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Abstract 
A new framework in this study, which uses spiking neural networks for learning spectro-temporal 

and spatio-temporal data, is the NeuCube. The NeuCube is able to learn and classify and predict data, 

both in online and offline modes.  

NeuCube-based methodology is used, tested and implemented for the classification and regression of 

spatio-temporal data (seismic data set). The spatio-temporal data consists of both time and space. In 

this study the spatial data are latitude, longitude and depth. The temporal data is the magnitude of the 

earthquake. The modelling of the spatio-temporal data is used to predict new patterns from the 

complex spatio- and spectral temporal data and to make an accurate prediction of events such as the 

predicting the occurrence of earthquakes. Seismic data is in relation to the occurrence of earthquakes 

and is acquired by analyzing the surface of the earth through the deployment of various sensors. 

After deployment, actuation of the sensor’s source, which receives the seismic signals, occurs in turn 

producing raw seismic data.  

In this study, the author performs a comparative analysis of the spatio-temporal data with regards to 

the machine learning algorithms (WEKA), evolving connectionist systems (NeuCom) and spiking 

neural networks (NeuCube). The comparative analysis between machine learning algorithms and 

spiking neural networks is based on classification of the data, and the comparative analysis between 

evolving connectionist systems and spiking neural networks is based on regression/prediction. The 

seismic dataset used in this study is publicly available on the GeoNet website (www.geonet.org.nz).  
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Chapter 1:-Introduction 

1. Motivation  
In science today, the prediction of earthquakes, is still a distant goal, as numerous parameters need to 

be known in precedence or parallel to be able to make successful earthquake predictions.(Kumar et 

al., 2013) Some theoretical seismologists consider the prediction of earthquakes to be an impossible 

task. (Lighthill, 1996) For the past decade there have been numerous earthquakes around the world 

claiming huge numbers of casualties and causing damage to economies. As, an earthquake is a 

natural calamity, predicting it perfectly is impossible. But we can at least try to be near perfect in 

predicting an earthquake to save lives and to better understand the occurrence of earthquakes. The 

factors that determine the strength of an earthquake are its magnitude, depth, local geological 

conditions, secondary effects, depth and architecture. (Cole, Elliott, Okubo, & Strobl, 2013)  

 

 
Figure 1:- Number of earthquakes in the New Zealand region, by magnitude range, from 1960-2015. (GeoNet, n.d.)  

As shown in the above figure (Figure 1), a lot of earthquakes occur in New Zealand which are not 

necessarily huge but which can cause a lot of damage to property as well as to humans. Some 

earthquakes that are low in magnitude can be dangerous due to the depth at which they occur. This 

curios fact led me to do a comparative analysis between traditional machine  
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learning algorithms, evolving connectionist systems and spiking neural networks to understand 

which model could be helpful in the classification as well as the prediction of earthquakes.  

2. Research Scope and Focus  
The research scope of this study is to compare and analyze the classification and regression of 

seismic data between machine learning algorithms (WEKA), evolving connectionist systems 

(NeuCom) and spiking neural networks (NeuCube). The focus is mainly on which 

software/algorithm can be better used to classify or predict an earthquake.  

3. Research Question  
The Research Question for my study is:-  

How do traditional machine learning methods compare with spiking neural networks in terms of:- 
a) Accuracy of pattern classification  

b) Both early and accurate prediction  

c) Deep learning capacity  

 

4. Overview of the Study  
Literature review based on spatio-temporal data and earthquakes is presented. Literature review 

based on seismic data is also presented. Literature review based on machine learning algorithms 

and their implementation in WEKA is presented. Literature review based on Evolving 

Connectionist Systems and their implementation in NeuCom is presented. Literature review 

based on Spiking Neural Networks and their implementation in NeuCube is presented. 

A methodology framework has been proposed for this comparative analysis. The seismic data has 

been collected from the GeoNet website (www.geonet.org.nz) The data that collected was 

extracted from the Canterbury area of New Zealand only. A 3D visualization was also 

implemented for the visualization of spikes that have been trained in NeuCube based on seismic 

data. The results and analysis are based on preliminary experiments done during the study. 

 

http://www.geonet.org.nz/
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5. Structure of the Thesis  
The structure of the thesis is as follows:-  

Chapter 2:- This chapter describes the spatio-temporal data. Detailed information on seismic data 

and earthquakes is also given.  

Chapter 3:-This chapter presents information on traditional machine learning algorithms and 

evolving connectionist systems (ECOS). It also provides information about WEKA software and 

NeuCom software  

Chapter 4:- An introduction to spiking neural networks is presented, and the information on the 

model used for spiking neural networks, i.e. Neucube, is given.  

Chapter 5:- This chapter provides information on the methodology framework.  

Chapter 6:-The experiment results along with the visualization and the analysis are described in this 

chapter.  

Chapter 7:- This chapter is the conclusion of the study and suggestions for future work. 
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Chapter 2:- Introduction to Spatio-Temporal Data and a Case Study on 

Earthquakes Occurring in New Zealand 

2.1 Spatio-Temporal Data:- 

Spatio-Temporal Data is considered to be robust temporal content that is mostly collected in 

areas such as Bio-Informatics (e.g. gene and protein expression), Engineering (e.g. speech and 

audio), Economics (e.g. financial time series and macroeconomics), Ecology (e.g. seismic data 

and species establishment), Environment (e.g. global warming), Medicine (e.g. risk of disease 

and patient’s  recovery time), Neuro-Informatics (e.g. fMRI, EEG) etc. Spatio-Temporal 

modelling can be used to predict new patterns from complex SSTD (Spatio- and Spectro- 

Temporal Data) to provide an accurate prediction of Spatio-Temporal events in machine learning 

systems. (N. Kasabov, Dhoble, Nuntalid, & Indiveri, 2013) Numerous problems in nature 

require spatio and/or spectro-temporal data (SSTD) which includes measuring spatial and / or 

spectral variables over time. SSTD is defined by a triplet (X, Y, and F), where Y is a set of 

output dependent variables, F is known as the association function between whole segments of 

data, and X is a set of independent variables measured over successive discrete time moments. 

The association function is sampled in a window time frame with the output variable belonging 

to  

𝐹: 𝑋(𝑑𝑡) → 𝑌 

Where X (t) = (𝑥1(𝑡), 𝑥2(𝑡) … 𝑥𝑛(𝑡)), t=1, 2… 

It is significant that a computational model learns and captures whole spatial and spectro-

temporal patterns from various data streams to predict accurate future events in relation to new 

input data. (N. Kasabov, 2014) Space and Time are viewed as essential aspects of the 

phenomenon of the real world. Spatio-temporal data (STD) consists of information in relation to 

both space and time. (Liang, Krishnamurthi, Kasabov, & Feigin, 2014) The spatial scale of 

the data available is mostly determined by a random grid that is usually larger than the true 

dimensionality of the system. The main task is to identify the individual semi-autonomous 

components of the system and to deduce their (potentially weighted and lagged) interconnections 

from the spatio-temporal data. (Fountalis, Bracco, Dilkina, Dovrolis, & Keilholz, 2016) 
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Figure 2:- A spatio-temporal data model used for early event prediction. (Tu et al., 2014) 

 

Early event prediction is important for solving vital ecological tasks defined by spatio-temporal 

data such as earthquake prediction. The standard task is the early and accurate prediction of an 

event that will occur in the future based on historical spatio-temporal data. The above figure 

(Figure 2) illustrates that the time length of the test data (samples used for prediction) and the 

training data (samples collected in the past) can be different. Predictive modelling of the spatio-

temporal data (STD) is a difficult task because it is demanding to model both space and time 

components of data due to their interrelationship and interconnection. (Tu et al., 2014) 

2.2 Earthquake:- 

2.2.1 What is an earthquake? 

An earthquake is a sudden motion or trembling in the crust caused by the abrupt release of 

accumulated stress along a fault, a break in the earth’s crust. (GNS Science, n.d.) 
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Figure 3:- An earthquake (BBC GCSE BiteSize, 2014) 

 

2.2.2 Types of Earthquakes:- 

Deep Earthquakes:-  
Underneath the North Island lies the Benioff Zone which delineates the active seismic part of the 

Pacific Plate that is subdued underneath the Australian Plate. The deep earthquakes that are 

located in the Fiordland region define the sharp easterly dipping zone that represents the 

subduction of the Australian Plate underneath the Pacific Plate. (Anderson & Webb, 1994) 

Hikurangi Margin:- 

The deep earthquakes that mark the Hikurangi Benioff Zone extend into the northern South 

Island and ends at a boundary line south of Westport. Deep earthquakes are most intense in the 

western region of the map as shown in the figure below (Figure 4) as there are very steep slab 

dips underneath this region’s boundary. The standard location procedures had presented a 

systematic bias in the area since earthquakes with depths >40 km will be likely to have fixed 

depths (generally 33km) when they are >30km from the closest seismograph (Figure 5). 
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Figure 4:- Depth Distribution of Earthquakes in New Zealand (Anderson & Webb, 1994) 
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Figure 5:- Generalized tectonic map of New Zealand with active faults and major tectonic provinces. (Anderson & Webb, 

1994) 

The depth distribution of earthquakes in the Hikurangi margin of New Zealand as shown in the 

above figure (Figure 4) suggests the persistence of a few features, such as clustering activity 

which can be related to the subducting slab’s physical characteristics. The most visible feature of 

the deep seismicity area is the shallowing from the north-east to the south-west region of the 

bottom edge of the Benioff Zone. Supposing, that the length of the attached aseismic slab to the 

Benioff Zone is analogous everywhere, the shallowing could be interpreted as an indication of 

the decreasing total slab length, because of low convergence rates in Wellington (41mm/a) in 

relation to East Cape (47mm/a). The convergence rates were calculated from the Pacific-

Australian Euler Pole taken from. (DeMets, Gordon, Argus, & Stein, 1990) 

In the northern part of South Island, there is a sharp step located at the base of the Benioff zone; 

earthquakes in the Westport region range to depths of only about 100km, while the seismicity in 

the north-west of the Nelson region continues to depths of around 230km with isolated events 
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that occur at depths of about 350km. Due to the nature and geometry of the presubduction of the 

Pacific Plate, there is a dissimilarity in the slab depths, suggesting time difference in the 

subduction initiation. Underneath the main Benioff Zone lie three groups of deep events. At the 

north-eastern end underneath White Island lies an isolated event at a depth of about 450km. 

There are three extremely deep (>550km) earthquakes located within 60 km of each other 

underneath the north Taranaki region with earthquake magnitudes ranging from 4.4-5.4. At the 

670 km discontinuity, deep earthquakes occur in a slice of the detached and sinking slab. 

(Anderson & Webb, 1994) 

Fiordland Region:- 

Seismicity in the Fiordland region is disproportionately distributed with intense activity 

describing a Benioff Zone that lies near the west of Lake Te Anau and dropping 80° to the east. 

The distribution of large events makes the northern part of the Fiordland region appear to be 

more distinctly seismic than the southern part of the Fiordland region. (Anderson & Webb, 

1994) 

The figure (Figure 6) shown below helps in understanding the numerous deep earthquakes that 

have occurred in New Zealand in the last 10 years.  

 



19 
 

 

Figure 6:-Deep Earthquakes in New Zealand (GNS Science, n.d.-b) 

2.2.2 Shallow Earthquakes:- 

Seismicity patterns of shallow events with depths >15km but <40km are dominated by small 

events, usually at the subducting slab, recorded in the Wellington region. With a lower depth of 

about 15km at the crustal seismicity, epicentral density in the Wellington region has a low 

concealing effect, and patterns such as events near Wairarapa Fault and the Cape Campbell 

cluster become evident.(Anderson & Webb, 1994) 

Aftershock Sequences:- 

Several large shallow earthquakes that have occurred in the past had aftershock sequences due to 

the shallow (>15km) seismicity pattern. The large, shallow earthquakes that occurred in the 

North Island during that period were mostly situated on the east coast. The group of four large 

earthquakes were of different kinds: the first event occurring near the upper part of the 

subducting plate, whereas the second event, which was the largest, was a mix of strike-slip 

faulting and thrust in the overlying Australian Plate. Many events are located around the offshore 

region of the Bay of Plenty. (Anderson & Webb, 1994) 
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North Island:- 

The Central Volcanic Region is distinctive for the alignment of shallow earthquakes that drifts 

north-east from Mt Ruapehu. The alignment that occurs along the eastern stretch of the Central 

Volcanic Region is susceptible to volcanism between Mt Ruapehu and White Island. 

