
A Scalable Approach for Re-Configuring Evolving
Industrial Control Systems

Roopak Sinha
Computer & Mathematical Sciences
Auckland University of Technology

New Zealand
Email: roopak.sinha@aut.ac.nz

Kenneth Johnson
Computer & Mathematical Sciences
Auckland University of Technology

New Zealand
Email: kenneth.johnson@aut.ac.nz

Radu Calinescu
Department of Computer Science

University of York
United Kingdom

Email: radu.calinescu@york.ac.uk

Abstract—We present a scalable approach to automatically
re-configure evolving IEC 61499 systems for deployment onto
an available set of resources. We capture system architecture
and high-level configuration requirements formally, and use an
efficient SMT-based constraint resolution to generate a valid
system configuration. Any changes in the system architecture,
configuration requirements, or resources are automatically trans-
lated into a minimal set of updated constraints, allowing a faster
reconfiguration as compared to a monolithic approach where
the whole system is re-configured. We show the feasibility of
our approach by studying an airport baggage handling system
developed using the IEC 61499 standard.

I. INTRODUCTION

The IEC 61499 [1] standard allows designers to write
complex distributed industrial control software as a network of
reusable software components called function blocks. Some ex-
amples of systems developed using function blocks are airport
baggage handling systems [2] (BHS), power grid systems [3],
and factory automation systems [4]. Such complex function
block systems are manually distributed over several hardware
devices like programmable logic controllers (PLCs) [1] or
cloud services [5], [6]. The manual step, called system con-
figuration can prove to be a bottleneck when the software
architecture or device availability changes [7], [8].

Many function block systems must be downtimeless, or
remain operational for extended periods of time with zero
downtime [9], [10], [11]. We must handle changes in system
architecture, configuration requirements, or device availability
without halting operation. Several approaches have targeted
this dynamic configuration problem. In [10], a framework
to manage changes in communication protocols, architectural
change and internal changes within individual components is
proposed. This framework can check that key functional re-
quirements are met after changes are applied but requires user-
provided configurations. Likewise, other existing approaches
deal only with functional requirements [12], [13] and/or re-
quire user-specified (re-)configurations [12], [14], [15].

We focus on two key questions of dynamic configuration:

• How can a function block system be automatically con-
figured such that high-level configuration requirements are
satisfied?
• How can a function block system automatically re-

configure itself according to changes in system architec-
ture, device availability, and configuration requirements?

Our solution is a framework that allows users to formally
specify high-level configuration requirements, and an algo-

Fig. 1: Incremental re-configuration overview

rithm that identifies configurations that satisfy these require-
ments. The architecture re-configuration process presented in
this paper is based on the incremental verification approaches
described in [16], [17], [18]. The process is depicted in Fig.
1 and comprises four steps:

1. Algebraic model generation: The model synthesiser accepts
as input a function block system and generates an algebraic
model of its architecture.

2. Requirement specification: Configuration requirements are
specified as quantifier-free first order formulae and ac-
cepted as input into the configuration engine.

3. Compositional resolution: The configuration engine per-
forms compositional resolution and computes a satisfiable
configuration for the system. The actions associated with
this step are depicted by solid lines in Fig. 1.

4. Incremental re-resolution: When a change in the system’s
architecture or requirements is detected, the notifier trig-
gers an update to the algebraic model and associated
first-order formulae. The configuration engine responds by
carrying out incremental re-resolution whereby only the
components affected by the change are re-configured. The
actions associated with this step are depicted by dashed
lines in Fig. 1.

The primary contributions of this paper are:

• a formal specification of the configuration problem for
industrial control software as an SMT constraint problem,

• an application of the compositional SMT approach de-
veloped in [16] for configuring and an incremental re-
configuring method for function block systems, and

• an evaluation of our solution involving the re-configuration
of a realistic airport baggage handling (BHS) system.

Barcode
reader

Photo‐eye
sensors

Conveyor
sections

Fig. 2: A small baggage handling system

The rest of this paper is organised as follows. Sec. II
describes the BHS case study and the extraction of its architec-
tural model. Sec. III formulates an algebraic model for function
block systems. Sec. IV shows how requirements are specified
and formalised. Sec. V and Sec. VI provide details about
automatically configuring and re-configuring function block
systems. Sec. VII explores the scalability of our approach by
analysing increasingly larger BHS systems. Finally, concluding
remarks and future directions appear in Sec. VIII.

II. CASE STUDY

Every large airport relies on complex baggage handling
system (BHS) [2] to transport checked luggage from check-in
points to specific zones where airport staff load the luggage
onto air crafts. We use a simplified version of an airport BHS,
shown in Fig. 2, to illustrate the key concepts introduced
throughout the rest of this paper.

