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Abstract

Recently there has been an increased demand for nat-
ural language processing tools that work well on un-
structured and noisy texts such as texts from Twitter
messages. It has been shown that tools developed for
structured texts, do not work well when used on un-
structured texts hence necessitates considerable cus-
tomization and re-training for the tools to be able
to achieve the same accuracy on unstructured texts.
This paper presents the results of testing a HMM
(Hidden Markov Model) based POS (Part-Of-Speech)
tagger customized for unstructured texts.

The tagger was trained on Tweeter messages on
existing publicly available data and customized for
abbreviations and named entities common in Tweets.
We evaluated the tagger firstly training and testing on
the same source corpus and later did cross-validation
testing by training on one Twitter corpus and testing
on a different Twitter corpus. We also did similar
experiments with the datasets using a CRF (Con-
ditional Random Frequency) based state-of-the-art
POS tagger customized for Tweet messages.

The results show that the CRF-based POS tagger
from GATE performed slightly better compared to
the HMM model at token level, however at the sen-
tence level the performances were approximately the
same. An even more intriguing result was that the
cross-validation experiments showed that both the
tagger’s results deteriorated by approximately 25%
at the token level and a massive 80% at the sentence
level. This suggests vast differences between the two
Tweet corpora used and emphasizes the importance
of recall values for NLP systems. A detailed analy-
sis of this deterioration is presented and the HMM
trained model together with the data has also been
made available for research purposes.

Keywords: Social Media, HMM POS Tagger, Twitter,
Machine Learning, POS Tagging

1 Introduction

In the last five years, there has been a significant shift
in the way we communicate on the internet. Instead
of structured texts, there has been a shift towards
loosely structured, short interactive messages. Al-
though, this initially started with text messaging on
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mobile phones which had a limitation of 140 charac-
ters, it has since also proliferated into online commu-
nication on popular sites such as Facebook, Twitter,
Blogs and Flickr. With such an increase in commu-
nication micro-blogging type texts, there has been an
increase in demand for appropriate text processing
tools for various purposes such as business intelligence
and security. Extracting information from such blogs
is one of the hardest problems in NLP because of
their structure and switching between the type of con-
versation from one-to-one, multi-party and broadcast
messages. NLP methods that work well for longer
texts (e.g. named entity recognition, topic identifica-
tion) have been found to work poorly on blogs and
tweets. This has created a need to either adapt ex-
isting methods for use with microblog content or find
new methods that work well in the specialised domain
of micro-blog texts. In response to this need, there
has been a flurry of research in recent times from
the linguistic point of view in trying to understand
the structure of micro-blogging texts, eg., (Monojit
Choudhury, Rahul Saraf, Vijit Jain, Sudeshna Sarkar
et al, 2007; Cooper et al, 2005; Finin et al, 2010), as
well as computational viewpoint in trying to extract
information from such texts (Gimpel et al, 2011; Rit-
ter et al, 2010; Barbosa and Feng, 2010; Soderland
et al, 1999).

Many of the commonly used IE (Information Ex-
traction) implementations such as Lingpipe! and An-
nieLingpipe? depend on POS tagging in order to per-
form the downstream tasks, hence this is a crucial
step for accuracy in Information Extraction. Initial
attempts at POS tagging were done using determinis-
tic, rule-based techniques and some attempts such as
(Greene and Rubin, 1971) achieved accuracies as high
as 77%. However the inherent difficulties with de-
terministic techniques such as rule base maintenance
and limitations on transportability meant a shift to-
wards probabilistic or stochastic techniques resulting
in most of the recent works primarily based on prob-
abilistic techniques with some incorporation of rules.
A necessary component of stochastic techniques is su-
pervised learning, which requires annotated training
data. Creation of such data is both expensive and
time consuming.

Although there are now several sources of accu-
rate POS annotated corpora available in the struc-
tured text genre (eg. Penn Tree Bank, Brown Corpus,
and MedPost), there is still a dearth of tagged cor-
pora for unstructured texts such as micro-blogs and
tweets. Our search for publicly available POS tagged
dataset for micro-blogging type texts yielded the fol-
lowing three sources.

