

Salient elements in novice solutions to code writing problems

Jacqueline Whalley†, Tony Clear†, Phil Robbins†, and Errol Thompson*
†School of Computing and Mathematical Sciences

AUT University
PO Box 92006, Auckland 1142, New Zealand
{jwhalley,tclear,probbins}@aut.ac.nz

*School of Computer Science
The University of Birmingham

Birmingham, B15 2TT, United Kingdom
kiwiet@acm.org

Abstract
This paper presents an approach to the evaluation of
novice programmers' solutions to code writing problems.
The first step was the development a framework
comprised of the salient elements, or programming
constructs, used in a set of student solutions to three
typical code writing assessment problems. This
framework was then refined to provide a code quality
factor framework that was compared with an analysis
using the SOLO taxonomy. We found that combining our
framework with the SOLO taxonomy helped to define the
SOLO categories and provided an improved approach to
applying the principles of SOLO to code writing
problems.
Keywords: SOLO taxonomy, novice programmers, assessment.

1 Introduction
This paper furthers one aspect of the work of the ITiCSE
2009 Paris working group (Lister et al., 2009) in
classifying novice student responses to program code
writing exercises. The aim of classifying student
responses is: 1) to better understand typical patterns of
response; 2) to better understand how students typically
approach code writing questions; 3) to derive repeatable
measures of novice student performance on assessment
tasks; 4) to apply a pedagogically accepted theoretical
framework to this investigation; 5) to identify areas where
students commonly experience difficulty.

As a result of the above insights we would hope
eventually to: 1) develop more effective teaching and
learning strategies; 2) use this knowledge in order to
develop more consistent expectations of novice student
performance; and 3) to assist in the design of fair and
appropriate assessment instruments in examinations and
tests.

2 Background
The Paris working group (Lister et al., 2009) applied
recognised educational frameworks (Bloom and SOLO)
as classification schemes for mapping examination
questions and novice student responses. The work of the
group extended from code comprehension questions to
initial attempts to address code writing questions. These
attempts adopted a top down strategy in order to directly

Copyright © 2011, Australian Computer Society, Inc. This
paper appeared at the 13th Australasian Computer Education
Conference (ACE 2011), Perth, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 114. J. Hamer and M. de Raadt, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

map each student response to a SOLO level. While they
achieved a mapping for three very distinct questions and
came to a consensus between four raters, the process
seemed very context bound and question specific. In
subsequent work we have revisited this approach and
some of the underlying assumptions.

In this paper by contrast, we begin with the student
response as raw data and build from that basis in a
grounded manner to empirically derive a framework from
the students' own work, before attempting as a subsequent
step a SOLO classification of the responses given.

3 Methodology
Analysis of program understanding has been defined as
“identifying artefacts and understanding their
relationships; this process is essentially pattern matching
at different abstraction levels” (Tilley 2000). More
recently Meerbaum-Salant et al., (2010) have used a form
of content analysis (Stemler 2001) of written text in a
study which systematically analysed students’ written
code, and categorised their solutions according to the
SOLO and Bloom taxonomies.

The study we report here, while adopting similar
methods to content analysis, is better defined as a study
applying grounded theory. Grounded theory (GT) is a
method for empirically deriving theory from data,
typically through applying an inductive and rigorous
process of coding and categorisation. GT was originally
conceived as an analytical and conceptual, creative
process of constant comparative coding by Glaser and
Strauss (1967). They have asserted that “grounded theory
allows no speculation…one can be just as systematic with
qualitative data as with quantitative data” (p. 200) and in
generating theory the key position is that “the theory
should fit the data” (p. 201) and not vice versa.

Given our goal of starting with the students’ own code
to derive the underlying patterns, GT presented an
appropriate research method. A bottom up approach to
the analysis of student responses to three code writing
questions was undertaken. In outlining strategies for GT
analysis Glaser and Strauss (1967, pp. 62-63) made the
following distinctions between “sampling strategies”:

“It is important to contrast theoretical sampling
based on the saturation of categories, with statistical
(random sampling). Theoretical sampling is done in
order to discover categories and their properties, and
to suggest the interrelationships into a theory.”

“The adequate theoretical sample is judged on the
basis of how widely and diversely the analyst chose
his groups for saturating categories according to the
type of theory he wished to develop.”