A group of shallow seismicity earthquakes runs east –west from Mt Ruapehu to Mt Taranaki. 

This group of earthquake events lies between depths of about 15km to 40km, indicating that the 

region has an active lower crust. This group of seismicity overlaps with a strong gravity gradient 

that was interpreted as originating from the association of the normal continental crust (35km 

thick) towards the south against the somewhat thin continental crust (25km thick) located 

towards the north. 

The Cape Egmont Fault Zone includes earthquakes running south-west of Mt Taranaki for a 

minimum of 50km that tend to coincide with the seafloor scarp, which is53km long and 1-5m 

high, hitting northeast-southwest. This Fault Zone is mainly normal faulting but the area north-

west of Nelson includes earthquakes with reverse faulting mechanisms. (Anderson & Webb, 

1994) 

South Island:- 

In the South Island, the dominant part of the structural component of the plate boundary is the 

Alpine Fault which presents a major seismic hazard for the South Island region. Here, 

earthquakes are formed due to the partitioned deformation between strike-slip faulting in the 

Marlborough Fault System and reverse faulting in the Buller region.  

Some alignment of the epicenters may be associated with the active service faulting in the central 

South Island. Numerous earthquakes occur at the intersection between the Alpine and the 

Awatere Faults where the band of epicenters wanders slightly from the Alpine Fault towards the 

southern point, merging with the cluster of earthquakes in the Canterbury area.  

The central section of the Alpine fault is somewhat aseismic. Fewer events have occurred in the 

section from Harihari to Jackson Bay, and less action is seen in the northern part of Harihari 

region. Towards the southern part of Jackson Bay, the shallow seismicity pattern is complicated 
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due to its interaction with the Fiordland Benioff Zone. No tectonic feature is located with the 

alignments that occur in the Otago Range and Basin Province.  

The central Canterbury region appears to be active due to the Marlborough Fault System. The 

earthquakes in this region, have depths of around <40km that occur within the Pacific Plate in 

the southern extension of the Hikurangi Subduction Zone. (Anderson & Webb, 1994) 

Wellington Region:- 

A long lasting telemetered network offers high- quality data on the Wellington region. Numerous 

small events are recorded, which shows that the Wellington region is more seismically active 

than any other region in New Zealand. 

The pattern of seismicity for shallow earthquakes, i.e. less than 40km shows a common fabric 

that runs parallel to the structural grain of the north-east running faults in the overlying 

Australian Plate, but no clear correlation is available concerning any specific fault.  

There is a strong activity in relation to depths to 40km in the Wanganui Basin, whereas the 

Marlborough Sounds region is aseismic. Earthquakes occurring with depths less than 15km show 

Wanganui Basin is active to shallow depths, however the depth control is very poor for onshore 

regions. In the Wellington region, earthquakes that occur with depths <15km lie between 

Wairarapa and the Wellington Faults. Apart from the central band of shallow seismicity, the 

region between Wellington Fault and Kapiti Island is aseismic.  

The cross-section regarding shallow activity in the Wellington region is subjugated by the upper 

active seismic boundary of the sub ducting Pacific Plate. (Anderson & Webb, 1994) 

The figure (Figure 7) shown below helps with understanding the numerous shallow earthquakes 

that have occurred in New Zealand in the last 10 years.  
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Figure 7:- Shallow Earthquakes in New Zealand(GNS Science, n.d.-b) 

Where do Earthquakes occur? 

The Hikurangi Benioff zone is manifested by the intense seismic activity at depths between 150 

and 200km underneath the Central Volcanic Region; it has a severe discontinuity between 

northwest Nelson and it covers as far southwest as Westport. The Fiordland Benioff is noticeably 

more seismically active in its northern block, and the activity is strenuous in the zone towards the 

west of Lake Te Anau.  The earthquakes also shape the eastern boundary of Central Volcanic 

Region and create an east-west band from Mt Ruapehu to Mt. Taranaki. The earthquakes extend 

to deep crustal levels due to the discontinuity in the region. The Cape Egmont Fault zone has 

been active but the Alpine Fault has been quiet in the section from Harihari to Jackson Bay in the 

South Island. There has been no seismic activity at the southern end of the Alpine Fault, where 

two subparallel lineaments seem to form boundaries between the western end of the Otago 

Range and the Basin Province. Earthquakes shallower than 15km are located between the 

Wairapapa Faults and Wellington.  The contact between two fault systems of different 

movements near the Carterton area results in the occurrence of groups of earthquakes. The 

Benioff Zone underlying the Wellington region consists of a gap underneath the Wairarapa 

region. There is a severe northeast-southwest running boundary that is located between the 

aseismic Marlborough Sounds and the shallow active seismicity of the Wanganui Basin which is 
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linked to subduction.  New Zealand earthquakes are usually located by first using arrivals from 

the P waves, and then, the S phases are read from the horizontal seismometers. (Anderson & 

Webb, 1994) 

This study uses earthquake (seismic data) located by the New Zealand National Seismograph 

Network operated by GeoNet, which is a collaboration between the Earthquake Commission and 

GNS Science. The New Zealand National Seismograph Network comprises primary sites that are 

located at roughly 100km spacing, with additional regional sites at places with geophysical 

significance.  

The figure (Figure 8) below shows combined shallow and deep earthquakes across New Zealand. 

 

Figure 8:- The distribution of New Zealand earthquakes and the boundary of the Pacific and Australian tectonic plates. (Earth 

Science beta, 2014) 
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New Zealanders know that earthquakes might occur at any time, depending on the location of the 

edge of the Pacific Plate or the edge of the Australian Plate. An extensive zone of deformation 

exists in most parts of the eastern and central North Island. The active boundary of the 

Australian-Pacific Plate spreads across New Zealand, producing volcanoes, active deformation, 

steep terrains and earthquakes. A major event could occur anywhere in the country and could 

possibly affect the whole economy as well as society because New Zealand is a small country 

and business, logistics and the infrastructure are all interdependent.  (GeoNet, n.d.) 

How do earthquakes occur? 

Natural hazards resembling earthquakes are mostly the result of propagating seismic waves 

beneath the surface of the earth. Seismometers located at different geographical locations record 

the vertical motion of surface waves, to measure earthquakes across the world. The earth’s 

surface, which is also known as the “crust”, is distributed into seven large tectonic plates. Several 

small sub-plates are formed from the larger plates and are in a continuous process of deformation 

and moving apart. Ground motions are of several types. The convergence and divergence 

processes help transform the plate boundaries. The divergence of the plate boundaries are formed 

when the tectonic plates move apart. The mountain ranges arise, from the process of convergence 

of different densities of tectonic plates. The process of transformation occurs, when the tectonic 

plates slide away from each other. Major earthquakes are caused by the transformation, 

convergence and divergence of plate boundaries commonly known as “faults”. Stresses are 

caused by faults in the geological region.  As the stresses are released, huge energy patterns 

produced are referred to as seismic waves or formally “seismic activity”. Besides the faults, other 

causes of earthquakes are nuclear tests, mine blasts, volcanic activity etc. The point of origin 

from where the earthquake occurs is called the focus point. (Azam, Sharif, Yasmin, & Mohsin, 

2014) The figure (Figure 9) shown below is another image of explaining how an earthquake 

occurs. 

Earthquakes with less depth and a large magnitude are the most dangerous. Earthquakes that are 

deep and of a large magnitude are often considered to be less dangerous. These earthquakes can 

cause inner energy release patterns or can affect other layers, but the effect may not be 

spontaneous. Earthquakes with a shallow depth and small magnitude can be felt if they are 

persistent over a certain period of time.(Azam et al., 2014) 
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Figure 9 :- Plate subduction activity beneath New Zealand. A = zone of intense earthquake activity, B = hot liquid basaltic 

magmas, C = andesitic, dacitic or rhyolitic magmas.(Resilience, n.d.) 

 

Why do Earthquakes occur? 

The outer surface of the Earth is like a hard shell that are shattered into pieces, which are known 

as “tectonic plates”. New Zealand is located on the boundary of two of these tectonic plates, the 

Pacific Plate and the Australian Plate. The plates are constantly crushing against each other, 

causing stresses to build up in the upper, brittle layers of the plate. Earthquakes occur due to 

sudden motion occurring in the crust, caused by the rapid release of accumulated stress along the 

break, or. Fault, in the Earth’s crust. Under the region of New Zealand, the Pacific Plate is 

moving west-south-west at a rate of about 50mm a year. The interaction zone of the entire plate 

is a source of moderate to large earthquakes in New Zealand. (GeoNet, n.d.) 

Predicted types of Earthquakes:- 
For earthquake assessment, the magnitude is assigned as the dependent variable whereas the 

latitude, longitude and focal depth are assigned as independent variables.  The most widely cited 

quantity used to investigate earthquake size is magnitude. There are two predicted types of 

earthquake i.e. large-magnitude earthquakes and small-magnitude earthquakes.  
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Seismic data:-  
The method for acquiring and processing seismic data involves a few steps, such as the 

deployment of seismic sensors, actuation of the seismic source, receiving seismic signals 

produced by seismic sensors, and then producing seismic data. The acquiring and processing of 

seismic signals into raw seismic data has been done by GeoNet organization which is 

collaboration between the Earthquake Commission and GNS Science, New Zealand.  Seismic 

data is acquired for analyzing the subsurface of the Earth and is also acquired in association with 

hydrocarbon exploration and production activities. Seismic data acquired with regards to 

analyzing the subsurface of the Earth is either collected from land or water. The seismic data is 

obtained by using an acoustic source that either consists of explosives or a seismic vibrator on 

land. The acoustic signals of the seismic data reflected by the numerous geological layers 

underneath the surface of the earth are called “traces”. These traces are sensed by thousands of 

geophones or sensors on land and hydrophones at sea. These reflected signals are then recorded 

and the results are the corresponding raw data. (Baeten, Ferber, & Lengeling, 2002) 

The difficulty in modelling seismic data listed for small sub-regions is that a large number of 

important seismic events might not be listed in the historical data list in relation to all time 

periods used for training the network. (Panakkat & Adeli, 2009) 

Studying the parameters of seismic data can help to better understand how earthquakes occur and 

also help with their prediction. Varying the parameters of seismic data can be correlated to the 

occurrence of earthquakes as well as the prediction of future, strong, main shocks. (Djarfour et 

al., 2014) 

One of the main problems of seismic data processing is the removal of noise while preserving the 

main components of the data. Noise is present in all stages of seismic data from data acquisition 

to final processing. Noise is undesirable as it not only decreases the performance of the 

processing of seismic data but also leads to data interpretation errors. The most common noises 

are wind motion, electrical noise etc. Therefore, filtering methods are used to identify features 

that distinguish signals from noise. Attenuating and recognizing of noise component in seismic 
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data still remains a challenge and complicates signal processing.  Hence, to improve the quality 

of seismic data we need to develop reliable and useful methods. (Djarfour et al., 2014) 

The seismic data used in this data set has been acquired from earthquakes that have occurred 

since 2010. GeoNet has used the GROPE technique to collect the seismic data from 2010 to 

2011. After 2011, GeoNet started using the SeisComP3 technique. (GeoNet, n.d.) 

GROPE:- 

The GROPE technique is the usage of P and S phases or the first-arriving crustal P and S phases. 

Four different depth/velocity structures were used in various parts of the country.  (GeoNet, n.d.) 

SeisComP3:- 

SeisComP3 technique is a seismological software used for data acquisition distribution, 

processing and interactive analysis. As a part of its location functionality, it uses two techniques: 

(GeoNet, n.d.) 

LocSAT:- 

This uses one-dimensional model of the crust.  The model is based on “earth model iasp91”. The 

“iasp91 reference model” is a parameterized velocity model that has been constructed to be a 

summary of the travel time characteristics of the main seismic phases.(IRIS) 

NonLinLoc 

This is a software package that uses a three-dimensional model of the crust and based on the 

current model definition of “earth model nz3drx”. (GeoNet, n.d.) 
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Chapter 3:- Introduction to traditional Machine Learning Algorithms and 
Evolving Connectionist Systems. 