Lhttp://alias-i.com/lingpipe.
2http://gate.ac.uk/ie/annie. html

83



CRPIT VorLuME 159 - COMPUTER SCIENCE 2015

e The T-POS dataset (Ritter et al, 2011) consists
of 12K tokens from Twitter messages. The cor-
pus uses a set of 38 tags from Penn Treebank
(PTB) with additional 4 tags specific to Twitter
messages.

e The DCU dataset (Foster et al, 2011) consists of
14K tokens from Twitter messages. This dataset
also uses PTB tags, however the additional Twit-
ter specific tags are slightly different to the T-
POS dataset.

e The ARK dataset (Gimpel et al, 2011) consists of
39K tokens from Twitter messages. The corpus
uses a conflated set of 20 tags from PTB with
additional of 5 Twitter specific tags.

Each of the datasets described above has been used
in POS tagging experiments and report accuracies of
up to 92% using various forms of discriminative mod-
els. Gimpel et al (Gimpel et al, 2011) report an ac-
curacy of 92.8% with the ARK dataset using a Con-
ditional Random Field (CRF) estimator. Derczyn-
ski et al (Leon Derczynski, Alan Ritter, 2013) again
use a CRF estimator on both the T-POS and the
DCU datasets and report accuracies as high as 88.7%.
Although it is generally accepted that discriminative
models (eg. CRF) models perform better than gen-
erative (eg. HMM) models (Sutton and McCallum,
2010), generative models by the virtue of their design
have some key advantages compared to discriminative
models.

One of the key advantages that is pertinent to
micro-blogging data, is that generative models are
able to better handle datasets which are only par-
tially labelled or completely unlabelled. Generative
models require the computation of joint probability
distribution of labels and words. The computation
for the words does not require labelled data, hence,
the probability distribution of words can take advan-
tage of large amounts of unlabelled data for initial
training as well as “live” data for real time systems.
Secondly, in some cases, as demonstrated by Ng and
Jordan (Andrew Y. Ng, 2001), generative models per-
form better when the input model has a smoothing
effect on the features. Their results show that the ad-
vantage of generative models is even more pronounced
when the dataset is small as is currently the case for
labelled micro-blogging data. A third advantage of
generative models is that it’s training time is insignif-
icant compared to discriminative models, hence has
an advantage in real time applications where progres-
sive learning is required.

On the other hand discriminative models have bet-
ter generalization performance when training data is
abundant with the ability to account for more global
features compared to a generative model. This gives
discriminative models the ability to model features
from any arbitrary part of a sentence, not necessarily
in a linear fashion. This freedom enables it to model
a much larger set of features, however it also exposes
the model to the risk of overfitting the training which
leads to poor generalization on unseen data. For a
detailed discussion and comparison of various prob-
abilistic models see Kalinger(Roman Klinger, Katrin
Tomanek, 2007).

This paper investigates the generalization abil-
ity of two discriminative, pre-trained Twitter tag-
ging systems and evaluates them against a generative
model using three Twitter datasets, T-POS, DCU and
ARK. We used the Hidden Markov Model (HMM),
the basic implementation of which as adapted from
LingPipe®. The HMM tagger was used to train on

3 hitp ://alias-i.com/lingpipe.
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a subset of the tweet data in each of the datasets
and the results were compared against two discrimi-
native models, a Maximum Entropy model as imple-
mented in the Stanford POS Tagger? and a highly
customized CRF model implemented as an extension
in GATE®. We also did cross-dataset validation and
observed that the performance deteriorates by ap-
proximately 20% in all the models tested. In this
paper we present an evaluation of the comparative
performance of the two classes of taggers as well as
an analysis of the deterioration of the results in the
cross validation experiment.

In summary this paper make the following contri-
butions:

e Makes the source code and jar publicly available®
for further research or to use the HMM tagger for
tagging Tweet messages.

e Presents the results of direct comparison between
three types of POS taggers trained and tested on
Tweet messages.

e Presents an evaluation of cross-dataset general-
izability of three classes of tagging models.

e Presents a detailed analysis of the error contri-
bution for each class of tagging model.