To simplify this initial investigation we examined only
solutions that were complete and would compile and run.
All other solutions were incomplete and showed that
students lacked knowledge of basic programming
constructs. Therefore SOLO analysis of seriously flawed
responses would give inconsistent categorisations. The
unit of analysis was the segment of code comprising the
student response to a selected question. A subset of
solutions was selected for analysis, comprising questions
which exercised different programming constructs. We
believe that we achieved saturation in the programming
constructs from the subset we chose (see Section 4).
Student responses were selected from questions that were
posed to elicit responses at different SOLO levels. The
goal was to establish a set of empirical categories
comprised of salient programming elements. The student
responses were coded to reflect the primarily syntactic
categories of salient programming elements that emerged
from the constant comparative analysis of the data.

These salient elements coded at the syntactic level
were subsequently condensed through a form of feature
extraction into broader concepts or ‘code quality’
categories. Those categories were used to represent the
patterns of code used by novice programmers.

The students' responses were subsequently classified
independently, by three researchers, using the SOLO
taxonomy. We were interested to see if an existing
taxonomy would be sufficient or if the salient elements
and quality factors made it easier to measure the level at
which a student was answering code writing questions.

The three researchers then met to reconcile the
differences in the resultant SOLO codings and to achieve
a consensus on their ratings, based upon agreeing
common interpretations of the definitions in Table 1.
This session was further informed by codings from an
additional researcher working remotely. Once a
consistent set of understandings had been derived a basis
for presenting the findings of this study was achieved.

3.1 The SOLO taxonomy
The SOLO taxonomy describes levels of increasingly
integrated thinking in a student's understanding of a
subject, through five stages. Biggs (1999) describes the
types of verbs that apply for each of the levels of the
taxonomy (p. 47) and provides an example of ordering
outcome items by the taxonomy (pp.176-178). These
levels are placed into two phases suggesting that learning
passes through various stages from a more quantitative
phase (surface) to a more qualitative one (deep,
connecting and relating ideas) as learning tasks and their
complexity increase. Hattie and Purdie (1998, p. 156)
provide a number of examples of the use of the SOLO
taxonomy.

More recently SOLO has been used to reliably classify
code reading questions and the student responses to those
questions (Clear et al., 2008; Sheard et al., 2008). An
initial set of guidelines and descriptors for using SOLO to
classify student code writing solutions (Table 1) were
proposed by Lister et al. (2009). These descriptions are
the ones that we initially employed to independently
classify the student responses to the questions discussed
here.

When the SOLO taxonomy is applied to short
segments of code, the learner needs to have more than a
working solution; they need to show an understanding of
the types of constructs that best implement the solution,
to utilise program structures that communicate the intent
of their code to others, and produce code that is easy to
maintain.

Additionally the phrasing of the problem itself is
critical to the possible SOLO level for a response. In
analysing code writing tasks, it was found that the nature
of the question had an impact on the type of solutions that
were possible (Lister et al. 2009). Some questions did not
allow for much more than a direct translation into the
programming language while others allowed for greater
interpretation. This supports the view that a question can
be posed to elicit responses at a given SOLO level. The
categories defined by Lister et al. (2009) were based on
an example for language translation from Hattie and
Purdie (1998). Hattie and Purdie (1998) argue that the
shift through the SOLO levels shows an increasing
understanding of how the phrase should be interpreted
rather than just translated. This shift shows an increasing
awareness of the relationship between the words and how
that relationship communicates meaning.

Table 1: SOLO categories for code writing solutions

Although Table 1 represents the SOLO categories as
though there were distinct boundaries, it should be
recognised that what is represented is actually a
continuum (Thompson 2010, Meerbaum-Salant et al.
2010). Supporting this view, a statistical analysis of
SOLO levels for code comprehension questions
conducted by the Paris working group (Lister et al.,
2009), confirmed the ordinality of the SOLO scale.

4 Analysis of student code writing solutions
The data consisted of exam questions and students’
answers in programming courses offered in New Zealand
and Finland. Three exams were used from introductory

Phase SOLO category Description

Q
ua

lit
at

iv
e

Extended
Abstract –
Extending [EA]

Used constructs and concepts
beyond those required in the
exercise to provide an
improved solution

Relational -
Encompassing
[R]

Provides a valid well
structured program that
removes all redundancy and
has a clear logical structure.
The specifications have been
integrated to form a logical
whole.

Q
ua

nt
ita

tiv
e

Multistructural -
Refinement
[M]

Represents a translation that is
close to a direct translation.
The code may have been
reordered to make a valid
solution.

Unistructural –
Direct
Translation
[U]

Represents a direct translation
of the specifications. The code
will be in the sequence of the
specifications.

