

THESIS

ONTOLOGY ENGINEERING: THE BRAIN GENE ONTOLOGY

CASE STUDY

Submitted by

Yufei Wang

The Knowledge Engineering and Discovery Research Institute

(KEDRI)

In partial fulfillment of the requirements

for the degree of Master of Computer and Information Sciences

Auckland University of Technology

March 2007

Abstract

The emergence of ontologies has marked another stage in the evolution of knowledge

engineering. In the biomedical domain especially, a notable number of ontologies

have been developed for knowledge acquisition, maintenance, sharing and reuse from

large and distributed databases in order to reach the critical requirements of

biomedical analysis and application. This research aims at the development of a Brain

Gene Ontology by adopting a constructive IS methodology which tightly combines

the processes of ontology learning, building, reuse and evaluation together.

Brain Gene Ontology is a part of the BGO project that is being developed by KEDRI

(Gottgtroy and Jain, 2005). The objective is to represent knowledge of the genes and

proteins that are related to specific brain disorders like epilepsy and schizophrenia.

The current stage focuses on the crucial neuronal parameters such as AMPA, GABA,

CLC and SCN through their direct or indirect interactions with other genes and

proteins. In this case, ontological representations were able to provide the conceptual

framework and the knowledge itself to understand more about relationships among

those genes and their links to brain disorders. It also provided a semantic repository of

systematically ordered molecules concerned. The research adopts Protégé-Frames,

which is an open source ontology tool suite for BGO development. Some Protégé

plug-ins were also used to extend the applicable functions and improve knowledge

representation.

Basically, the research discusses the availability and the framework of the

constructive Information System research methodology for ontology development, it

 i

also describes the process that bridges different notions of the brain, genes and

proteins in various databases, and illustrates how to build and implement the ontology

with Protégé-Frames and its plug-ins. The results of the BGO development proved

that the constructive IS methodology does help to fill in the cognitive gap between

domain users and ontology developers, the extensible, component-based architectures

of Protégé-Frames significantly support the various activities in the ontology

development process, and through explicitly specifying the meaning of fundamental

concepts and their relations, ontology can actually integrate knowledge from multiple

biological knowledge bases.

 ii

Acknowledgement

I wish to thank all the people who gave me the possibility to complete this thesis.

Firstly I want to express my gratitude to the Knowledge Engineering and Discovery

Research Institute (KEDRI) for providing me chance to commence this thesis, and

necessary resources for the research work.

I would like to express once again my gratitude to the foundation director of KEDRI,

Professor Nikola Kasabov and the program leader of the School of Computer and

Information Sciences at AUT, Krassie Petrova who gave and confirmed the

permission and encouraged me to go ahead with my thesis.

I deeply appreciate my supervisor, Paulo Gottgtroy for his stimulating suggestions

and encouragement that helped me in all the time of research and writing of this thesis.

Also, I would like to thank my co-supervisor Vishal Jain who involved me in the

KEDRI project in the first place. He answered me many questions at the biological

aspect.

Especially, I would like to thank my family, thank my parents and my sisters who un

conditionally support and encourage me to pursue my study and interests in these

years. I am greatly indebted to my father, Zhichun Wang and my mother, Yuqin Lin

whose personality always affects and benefits me.

Last but not least, let me say “thank you” to my girl friend Manqian Wang whose

trust and love enabled me to complete this work.

 iii

Table of content

Abstract.. i

Acknowledgement ... iii

Chapter 1 - Introduction ..1

1.1 Background Overview ...1

1.2 Research Gaps and Objectives...2

1.3 Thesis organization ..4

Chapter 2 - Literature Review...5

2.1 Ontology and Ontological Engineering ...5

2.2 Ontology types and Domain Ontologies..11

2.2.1 Knowledge Representation Ontologies: ...11

2.2.2 Upper Ontologies ..14

2.2.3 Linguistic Ontologies..16

2.2.4 Domain ontologies and Biomedical Ontologies: ..18

2.3 Artificial Intelligence Tools for Knowledge Modelling21

2.3.1 Language-dependent ontology development tools22

2.3.2 Extensible language-independent ontology development tool suites23

2.4 Protégé and the extended plug-ins ...25

2.4.1 Architecture...26

2.4.2 Knowledge Model...27

2.4.3 Ontology Editor ..29

2.4.4 Significant plug-ins...30

2.5 Bioinformedical Databases ..33

Chapter 3 - Methods and Methodologies ...35

 iv

3.1 Discussions about existing approaches..35

3.2 A Constructive approach..38

3.3 Criteria ...40

3.3.1 The Criteria for Determining Scope ..41

3.3.2 The Criteria for Ontology design...42

3.3.3 The Criteria for Reusing the Existing Sources44

3.3.4 Criteria for BGO Structure Evaluation and Biological Data

Verification ..45

3.4 Building Architecture...46

3.4.1 Preparation ...47

3.4.2 BGO Development Environment and Data ...48

3.4.3 BGO Development Process ...50

Chapter 4 – Brain Gene Ontology...55

4.1 BGO visualizations with TGVizTab..58

4.2 Tracking changes in the BGO in PROMPT...59

4.3 The storage and display of slots in the BGO ...60

Chapter 5 - Result and Discussion ..63

Chapter 6 Conclusion ...65

6.1 Conclusion ...65

6.2 Future research...66

References:...68

 v

List of Figures:

Figure 2.1: The seven definitions of Ontology ...8

Figure 2.2.1: Class taxonomy of the DAML+OIL KR ontology.................................14

Figure 2.2.2: The top-level categories of Sowa’s KR ontology (from Sowa, 1999) ...15

Figure 2.2.4: Frame-based knowledge model of GO (Yeh et al, 2003).......................19

Figure 2.3.1: Web interface of Ontolingua server ...23

Figure 2.4.1: Protégé architecture (Gennari et al, 2003)..27

Figure 2.4.2: Propagation of template and own slots (Noy et al, 2000)28

Figure 2.4.3: the screenshot of Classes tab ..29

Figure 2.4.4.1: Visual Representation of the Wine and Food Ontology with TGVizTab

..31

Figure 2.4.4.2: The UMLS tab interface..31

Figure 2.4.4.3: A comparison of different versions of the Wine and Food Ontology in

the PROMPT tab..32

Figure 3.1: The process of building ontological skeleton in SENSUS........................37

Figure 3.2: A multimethodological approach to IS research (Nunamaker et al, 1991)

..39

Figure 3.3.2: Extended classes...43

Figure 3.4: The conceptual framework for BGO development47

Figure 3.4.3.2: Top-down method ...52

Figure 4.0.1: BGO in the Classes Tab ...55

Figure 4.0.2: A detailed script of a created Class: Gene (XML version)58

Figure 4.1: Gene in visualization maps..59

(A) The closest terms in the first two hierarchies. (B) Navigating exact relations.....59

 vi

Figure 4.2: Tracking changes in BGO with PROMPT. ...59

(A) Tree view, (B) Table view...59

Figure 4.3: The various types of slot widgets ..60

 vii

List of Tables

Table 2.2.3: Comparison of several Linguistic Ontologies ...17

Table 2.3.1: Ontology tools and their corresponding languages22

Table 3.4.2.1: Candidate biological knowledge bases for data collection...................49

Table 3.4.2.2: Part of the gene table for the subunits of the AMPAR (amino-

methylisoxazole-propionic acid) receptor ...50

 viii

List of Abbreviations

AMPA = amino-methylisoxazole-propionic acid

BGO = Brain Gene Ontology

CLC = chloride voltage-gated channel

GABA = gamma-aminobutyric acid

GO = Gene Ontology

IS

= Information System

KCN = kalium (potassium) voltage-gated channel

KR = Knowledge Representation

NCBI = National Center of Biotehcnology Information

OBO = Open Biomedical Ontologies

OKBC = Open Knowledge Base Connectivity

OWL = Web Ontology Language

RDF = Resource Description Framework

SUO = the Standard Upper Ontology

UMLS = Unified Medical Language System

 ix

Chapter 1 - Introduction

1.1 Background Overview

In recent years, modern biology has been developing fast and producing daily a huge

quantity of heterogeneous biomedical data. Biomedical knowledge can be represented

as nucleic acid sequences, EEG signals or chemical properties etc. Furthermore,

discovering knowledge and sharing it for various purposes has always been complex

and crucial in the biomedical domain. Such an explosion of knowledge and such

critical requirements bring challenges to the bioinformatical researchers on acquiring,

maintaining, reusing and sharing knowledge from those large and distributed

databases. Ontology has been proven as a successful way to face the challenge with a

conceptual wise.

Ontology is not only a philosophical discipline. It has been widely adopted in the

domains of knowledge engineering, computer science and artificial intelligence etc.

The definition of ontology varies in different domains as Guarino and Giaretta (1995)

suggested. Uschold and Jasper (1999, page 11-2) give the definition of Ontology as:

“An ontology may take a variety of forms, but it will necessarily include a vocabulary

of terms and some specification of their meaning. This includes definitions and an

indication of how concepts are interrelated which collectively impose a structure on

the domain and constrain the possible interpretations of terms.” In the domain of

computer and information science, people mainly develop ontologies to share a

common understanding of the structures of information (Musen 1992; Gruber 1993);

analyze domain knowledge (McGuinness et al. 2000); separate domain knowledge

from operational knowledge (Rothenfluh et al. 1996); or to enable reuse of domain

knowledge (Bontas et al, 2005). Recently, there has been a large amount of ontologies

 1

developed by different research groups, and different techniques and methods. Similar

to software engineering, ontology engineering is a subject related to the activities of

ontology development process, languages, methodologies and applications, etc.

To compare with traditional Information Systems, ontologies have much stronger

abilities to build the knowledge structure and share knowledge. Therefore, ontology

systems can provide more supports for creating semantic webs or other artificial

intelligence systems. The reverse between relational databases and ontologies, which

enable the data-intensive web pages to emigrate their bases from relational databases

to ontologies (Astrova, 2004), are becoming a contemporary topic.

1.2 Research Gaps and Objectives

Previous ontology engineering research provides rich experience on ontology

development such as building process analysis (Uschold and King, 1995), identifying

ontology applications (Gruninger and Fox, 1995), ontology reuse (Bernaras et al,

1996) and building domain ontologies (Swartout et al, 1997). Some biomedical

ontologies have also been built. Nevertheless, the relationships between ontology

evaluation, integration, merging and learning are still incomplete because ontology

development lacks the comprehensive methodologies and effective tools to fill the

cognitive gap between the requirements of domain experts and common information

system developers.

This brain gene ontology engineering case is part of the BGO project at KEDRI. It

aims at developing and representing the knowledge of genes and proteins that are

related to specific brain disorders like epilepsy and schizophrenia. The current stage

focuses on the important neuronal parameters such as AMPA, CLC, GABA, and

 2

KCN etc. through their direct or indirect interactions with other genes and proteins.

This ontology engineering case answers three research questions as follows:

1. Why the constructive IS research methodology, which has been widely

adopted for traditional IS developments, is also suitable for ontology

development?

2. How do we apply the selected research methodology in the process of building

BGO with the specific tool suite Protégé and plug-ins?

3. Is this BGO system able to integrate the knowledge from multiple biological

knowledge bases?

The BGO development process adopts a constructive methodology that builds the

theoretical foundation on IS research methodologies, creates BGO through building

domain concepts (classes), properties of the concepts (slots) and individuals

(instances) with the ontology development tool suite Protégé-Frames.

Protégé-Frames is an ontology editor developed by Stanford Medical Informatics at

Stanford University School of Medicine. It is able to provide a user interface and

acknowledge server to carry out the main activities of the process of ontology

learning, ontology alignment, and ontology evaluation. Consequently, the frame-

based domain ontology: BGO, which is designed with the Protégé platform, has the

mechanisms to enhance the relationships between all the important stages of ontology

development.

Stored knowledge in BGO integrates the gene information from a number of

distributed biomedical databases. The data collection and data entry of BGO are based

on a series of pre-established criteria. Both the BGO developer and domain experts

 3

build these criteria, which ensures the accuracy and authority of the stored gene

knowledge.

1.3 Thesis organization

The following chapter of this thesis consists of a literature review. A number of

academic papers have been reviewed to give an introductory overview of ontology

and ontology engineering. The second chapter presents the case studies of the most

outstanding ontologies and a survey of the literature, which analyzes and evaluates the

AI tools in the ontology engineering domain and the unique features of AI tools. The

last section of this chapter describes the adopted tool suite Protégé by introducing its

architecture, knowledge model and extended plug-ins. Chapter three summarizes the

drawbacks of previous approaches, and then constructs a new IS approach for BGO

development. This is followed by the criteria used for determining the scope, ontology

structure design, reuse of existing sources and BGO structure evaluation and

biological data verification. The ontology development architecture and its detailed

process are provided in the final section. In chapter four, the evolving BGO is

described, including the class hierarchy, key features, and implementation of different

plug-ins. The various types of slots and widgets are also introduced. Chapter 5

presents the results of this research, discusses the research efforts and its limitations.

Finally, chapter six presents the conclusion and outlines future practice and research

directions.