 

Machine Learning Algorithms:- 
Machine Learning is a part of information science that is concerned with creating information 

models with data, representing knowledge, and the interpretation of knowledge and information 

from objects and processes. Machine learning consists of methods for model creation, knowledge 

extraction, model validation and feature selection. (N Kasabov, 2007)  

1.1. WEKA 

WEKA is also known as the Waikato Environment for Knowledge Analysis. WEKA has been 

created by researchers at University of Waikato, New Zealand. WEKA has been implemented in 

its new form since 1997. GNU General Public License is used in WEKA. The figure (Figure 10) 

below illustrates the WEKA interface. 

 

Figure 10:- WEKA Interface 

The WEKA software has been written in JAVA and consists of a GUI to interact with data files. 

WEKA is a data-mining tool which provides various machine learning algorithms or techniques 

to be applied to real-world data-mining applications. The data file usually used in WEKA is 

ARFF file format. ARFF is also known as Attribute Relation File Format and includes special 

tags used to indicate differentiations in data files. The various algorithms that are used in WEKA 

are for classification, data pre-processing, clustering, regression and association rule mining. 
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Visualization tools are also included in WEKA. New machine learning algorithms can be created 

as WEKA is an open-source software tool. The main features of WEKA are that there are:- 

76 classification/regression algorithms. 

8 clustering algorithms. 

49 data pre-processing tools. 

10 search algorithms for feature-selection +15 subset/attribute evaluators.  

 3 association rule mining algorithms  

4 graphical user interfaces (GUIs).(Dash, 2013) 

The four components included in WEKA are:- 

Explorer: - The Explorer interface offers a graphical front end to WEKA’s components 

and routines as shown in the figure below (Figure 11). (Sharma, Alam, & Rani, 2012) 

 

Figure 11:-Explorer Interface Component (Sharma, Alam et al. 2012) 
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Experimenter: - The Experimenter Component allows users to perform 

classification experiments as shown in the figure below (Figure 12). (Sharma et al., 

2012) 

 

Figure 12:- Experimenter Component(Sharma et al., 2012) 

Knowledge Flow: - The Knowledge Flow Component provides an option to the 

Explorer Component as a graphical front end to various algorithms used in WEKA as 

shown in the figure below (Figure 13). (Sharma et al., 2012) 
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Figure 13:- Knowledge Flow Component(Sharma et al., 2012) 

Simple CLI: - Simple CLI is a command line interface related to WEKA’s routines 

as shown in the figure below (Figure 14). (Sharma et al., 2012) 

 

Figure14 :- Simple CLI(Sharma et al., 2012) 
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Algorithms 

1.2.1. Naïve Bayes:- 

In data mining, the Bayes method can be used as one of the classification methods. (Dash, 2013) 

The Bayesian learning framework allows dissimilar data to be combined in a model that can 

easily interpret and accommodate missing data. (N. K. Kasabov, 2013) Naïve Bayes is an 

extension of the Bayes theorem. Naïve Bayes assumes independence of attributes. The 

assumption that has been made may not be strictly exact during the classification of some data 

sets. (Dash, 2013)The assumption made is that important or dominant variables are independent 

given, that the class and the variables have a finite number of values. The Naïve Bayes classifier 

method is probabilistic in nature as the parameter values (e.g. feature probability distributions 

and prior class probabilities) have been approximated with regard to the relative frequencies of 

the training database. (Bassis, Esposito, & Morabito, 2015) Naïve Bayes is also known as 

simple Bayes, independence Bayes and idiot’s Bayes. Naïve Bayes classifier method can easily 

be applied to huge data  sets as they can be constructed without complicated iterative 

parameter estimation schemes. The Naïve Bayes classifier method can be easy to interpret and it 

is also robust. (Dash, 2013) 

J48 (Decision Trees):- 

Decision trees are able to model complex non-linear decision boundaries. A large tree can be 

constructed and then pruned to reduce the cost-complexity criterion. Hence, the required tree is 

easy to interpret and can provide information that are related to the data structure. Small 

perturbations in the training data set or the construction procedure might result in huge changes 

in the classifier method for prediction. (Webb, 2003)  Decision Trees are a non-parametric, 

supervised learning method used for both regression and classification. The goal is creating a 

model, formed by several leaves and a root based on the conditions, to categorize the set of rules 

and to select the branch to predict the value of the target variable by learning simple decision 

rules extracted from various data features. The pathway from root to leaf represents classification 

rules and the outcome of the leaf node can be obtained after the evaluation of all the conditions 

beside the path. The Decision Tree classifier method classifies new instances by sorting in a top-

down manner, i.e. from root to the leaf node. A particular node located in the tree is used to 

specify the rule of some attribute and the branch that descends from that node corresponds to the 

value of the attribute. The measures consist of an average quantity of information for a particular 
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event. It is robust in nature and small trees are preferred to large trees. The leafiness or the depth 

of the tree are the free parameters of the machine learning technique and they have to be adjusted 

to receive the maximum classification performance in the validation set to avoid over-fitting of 

the data. (Lara-Cueva, Benítez, Carrera, Ruiz, & Rojo-Álvarez, 2016) 

   

 

Figure 15:- Decision Tree(Dash, 2013) 

The J48 decision tree classifier is a simple C4.5 decision tree classifier. This classifier creates a 

binary decision tree and this approach is useful in the classification approach. This technique 

constructs a model for the desired problem and once the tree has been built, it is then applied to 

each row or tuple in the database that will result in classification of that tuple. The J48 classifier 

builds the tree by ignoring the missing values, i.e. the value specified by that item can be 

predicted from what is known about the attributed values for other records. The main idea is to 

divide the data into different ranges based on the attribute values for that item in the training 

sample. J48 allows classification wither through the decision trees or through the rules generated 

from them as shown in the figure above (Figure 15).(Patil & Sherekar, 2013) 

Support Vector Machine (SVM, SMO):- 

Support Vector Machines were first proposed by Vapnik and his group at AT&T Bell 

laboratories. SVM optimizes the hyper plane positioning to reach the maximum distance from all 

of the data items located on both sides of the plane as shown in the figure below (Figure 16). (N 

Kasabov, 2007) 
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Figure 16:- Support Vector Machine (SVM) hyperplane(Nikola Kasabov, 2007) 

A SVM model includes a set of vectors that have been described by the kernel function that 

verges on border areas between samples that fit in different classes. These SVM models are good 

classification models, but the models find it difficult to adapt to new data and the extracted 

knowledge is also limited.(Nikola Kasabov, 2007) Support vector machines can be used for 

multi-class problems either by constructing  linear discriminant functions or by using the binary 

classifier in a one-on-one situation or one–on-all situations simultaneously. Support Vector 

Machines consist of a class of algorithms that signify the decision boundary in pattern 

recognition problems, usually in terms of small training samples. Support Vector Machines 

define nonlinear functions implicitly, through description of the kernel function, whereas the 

radial basis function defines nonlinear function explicitly. Support vector machines can be also 

used to test separability. It may be important for high-dimensional data sets because the classes 

might be separable because of finite size training data sets. The classifier that has the possibility 

to achieve the linear separability on a training data set does not have to have a good 

generalization performance, but there may be insufficient data for characterizing the 

distributions. The degrees of freedom for the SVM model are the parameters of the kernel, the 

regularization parameter and the choice of kernel. For most kernels, it is quite possible to locate 

the parameters which show the separable classes. However, this does not seem to be a sensible 

strategy as it leads to over-fitting and poor generalization of the data. Support Vector Machines 

are implemented  in high-dimensional spaces where the classification problem consists of the 

misclassification rate, and also the training data is representative of the test conditions (Webb, 



35 
 

2003). The SMO algorithm used in WEKA is a function-based support vector machine algorithm 

based on sequential minimal optimization. (Reynolds, Kontostathis, & Edwards, 2011) 

Training the support vector machine involves the use of large quadratic programming 

optimization problems (QP).  SMO cuts this large QP problem into small bits of QP problems. 

These small problems are solved in an analytical manner, avoiding the time consuming 

numerical QP optimization. The amount of memory for SMO optimization is linear to the 

training size, thus allowing SMO to handle large data sets. As the computation of matrix is 

avoided, the SMO scales somewhere between the linear and quadratic according to the training 

set size for some applications, whereas the standard SVM algorithm scales somewhere between 

linear and cubic which are related to the training set size. SMO does not require any extra matrix 

storage. In place of the numerical quadratic programming (QP) that the old SVM algorithms use 

as the inner loop, SMO uses analytic QP steps. Therefore, large SVM training problems can be 

fitted inside the memory of the personal workstation.  As no matrix algorithms are used in SMO, 

the SMO is less vulnerable to numerical precision problems. (Platt, 1998)  

Nearest Neighbours (IBk):- 

K-Nearest Neighbours are supervised learning algorithms that can be used for classifying data 

samples that have the nearest training samples in a multi-dimensional feature space. The K-

Nearest Neighbours algorithm is described as follows:- 

A set of pair features (e.g. ……) are well-defined, specifying each data point and each 

data points is then identified by class labels  

A distance measure is selected (e.g. Euclidean Distance or the Manhattan Distance) that 

will be used to measure the similarity of the data points that are based on all the features. 

The K-Nearest Neighbours are then found for the target data point by analyzing the 

similarity and then using the majority voting rule that will help in determining which 

class the target data point belongs to. (Liang, 2014) 

The disadvantage of the K-Nearest Neighbours is that the resulting estimate isn’t a true 

probability density, as the integral over all the available spaces diverges. The other disadvantage 

is that all training methods have to retained, thus leading to problems of computer storage and 

requiring huge amounts of processing for evaluating the densities of new values. (Bishop, 1995)  
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IBk is a type of K-Nearest Neighbour classifier which uses a similar distance metric. The users 

can specify the number of nearest neighbours in an explicit manner, either in the object editor or 

automatically by the process of leave-one-out cross-validation. Different search algorithms are 

used to speed up the process of finding the nearest neighbours. The linear search is the default 

search, but the other options included are ball trees, cover trees and KD trees. The parameter of 

the search method is known as the distance function. This includes the Euclidean distance, 

Minkowski distance, and Manhattan distance. Predictions that arrive from more than one 

neighbour are weighted according to the distance from the test instance and then two different 

formulas are implemented for converting the distance into weights. The training instances can be 

restricted by using the window size option. By the addition of new training instances, the old 

ones get detached, maintaining the number of training instances to the required size. (Vijayarani 

& Muthulakshmi, 2013)  

Multi-Layer Perceptron (MLP):- 

Neural Networks aim to simulate the networks of biological neurons. One of the commonly used 

neural networks is the Multi-Layer Perceptron (MLP). The information is passed in a forward 

motion (feed-forward network), in one direction from the input layer (predictors) to the output 

layer (response variables). (N. K. Kasabov, 2013) The disadvantages of using Multi-Layer 

Perceptron is the local minima problem, inability to adapt to new data unless trained on old data, 

difficulty in rule extraction, and long training times when applied to large data sets. (N Kasabov, 

2007) It is only the modification of the standard linear perceptron that uses three or more layers 

of neurons with non-linear activation functions. The model of every neuron consists of the non-

linear activation function (Dash, 2013). 

 

Figure 17 :- Architecture of Multi-Layer Perceptron(HAYKIN, 1994) 
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The three distinct characteristics of Multi-Layer Perceptron are:- 

In the Multi-Layer Perceptron network, the model of each neuron consists of 

“nonlinearity” at the output end. The nonlinearity present is a smooth form which means 

it is able to be differentiated everywhere. The most common type of nonlinearity used 

here is sigmoidal nonlinearity, which is defined by the equation  

                          𝑦𝑗 =
1

1+exp(−𝑣𝑗)
                                                                                         (1)                                                        

Where 𝑦𝑗 is the output of the neuron and  is the input activity level of the neuron j. This is 

important, to ensure the input-output relation will not be reduced to a single layer perceptron. 

The Multi-Layer Perceptron Network consists of one or more layers of hidden neurons 

that may not be a part of the input or output and are not visible. These neurons facilitate 

the network to learn the various complex tasks by the extraction of meaningful features 

from the input vectors or patterns.  

The Multi-Layer Perceptron Network shows high-degree connectivity, through the 

synapses of the network. To make a change in the connectivity, a change in the 

population of synaptic weights or connections is required. 