Prestructural
[P]

Substantially lacks knowledge
of programming constructs or
is unrelated to the question.

programming courses. The answers of nearly 750
students were available for analysis. The programming
languages covered were Java, Perl and Python. All of the
exams included code tracing questions, most included
code-explaining, code writing questions and Parsons
questions. As noted in Section 3 above a theoretical
sampling strategy was adopted with a proportion of the
answers from each examination chosen for further
analysis. Three typical CS1 code writing problems were
selected from the above corpus as representative of
different programming constructs and a progression of
technical difficulty. What follows is a detailed discussion
of the analysis of each of these three questions applying
the methodology described in section 3.

4.1 Discount
The discount problem was taken from a written
examination for first semester (CS1) students where the
languages used were Python and Finnish. A subsample
of valid student responses was analysed. Forty eight
responses were analysed and exemplars of typical student
responses are given in Table 2 (refer to the appendix for
the less common code pattern examples, we have chosen
to leave these in Finnish as these constitute the raw data).
A shop gives reductions of the prices as follows: if the
original price of an item is at least 100 Euros but less
than 200 Euros, the reduction is 5%. If the original price
is at least 200 Euros then the reduction is 10%.

Pattern Typical Code Example
3 def main();

hinta = raw_input("Anna alkuperainen hinta.");
hinta = float(hinta);
if hinta >= 200:

hinta = 0.90*hinta
elif hinta >= 100:

hinta = 0.95*hinta
print "Hinta Alennettuna:", hinta

main()
5 def main();

rivi = raw_input("Anna alkuperainen hinta.");
hinta = float(rivi);
if hinta >= 200:

uusihinta = 0.90*hinta
if hinta >= 100 and hinta <200:

uusihinta = 0.95*hinta
if hinta < 100:

uusihinta = hinta
print "Tuotteen alennettu hinta on:", uusihinta

main()
6 def main();

rivi = raw_input("Anna alkuperainen hinta.");
alku_hinta = float(rivi);
if alku_hinta < 100:

print "Hinta on", alku_hinta, "euroa"
elif alku_hinta <200:

hinta = 0.95*alku_hinta
print "Alennettu hinta on", hinta, "euroa"

elif alku_hinta <200:
hinta1 = 0.90*alku_hinta
print "Alennettu hinta on", hinta1, "euroa"

main()

Table 2: Example of the most prevalent ‘discount’
solution patterns

Applying a grounded theoretic strategy a set of
empirical codes were derived based primarily upon the
syntactic constructs present within the student responses.
This resulted in the set of salient elements portrayed in
Table 3. The syntactic elements are shown in the second
column of the table with one broader grouping based on
function or purpose of the code in column one. An
abstraction beyond the salient elements is given in
column three where key features have been extracted
based on the contribution of the salient element to the
quality of the end code.

As can be extrapolated from Table 3, focusing on the
selection function, solutions that used two selection
clauses were preferable and those with three selection
clauses had one unnecessary clause. The selection
function class was therefore split into two quality factors
without or with redundancy respectively. With reference
to the printing and calculation functions better solutions
had one print or calculation statement outside of the
selection statement to remove code repetition. If a
discount subroutine was written then the solution to the
discount calculation was also judged to be a generalised
solution.

Function Element Quality Factor

selection if/else if no redundancy
2 x if
if/else if/ else

 redundancy

if/else if /else if
3 x if
& or | used

discount
calculation

in a subroutine generalised
in each selection
clause

redundancy

one calculation no redundancy
printing in each selection

clause
redundancy

one statement after
selection functionality

no redundancy

Table 3: Salient element framework for the ‘discount’
problem

In the next step, Table 3 has been condensed to allow
us to map student code to the function and quality
framework. Using this framework, six patterns of code
construction were observed.

Function Quality Factor
Code Pattern
1 2 3 4 5 6

selection no redundancy X X X
calculation generalised X

no redundancy X X
printing no redundancy X X X X X
Number of solutions 1 1 6 5 24 11
SOLO Classification M U U U U U

Table 4: Refined quality framework for the ‘discount’
problem

These code patterns are mapped against their
respective functions and quality factors in Table 4. The

concepts extracted in this model then enabled us to
conduct a mapping of each response pattern to the SOLO
taxonomy.

Despite the large variation in responses, for a
relatively simple question, the differences were in the
minor detail. Perhaps this is a function of the limited
level of complexity of the question which essentially just
assesses ability to frame conditional statements.

This question in terms of the SOLO taxonomy is
posed at the multistructural level. It requires some
interpretation to arrive at a suitable solution (cf. Table 1)
but a significant part of the specification may be directly
translatable into a solution.