 4

Chapter 2 - Literature Review

2.1 Ontology and Ontological Engineering

From ontology to ontology engineering has been a long process. In philosophy,

ontology means the systematic explanation of being. In ancient Greece philosophers

proposed problems which were concerned with finding the essence of things through

change (Gomez-Perez et al, 2004a). These problems involve the basic concepts inside

of ontology such as how can we classify the entities of the world? Is the concept

outside a person’s mind? And is there an essence that can remain inside the thing

although some properties have changed? According to Marias (2001), universals

became the key issue of ontology in the Middle Ages. The question was whether

universals are actual things. Such “universals” are the basis of the classes or concepts

in knowledge modelling. The discussion and analysis of universals also benefited the

development of intelligent symbol management in modern information science.

Marias (2001) also noted the series of investigations and discussions in the modern

age, which are strongly related to the foundation of ontology theory. In this period,

the discussion had been focused on how people‘s minds capture reality and how

people explain the mind structure that is used to capture the reality. There are three

important theoretical efforts towards an answer of these questions.

1. Emmanuel Kant (1724-1804) stated the essence of a thing is not only determined

by the thing itself but also determined by how one perceives and understands it.

This is one of the fundamental theories of modern information systems, that is; the

objects in an information system are not only dependent on reality but also

dependent on the design of the information system. Kant proposed a framework to

describe the mind structure that was used by a person to percieve reality. The

 5

framework is based on the logic classification of judgments and can be organized

into four classes: quality (negation, limitation and reality), quantity (unity,

plurality and totality), modality (possibility, necessity and existence) and relation

(inherence, causality and community). Through these patterns, people’s minds can

classify an object’s existence, uniqueness and commonness etc. This provides the

basis for how information systems capture and stores information about objects in

realities.

2. Jose Ortega y Gasset (1883-1955) pointed out that the development of a

knowledge base must respect the differences within other knowlege bases when

they represent the same objects because the object is strongly dependent on the

person who perceives it. In other words, different knowledge may perceive objects

in different ways or with different features.

3. William James (1842-1910) demonstrated that the truth of the world is the most

proper consequences people have considered. Following his theory, today’s

knowledge structure and databases in information systems are not developed to

faithfully represent the world but to more efficiently serve the system itself.

Besides these discussions, the concept of frame was proposed in 1975 by Minsky, he

explained that a frame in a frame system represents a concept or an objective. There is

a collection of properties or concepts (slots) on the frame, and the slots are filled with

initial values. Minsky further interpreted that the slots can be used to represent the

possible raised questions in a hypothetical situation represented by the frame and

changing the values of slots can make the frame correspond to the particular situation.

Based on Minsky’s concept, the frame system subsequently gained ground as a basic

tool for knowledge representation. (See section 2.2.1)

 6

With the rapid development of computer science, ontologies have emerged as a very

important research field at the end of 20th century. Formal ontology is believed to be

able to provide a theoretical foundation for the architecture of modern information

systems. Nino Cocchiarella (1991) defined formal ontology as the formal and

systematic development of the logic of all modes of being. This was agreed with by

Nicola Guarino (1998) in his discussion, which regards the related terminologies of

ontology and the relationship between formal ontology and information systems. He

stated that the word, “formal ontology” normally belongs to the area of philosophical

research, but ontologies are sometimes called “formal” when they are used for

integration with knowledge bases. Sowa (1999) clarified the difference between

“formal” and “informal” ontology: the informal ontology is specified by an undefined

catalogue of types or only defined by the statements in natural language, whereas the

formal ontology is specified by a collection of names that belongs to the concepts and

the relation types are organized in a type-subtype relation.

Due to its long history and the various interpretations of ontology, it is important to

clarify the ontological glossaries that are related to the knowledge engineering part of

this paper. In fact, the discussions and the investigations on how to define modern

ontology have continued since the 1990s. Neches et al (1991) first proposed the idea

of building an ontology. They believed that an ontology is able to define concepts, the

relationships between the concepts and the rules that combine the concepts and

relationships together in a topic area. The most quoted definition was summarized by

Studer et al (1998, page 185, para 3) as follows: “An ontology is a formal, explicit

specification of a shared conceptualization…” Basically, they merged Gruber (1993a)

 7

and Borst (1997)’s definitions, and they also provided explanations for the words

“formal”, “explicit” and “conceptualization” etc. in detail.

During the same period, other ontology developers focused on the other aspects.

Guarino worked on the terminological clarification for ontology domain. He and

Giaretta (1995) collected and explained the seven definitions of ontology (Figure 2.1)

in order to clarify the different meanings of ontology in different fields, ontology as a

philosophical discipline, a formal semantic account or the vocabulary used by a

logical theory etc. They formalized the idea of conceptualization and established the

way an ontology developer builds an ontology by making a logical theory: “A logical

theory which gives an explicit, partial account of a conceptualization.”

 Figure 2.1: The seven definitions of Ontology

In 1996, Bernaras et al gave their ideas on the relationship between ontology and

knowledge bases. In their project, which is named KACTUS, they illustrated that

ontology provides the conceptualization behind the knowledge represented explicitly

 8

in the knowledge base. This describes the process; an ontology can be extracted from

a knowledge base, and it reflects the ideas which the ontology developer adopts to

design the ontology, then as more knowledge base applications are built, the more

general the ontology becomes.

Although there are many possible definitions for ontology, any ontology or AI

community will not misunderstand its use. The different definitions state the same

fact. According to Gomez-Perez et al (2004a), ontologies aim to capture consensual

knowledge in general, and they can be shared and recycled across software

applications by different developers. Usually, they are developed by different

ontology developers or knowledge base users in different places.

Recently the concept of ontology was introduced to modern applications related to

bioinformatics, knowledge management, e-commerce and database development and

integration. Ontology has been widely developed and used and many research groups

and organizations are working on their ontology development using various methods.

They adopt different application platforms, techniques and approaches. Gomez-Perez

et al (2004a; page 5 paragraph 3) define ontological engineering as “the activities that

concern the ontology development process, the ontology lifecycle, and the

methodologies, tools and language for building ontologies”. In other words,

ontological engineering stands for all of the modelling processes that are able to

capture realities.

Based on these works, Alphaworks (2007) clarified that how ontology is different

from database and other AI technologies: Ontology represents a data model, not a data

 9

repository as it is used to describe an interface with it through which data may be

accessed. Furthermore, Paulo et al (2003) illustrated that an ontology, unlike

traditional database, builds its fundamental asset on its relative independence of

particular applications.

 10

2.2 Ontology types and Domain Ontologies

This part surveys representative ontologies and describes the techniques for their

design and features by their types. Such well-known ontologies as Knowledge

Representation (KR) Ontologies, upper ontologies and linguistic ontologies are

included. This literature survey covered the applied status of ontologies especially in

the domain of biology.

2.2.1 Knowledge Representation Ontologies:

Ontologies can be classified by different criteria. Knowledge Representation

ontologies are differentiated from other types of ontologies depending on the subject

of conceptualization. According to Davis et al (1993), KR ontology reflects the

conceptualizations that are underlying knowledge representation formalisms. Guarino

and Boldrin (1993) also stated that KR Ontology does not make claims about the

world but presents the representational framework for the world. Representative KR

ontologies include the Frame Ontology, OKBC Ontology, RDF and RDF schema and

DAML+ OIL etc. They all gather the modelling primitives; classes, attributes and

relations to formalize knowledge in a knowledge representation paradigm.

 The Frame Ontology: The frame Ontology is one of the most representative of

KR Ontologies. As the review in section 2.1 states, Minsky (1975) first

proposed the definition of “frame”. Further research on Frame knowledge

representation systems focused on the analysis of frame systems design. Fikes

and Kehler (1985), Karp (1992) and Chaudhri et al (1998) provided their

assumptions and practices on how to build a comprehensive frame system in

order to represent knowledge more efficiently. Currently, the frame system

technologies are boosted by the Knowledge Systems Laboratory at Stanford

 11

University and aims at capturing Knowledge Representation conventions

based on a frame approach in Protégé (Gennari et al, 2003).

The Frame Ontology allows both relational and object-centered styles of

representation to coexist with the aid of KIF)(Knowledge Interchange Format)

(Genesereth and Fikes, 1992) language. The significance of the Frame

Ontology is that it basically unified the frequently used semantics of the

primitives. In Frame Ontology, the classes are co-extensional with unary

relations, so in the example of relational style (*-person Bred) is compatible

with the object style (instance *-of Bred person). Furthermore, Frame

ontology defines slots with a minimal commitment to slots and does not

provide any commitment to make distinctions among slots, attributes and

properties as local to class, so that its slots can be seen as unary functions and

binary relations.

 OKBC ontology: Through analysis of the history of OKBC ontology, Gomez-

Perez (2004b) discussed the relationship between OKBC (Open Knowledge

Base Connectivity) ontology and Frame Ontology. Before the OKBC was

developed in 1997, many ontology languages had their own KR ontology.

These languages such as CycL (Lenat and Guha, 1989), OCML (Shadbolt et al,

1993), Ontolingua (Gruber, 1993b) and LOOM (MacGregor, 1991) etc are all

frame-based and have similar features. In order to design a frame-based

protocol for accessing knowledge bases stored in different languages, the

Knowledge Systems Laboratory of Stanford University cooperated with the

Artificial Intelligence Centre of SRI International and developed the OKBC

Ontology.

 12

The birth of OKBC ontology unified the standards of the various ontology

languages. To compare it with a Frame Ontology, OKBC primitives are only

concerned with classes, slots and frames. Currently, OKBC ontology is

available in the Ontolingua server‘s library. It contains eight classes, 36

relations and three functions and has enhanced the performance of Frame

Ontology.

 RDF and RDF schema KR Ontology: Resource Description Framework is a

language, which is recommended by the World Wide Web Consortium (W3C)

and is developed for Web information representation. According to the primer

edited by Manola and Miller (2004), RDF is able to describe common

resources from the World Wide Web, for example: the basic information about

a web article (authors, article title, copyright etc). Conen and Klapsing (2001)

stated that the data model of RDF is the same as the semantic network KR

paradigm. They explained that the main components of the RDF data model:

resource, properties and statements have a similar functionality with the

semantic network’s node which represents concepts instances and attributes’

value, and edges which represent attributes and relations between concepts.

In RDF Ontology, a statement can be displayed in any order. However, RDF

Ontology cannot provide primitives to define the relationship between

properties and resources. As a result, RDF schema (RDFS) was developed to

solve this drawback (Brickley and Guha, 2004): RDF was extended by W3C

with the frame-based primitives.

 DAML+OIL KR ontology: DAML+OIL KR ontology is developed by

DAML+OIL which extends RDF(S). DAML+ OIL (Connolly et al, 2001) is

known as a semantic makeup language with extended data types and nominals

 13

(Horrocks et al, 1999). As a result, DAML+OIL KR Ontology extended

RDF(S) with more modelling primitives: 14 classes, 38 properties and one

instance. Gomez-Perez et al (2004b) listed the primitives (classes) that

DAML+OIL KR ontology defines for extending RDF(S) ontology as shown in

Figure 2.2.1.

 Figure 2.2.1: Class taxonomy of the DAML+OIL KR ontology
The class expressions of DAML+OIL are constructed with the properties of

Knowledge Representation primitives. Besides this usage, Properties are also

able to define other relationships among ontology components.

 OWL ontology: Web Ontology Language is built on top of RDF, and it has

become the recommended language of the W3C for processing information on

the semantic web since 2004. Basically, OWL is not the same as RDF, but has

greater machine interpretability, a larger vocabulary and stronger syntax than

RDF (Knublauch et al, 2004). There are three sub-language of OWL: OWL

Lite, OWL DL and OWL Full. Protégé ontology editor also supports OWL

ontology design.

2.2.2 Upper Ontologies

Ontology developers have been working for years to create Ontologies that can

describe the concepts across domains in a very general way and provide links to all

the terms in existing ontologies. This kind of Ontology is an Upper Ontology. Upper

 14

Ontologies can also be called Foundation Ontologies or Top-level Ontologies. Figure

2.2.2 shows Sowa’s (1999) upper level categories, which were derived from various

sources such as logic, philosophy and artificial intelligence.

Figure 2.2.2: The top-level categories of Sowa’s KR ontology (from Sowa, 1999)

The inner structure of this Upper Ontology reflects two characteristics: “universal”

and “articulate”. The upper part involves possible instances of the ontology and the

lower part contains the subclasses of every concept of the taxonomy.

Such characteristics were addressed in the Cyc project. In 1989, Lenat and Guha

emphasized that the Upper Ontology in the Cyc Knowldege Base should be universal:

No matter what the background of the ontology development tools are, all the

concepts can be linked to the upper level ontology in the correct places. In addition,

Matuszek et al (2005) went further and summarized that the Upper Ontology should

be articulate:

1) All the concepts have been justified.

 15

2) The amount of concepts is enough for all kinds of applications, for example,

knowledge sharing, and database operation.