The BHS has four baggage entry points from check-in
counters and two baggage exit points to airport gates. The
system contains 15 conveyor sections to move baggage in pre-
determined directions, 14 photo-eye sensors to detect baggage
at strategic points in the BHS, and a bar code reader to
determine a bag’s exit point. Each photo-eye sensor emits a
light beam from a transmitter to a receiver. The sensor detects
a bag when the emitted beam is broken and does not reach
the receiver. The BHS presented here can be easily scaled up
by introducing additional conveyors, photo-eye sensors and x-
ray machines. In addition, the physical layout of the BHS is
subject to change as airport facilities evolve.

A. Implementing the BHS using Function Blocks

The IEC 61499 standard is an architectural framework that
specifies control software for distributed automation systems
in terms of reusable modules called function blocks [19], [1].
Fig. 3a uses this framework to describe the top-level BHS
system as a function block network that contains two function
blocks1 called ModelView and Mutex. ModelView contains
all individual conveyor and photo-eye controllers and views (to
simulate the status of these components) in the system, while

1Precisely, networks contain function block instances while we assume that
all networked blocks are function blocks. This assumption does not affect the
generality of our approach and is made purely to simplify the formalism.

Mutex implements mutual exclusion logic which guarantees
that merging luggage from two or more conveyors can never
overlap. Blocks like ModelView, Mutex, and Conveyors (con-
tained inside ModelView) are called composite function blocks
as they contain (finitely nested) networks of function blocks.
Networks are designed by manually inter-connecting the event
and variable inputs and outputs of constituent blocks. As our
approach is not affected by the interconnections between the
blocks of a network, we do not discuss this aspect in detail.
Interested readers will find details in [1].

In addition to composite blocks, a function block network
can contain basic and service-interface function blocks. Both
basic and service-interface blocks are atomic blocks and cannot
be further broken down. The behaviour of basic blocks is
modelled by finite state machines called execution control
charts, while service-interface blocks contain platform-specific
implementations of system services like network connections
and timers. For illustration purposes, we assume that blocks A
- H shown in Fig. 3a are atomic blocks. In reality, the BHS
system contains 281 function blocks.

B. Extracting the architecture of the BHS

Let FB denote the set of all function blocks. We can iden-
tify a subset {b1, . . . ,bn} ⊂ FB as the set of atomic (basic or
service-interface) blocks. A composite function block cf ∈ FB
is composed of other function blocks. Mathematically, we
define a compositional operation comp : FBm → FB such
that cf ≡ comp(f1, . . . , fm) means that cf contains function
blocks f1, . . . , fm. Repeated application of the comp operation
on basic function blocks enable more complex function blocks
to be specified. In this way, we express the top-level system
of the the baggage-handling case study shown in Fig. 3a as

BHS ≡ comp(ModelView,Mutex) (1)

where ModelView ≡ comp(Conveyors,PhotoEyes) and
Mutex ≡ comp(Mutex1,Mutex2). Each composite function
block ultimately contains atomic blocks labelled A to H.
Fig. 3b illustrates the hierarchical architecture of the BHS
network expressed in (1). Nodes represent function blocks and
edges denote compositional dependencies between nodes.

C. BHS Configuration Requirements

The IEC 61499 standard stipulates that the user must (man-
ually) identify a BHS configuration which specifies a mapping
of multiple copies of the basic function blocks A - H to
computing resources residing in separate programmable-logic
controllers (PLCs). PLCs are industrially-hardened computers
with independent power supplies, networks and computing
capacities and communications between function blocks ex-
ecuting on different PLCs are channelled via service-interface
function blocks while intra-device or intra-resource communi-
cations use local mechanisms like pipes or shared memory.

We assume that BHS is to be distributed over PLCs
numbered 1, . . . , p, where p ≥ 2. Each PLC has a total
of qi ≥ 2 resources for 1 ≤ i ≤ p. Each resource can
schedule and execute multiple function blocks. In accordance
to standard practices in industrial system configuration to
improving reliability, function blocks are copied and deployed
multiple times across computing resources according to the
following high-level requirements:

R1 All function blocks have between 1 and 5 copies.
R2 B has at least 3 copies, all of which must be distributed

over exactly two different PLCs.

(a) Abstracted BHS function block network

D

Mutex2Mutex1

HE G

PhotoEyes

CA

Conveyors

B F

MutexModelView

BHS

(b) BHS architecture extracted from Fig. 3a

Fig. 3: Extracting the system architecture of a function block network

R3 D is deployed over four PLC resources.
R4 C has exactly 1 copy.
R5 The basic blocks of Conveyors are identically deployed.
R6 All instances of Mutex2 are deployed on PLC 1.
R7 Each PLC 2 resource has a copy of Mutex1.

