, �) or (�, 1) states off each (1, 1)-loop state. To specify
the ordering of the singleton elements represented by the states on the (1, 1)-tail
with respect to each other and to copies of ω, ω∗, we need up to 2(kL − j +mL)
states off qj . Therefore, an upper bound to the number of states in an optimal
unary automaton is

mL(2mL) +

kL−1
∑

j=0

2 (kL − j +mL) = 2m2
L + k2

L + 2kLmL + kL.

We can improve this bound by realizing that the states on the (1, 1)-loop corre-
sponding to the rightmost and leftmost symbols in αL require fewer (�, 1) and
(1, �) states. The greatest saving of states occurs if the rightmost and leftmost
elements of αL are finite, say a and b and the corresponding elements of L are
represented by the first a+b (1, 1)-tail states. In this case, each of these (1, 1)-tail

states has only one associated (1, �) or (�, 1) state. We therefore save

a+b−1
∑

i=0

2(kL − i+mL) − 1 ≤ 2k2
L + 2kLmL

states. Thus, the minimal automaton must have at least

2m2
L + k2

L + 2kLmL + kL − 2k2
L − 2kLmL = 2m2

L − k2
L + kL

states. ut

Corollary 2. The (unary) state complexity for the class of unary automatic
linear orders is quadratic in the size of the associated parameter.

4 Equivalence Relations

This section explores unary automatic equivalence relations. A structure E =
(N;E) is an equivalence structure if E is an equivalence relation (reflexive, sym-
metric, and transitive). We use Table 1 for the following.

Proposition 2. The membership problem for automatic equivalence structures
is decidable in time O(n3).

Blumensath [1] and Khoussainov and Rubin [12] described the structure of
unary automatic equivalence structures.

Theorem 7 ([1, 12]). An equivalence structure has a unary automatic presen-
tation if and only if it has finitely many infinite equivalence classes and there is
a finite bound on the sizes of the finite equivalence classes.

The height of an equivalence structure E is a function hE : N∪{∞} → N∪{∞}
such that hE(x) is the number of E-equivalence classes of size x. Two equivalence
structures E1 and E2 are isomorphic if and only if hE1

= hE2
. By Theorem 7, the

function hE for unary automatic equivalence structure E is finitely nonzero.

Corollary 3. The isomorphism problem for unary automatic equivalence struc-
tures is decidable.

Proof. For each n ∈ ω, define the formula sizen(x) as

(∃y1 · · · ∃yn−1)[

n−1
∧

i=1

(yi 6= x ∧ E(yi, x)) ∧ (∀z)[(
n−1
∧

i=1

(z 6= yi) ∧ z 6= x) → ¬E(x, z)].

By Theorem 7, any unary automatic equivalence structure E with height hE can
be defined by the sentence ϕE that is the conjunction of the following, where we

let H = hE(∞) and Hn = hE(n).

(∃x1 · · ·∃xH)





H
∧

i=1

(∃∞y)E(xi, y) ∧
H
∧

i,j=1;i6=j

¬E(xi, xj)

∧ ∀x((∃∞y)E(x, y) →
H
∨

i=1

E(x, xi))

]

∧
∧

n:Hn=∞

[

(∃∞x)sizen(x)
]

∧

m,n:Hn=m

(∃y1 · · · ∃ym)





m
∧

i=1

sizen(yi) ∧
m
∧

i,j=1;i6=j

¬E(yi, yj)





For any equivalence structure E1, E1
∼= E if and only if E1 |= ϕE . By Theorem 1,

the isomorphism problem is decidable. ut

The sentence ϕE contains two alternations of quantifiers, each causes an
exponential blow-up in the size of the automaton corresponding to ϕE [10]. This
implies that the decision procedure given by Corollary 3 has doubly exponential
runtime in the sizes of the input automata. We now significantly improve this
bound by providing a quadratic time algorithm for the isomorphism problem.

4.1 Efficient solution to the isomorphism problem

Theorem 8. The isomorphism problem for unary automatic equivalence struc-
tures is decidable in quadratic time in the sizes of the input automata.

Let E be recognized by a unary automaton A with n states. Recall the defi-
nitions of t, `, and qj from Section 2. Observe that each j < t+ ` belongs to an
infinite equivalence class if and only if there is an accepting state on the (�, 1)
loop from qj . Let t ≤ j < t + `. If j belongs to an infinite equivalence class
then for all i ∈ N, j + i` is in an infinite equivalence class. By Theorem 7, there
are only finitely many infinite equivalence classes in E . Hence, for some i and k,
i 6= k, E(j + i`, j + k`). This means ∆(qj , (�, 1)(k−i)`) is accepting. Let c > 0
be the least number such that ∆(qj , (�, 1)c`) ∈ F . To compute c, we examine
∆(qj , (�, 1)d`) for increasing values of d until we find an accepting state or repeat
a state. Thus, we need to examine at most as many states as the length of the
(�, 1)-loop off qj .

Lemma 4. The set {j+ i`}i∈N is partitioned into c infinite equivalence classes.

Proof. Since c is the least such that∆(qj , (�, 1)c`) is accepting, elements in {j, j+
`, . . . , j+(c−1)`} are pairwise nonE-equivalent. Moreover for each i, E(j+i`, j+
(i+ c)`). ut

We now consider the finite equivalence classes. Given k (1, 1)-loop states
qj1 , . . . , qjk

each of which has no accepting state on its (�, 1)-loop, we say that
{qj1 , . . . , qjk

} is a corresponding set if for each qji
and s = 1, . . . , k − i there is

mi
s+i such that the state ri

s = ∆(qji
, (�, 1)(js+i−ji)+mi

s+i`) ∈ F ; moreover, these
are the only accepting states on the (�, 1) tail of qji

. A corresponding set is
maximal if it is not a subset of a larger corresponding set.

Lemma 5. For any k, hE(k) = ∞ if and only if there is a maximal correspond-
ing set of size k.