Another well-known Ontology is SUO (the Standard Upper Ontology), which has

been promoted by the IEEE SUO Group since 2000 and was approved as an IEEE

standard project. Niles and Pease (2001) described the SUO as able to specify the

syntax and semantics of an Upper level Ontology with a very general purpose, and at

the same time build the structure for lower level domain ontologies. They stated that

there are about one or two thousand terms with ten definitional statements that are the

foundation for further (size) and wider (scope) ontology development.

2.2.3 Linguistic Ontologies

The Linguistic Ontologies are mainly related to the semantics of grammatical

elements such as words, phrases or any nominal units, and are developed for

describing semantic structures. The representative Linguistic Ontologies include

WordNet (Miller, 1995), GUM (Generalized Upper Model) (Bateman et al, 1995),

EuroWordNet (Vossen, 1998), Mikrokosmos (Mahesh and Nirenburg, 1995) and

SENSUS (Swartout et al, 1997) etc. These ontologies are different in some aspects as

shown in the Table 2.2.3. Some of them adopt words as their grammatical units,

others phrases or the nominal elements that are longer than words. Moreover, they are

dependent on language to different degrees, some are even language independent.

WordNet (Miller, 1995) was created by Princeton University and aims at the

organization of lexical information in terms of word meaning. As of 2006 (George et

al, 2006), it (Version 3.0) contains over 115,000 concepts and more than 150,000

 16

words and has become a huge lexical database for English. The motivation of

EuroWordNet is the same as WordNet, but it has European language versions: Dutch,

Spanish, German, French, Estonian etc. The University of Amsterdam, UNED (Spain)

and the University of Sheffield corporate on EuroWordNet and finished the project in

1999. Unlike other ontologies, Mikrokosmos is designed for a more practical purpose.

It is part of a machine translation project in the knowledge merge and acquisition

domain.

Name WordNet EuroWordNet GUM Mikrokosmos SENSUS

Grammatical
Unit

Word Word More than
Word

Word More than
word

Language
Dependency

Dependent
on a single
language

Partly dependent Dependent
on several
languages

Language
independent

Dependenton
several

languages

Motivations

Online
lexical

database

Online lexical
database

Natural
Language
Generation

Machine
translation

Machine
translation

 Developers

Princeton
University

University of
Amsterdam,

UNED (Spain)
and University of

Sheffield

ISI, CNR
and GMD

US goverment,
the New Mexico
State University

and Carnegie
Mellon

University

ISI

 Table 2.2.3: Comparison of several Linguistic Ontologies

GUM was firstly developed by the Penman text generation system (Bateman et al,

1995). There are two hierarchies inside GUM: concepts and relations. They have

their own grammar, but this does not disturb their application theory. Three

universities: ISI (the Information Sciences Institute), CNR (Italy) and GMD (German)

took part in the development of GUM. Another similar project is SENSUS. According

to Swartout and his colleagues (1997), there are over 70,000 nodes in the SENSUS for

commonly encountered representation. That makes SENSUS able to provide a broad

 17

conceptual structure for machine translation and obtain content to extract or merge

information from different knowledge bases. It was designed by the Natural Language

Group of ISI. Broadly speaking, both GUM and SENSUS can also be seen as Upper

Ontology as well due to their abstract concepts.

2.2.4 Domain ontologies and Biomedical Ontologies:

Mizoguchi and his colleagues (1995) introduced the phrase domain ontologies from

the perspective of applied ontologies. They stated that domain ontologies are able to

capture the knowledge of specific subdomains by defining the reusable vocabularies

in the domain concepts and the relationships among these concepts. This section

focuses on the developing status and issues regarding the ontologies in the biomedical

domain, the representative ontologies in other domains such as e-commerce,

engineering and enterprise etc. are also addressed briefly.

According to Bodenreider and his colleagues (2003, page 562), biomedical ontologies

organize the concepts “involved in biological entities and processes in a system of

hierarchical and associative relations that allows reasoning about biomedical

knowledge.” As an example, OBO (Open Biomedical Ontologies) provides an

umbrella web address to organize the controlled vocabularies for sharing and reuse

across the various biological and medical domain. Currently, the ontologies of OBO

are available in its sourceforge site and can be viewed in the OBO tree browser or in

OBO table form.

GO (Gene Ontology) and SO (Sequence Ontology) are both related projects of OBO

and are well-known ontologies in the biomedical domain. GO is being developed by

the Gene Ontology Consortium. In 2000, Ashburner and his colleagues stated that

 18

their work on the development of the Gene Ontology would finally provide a

dynamic, controlled vocabulary to share all knowledge about genes and proteins’

roles in cells. They introduced the three sub-ontologies of GO: molecular function,

biological process and cellular location and illustrated the importance of GO

annotations with examples in GO. The original format of GO is OBO format.

Ontological researchers continually developed the new formats of GO in the

following years. In 2003, Yeh and his colleagues transferred the GO into Protégé

2000 in order to increase the accessibility of the dramatically expanding GO. Figure

2.2.4 shows the frame-based knowledge model of GO viewed in the OntoViz tab in

Protégé 2000. This is also a test to manage and edit the knowledge base with the AI

application tool. The GO subsequently provided an OWL version on the OBO website.

 Figure 2.2.4: Frame-based knowledge model of GO (Yeh et al, 2003)

The Sequence Ontology (Eilbeck and Lewis, 2004; Eilbeck et al, 2005) defines the

terms that can be used to describe the characteristics of the nucleotide or protein

sequences. Such characteristics involve nucleotide similarity hits and gene models etc.

Basically, SO is applied to provide the primary annotations for nucleic acid sequence;

help the identification and the querying of aspecific gene whose transcript is modified

and describe the mutations in the different levels of genomic databases. There are two

 19

available versions of Sequence Ontology on the site: The full version is the normal

meaning SO; the “SOFA” version provides the faster portal to the biological sequence.

UMLS (Unified Medical Language System) was developed by the US National

Library of Medicine(2003). It is one of the largest knowledge sources for the

integration of biomedical terms. UMLS involves three parts to allow researchers to

access the knowledge base from the main page:

Metathesaurus: provides the information to describe all of the biomedical terms.

There are over 1 million of biomedical terms and 5 million concept names in the

Metathesaurus. These data are collected from over 100 controlled vocabularies and

classification systems used in patient records, bibliographic and administrative health

data and databases (Olivier, 2004).

Semantic Networks: define biomedical concepts and their relationships. In the 14th

edition of UMLS (Olivier, 2004), there are totally 134 domain concepts in total and

54 relationships between them.

Specialist Lexicon: provides the information on biomedical terms in order for them to

be used in natural language processing applications.

Besides the biomedical domain, ontologies also work actively at other domains. With

the development of e-commerce, there is an increasing communication efficiency

requirement for B2B applications. The new generation of ontological applications are

being developed to classify services and products in vertical domains such as E-cl@ss,

UNSPSC and NAICS etc (Gomez-Perez et al, 2004b). The Enterprise Ontology was

addressed by Uschold and his colleagues (1998) for defining terms related to business.

Aside from the Enterprise Ontology, ontological techniques are also adopted in

 20

software engineering. Falbo et al (2002) explained their ontological approach (ODE)

to domain engineering. Through these several projects, ontologies have shown their

huge potential to be domain models.

2.3 Artificial Intelligence Tools for Knowledge Modelling

Just like the development of software engineering, the ontology building environment

emerged in the mid-1990s to meet challenges in the ontology development process.

An environment to provide a user interface was constructed in order to simplify

activities in the ontology development process such as conceptualisation, consistency

checking and implementation etc. Gomez-Perez (2002) summarized the six main

functionalities of ontology building environment in his research, as follows:

1. Ontology Development.

2. Ontology merger and alignment

3. Ontology annotation

4. Ontology evaluation

5. Ontology query and inference

6. Ontology learning

The surveyed development tools suites normally consists of several functions from

the above list. Gomez-Perez and his colleagues (2004c) investigated the evolutionary

history of ontology tools and found a clear way of dividing the existing ontology

development tools into two groups: Language-dependent ontology development tools

and extensible language-independent ontology development tools and tool suites. The

two groups of ontology tools represent the different stages of evolution. They are

 21

introduced respectively in the following sections and the selected tool Protégé will be

discussed in the next section.

2.3.1 Language-dependent ontology development tools

The first generation of ontology tools were developed from the middle of the 1990s.

What they have in common is that they are strongly related to their own ontology

language. Users are required to edit or browse the ontologies with their corresponding

languages. The main tools are the Ontolingua server, WebOnto, Ontosaurus and

OilEd. Their corresponding languages are shown in the Table 2.3.1.

Ontology tools Language

WebOnto OCML (Domingue, 1998)

Ontosaurus LOOM (Swartout et al, 1997)

OilEd OIL (Goble et al, 2001)

 Ontolingua server Ontolingua (Farquhar et al, 1997)

Table 2.3.1: Ontology tools and their corresponding languages

As the earliest ontology tool, the Ontolingua server provides a web interface (shown

in Figure 2.3.1) to ease the collaborative development of ontologies with the

ontolingua language. The ontology editor is the most important toolset. Currently,

other toolsets including Webster, OKBC server and Chimaera are available on the

server as well. Webster provides the functionality to obtain term definitions; the

OKBC server is not involved in the web interface but provides accessibility; and

Chimaera is to analyze, merge and integrate ontologies.

 22

 Figure 2.3.1: Web interface of Ontolingua server

The architecture of Ontosaurus is similar to the Ontolingua server. It includes two

parts: an ontology server for a KR based system attached with LOOM language; a

web interface for ontology editing and browsing. OilEd was designed by the

University of Manchester in 2001 and grew with the European IST project On-To-

Knowledge. The current version of the ontology editor of OilEd focuses on the

DAML+OIL ontologies and does not provide a full ontology development

environment. Therefore, the function of OilEd is restricted to an ontology editor only,

which works like “NotePad”. WebOnto uses different types of ontology editors with

Ontosaurus and Ontolingua. It is based on Java applets, which can provide stronger

support for collaborative development of OCML ontologies and allows users to

discuss the developing ontologies synchronously and asynchronously by group.

2.3.2 Extensible language-independent ontology development tool suites

There is a problem for ordinary users of the Language-dependent ontology

development tools. If the users want to create a medium or large ontology with such

ontology tools, they face a language problem; they need to write the language directly

into the text box. Any kind of further operation such as writing the expression of an

axiom or a relation constraint requires a comprehensive knowledge of the

corresponding language. This also increases the difficulty of transferring the

developed ontologies from one ontology editor to another.

 23

The new generation of ontology building environments emphasizes extensibility,

ontology language independence and the integration of the ontology services. The

representative tools are Protégé (discussed in 2.4 in detail) (Noy et al, 2000), KAON

tool suite (Maedche et al, 2003), OntoEdit (Sure et al, 2002) and WebODE (Arprez et

al, 2003).

Extensible: The above tool suites have similar component-based architectures; the

new modules can be deployed and implemented easily by the ontology developers to

provide more comprehensive functions: Protégé supports extended plug-ins;

WebODE has its own ontology access services; KAON provides an OI-modeler for

ontology evolution mapping and generation etc.

Language independent: Their knowledge modules are language independent and

support import and export of ontologies in multiple languages: Protégé supports

FLogic, Jess, XML, Prolog, OIL etc; OntoEdit supports FLogic, XML, RDF(S) and

DAML+OIL etc; WebODE supports CARIN, XML, FLogic, Jess and Prolog etc.

Integrated: Besides the extensible modules, these tools carry a set of ontology related

services which integrate more functionality such as ontology annotation, evaluation,

middleware service, query and inference etc.

WebODE is a scalable workbench for ontological engineering. It was developed by

Universidad Politecnica de Madrid. The latest version of WebODE (2.0) includes an

ontology editor, a semantic web portal generator, a web sources annotation tool, a

semantic web services editing tool and a knowledge management system. One of the

most significant features of the WebODE workbench is that the application server is

able to specify the user or the user group to give access to a specific service.

 24

KAON and OntoEdit are both designed by the Institute AIFB at the University of

Karlsruhe. OntoEdit has been commercialized by Ontoprise GmbH. The professional

version of OntoEdit has a similar structure to Protégé (easily extended with plug-ins)

but is not open source. OntoEdit allows two ways to import and export SQL schemas:

the functional module inside OntoEdit or the Java API for ontology access. KAON is

still open source from sourceforge. KAON ontologies can be stored in files or

relational databases. The web services of KAON allows users to access the APIs by

using a web browser.

2.4 Protégé and the extended plug-ins

Protégé (Noy et al, 2000) is an open source ontology development platform and

knowledge base framework. It is developed by the SMI (Stanford Medical Informatics)

group at Stanford University. There are at least four reasons why this research

chooses Protégé as the ontology engineering tool for BGO: Firstly, Protégé integrates

the necessary and comprehensive tool suites for ontology development; secondly, the

main characteristics of Protégé such as its extensibility and language independence

ease the complexity of the development process; thirdly, Protégé is an open source

platform and freely available for downloading under the Mozilla license; and finally,

since the first Protégé tool was created in 1987, there is a significant amount of

research and experiment that can be used as references and it has been proved as a

high-performance tool in the biomedical domain (eg. the GO project as described in

section 2.2.4).