The flow of signals inside the Multi-Layer Perceptron network is in a forward direction on a 

layer-to-layer basis from left to right. Two types of signals are present, which are the Function 

Signals and the Error Signals. A Function Signal is an input signal which originates at the input 

end of the network. The signal is known as a function signal because it is assumed that the signal 

performs a function at the output end of the network and, when the signal passes through the 

layer, the signal is calculated as a function of the associated weights as well as the inputs given 

to that neuron. An Error Signal is a signal that originates at the output end of the network and it 

propagates in a backward manner. This signal is known as an error signal as it involves an error-

dependent function.  

The input neurons originate from the input layer of the network and the output neurons are 

located at the output end of the network. The hidden layers constitute the rest of the neurons 
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which are neither a part of the input nor output unit. The hidden layer is set to perform two main 

functions, which are:- 

Computation of Function Signals located at the output of the neuron, are stated as 

continuous non-linear function of the input neurons and the associated synaptic weights 

of that neuron. 

Computation of an immediate estimate of gradient vector (i.e. the error surface gradients 

with respect to connected weights of the neuron) needed for the backward flow through 

the network. 

The neurons from the input layer are then fed into the first layer of the hidden network which is 

made up of sensory units (source nodes); this resulting output is then fed into the next layer of 

the hidden network and so on, until it ends at the output of the Multi-Layer Perceptron 

network.(HAYKIN, 1994) 

Evolving Connectionist Systems:- 
Evolving Connectionist Systems are an adaptive, incremental learning and knowledge 

representation system that evolves their functionality and structure. The core of the system 

includes a connectionist architecture which consists of neurons (information processing 

units) and their connections. 

 

 
Figure 18 :-A simple ECOS Diagram(N Kasabov, 2007) 

Evolving Connectionist Systems evolve in time through interaction with the environment, i.e. 

they adjust their structure in reference to their environment as shown in the figure above (Figure 

18). The main parts of the Evolving Connectionist Systems are given below:- 

Presentation Part: - This part helps in the perception and filtering of the input 

information. The number of features or inputs varies from example to example. 
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Representation and Memory Part: - This part stores the pattern information. This part 

is an evolving, multi-modular structure of NN modules that have been organized in 

spatially distributed groups. 

Higher Level Decision Part: - This part includes numerous modules, with each module 

making decisions based on a particular problem. The modules receive feedback from the 

environment and then make a decision based on the adaptation and functioning of the 

Evolving Connectionist Systems.  

Action Part: - The output from the decision modules is fed into the action part module 

and then the information is passed to the environment. 

Self-analysis and the rule extraction modules: - This module is used to extract 

abstract information that has been compressed from the representation module as well as 

from the decision module in numerous forms of abstract associations, rules etc.  

 

 

Figure 19:-Complex Diagram of Evolving Connectionist Systems(N. K. Kasabov, 1998) 
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Evolving Connectionist Systems are a mesh of nodes or neurons with less connections between 

them that have either been pre-defined with prior knowledge or ‘genetic’ information. The 

internal connectionist structure consists of modules that are connected with these connections. 

Slowly, through the process of self-organization, the system becomes more and more wired. This 

then helps the network to store various exemplars or patterns from training examples. The node 

is then created and designated to represent individual examples if they are different from the 

previous examples (depending on the level of differentiation set based on dynamically changing 

parameters). (N. K. Kasabov, 1998) 

2.1 Fuzzy Neural Networks 

In 1965, fuzzy sets were introduced by Zadeh, to generalize the traditional membership of the 

element of the set from the binary {0,1} to the value in the interval [0,1]. (Keller & Tahani, 

1992) 

For the pattern classification problem, the construction of fuzzy rules from numerical data is 

done in two phases: a fuzzy partition of the pattern space and the identification of a fuzzy rule for 

every fuzzy subspace. If the fuzzy partition is too fine for the number of large fuzzy subspaces, 

then, some of the fuzzy rules cannot be constructed due to a lack of data points at the 

corresponding fuzzy subspaces. If the partition of the fuzzy subspace is too coarse for the 

number of small fuzzy subspaces, then the power of classification for the generated fuzzy rules is 

low. Therefore, for fuzzy rules that do not have a data point, it is difficult to create a subspace. 

(Ishibuchi, Nozaki, & Tanaka, 1992) 

Fuzzy logic is a method that represents uncertainty by the distribution of the consequents and the 

antecedents of the rule. Numerous mechanisms can be used to transmit an uncertain input to the 

consequent. Thus, this leads to a computational burden for the system. The neural network has 

the ability to learn as well as extrapolate the complex relationships between the consequents and 

the antecedents for rules that consist of single and conjunctive antecedent clauses. For a natural 

mechanism to conflict resolution and to increase rule storage efficiency, multiple compatible 

rules can be deposited in a complex structure. (Keller & Tahani, 1992) 

The fuzzy neural network can process both linguistic information from the human experts and 

numerical information from the measuring instruments. Finite parameter collection cannot 

determine the general fuzzy number. (Ishibuchi, Nozaki, & Tanaka, 1992) The fuzzy and the 
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neural approaches are equal in time but differ only in the chosen approximator structure. Hence, 

to bridge the gap between the neural and fuzzy approaches, fuzzy neural networks are used. 

(Diao & Passino, 2002) 

 

Figure 20 :- Structure of the Fuzzy Neural Network (FNN) (Kasabov, 2013) 

The general structure of the fuzzy neural network (FNN) is shown in the above figure (Figure 

19).  The Fuzzy Neural Network consists of four layers, which are the input layer, membership 

function (MF) layer, rule-based layer and the output layer.  

The incoming input data can either be categorical or numerical. The membership function layer 

generates the membership functions for the numerical inputs, which is the conversion of 

numerical values to categorical values. Every rule node is then connected to every membership 

function node as well as the output node. A product function is performed on the inputs at the 

rule node. Between the rule layer and the input layer, the membership functions act as fuzzy 

weights.  The tuning of the connection links between the output layer, membership function layer 

and the rule layer is done during the learning process. The concrete output of the network is 

produced in the output layer when every node receives inputs from the rule node which, in turn, 

is connected to the output node. (Kasabov, 2013) 

2.2. NeuCom 

NeuCom is a self-programmable, reasoning and learning computer environment based o 

connectionist (Neurocomputing) modules. The NeuCom software learns from the data, thus 

evolving new connectionist modules. These modules then can adapt to new data incoming in an 

online, incremental, lifelong learning mode. These modules are able to extract meaningful rules 
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that help in discovering and understanding new knowledge in the respective applications. This 

NeuCom software is based on Evolving Connectionist Systems (ECOS), shown in the figure 

(Figure 21) given below. 

 

Figure 21:- The NeuCom Software 

 

The figure (Figure 22) shown below is an illustration of the DENFIS in the NeuCom software. 

 

Figure 22:- DENFIS in NeuCom 
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The figure (Figure 23) shown below is an illustration of the EFuNN in the NeuCom software. 

 

 

Figure 23 :-EFuNN in NeuCom 

The NeuCom software is used to solve complex problems. The problems can be classification, 

clustering, prediction, data mining, adaptive control and pattern discovery from databases that 

are present in a dynamic, multi-dimensional and changing data environment.  The real-world 

applications areas include Medicine, Engineering, Arts and Design, Business, Education, Bio-

Informatics and Science. 

The NeuCom software can be used as both a DSS development environment and also as a 

decision support system. This software can be used as a decision support system (DSS), in which 

the users can specify the task and also define the data to be used to obtain a solution, or can be 

used as a DSS development environment to build sophisticated problems. The former case 

requires end users that have never programmed, but there are databases available for them to 

make a decision based on existing human knowledge and data. In the latter case, the users are 

professional system developers who can develop the environment for various applications. 

(KEDRI, 2012) 
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EFuNN (Evolving Fuzzy Neural Networks):- 

The fuzzy neural networks are connectionist structures interpreted in terms of fuzzy rules.  The 

fuzzy neural networks include neural network characteristics such as training, adaptation, recall 

and so on. (N Kasabov, 2007) The evolving fuzzy neural network model (EFuNN) was 

introduced to create connectionist structures in an ECOS architecture. These are fuzzy logic 

systems that include five-layer structures shown in the figure (Figure 23) below. Connections 

and nodes are connected/created as the data examples are presented. A short-term memory layer 

can be used as an option through the feedback connection from the rule node layer (also known 

as case node layer). For the temporal relationships of the data to be memorized, we can make use 

of the feedback connection layer. 

 

Figure 24:- Structure of EFuNN(N Kasabov, 2007) 

The Five-Layer structure is described as follows:- 

The first layer is the input layer which includes the input variables. 

The second layer includes the fuzzy inputs or the fuzzy input neurons as nodes that 

represent fuzzy quantization of every input variable space. There are different 

membership functions (MF) that can be applied to these neurons (Gaussian, triangular 

etc.).  For example, two fuzzy neurons can be used to represent values such as “large” 
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and “small”. The type and number of membership functions to be used can be modified 

in a dynamic manner. The function of the fuzzy input node is to transfer the input values 

into membership degrees as they belong to the MF. 

The third layer consists of rule nodes that can evolve through unsupervised and/or 

supervised learning. These nodes represent the prototypes of input-output data 

associations that are graphically represented as the associations of the hyperspheres from 

either fuzzy input and/or fuzzy output spaces. The linear activation function is used in 

this layer. Every rule node is defined by the two vectors of connection weights  and , the 

latter being attuned to the output error through supervised learning, and the former being 

attuned to the similarity measure within the local area of the problem space through 

unsupervised learning. 

The fourth layer is the representation of the fuzzy quantization of output variables. The 

membership degrees in this layer are calculated by the combination of the saturated linear 

activation function and the weighted sum input function. The weighted output vector that 

consists of these membership degrees is associated with the input vector that belongs to 

each of the output membership functions. 

The fifth layer represents the real values of the variables of the output.  (N. K. Kasabov 

& Song, 2002) 

2.2.2 DENFIS (Dynamic Evolving Neuro-Fuzzy Inference System):- 

Neuro-fuzzy inference systems include an inference method and a set of rules that are combined 

or embodied with the connectionist structure for better adaptation. The evolving neuro-fuzzy 

inference systems are systems where the inference mechanism and knowledge both change in 

time and evolve as more examples are being presented into the system.  In this model, the 

knowledge is represented as both statistical features and fuzzy rules that are learned either in an 

online or offline manner, for a lifelong learning mode. (N Kasabov, 2007) DENFIS, which is 

used as both the offline and online model, uses the Takagi-Sugeno type inference engine. The 

inference engine used in DENFIS consists of 8fuzzy rules as shown in the equation below. 
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{
 
 

 
 𝐼𝑓𝑥1𝑖𝑠𝑅11𝑎𝑛𝑑𝑥2𝑖𝑠𝑅12𝑎𝑛𝑑 …𝑎𝑛𝑑𝑥𝑞𝑖𝑠𝑅𝑞𝑡ℎ𝑒𝑛𝑦𝑖𝑠𝑓1(𝑥1𝑥2… . 𝑥𝑞)

𝐼𝑓𝑥1𝑖𝑠𝑅21𝑎𝑛𝑑𝑥2𝑖𝑠𝑅22𝑎𝑛𝑑 …𝑎𝑛𝑑𝑥𝑞𝑖𝑠𝑅2𝑞𝑡ℎ𝑒𝑛𝑦𝑖𝑠𝑓2(𝑥1𝑥2… . 𝑥𝑞)
…… .

𝐼𝑓𝑥1𝑖𝑠𝑅𝑚1𝑎𝑛𝑑𝑥2𝑖𝑠𝑅𝑚2𝑎𝑛𝑑 …𝑎𝑛𝑑𝑥𝑞𝑖𝑠𝑅𝑚𝑞𝑡ℎ𝑒𝑛𝑦𝑖𝑠𝑓𝑚(𝑥1𝑥2… . 𝑥𝑞)}
 
 

 
 

   (2) 

Where, i=1, 2….m, j=1, 2….q are  fuzzy propositions as  antecedents form  fuzzy rules; , 

j=1,2,…..q are antecedent variables that have been defined over the universes of discourse , j=1, 

2….q and , i=1,2….m; j=1,2….q, are the fuzzy sets that have been defined by each of their 

membership functions  , i= 1,2….m; j=1,2……q. In the consequent part,  is a consequent 

variable and the polynomial functions, i=1, 2….m are employed.  