Proof. If qj1 , . . . , qjk
form a maximal corresponding set then for each c ≥ 0,

{j1 + c`, j2 +(c+m1
2)`, . . . , jk +(c+m1

k)`} is an E-equivalence class of size k. On
the other hand, suppose there are infinitely many E-equivalence classes of size
k. For t ≤ j < t + `, let `j and tj be the lengths of the (�, 1)-loop and -tail off
qj , respectively. Let p = max{tj + `j : t ≤ j < t + `}. Consider an equivalence
class {x1, . . . , xk} where p ≤ xi < xi+1 (for all 1 ≤ i < k). For 1 ≤ i < k define
ji such that xi = ji +m` for some m and t ≤ ji < t+ `. Then {qj1 , . . . , qjk

} is a
maximal corresponding set. ut

Proof (Proof of Theorem 8). To decide whether two unary automatic equivalence
structures E1, E2 are isomorphic we first use the unary automata recognizing E1

and E2 to compute their height functions and then check if hE1
= hE2

. Hence,
we begin by giving an algorithm for extracting the height function of a unary
automatic equivalence structure E from a unary automaton A.

For each 0 ≤ j < t + `, if j is in an infinite equivalence class then there
is t ≤ j′ < t + ` in the same class and we can find j ′ in linear time. For j′

we compute c such that {j ′ + i`}i∈N accounts for exactly c infinite equivalence
classes in E , as described in Lemma 4. At the same time, we can compute all
0 < k < t+` such that ∆(qj′ , (�, 1)k−j′+m`) ∈ F (where m < n). For any such k,
{k+i`}i∈N is covered by the c infinite equivalence classes from {j ′+i`}i∈N. Using
the complexity analysis before Lemma 4, we see that the runtime of computing
the total number of infinite equivalence classes is

O(

t+`−1
∑

j=t

(`j + tj) + (t+ `)(`j + tj)) = O(n2).

It remains to consider 0 ≤ j < t + ` such that qj has no accepting state on
its (�, 1)-loop. Note that each qj may be responsible for infinitely many finite
equivalence classes of the same size and finitely many other equivalence classes.
By Lemma 5, we can effectively find all k such that hE(k) = ∞ by searching for
the appropriate corresponding set. This can be done by reading the (�, 1)-tails
off the (1, 1)-loop and thus takes times O(n).

By the proof of Lemma 5, for any finite equivalence class K, if x ≥ p for
all x ∈ K and |K| = k, then hE(k) = ∞. Hence, it only remains to compute
the sizes of equivalence classes for elements in {t, . . . , p}, which requires reading
through the (�, 1)-tails off the (1, 1)-tail. Again this step has runtime O(n).

In summary, the algorithm that computes hE from A has runtime O(n2).
Note that the domain of hE is a subset of {1, . . . , n,∞} so comparing it with
hE′ takes linear time. Therefore, the isomorphism problem for unary automatic
equivalence relations is solved in quadratic time in the maximum of the sizes of
the input automata. ut

4.2 State complexity

Given a unary automatic equivalence structure E = (N;E), we want to define the
optimal unary automaton for E . We will express the state complexity in terms
of the height function hE ; define the size of hE to be

|hE | =
∑

n:hE(n)<∞

nhE + ninf + hinf .

Let hinf = hE(∞) and ninf =
∑

n:hE(n)=∞ n.

Lemma 6. Let A be a unary automaton recognizing E, then ninf ≤ `.

Proof. For any n, hE(n) = ∞ if and only if there are t ≤ j1 < j2 < · · · < jn < t+`
such that ∆(qj1 , (�, 1)ji−j1) ∈ F for all i = 1, . . . , n and no other (�, 1) states off
qi are accepting. These qji

may not be shared among disjoint equivalence classes,
hence ninf ≤ `.

Theorem 9. The state complexity of any unary automatic equivalence struc-
tures E = (N;E) is at least

∑

n:hE(n)<∞

n2hE(n) + 2hinf(ninf + 1) + ninf + 1

and at most
∑

n:hE(n)<∞

n2hE(n) +
∑

n:hE(n)=∞

n2 + 2hinf(ninf + 1) + 1.

Proof. We say a collection of (1, 1)-states {r1, . . . , rm} in A represents an E-
equivalence class K if for each x ∈ K, ∆(ι, (1, 1)x) = ri for some 1 ≤ i ≤ m.
Let K be a finite equivalence class. It must be represented by some {r1, . . . , rm}
where there are m − i accepting states on the (�, 1)-tail off ri. In an optimal
unary automaton recognizing E , the length of the (�, 1)-tails off ri states is
minimized by arranging the r1, . . . , rj consecutively. In this case, the tail off
ri contains m − i states; by symmetry, the number of (�, 1) and (1, �) states

associated to the class K is 2
∑|K|

i=1(|K| − i) = |K|2 − |K|. Counting the (1, 1)
states representing K, there are |K|2 states associated to K. Note that in the
optimal automaton, if there are infinitely many equivalence classes of the same
size, they are all represented by the same (1, 1) states.

If each infinite equivalence class of E is represented by a single state on the
(1, 1)-loop of an automaton A, then ` > hinf. Moreover, the (�, 1)-loop out of with
each such state must have size at least `. In this case, `+1 states are associated
with each infinite equivalence class. One may hope to reduce the number of states
by using multiple states r1, . . . , rk to represent an infinite equivalence class K.
In this case, k must be a divisor of ` and the (�, 1)-loop out of each ri has length
`/k. Thus, at least k + k(`/k) = k + ` states are associated with K, which is
no improvement. However, we can reduce the number of states by using a single

(1, 1)-loop state r to represent all the (finitely many) infinite components. To
do so, define a (�, 1)-loop (respectively, (1, �)-loop) out of r with length hinf`
and a single accepting state, ∆(r, (�, 1)hinf`). With this representation, 1+2hinf`
states are used for all the infinite equivalence classes (as opposed to more than
h2

inf + hinf). By Lemma 6 and the above discussion, the smallest possible length
for the (1, 1)-loop is (ninf +1). For each n such that hE(n) = ∞, there are n2−n
(1, �)- and (�, 1)-states off the (1, 1)-loop. Thus, there must be at least

1 + 2hinf`+
∑

n:hE(n)=∞

n2

states on the (1, 1)-loop and its peripheries.
We can define an automaton A which recognizes E using a (1, 1)-tail of length

∑

n:hE(n)<∞ nhE(n) and (1, 1)-loop of length ninf + 1. The total size of A is

∑

n:hE(n)<∞

n2hE(n) + 1 + 2hinf(ninf + 1) +
∑

n:hE(n)=∞

n2.