 25

The Protégé platform supports two ways of ontology development: Protégé-Frames

editors and Protégé-OWL editors. They are suitable for the development of frame

ontology and OWL ontology (see section 2.2.1) respectively. This section focuses on

the Protégé-Frames editor, presents the architecture, knowledge model of Protégé-

Frames, and then provides general information about the editor. It also includes the

introduction of some important extended plug-ins that have been adopted for BGO

development.

2.4.1 Architecture

Gennari et al (2003) reviewed the development of Protégé and evaluated its adopted

architecture. As a Java-based standalone application, the essential part of Protégé is

the extensible architecture as shown in Figure 2.4.1. On the top of the architecture, the

ontology developers are allowed to customize the user interface or build a new

interface to interact directly with the knowledge model. To do that, they must adopt

two kinds of plug-ins:

Slot widget plug-ins: These are not used to modify or change the default user

interface as a whole, but to edit the value type of a single element in the slot form. For

example: show a slot value as a picture in GIF or JPEG format or a short video in AVI

format etc.

Tab plug-ins: These modify the default user interface in order to add new functions

that are not involved in the standard distribution of the ontology editor. They normally

appear as additional tabs after Protégé reloads the UI and the ontology developer can

access these new functions from the tab. The functions of some important plug-ins

such as TGVizTab, UMLTab and PROMPT Tab are described in section 2.4.4.

 26

 Figure 2.4.1: Protégé architecture (Gennari et al, 2003)
The core part is the ontology editor, which is described in section 2.4.3, and section

2.4.2 explains the Protégé Knowledge Model.

The lower part shows the persistent storage mechanisms of protégé. Protégé has a

particular format; CLIPS to store the developed ontology. Otherwise, via the

Backends plug-in, it supports ontology export and import in other formats such as,

XML, XML schema, RDF, RDF schema etc. As a result, Protégé is able to store and

retrieve ontologies from any JDBC compatible database.

2.4.2 Knowledge Model

The knowledge model of Protégé is frame-based and OKBC compatible. The main

modelling components include classes, slots, facets and instances. According to Noy

et al (2000):

Classes: stand for the domain concepts. They can be concrete or abstract in Protégé

and are organized in class hierarchies where multiple inheritances are permitted. That

is: If class A is the subclass of B and C, A will inherit all the attributes from both B

 27

and C to be a super class. The root class in Protégé is the build-in class “:thing”. Only

concrete classes can have instances (individuals).

Slots: stand for the attributes or properties of the domain concepts. The name of a

slot is unique in an ontology, but it is class independent: the slot with the same name

in different classes does not stand for the same attributes. Slots can have values, for

example, a person has a slot “name”: Brad Pitt, then Brad Pitt is the value of the name.

Facets: stands for the constraints of slots. Facets define the restriction of value type

(e.g. integer, string, float etc.) or the limitation of numeric value (100<slot

value<10000) etc.

 Figure 2.4.2: Propagation of template and own slots (Noy et al, 2000)

Noy et al (2000) mentioned that as in the OKBC ontology, Protégé distinguishes slots

into two types: template slots and own slots. This can be seen in Figure 2.4.2. Own

slots attach to the frames that describe the attributes of classes or instances when the

classes do not get inherited by their subclasses or propagated to their instances. A

template slot, by contrast, attaches to the class frames, which are inherited by their

own subclasses. Once a template slot on a class frame is in the instances of that class,

it will become a slot in its own right.

 28

2.4.3 Ontology Editor

In Protégé, the default user interface of the ontology editor involves five tabs: Classes

tab, Slots tab, Forms tab, Instances tab and Query tab. Noy and McGuinness (2001)

provide a fundamental ontology development guide of the Wine and Food Ontology.

They describe the functions of these default tabs as follows

The classes tab: is for class browsing and editing. It displays and edits the ontology’s

class taxonomy by adopting a tree structure (see Figure 2.4.3). On the right side of

the screenshot, the information regarding the class can be filled in and the template

slots are attached to classes. The whole interface supports copy-paste, drag-drop

functions and various pop-up menus or windows for different types of ontology

components.

Figure 2.4.3: the screenshot of Classes tab

The slots tab: is for slots browsing and editing. It provides frames to show the slots

hierarchy defined in the ontology and to edit slot information includingthe slot’s name,

value type etc.

The forms tab: is to customize the layout used to create instances. The ontology

developers are able to define the type, location and size of the forms.

 29

The instances tab: is for instance browsing and editing by predefined class hierarchy.

The layout of the slot widgets can be modified in the forms tab.

The queries tab: is to provide a common search function for the ontology editor. The

developer can create queries to search the instances, which have a specific slot value

or the slot value in a range. The created queries can be stored, retrieved and combined

from the query library.

2.4.4 Significant plug-ins

The architecture of Protégé simplified the new extensions’ (plug-ins) creation and

integration. The new plug-ins can provide the functions that are not involved in the

standard distribution of Protégé. There is a significant number of such plug-ins

developed by different research groups in the Protégé plug-in library. This section

introduces TGVizTab, UMLS tab and PROMPT tab.

TGVizTab (Alani, 2003) is a new Protégé plug-in to graphically represent the

ontologies in Protégé. It’s based on the technology of Touchgraph that provides a java

library for expressing networks as interactive graphs.

It can be seen from the Figure 2.4.4.1, TGVizTab displays classes and instances. The

different classes or instances are distinguished as the different nodes in the graph. The

users can navigate the connected sub-graphs by increasing the radius value. Search

and zoom functions are provided as well. The generated graphs can be saved as XML,

and then be opened by other Toughgraph applications.

 30

Figure 2.4.4.1: Visual Representation of the Wine and Food Ontology with
TGVizTab

UMLTab (Shankar et al, 2002) is a Protégé plug-in developed by the University of

Stanford. It provides an interface that allows users to query and retrieve domain

concepts, terms and even semantic types from the knowledge sources of UMLS

(introduced in section 2.2.4).

Figure 2.4.4.2: The UMLS tab interface

As shown in Figure 2.4.4.2, UMLSTab has the following functions:

 Connects the UMLS server with Protégé: the users can access the UMLS

resources from the UMLS tab interface.

 31

 Supports a query from UMLS sources with term names: users can search specific

terms by inputting key words in the search component. (Login UMLS needed)

 Creats classes and instances in Protégé with UMLS content: users can copy or

build anontology hierarchy based on information from UMLS.

 Auto-imports the slots value when classes are created from the search results:

copying a class or an instance from UMLS ontologies involves their slot value.

PROMPT tab is powerful plug-ins for multiple ontology management. The current

version of PROMPT tab provides four optional functions:

1. Compare the current ontology with a different version of the same ontology

2. Move frames between two ontologies including projects in an ontology project.

3. Merge an ontology with a current ontology.

4. Extract part of an ontology and move it to a current ontology.

Figure 2.4.4.3: A comparison of different versions of the Wine and Food
Ontology in the PROMPT tab

The Figure 2.4.4.3 shows the results of comparing two versions of the Wine and Food

Ontology in the PROMPT tab. All the operations regarding the modification of the

ontology being compared: the creation, deletion and the value change etc are all

 32

shown clearly. Through the functions of the PROMPT tab, the ontology developers

ease the process greatly when they detect the progress of other co-operators, integrate

their own work with others, correct incorrect operations that have been saved or focus

on only a small part of the ontology.

2.5 Bioinformedical Databases

The gene information of the BGO is extracted from large distributed databases. In

order to choose credible sources, it is necessary to analyse these databases. This

section introduces three representative bioinformedical databases that provided the

authorized data for the instance creations in BGO.

NCBI: (National Center of Biotehcnology Information) NCBI was established in

1988. It has now become one of the most well known molecular biology information

centres. The main page of NCBI provides entries for databases of both genome

sequencing data and biomedical research literature. NCBI focuses on the

understanding of molecular processes affecting human health and disease, and

develops sequence search engine and software tools for analysing genome data and

biomedical information. As a nucleotide sequence database, GenBank (Mizrachi,

2004) has been supported by NCBI and grown fast since 1992. The 134th release of

GenBank contained more than 29.3 billion nucleotide bases in overy 23 million

sequences. Now it has other collaborative databases such as the Molecular Modeling

Database (3D protein structures), the Unique Human Gene Sequence Collection, a

Gene Map of the Human genome etc. (Another important part of NCBI: PubMed is

introduced later)

 33

Gene Cards (Chalifa-Caspi et al, 2004; Lancet et al, 2005): Gene Cards is one of the

main knowledge sources for BGO development. It integrates the knowledge of human

genes and the related annotations in a comprehensive topic range. It also provides the

links about specific gene to more than 50 links to other databases. Basically, most

known information about a human gene such as utomatically-mined genomic,

proteomic and disease relationships can be found with Gene cards. The search engine

of Gene Cards supports both simple search and advanced search.

Swiss-Prot (Apweiler, 2001): Further BGO development required gene information

on all organisms. Swiss-Prot provides this. It is not only an annotated protein

sequence database, but also presents other biochemical information. The annotations

that Swiss-Prot provides for sequences are the result of a labor-intensive process that

includes assessment information from published articles along with use of a variety of

programs and algorithms. By 2000, SWISS-PROT had over 95,000 nucleic acid

sequences, and the amount keeps increasing dramatically these days.

PubMed (Canese et al, 2003): Most of the annotation links in BGO are searched

through PubMed. PubMed is a biomedical journal database of the U.S. National

Library of Medicine. It was built in the1950s and up to now, has included over 16

million biomedical citations and other life science journals. Through PubMed query,

researchers can find full text articles and other related resources. An ordinary

bioinformatical researcher can gain access from the NCBI home page.

Other used but less important resources in BGO are introduced briefly in the source

table in section 3.4.2.

 34

Chapter 3 - Methods and Methodologies

This BGO research aims at the development of the Brain Gene Ontology. According

to Gomez-Perez et al, (1996) ontology engineering requires a comprehensive, highly

integrated series of techniques and methods to perform the processes of ontology

learning, building, evaluating, merging etc. In this chapter, section 3.1 discusses the

features and gaps of the existing approaches, and section 3.2 explains why a new

approach attached with Protégé was chosen and how this approach was applied.

Section 3.3 and 3.4 describes the details of BGO development and the criteria used for

building and evaluating BGO respectively.

3.1 Discussions about existing approaches

In the domain of computer and information science, there has been a growing interest

in participating in ontology development since the 1990s. As a result, ontology

research groups have provided a series of methods and methodologies for ontological

engineering. These methodologies defined their activities in the ontology

development process, and were used to develop ontologies from scratch, or by reusing

other ontologies.

Uschold and King’s method

One of the earliest methods for building ontology was summarized by Uschold and

King in 1995. Based on their rich experience of enterprise ontologies, they defined the

classical four steps that are necessary in ontology development: identify the purpose;

build the ontology; evaluate the ontology and document the ontology. However, the

conceptualization process, which provides a primary domain model, was not included.

 35

This creates a gap between the understanding of the domains and the implementation

of the ontology.

Gruninger and Fox’s methodology

By contrast, Gruninger and Fox’s methodology (1995) focuses on identifying the

possible applications of the ontology, and then determines the scope of the ontology

by using a set of competency questions. They extract the concepts, the properties of

the concepts, the relationship between concepts and the formal axioms of the ontology

from the answers of these competency questions. Gruninger and Fox’s method first

introduced the first-order logic and provided a guide to create computable models

from natural language questions. On the one hand, based on the experience of the

TOVE project, Gruninger and Fox’s methodology pays more attention to ontology

development and management. On the other hand, other important processes like

ontology evaluation and integration are not involved.

Amaya Bernaras et al‘s approach

Amaya Bernaras et al‘s approach (1996) is based on the KACTUS project. This

approach unites ontology development to application development. Once an

application is developed, the required term’s list will be provided and be reflected to

corresponding terms in the top-level ontological categories. The design process will

search developed ontologies to refine and extend the new ontology. Finally, the

structure of the new ontology will be refined as well. Bernaras et al’s approach

provides a way of building an ontology by reusing a developed ontology, but it still

lacks methods to evaluate the ontology.

 36

SENSUS method

The SENSUS method (Swartout et al, 1997) builds the skeleton of a domain ontology.

As introduced in section 2.2.3, SENSUS concentrates on the domain of machine

translation. It presents a method to link domain specific terms to a large-scale

ontology and prune the tree in the large-scale ontology. The process to obtain the

ontological skeleton is shown in Figure 3.1. All the steps need to be done manually

and some new nodes also need to be added if the ontology developer requires some

understanding of the domain. One problem raised here is perhaps the complexity of

classifying whether the nodes in all of the sub-trees are useful or not, especially when

the process is manually undertaken.

Figure 3.1: The process of building ontological skeleton in SENSUS

Link terms
to

SENSUS

Add paths
to the root

Add new
domain
terms

Add sub-
trees

Identify
seed
terms

On-To-Knowledge methodology

The On-To-Knowledge methodology (Staab et al, 2001) has a group of techniques

and methods to develop ontologies in order to improve the quality of knowledge

management in distributed organizations. It firstly presents a feasibility study to make

the adopted terms appropriate to the completed application, and then based on this

feasibility study, executes a kickoff program to describe the competency questions.