In the DENFIS offline and online models, all the membership functions are triangular-type 

functions that depend upon the parameters specified by the following equation: 

                                             𝜇𝑥 = 𝑚𝑓(𝑥, 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
𝑏 ≤ 𝑥 ≤ 𝑐

0𝑐 ≤ 𝑥

         (3) 

Where  is the value of the cluster center on the  dimension, and; d=1.2-2; the threshold value,, is 

a clustering parameter.  

If the consequent functions are the crisp constants i.e.  then we call such systems zero-order 

Takagi-Sugeno type fuzzy inference systems. The system will be known as a first-order Takagi-

Sugeno type fuzzy inference system as  are the linear functions. However, if these functions are 

not linear functions, then they are called high-order Takagi-Sugeno fuzzy inference systems. (N. 

K. Kasabov & Song, 2002)  
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Chapter 4:- Introduction to Spiking Neural Networks and NeuCube 

 

Spiking Neural Networks 

What is a Neural Network? 

A neural network is defined as a machine that is aims to model the way in which the brain 

performs a function of interest or a particular task. The neural network is mainly implemented 

either by using electric components or simulation software present on the workstation. Neural 

network is also a massive parallel distributed processor that can store exponential knowledge and 

it resembles the brain in two ways:-  

Knowledge acquired by the network is through a learning process. 

Connection strength between the neurons are known as “synaptic weights” that 

are used to store knowledge.(HAYKIN, 1994) 

A typical neural network works in a forward manner from the input layer to the output layer, 

with a hidden layer in between, as illustrated in figure (Figure 25) given below. 

 

 

Figure 25:-A typical Neural Network(Zamani, Sorbi, & Safavi, 2013) 
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Artificial Neural Networks  
Artificial Neural Networks physical cellular systems that can store, utilize and acquire the 

experiment knowledge. This knowledge is in the form of mappings or stable states embedded in 

the neural networks, which can later be recalled on the presentation of cues. (Fullér, 1995)  

Artificial Neural Networks are defined as parallel computational models comprising processing 

units that are both interconnected and adaptive. The artificial neural networks are a fine-grained, 

parallel implementation of dynamic systems or nonlinear static systems. The most important 

feature of artificial neural networks is the adaptive nature that replaces “programming” with 

“learning by example” in solving problems. Computational models with this feature help the user 

to solve problems in areas where there is little or no understanding of the problem, given the 

training data is readily available. The other key feature is intrinsic parallel architecture which 

allows fast computation of solutions where either the networks are implemented on customized 

hardware or implemented on parallel digital computers. 

The two major functions of Artificial Neural Networks are:- 

Learning: - Learning is the process of feeding new examples to the artificial neural 

network and then changing the connection weights. 

Recall: - Recall is the process of feeding new examples through the artificial neural 

network and then examining the output (reaction). 

Most of the algorithms known in the area of artificial neural networks have been subject to the 

concept of Hebb. The concept of Hebb states that in unsupervised learning, the synaptic weights 

are increased if both the source and the destination neurons have been simultaneously activated. 

The equation is given as:- 

                                    𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝑐𝑜𝑖𝑜𝑗                                                (4) 

Where,  is weight of the connections between  and  neurons at the moment t, and  and  are output 

signals of neurons  and  at the similar moment.  is the adjusted weight for the next time moment 

(t+1). 
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The learning system in artificial neural networks (S, W, P, F, L, and J) is well-defined as it 

consists of structure S, variable weights W, learning procedure L, function F, parameters P and 

goal function J. The system starts learning when the system optimists its structure and function 

while observing events  from the problem space. Through the learning process, the system is able 

to develop its reaction to observed events and thus capture useful information that later can be 

represented as knowledge.(N. K. Kasabov, 2013)  

Artificial neural networks are feasible for a wide range of application problems. The problem 

areas include speech synthesis and recognition, function approximation, pattern classification, 

image compression, forecasting and prediction, associative memory, adaptive inferences between 

complex physical systems and humans, clustering, nonlinear system modelling and control and 

combinatorial optimization.  (Hassoun, 1995) 

Neural networks have been applied in many domains of time-series predictions. Time-series data 

is a set of observations made in chronological order. The data source of time-series data always 

includes some amount of noise. The presence of noise requires clarification of time-series data. 

Filtering of such data is essential. Therefore, neural networks are used, as they have the ability to 

extract meaning from imprecise or complicated data that is difficult for other computer 

techniques or humans to understand. The pre-processing of raw data is another procedure of 

neural networks to help in refining the data into a compatible and easier format. (Ali, 2014) 

Spiking Neural Networks 

Spiking Neural Networks (SNN) are defined as the third generation of Artificial Neural 

Networks. In these networks, spiking neurons send and receive information based on the timing 

of spikes (events) instead of the spike rate. Previous studies have gathered evidence that fewer 

spiking neurons are required for some problem-solving solutions compared to the neurons of 

previous generations. The spiking neural network models are considered to be more powerful 

when compared with previous neural network models. The simplest model of the spiking neuron 

assumes that the neuron fires when the threshold has reached a certain threshold. One more 

assumption is based on the fact that the output bit of the spiking neural network is given by either 

the non-firing or the firing of the specified output neuron during the specified time window. In 

spiking neural networks, the level of realism is increased by the neurons in a neural simulation, 

and the neurons also integrate the concept of time. (Maass, 1997) The main difference between 



50 
 

the spiking neural network and the linear perceptron network is the action potential generated at 

the simulation time. The shortest distance between the two spikes defines the absolute refractory 

period of the neuron, followed by the relative refractoriness from where it becomes difficult to 

generate a spike. For the naturally bursting behaviour, the spikes are generated in a stereotypical 

manner by neurons, followed by repetitive single spikes, whereas the neurons with chattering 

behaviour fire stereotypical bursts of closed space spikes. The neurons with fast spiking 

behaviour fire periodic trains of action potentials with high frequency and without any 

adaptation, whereas for low-threshold spiking, neurons fire high-frequency spike trains with 

spike frequency adaptation. To achieve the desired output of the spiking neuron, the synaptic 

weights have to be adjusted. This step is related the training phase of the spiking neuron. 

(Vazquez & Garro, 2015)   

 

 

Figure 26:- Structure of Leaky-Integrate and Fire Model(N. Kasabov, 2014) 

The most significant problem is predicting the occurrence of abnormal situations in a multi-

variate time-series environment. Hence, it is significant to predict when perilous variables reach 

undesirable changes. Classification of multi-variate time-series data is a challenging problem for 

traditional machine learning algorithms as they cannot consider the time component in the model 

building process. The main issue in temporal classification is where one variable’s fluctuation 

regularly causes change in the other variable after a certain amount of time, i.e. either with 

delays or time lags. Hence, we enhance the method of traditional classification with the temporal 

component to help it to find the appropriate delay or time lag for every variable during the 

different stages of model building. 
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NeuCube 

The NeuCube is a 3D evolving neuro-genetic brain cube that consists of spiking neurons based 

on an approximate map of the functional and structural areas of interest in the human or animal 

brain. The gene information included in the NeuCube is of the form of gene regulatory networks 

related to the spiking neuronal parameters of interest. Different types of spatio-temporal data can 

be used to train the NeuCube, including: EEG, video-, sound- and image data, fMRI, complex 

multi-modal data and time-series data. Potential applications for the NeuCube are Brain 

Computer Interfaces; Neuro-Prosthetics and Neuro- Rehabilitation; fMRI-, EEG-and multi-

modal brain data modelling and pattern recognition, modelling brain diseases; emotional and 

cognitive robots. Analyzing the internal structure of the NeuCube model can initiate new 

hypotheses on various spatio-temporal pathways. Brain-inspired Spiking Neural Networks have 

the potential to learn spatio-temporal data through the use of trains of spikes (i.e. binary temporal 

events) that have been transmitted between spatially located synapses and neurons. Both spatial 

and temporal information can be encoded in a spiking neural network as the locations of neurons 

and synapses, and neurons and time with regard to their spiking activity. (N. Kasabov, 2012) 

Architecture:- 
The important idea is to create a multi-modular integrated system that includes different 

modules, which consist of different genetic parameters and neuronal types that interact in a 

specific way with different parts of the brain and also with the different functions of interest (e.g. 

sound recognition: - motor-control, vision: - sensory information processing). Hence, the whole 

system works in an integrated mode for pattern recognition. The NeuCube architecture has a 

specific structure that includes a set of algorithms depending on various problems. Potential 

applications for the NeuCube are Brain Computer Interfaces; Neuro-Prosthetics and Neuro-

Rehabilitation; fMRI-, EEG-and multi-modal brain data modelling and pattern recognition, 

modelling brain diseases; emotional and cognitive robots; prediction of ecological and 

geophysical data (i.e. seismic data, remote sensing data, aphid population data). 

The neural model that NeuCube uses is the Leaky Integrate and Fired model (LIF). The 

parameters used are Drift, Mod, refractory Period, Threshold Firing. The gene regulatory 

network plays an important role in optimizing the parameters The most relevant parameters in 
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the network are those that are involve in the learning processes, STDP the rate, in the deSNNs 

the mode value and the drifting rate (which is the amount to increase or decrease the synaptic 

weights between the reservoir and the output neurons), the LIF parameters specially the action 

potential threshold value and the leak value (the amount of membrane potential that the neuron 

lose when no spike arrives). The neurons are connected through a small world connectivity 

algorithm. Each neuron is connected to its nearest neighbors given a distance, e.g.  d<2.5 . All 

neurons can be pre and post synaptic neurons except input neurons, which are presynaptic 

neurons the connection weights are randomly initialized between [-1,1] for neurons in the 

reservoir, for input neurons is [-2,2] . Negative values indicate inhibitory connections and 

positive excitatory connections. We initialize 80% positive and 20% negative.  

The synapses change (learning) according to the STDP rule, i.e. a connection between two 

neurons (presynaptic and postsynaptic) is strengthened according to the time between the spike 

emitted by the presynaptic neuron and the spike emitted by the postsynaptic neuron. If the 

presynaptic neurons fires before the postsynaptic neuron, then the synapse (connection) are 

strengthen; on the other hand, if the postsynaptic neuron fires before the presynaptic neuron, then 

the synapse are weaken. The amount of increment of decrease depends on an exponential which 

length depends on a time window  

 

W(x) = A exp (
−𝑥

𝜏
) 𝑓𝑜𝑟𝑥 > 0 

                                                W(x) = −Aexp (
𝑥

𝜏
) 𝑓𝑜𝑟𝑥 < 0                                               (5) 

 

The final output of the network depends on the application and the training time, we cannot 

define the final output, even for the connections of the output neurons.  

 

In the MLP you can simulate temporal information making a recursive neural network 

(ANNEX).The static data are in the forms of vector whereas the temporal data are in the matrix 

forms. So to feed the temporal data into these static algorithms, we concatenate the matrix data to 

make it into a single vector data.   

The schematic diagram of NeuCube architecture is shown in the figure below (Figure 27).  
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Figure 27:- Schematic diagram of the NeuCube software architecture(N. K. Kasabov, 2014) 

The NeuCube consists of the following modules:- 

Input Information Encoding Module 

Input Mapping Module 

3D SNN Module (NeuCube Module) 

Output/Classification Module 

Gene Regulatory Network Module (GRN) (optional) 

Parameter Optimisation Module 

Visualization and Knowledge Extraction Module 

 

The input module helps in transferring the input data into trains of spikes when the required data 

is processed. EEG, fMRI and the other brain data are directly transferred into the NeuCube 

module.   

The NeuCube software is an approximate map of the study of relevant brain regions, along with 

its generic information, as 3D neuronal spiking architecture. Initially, the NeuCube can also 
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include connections between the different areas of the brain. There are two types of spatio-

temporal data that can be used as input into the NeuCube, which are:- 

Spatio-temporal data is used for measuring the activity of the brain (e.g. fMRI, EEG) 

when definite stimuli are present. This data is then entered into the corresponding 

spatially located areas of the NeuCube. 

Direct stimuli data or the time-series data, which will be first encoded into the spike 

trains and then fed as input into the input module. 