2 Characteristics of Tweet Data

There is much linguistic noise in micro-blogging texts
as a result of the ways in which micro-blogs are writ-
ten. The noise arise from different language usage
characteristics, hence different strategies are required
to account for them. The following are a list of the
characteristics with a discussion of the challenges re-
sulting due to the linguistic noise.

Word Capitalization Use of capitalization in
micro-blogs is inconsistent. In formal texts,
capitalization is used as a key feature for rec-
ognizing proper nouns (tags NNP and NNPS),
however in micro-blogs capital letters are used
for several other purposes such as emphasis(eg.
“tomorow YOU will need to do that”) and
highlighting (eg. “lease do me a favor and
POST CHAPTER 15”). Micro-blog texts also
contain a plethora of capitalization due to typos.
Apart from these, noise is also introduced by
a lack of capitalization of nouns which should
be capitalized. Various techniques such as use
of name lexicon lists (Leon Derczynski, Alan
Ritter, 2013) and the use of a trained classifier
to recognize a valid capitalization (Ritter et al,
2011) have been used to account for the noise
due to capitalization.

Word Variations Spelling variations could be unin-
tentional, since Microblog texts rarely get proof-
read, or intentional, for the purpose of compress-
ing long words, eg. use of tmro and 2moro for
tomorrow. Word compressions can take either a
graphemic or a phonemic form (Monojit Choud-
hury, Rahul Saraf, Vijit Jain, Sudeshna Sarkar
et al, 2007). Graphemic forms involve deletion
vowels (eg. “msg”), deletion of repeated charac-
ters (eg. “tomorow” for “tomorrow”) and trun-
cation (eg. “tom” for “tomorrow”). Phonemic

4http://nlp.stanford.edu/software /tagger.shtml

Shttp//gate. ac.uk/wiki/twitter-postagger. html

S hitp://staff.elena. aut.ac.nz/Parma-
Nand/projects/TaggerDownload.html
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forms involve substitution of a shorter set of char-
acters to represent the same phoneme, eg. “2” in
“2moro”. Choudhury et. al report decoding such
spelling variations with an 80% success using a
HMM model.

Multi Word Abbreviation Frequently, multiple
words are abbreviated as single word abbrevia-
tions, eg. “lol” for “laugh out loud” and “tgif”
for “thank god its Friday”. These abbreviations
can only be identified by use of lexicons.

Slangs Slangs such as “gonna” used for “going to”
is common since it reduces the size of the sen-
tence. Lexicons with word-to-phrase maps have
been used with varying levels of success to ac-
count for such use of slangs (Gimpel et al, 2011;
Derczynski et al, 2013).

Word Omission Frequently used function words
such as articles and subject nouns are omitted.
For example, “I went to town in a car” may be
written as “went town in car”. This category of
noise is easily handled by training sequence based
probabilistic models and both CRF and HMM
models perform well with this type of noise.

3 Data Sets Used

Currently, there are 3 sets of tagged datasets on tweet
texts, two of them (TPOS and DCU) use similar
PTB tag set, while the third one (ARK) uses a much
smaller subset of 25 tags. The list of tags are shown
in Figures 1 and 2 for TPOS/DCU and ARK respec-
tively.

$.”".(,), . . 1, ADVP, CC, CD, DT, EX, FW,
HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS,
NNS, PDT, POS, PRP, PRPS, RB, RBR, RBS,
RP, RT, TO, UH, URL, USR, VB, VBD, VBG,
VBN, VBP, VBZ, WDT, WP, WRB.

Figure 1: Alphabetical list of tags from Penn Tree-
bank used in the TPOS and DCU dataset

!7 #7 $7 &7 el @7 A‘? D? E? G7 L? M? N7 O? P? R7 S?
T,U,V,X,Y, Z, .