An optimal automaton must have at most this many states.
To obtain a lower bound, we note that there may be overlap between states

in the (1, 1)-loop representing equivalence classes of different sizes, some of which
occur infinitely often and others which do not. In particular, this can only
occur for E-equivalence classes K,K ′ where |K| > |K ′| and hE(|K|) = ∞,
hE(|K ′|) < ∞. With optimal overlapping, the minimum number of states in a
unary automaton recognizing E is

∑

n:hE(n)<∞

n2hE(n) +
∑

n:hE(n)=∞

n2 + 2hinf(ninf + 1) + 1 − c

for some c. Moreover, c is no more than all (�, 1)- and (1, �)- states associated
with finite equivalence classes occurring infinitely often, so c <

∑

n:hE (n)=∞(n2−

n), as required. ut

Corollary 4. The (unary) state complexity for the class of unary automatic
equivalence structure is quadratic in terms of the height function. ut

5 Trees

5.1 Characterizing unary automatic trees

This section investigates unary automatic trees. A tree is T = (N;≤T) where
≤T is a partial order t(reflexive, antisymmetric, and transitive) with a root (the
least element) and such that the set of ancestors of any node x, {y : y ≤T x},
is a finite linear order. Two nodes x, y are incomparable, x|T y, if x �T y and
y �T x; an anti-chain of T is a set of nodes which are pairwise incompara-
ble. Table 1 gives an O(n3) algorithm for checking whether a given automaton

recognizes a partial order. Checking if ≤T is total on every set of predecessors
((∀x, y, z)[y, z ≤T x → y ≤T z ∨ z ≤T y]) takes time O(n4) . Checking the
existence of a root (least element) may take exponential-time because of the
impact of alternation of quantifiers on the size of the automaton for the query.
We improve this exponential bound when ≤T is recognized by a unary (rather
than arbitrary) automaton.

Lemma 7. There is an O(n) time algorithm that checks if a unary automatic
partial order (N;≤T) has a least element.

Proof. Suppose ≤T is recognized by unary automaton A with parameters t, ` (as
in Section 2). If there is a least element x then x < t+`. Indeed, if x ≥ t+`, there
is t ≤ y < t + ` such that q = ∆(ι, (1, 1)x) = ∆(ι, (1, 1)y). By definition of x,
x <T y and x <T 2x−y. Therefore, ∆(q, (�, 1)y−x) ∈ F and ∆(q, (�, 1)x−y) ∈ F .
But, this implies that y <T x, a contradiction. Thus, to check for a root it is
sufficient to check if each of {0, . . . , t + ` − 1} is the root and this procedure
examines each state of A at most once. ut

Proposition 3. The membership problem for unary automatic trees is decidable
in time O(n4). ut

As we saw in previous sections, a good characterization of a class of unary
automatic structures may lead to a better understanding of complexity bounds.
We present such a characterization of unary automatic trees A parameter set Γ
is a tuple (T0, T1, . . . , Tm, σ,X) where T0, . . . , Tm are finite trees (with disjoint
domains Ti), σ : {1, . . . ,m} → T0 and X : {1, . . . ,m} → {∅} ∪

⋃

i Ti such that
X(i) ∈ Ti ∪ {∅}.

Definition 2. A tree-unfolding of a parameter set Γ is the tree UF(Γ) defined
as follows:

– UF(Γ) contains one copy of T0 and infinitely many copies of each Ti (1 ≤
i ≤ m), (T j

i)j∈ω. If x ∈ Ti, its copy in T j
i is denoted by (x, j)

– For 1 ≤ i ≤ m, if X(i) 6= ∅, the root of T 0
i is a child (immediate descendent)

of σ(i), and the root of T j+1
i is a child of (X(i), j) for all j.

– For 1 ≤ i ≤ m, if X(i) = ∅, the root of T j
i is a child of σ(i) for all j.

Theorem 10. A tree T is unary automatic if and only if there is a parameter
set Γ = (T0, T1, . . . , Tm, σ,X) such that T ∼= UF(Γ).

Suppose T = (N;≤T) is recognized by a unary automaton A with n states
and parameters t, `. We say that two disjoint sets X and Y of nodes in T are
incomparable if (∀x ∈ X)(∀y ∈ Y)(x|T y).

Lemma 8. For t ≤ j < t+ l, the set (j + i`)i∈N forms either an anti-chain or
finitely many pairwise incomparable infinite chains in T .

T0

T1

. . .

T2
. . .

T3
. . .

T4
. . .

σ

σ

σ

σ σ σ σ

x1 x1 x1

x2 x2 x2

x3 x3 x3

Fig. 2. An example of a tree-unfolding.

Proof. If there is no c such that ∆(qj , (�, 1)c`) is accepting, then (j + i`)i∈N is
an anti-chain. Otherwise, let nj be the least such c. In this case, (j + i`)i∈N is
partitioned into exactly nj pairwise incomparable chains in T . Indeed, j+m` <T

j + (m+ inj)` for all i and for 0 ≤ m < nj , thus making (j + (m+ inj)`)i∈N an
infinite chain; furthermore elements in {j, j + `, . . . , j + (nj − 1)`} are pairwise
incomparable. ut

By Lemma 8, let A = {j : (j + i`)i∈N is an anti-chain, t ≤ j < t + `} and
C = {t, . . . , t + ` − 1} − A. For each j ∈ C, let nj be the number of infinite
chains in (j + i`)i∈N. For 0 ≤ m < nj , we denote the infinite chain formed by
(j + (m+ inj)`)i∈N by Wj,m.

We consider the circumstances in which Wj,m and Wk,m′ belong to the same
infinite path in T (interleave in the sense of Section 3). Fix j, k ∈ C. If there is
no m such that ∆(qj , (�, 1)k−j+m`) is accepting, then no Wj,s and Wk,s′ belong
to the same infinite path in T . Otherwise, let m be the least number such that
∆(qj , (�, 1)k−j+m`) ∈ F .

Lemma 9. With m as above, then nj = nk and (j+ i`)i∈N and (k+ i`)i∈N form
exactly nj pairwise incomparable infinite chains.

Proof. By assumption, ∆(qj , (�, 1)k−j+m`) is accepting. Hence, j <T k + m`
and k +m` ∈ Wk,m1

for some 0 ≤ m1 < nk. Therefore, m1 ≡ m mod nk and
Wj,0,Wk,m1

interleave in T . Similarly, since j + nj` <T k + nj` +m`, there is
0 ≤ m2 < nk such that m2 ≡ nj + m mod nk and Wj,0,Wk,m2

interleave in
T . Therefore, Wk,m1

,Wk,m2
interleave and by definition this implies m1 = m2.