The NeuCube architecture is three-tier architecture, where the gene regulatory network module 

(GRN) is at the lowest level, the NeuCube module at the middle level and the classification 

(evaluation) module at the highest level. In the NeuCube, the parameters of the neurons are 

controlled by the gene regulatory network (GRN). These genes are also affected by the activity 

of the spiking neurons.  The neurons that are present in the NeuCube module are connected to 

the neurons in the output module in a two-way manner for the state of the cube to be 

interpreted/classified/recognized in the output module, and thus the result can have an effect on 

the further activity of the neurons in the cube as feedback.  

 

 

Figure 28:-A spiking neural network reservoir (SNNr) of 1000 neurons(Tu et al., 2014) 
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The spiking neural network of 1000 neurons (10*10*10) is shown in the figure above (Figure 

28). The size of the spiking neural network in the NeuCube can vary depending upon the data 

and the prediction task. 

There is a two-stage learning process in the NeuCube. Firstly, there is the unsupervised learning 

which makes the spiking neural networks learn the spatio-temporal relations from input data by 

adjusting the respective connection weights in the spiking neural networks. Secondly, the 

supervised learning intends to learn the class information that is associated with every training 

data sample. The modelling process of the data in the NeuCube takes place in five steps, namely 

data encoding, initialization of the reservoir, unsupervised learning of the reservoir, supervised 

learning of the reservoir, and testing of the new sample. (Tu et al., 2014)  

Learning:- 
New neurons and connections are made from the new incoming data despite NeuCube having an 

initial structure. The NeuCube’s functionality and structure evolve in time and with incoming 

data. (N. Kasabov, 2012) the learning process of the NeuCube occurs in two ways:- 

Unsupervised Learning: -  

This stage is anticipated to encode the “hidden” spatio-temporal relationships from the input 

data into the neural connection weights. As per the Hebbian learning rule, if interaction 

between the two input neurons is persistent, then the connection between the neurons will be 

strengthened. The reservoir is trained using the spike-timing dependent plasticity (STDP) 

learning rule. The rule states that if neuron  fires before neuron, then the connection weights 

from neuron  to neuron  will increase, whereas the connection weights from neuron  to 

neuron  will decrease. This confirms that the time difference for the input spiking trains that 

encode the temporal patterns of the original output signals will be captured by the 

asymmetrical connection weights, and the neuron firing state is the reservoir.  
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Figure 29:- STDP Learning Rule(Tu et al., 2014) 

In spiking neural networks, when the neuron fires, it emits a spike and then its potential is reset 

to 0. Every neuron that is connected to this firing neuron will receive a spike and its potential 

increases in relations to the connection weights of the current firing neuron. The potential of each 

of the neurons includes a small rate of constant leakage over time unless it becomes 0. As the 

learning process is finished, the connection weights included in the reservoir encode the temporal 

relationships from the input spatio-temporal data. (Tu et al., 2014) 

Supervised Learning: -  

In this learning stage, we train the classifier using the class label information associated with the 

training samples. The Dynamic Evolving Spiking Neural Network is used as the classifier in this 

learning stage. The deSNN is used because it emphasizes the importance of the first spike which 

is similar to the biological system, and it is also computationally efficient. For every training 

sample, an output neuron is created and is connected with every neuron in the reservoir. The 

initial connection weights are set at zero. The establishment of the connection weights is done by 

the Rank-Order learning rule (RO). The potential of the neuron  at time  is calculated using the 

following equation 

                                                      P(i, t) = ∑𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑗)𝑤𝑗,𝑖                                         (6) 

Where, mod is the modulation factor and order (j) is arrival order of the spikes to the connection, 

is amongst all the spikes from all the connection to the neuron. A higher priority is specified for 

the first incoming spike at the output neuron by this learning rule. As the initial spike in the 

reservoir gets excited, the connection weights are set by the following equation 

                                                                     𝑤𝑗,𝑖 = 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑗)                                        (7) 
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After the arrival of first spikes, the connection weights are modified to the firing state of the 

resultant neuron in the reservoir. When the neuron fires, a spike is emitted towards all the output 

neurons that have a connection with it, and thus the connection weights between this neuron and 

the resultant output neurons strengthen, or else the connection weights weaken and the potential 

of the output of the neuron leaks as time elapses. As the potential of the output neuron exceeds a 

certain threshold, the spike is emitted. When the training is finished, the connection weights 

between the reservoir neurons and the output neurons encode both the support neurons and the 

spike order of the training sample. (Tu et al., 2014)  

Experiment and Classification of Seismic Data:- 
 

 

Figure 30:- Experimental Setting for the NeuCube model(N. K. Kasabov, 2014)  

Classification of the Seismic Data:- 

The above figure (Figure 30) shows the classification process of the EEG NeuCube model. We 

classify the seismic data in a similar manner. The process is as follows:- 

Seismic data in the form of 100*24 matrix is prepared and then the determination of the 

label names for the output classes is done. 

After setting up the data, the input data is encoded using various encoding algorithms 

and then fed into the NeuCube module. 

Unsupervised training is done in the NeuCube using the STDP algorithm.  

After the training is finished, the connections between neurons can be visualized. 
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The second phase consists of training the classifier. 

Visualization of the test result can then be viewed in order to understand the data.  

For unsupervised learning, the NeuCube uses the Spike Timing Dependent Plasticity (STDP) 

algorithm and for supervised learning, the NeuCube uses the Dynamic Evolving Spiking Neural 

Network (deSNN) algorithm. 

Dynamic evolving SNN (deSNNs):- 
The synaptic weight parameter is dynamic in nature and changes with each pre-synaptic spike 

due to the two short-term synaptic plasticity processes, which are depression and facilitation. 

This empowers the neural networks capability to carry out computations on the spatio-temporal 

data.   

The disadvantage of the eSNN learning is that the connection weights of every synapse are 

adjusted only once in the model based on the first rank order. This is not efficient for complex 

spectro- and spatio-temporal data. For the implementation of the dynamic synapses, the 

connection weights arriving over time have to be further refined on the spike, which leads to 

spike time learning (STDP).(N. Kasabov et al., 2013) 
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Chapter 5:- The Proposed Methodology 

 

Proposed Methodology Framework 

 

  

Figure 31:- The proposed Methodology Framework 



60 
 

 

As shown in the above figure (Figure 32), the first step was the collection of raw data, which is 

the seismic data. The seismic data set used in this study was collected from the GeoNet website 

(www.geonet.org.nz). After the data was collected, we moved to the next process of data pre-

processing, one of the important processes. After the data pre-processing, we moved onto the 

next phase, which is divided into two processes that are:- 

Classification  

Regression 

Classification:- 
Classification is to group the entities (e.g. the magnitudes of the earthquakes, specimens or 

patients) and it also works with the labelled data where the class values are represented as 

features of the data set.  

In this study, the comparative analysis of the classification of the earthquake (seismic data) was 

done by using two software programme’s: WEKA and NeuCube. In WEKA the following data-

mining algorithms were used: SMO (Support Vector Machines), J48 (Decision Trees), Naïve 

Bayes, IBk (K-Nearest Neighbours) and MLP (Feed-Forward Neural Network), whereas the 

NeuCube used Spiking Neural Networks. SVM classifier algorithm was used in this study as it is 

used for multi-class problems either by using a binary classifier or a c linear discriminant 

function. (Webb, 2003) J-48 algorithm was used in this study because a model can be created 

with leaves and a root based on the conditions or requirements for categorizing a set of rules to 

be able to predict the value of the target variable and to classify new instances in a top-down 

approach as it uses the non-parametric supervised learning method. (Lara-Cueva et al., 2016) 

Naive Bayes algorithm was used in this study as the classifier assumes the independence of 

attributes and it does not use complicated iterative parameter estimation schemes. (Dash, 2013) 

IBk is a supervised learning K-Nearest Neighbours algorithm which uses the linear search. The 

parameter for this search method is the Euclidean distance. It classifies the data samples in a 

multi-dimensional space according to its distance from other training samples. (Vijayarani & 

Muthulakshmi, 2013) Multi-Layer Perceptron is a feed-forward neural network which can learn 

http://www.geonet.org.nz/
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and classify new incoming data based on the trained data which then can be useful to extract the 

features. (N. K. Kasabov, 2013)  

Detection of an event is not adequate on its own, so detection of an event in real-time is 

necessary. Hence, to make an intelligible comparative analysis of the seismic data, we identify 

the characteristics of the events that need to be analyzed. Therefore, the detection of an event is 

established based on the results of the following analysis:- 

Spatial analysis used to infer the location 

Temporal analysis used for real-time detection of the event. 

In WEKA we classify the results based on the following:- 

True Positives (TP):- Events detected by the system and confirmed by the required 

organization. 

False Positives (FP):- Events detected by the system and not confirmed by the 

organization.  

False Negatives (FN):- Events reported by the organization but not detected by the 

system.  

True Negatives (TN):- Events that did not occur and have not been detected by the 

system. 

Precision:-  Precision is defined as the ratio of the appropriately detected events to the 

total number of detected events: 

                                                                      Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                        (8) 

Recall:- Recall is defined as the ratio of the appropriately detected events to the total 

number of occurring events: 

                                                                          Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (9) 
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F-Measure/F-Score:- F-Measure/F-Score is defined as the harmonic mean between 

Precision and Recall: 

                                                    F-Score=2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                (10) 

(Avvenuti, Cresci, La Polla, Marchetti, & Tesconi, 2014) 

Regression: 
In Regression, a set of feature values is used to predict certain values (e.g. predicting the 

occurrence of earthquakes). 

In this study, the comparative analysis of the regression of the earthquake (seismic data) was 

done by the two software programmes used: NeuCom and NeuCube. The fuzzy neural network 

algorithms used in NeuCom are EFuNN (Evolving Fuzzy Neural Networks) and DENFIS 

(Dynamic Evolving Fuzzy Inference System) whereas NeuCube used Spiking Neural Networks. 

The EFuNN network algorithm is used in this study because it consists of a feedback connection 

layer which can help in learning the temporal relationships of the data, and can also extract 

features or knowledge rules for further experimentation. (N. K. Kasabov & Song, 2002) 

DENFIS network algorithm is used in this study, with new incoming data, this algorithm evolves 

and adapts itself to the inference mechanism and knowledge. Also, the knowledge represented in 

this network is either fuzzy rules or statistical features that can be learnt in an offline or online 

mode.(N Kasabov, 2007) 

The classification and the regression experiments done in NeuCube used the deSNNs algorithm. 

After performing the classification and the regression experiments on the seismic data, we 

performed comparative analysis based on the evaluation criteria set. The evaluation criteria for 

the classification of the seismic data is the Accuracy Performance, True Positives and False 

Positives. The evaluation criteria for the regression of the seismic data is the Root Mean Squared 

Error (RMSE). 

While performing the experiment for classification, the split ratio was set as 70% of data for 

training and 30% of data for testing and we used the leave one out cross-validation for the 

regression experiment. 
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Root Mean Squared Error (RMSE):- 

The Root Mean Squared Error (RMSE) is used to measure the difference between the observed 

and predicted values. The value of RMSE is between 0 and infinity, where, 0 is the perfect fit. 

The equation for RMSE is given as: 

                                                              RMSE=√∑ (𝑥𝑖 − 𝑦𝑖)2/𝑛
𝑛
𝑖=1                                 (11) 

Where, n is the number of observations and  and  are the desired and the computed 

output.(Zamani et al., 2013) 

Why the Proposed Methodology? 

We have used this proposed methodology to understand the way in which data mining has 

become important in certain applications based on time-series data. We have tried to compare a 

relative standard technology known as traditional machine learning algorithms, with the evolving 

connectionist systems based on fuzzy neural networks and lastly, the NeuCube which is based on 

spiking neural networks which are the future of data mining. Prediction of an earthquake, which 

is a natural calamity, is very important due to their regular occurrence in New Zealand.  Neural 

networks are useful in solving some pattern recognition problems which are difficult to 

formalise. Hence, we are trying to determine under which conditions the neural network can try 

to predict or detect the presence of a seismic event. The movement to spiking neural networks 

was because of its capability to learn from new examples presented to it. (Romeo, 1994)  The 

dynamic nature of the seismic data set provides motivation for the use of different classifier 

strategies for the ability to learn, adapt or modify decisions. (Orozco-Alzate, Acosta-Muñoz, & 

Londoño-Bonilla, 2012) We have used a very small data set sample from Canterbury as the area 

is very prone to the occurrence of earthquakes. This proposed methodology will help us to 

understand which algorithm provides better results regarding the prediction of earthquakes and, 

with further research and collaboration with the Geological Department of New Zealand, we can 

probably have a model that will or may be able to predict the occurrence of earthquakes in the 

near future.. The NeuCube model used in this study is in its preliminary stages from the point of 

view of prediction of seismic events. 