III. ALGEBRAIC MODELS OF FUNCTION BLOCKS

The first step of the incremental re-resolution approach
uses the model synthesiser to generate an algebraic model
from an input system specified in the IEC 61499 standard.
The algebraic model is used for incremental (re)-resolution.

Definition 3.1 (Function Block Models): Let Z be a set of
variables. We define the model Zf ⊂ Z of function block
f ∈ FB by induction on the structure of function blocks.

Base case: Zbi ∈ P(Z), for each basic block bi in FB such
that models are pairwise disjoint: Zbi

∩ Zbj
= ∅ for i 6= j.

Structural induction: Zcomp(f1,...,fm) = ∪mi=1Zfi , for the
composition operation comp and blocks f1, . . . , fm in FB.

For example, we model the basic function block A of the BHS
case study introduced in Section II algebraically as the set

ZA = {Az11 , . . . ,Az1q1 , . . . ,Az
p
1 , . . . ,Az

p
qp}

of integer-typed variables Azij such that the assignment Azij =
n of a value n ∈ Z to the variable Azij corresponds to the
scenario where n copies of block A are deployed on the jth
resource of the ith PLC.

By Definition 3.1, the model for each function block is the
union of the function block models from which it is composed.
For example, the function block Conveyors ≡ comp(A,B)
depicted in Fig. 3b is composed of two basic function blocks
A and B and thus has the model ZConveyors = ZA ∪ ZB.

IV. REQUIREMENT SPECIFICATION

The second step of our approach involves the specification
of high-level configuration requirements of the system as
quantifier-free first order formulae. The formulae are input
to the configuration engine and subsequently solved as a
constraint problem. Before describing this step in detail, it
is useful to recall some basic results from universal algebra
and formal logic. Interested readers may refer to the standard
texts [20], [21] for a detailed discussion of these topics.

A. Quantifier-free first order formulae

We define a standard signature Σ of the integers and
Booleans consisting of the sort Integer, a constant 0 :→
Integer and the operation symbols +,− : Integer ×
Integer → Integer for addition and subtraction. We add the
sort Bool to Σ and include the constant Boolean truth symbols
true, false :→ Bool. The standard logical operation symbols
∧,∨ : Bool × Bool → Bool and ¬ : Bool → Bool are also
included in the signature Σ.

We define the set of quantifier-free first order formulae as
follows. Let Z be the set of integer-typed variables. The set
of Σ-terms over Z are defined inductively by the rules

t ::=z | 0 | t1 + t2 | t1 − t2 | b1 ∧ b2 | b1 ∨ b2 | ¬b1 (2)

where z is an integer-typed variable and t1, t2 and b1, b2 are
integer and Boolean-typed Σ-terms respectively. By adding
relations =: Integer × Integer → Bool and >: Integer ×
Integer → Bool to the signature, we define the set F
of quantifier-free first order formulae over the signature Σ
inductively by the rules

α ::= t1 = t2 | t1 > t2 | ¬α1 | α1 ∧ α2 | α1 ∨ α2

where t1 and t2 are terms obtained from application of the
rules specified by Equation (2) and α1 and α2 are quantifier-
free first order formulae. When dealing with formulae aris-
ing in applications, we write α(z) to mean the formula α
contains at least one instance of the variables in the tuple
z = (z1, . . . , zp).

Let [Z → Z] denote the set of assignment functions map-
ping integer values to the variables in Z. Given an assignment
a : Z → Z term evaluation [[α(z)]](a) works out the value of a
logical formula by substituting the value a(z) for each variable
z in the formula α(z). The satisfiability relation |= over Z is
defined as a |= α(z) ⇐⇒ [[α(z)]](a) = t. In this case, we say
that a is a satisfiable assignment of the formula α(z), where
the satisfiability relationship |= is defined inductively over the
structure of the formulas in F .

Configuration requirements are specified in terms of logical
formulae expressed over variables in Z used in Definition 3.1
to model function blocks within the system. Each function
block f in the system is associated with a formula in F and
contains variables from the function block model Zf ⊂ Z.
Formally, we define a requirement mapping φ : FB → F
which associates each function block f ∈ FB (the system
architecture) with a logical formulae φf ∈ F . This requirement
mapping has the property var(φf) ⊆ Zf meaning that the

variables appearing in logical formula formalising the require-
ments of f must be formed from variables within its function
block model. When no requirements are needed for f we set
φf = ε, the empty formula which is trivially satisfiable by any
variable assignment.