Finally it refines the terms to obtain the application oriented “target ontology”. As a

knowledge engineering methodology, On-To-Knowledge also provides a method to

learn, evaluate and maintain ontologies.

Thus, the ontology development methods and methodologies above cover almost all

existing approaches. It is hard to compare the value of each because they all work

 37

effectively for different objectives. They provide suitable guidelines for ontology

development at different stages of the whole development process. However, most of

the approaches focus only on development activities and ignore the other important

respects such as evaluation, integration, merging and learning ontologies. The BGO

development requires a more comprehensive approach that can provide a tool or tool

suite that is able to provide technical support to cover all the activities necessary in

the ontology engineering process. Therefore, the developing BGO employed

constructive methodology, which takes advantage of Protégé to execute the

development process.

3.2 A Constructive approach

The constructive methodology was firstly addressed by Nunamaker et al in 1991, and

was concerned with conducting information system research that incorporated theory

building, system development, experimentation and observation (see Figure 3.2). In

the BGO development project, a constructive approach can take advantage of the

selected development tool: Protégé. According to Cornford and Smithson (1996, page

44), constructive methodology is an information system development methodology,

suitable for building a research framework, undertaking technical development and

refining domain concepts. It “does not describe any existing reality, but rather helps

to create a new one, and does not necessarily have any ‘physical’ realization.” The

development of the BGO is new and important in its field, and it cannot be proven

mathematically and evaluated empirically although there are some previous ontology

cases. So the best way is to construct a new method under the theoretical framework

of constructive methodology.

 38

Figure 3.2: A multimethodological approach to IS research (Nunamaker et al,
1991)

Based on Nunamaker and his colleagues’ multi-methodological approach, this

research was executed through the following five basic phases not including

experimentation:

1. Construct a conceptual framework: In this phase the research questions

were justified. After broad literature research and analysis, the proposed

solution was specified as building BGO by using Protégé. As a result, the

technical features and advantages of Protégé were reviewed in order to

demonstrate the validity of the solution. This phase included the investigation

and the understanding of Protégé functions, additional plug-ins, BGO

requirements and building procedures etc. Some other disciplines related to

additional approaches were also explored.

2. Build architecture: This provided the road map for the BGO development

process. The architecture specified the employed functions of Protégé

components and the relationships among the components. It also considered

the extensibility and modularity of Protégé.

 39

3. Analyze and design the system: This stage was mainly for brain gene domain

studies, diseases analysis and database creation. The domain studies included

the application of the related scientific and technical knowledge. As an

ontological engineering project, the data structures and databases were

determined at this stage. The final solution was selected from the alternatives.

4. Develop the system prototype: This phase was building the BGO and gain

insight as to the feasibility and usability of the BGO.

5. Observe and evaluate the system: Depending on the statement regarding the

requirements of the previous phase, the developed BGO was tested in order to

measure its performance, and at the same time, the impacts that each operation

brought to various terms were observed. Finally, the evaluation for the whole

BGO provided based on the conceptual framework.

As Figure 3.2 shows, the experimentation part is not involved in the research

framework because this Brain Gene Ontology Engineering case mainly focuses on the

BGO design, implementation and observation as stated above, and experimentation

will be a necessary component of the research framework in further research. This

approach basically covers the efforts of previous research and integrates a

comprehensive and flexible tool to resolve technical gaps. The next main issue is the

criteria used in the BGO development process.

3.3 Criteria

The criteria in this section were used for research restrictions, the performance

measurements of the BGO and design problem identification.

 40

3.3.1 The Criteria for Determining Scope

Nunamaker et al (1991) emphasize that every researcher of IS engineering firstly

needs to determine and limit the scope of their research. This is also very important in

the ontology engineering process. On the one hand, ontology is a way of modeling

reality, but this does not mean it includes everything in the domain. In the process of

building the BGO, the following questions were used to guide many of the modeling

decisions down the road:

1. What is the knowledge that BGO will cover?

2. What is the BGO going to be used for?

3. What types of questions should the BGO provide answers for?

4. Who will use and maintain the BGO?

These questions help limit the scope of the BGO. The simple answers for these

questions are: 1.) BGO represents information about brain genes, proteins, diseases

and the relationships between them. 2.) BGO is used to help the study of brain genes

and diseases, emphasizing which genes are highly expressed in a brain disease. 3.)

The concepts of BGO describe the functions, the molecular length, weight and

important annotations of significant genes. 4.) Biomedicine students and researchers

are the potential users and maintainers of the BGO.

The BGO should provide enough information and certain specific levels of detailed

information about brain genes, proteins and diseases. A Competency questions

(Gruninger and Fox, 1995) list was made to describe the information that should be

included in the BGO:

• What is the name of Gene/protein related to brain disease?

• Is that a protein complex?

 41

• What is the chromosomal location of gene?

• What is the molecular length of gene/ protein?

• What is the molecular weight of gene/ protein?

• Which protein does this gene produce?

• What are the reference articles for this gene/protein in PubMed?

• What is the function of the gene/protein

• Are there any other comments?

• How is the gene expressed in its expression map?

• What is the orientation of protein/gene?

• What is the source of the gene/protein? (Human/animal)

These questions are not comprehensive, but are useful in representing some typical

information in the BGO. Through answering these competency questions, BGO

would include knowledge that biomedicine students and researchers need.

3.3.2 The Criteria for Ontology design

The design of BGO obeyed the basic principles that have been proven valuable in

previous ontology development. These design principles can also be seen as the

objective criteria for guiding ontology design and are explained as follows:

The standardization of names (Arpirez et al, 1998): Besides the naming rules in

Protégé, the naming conventions of BGO are the same for all the name related terms

in order to make the BGO easily understood. For example: EO_Creator_Scheme and

EO_Annotation_Scheme follow the same naming conventions; EO_Creator_Scheme

and Annotation_SchemeInEO do not.

 42

Minimize the syntactic distance between sibling concepts (Arpirez et al, 1998):

The creation of sibling concepts in BGO is based on the same pattern, the

representations of these sibling concepts use the same primitives if possible. This

improves the comprehensibility and reusability of the BGO.

The representation of disjointed and exhaustive knowledge (Arpirez et al, 1998):

Generally, subclasses are disjointed if they do not have any common instances. Two

subclasses in BGO are defined as disjointed decomposition when using the system in

Protégé if they do not have common instances.

Clarity (Gruber, 1993b): All the definitions (classes) in BGO are objective. They are

stated and documented with natural language in BGO.

Extendibility (Gruber, 1993b): Future users of the BGO are able to define new terms

for some extended usage, for example, the four classes in the red box can be created

for the introduction of the BGO and related information storage (see Figure 3.3.2).

This extended content is based on existing vocabulary and did not require revision of

existing definitions.

Figure 3.3.2: Extended classes
Coherence (Gruber, 1993b): The slots and facets of the definitions in BGO are

limited to a reasonable range based on the axioms. Anything that causes a definition

or instance given contradicts the axioms has been fixed.

 43

Minimal ontological commitments (Gruber, 1993a): To support knowledge sharing,

BGO specifies the weakest theory and defines only the terms that are crucial to the

communication of knowledge consistent with the theory. This minimizes ontological

commitments and increases the reusability of the definitions of the BGO in different

systems.

3.3.3 The Criteria for Reusing the Existing Sources

As is stated earlier, there are two ways to build an ontology, by reusing a developed

ontology or from scratch. Noy and McGuinness (2001) emphasized that it is always

worth considering refining or extending existing ontologies that have been created by

others with a similar purpose or in the same domain. The biomedical field has

produced some large standardized and structured vocabularies. This brain gene

ontology case imports and reuses some structures and information from GO (Gene

Ontology) (Ashburner et al, 2000) and UMLS (Unified Medical Language System)

(Humphreys and Lindberg, 1993). Information about specific genes and proteins was

also extracted from well-known bioinformatical databases. Some criteria were defined

to guide the importing process:

Comparative selection: The knowledge model of BGO took experiences from both

GO and UMLS. Through importing some of the class hierarchies with attributes from

these classical domain ontologies, BGO gained a first pass of the classification of

genetic knowledge and feature selection. The selected structures or knowledge trees

were compared before merging them in order to improve their suitability and accuracy.

Almost all of the data has multiple sources from different genetic databases. These

 44

were marked and linked to the annotation part of BGO. The different sources on the

same unit were also recorded in the BGO.

The adoption of Plug-ins: Importing and comparison were done by Protégé plug-ins.

There are two plug-ins in the importing process: PROMOPT Tab and UMLSTab.

UMLSTab was adopted to access the UMLS knowledge base and PROMOPT Tab

was used to compare and merge the imported parts with BGO and track any changes

that happened in the whole process.

Database evaluation: A list of biological sources covering the whole domain was

evaluated by domain experts. The brain gene data and information were collected

from large-scale, stable and credible databases. There is also an annotation feature in

BGO where domain experts can share and annotate information in the field. Each

piece of data was included from more than one source. Different results were stored

as different categories by source.

3.3.4 Criteria for BGO Structure Evaluation and Biological Data Verification

Domain experts (Vishal Jain and Lubica Benuskova) supervised the BGO structure

evaluation and biological data verification in this research. There are two reasons why

domain experts are required to supervise these aspects:

1. The knowledge limitation of an IS developer: Although ontology

engineering case study is IS research, it requires the BGO developer to have a

deep understanding of the structure of biological knowledge and vast

experience of biological data investigation, in which an ordinary IS researcher

 45

may not be competent. Domain experts and supervisors were also the initial

users of the BGO and the cooperators for BGO development.

2. The importance of data resource verification and evaluation work: There

are a huge numbers of biological and bioinformatical resources that are

available from the World Wide Web. However, not all of them are credible

and comprehensive. These resources and data need to be verified by biological

experts before being adopted. Moreover, the potential users of the BGO are

biological students and the knowledge base for biological researchers. The

knowledge content and structure must reach a high standard of accuracy and

authority.

3.4 Building Architecture

Figure 3.4 shows the entire research framework. In the whole process of BGO

development, domain experts provided basic ideas on the requirements for ontology

development and reflected on the problems that the ontology had from the point of

view of biology. At the same time, the ontology development started to build the

architecture with the blocks of literature research, methodology analysis and

biological knowledge resources were being developed. Excluding the preparation

phase, BGO development involved four basic stages: building the conceptual

framework, designing the BGO system, BGO assessment and BGO system refinement.

The building of the conceptual framework has been stated in detail in section 3.2. This

section focuses on the ontology development process and describes the whole process

including ontology design; materials, techniques, samples and data that were used in

the BGO development.

 46

BGO Development Resources

Preparation

Figure 3.4: The conceptual framework for BGO development

Determine scope

Consider reuse

Enumerate terms

Define classes

Define properties

Define constraints

Create instances

Assess BGO

Refine BGO

Foundations
Theories
Frameworks
Constructs
Methods
Cases and examples…

Methodology
Techniques
Applications
Measurements
Criteria…

Biological Knowledge
Base
UMLS
Gene card
…

Building Conceptual
framework

Add
Knowledge

Applying
Knowledge

Evaluate
and suggest

Reflect on
problems

Domain
Experts

3.4.1 Preparation

To follow the normal research procedure sequence, the preparation phase was

organized into the following steps:

Step 1. Determine the research scope and the research topic.

Step 2. Decide on the research questions and the expected research outcomes.

Step 3. Review the literature related to work done by other researchers in the field in

 order to identify their achievements and drawbacks.

 47

Step 4. Select the techniques and platforms for BGO development based on the

previous step.

Step 5. Decide on the research methodologies and confirm the plan with the

supervisor.

Step 6. Analyze, make, evaluate and update the criteria.

Step 8. Write a plan for the practical phase and identify the contribution of each

stage.

Step 9. Discuss and review the outcomes of the preparation phase with the

supervisor.

3.4.2 BGO Development Environment and Data

Techniques and Platform: A stable version of Protégé (version 3.1) was adopted as

the BGO development platform (See section 2.4). There were three adopted Protégé

plug-ins in the development process in total: UMLSTab, PROMPT, and TGVizTab.

PROMPT was mainly used to update, compare and merge ontologies; the UMLSTab

was used to import and reuse; the TGVizTab was for ontology visualization and

structure handling (See section 2.4.4).

Biological Data: Through a series of web searches with the supervisor and domain

experts’ recommendations, the candidate biological knowledge bases were selected

(shown in Table 3.4.2).

Data regarding 93 significant brain genes, 70 proteins and 14 protein complexes with

a number of attributes were collected from these online knowledge bases. Table

3.4.2.2 shows a part of the gene information gathered for the subunits of the AMPAR

 48

(amino-methylisoxazole-propionic acid) receptor. The data collected from different

sources were compared, identified and stored with annotations.

Name URL Address Type of the
Knowledgebase

Gene Card http://www.genecards.org/ An integrated database of
human genes

Genbank http://www...Genbank/index.html An NIH genetic sequence
database

Genes and
Disease

http://www.ncb...=gnd.chapter.75 A collection of articles
that discuss genes and the
diseases that they are
connected to.