The sequence of selection statements in the majority of
cases were found to be ‘a direct translation of the
specification’ and therefore coded as unistructural.
However in some cases the sequence had been reordered
away from a direct translation of the specification but this
reordering provided a less integrated solution than would
have been provided by a direct translation response
(pattern 3). In other cases a solution had been improved
in one ‘quality factor’ aspect, e.g.: removed repetition of
the printing statement, but had introduced redundancy by
double checking a boundary value.

One student wrote a generalised subroutine to
calculate the discount and then used that routine in the
main method (pattern 1, Table 4). This response was the
only response observed that was not coded as
unistructural because ‘the code had been reordered to
make a valid solution’ (cf. Table 1). Since the code in the
subroutine was close to ‘a direct translation of the
specification’, although a more sophisticated response,
we chose not to code this at the relational level. Using
the quality factors as a guide we were able to place the
student responses along the SOLO continuum (Figure 1).

SO
LO

 le
ve

l

P U M R

C
od

e
Pa

tte
rn

 6 5 432 1

Figure 1: Mapping to SOLO for ‘discount’ using

quality factors

Supporting the notion of a continuum the code patterns
4, 3 and 2 lean a little more towards a multistructural
level response. Code pattern 1 by contrast leans towards
a relational response because of the use of a subroutine
which is a more integrated solution but in this case is still
‘close to a direct translation’ of the specification (cf.
Table 1).

4.2 Average
This question was taken from a second semester (CS1.5)
programming class, with a focus on scripting languages.
The question, given below, was part of a practical exam.
Write a Perl script to allow students to calculate their
average exercise mark for a semester. The script should:

1. Prompt the student for their name.
2. Prompt for the next exercise mark and allow it to

be input
3. Do this for 5 marks.
4. Display the student’s name, and their average

mark.
Extra credit will be given if your script contains a

sensible subroutine that is correctly used.
Typical code patterns are depicted in Table 5 with a

focus on the subroutine function or its absence (Table 6)
where the key variations were apparent.

Pattern Typical Code Example
1 sub findAve (){

$_[0] / $_[1];
}
for (my $i = 0; $i < 5; $i ++){

print "Enter next mark: \n";
chomp (my $mark = <STDIN>);
$total+= $mark;

}
my $average = &findAve ($total,5);

2,4,5 sub findAve (){ $_[0] / 5; }
6 my $i = 0;

my $total = 0;
for ($i=0, $i<5, $i++){

print "Enter next mark: ";
chomp($total += <STDIN>);

}
my $average = $total/5;
print "Average : $average\n";
exit;

7 print "Please enter first mark \n";
my $mark1 = <STDIN>;
print "Please enter second mark \n";
my $mark2 = <STDIN>;
print "Please enter third mark \n";
my $mark3 = <STDIN>;
print "Please enter fourth mark \n";
my $mark4 = <STDIN>;
print "Please enter fifth mark \n";
my $mark5 = <STDIN>;
my $total = 0;
my $total1 = $total + $mark1;
my $total2 = $total1 + $mark2;
my $total3 = $total2 + $mark3;
my $total4 = $total3 + $mark4;
my $total5 = $total4 + $mark5;
my $average = $total5/5;
print "Total: $total5 \n";
print "Average: $average \n";

Table 5: Example of the most prevalent ‘average’
solution patterns

The initial salient element analysis for the averaging
problem is provided in Table 6. Solutions that did not use
a loop to get the user input had code repetition and were
considered to have high redundancy. One student wrote a
cohesive, generalised subroutine to get the user input. But

the majority of students wrote a subroutine to calculate
the average.

The elements identified with their respective functions
and quality factors are depicted in Table 6. We can see in
this question while redundancy and generalisation are
quality factors in common with the ‘discount’ problem,
the requirement for a subroutine has added a new design
dimension of cohesion of the subroutine design.

Function Element Quality Factor
input Uses a loop low redundancy

No loop high redundancy
In a subroutine generalised

Has subroutine Sub uses a parameter generalised
Also gets input low cohesion

No subroutine Sums in a loop low redundancy
Sums without loop high redundancy

Table 6: Salient element framework for the ‘average’
problem

Table 7 extends the salient element framework to
highlight the varying code patterns relating to the
identified function and quality factors.

Table 7: Refined quality framework for the ‘average’
problem

As Table 7 shows there was some variation in the way
that students wrote their subroutines but with two
dominant patterns suggesting a bimodal response pattern
based upon a student’s decision to write a subroutine.
The primary pattern, pattern 1 (cf. Table 5 for sample
code) is an example of a response that used a generalised
subroutine. In contrast patterns 2, 4 and 5 did not use a
generalised subroutine (also cf. Table 5). Pattern 1 took
two parameters, the total and the item count, whereas
pattern 3 took one, an array containing the input data.
The latter resulted in a solution without cohesion as it
consisted of one large subroutine that read input and
calculated the average. Only two students used a variable
to hold the number of items (patterns 2 and 4) instead of
hard coding the ‘5’ into the code. The one example
where the solution has redundancy in getting the input did
not use a loop. More common was the use of a loop for
input but no subroutine at all (pattern 6).