B. Baggage-Handling System Requirements

Suppose there are p ≥ 2 PLCs available and that there
are qi resources available on the ith PLC. We translate the
high-level requirements (R1) to (R7) for the airline baggage-
handling system described in Section II into logical formulae
over integer-typed variables in the function block model of
ZBHS. The translation outputs a requirement mapping φBHS :
FB → F which associates each function block comprising
BHS with a logical formula:

Requirement (R1) specifies that each function block has
between one and five copies, and a negative number of
copies may not appear on any PLC. This requirement is
expressed by the formula

αA :=

p∧
i=1

qi∧
j=1

Azij ≥ 0 ∧
p∑
i=1

qi∑
j=1

Azij ≥ 1 ∧
p∑
i=1

qi∑
j=1

Azij ≤ 5

for function block A. The requirements for each basic function
blocks B to H have similar formulae αB to αH.

Requirement (R2) specifies that the basic function block B has
at least 3 copies distributed over two PLCs. This requirement
is expressed by the formula

φB := αB ∧
p∑
i=1

qi∑
j=1

Bzij ≥ 3 ∧
p∑
i=1

nz(

qi∑
j=1

Bzij) = 2

where nz(n) = 1 if n 6= 0 and 0 otherwise, for n ∈ Z.

Requirement (R3) specifies the basic function block D is
deployed over 4 PLC resources. It is expressed as

φD := αD ∧
p∑
i=1

qi∑
j=1

nz(Dzij) = 4

Requirement (R4) further constrains the basic function block
C by stipulating exactly 1 copy is to be deployed. This
requirement is expressed by the formula

φC := αC ∧
p∑
i=1

qi∑
j=1

Czij = 1

Requirement (R5) states that the basic function blocks A and
B must be identically deployed. This means that each PLC
resource that hosts an copy of A must also host a copy of B.
We formalise this requirement as the formula

φConveyors :=

p∧
i=1

qi∧
j=1

(Azij = Bzij).

Requirement (R6) states that all copies of function block
Mutex2 are on PLC 1. As Mutex2 ≡ comp(G,H), we
partition the requirement into two formulae:

φG := αG ∧
p∑
i=2

qi∑
j=1

Gzij = 0, φH := αH ∧
p∑
i=2

qi∑
j=1

Hzij = 0

Requirement (R7) specifies that each resource of PLC 2 must
have a copy of Multex1. Since Multex1 ≡ comp(E,F), we
partition the requirement into the following two formulae

φE := αE ∧
qi∧
j=1

Ez2j > 0 and φF := αF ∧
qi∧
j=1

Fz2j > 0.

As we have described above, high-level configuration re-
quirements are specified as logical formulae. The formula
constrain the BHS system, with each function block associated
with a formula by the requirement mapping φBHS : FB → F .

V. COMPOSITIONAL RESOLUTION

Satisfiability modulo theories (SMTs) [22] represent a class
of tools and techniques that determine the satisfiability of
formulae expressed in a logical theory. An SMT decision
procedure computes and returns an assignment of values to
variables that satisfy the formula. For formulae over variables
in Z, we model an SMT decision procedure as a total function
smt : F → [Z → Z] such that smt(α) |= α if α(z)
is satisfiable in Z. Otherwise, the procedure reports α(z) as
unsatisfiable. We wish to apply the SMT decision procedure
smt to determine compliance of a system f to the requirements
specified by the requirement map φ. We formulae the SMT
constraint problem comprising the logical conjunction of all
formulae associated with the system function blocks according
to φ. We make this mathematically precise in the following

Definition 5.1 (SMT constraint problem): Let φ : FB →
F be a requirement mapping and let f be a function block.
We define the function ρ : FB × [FB → F] → F over the
inductive structure of function blocks:

Base case: If f is a basic function block then ρ(f, φ) = φf.

Structural Induction: If f ≡ comp(f1, . . . , fm) for f1, . . . , fm
in FB then ρ(f, φ) = φf ∧ (∧mi=1φfi).

From this definition, we formulate a mathematically precise
notion of compliance, whereby a function block f is compliant
with requirements φ if, and only if,

smt(ρ(f, φ)) |= ρ(f, φ). (3)

Since modern industrial automations such as the BHS
from the case study comprise large numbers of components,
the SMT constraint problem as defined in (3) is often very
large, making efficient resolution of constraints difficult. To
overcome this difficulty, we describe a divide-and-conquer
approach to resolving constraints.