KEGG http://www.genome.jp/kegg/ An Encyclopedia of genes
and genomes

Allen Brain
Atlas

http://www.brain-map.org/ An interactive, genome-
wide image database of
gene expression in the
mouse brain

Swiss-Prot http://us.expasy.org/sprot/ A curated protein
sequence database

Ensembl http://www.ensembl.org/index.html A project which produces
and maintains automatic
annotation on eukaryotic
genomes

Gene Ontology http://www.geneontology.org/ A controlled vocabulary
to describe gene and gene
product attributes in any
organism

GNF http://expression.gnf...bin/index.cgi An RNA expression
database

GeneLoc http://bioinfo2.weizmann...index.shtml An integrated map for
each human chromosome

GeneNote http://bioinfo2.wei.../home_page.pl A database of human
genes and their expression
profiles in healthy tissue

Table 3.4.2.1: Candidate biological knowledge bases for data collection

 49

Protein
Name

Gene
Name

Function or Comments Molecular
Weight;
Length

References at NCBI
 (if available)

Glutamate
receptor 1

GRIA1 L-glutamate acts as an excitatory
neurotransmitter at many synapses in the
central nervous system. The postsynaptic
actions of Glu are mediated by a variety of
receptors that are named according to their
selective agonists.

101536 Da;
906 AA

PubMed=1311100
[NCBI]
PubMed=1320959
[NCBI]
PubMed=1652753
[NCBI]

Glutamate
receptor 2

GRIA2 Receptor for glutamate. L-glutamate acts
as an excitatory neurotransmitter at many
synapses in the central nervous system.
The postsynaptic actions of Glu are
mediated by a variety of receptors that are
named according to their selective
agonists. This receptor binds
AMPA(quisqualate) > glutamate > kainate.
Interacts with PRKCABP, GRIP1 and
GRIP2 (By similarity).

98821 Da;
883 AA

PubMed=8003671
[NCBI]
PubMed=12477932
[NCBI]
PubMed=7523595
[NCBI]

Glutamate
receptor 3

GRIA3 Receptor for glutamate. L-glutamate acts
as an excitatory neurotransmitter at many
synapses in the central nervous system.
The postsynaptic actions of GLU are
mediated by a variety of receptors that are
named according to their selective
agonists. Interacts with PRKCABP, GRIP1
and GRIP2 (By similarity).

101023 Da;
894 AA

PubMed=7918660
[NCBI]
PubMed=10602120
[NCBI]

Glutamate
receptor 4

GRIA4 L-glutamate acts as an excitatory
neurotransmitter at many synapses in the
central nervous system. The postsynaptic
actions of Glu are mediated by a variety of
receptors that are named according to their
selective agonists.

100809 Da;
902 AA

PubMed=8589990
[NCBI]

Table 3.4.2.2: Part of the gene table for the subunits of the AMPAR (amino-
methylisoxazole-propionic acid) receptor

3.4.3 BGO Development Process

Considering the features of the Protégé ontology editor and its possible functional

plug-ins, one of the best solutions to building a brain gene ontology is to begin with a

rough first pass of the ontology, and then assess and refine the evolving ontology,

finally inserting the data and details.

Therefore, BGO development in Protégé is actually an iterative process. Figure

shows the possible ontology development process with Protégé. Theoretically, the

 50

most direct way to build the BGO has to involve the basic elements in Figure and

follow the steps below:

Figure 3.4.3.1: The iterative ontology building process in Protégé (Noy &
McGuinness, 2001)

Step 1. Determine the scope of the BGO: As discussed in section 3.3.1, the

knowledge that BGO covers was restricted to a reasonable range and while still being

able to provide the necessary level of detail on brain genes, proteins and the

relationships between them.

Step 2. Consider reusing existing ontologies: There are two biological knowledge

structures that were able to be used as a reference by the BGO; UMLS and Gene

Ontology (see section 2.2.4). Gene Ontology has XML and OWL versions which are

both supported by Protégé. In order to import the terms from these two knowledge

bases into Protégé, The plug-in: UMLSTab was used. UMLSTab is able to browse

and import the knowledge tree from the UMLS knowledge base. (See section 2.4.4)

Step 3. Enumerate important terms in the ontology: This step requires a list to

remind the developer which terms are necessary to the BGO. These terms include the

basic domain concepts such as: gene, protein, protein complex etc，and the properties

 51

of the concepts such as gene function, gene expression map, molecular length,

molecular weight etc.

Step 4. Define classes and class hierarchy: The BGO adopts the top-down method

(Uschold & Gruninger, 1996). This method starts building the class hierarchy with

the most general concepts in the domain, and then creates and categorizes the sub-

concepts of the concepts. For example: BGO requires a class to represent brain gene

annotations and the class “EO_Annotation_Scheme” was created, then further

categorized the classes into subclass “GO_Annotation” to represent the Annotations

in Gene Ontology and “EO_External_Database” to represent the Annotations in other

knowledge bases. (Figure 3.4.3.2)

Figure 3.4.3.2: Top-down method
Step 5. Define the properties of classes—slots: Slots can be created with Protégé

editors. They represent the properties of the domain concepts. After completing the

class hierarchy, slots were created to describe the internal structures of the BGO

classes. There are various types of slots. For example: molecular length is

an“intrinsic” property, name is an“extrinsic” property and organism represents the

relationship between “gene” and “organism” etc. The properties of the class can be

inherited by its subclasses.

Step 6. Define the constraints of the slots: Facets restrict a series of features such as:

value type, value range and the number of values etc that a slot value can have. For

example, the orientation of a gene can only be “plus strand” or “minus strand”, so the

 52

value type of the slot “orientation” is symbol and the two values are the only

allowable values.

Step 7. Create instances: The instances represent the individual cases in the created

classes. Individuals of the BGO classes were created last. This requires specifying a

class, creating an instance for the class and filling in the slots of the instance.

Step 8. Assess the BGO: The first version of the BGO was rough and easily made

errors. This research adopted two methods to find the problem. One was the

suggestions and feedback from the domain experts and supervisors as mentioned in

section 3.3.4. As well as this, this research integrated the ideas of Noy and

McGuinness (2001) to provide a guideline to check and advise the ontologies built

with Protégé. Some of the rules were adopted for BGO assessment and listed as

follows:

• All the instances of a subclass are also the instances of the parent classes.

• All the subclasses of a subclass are also the subclasses of the parent classes.

• One of the most common errors is a class cycle: A is the subclass of B and B

is the subclass of A.

• Normally, the amount of the subclasses of a class should be a natural number

that is greater than 1 and smaller than twelve. Otherwise, the ontology is not

complete and some intermediate categories need to be added.

• A class can be the subclass of several classes, which also means it inherits all

of the slots from all these classes.

• New classes should be introduced when an ontology has a very flat structure; a

few classes and a large number of information in each slot; classes should be

 53

reduced when an ontology has an extremely nested hierarchy with many

extraneous classes.

• Instances must be the most specific concepts. Otherwise they should be a class.

• Inverse slots decide each other’s value. For example, if Gene A produces

protein B, then protein B is produced by Gene A. From the knowledge-

acquisition perspective, this is not redundant, and both pieces of information

should be explicitly available.

Step 9. Refine BGO: Once any problem has been found, go back to the step where it

was created and fix it.

 54

Chapter 4 – Brain Gene Ontology

The Brain Gene Ontology version as of June 14, 2006 contains 286 concepts, stores

information about 93 brain genes, 90 proteins, 14 protein complexes and 228 related

references from PubMed. Significant neuronal parameters such as AMPA, GABA,

NMDA, SCN, KCN and CLC were created with detailed descriptions. In addition,

their direct or indirect interactions with several other genes/proteins, and their

expression levels were also indicated. Figure 4.0.1 shows the ClassesTab of the BGO

in Protégé-Frames. The class hierarchy can be seen clearly from the CLASS

BROWSER on the left. The class: THING is the root class and the parent class of all

of the classes in the BGO and SYSTEM_CLASS is used by Protégé-Frames for

defining the structure of various Protégé forms. Several classes were created for BGO

learnings and presentations including the classes, Intro, Photo, Text and

Ontology_learning_domain. The rest of the classes describe the roles of brain gene

products and the relationships between the most important terms with annotations.

Figure 4.0.1: BGO in the Classes Tab

 55

The CLASS EDITOR on the right shows the information in the class and the template

slots that the selected class has. The slots can be viewed and edited by double clicking

in CLASS EDITOR without going to the Slots Tab. All individuals including the

brain genes, proteins and annotations etc can be queried from both the Queries Tab

and the Instances Tab by entering their symbols or any slots value that the queried

individual has. A detailed description of each term can be seen in the sample script in

Figure 4.0.2 which is taken from the XML version of a BGO file.

<class>

 <name>Gene</name>

 <type>Evolving_Ontology_Metaclass</type>

 <own_slot_value>

 <slot_reference>EO-SOURCE</slot_reference>

 <value value_type="simple_instance">infogenev1_00072</value>

 </own_slot_value>

 <own_slot_value>

 <slot_reference>EO-CREATOR</slot_reference>

 <value value_type="simple_instance">evolvingontology2_Instance_8</value>

 </own_slot_value>

 <own_slot_value>

 <slot_reference>EO-DATE_CREATED</slot_reference>

 <value value_type="simple_instance">BGOmap_Instance_60000</value>

 </own_slot_value>

 <own_slot_value>

 <slot_reference>:ROLE</slot_reference>

 <value value_type="string">Concrete</value>

 </own_slot_value>

 <superclass>EO-THING</superclass>

 <template_slot>is_part-of...Map</template_slot>

 <template_slot>Object_Symbol</template_slot>

 <template_slot>Synonyms</template_slot>

 <template_slot>indicates_high_expression_in</template_slot>

 <template_slot>organism</template_slot>

 <template_slot>chromosomal_location</template_slot>

 <template_slot>GO_function</template_slot>

 56

 <template_slot>Orientation</template_slot>

 <template_slot>Annotations</template_slot>

 <template_slot>produce</template_slot>

 <template_slot>indicates_low_expression_in</template_slot>

 <template_slot>expression_description</template_slot>

 <template_slot>function_comments</template_slot>

 <template_slot>indicates_medium_expression_in</template_slot>

 <template_slot>expression_map</template_slot>

 <template_slot>molecular_length (AA)</template_slot>

 <template_slot>molecular_weight (Da)</template_slot>

 <template_facet_value>

 <slot_reference>is_part-of...Map</slot_reference>

 <facet_reference>:VALUE-TYPE</facet_reference>

 <value value_type="string">Instance</value>

 <value value_type="class">Biomedical_Informatics_Map</value>

 </template_facet_value>

 <template_facet_value>

 <slot_reference>organism</slot_reference>

 <facet_reference>:DEFAULTS</facet_reference>

 <value value_type="class">Human</value>

 </template_facet_value>

 <template_facet_value>

 <slot_reference>organism</slot_reference>

 <facet_reference>:VALUE-TYPE</facet_reference>

 <value value_type="string">Class</value>

 <value value_type="class">Organism</value>

 </template_facet_value>

 <template_facet_value>

 <slot_reference>GO_function</slot_reference>

 <facet_reference>:VALUE-TYPE</facet_reference>

 <value value_type="string">Class</value>

 <value value_type="class">molecular_function</value>

 </template_facet_value>

 <template_facet_value>

 <slot_reference>Annotations</slot_reference>

 <facet_reference>:VALUE-TYPE</facet_reference>

 <value value_type="string">Instance</value>

 <value value_type="class">EO-Annotation_Scheme</value>

 57

 </template_facet_value>

 <template_facet_value>

 <slot_reference>produce</slot_reference>

 <facet_reference>:VALUE-TYPE</facet_reference>

 <value value_type="string">Instance</value>

 <value value_type="class">Protein</value>

 </template_facet_value>

</class>

Figure 4.0.2: A detailed script of a created Class: Gene (XML version)

The creation of the gene class includes identifying different types of part–whole

relationships with different slots, and defining slots and facets for slots. The following

sections focuses on how BGO works under the extended functional APIs and

enumerates the Widget types in BGO and their different applicability.

4.1 BGO visualizations with TGVizTab

Sometimes, the relations and interactions among the terms in BGO can be very

complex. There are methods to view and navigate such terms and relations more

clearly and effectively in Protégé-Frames. Figure 4.1A and 4.1B show the

visualization maps for the class: Gene with TGVizTab. Through map A, one can see

the closest terms of Gene in the first two levels of the whole BGO hierarchy, and

through the enlarged map B, one can navigate the exact relations among Gene and

other terms. For example: Gene produces Protein; Gene is the super class of EO-

THING; Gene is in part of the Biomedical_Informatics_Map; Gene is annotated by

EO-Annotation_Scheme etc.

 58

 (A) (B)

Figure 4.1: Gene in visualization maps.
(A) The closest terms in the first two hierarchies. (B) Navigating exact relations.

4.2 Tracking changes in the BGO in PROMPT

The engineering process of BGO is endless and requires improvements and

maintenance by various developers and users. Therefore it must have a function to

track changes in order to know where the changes are, who made the changes and

what they changed. As can be seen in Figure 4.2A and 4.2B, the plug-in, PROMPT,

provides two kinds of forms to compare BGO versions from June 14, 2006 and June 2,

2006.