While the patterns of response were divided bi-
modally at the unistructural and multistructural SOLO
levels the question itself is clearly set at a multistructural
level (cf. Tables 1 and 7). Parts of the problem were
directly translatable in that students were given the steps
of the algorithm required for its solution. The question
offered an extra mark for a simple subroutine, without
specifying what it had to do, so some interpretation was
required for this.

One student wrote a solution that took the line "Do
this for 5 marks" to mean repeat the input line 5 times.
Most realised that the line was meant to indicate that a
loop was required, especially as the accompanying
marking scheme clearly stated that a loop was needed.

SO
LO

 le
ve

l

P U M R

C
od

e
Pa

tte
rn

 7 6

 5 2 3 1
 4

Figure 2: Mapping to SOLO for ‘average’ using

quality factors

We classed all solutions without a subroutine as
unistructural since they were no more than a direct
translation of the problem description that opted out of
writing a subroutine. Next in the continuum (Figure 2)
were those answers where a subroutine was used. We
considered the inclusion of a subroutine to indicate a
multistructural response. We did not consider it to be a
relational response because it was clearly stated in the
question that a subroutine was expected. However
reflecting the continuum model we can see from Figure 2
that pattern 7 is close to a prestructural response and
pattern one approaches the relational level of SOLO.

4.3 Print a box of asters
This question was taken from the final written exam for a
first semester (CS1) java programming class.

The students were asked to write code to print a box of
asterisks (*) with the same number of rows and columns,
an example was given of a 5 by 5 box of asters. The
students were provided with the method signature which
had a single parameter that represented the width and
height of the box. The majority of the students did not
attempt to answer this question. This appeared to be
perceived as a difficult question by the students, although
students had prior exposure to writing a method that
printed a triangle in their lab class.

Table 8 portrays the typical solution code for both the
incorrect and correct solutions. In this question many
students wrote functioning code that iterated one too
many times (code patterns annotated in Table 8 “<=” with
one or more loops) or created a box of fixed width or
area.

We can see in this question while redundancy and
generalisation are quality factors in common with the
‘discount’ and ‘averaging’ problems, the increased
complexity of the problem has introduced further design
issues relating to the degree of connectedness of the code.
It has also enabled partially correct working solutions to
be provided.

Function Quality
Factor

Code Pattern
1 2 3 4 5 6 7

sub used X X X X X
 generalised X X
 high cohesion X X X
number generalised X X
input no redundancy X X X X X X
Number of solutions 20 1 1 1 2 14 1
SOLO classification M M M M M U U

Code Patterns Typical Code Example
1, 7
2, 8 (<=)

public void printBox(int size){
for(int i = 0; i < size; i++){

for(int j = 0; j < size; j++){
System.out.print("*");

}
System.out.println();

}
}

1, 9
2, 10 (<= 2nd loop)

public void printBox(int size){
String sStar = "";
for(int i = 0; i < stars; i++){

sStar += "*";
}
for(int j = 0; j < stars; j++){

System.out.println(sStar);
}

}
3
4, 11(<= loop)

public void printSquare(int size){
for(int j = 0; j < stars; j++){

System.out.println("*****");
}

}
6, 12 public void printSquare(int size){

for(int j = 0; j < stars; j++){
System.out.println("*");

}
}

5, 13 public void printSquare(int size){
System.out.println("*****");
System.out.println("*****");
System.out.println("*****");
System.out.println("*****");
System.out.println("*****");

}

Table 8: Example of the most prevalent ‘box of asters’
solution patterns

In refining from this salient element framework (Table
9) to a refined set of code patterns new choices presented
themselves. Depending on the learning goals at this level
teachers may choose to emphasise different quality
factors in assessing student code. Key distinctions in this
instance were between generalisability, connectedness (or
level of integration) and potential efficiency.

Table 9: Salient element framework for the ‘box of
asters’ problem

In the course context for this question more
importance was placed on generalisability and indeed the
question itself required a generalised solution. While in
our context this focus on generalisability has been
adopted as a design principle in other contexts with a

stronger focus on algorithms the efficiency of the
solutions maybe a focus. A discussion follows of two
refinements of the salient element framework based on
two different perspectives of code quality.