Figure 2: Alphabetical list of tags used in the ARK
dataset.t

The PTB data sets contains the following 3 Twit-
ter specific tags

1. URL - url, eg. http://www.illocuti oninc.com/
2. HT - topic, eg. #newyear
3. USR - a tweet username, eg. Qcatlovesit

The ARK dataset contains the Twitter specific
tags from PTB and in addition introduces two addi-
tional tags for continuation of a tweet ( ) and emoti-
con (eg. :-)). It uses the following symbols for the 5
additional T'witter specific tags:

1. U - url, eg. http://www.illocuti oninc.com/

2. # - topic, eg. #newyear
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3. @ - a tweet username, eg. Qcatlovesit
4. E - emoticon, eg. :-)
5. - continuation of a tweet, always preceded by

The ARK dataset, introduced in (Gimpel et al,
2011), used 17 annotators to tag a total of 1827 En-
glish Tweets containing approximately 26,000 tokens.
The paper reports an inter annotator-agreement rate
0f 92.2%. This data was then used to train a CRF tag-
ger model with additional 5 features to handle various
types of linguistic noise such as orthography, phonet-
ics and capitalization. The authors report an accu-
racy of 89.37% compared to 85.85% for a retrained
Stanford tagger.

The TPOS dataset based on PTB was first intro-
duced in (Ritter et al, 2011), contains 12K tokens
from Tweet messages. The authors report a tagging
accuracy of 88.3% with a CRF tagger model trained
on a mixture of TPOS (12K), IRC” (40K) and PTB
(50K). The accuracy reported from this study was
88.3% compared to 80.01% for the Stanford tagger.

The DCU dataset, again based on PTB, intro-
duced in Foster (Foster et al, 2011) contains 269 anno-
tated sentences which had a reported inter-annotator
agreement rate of 95.8%. The authors use the dataset
to train and test a Support Vector Machine tagger
and report an accuracy of 84.4% compared to an ac-
curacy of 96.3% for Wall Street Journal data. This
paper focusses on parsing, hence no tagging specific
up-training is done to account for the linguistic noise,
however the public availability of the tagged data is
extremely useful for Twitter tagging research.

4  Experimental Setup

The testing was conducted using the 3 different sets
of Tweet data described in section 3 so that cross
validation performance could also be determined. We
used the Stanford tagger (Stanford) and the enhanced
Stanford tagger (Gate), both shipped with the GATE
package®. The Stanford tagger has been shown to
exceed accuracies of over 90% (Leon Derczynski, Alan
Ritter, 2013) , hence is considered to be state-of-the-
art. We used the Stanford tagger as a benchmark,
and did cross validation tests on its enhanced version
(Gate tagger) across the three datasets and also did
comparison tests against a newly introduced HMM
model.

For the Stanford and Gate taggers, we used
the pre-trained standard models (as opposed to
faster models with lower accuracy) named english-
twitter.model and gate- EN-twitter.model respectively.
These two models were tested against a twitter
trained HMM model, modified from the basic imple-
mentation in LingPipe®. A final evaluation was done
to compare the training times between a CRF and a
HMM model as implemented in LingPipe. This eval-
uation was done without the implementation of any
additional features in both the CRF and the HMM
model for the purpose of comparing the computa-
tional cost for the two models.

Table 1 gives the details of the data splits between
training and testing sets used in the evaluation exper-
iment. The training and testing splits for T-POS and
DCU dataset is the same as that used for training the
pre-trained GATE models reported in Derczynski et
al (Leon Derczynski, Alan Ritter, 2013).

7Chat data from (Forsythand and Martell, 2007)
8http://gate. ac.uk/wiki/twitter-postagger. html
O hitp://alias-i.com/lingpipe
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Dataset Sentences Tokens
T-POS-train 551 10.6K
T-POS-test 118 2.2K
DCU-train 269 29K
DCU-test 250 2.8K
ARK-train 1827 26.6K
ARK-test 547 7. 7K

Table 1: Dataset Details

The first test on the HMM model was done using
the ARK data set split, into training and testing set
as in Gimpel et. al (Gimpel et al, 2011). (shown
on the last 2 rows of Table 1). The HMM model was
initially tested for n-gram (number of previous tokens
used for emissions) for values ranging from 1 to 10.
An n-gram value of 5 gave us the best performance,
and we fixed the HMM model at this value for all the
other tests.