Hence, nj = cnk for some c > 0. Since there is some interleaving between j and k
sets, there is r such that ∆(qk, (�, 1)j−k+r`) ∈ F . Repeating the above argument
with the roles of j and k reversed, we see that nk = c′nj for some c > 0. Thus,
nj = nk and the union of (j+ i`)i∈N and (k+ i`)i∈N contains exactly nj pairwise
disjoint infinite chains: for all 0 ≤ i < nj , Wj,i and Wk,m′ interleave if and only
if m′ = m+ i mod nj . ut

Any infinite path through T must be given by element(s) in C. Therefore, Lemma
9 implies that T contains only finitely many infinite paths We define a component
of T to be a connected subgraph of T which contains exactly one infinite path

and such that all the elements in the subgraph are greater than or equal to t. Fix
j ∈ C and k ∈ A. By Lemma 9, (j + i`)i∈N belongs to exactly nj components,
B0, . . . , Bnj−1. If there is no m such that ∆(qj , (�, 1)k−j+m`) is accepting, then
no element in the anti-chain (k + i`)i∈N belongs to any Br. Otherwise, let m be
the least such that ∆(qj , (�, 1)k−j+m`) ∈ F . Each j + i` has k + (i +m)` as a
descendent. Therefore (k+ i`)i∈N is partitioned into a finite set {k+ i` : 0 < i <
m} and exactly nj infinite classes {(k + (m+ s+ inj)`)i∈N : s = 0, . . . , nj − 1},
each belonging to a unique Br.

We have considered j, k if either j or k (or both) are in C. Now, suppose
j, k ∈ A and neither (j+ i`)i∈N nor (k+ i`)i∈N intersects with any component of
T . If there is m such that ∆(qj , (�, 1)k−j+m`) ∈ F , then the union (j + i`)i∈N ∪
(k + i`)i∈N is a subset of infinitely many disjoint finite subtrees in T , each of
which contains (at least) the nodes j + i` and k + (i+m)` for some i. We call
these disjoint finite trees independent.

The above argument facilitates the definition of an equivalence relation ∼ on
{t, . . . , t+ `− 1} as j ∼ k if and only if

1. j ∈ C (or k ∈ C) and {j + i`}i∈N and {k+ i`}i∈N belong to the same nj (or
nk) components in T ; or,

2. j, k ∈ A and there is h ∈ C such that j ∼ h and k ∼ h;
3. j, k ∈ A and {j + i`}i∈N and {k + i`}i∈N belong to the same collection of

independent trees in T .

We use [j] to denote the ∼-equivalence class of j.

Proof (Theorem 10). We now show that any unary automatic tree is isomorphic
to the tree-unfolding UF(Γ) of some parameter set Γ = (T0, T1, . . . , Tm, σ,X).
For each ∼-equivalence class [j], either [j] represents infinitely many independent
trees or [j] represents finitely many components of T .

In the first case, the independent trees represented by [j] are pairwise iso-
morphic. Moreover, the set of ancestors of these independent trees in T is finite
because they are not in a component of T . In the second case, the components of
T represented by [j] are pairwise isomorphic. Each of these components can be
described by “unfolding” a finite graph, Tc, of size |[j]|: each k ∼ j contributes
one vertex to Tc and the edges are specified by the relations between (j+ i`)i∈N,
(k + i`)i∈N discussed above; the root of a later copy of Tc is a child of a fixed
node in the immediately preceding copy. Observe that, as in the first case, the
set of ancestors in T of the component is finite. It is immediate to translate this
description to an appropriate parameter set for Γ .

Conversely, we will show that if Γ = (T0, T1, . . . , Tm, σ,X) is a parameter set,
UF(Γ) is a unary automatic tree T . Let t = |T0|, ` = Σm

r=1|Tr| and αr = Σr−1
i=1 |Ti|

for r = 1, . . . ,m. We consider the isomorphic copy (N;≤T) ∼= UF(Γ) where
T0 7→ {0, . . . , |T0|} and the jth copy of Tr maps to {t + (j − 1)` + αr, . . . , t +
(j − 1)` + αr+1 − 1}. The appropriate unary automaton will have parameters
t, `. Each qj on the (1, 1)-tail has (�, 1)- and (1, �)-tails of length t, and a (�, 1)-
loop of length `. Each qj on the (1, 1)-loop has a (�, 1)-tail and (�, 1)-loop,
each of length `. All (1, 1)-states are in F . Let ϕ0 : T0 → {0, . . . , t − 1} and

ϕr : Tr → {t + αr, . . . , t + αr+1 − 1} be isomorphisms that preserve the tree
order. We use ϕ0 to specify which (1, �)-and (�, 1)-tail states from the (1, 1)-tail
are accepting. Similarly, we use ϕ1, . . . , ϕm and σ,X from the parameter set to
specify those state in (�, 1)-loops off the (1, 1)-tail and in (�, 1)-tails and loops
off the (1, 1)-loop that are accepting. Then (N;L(A)) ∼= UF(Γ). ut

5.2 Efficient solution to the isomorphism problem

We wish to use the characterization of unary automatic trees to solve the iso-
morphism problem. However, two tree-unfoldings may be isomorphic even if
the associated parameter sets are not isomorphic term-by-term. For example, if
Γ = (T0, T1, . . . , Tm, σ,X) is any parameter set and Γ ′ = (T ′

0 , T1, . . . , Tm, σ
′, X)

where T ′
0 is the subtree of UF(Γ) containing one copy of each T0, . . . , Tm and σ′

is obtained from σ by setting σ(i) = X(i) if X(i) 6= ∅, then UF(Γ) ∼= UF(Γ ′).
In previous section, we obtained canonical isomorphism invariants: αL for linear
orders and hE for equivalence structures. We now define an analogue for trees.
Fix a computable linear order � on the set of finite trees.

Definition 3. The canonical parameter set of a unary automatic tree T =
(N;≤T) is the parameter set Γ = (T0, T1, . . . , Tm, σ,X) such that UF(Γ) ∼= T
and which is minimal in the following sense:

1. As finite trees, T1 � . . . � Tm.
2. If Ti

∼= Tj , σ(i) = σ(j), and X(i) = X(j) = ∅ then i = j.
3. Each Ti (1 ≤ i ≤ m) is minimal: If X(i) 6= ∅ then if y1 ≤T y2 ≤T X(i) the

subtree with domain {z : y1 ≤T z∧y2 �T z} is not isomorphic to the subtree
with domain {z : y2 ≤T z ∧X(i) �T z}.