The first refinement involved condensing the iteration
elements based on the generalisability of the code as a
quality factor.

Table 10: Refined quality framework based on
generalisability for the ‘box of asters’ problem

Six unique patterns of code were identified when the
code was classified using the quality framework based on
generalisability of the print a box of asters method.

If the solutions were able to produce a box of equal
width and height of any size (the answer utilised the
parameter supplied) then the iteration was considered to
be a more generalised solution (see code patterns 1 and 2,
Table 10 and code examples Table 8). Those students
who chose to answer this question tended to provide a
correct generalised solution. The few solutions that were
not generalised usually either printed a fixed width box or
a single vertical or horizontal line of asters and also gave
incorrect output.

Function Quality
Factor

Code Patterns
7 8 9 10 11 12 13

iteration connected X X
terminates
correctly

X X X

result n by n box,
correct size

X X

an n by n
box, size
incorrect

 X X

a 5 by n box X
A 5 by 5 box X
a line of 5
asters

 X

Number of solutions 10 3 8 4 5 6 1
SOLO classification R R R R U P U

Table 11: Refined quality framework based on
connectedness for the ‘box of asters’ problem

The second refinement attempt, in Table 11,
condensed the categories on the basis of the degree of
connectedness (or degree of integration) of the code. In

Function Element Quality Factor

iteration nested generalised & connected
generalised & not connected 2 independent loops

1 loop not generalised
not generalised & redundancyNo loop

Uses parameter generalised
Terminates correctly correct solution
Loop 1 too many incorrect solution
Loop 1 too few incorrect solution

asters As a local variable generalised

Function Quality Factor
Code Patterns
1 2 3 4 5 6

iteration generalised X X
terminates
correctly

X X X

result n by n box,
correct size

X

an n by n box,
size incorrect

 X

a 5 by n box X X
A 5 by 5 box X
a line of 5 asters X

Number of solutions 15 3 4 4 1 4
SOLO classification R R U U U P

solutions that use two sequential loops the response had
two somewhat disconnected pieces of code. While it
could be argued that this solution has some connection
between the two loops because the second loop uses the
string built by the first loop (cf. Table 8), it is possible to
give a more connected answer by nesting the loops.

This problem is considered to be posed at a relational
level. It provides the learner with a description of the
problem to be solved. The description is complete in the
sense that it describes fully the requirement from the
perspective of the problem domain but provides only
minor clues as to how the problem might be programmed.

Since the algorithm was not provided there is no
method of clearly defining what a direct translation
solution (unistructural) would look like. For this reason
it is not possible for students to provide a correct solution
that can be considered to be unistructural or
multistructural.

Across all 13 patterns identified in Tables 10 and 11
for the quality factor of correctness, there were three code
patterns observed that provided a correct solution (cf.
Table 11, patterns 7 and 9 and Table 10, pattern 1). The
other answers failed to output a generalised solution and
did not provide a correct solution (typically by incorrectly
terminating the loop). For the purpose of this SOLO
analysis we ignored the loop termination bug as it is not
significant when considering the SOLO class of the
answer (which assesses the level of integration of a
response).

The first correct method (Table 8, patterns 1 and 7)
used a nested loop which provided a connected and
generalised solution. The nested loop solution is less
efficient (O(n2)) than the second generalised solution that
uses somewhat disconnected sequential loops (O(n))
(Table 8, patterns 1 and 9). These solutions are
considered to be relational.

Code patterns 5 and 13, 3, 4 and 11 provide a direct
translation of the exemplar given in the question and can
only ever produce a 5 by 5 or a 5 by n box of asters.
Some of these code patterns use a loop rather than five
sequential print statements and are therefore considered
to be slightly better solutions. This subtle difference is
illustrated in Figure 3 along a SOLO continuum.
However all student solutions following these patterns
fail to provide the required generalised solution and were
classified as a unistructural response.

SO
LO

 le
ve

l

P U M R

C
od

e
Pa

tte
rn

 6
12

5 3
4

13 11

 9 1 7
10 2 8

Figure 3: Mapping to SOLO for ‘box of asters’ using
quality factors

Solutions that printed a row or column of asters,
patterns 6 and 12, show that the students recognise that a
loop is required to solve the problem but do not really
grasp how that loop functions and their solutions were
therefore coded as prestructural.

5 Conclusion
In previous research, mapping from student code to the
SOLO taxonomy has proven difficult (Clear et al., 2008,
Lister et al., 2009), since the mapping process seems very
context bound and question specific. Therefore achieving
consistent ratings is challenging, especially for code
writing problems. In this study a grounded approach has
been adopted to work from student responses bottom up
through a two layer coding and concept mapping process.
Based upon the resulting refined quality framework we
have been able to identify critical elements, which can
contribute to more consistent and supportable SOLO
categorisations of novice programming students’
responses to writing questions. A depiction of the
empirically grounded mapping process is given in Figure
4.