The compositional SMT approach to constraint resolution
is based on the observation that a logical formula α ∈ F may
be syntactically decomposed into a sequence

π(α) = (α1, . . . , αn) (4)

of independent formulae αi such that no two formulae in the
sequence share common variables. In symbols,

var(αi) ∩ var(αj) = ∅, i 6= j, (5)

for 1 ≤ i, j ≤ n. The compositional approach comp : Seq →
[Z → Z] is defined by the equation

comp(π(α)) = smt(α1)⊕ · · · ⊕ smt(αn) (6)

for the sequence π(α) ∈ Seq where the operation ⊕ combines
assignment functions obtained from resolving smaller con-
straint satisfiability problems rather than solving the equivalent
and potentially huge monolithic constraint problem (3) (cf.
Theorem 4.1 [16]).

TABLE I: Single-step resolution of basic blocks A and B.

Step z11 z21 z12 z22
1 A 0 1 0 2

B 0 1 0 2

a) Compositional SMT Analysis of BHS: We apply the
compositional SMT approach to compute a valid configuration
of the function block BHS for the baggage-handling system
case study over two PLCs, each with two resources. Mathe-
matically, each basic function block is modelled by a set of
four variables from Z, e.g. ZA = {Az11 ,Az12 ,Az21 ,Az22} for the
basic function block A. We construct the sequence from the
requirement map φBHS specified for the block BHS to obtain

π = (φConveyors ∧ φA ∧ φB, φC, φD, φE, φF, φG, φH). (7)

We note that the formulae in (7) are pairwise disjoint and
satisfy (5). In particular, the first element φConveyors ∧ φA ∧ φB
of the sequence comprises formulae that are not pairwise inde-
pendent e.g. var(φConveyors)∩var(φA)∩var(φB) 6= ∅ and thus
cannot be decomposed in any way such that (5) is satisfied.
Computing smt(φConveyors ∧ φA ∧ φB) yields the assignment
presented in Table I of integer values to function block model
variables in ZConveyors satisfying φConveyors∧φA∧φB. Similarly,
the remaining basic function blocks C to H are resolved in a
series of six SMT resolution steps. Table II lists the resolution
results. The compositional approach (6) composes the results
of each SMT analysis step in Tables I and II to obtain a system
configuration of the function block BHS that is compliant to
the high-level requirements (R1) - (R7).

VI. INCREMENTAL RE-RESOLUTION

While compositional analysis provides a speedup over a
monolithic approach, it may still be unnecessary and infeasible
to re-resolve every function block due system size and fre-
quency of change. To address this limitation, an incremental re-
resolution step re-resolves only affected function blocks after
changes in the system architecture (addition/removal of com-
ponents), and system requirements (addition/removal/update).
We model change as a transformation (f, φ)

T→ (f′, φ′),
transforming the function block f and its requirement map φ
to an updated function block f′ and updated requirement map
φ′. The transformation T of any function block g of f is a pair
comprising g′ ∈ FB and τ : FB → F and is carried out in
the following steps:

1. Perform function block substitution f′ ≡ f[g/g′], substitut-
ing all instances of the function block g in f with the new
function block g′,

2. Perform requirement substitution φ′ = φ[τ], substituting a
formula φ(fi) with a new formula τ(fi) for fi ∈ dom(τ).

Not all sub-blocks of block f must be re-resolved to ensure
compliance after a transformation T . In order to identify those
SMT analysis steps in the sequence π of the form (4) that must
be re-resolved, we define the characteristic set

U =
⋃

f∈dom(τ)

var(τ(f)) (8)

which specifies the set of variables whose formulae have been
affected by τ in transformation T . The characteristic set U
contains all variables that are altered (directly or indirectly) by
a transformation T in the function block f. We use U to identify

TABLE II: Six-step resolution of basic blocks C to H.

Step z11 z21 z12 z22
2 C 1 0 0 0
3 D 1 1 1 1
4 E 0 0 1 1
5 F 0 0 1 1
6 G 1 0 0 0
7 H 1 0 0 0

the steps in the sequence π obtained from the compositional
SMT analysis of f that have been modified by a change and
thus require re-resolution. Each logical formulae α ∈ π is
checked according to the criteria

α ∈ µ ⇐⇒ var(α) ∩ U 6= ∅ (9)
α ∈ σ ⇐⇒ var(α) ∩ U = ∅

partitioning π into two sequences µ and σ. If Criteria (9)
is satisfied α ∈ µ, forming the re-resolution sequence µ.
Otherwise, the step remain unchanged and α ∈ σ. We define
the incremental re-resolution approach as

comp(µ)⊕ a |= ρ(f′, τ ′) (10)

where the assignment a : Z → Z represents the satisfiable
assignment of the logical formulae in the sequence σ obtained
in previous SMT analysis steps and comp(µ) carries out
compositional SMT analysis on the re-resolution sequence µ
(cf. Theorem 4.2 [16]).