4. T0 is minimal: T0 has the fewest possible nodes and for all 1 ≤ i ≤ m where
X(i) 6= ∅, there is no y ∈ T0 such that y ≤T σ(i) and the subtree with domain
{z : y ≤T z ∧ σ(i) ≮T z} is isomorphic to Ti.

Lemma 10. Suppose T , T ′ are unary automatic trees with canonical parameter
sets Γ, Γ ′. Then, T ∼= T ′ if and only if Γ, Γ ′ have the same number (m) of finite
trees, (T0, σ) ∼= (T ′

0 , σ
′), and for 1 ≤ i ≤ m, (Ti, X(i)) ∼= (T ′

i , X
′(i)).

Proof. It is easy to see that if T and T ′ have term-by-term isomorphic canonical
parameter sets they are isomorphic. Conversely, suppose T ∼= T ′ and their canon-
ical parameter sets are (T0, . . . , Tm1

, σ,X) and (T ′
0 , . . . , T

′
m2
, σ′, X ′), respectively.

Each infinite subtree of the form ({y : σ(i) ≤ y};≤T), 1 ≤ i ≤ m, which contains
infinitely many copies of Ti, embeds into a subtree of T ′. By (2) in Definition 3,
m1 = m2. By the minimality condition on Ti, T ′

i and by the ordering of the finite
trees in each parameter set, the subtree of T containing infinitely many copies of
Ti can embed into the subtree of T ′ containing infinitely many copies of T ′

i for
all 1 ≤ i ≤ m1 and vice versa. Similarly for Ti, T ′

i′ such that X(i) = X ′(i′) = ∅.
By minimality of T0, T ′

0 , ∀1 ≤ i ≤ m1 (Ti, X(i)) ∼= (T ′
i , X

′(i)). Let ti be the root
of the first copy of Ti in T and t′i be the root of the first copy of T ′

i in T ′.

(T0, σ) ∼= ({y : y ∈ T0 ∧ (∀1 ≤ i ≤ m)¬ti ≤T y};≤T)
∼= ({y : y ∈ T ′

0 ∧ (∀1 ≤ i ≤ m)¬t′i ≤T ′ y};≤T ′) ∼= (T ′
0 , σ

′) ut

The canonical parameter set can now be used to define an extended first-order
formula ϕT which specifies the isomorphism type of T (as in Corollaries 1 and
3). This is sufficient to prove that the isomorphism problem for unary automatic
trees is decidable. However, the following results will significantly improve the
time complexity of the associated decision procedure.

Theorem 11. The isomorphism problem for unary automatic trees is decidable
in time O(n3) in the sizes of the input automata.

Suppose we can compute the canonical parameter set of a tree from a unary
automaton. Given two unary automatic trees, we could use Lemma 10 and a
decision procedure for isomorphism on finite trees to solve the isomorphism
problem on unary automatic trees.

Lemma 11. If ≤T is recognized by unary automaton with n states, there is an
O(n3) time algorithm that computes the canonical parameter set of T

Proof. We divide the construction into two pieces: first compute some parameter
set Γ for T , then compute the canonical parameter set from Γ . Recall the proof
that any unary automaton has an associated parameter set (from the proof of
Theorem 10). Computing the sets A and C requires searching for the appropriate
accepting states on the (�, 1)-tail and loop out of each state on the (1, 1)-loop.
For each t ≤ j < t + `, let `j be the length of (�, 1)-loop out of qj , and t̃j be
sum of the lengths of (�, 1)-tail and (1, �)-tail out of qj . Checking (as many as)
`j many states on the (�, 1)-loop and t̃j other states allows us to determine both

nj and the class [j]. In all, this takes time O
(

∑t+`−1
j=t (`j + t̃j)

)

Suppose [j] represents finitely many components in T . Each component is
obtained by unfolding a finite tree T ′ of size |[j]| on some x ∈ T ′. The tree order
≤T ′ can be computed by reading all the (�, 1)- and (1, �)-states out of each qk

where k ∼ j. The node x ∈ T ′ is the ≤T ′-maximal node that is in some (k+i`)i∈N

with k ∈ C. Again, the number of states out of qj that need to be read is `j and

computing all T ′ takes time O(
∑t+`−1

j=t `j + t̃j). We need nj isomorphic copies
of T ′ in Γ , a total of O(nj |[j]|) nodes. Thus, to define all T ′ in the parameter
set corresponding to these ∼-equivalence classes takes O(n2).

On the other hand, [j] might represent infinitely many pairwise isomorphic
independent trees, each of which contains |[j]| nodes. To compute T ′ isomorphic
to these independent trees, we read the (�, 1)- and (1, �)-tails out of each qk with
k ∼ j. This takes time O(n). We call a node x ∈ {0, . . . , t− 1} a parent of [j] if
it is the immediate ancestor of infinitely many trees represented by [j]. If [j] has
c parents then there will be c copies of T ′ in the parameter set we are building,
each of which has X(i) = ∅ and with different values of σ(i).

Claim. There is an O(n3) algorithm computing all parents of ∼-equivalence
classes representing independent trees in T .

Proof (of claim). Suppose [j] represents infinitely many independent trees whose
roots are from (j + i`)i∈N. For each 0 ≤ k < t, let tk be the length of the (�, 1)-
tail out of qk and `k be the length of the (�, 1)-loop out of qk. We describe an

algorithm that compute the parents of [j]. The algorithm processes the subtree
of T restricted to {0, . . . , t− 1}, beginning at the leaves and moving downwards
(we process a node only once all of its children have been processed). For each
node k we determine whether it is a parent of [j].

– Case 1. If k is a leaf node, we search for tk ≤ i < tk + `k such that
∆(qk , (�, 1)i`+j−k) ∈ F . We can find such an i if and only if there are in-
finitely many independent trees associated to [j] descending from k in T .