How will this methodology benefit other users? 

There is a huge gap between the deployment of custom solutions and the research achievements 

stated in the literature at geology research laboratories. (Orozco-Alzate et al., 2012) Some 
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standard machine learning algortihms and software packages have been used in this methodology 

that can help the researchers of geological and ecological science to further their development in 

researching on the occurrence of various types of earthquakes. The standard algorithms help in 

the understanding and comaprison of the new software "NeuCube" with the machine learning 

algorithms for the researches to choose on which software they can use. 
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Chapter 6:- Experiment Results and Analysis 

 

Experiment Data set 
The experiment is conducted with the data set taken from the New Zealand National 

Seismograph Network. The data set that has been collected is of the earthquakes that have 

occurred since 2010. 

 

Figure 31 :- The New Zealand National Seismograph Network(GeoNet, n.d.-b) 

 

The table below (Table 1) consists of 24 samples of seismic data collected from the Canterbury 

area in New Zealand. The data consists of 12 low-magnitude earthquakes and 12 high-magnitude 

earthquakes, and has been extracted or collected from the GeoNet website (www.geonet.org.nz), 

which is a collaboration between the Earthquake Commission and GNS Science. Yes, the 

preprocessing was applied before the data was fed into the NeuCube. The features used in this 

data are of numerical in nature. Classification process classifies the data into high magnitude and 

low magnitude earthquakes and the regression process gives the output as the magnitude of the 

earthquake. The encoding that was used in the NeuCube was the Address Event Representation 

encoding method. In NeuCube we used 4 channels with 100 features and the data in Weka 

consists of 400 features. 

http://www.geonet.org.nz/
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Public ID  Date  Magnitude Depth (km) 

3366146 September 3 2010 7.1 11 

3450113 January 19 2011 5.1 9 

3468575 February 21 2011 6.3 5 

3474093 March 5 2011 5.0 10 

3497857 April 16 2011 5.3 9 

3505099 April 29 2011 5.2 11 
3525624 June 5 2011 5.5 9 

3528810 June 13 2011 5.9 9 

3591999 October 9 2011 5.6 8 

3631359 December 23 2011 5.8 10 

2015p012816 January 5 2015 6.0 5 

2015p305812 April 24 2015  6.2 52 
Table 1:- The seismic data set has been collected from the region of Canterbury, New Zealand since 2010 and shows 24 

earthquakes in total,12 low-level and 12 high-level earthquakes (shown above) taken from the website www.geonet.org.nz 

The table below (Table 2) consists of 25 samples of seismic data collected from the Canterbury 

area, New Zealand, and shows 12 low-magnitude earthquakes and 13 high-magnitude 

earthquakes. The data has been extracted or collected from the GeoNet website 

(www.geonet.org.nz), which is a collaboration between the Earthquake Commission and GNS 

Science. 

Public ID  Date  Magnitude Depth (km) 

3366146 September 3 2010 7.1 11 

3450113 January 19 2011 5.1 9 

3468575 February 21 2011 6.3 5 

3474093 March 5 2011 5.0 10 

3497857 April 16 2011 5.3 9 

3505099 April 29 2011 5.2 11 

3525624 June 5 2011 5.5 9 

3528810 June 13 2011 5.9 9 

3591999 October 9 2011 5.6 8 

3631359 December 23 2011 5.8 10 

2015p012816 January 5 2015 6.0 5 
2015p305812 April 24 2015  6.2 52 

2016p118944 February 14 2016 5.7 8 
Table 2 :-The seismic data set has been collected from the region of Canterbury, New Zealand since 2010 and shows 25 
earthquakes in total, 12 low-level and 13 high-level earthquakes (shown above) taken from the website www.geonet.org.nz 

 

 

 

http://www.geonet.org.nz/
http://www.geonet.org.nz/
http://www.geonet.org.nz/
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Results  

Classification 

Here, the comparative analysis for the classification of seismic data is based on the classification 

accuracy, the F-Score, True Positives and False Positives between the NeuCube software 

(Spiking Neural Network) and WEKA software (Traditional machine Learning Algorithms). The 

algorithms shown in the table below (Table 3) have been used due to their similarity to the linear 

classifiers.  

There were 10 runs performed for each algorithm. The standard deviation has been calculated for 

each run and the average standard deivation has been taken across 10 runs. 

The seismic data set used for this experiment consists of 25 samples: 12 low-magnitude 

earthquakes and 13 high-magnitude earthquakes with 1Hz frequency and 100 data time points. 

The results for the classification of the seismic data (one hour before the earthquake occurs) are 

shown in the table below (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

 

Method Performance 

 
Other parameters Accuracy (%) F-

Score 

TP FP 

SMO(SVM)(WEKA) SVM Kernel: 

Polynomial Degree 
49.14±17.53 0.515 5 7 

Naïve Bayes 

(WEKA) 

Use Kernel 

Estimator: False 
53.71±17.15 0.520 6 6 

J48(Decision Trees) 

(WEKA) 

Pruning 

Confidence:0.25, 

Number of Folds:3 

49.71±19.39 0.599 8 4 

IBk(k-Nearest 

Neighbours) 

(WEKA) 

Nearest Neighbour 

Search Algorithm: 

Linear NN Search 

37.138±15.97 0.421 3 9 

MLP (WEKA) Number of Hidden 

Units:3, Number of 

Training Cycles:500 

45.71±17.00 0.520 6 6 

NeuCube  Mod:0.8,Refractory 

Time:6,STDP:0.001, 

Drift:0.005,Potential 

Leak Rate:0.002, 

Firing Threshold:0.4 

80 0.791 9 3 

Table 3:- The comparative results of the 25 samples (one hour before the earthquake occurs) with 1 Hz frequency and 100 
data points between WEKA and NeuCube including the parameters used. 
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Figure 32:-The comparative results of the 25 samples (one hour before the earthquake occurs) with 1 Hz frequency and 100 
data points between WEKA and NeuCube. 

The seismic data set used for this experiment consists of 24 samples: 12 low-magnitude 

earthquakes and 12 high-magnitude earthquakes with 1Hz frequency and 100 data time points. 

The results for the classification of the seismic data (one hour before the earthquake occurs) are 

shown in the table below (Table 4). 
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Method Performance 

 
Other parameters Accuracy 

(%) 

F-

Score 

TP FP 

SMO(SVM)(WEKA) SVM Kernel: 

Polynomial Degree 
54.16±19.75 0.541 6 6 

Naïve Bayes 

(WEKA) 

Use Kernel Estimator: 

False 
61.90±13.10 0.541 6 6 

J48(Decision Trees) 

(WEKA) 

Pruning 

Confidence:0.25, 

Number of Folds:3 

52.97±18.11 0.541 7 5 

IBk(k-Nearest 

Neighbours) 

(WEKA) 

Nearest Neighbour 

Search Algorithm: 

Linear NN Search 

45.23±16.67 0.365 3 9 

MLP (WEKA) Number of Hidden 

Units:3, Number of 

Training Cycles:500 

55.95±17.83 0.583 7 5 

NeuCube  Mod:0.903,Refractory 

Time:6,STDP:0.01, 

Drift:0.0001,Potential 

Leak Rate:0.001, 

Firing Threshold:0.4 

91.67 0.92 11 1 

Table 4: The comparative results of the 24 samples (one hour before the earthquake occurs) with 1 Hz frequency and 100 data 
points between WEKA and NeuCube including the parameters used. 
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Figure 33:-The comparative results of the 24 samples (one hour before the earthquake occurs) with 1 Hz frequency and 100 
data points between WEKA and NeuCube. 

The seismic data set used for this experiment consists of 24 samples: 12 low-magnitude 

earthquakes and 12 high-magnitude earthquakes with 1Hz frequency and 100 data time points. 

The results for the classification of the seismic data (six hours before the earthquake occurs) are 

shown in the below table (Table 5). 
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Method Performance 

 
Other parameters Accuracy (%) F-

Score 

TP FP 

SMO(SVM)(WEKA) SVM Kernel: 

Polynomial Degree 
49.995±16.31 0.500 6 6 

Naïve Bayes 

(WEKA) 

Use Kernel 

Estimator: False 
58.92±9.71 0.580 6 6 

J48(Decision Trees) 

(WEKA) 

Pruning 

Confidence:0.25, 

Number of Folds:3 

52.97±18.59 0.748 10 2 

IBk(k-Nearest 

Neighbours) 

(WEKA) 

Nearest Neighbour 

Search Algorithm: 

Linear NN Search 

46.42±15.90 0.497 5 7 

MLP (WEKA) Number of Hidden 

Units:3, Number of 

Training Cycles:500 

51.78±15.65 0.541 6 6 

NeuCube  Mod:0.93,Refractory 

Time:6,STDP:0.01, 

Drift:0.005,Potential 

Leak Rate:0.002, 

Firing Threshold:0.3 

83 0.83 10 3 

Table 5: The comparative results of the 24 samples (six hours before the earthquake occurs) with 1 Hz frequency and 100 data 
points between WEKA and NeuCube including the parameters used. 
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Figure 34:- The comparative results of the 24 samples (six hours before the earthquake occurs) with 1 Hz frequency and 100 
data points between WEKA and NeuCube. 

Regression 

The seismic data set used for this experiment consists of 24 samples: 12 low-magnitude 

earthquakes and 12 high-magnitude earthquakes with 1Hz frequency and 100 data time points. 

The results for the classification of the seismic data (one hour before the earthquake occurs) are 

shown in the table below (Table 6). 
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Method Performance 

 
Other Parameters 

 

EFuNN (NeuCom) Sensitivity 

threshold:0.9, 

Number of 

Membership 

Functions:3 

1.60 

DENFIS(NeuCom) Distance 

Threshold:0.5, 

Number of 

Membership 

Functions:12 

Number of Epochs:4 

0.85 

NeuCube Mod:0.93,Refractory 

Time:6,STDP:0.01, 

Drift:0.0005,Potential 

Leak Rate:0.002, 

Firing Threshold:0.4 

1.51 

Table 6:-The comparative results of the 24 samples (one hour before the earthquake occurs) with 1 Hz frequency and 100 
data points between NeuCom and NeuCube including the parameters used. 

The seismic data set used for this experiment consists of 24 samples: 12 low-magnitude 

earthquakes and 12 high-magnitude earthquakes with 1Hz frequency and 100 data time points. 

The results for the classification of the seismic data (six hours before the earthquake occurs) are 

shown in the table below (Table 7). 
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Method Performance 

 
Other Parameters 

 

EFuNN (NeuCom) Sensitivity 

threshold:0.9, 

Number of 

Membership 

Functions:3 

1.58 

DENFIS(NeuCom) Distance 

Threshold:0.1, 

Number of 

Membership 

Functions:2 

Number of Epochs:4 

0.76 

NeuCube Mod:0.93,Refractory 

Time:6,STDP:0.01, 

Drift:0.0005,Potential 

Leak Rate:0.002, 

Firing Threshold:0.4 

1.44 

Table :7 The comparative results of the 24 samples (six hours before the earthquake occurs) with 1 Hz frequency and 100 data 
points between NeuCom and NeuCube including the parameters used. 

The seismic data set used for this experiment consists of 25 samples: 12 low-magnitude 

earthquakes and 13 high-magnitude earthquakes with 1Hz frequency and 100 data time points. 

The results for the classification of the seismic data (one hour before the earthquake occurs) are 

shown in the table below (Table 8). 
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Method Performance 

 
Other Parameters 

 

EFuNN (NeuCom) Sensitivity 

threshold:0.9, 

Number of 

Membership 

Functions:3 

1.61 

DENFIS(NeuCom) Distance 

Threshold:0.9, 

Number of 

Membership 

Functions:2 

Number of Epochs:2 

0.83 

NeuCube Mod:0.93,Refractory 

Time:6,STDP:0.01, 

Drift:0.0005,Potential 

Leak Rate:0.002, 

Firing Threshold:0.5 

0.44 

Table 8:-The comparative results of the 25 samples (one hour before the earthquake occurs) with 1 Hz frequency and 100 
data points between NeuCom and NeuCube including the parameters used. 
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Figure 35:-The comparative results of the 25 samples (one hour before the earthquake occurs) with 1 Hz frequency, 24 
samples (one hour before the earthquake occurs), 24 samples (six hours before the earthquake occurs) and 100 data points 

between NeuCom and NeuCube. 