b) Basic Function Block Addition: We suppose that
after composition resolution has been performed that a new
basic block I is added to the composite block Conveyor
in the baggage-handling system BHS. We assume at least
four copies of I are to be deployed and Requirement (R5)
requiring all basic blocks of Conveyer to be identically
distributed must be maintained. We model this change as
a transformation T involving the term substitution BHS′ ≡
BHS[comp(A,B)/comp(A,B, I)] which updates the system
architecture. The requirement map φBHS′

= φBHS[τadd] is
updated, where τadd : {I,Conveyors} → F is the requirement
map such that

τadd(I) =

p∧
i=1

qi∧
j=1

Izij ≥ 0 ∧
p∑
i=1

qi∑
j=1

Izij ≥ 4 (11)

τadd(Conveyors) = φConveyors ∧
p∧
i=1

qi∧
j=1

(Bzij = Izij) (12)

where p = 2, and q1 = q2 = 2 specifies two PLCs each with
two resources. The requirement map τadd(I) formalises the
non-negative requirement and that at least four copies of I are
to be deployed. The formula φConveyors is the original formula
associated to Conveyors by the translation of Requirement
(R5) and τadd(Conveyors) ensures the identical distribution
of basic function blocks A, B and I.

c) Characteristic set of τadd: We compute the char-
acteristic set Uadd of τadd containing new requirements
(11) and (12) for function blocks I and Conveyors as
Uadd = {Az11 ,Az12 ,Az21 ,Az22} ∪ {Bz11 ,Bz12 ,Bz21 ,Bz22} ∪
{Iz11 , Iz12 , Iz21 , Iz22}, comprising variables from the models of
A, B and I

TABLE III: Re-resolution of function blocks A, B and I.

Step z11 z21 z12 z22
1′ A 0 1 0 2

B 0 1 0 2
I 0 1 0 2

d) Re-resolution of BHS: Applying Criteria (9) to the
compositional SMT sequence (7) of block BHS and the
characteristic set Uadd, we define

µ = (φConveyers ∧ φA ∧ φB ∧ φI)

σ = (φC, φD, φE, φF, φG, φH)

and compositional SMT analysis on the subsequence µ yields
the satisfiable solution comp(µ) presented in Table III.

By the incremental re-resolution approach (10) we have
comp(µ) ⊕ a |= ρ(BHS′, φBHS′

), where a is the assignment
presented in Table II from previous resolution steps.

e) Requirement update of function block C: For the
BHS case study, we suppose that a change in function block
C’s requirement specifies a total of four copies to be dis-
tributed across PLCs instead of one. We model this change
by the transformation T comprising τupdate(C) = αC ∧∑p
i=1

∑qi
j=1 Czij = 4, where p = 2 and q1 = q2 = 2 and

αC is the formula obtained in the translation of Requirement
(R1). Requirement substitution yields a new requirement map
φBHS′

= φBHS[τupdate]. Since T does not change the architec-
ture of BHS′ term substitution is unnecessary. We compute
the characteristic set as Uupdate = {Cz11 ,Cz12 ,Cz21 ,Cz22}.
Applying incremental re-resolution, we obtain the sequence
µ = (φBHS′

C) and comp(µ) yields the satisfiable assignment
shown in Tab. IV. Since no other steps are necessary, we
conclude comp(µ) ⊕ a′ |= ρ(BHS′, φBHS′

), where a′ is the
satisfiable assignment obtained in the previous re-solution step
in Ex. VI-0d.

f) Function block removal: Removing function blocks
updates the system architecture but no re-resolution is required.
Consider the change scenario in which the basic function block
H is removed from BHS. This scenario is a transformation in-
volving term substitution whereby BHS′ ≡ BHS[Mutex2/G].
Since no new requirements are added, we specify τremove :
∅ → F , which leaves the requirement map φBHS unchanged.
The characteristic set Uremove = ∅ and no resolution satisfy
Criteria (9) and µ = ().

VII. IMPLEMENTATION AND SCALABILITY EXPERIMENTS

To demonstrate the scalability of the incremental re-
configuration approach described in this paper, we adapted
the prototype tool implemented in [16]. The core compo-
nent of the tool is the Z3Engine that realises the work
flow presented in Figure 1 and carries out the compositional
configuration and incremental re-configuration steps using the
Z3 SMT tool. The model synthesis step generates models
specified by the Z3Model class, adapted to suit the algebraic
model (Def. 3.1) of the baggage-handling system BHS. The
requirements-to-formula translation step was implemented by
the Requirement class that automatically translates high-
level system configuration requirements into logical formulae
expressed in terms of the Z3 assertion language.

The Z3Engine features the following methods for
configuration and re-configuration of industrial systems.

TABLE IV: Re-resolution of C.