– Case 2. If k is an internal node but has no children which are parents of [j],
process it as though it were a leaf node. Otherwise, let k1, . . . , kr be children
of k which are parents of [j]. Let Ui, Vi, Di be subsets of {tki

, . . . , tki
+ `ki

}
defined as

Ui = {x : ∆(qk, (�, 1)x`+j−k) ∈ F}, Vi = {x : ∆(qki
, (�, 1)x`+j−ki) ∈ F},

and Di = Ui − Vi. Let `′ = max{`k1
, . . . , `kr

} and let D′
i = {x + i`k : x ∈

Di∧x+ i`k < `′`k}. Then k is a parent of [j] if and only if D′
1∩· · ·∩D′

r 6= ∅.

Correctness. In Case 1, if there is no i′ ≥ tk such that ∆(qk, (�, 1)i′`+j−k) ∈ F ,
there are only finitely many independent trees represented by [j] descending
from k. Moreover, if such an i′ exists, it must be on the (�, 1)-loop off qk and so
we can stop looking for it after we have checked all `k states. For Case 2, note
that x ∈ D′

1 ∩ · · · ∩D′
r if and only if k is the immediate ancestor for all nodes in

{j + (x + i`′`k)`}i∈N, if and only if k is the immediate ancestor for some node
in {j + (x + i`′`k)`}i∈N. Therefore if D′

1 ∩ · · · ∩ D′
r 6= ∅, then k is a parent of

[j]. Suppose D′
1 ∩ · · · ∩D′

r = ∅ and k is a parent of [j]. Then k is the immediate
ancestor for {j + (s + im)`}i∈N for some m > `′`k and s < m. If s < `′`k, then
s ∈ D′

1 ∩ · · · ∩D′
r. Therefore s ≥ `′`k. Say s = s′ + i`′`k where s′ < `′`k. Then k

is the immediate ancestor of j + (s+ `′`km)` = j+ (s′ + (m+ i)``k)`. Therefore
s′ ∈ D′

1 ∩ · · · ∩D′
r. Contradiction. Hence the algorithm is correct.

Complexity. Checking if a leaf node k is a parent for [j] takes time O(`k). When
k is an internal node, computing Ui and Vi takes time O(`k`ki

). The size of each
Ui and Vi is bounded by `ki

, therefore computing Di takes O(`ki
). Computing

each D′
i takes time O(`′`k). We need to do the above operations at most t times

(at most once for each node in {0, . . . , t−1}). Therefore, the algorithm takes time

O(tˆ̀2), where ˆ̀ is the maximal (�, 1)-loop length out of all qk, k ∈ {0, . . . , t−1}.
We iterate the intersection operation r times to compute the intersection of all
the D′

i’s; therefore, we perform a total of at most t intersection operations, each

taking time O(ˆ̀2). Since ˆ̀ < n, the algorithm takes time O(n3). We can run
the above algorithm simultaneously for all equivalence classes [j] representing
independent trees without increasing the time complexity. ut

With the above claim in hand, we can resume our construction of the pa-
rameter set Γ . The finite tree T0 in Γ contains all nodes in {0, . . . , t − 1} and
finitely many independent trees. Deciding which independent trees to put into
T0 uses the claim and therefore takes O(n3). Computing the tree order ≤T0

on

{0, . . . , t−1} requires reading the (�, 1)- and (1, �)-tail out of each qk (0 ≤ k < t)
at most once. This steps again takes time O(n). Thus, in time O(n3), we have
computed Γ = (T0, T1, . . . , Tm, σ,X) such that T ∼= UF(Γ). Since nodes in T0

can be parents to more than one anti-chain, m ≤ t`+
∑

j∈C nj ≤ t`+ n.
We now use Γ to obtain a canonical parameter set for T . For each 1 ≤ i ≤ m

with X(i) 6= ∅, look for y1, y2 ∈ Ti such that y1 <T y2 <T X(i), and the subtree
of Ti with domain {z : y1 ≤T z ∧ y2 6≤T z} is isomorphic to the subtree with
domain {z : y2 ≤T z ∧ X(i) 6≤T z}. If such y1, y2 exist, remove all z ≥Ti

y1
from Ti. For each 1 ≤ i < j ≤ m such that X(i) = X(j) = ∅, if Ti

∼= Tj and
σ(i) = σ(j) then remove Tj . Thus, each Ti satisfies the minimality condition for
the canonical parameter set. Since the isomorphism problem for finite trees is
decidable in linear time [5], this step can be done in time O(

∑m
i=1 |Ti|2).

For each 1 ≤ i ≤ m with X(i) 6= ∅, let ti be the root of Ti × {0}. Look
for x ∈ T0 such that x ≤T σ(i), and the subtree of T0 with domain {y : x ≤T

y∧ ti �T y} is isomorphic to Ti. If such an x exists, remove all y ≥T0
x from T0.

Now T0 satisfies the minimality condition. Again this step can be done in time
O(
∑m

i=1 |Ti|2).
For each 1 ≤ i ≤ m, search for the <T0

-least x such that the subtree of T0

with domain {z ∈ T0 : x ≤T0
z} is isomorphic to a subtree of Ti with domain

{z ∈ Ti : y ≤Ti
z} for some y <Ti

X(i). If such an x exists, remove all y ≥T0
x

from T0. This step ensures that T0 has the fewest possible nodes with respect to
Ti; it can be done in time O(

∑m
i=1 |Ti|2).

Finally, we permute T1, . . . , Tm so that T1 � . . . � Tm. We assume that finite
trees can be efficiently encoded as natural numbers and hence applying a sorting
algorithm on m of them takes O(m logm). Whenever we find Ti

∼= Tj(i 6= j)
with σ(i) = σ(j) and X(i) = X(j) = ∅, keep Ti and delete Tj . Converting Γ to
a canonical parameter set takes O(n3) and thus we have built such a canonical
parameter set in O(n3) time. ut

Proof (Theorem 11). Suppose T1, T2 are presented by unary automata A1,A2

with n1, n2 states (respectively). Let n = max{n1, n2} By Theorem 10 and
Lemma 11, deciding if T1

∼= T2 reduces to checking finitely many isomorphisms
of finite trees. The appropriate canonical parameter sets are built in O(n3) time
and each have O(n2) finite trees, each of size O(n). Hence, this isomorphism
algorithm runs in O(n3) time. ut

5.3 State complexity

Suppose T = UF(Γ) and Γ = (T0, T1, . . . , Tm, σ,X) is the canonical parameter
set of T . Let t = |T0| and ` =

∑m
i=1 |Ti|. The proof of Theorem 10 gives an upper

bound on the state complexity of unary automatic trees in terms of t and `.