 (A) (B)
Figure 4.2: Tracking changes in BGO with PROMPT.
(A) Tree view, (B) Table view

 59

The tree view form follows the visualized style of the BGO class hierarchy faithfully.

One can find details of the changes in class, slots and instances easily as they have

been marked. All the differences in the selected term are shown on the bottom right.

The table view form provides a list of which terms in BGO have been changed and

what kind of changes they are, and shows the differences in the term at the bottom.

4.3 The storage and display of slots in the BGO

In BGO, almost every class has a number of attributes that are very important for

brain gene research. Figure 4.3 shows the attributes panel of the brain gene:

GABRA1. These attributes have various value types and are displayed in different

forms of widget in the Instances Tab (See section 2.4.1).

Figure 4.3: The various types of slot widgets

There is no restrictive rule for choosing widget types for the slots. Nevertheless, the

value type, value cardinality and the capacities of the widgets should be considered.

The gene slots can be examples to prove the conditions for which widgets are suitable.

TextFieldWidget: Chromosomal Location, Molecular length and Weight, Object
Symbol

 60

Chromosomal Location, Molecular length and Weight are the internal attributes of

brain genes and the values for them are all short numeric. Object symbol is the

symbol name of brain genes in biology. Their values can all be short strings, and

normally they only have a single value.

StringListWidget: Synonyms

One gene may have multiple synonyms identified in different knowledge bases. For

example, GRIA1 has the Synonyms: GLUR1 and GLUH1 in SWISS-PROT. The

value type is short strings.

SymbolListWidget: Orientation

The orientation of a brain gene has only two possible values: PLUS or MINUS. The

value type is short strings.

TextAreaWidget: Function comments and Expression descriptions

The function comment and the expression description of a brain gene are all

paragraphs of descriptive words. The value type is long strings.

ClsFieldWidget: Organism

A gene may belong to multiple organisms, but the current version of BGO only

supports brain genes in human organisms. Human is a class.

ClassListWidget: GO Functions, Indicates High, Medium and Low Expression

In

 61

A brain gene may have more than one function comment in GO. The same gene can

indicate different levels of expression in multiple organs of the brain. The value type

is “classes”.

ImageWidget: Expression Map

Images of the gene expression map can only be displayed in BGO with ImageWidget.

Other multimedia files, such as videos and audios, are displayed as URL links.

InstanceFieldWidget: Produce, Creators and Is Part-of...Map

A brain gene can produce a protein which is an instance of the class Protein, and is

part of a protein complex map which is the also an instance of the class

Protein_Complex_Map. The creator of this gene is an instance of the class

Ontology_Engineer.

InstanceListWidget: Annotations

Every annotation in BGO has a unique ID number and the annotations of genes are

instances of the class: EO-Annotation_Scheme. Since the annotations are displayed in

widgets as ID numbers, their value type is short strings.

 62

Chapter 5 - Result and Discussion

The Brain Gene Ontology development case study is implemented to answer the

questions is Information System development methodology suitable for ontology

development, how does Protégé-Frames and its extended functional APIs perform the

BGO development process, and if the BGO system can integrate gene data from

multiple biological knowledge bases with BGO? The present results are evidence that

their research basically reached these targets and resolved the research problems.

Firstly, the BGO engineering case study was done under the guidance of the

constructive approach. The conceptual BGO development framework followed

fundamental IS research theory. The architecture of the research also gained benefits

from the IS approach since it enhanced the interactions and relations among the

ontological engineering process components. The ontology building, merging,

learning and evaluation of the ontology were sufficiently combined together as a

whole and this actually filled in the gaps of previous research. All of the above

indicates that IS methodology can properly be applied to biomedical research and is

capable of conceptual development and implementation.

Secondly, Protégé-Frames was well utilized in the whole ontology building process.

The main functional tabs tightened the relationships among the classes, class

hierarchy, slots and instances. The developed BGO is able to describe the role of

significant brain genes, proteins and their relationships. The extended plug-ins were

helpful in improving BGO visualization. The visualization plug-ins helped to enhance

the presentation of the relationships among BGO terms and reduced the cognitive gap

between ontology users and developers. To increase the reusability of the existing

resources and the efficiency of this reuse, the knowledge-acquiring plug-ins were

 63

implemented. This brought to the BGO not only ideas for constructing an ontology,

but also the information under the expert system supervised. To reinforce the

functions of the ontology editor, plug-ins for tracking changes, ontology merger and

comparison were employed. This dramatically enhanced the performance of ontology

merger, modification and update. Therefore, the selected tool suite is proven to be

suitable and flexible enough for the research task. The open strategy of BGO is also

based on functional support from Protégé.

Finally, the research extracted the information from several well-known biomedical

knowledge bases to build its own knowledge base. BGO gathered genomic data and

protein annotations from many sources. The most important issues at this stage are

data verification and database evaluation. Since the research received supervision

from domain experts, it gained significantly in the area of criteria making, these issues

were resolved smoothly.

 64

Chapter 6 Conclusion

6.1 Conclusion

This ontology engineering research represents brain gene and disease information by

adopting a constructive approach, improving discovery, sharing and reuse of

information about crucial neuronal parameters through their interactions with each

other. The constructive approach takes advantage of the IS development

methodology. It builds a comprehensive development framework to enhance the

process of ontology learning, design, evaluation and refinement so that the adopted

tool, Protégé-Frames can be efficiently used. To compare the BGO development

process with previous research, the IS development methodology provides more ideas

to improve the communications between the ontology developers and the domain

users.

In addition, the implementation of an open source extended application provided more

flexibility and reusability for ontological visualizations and refinements. The multiple

tools are applied to the development process. This actually brings benefits for both the

developing ontology and the developed Brain Gene Ontology. Furthermore, the BGO

annotation system is based on multiple notations from different biomedical

knowledge base. It significantly increases the credibility of the BGO information and

improves the accuracy of the biological data in the system.

A difficulty in BGO development is always making criteria because there is no single

rule to cover all the issues in ontology development. Assumptions on class hierarchy

design, knowledge reuse and verification must have the support of detailed criteria.

The criteria making process of this research was based on theoretical foundations and

 65

the experience of bioinformatical experts who were also in the BGO project team. All

the steps were evaluated by them, which ensured the developing process was on the

right track.

This BGO development case is also a foundation stone for further Kedri project:

Brain Gene and Simulation System (BGOS) (Kasabov et al, 2007a), which represents

stronger integration of Bioinformatics and Neuroinformatics Data in order to improve

the understanding of Brain (Kasabov et al, 2007b).

6.2 Future research

The research results indicate that the BGO engineering case study significantly

improved knowledge representation of the brain genes. Future research on brain gene

ontology is proposed as follows:

1. Ontology Visualizations: Although there are already some opportunities to

visually represent the relationships and interactions between important terms

in BGO, the visualization of BGO is unfinished. Further work is detailed in

another paper (Wang et al, 2006). Further improvements in the visualized

plug-in were introduced. Hyper graph techniques such as Large Graphical

Layout, Walrus and Hypergraph were presented and discussed as new and

plausible techniques for ontology visualization and their application in the

BGO project.

2. Ontology driven knowledge discovery: Gottgtroy et al (2004) demonstrated a

theory, which combines ontology and machine learning techniques and will be

applied to the BGO system. The core of “Ontology driven knowledge

discovery” is Onto4KDD4Onto. On the one hand, the adoption of the ontology

 66

application can be used to improve the KDD process. On the other hand, the

mining technologies of KDD can also be employed to learn and build an

ontology. Based on this theory, Wang et al (2006) worked on a method for

mapping interesting ontology knowledge, by means of visualization, into a

format able to be further analyzed by data mining workbenches, with the

possibility of importing knowledge generated by machine learning algorithms

into ontology representation and visualization.

3. Evolving Ontology: Further research on the evolving ontology may integrate

more information and annotations from more knowledge bases dealing with

brain disorders and other brain diseases in order to enhance the understanding

of the relationships between the genes and diseases.

 67

References:

Alani, H. (2003) TGVizTab: An Ontology Visualisation Extension for Protégé.
Proceedings of the Knowledge Capture (K-Cap'03), Workshop on Visualization
Information in Knowledge Engineering, Sanibel Island, Florida, USA.

Alphaworks. (2006). What is ontology? Frequently asked questions. Retrived from
http://www.alphaworks.ibm.com/contentnr/semanticsfaqs?open&S_TACT=106AH21
W&S_CMP=AWLP in March, 2007, IBM.

Apweiler, R. (2001). Functional information in SWISSPROT: The basis for large-
scale characterisation of protein sequences. HENRY STEWART PUBLICATIONS
1467-5463. BRIEFINGS IN BIOINFORMATICS. vol 2. NO1: 9-18.

Arpirez, J.C., Corcho, O., Fernndez-Lopez, M., Gomez-Perez, A. (2003). WebODE in
a nutshell. AI Magazine 24(3):37-48.

Ashburner, M and 19 colleagues in the Gene Ontology Consortium. (2000). Gene
ontology: tool for the unification of biology. Nature Genet, vol 25, page: 25–29.
http://www.nature.com/ng/journal/v25/n1/full/ng0500_25.html

Aspirez, J., Gomez-Perez, A., Lozano, A and Pinto, S. (1998). (onto)2agent: An
ontology-based www broker to select ontologies. In Proceedings of the Workshop on
Applications of Ontologies and Problem-Solving Methods, ECAI'98, Brighton,
England, pages 16-24.

Astrova, I. (2004). Extracting Ontologies from Relational Databases. Databases and
Applications 2004: 56-61.

Bateman, J. A., Fabris, G and Magnini, B. (1995). The generalized upper model
knowledge base: Organization and use. In Proceedings of KB-KS-95, Twente, The
Netherlands. Second International Conference on Building and Sharing of Very
Large-Scale Knowledge Bases.

Bernaras, A., Laresgoiti, I. and Corera, J. (1996). Building and reusing ontologies for
electrical network applications. In: Wahlster, W. (ed) European Conference on
Artificial Intelligence (ECAI’96). Budapest, Hungary. John Wiley and Sons,
Chichester, United Kingdom, pp 298-302.

Bodenreider, O., Mitchell, J. A and McCray, A. T. (2003). Biomedical ontologies.
Proceedings of the Pacific Symposium on Biocomputing, vol. 8, page: 562-564.

Bontas, E. P., Mochol, M. and Tolksdorf, R. (2005). Case Studies on Ontology Reuse.
Proceedings of I-KNOW ’05 Graz, Austria. http://i-know.know-
center.tugraz.at/content/download/414/1619/file/Paslaru_paper.pdf

Borst, W. N. (1997). Construction of Engineering Ontologies. Centre for Telematica
and Information Technology, University of Twente. Enschede, The Netherlands.

 68

Brickley, D and Guha, RV. (2004). RDF vocabulary Description Language: RDF
Schema. W3C Recommendation 10 February 2004. W3C. http://www.w3.org/TR/rdf-
schema/

Canese, K., Jentsch, J and Myers, C. (2003). PubMed: The Bibliographic Database.
The NCBI Handbook, Part 1. The Databases.

Chalifa-Caspi, V., Yanai, I., Ophir, R., Rosen, N., Shmoish, M., Benjamin-Rodrig, H.,
Iny Stein, T., Shmueli, O., Safran, M. and Lancet, D. (2004). GeneAnnot:
comprehensive two-way linking between oligonucleotide array probesets and
GeneCards genes. Bioinformatics 20, 9: 1457-1458.

Chaudhri, V., Farquhar, A., Fikes, R., Karp, P and Rice, J. (1998). OKBC: A
Programmatic Foundation for Knowledge Base Interoperability, Proceedings of
AAAI-98, July 26-30, Madison, WI.

Cocchiarella, N. B. (1991). Formal Ontology. In: Burkhardt H. and Smith, B. (eds)
Handbook of Metaphysics and Ontology. Philosophia Verlag, Munich, pp: 640-647

Conen, W and Klapsing, R. (2001). Logical Interpretations of RDFS – A compatibility
Guide. Working paper version: 1.0. http://citeseer.ist.psu.edu/635990.html

Connolly, D., Harmelen, F. V., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F.
and Stein L. A. (2001). DAML+OIL Reference Description, W3C Note 18 December
2001. W3C. http://www.w3.org/TR/daml+oil-reference

Cornford, T and Smithson, S. (1996) Project Research in Information Systems.
Basingstoke UK: Macmillan, p 44.

Davis, R., Shrobe, H., and Szolovits, P. (1993). What is a knowledge representation?
AI Magazine, Spring:17–33.

Domingue, J. (1998). Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web. Proceedings of the 11th Knowledge Acquisition for
Knowledge Based Systems Workshop, Banff, Canada.

Eilbeck, K and Lewis, S. E. (2004). Sequence Ontology Annotation Guide.
Comparative and Functional Genomics. 2004 (5):642-647

Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R.,
Ashburner, M. (2005). The Sequence Ontology: A tool for the unification of genome
annotations. Genome Biology 2005(6):R44

Falbo, R. A., Guizzardi, G and Duarte, K. C. (2002). An Ontological Approach to
Domain Engineering. http://citeseer.ist.psu.edu/dealmeidafalbo02ontological.html

Farquhar, A., Fikes, R and Rice, J. (1997). The Ontolingua server: a tool for
collaborative ontology construction, International Journal of Human-Computer
Studies, 46, page: 707-727.