 

Visualisation 

It is important to have a visualisation system for the exploration of fast data and also for 

analysing, and offering critical visual analytical information so researchers or scientists can make 

fast judgements.  Raw time-series data requires pre-processing before it is rendered. The 

changing features hidden in the data can be spatially uncovered by the visualisation of the time-

varying component. The ability for interactive detection and exploration of hidden phenomena in 

data is important. To understand the complex behaviour and also to detect the essential features 

in the data, visualisation is required. It is necessary for the visualisation software to offer 

functionality for changing viewpoints, and for modifying colour mappings and classification 

functions at an interactive rate. Large-field seismic data sets pose various challenges for 

analysing as well as processing. With the difficulty of 2D technique visualisation, the 3D 

visualisation delivers important clues through the natural representation of the time-varying 

information of the time-series data. Visualisation of the various areas of the seismic data 
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divulges the sequence of seismic wave propagation, energy releasing events, attenuation over 

time, and the initiation. 

Insights developed through the visualisation of the seismic data will benefit researchers and 

seismologists wanting to understand the characteristics of earthquakes. (Hsieh, Chen, & Ma, 

2010) 

The visualisation methods also help analysts to choose complex patterns, generate hypotheses 

and recommend explanations for more analysis and, lastly, present patterns in an easy manner. 

The visualisation approaches consist of both generally used information graphics such as maps, 

tables, histograms, charts and scatter plots and also sophisticated multidimensional visualisation 

techniques.  (Guo, Gahegan, MacEachren, & Zhou, 2005)  

The exploitation and identification of the profiles of recurring trends and relationships are used 

to offer knowledge to help in the performance of concurrent multiple time-series data prediction, 

thus enabling improved accuracy in the prediction of time-series data. In actuality, localised 

disturbances might be of great significance when they capture the conditions in circumstances 

when the time-series data is deviating from the norm. The interesting part will be to capture 

similar deviations from the global trajectory over time in a repeated manner, and for capturing 

periodic deviations from the norm which are similar in magnitude and shape. These phenomena 

can only be captured by models built on the data and not tainted by data outside of the 

phenomena.  The repository that consists of the profiles and recurring trends of the phenomena is 

considered as a knowledge base and is key to performing multiple time-series prediction. 

(Widiputra, Pears, & Kasabov, 2011)  

Forecasting and modelling of seismic data (earthquake) is an extremely complex and challenging 

task as its complexity originates from several sources. Firstly, the temporal scales fluctuate from 

hundredths of a second to a couple of minutes to help resolve the highest frequencies in relation 

to the shaking of the ground. Secondly, earthquakes consist of irregular geometrical structures. 

Thirdly, the soil material properties contained in these structures are very heterogeneous. 

Fourthly, multiple spatial scales distinguish the data. Fifthly, large- magnitude earthquakes offer 

non-linear material behaviour and, lastly, the source and geology parameters are observable in an 

indirect manner, thus introducing uncertainty into the modelling processes.  
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The problems or challenges which occur in visualisation are:- 

Time Varying Data 

Multiple Variables 

Large Data 

Vector and Displacement Fields 

Unstructured Mesh (Ma, Stompel, Bielak, Ghattas, & Kim, 2003) 

Consideration should be given to the relationships between the features while displaying certain 

values in time-series data. Permitting the user to look directly at the data by eliminating 

unwanted data values will enhance the field view of seismic data, thus providing a synaptic view 

to help in the global interpretation. This can be done by choosing a specific colour for large-

magnitude earthquakes and another specific colour for low-magnitude earthquakes. (Wolfe & 

Liu, 1988) 

3D Visualisation of seismic data is perplexing due to the high presence of noise, the dense nature 

of the data, and the difficulty of manipulating, selecting and identifying the structures. Hence, 3D 

seismic data interpretation is split into lengthy 2D interpretations of piles of selected cross-

sections throughout the data. (Patel, Bruckner, Viola, & Groller, 2010)  

The various software that has been used for visualisation of the seismic data in the previous 

studies are as follows:- 

EarthCube 

Voxel Geo 2.0 

GeoViz 

GENESIS 

NEURON 

SpikeNet 
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NeuVis:- 
NeuVis software is a 3D visualisation module for the NeuCube.  We feed the trained cube into 

the NeuVis software. The number of connections and neurons within the 3D structure of the 

NeuCube requires visualisation beyond the 2D weight/connectivity matrix or the orthographic  

view of the volume. The NeuVis that is created is a special renderer for the NeuCube data sets 

which use the GLSL and JOGL (Java Bindings for OpenGL) shaders to render up to 1.5 million 

neurons and their connections with a steady framerate of about 60 fps.  This network can also be 

simulated in time for showing the spiking neuron activity which also allows the pausing or the 

slowing down of the simulation. (Marks, Estevez, & Connor, 2014)  

The screenshot of the NeuVis visualisation software is shown below (Figure 36). 

 

 

Figure 36:- NeuVis-3D Visualisation software 

The interactive mechanisms allow for the playback of the development of the connection weights 

and spiking patterns throughout its learning period. The visualisation also includes the 

connection length analysis and the analysing functionality for the connections to show its path.  

A 3D mouse cursor is available for looking at particular neurons, spiking history and  

parameters. (N. Kasabov et al., 2016) 
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Figure 37:- The visualisation of the connection between neurons that are based on the seismic data trained in the NeuCube is 
shown in the NeuVis software. 

The screenshot shown above (Figure 37) illustrates the connection between the neurons based on 

the seismic data that were trained in the NeuCube. Below the connections we can see the New 

Zealand National Seismograph Network Map and with time we can see the connections forming.  
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Figure 38:- The visualisation of spikes based on the seismic data trained in the NeuCube is shown in the NeuVIs software .The 
light green are the spikes with strong connections and the dark green are the spikes with weak connections. 

The screenshot shown above (Figure 38) illustrates the spikes based on the seismic data that 

were trained in the NeuCube. Below the connections we can the New Zealand National 

Seismograph Network Map. The bright green spikes are the strong connections and the dark 

green spikes are the weak connections. The group of bright green spikes illustrates that there is 

high seismic activity. Given the threshold parameter, we can get information on the spike activity 

in relation to the time.When we look at this visualisation for the real time data, we can visualize 

the high or the low activities occuring at differeent regions of New Zealand and also when the 

connections are forming we can get an idea or the starting point for the occurence of earthquakes 

during the time. 

 

 Analysis and Discussion 

In this study, the analysis of classification is based on the following Evaluation Criteria:- 

Classification Performance:- 

True Positives :- 

False Positives:- 

In this study, for regression we use the following Evaluation Criteria:- 

RMSE error. 
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 According to the preliminary experiments conducted, the results of classification of the 25 

sample seismic data set (one hour before the earthquake occurs), show that the NeuCube is able 

to classify better than traditional machine learning algorithms and the evolving connectionist 

systems, with an accuracy performance of 80%. 

Regarding the conduction of the preliminary experiments, the results of classification of the 24 

sample seismic data set (one hour before the earthquake occurs), show that the NeuCube is able 

to classify better than traditional machine learning algorithms and the evolving connectionist 

systems, with an accuracy performance of 91.67%. 

In relation to the preliminary experiments, the results of classification of the 24 sample seismic 

data set (six hours before the earthquake occurs), show that the NeuCube is able to classify better 

than traditional machine learning algorithms and the evolving connectionist systems, with an 

accuracy performance of 83%. 

Referring to the preliminary experiments of regression, the results show that for the 24 sample 

seismic data set (six hours and one hour before the earthquake occurs), the DENFIS (NeuCom) 

algorithm predicts better when compared with EFuNN (NeuCom) and the NeuCube.  

In connection to the 25 sample seismic data set (one hour before the earthquake occurs), the 

NeuCube predicts better than DENFIS (NeuCom) and EFuNN (NeuCom)  

 

Effective performance of the evolving spatio-temporal data model depends upon the correct 

combination of numerous parameters. There is a concern regarding computational scaling with 

systems such as NeuCube. This is mainly due to the consumption of power, the physical size of 

the system in certain applications, and the computational power. In relation to the spiking neural 

networks, a robust information theory supports the implementation and design of the networks. 

In relation to the evolving spatio-temporal model (NeuCube), the network structure is based on 

some a-priori knowledge of the data set.  Here, the advantage is the representation of the spectral 

and/or spatial components of the data set sources with time and also in retaining the relationship 

between the temporal aspect and the spatial and/or spectral aspect of the data. (N. Kasabov et 

al., 2016)  
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The NeuCube method has the ability to scale larger data sets. But, the computational complexity 

is based on the storage space, computing capacity and the storage space. The computational 

complexity can either be linear or exponential. 

There are challenging questions such as, how much noise is acceptable? How can we understand 

and model the transitions based on the external stimuli that triggers the spatio-temporal states? 

How much capacity has the NeuCube for learning both the temporal and spatial characteristics of 

the data set? (N. K. Kasabov, 2014) 

The earthquake is a geological event controlled by the geo-structure locally and it also has an 

internal relationship with the tectonic unit. It is also understood that the distribution of 

earthquakes is controlled by the local geo-structure and is uneven, hence a regional seismo 

tectonic frame can also be considered during data processing. (Sheng, Mu, Zhang, & Lv, 2015) 

The fuzzy inference is defined as the process of formulating mapping of data from the given 

input to the output using fuzzy logic. This mapping then helps to provide a basis for the 

respective decisions to be made. (Sandhu, Salaria, & Singh, 2008) 

The significance of the outcomes of the different classification algorithms helps in understanding 

and refining the model with the intention of providing better results. The analysis of the values of 

the true positive rate and false positive rate helps us to gain an insight to tune the classifiers. 

(Orozco-Alzate et al., 2012) 
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Chapter 7:- Conclusion and Future Work 

This chapter reviews the study and discusses the limitations. There is an outline of the 

contribution and a brief discussion of future work. 

A review of the Study:- 
The thesis presents a case study that uses the seismic data set as spatio-temporal data. The 

seismic data set has been taken from the GeoNet website (www.geonet.org.nz) relates only to the 

Christchurch area of New Zealand, and is available publicly. 

The thesis starts with a literature review and an introduction to WEKA and the machine learning 

algorithms used in WEKA. An introduction to Evolving Connectionist Systems (ECOS) and 

NeuCom is also provided along with a description of EFuNN (Evolving Fuzzy Neural Networks) 

and DENFIS (Dynamic Evolving Neuro-Fuzzy Inference Systems) algorithms used in NeuCom. 

A literature review of Spiking Neural Networks is given along with a description of the software 

NeuCube that was used. 

The proposed methodology framework is given to explain the comparative analysis process used 

in this study. 

The preliminary experiment results and analysis are briefly described as well as some brief 

discussions in this study. 

Limitations:- 
The limitations in this study are:- 

The size of the seismic data set used in this study was relatively small, with only 24 and 

25 samples of seismic data set.  

The seismic dataset was taken only for the Christchurch area in New Zealand, and for 

earthquakes that have occurred since 2010. 

The incomplete understanding of numerous features in relation to the prediction of the 

earthquakes. 

The unavailability of a real-time seismic dataset. 

http://www.geonet.org.nz/
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Future Work:- 

 
The limitations discussed in the above section can be a starting point for future work. The size of 

the seismic data to be used can be a large sized data set taken from across the regions of New 

Zealand and also can be applied to the seismic data from other countries such as Chile, Japan 

etc.. The availability of real-time seismic data and experimenting with it can help in the 

understanding of the classification and prediction of earthquakes in a better manner. 

The 3D visualisation of spiking neural networks done in this study is the starting point for a new 

visualisation using virtual reality software. It can be taken further by refinement and also by 

adding new features. Future work can also consist of research relating to time-series data with 

noise. Is some noise acceptable to provide a better result or will removal of all noise provide a 

better result?  
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