Theorem 12. The state complexity of unary automatic tree T is less than (t+
`)2 − t`+ t+ ` and greater than `2.

Proof. The automaton A built in the proof of Theorem 10 has size t(t + `) +
2`2 + t+ `. To further reduce the number of states, we can permute the domain

of the tree so that if j ∈ A then qj has a (�, 1)-tail of length ` and a (�, 1)-loop
of length 1, and if j ∈ C then qj has a (�, 1)-loop of length ` and no (�, 1)-tail.
Therefore the size of A is t(t+ `) + `2 + t+ ` = (t+ `)2 − t`+ t+ `.

When T1, . . . , Tm are pairwise non-isomorphic, the loop length of A is at least
` and there are at least ` (�, 1)-states out of each qj on the (1, 1)-loop. Therefore
the state complexity is bounded below by `2. ut

Corollary 5. The (unary) state complexity of a unary automatic tree T is
quadratic in the parameters t, ` of its canonical parameter set.

6 Graphs of Finite Degree

This section studies unary automatic graphs of finite degree. A graph G = (N;R)
is of finite degree if (∀x)(¬∃∞y)(R(x, y)∨R(y, x)). If R is recognized by a unary
automaton, G is of finite degree if and only if there is no accepting state on any
(�, 1)- or (1, �)-loops. Therefore, the membership problem is decidable in linear
time. In [7], Khoussainov, Liu, and Minnes investigated a range of algorithmic
properties of unary automatic graphs of finite degree. For example, they showed
that the reachability problem for unary automatic graphs of finite degree can be
decided in polynomial time in the sizes of the input vertices and the automaton.
In particular, when the automaton is fixed, deciding if there is a path from
vertex x to vertex y takes linear time in x and y. Furthermore, [7] showed that
connectedness of unary automatic graphs of finite degrees is decidable in O(n3)
time and the following result which we will use later.

Theorem 13 ([7]). Given a unary automatic graph G of finite degree, we can
effectively construct a unary automaton that recognizes the reachability relation
on G in polynomial time.

However, [7] left open the decidability of the isomorphism problem. We now
settle this question and provide an algorithm deciding the isomorphism problem
for unary automatic graphs of finite degree.

Theorem 14. The isomorphism problem for unary automatic graphs of finite
degree is decidable in elementary time.

For simplicity, we assume G is undirected. The case of directed graphs can
be treated in a similar manner. We use the following characterization from [7].
Given a finite graph F = (VF ;EF) and a map σ : VF → P(VF), we define Fσω

to be the disjoint union of infinitely many copies of F with added edges: there
is an edge between x ∈ Fi and y ∈ Fi+1 if and only if y ∈ σ(x).

Theorem 15 ([7]). A graph of finite degree G = (N;R) is unary automatic if
and only if there are finite graphs D,F and a map σ : VF → P (VF) such that
G ∼= G′ and G′ is a disjoint union of D and Fσω with possible additional edges
between D and F0. Furthermore, the parameters D,F , σ can be extracted in time
O(n2) from a unary automaton recognizing R.

A component of G is the transitive closure of a vertex under the edge relation,
R. By Theorem 15, any infinite component in G has nonempty intersection with
almost all Fi. Therefore, G has at most |VF | many infinite components. Similarly,
any finite component of G has size at most |VD + VF |. We say a component C
starts in Fi if C ∩ Fi 6= ∅ and for j < i , C ∩ Fj = ∅. Let ` = |VF |.

Lemma 12. For any finite graph H, there are infinitely many components in G
isomorphic to H if and only if H ∼= C for some component C starting in F`.

Proof. Suppose C ∼= H and C starts in F`. For each j, {(v, i + j) : (v, i) ∈ C}
is a finite component isomorphic to H. On the other hand, if H is isomorphic to
infinitely many components in G, it is isomorphic to some C ′ that starts in Fk

for k ≥ `. Then{(v, i+ `− k) : (v, i) ∈ C ′} is the desired component. ut

Let GFin be the subset of G containing only its finite components. By Theorem
15 and Lemma 12, if C is any finite component of G then either C ∩ Fj 6= ∅ for
some j < ` or C has infinitely many isomorphic copies in G. By Lemma 12, GFin

there are only finitely many isomorphism classes of finite components of G, and
we can decide which of these classes correspond to infinitely many components
in G. Since finite graph isomorphism is decidable, given two graphs G,G ′ we can
decide if GFin

∼= G′
Fin.

Since G contains only finitely many infinite components, it remains to prove
that, given two infinite components of unary automatic graphs, we can check
if they are isomorphic. Note that each infinite component of G is recognizable
by a unary automaton using operations on the automaton from Theorem 13.
Therefore, it suffices to prove that we can decide whether two infinite connected
unary automatic graphs are isomorphic. To prove Theorem 14 we will give a MSO
definition (in the language of graphs) of the isomorphism type of a connected
graph G = (N;R) and then use the decidability of the MSO theory of unary
automatic structures. We first define auxiliary MSO-formulae. For a fixed set S
and k ∈ N, let PartitionS

k (P1, . . . , Pk) be the formula

(

k
∧

i=1

∃∞x(x ∈ Pi)

)

∧





∧

1≤i6=j≤k

Pi ∩ Pj = ∅



 ∧

(

S =

k
⋃

i=1

Pi

)

For a finite graph F = ({v1, . . . , vk};EF), TypeF(X,Y1, . . . , Yk) is

k
∧

i=1

(∃=1xi)(xi ∈ X∩Yi)∧
k
∧

i,j=1

(

xi ∈ X∩Yi, xj ∈ X∩Yj → EF (xi, yj) ↔ EF(vi, vj)
)

For a finite graph F of size k and a mapping σ : VF → P (VF), let F×3

be the finite subgraph Fσω � F0 ∪ F1 ∪ F2. Label VF×3
by v1, . . . , v3k where

{vik+1, . . . , v(i+1)k} belong to the ith copy of F and for each 1 ≤ i ≤ k, the ver-
tices vi, vk+i, v2k+i all correspond to the same vertex in F . Define the formula

SuccFσ (X,Y, Z1, . . . , Z3k) to be

TypeF (X,Z1, . . . , Z3k) ∧ TypeF (Y, Z1, . . . , Z3k) ∧ (X ∩ Y = ∅)

∧
∧

(i,j):vj∈σ(vi)

(∀x ∈ X ∩ Z2k+i)(∀y ∈ Zj)(EF (x, y))

∧
∧

(i,j):vj /∈σ(vi)

(∀x ∈ X ∩ Z2k+i)(∀y ∈ Zj)(¬EF (x, y))

∧
∧

(i,j)/∈{2k+1,...,3k}×{1,...,k}

(∀x ∈ X ∩ Zi)(∀y ∈ Zj)(¬EF (x, y)).