 69

Fikes, R and Kehler, T. (1985). The Role of Frame-Based Representation in
Reasoning, CACM 28(9): 904-920.

Genesereth, MR and Fikes, RE. (1992). Knowledge Interchange Format Version 3
Reference Manual, Logic-92-1, Stanford University Logic Group.
http://citeseer.ist.psu.edu/genesereth92knowledge.html

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubezy, M.,
Eriksson, H., Noy, N. F. and Tu, S. W. (2003). The Evolution of Protege: An
Environment for Knowledge-Based Systems Development. International Journal of
HumanComputer Studies, 58(1), page: 89--123.

George MA., Fellbaum, C and Miller, KJ. (2006). Five Papers on WordNet. retrieved
December, 2006. ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps

Goble, C. A., McGuinness, D. L., Moller, R and Patel-Schneider, P. F. (2001). OilEd:
a reasonable ontology editor for the semantic web. Proceedings of the Intl.
Description Logics Workshop, volume 49 of CEUR Workshop.

Gomez-Perez, A., Fernandez-Lopez, M and de Vicente, A. (1996). Towards a method
to conceptualize domain ontologies. In Proceedings of the ECAI’96 Workshop on
Ontological Engineering. van der Vet. P(ed). Budapest, Hungary, page: 41-52.

Gomez-Perez, A. (2002). A Survey on Ontology Tools. Proceedings of the OntoWeb
Ontology-based information exchange for knowledge management and electronic
commerce, deliverable D1.3. IST-2000-29243.

Gomez-Perez, A., Lopez, M. F and Corcho, O. (2004a). Theoretical Foundations of
Ontologies. Chapter 1. Page 1-44. Ontology Engineering. Springer-Verlage London
Limited, London, UK.

Gomez-Perez, A., Lopez, M. F. and Corcho, O. (2004b). The Most Outstanding
Ontologies. Chapter 2. Page 47-105. Ontology Engineering. Springer-Verlage London
Limited, London, UK.

Gomez-Perez, A., Lopez, M. F and Corcho, O. (2004c).Ontology Tools. Chapter 5.
Page 293-361. Ontology Engineering. Springer-Verlage London Limited, London,
UK.

Gottgtroy, p and Jain, V. (2005). Linking brain diseases through gene networks using
ontology maps. Proceedings of NZ Bio 2005, Auckland, New Zealand.

Gottgtroy, P., Kasabov, N and MacDonell, S. (2004). An ontology driven approach
for knowledge discovery in Biomedicine. Proceeding in VIII Pacific Rim Intl.
Conference. AI (PRICAI) – LNAI 3157, pp. 53-67, Auckland, Newland.

Gottgtroy, P., Kasabov, N. & MacDonell, S. (2003). An ontology engineering
approach for Knowledge Discovery from data in evolving domains. Proceedings of
the Data mining IV. Southampton, Boston: WIT press.

 70

Gruber, T. R. (1993a). A translation approach to portable ontology specification.
Knowledge Acquisition 5(2). pp: 199-220.

Gruber, TR. (1993b). Toward principles for the design of ontologies used for
knowledge sharing. Technical Report KSL 93-04, Stanford University. Substantial
revision of paper presented at the International Workshop on Formal Ontology,
Knowledge Acquisition, 5:199-220. Padova, Italy.

Gruninger, M and Fox, M. S. (1995). Methodology for the design and evaluation of
ontologies. In Proceedings of the Workshop on Basic Ontological Issues in
Knowledge Sharing, International Joint Conference on Artificial Intelligence (IJCAI-
95), Montreal, Canada.

Guarino, N. (1998). Formal Ontology in Information Systems. Proceedings of
FOIS’98, Trento, Italy, 6-8 June. Amsterdam, IOS Press, pp. 3-15.

Guarino, N and Boldrin, L. (1993). Ontological requirements for knowledge sharing.
proceedings of the IJCAI Workshop for Knowledge Sharing and Information
Interchange, Chambery, France.

Guarino, N and Giaretta, P. (1995). Ontologies and knowledge bases: towards a
terminological clarification. In N. Mars (Ed.), Towards Very Large Knowledge Bases
(pp. 25 - 32). Amsterdam: IOS Press.

Horrocks, I., Sattler, U and Tobies, S. (1999). Practical reasoning for expressive
description logics. Proceedings of the 6th Int. Conf. on Logic for Programming and
Automated Reasoning (LPAR’99), No. 1705 in Lecture Notes in Artificial
Intelligence, pp. 161–180.

Humphreys, B. L and Lindberg D. A. (1993). The UMLS project: making the
conceptual connection between users and the information they need. Bulletin of the
Medical Library Association, 81(2): 170.

Karp, P. (1993). The design space of frame knowledge representation systems,
Technical Report 520, SRI International AI Center.
http://www.cs.umbc.edu/771/papers/karp-freview.pdf

Kasabov, N, Jain. V., Gottgtroy, P., Benevuska, L. & Joseph, F. (2007). Evolving
Brain-Gene Ontology and Simulation System (BGOS):Towards Integrating
Bioinformatics and Neuroinformatics Data,Information and Knowledge to Facilitate
Discoveries. Special Issue of Neural Networks. In Press.

Kasabov, N, Jain. V., Gottgtroy, P., Benevuska, L. & Joseph, F. (2007). Brain gene
ontology and simulation system (BGOS) for a better understanding of the brain.
Special Issue ofCBS (Cybernetics and Systems: An International Journal)-
Knowledge Management and Ontologies. Cybernetics and Systems, June 2007, Vol.
38 (5), pp 495-508.

Knublauch, H., Fergerson, R. W., Noy, N. F and Musen, M. A. (2004). The Protégé
OWL Plugin: An Open Development Environment for SemanticWeb Applications.

 71

Stanford Medical Informatics, Stanford School of Medicine.
http://protege.stanford.edu/plugins/owl/publications/ISWC2004-protege-owl.pdf

Lancet, D., Ron, S., Shmoish, M., Madi, A., Sirota, A., Noy, K., Rosen, N.,
Greenshpan, O., Shmueli, O., Safran, M., Aumann, Y and Strichman-Almashanu, L.
(2005). GeneDecks: A Systems Biology Facilitator with Combinatorial GeneCards
Display. Transcriptome 2005.
http://www.genecards.org/papers/transcriptome_2005.pdf

Lenat, DB., and Guha, RV. (1989). Building large knowledge-based systems:
Representation and inference in the Cyc project, Addison-Wesley, Reading, MA.

MacGregor, R. (1991). Inside the LOOM chasifier. SIGART bulletin 2(2). Page: 70-
76.

Maedche, A., Motik, B., Stojanovic, L., Studer, R. and Volz, R. (2003). Ontologies
for enterprise knowledge management. IEEE Intelligent Systems, January/February

Mahesh, K and Nirenburg, S. (1995). Semantic Classification for Practical Natural
Language Processing. http://citeseer.ist.psu.edu/mahesh95semantic.html

Manola, F and Miller, E. (2004). Resource Description Framework (RDF) Primer.
W3C Recommendation 10 February 2004. W3C. http://www.w3.org/TR/rdf-primer/

Marias, J. (2001). Historia de la filosofia, 4th edn, Filosofia y Pensamiento, Alianza
Editorial, Madrid, Spain.

Matuszek, C. M. Witbrock, R. Kahlert, J. Cabral, D. Schneider, P. Shah and D. Lenat.
(2005). Searching for Common Sense: Populating Cyc from the Web. In Proceedings
of the Twentieth National Conference on Artificial Intelligence, Pittsburgh,
Pennsylvania.

McGuinness, D. L., Fikes, R., Rice, J. and Wilder, S. (2000). An Environment for
Merging and Testing Large Ontologies. Principles of Knowledge Representation and
Reasoning. Proceedings of the Seventh International Conference on Knowledge
Representation(KR2000). San Francisco, CA.

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of
the ACM 38(11), page: 39-41.

Minsky, M. (1975). A Framework for Representing Knowledge, in Patrick Henry
Winston (ed.), The Psychology of Computer Vision, McGraw-Hill, New York.

Mizoguchi, R., Welkenhuysen, J and Ikeda, M. (1995). Task ontology for reuse of
problem-solving knowledge. In N.J.I. Mars, (ed), Proceedings of the 2nd International
Conference on Knowledge Building and Knowledge Sharing, Twente, The
Netherlands, pages 46—57.

Mizrachi, I. (2004). GenBank: The Nucleotide Sequence Database. The NCBI
Handbook , Part 1: The Databases.

 72

Musen, M. A. (1992). Dimensions of knowledge sharing and reuse. Computers and
Biomedical Research. Pp.: 435-467.

Neches, R., Fikes, R. E., Finin, T. Gruber T. R., Senator, T and Swartout W. R.
(1991). enabling technology for knowledge sharing. AI magazine 12 (3). pp 36-56

Niles, I and Pease, A. (2001). Origins of the IEEE Standard Upper Ontology,
Working Notes of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology,
Seattle.

Noy, N. F., Fergerson, R and Musen., M. (2000). The knowledge model of Protege-
2000: Combining interoperability and flexibility. In R. Dieng and O. Corby, (eds)
Proceedings of the 12th EKAW, LNAI, pp. 17-32, Juan-les-Pins, France.

Noy, N. F and McGuinness, D. L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-
0880.

Nunamaker, J. F., Chen, M., and Purdin, T. (1991) Systems development in
Information Systems research. Journal of Information Management Systems/Winter
1990-1991, Vol 7, No 3, pp.. 89-106.

Olivier,B. (2004) The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Research,32,D267-D270.

Rothenfluh, T. R., Gennari, J. H., Eriksson, H., Puerta, A.R., Tu, S.W. and Musen,
M.A. (1996). Reusable ontologies, knowledge-acquisition tools, and performance
systems: PROTÉGÉ-II solutions to Sisyphus-2. International Journal of Human-
Computer Studies. Pg: 303-332.

Sowa, J. F. (1999). Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks Cole Publishing Co, Pacific Grove, California.

Shadbolt, N., Motta, E and Rouge, A. (1993). Constructing Knowledge Based Systems.
IEEE Software, 10(6), page: 34-38.

Shankar, R., Tu, S and Musen, M. (2002). Use of Protégé-2000 to Encode Clinical
Guidelines. http://citeseer.ist.psu.edu/shankar02use.html

Staab, S., Schnurr, H. P., Studer, R and Sure, Y. (2001). Knowledge processes and
ontologies. IEEE Intelligent Systems, 16(1):26-34.

Studer, R., Benjamins, V. R and Fensel, D. (1998). Knowledge Engineering:
Principles and Methods. IEEE Transactions on Data and Knowledge Engineering
25(1-2), pp: 161-197.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R and Wenke, D. (2002).
OntoEdit: collaborative ontology engineering for the semantic web. Proceedings of

 73

the International Semantic Web Conference, Springer-Verlag, pp. 221-235, Sardinia,
Italy.

Swartout, B., Ramesh, P., Knight, K and Russ, T. (1997). Toward Distributed Use of
Large Scale Ontologies. In Farquhar, A., Gruninger, M., Gomez-Perez, A., Uschold,
M, van der Vet, P. (eds) AAAI’97 Spring Symposium on Ontological Engineering ,
Stanford University, California, page: 138-148.

The National Library of Medicine. (2003). UMLS knowledge Sources: Metathesaurus,
Semantic Network and Specialist Lexicon. Unified Medical Language System. 14th
Edition.

Uschold, M. and King, M. (1995). Towards a Methodology for Building Ontologies.
In Proceedings of the IJCAI’95 Workshop on Basic Ontological Issues in Knowledge
Sharing Skuce D (eds). Montreal, Canada, pp. 6.1-6.10.

Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, Methods and
Applications. Knowledge Engineering Review 11(2).

Uschold, M., King, M., Moralee, S and Zorgios, Y. (1998). The Enterprise Ontology.
The Knowledge Engineering Review. 13 (1): 31-89.

Uschold, M and Jasper, R. (1999). A Framework for Understanding and Classifying
Ontology Applications. Proceedings of the IJCAI’99 Workshop on Ontology and
Problem Solving Methods: Lessons Learned and Future Trends. Benjamins VR (ed)
Stockholm, Sweden.

Vossen, P. (1998). EuroWordNet: A multilingual database with Lexical Semantic
Networks. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Wang, Y., Gottgtroy, P and Jain, V. (2006). Ontology visualization: the brain gene
ontology. Proceeding in the SCIS Postgraduate Conference 2006, School of Computer
and Information Science, Auckland University of Technology, Auckland, New
Zealand. (unpublished)

Yeh, I., Karp, P. D., Noy, N. F and Altman, R. B. (2003). Knowledge acquisition,
consistency checking and concurrency control for Gene Ontology (GO).
Bioinformatics, Vol. 19. pp. 241-248. Oxford University press, UK.

 74