Step z11 z21 z12 z22
2′ C 1 1 0 2

monolithicSolve() computes a satisfiable configura-
tion monolithically (3), compositionalSolve() com-
putes a satisfiable configuration compositionally (6), and
incrementalSolve() computes a re-configuration satis-
fying updated requirements (10). To compare the performance
of the proposed approaches we carried out a range of exper-
iments on a 2.3 GHz Intel Core i7 MacBook Pro computer
with 16GB of memory.

We created larger BHS systems by adding conveyors and
photo-eye controllers and some mutual exclusion logic. This
functionality added 25 blocks to the system including atomic
and composite blocks (at the same level as blocks Conveyors
and Mutex1 in Fig. 3b). We used this step-size of 25 to create
20 variants of BHS, with the largest system containing 781
function blocks. We kept the number of PLCs to be constant at
5 for all the BHS variants, with each PLC assumed to contain
4 resources. The algebraic model of the smallest system
containing 281 blocks had 5620 variables (281×5 PLCs×
4 resources per PLC) while the largest system containing
781 function blocks had a model with 15620 variables. Each
newly added atomic block was constrained to have 1-5 copies.
A quarter of the composite blocks added at the level of
Conveyors or Mutex1 in Fig. 3b were constrained to have
identical deployment for their constituent blocks. Only one
block at the level of ModelView in Fig. 3b was required to
have identical deployment for all of its children blocks.

The performance of both the monolithic and compositional
SMT methods to configure the BHS variants is presented in
Fig. 4. On average, the compositional approach was 9.347
times faster than the monolithic approach, with the gap be-
tween the two approaches steadily increasing with larger sys-
tem sizes. This clearly shows that the compositional approach
was able to configure systems in a much more scalable manner.

0

50

100

150

200

250

TI
M
E
(S
EC

O
N
DS

)

SYSTEM SIZE (NO. OF FUNCTION BLOCKS)

Compositional Monolithic

Fig. 4: Experiment results comparing monolithic and compo-
sitional configuration approaches

Next, we used incremental re-resolution and compositional
resolution to re-configure all BHS variants in response to three
kinds of changes. Fig. 5a shows that the incremental approach
provided an average speedup of 1.12 seconds over the compo-
sitional approach when a single basic block was added to the
system. Fig. 5b presents the results of an experiment in which
a composite function block with two basic function blocks is

2

5

8

11

14

17

20
TI
M
E
(S
EC

O
N
DS

)

SYSTEM SIZE (NO. OF FUNCTION BLOCKS)

Incremental Compositional

(a) Basic block addition

2

5

8

11

14

17

20

TI
M
E
(S
EC
O
N
DS

)

SYSTEM SIZE (NO. OF FUNCTION BLOCKS)

Incremental Compositional

(b) Composite block addition

2

5

8

11

14

17

20

23

TI
M
E
(S
EC

O
N
DS

)

SYSTEM SIZE (NO. OF FUNCTION BLOCKS)

Incremental Compositional

(c) 4+ copies of a basic block

Fig. 5: Experimental results comparing performance of compositional and incremental re-configuration

added whose requirements constrain each of its basic function
blocks. The speedup obtained by the incremental approach
over the compositional approach was 1.10 seconds. Finally,
Figure 5c presents the results of an experiment in which the
constraints of a basic function block are updated in accordance
to changing system requirements. We observed an average
speedup of 1.09 seconds when the incremental approach was
used, as compared to the compositional approach. For function
block removals, the incremental approach requires zero time
while the compositional approach takes between 2 and 20
seconds. In a real-world scenario, a system may undergo many
basic and composite block additions and removals, and thus
the average speedup of incremental re-configuration would be
much larger.

In summary, both the incremental and compositional ap-
proaches provide significant speedup over monolithic and
manual reconfiguration. This enables automatic reconfiguration
for a wider range of systems - those for which the range of
response times exhibited by our approaches is acceptable. The
performance of our approach will depend on how decompos-
able the (re)configuration requirements are. This provides yet
another reason why building complex monolithic systems tends
to be poor engineering practice.

VIII. CONCLUDING REMARKS

We present an approach that synthesises configurations that
comply with the requirements of evolving control systems.
These requirements can be expressed as SMT constraints. We
described a compositional approach which improved the ability
to determine re-configuration of function blocks affected by
change. We applied our approach to a real-world airport
baggage handling system whose configuration requirements
were specified in terms of logical formulae to form a con-
straint satisfiability problem. Our experiments showed that
the incremental approach performed consistently better than
compositional SMT analysis in response to slight changes in
the system. We extend the incremental framework of [16], to
create new algebraic models for function blocks and used the
Z3 SMT solver to determine valid configurations.