We believe that this salient element and quality
framework helps to define the SOLO categories and
provides a novel way of matching the principles of SOLO
for code writing problems. The process of identifying
salient elements at the syntactic level should be readily
reproducible for chosen problems by knowledgeable
CSED researchers. In the feature extraction stage there
are some basic features that are replicable and discernable
across different code writing questions given to CS1
students. These features encompass the degree of
redundancy, efficiency, generalisability and integration
observed in the solution code. In some cases degree of
coupling and cohesion also play a role. The features
represent abstractions from the code itself, based upon
qualitative judgments, which can be adapted depending
upon the design goal for the code writing exercise.

Figure 4: The mapping process

Further study needs to be undertaken that allows us to
establish the reliability of the suggested coding practice.
Potentially multi-rater studies could be conducted (Clear
et al., 2008).

The study has caused us to suggest refinements to
prior work. In coding the averaging problem (Section
4.2) we observed students responses that highlight an
issue with the description provided by Lister et al. (2009)
for multistructural responses to code writing questions.
Therefore a revised version of Table 1 is provided below
to include this refined multistructural response definition.

Raw
Code

 Syntactic
Coding

Feature
Extraction

SOLO
mapping

(Open codes) (Concepts)

General pedagogical
taxonomy

More general and
applicable across

questions

Question specific,
replicable process

Table 12: Refined SOLO categories for code writing
solutions

The previous definition stated that a multistructural
response represented a translation that is close to a direct
translation. The code may have been reordered to make a
'valid' solution. Yet in the averaging problem we saw
responses that were a slightly reordered translation and
that were correct valid solutions, but the reordering led to
a less integrated solution. Such translations, while often
still at the multistructural response level, tended towards
the unistructural.

In our experience, educators need to be careful when
applying SOLO to classify student responses. It is easy
to lose sight of the intention of SOLO. Unistructural
means focusing on a single concept or salient element.
Multistructural focuses on multiple concepts or salient
features but not integrating them all. Relational requires
seeing all the salient elements or features and utilising
them (i.e. seeing the relationships between the concepts
and features). In this study these terms have been
interpreted through Table 12 above, and the process of
assigning a SOLO level to a student response has
involved an assessment of the degree of distance between
the answer and the specification. Thus the judgment for
the code writing process relates to the level of translation
of the specification demanded to implement the code.
This reflects the level of abstraction or integration of
thought required by the student.

The insights from this study may further serve to
explain the contradictory findings of Meerbaum-Salant et
al., (2010), who noted when applying a combined
BLOOM and SOLO taxonomy, that students performed
less well on a lower level Multistructural Creating task
than on a deemed higher level Relational Applying task.
Lopez et al., (2008) would also support that view in
suggesting that code writing is a higher order skill than
tracing – the Relational Applying task in the Meerbaum-
Salant et al., (2010) study. But perhaps the code

writing/reading distinction is more subtle than a simple
hierarchy. In the latter study we surmise that the authors
have not taken into account the degree of translation
demanded by the code writing task, but posited a SOLO
level for the question ‘in the abstract’ based upon it
requiring the combination of an assumed sequence of
steps. Such tasks may indeed involve more integration of
thought than implied by a multistructural classification,
which requires some degree of re-ordering and
integration of thought (cf. Table 12), perhaps placing it
closer to the Relational level on the SOLO continuum.

To conclude we believe the salient element framework
presented in this paper should serve as an aid to CSED
Researchers and CS Educators seeking to analyse novice
programmer responses to code writing questions, and to
map them consistently to a SOLO level. By doing so we
intend that our understanding of the programming process
exercised by novice programmers may be deepened, and
that we may build a greater awareness of what reasonable
expectations may be set for novice performance on code
writing tasks. The intended impacts from this deeper,
research derived, understanding are: more consistent and
equitable designs for code writing questions, an improved
learning experience for the novice and an overall increase
in the quality of teaching and assessment of novice
programmers.

6 Acknowledgements
We wish to express our thanks to members of the ITiCSE
2009 Paris working group and especially Otto Seppälä
who was a member of the subgroup who provided data
for one of the questions and helped with assigning SOLO
categories to the responses.