We are now ready to prove the theorem.

Proof (Theorem 14). Suppose G is a connected unary automatic graph of finite
degree. By Theorem 15, we can find D,F , σ such that G is isomorphic to D
followed by Fσω . Since D and the edge relation between D and F0 are finite,
they can be used as parameters in a MSO sentence. Hence, for simplicity we
assume that D is empty. Let VF = {v0, . . . , vk} and recall the definition of
F×3 above. We define ϕG as (∃P1 · · · ∃P3k)(ψG(P1, . . . , P3k), where ψG(Z) is the
conjunction of the following formulas:

1. PartitionN

3k(Z)
2. (∀x∃X)[x ∈ X ∧ TypeF×3(X,Z)]
3. (∀X)[TypeF×3(X,Z) → (∃=1Y)SuccFσ (X,Y, Z)]
4. (∃X)[TypeF×3(X,Z) ∧ (∀Y)[(TypeF×3(Y, Z) ∧X ∩ Y = ∅)

→ [¬SuccFσ (X,Y, Z) ∧ (∃=1W)SuccFσ (W,Y, Z)]]]

Claim. If H is an infinite connected graph, H |= ϕG if and only if H ∼= G.

Proof (of claim). If H ∼= G then clearly H |= ϕG . On the other hand, suppose
H |= ϕG . Then H can be partitioned into 3k sets P1, . . . , P3k. Take a subgraph
M of 3k vertices in H. We say that M is a F×3-type if M intersects with each
Pi at exactly one vertex, and if we let vi = M∩Pi, then the three sets of vertices
{v1, . . . , vk}, {vk+1, . . . , v2k}, {v2k+1, . . . , v3k} respectively form three copies of
F , with vi, vk+i, v2k+i corresponding to the same vertex in F . Also, the edge
relation between these three copies of F respects the mapping σ.

Since H |= ϕG , each vertex v in H belongs a unique subgraph that is a F×3-
type; and, for each F×3-type M, there is a unique F×3-type N that is a successor
of M, i.e., all edges between M and N are from the last copy of F in M to
the first copy of F in N such that they respect the mapping σ. Lastly there
exists a unique F×3-type M0 which is not the successor of any other F×3-types
and any other F×3-type is the successor of a unique F×3-type. Note that the
successor relation between the F×3-types resembles the unfolding operation on
finite graphs.

Therefore to set up an isomorphism from H to G, we only need to map M0

isomorphically to the first 3 copies of F in G, and then map the other vertices
according to the successor relation and mapping σ. ut

By Theorem 2, satisfiability of any MSO sentence is decidable for unary au-
tomatic graphs. Therefore the isomorphism problem for unary automatic graphs
of finite degree is decidable. Note that the definition of ϕG contains only finitely
many alternations of quantifiers (regardless of the size of the automaton pre-
senting it), therefore the decision procedure is elementary in terms of the size of
the input automaton. ut

References

1. A. Blumensath. Automatic Structures. Diploma thesis, RWTH Aachen, October 1999.

2. A. Blumensath and E. Grädel. Automatic structures. In Proc. 15th LICS, pages 51–62.
IEEE Computer Society, 2000.

3. K. Salomaa C. Campeanu, K. Culik II and S. Yu. State complexity of basic operations
on finite languages, automata implementation. In O. Boldt et al., editor, Proc. of Fourth

International Workshop on Implementing Automata, WIA’99, volume 2214 of LNCS,
pages 60–70, 2001.

4. B.R. Hodgson. On direct products of automaton decidable theories. Theoretical Computer

Science, 19:331–335, 1982.

5. J.E. Hopcroft and J.K. Wong. Linear time algorithm form isomorphism of planar graphs
(preliminary report). In Proc. 6th STOC, pages 172–184, 1974.

6. J. Ullman J.E. Hopcroft, R. Motwani. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 2001.

7. B. Khoussainov, J. Liu, and M. Minnes. Unary automatic graphs: An algorithmic per-
spective. In M. Agrawal et al., editor, Proc. 5th TAMC, volume 4978 of LNCS, pages
548–559. Springer-Verlag, 2008.

8. B. Khoussainov and M. Minnes. Model theoretic complexity of automatic structures
(extended abstract). In M. Agrawal et al., editor, Proc. 5th TAMC, volume 4978 of
LNCS, pages 520–531. Springer-Verlag, 2008.

9. B. Khoussainov and M. Minnes. Three lectures on automatic structures. In Proceedings

of Logic Colloquium 2007. Cambridge University Press, 2008.

10. B. Khoussainov and A. Nerode. Automatic presentations of structures. In D. Leivant,
editor, International Workshop on Logic and Computational Complexity, volume 960 of
LNCS, pages 367–392. Springer-Verlag, 1995.

11. B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: Richness and
limitations. In Proc. 19th LICS, pages 44–53. IEEE Computer Society, July 2004.

12. B. Khoussainov and S. Rubin. Graphs with automatic presentations over a unary alphabet.
Journal of Automata, Languages and Combinatorics, 6(4):467–480, 2001.

13. G. Olver and R. Thomas. Automatic presentation for finitely generated groups. In Proc.

of the 5th International Conference on Development in Language Theory, LNCS, pages
130–144. Springer, 2002.

14. S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.

15. S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin of

Symbolic Logic, 14(2):169–209, June 2008.

16. M.Y. Vardi. Model checking for database theoreticians. In Proc. 10th International Con-

ference on Database Theory, 2005.

17. N. Vinokurov. Complexity of some natural problems in automatic structures. Siberian

Mathematical Journal, 46:56–61, 2005.

18. S. Yu. Chapter 2: Regular languages. Handbook of Formal Languages, 1997.

19. S. Yu. State complexity: recent results and open problems. Fundamenta Informaticae,
64(1-4):471–480, 2005.