The HMM model was first trained by varying the
amounts of training data and tested on the ARK-test
data which consists of 547 individual Tweets. The ac-
curacy very quickly reached 80% at about 300 Tweets
after which the the increase was slow up to a max-
imum value of 87% for the total amount of training
data of 1827 Tweets. This compares very well with
the result reported in (Gimpel et al, 2011) for a sub-
stantially feature engineered CRF model which ob-
tained a value of 89.37%. As a comparison, the Stan-
ford tagger had an accuracy of 85.85% on the same
training and test data.

The TPOS and the DCU data sets use the PTB
tagset and hence the results for these two dataset are
directly comparable. The ARK data set contains a
smaller subset of 25 tags by conflating some of the
PTB tages. A model trained on the subset dataset
cannot be cross validated on a superset dataset, how-
ever the opposite is possible by mapping the super-
set onto the subset tagset. Hence, the tagging results
from the superset trained systems was cross validated
on the ARK dataset by mapping the superset tags to
the subset tags, for example all forms of verbs (VB,
VBD, VBG, VBN VBP VBZ) were mapped to a sin-
gle tag, V, in the ARK dataset.

Table 2 shows the results for the cross validation
tests of the four models tested on three datasets.
The pre-trained Stanford and Gate taggers tested on
the TPOS-test and DCU-test data sets achieved rela-
tively high accuracies, close to the reported values in
(Leon Derczynski, Alan Ritter, 2013). For example,
the Gate tagger achieved a token accuracy value of
93.5% on the TPOS-test data and 89.4% on the DCU-
test data. The corresponding token accuracy values
for the LingPipe tagger was 82.8% for TPOS-test and
82.7% for the DCU-test data. As another comparison,
the dataset were also used to train and test a CRF
model from LingPipe. This model which was devoid
of any domain specific feature engineering gave much
lower accuracy on all data sets, shown in the last row
of Table 2. The LingPipe(CRF) model was tested
mainly for the purpose of comparing the training time
rather than for accuracy. As an indication the train-
ing time for the CRF model on the TPOS-train data
set was approximately 8 hours for 200 epochs and
had to be left overnight for 1000 epochs. This com-
pares with less than 30 seconds for the HMM model
for the same training data. For text processing tasks,
each word is a feature. Hence for a discriminative
model such as the CRF, there needs to be multiple
iterations through the whole feature set in order to
be able to find discriminative features for each of the
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tags. This adds a huge computational cost making it
unsuitable for real time systems. On the other hand,
a generative model such as HMM, needs to traverse
through all the features (words and tags) once and
determine the probability distribution of token and
word emissions. This can then be easily updated as
new features are encountered making it adaptable as
new data is encountered making it suitable as a pro-
gressive learner.

The three models were then cross validated by
training them with TPOS-train data and tested
against the ARK-test data. Since the ARK-test data
uses a smaller set of tags, the output of the models
trained on TPOS-train data were first mapped to the
ARK tagset before running the evaluation tests. In-
tuitively, this was expected to give us an even higher
accuracy since the mapping is “downward”. For ex-
ample, all confusions between VB, VBD, VBG, VBN
and VBP from PTB tagset were mapped to V from
the ARK tagset, which would be expected to drive up
the accuracy since we are evaluating against a more
coarse set of tags. The accuracies obtained for this
cross validation are shown in Table 3. All the three
models being evaluated (Stanford, Gate and Ling-
pipe) trained on TPOS-train data give very close re-
sults for TPOS-test and DCU-test datasets, hence for
cross validation, the results of these two accuracies
were averaged and then compared with the ARK-test
accuracy shown in Table 3. The cross validation re-
sults show a drop of token accuracy between 21 and
25 percent, while the sentence level drop is even more
substantial with values of approximately 80%. The
accuracy difference between the models cannot be at-
tributed to the feature engineering in CRF models
since a similar drop was also observed in the HMM
model. The details of the confusions is investigated
in section 5. The individual tag accuracies in Figure
in 3 shows very similar tag-based performance char-
acteristics for both Gate and HMM models. The tags
between ADVP and RBR were low in number (be-
low 10) hence the 0% accuracy for the HMM model.
Apart from the NNPS (singular proper noun) tag,
Gate consistently performs better or equivalent for
the rest of the tags. In the case of NNPS, Gate im-
plements several feature engineering techniques in or-
der to identify un-capitalized proper nouns, however
in the case of the TPOS-test data, this was counter-
intuitive compared to the HMM model which essen-
tially uses capitalization to identify proper nouns.
The figures in 4 and 5 show the individual tag perfor-
mance for the Gate and the HMM models trained on
TPOS-train data. Both the models show that there
is an average of 20% drop in accuracy for ARK-test
data is and this is due to a consistent lower perfor-
mance across all the tags rather than an aberration
pertaining to a subset of tags, which could have been
possible in the ARK-test data. A candid analysis of
the tagging between TPOS and the ARK data sets
did not show any gross tagging differences, hence the
performance degradation has to be attributed to dif-
ferences in higher level data characteristics. This is
currently being investigated.