There are several directions in which we plan to extend our
work. The framework we have implemented can be extended
to a software tool which enables our approach to be used in
existing frameworks for industrial automation and control. An
important step in this process is the development of a domain-
specific language to express requirements to be automatically
translated into an SMT constraint problem. We also plan to

extend the theoretical foundations of our approach to include
the use of temporal logics to specify requirements for IEC
61499 systems to be verified during runtime.

REFERENCES

[1] V. Vyatkin, IEC 61499 function blocks for embedded and distributed
control systems design. International Society of Automation, 2007.

[2] G. Black and V. Vyatkin, “Intelligent component-based automation of
baggage handling systems with IEC 61499,” T-ASE, vol. 7, no. 2, pp.
337–351, 2010.

[3] N. Higgins, V. Vyatkin, N. Nair, and K. Schwarz, “Distributed power
system automation with IEC 61850, IEC 61499, and intelligent control,”
Transactions on Systems, Man, and Cybernetics, vol. 41, no. 1, pp. 81–
92, 2011.

[4] K. Thramboulidis, “IEC 61499 in factory automation,” in Advances
in Computer, Information, and Systems Sciences, and Engineering.
Springer, 2006, pp. 115–124.

[5] P. Leitão, V. Marik, and P. Vrba, “Past, present, and future of industrial
agent applications,” Transactions on Industrial Informatics, vol. 9, no. 4,
pp. 2360–2372, 2013.

[6] X. V. Wang and X. W. Xu, “Icms: a cloud-based manufacturing system,”
in Cloud manufacturing. Springer, 2013, pp. 1–22.

[7] A. Schimmel and A. Zoitl, “Distributed online change for iec 61499,”
in Emerging Technologies & Factory Automation (ETFA), 2011 IEEE
16th Conference on. IEEE, 2011, pp. 1–7.

[8] Y. Xu, R. Brennan, X. Zhang, and H. Norrie, “A reconfigurable
concurrent function block model and its implementation in real-time
java,” 2002.

[9] C. Sünder, “Evaluation of downtimeless system evolution in automation
and control systems,” Ph.D. dissertation, Automation and Control
Institute, Vienna University of Technology, 2008.

[10] C. Sünder, V. Vyatkin, and A. Zoitl, “Formal verification of down-
timeless system evolution in embedded automation controllers,” TECS,
vol. 12, no. 1, p. 17, 2013.

[11] T. Strasser et al., “Enhanced IEC 61499 device management execution
and usage for downtimeless reconfiguration,” in INDIN, vol. 2. IEEE,
2007, pp. 1163–1168.

[12] A. Tešanović, S. Nadjm-Tehrani, and J. Hansson, “Modular verification
of reconfigurable components,” in Component-Based Software Devel-
opment for Embedded Systems. Springer, 2005, pp. 59–81.

[13] Z. E. Bhatti, R. Sinha, and P. S. Roop, “Observer based verification of
IEC 61499 function blocks,” in INDIN. IEEE, 2011, pp. 609–614.

[14] A. Zoitl, G. Grabmair, F. Auinger, and C. Sunder, “Executing real-time
constrained control applications modelled in IEC 61499 with respect to
dynamic reconfiguration,” in INDIN. IEEE, 2005, pp. 62–67.

[15] I. Hegny et al., “Integrating software agents and IEC 61499 realtime
control for reconfigurable distributed manufacturing systems,” in Indus-
trial Embedded Systems. IEEE, 2008, pp. 249–252.

[16] K. Johnson and R. Calinescu, “Efficient re-resolution of SMT specifi-
cations for evolving software architectures,” QoSA, 2014, to appear.

[17] K. Johnson, R. Calinescu, and S. Kikuchi, “An incremental verification
framework for component-based software systems,” in CBSE’13, 2013,
pp. 33–42.

[18] R. Calinescu, S. Kikuchi, and K. Johnson, “Compositional reverification
of probabilistic safety properties for large-scale complex it systems,”
in Large-Scale Complex IT Systems. Development, Operation and
Management, ser. Lecture Notes in Computer Science, R. Calinescu
and D. Garlan, Eds. Springer Berlin Heidelberg, 2012, vol. 7539, pp.
303–329.

[19] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,” Transactions on Industrial Informatics,
vol. 7, no. 4, pp. 768–781, 2011.

[20] K. Meinke and J. V. Tucker, “Universal algebra,” in Handbook of logic
in computer science. Oxford University Press, 1992, vol. 1, pp. 189–
368.

[21] W. Rautenberg, “A concise introduction to mathematical logic,” Uni-
versitext Springer, 2006.

[22] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS.
Springer, 2008, pp. 337–340.