7 References
Biggs, J. B. (1999): Teaching for quality learning at

University, Buckingham. Open University Press.
Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,

Sheard, J., et al. (2008): Reliably Classifying Novice
Programmer Exam Results using the SOLO
Taxonomy. S. Mann and M. Lopez (eds.), Proc. of the
21st Annual NACCQ Conference, 1: 23-30. Auckland,
New Zealand: NACCQ.

Glaser, B. and Strauss, A. (1967): The Discovery of
Grounded Theory. Mill Valley, CA: Sociology Press.

Hattie, J. and Purdie, N. (1998): ‘The SOLO model:
Addressing fundamental measurement issues’, in Dart,
B. and Boulton-Lewis, G. (eds.), Teaching and
Learning in Higher Education. 145–176. ACER Press.

Lister, R., Clear, T., Simon, Bouvier, D. J., Carter, P.,
Eckerdal, A., et al. (2009): Naturally occurring data as
research instrument: analyzing examination responses
to study the novice programmer. SIGCSE Bull. 41(4):
156-173.

Lopez, M., Whalley, J., Robbins, P. et al., (2008):
Relationships between reading, tracing and writing
skills in introductory programming. M. Caspersen, R.
Lister and M. Clancy (eds.), Proc. of the Fourth
International Computing Education Research

Phase SOLO category Description
Q

ua
lit

at
iv

e
Extended
Abstract –
Extending [EA]

Used constructs and concepts
beyond those required in the
exercise to provide an
improved solution

Relational -
Encompassing
[R]

Provides a valid well
structured program that
removes all redundancy and
has a clear logical structure.
The specifications have been
integrated to form a logical
whole.

Q
ua

nt
ita

tiv
e

Multistructural -
Refinement
[M]

Represents a translation that is
close to a direct translation.
The code may have been
reordered to make a more
integrated and/or valid
solution.

Unistructural –
Direct
Translation
[U]

Represents a direct translation
of the specifications. The code
will be in the sequence of the
specifications.

Prestructural
[P]

Substantially lacks knowledge
of programming constructs or
is unrelated to the question.

Workshop (ICER 2008). 101-112. Sydney, Australia:
ACM.

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M.
(2010): Learning Computer Science Concepts with
Scratch. K. Sanders, M. Caspersen and M. Clancy
(eds.), Proc. of the Sixth International Computing
Education Research Workshop (ICER 2010). 69-76.
Aarhus, Denmark: ACM.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E. and Whalley, J. L. (2008): Going SOLO to assess
novice programmers. SIGCSE Bull., 40 (3): 209-213.

Stemler, S. (2001): An Overview of Content Analysis
Practical Assessment, Research & Evaluation, 7(17).
Retrieved August 16, 2010 from
http://PAREonline.net/getvn.asp?v=7&n=17

Thompson, E. (2010): Using the Principles of Variation
to Create Code Writing Problem Sets. To appear in
Proc of the 11th Annual Conference of the Subject
Centre for Information and Computer Sciences,
Durham, UK, http://www.ics.heacademy.ac.uk/

Tilley, S. (2000): The canonical activities of reverse
engineering. Annals of Software Engineering, 9: 249-271.

Appendix
This appendix provides example code for the less
frequent code patterns observed for the discount pattern.

Pattern Typical Code Example
1 def main();

print "Losken tuotteen alennettu hinnan."
rivi = raw_input("Anna tuotteen hinta.\n")
hinta = float(rivi)
aleenushinta = laske_alennelta_hinta(hinta);
print "Tuotteen alennettu hinta on:", uusihinta, "euroa"

main()

def laske_alennelta_hinta(hinta):

bonus = 0.0
if 100 <= hinta < 200:

bonus =0.05
if hinta >= 200:

bonus =0.10
return hinta * (100-bonus)

2 def main();
rivi = raw_input("Anna tuotteen alkuperainen hinta.")
hinta = float(rivi)
alennus = 1.0
if hinta >= 200:

alennus = 0.9
if hinta >= 100 and hinta <= 200:

alennus = 0.95
alennettu_hinta = alennus * hinta
print "Tuotteen alennettu hinta on:", alennettu_hinta

main()
4 def main();

alkup_raw = raw_input("Anna alkuperainen hinta.\n");
alkup = float(alkup_raw);
if alkup >= 200:

ale = 0.90
elif alkup >= 100:

ale = 0.95
else:

ale = 1.0
alehinta = alkup*ale
print " Tuotteen alennettu hinta on.", alehinta

main()

	1 Introduction
	2 Background
	3 Methodology
	3.1 The SOLO taxonomy

	4 Analysis of student code writing solutions
	4.1 Discount
	4.2 Average
	4.3 Print a box of asters

	5 Conclusion
	6 Acknowledgements
	7 References