5 Error Analysis of the HMM Model on the
TPOS data

The TPOS-test data contains a total of 2291 tokens
tagged with 44 tags which consists of 41 PTB tags and
additional 3 twitter specific tags. Table 4 shows the
confusion distribution for the tags which contributed
more than 20% error for the HMM model tested on
the TPOS data. The numbers in brackets in the 3
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Model TPOS-test DCU-test ARK-test
Tok Sent Tok Sent Tok Sent
Stanford(MaxENT) (pre-trained) 88.7 20.3 89.4 36.8 69.6 6.4
Gate(CRF)(pre-trained) 93.5 33.8 89.4 37.6 69.5 6.3
LingPipe(HMM)(TPOS-train) 82.8 25.2 82.7 24.8 61.9 4.8
LingPipe(HMM)(ARK-train) - - - - 86.9 26.4
LingPipe(CRF)(TPOS-train) 69.7 4.4 64.0 4.1 63.2 4.1
Table 2: Percentage Accuracies for the cross validation tests

Model TPOS/DCU-test avg. ARK-test %age drop

Tok Sent Tok Sent Tok Sent
Stanford(MaxENT) 89.05 21.8 69.6 6.4 21.8 77.6
(pre-trained)
Gate(CRF) (pre- 91.45 24.0 69.5 6.3 24.0 82.6
trained)
LingPipe(HMM) 82.75 25.2 61.9 4.8 25.2 80.8

(TPOS-train)

Table 3: Percentage accuracy drops for cross validation tests for the three types of taggers.

Gate and HMM Performance Comparison on TPOS-test Data
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Figure 3: A comparison of the Gate and HMM models’ performance for individual tags, sorted in ascending
order for ARK data values. The sample used is for a TPOS trained model tested on TPOS-test data.
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Figure 4: Gate Model’s performance on individual tags for TPOS-test and ARK-test Data, sorted in ascending

order for ARK data values.
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Figure 5: HMM Model’s performance on individual tags for TPOS-test and ARK-test Data, sorted in ascending

order for ARK data values.
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Tag Total Correct Accuracy Conf-1 Conf-2 Conf-3
JJ 93 53 0.57 NN(19) NNP(11) RB(4
RB 92 74 0.80 NN(7) IN(4) JJ(3)
NN 297 239 0.80 JJ(11) VB(5) NNS(5
VBN 18 10 0.56 VBD(4) NN(2) JJ(1)
VB 118 85 0.72 VBP(5) VBD(4) NNP(4
VBP 68 49 0.72 VB(11) RB(2) NN(2)
VBZ 50 35 0.70 NNS(9) NNP(4) VB(1)
VBD 52 40 0.77 NN(3) VBN(3) JJ(2)
NNS 49 35 0.71 NN(9) NNP(3) RB(1)
NNP 181 130 0.72 NN(24) JJ(6) JJ(6)
UH 86 68 0.79 :(4) RB(3) NN(3)

Table 4: TPOS-train data trained HMM results for
highest confusion and Conf(3) is the third lowest.

confusion columns show the number of confused in-
stances for each of the tags. The lowest accuracy was
achieved for the JJ (adjective) tag with an accuracy
of 0.57. The JJ tag was confused with NN (common
noun) 17 times, NNP (singular proper noun) 11 times
and RB (adverb) 4 times. From the rest of the rows
in table 4 it can be seen that the JJ tag features as
the highest number of false positives for the other con-
fused tags as well. Adjectives are most difficult tags to
identify as many of the nouns also function as adjec-
tives, as for example, “valuable player” and “Costa
Rican group”. In these examples the tokens “valu-
able”, “Costa” and “Rican” function as adjectives,
however were identified as nouns. Out of the 30 con-
fusions for nouns and pronouns, 60% were in the cat-
egory of compound noun modifier adjectives, which
were identified as either nouns or proper nouns. The
rest of the adjectives were of the form where an adjec-
tive was used in a position other than a pre-modifier.
For example in “...I just felt special...”, the token
“special” is functioning as an adjective in a syntacti-
cal position which is usually a noun in most clauses.
Hence, in sequence oriented, probability based mod-
els such as HMM, the tagging for adjective will be bi-
ased towards nouns. The bias is only corrected if the
exact token was present in the training data, which
is why probability based models are only as good as
the range and extent of the training data. Another
category of example which accounted for a high pro-
portion of confused adjectives was the token “long” in
“...all year long...”. In this case the tokens “all” and
“year” are a determiner and noun respectively, hence
the adjective is a post modifier of the compound noun.
This is another rare syntactical position for an adjec-
tive. The majority of adjectives in this category were
classified as nouns as the last token of a compound
noun is frequently a noun. The VBN (past participle)
tag is the other tag with accuracy in the 50% range.
There were only 18 VBN tags in the test data and 4 of
these were confused with VBD (past tense), which is
a tag that can be represented by the same set of words
distinguished only by a complex combination of the
rest of the tokens in the sentence. The other signif-
icant confusion worth mentioning is the confusion of
the NNP (proper noun) tag confused with NN (com-
mon noun). This is due to a lax capitalisation in tweet
messages. The HMM model used for the testing used
capitalisation in addition to the city, corporation and
name lexicons from the Stanford implementation to
tag proper nouns, hence the 24 confusions out of the
181 were outside these lexicons. Tagging of the NNP
tags can be easily improved by extending the existing
Stanford lexicon lists for specific applications.
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tags with accuracy below 80%. Conf(1) is the tag with

6 Concluding Remarks

Social media micro-blogging sites such as Twitter con-
tain vast amounts of information which is extremely
current and, as a result, is fast changing. This neces-
sitates text processing tools which are both efficient
as well as has the ability to do progressive learning.
Since POS tagging is one of the most fundamental
tasks for text processing, this paper presented the
results of a comparison of two popular POS mod-
elling techniques, the CRF and the HMM models.
The state-of-the-art CRF tagger, part of the Gate
package, was first tested on the TPOS corpus which
was used for its development and then cross-validated
with a different corpus, ARK. Both of these corpora
was similarly used to test a HMM model, the basic
form of which is part of the Lingpipe package. The
modified HMM model together with the all the data
in the appropriate formats has been made available at
(URL removed and can be supplied as supplementary
file) for research use.

The token accuracy for the HMM model was found
to be 8% below the CRF model, but the sentence ac-
curacy for both the models was very close, approxi-
mately 25%. The cross validation results for both the
models showed a degradation of approximately 25%
for tokens and a very drastic drop of approximately
80% at the sentence level. The degradation in ac-
curacy across the two corpora implies that the two
datasets had slightly different characteristics hence a
model trained on one set had impaired performance
on the other set. The comparative performance of
the HMM and the CRF models show that the CRF
model is marginally better, however the HMM model
learns orders of magnitude faster and is easily adapt-
able to progressive learning applications. Hence, is
better suited to real time applications such as pro-
cessing live tweets and streaming texts.
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