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Abstract for linear orders, trees, undirected graphs, Boolean alge-

bras, Abeliarp-groups, see [3, 6]X1-completeness of the

Several undecidability results on isomorphism prob- isomorphism problem for a class of computable structures
lems for automatic structures are shown: (i) The isomor- implies non-existence of a good classification (in the sense
phism problem for automatic equivalence relationgIfs of [3]) for that class.
complete. (ii) The isomorphism problem for automatic trees  In [12], it was shown that also for automatic structures
of heightn > 2 is I19,,_,-complete. (i) The isomorphism the isomorphism problem i&}-complete. By a direct in-
problem for automatic linear orders is not arithmetical. terpretation, it follows that for the following classes ike-
morphism problem s stilt1-complete [17]: automatic suc-
cessor trees, automatic undirected graphs, automatic com-
mutative monoids, automatic partial orders, automatic lat
tices of height 4, and automatic 1-ary functions. On the
other hand, the isomorphism problem is decidable for au-

The idea of an automatic structure goes back to Biichitomatic ordinals [13] and automatic Boolean algebras [12].
and Elgot who used finite automata to decide, e.g., Pres-An intermediate class is the class of all locally-finite auto
burger arithmetic [4]. Automaton decidable theories[@an matic graphs, for which the isomorphism problem is com-
automatic groups [5] are similar concepts. A systematic plete forII§ (third level of the arithmetical hierarchy{18].
study was initiated by Khoussainov and Nerode [10] who  For many interesting classes of automatic structures, the
also coined the nameatitomatic structuré In essence, a  exact status of the isomorphism problem is open. In the
structure is automatic if the elements of the universe canrecent papers [19, 11] it was asked for instance, whether
be represented as strings from a regular language and everthe isomorphism problem is decidable for automatic equiv-
relation of the structure can be recognized by a finite statealence relations and automatic linear orders. For therlatte
automaton with several heads that proceed synchronouslyclass, this question was already asked in [13]. In this paper
Automatic structures received increasing interest over th we answer these questions. Our main results are:
last years [1, 2, 12, 13, 14, 19]. One of the main motiva-
tions for investigating automatic structures is that tfiest- e The isomorphism problem for automatic equivalence
order theories can be decided uniformly (i.e., the inpuhis a relations islT{-complete.
automatic presentation and a first-order sentence).

Automatic structures form a subclass of computable
structures. A structure is computable, if its domain as well
as all relations are recursive sets of finite words (or natu-
rals). A well-studied problem for computable structures is

the isomorphism problem, where it is asked whether two o The jsomorphism problem for automatic linear orders

given computable structures over the same signature (en- s hard for every level of the arithmetical hierarchy.
coded by Turing-machines for the domain and all relations)

are isomorphic. Itis well known that the isomorphism prob- Most hardness proofs for automatic structures, in partic-
lem for computable structures is complete for the first level ular the $1-hardness proof for the isomorphism problem
of the analytical hierarchy:l. In fact, ©1-completeness of automatic structures from [12], use transition graphs of
holds for many subclasses of computable structures, e.g.Turing-machines (these graphs are easily seen to be auto-
matic). This technique seems to fail for inherent reasons,

1 Introduction

e The isomorphism problem for automatic successor
trees of finite height > 2 (where the height of a tree
is the maximal number of edges along a path from the
root to a leaf) id19, ,-complete.

*The second and third author are supported by the DFG respanjettt
GELO. 1For background on the arithmetical hierarchy see, e.g], [20




when trying to prove our new results. The reason is mostwhereqy € I. If moreoverq, € F, thenr is anaccept-
obvious for equivalence relations and linear orders. Theseing run of A on . We will only apply these definitions in
structures are transitive but the transitive closure ofrttue- casen > 0, i.e., we will only speak of (accepting) runs on
sition graph of a Turing-machine cannot be automatic in nhon-empty words.

general (it's first-order theory is undecidable in general) We usesynchronous-tape automato recognizex-ary
Hence, we have to use a new strategy that is based omelations. Such automata haweénput tapes, each of which
Hilbert's 10** problem. Recall that Matiyasevich proved contains one of the input words. Thetapes are read in
that every recursively enumerable set of natural numbers isparallel until all input words are processed. Formally, let
Diophantine [16]. This fact was used by Honkala to show X, = ¥ U {¢} whereoc ¢ 3. For wordsw,, we, ..., w, €
that it is undecidable whether the range of a rational power ¥*, their convolutionis a wordw; ® -+ @ w, € (X2)*
series isN [8]. Based on a similar technique, we show that with length max{|w:|, ..., |w,|}, and thek! symbol of
the isomorphism problem for automatic successor trees ofw; ® --- ® w, is (o1, ..., 0, ) whereo; is thek'* symbol
height2 is T19-complete. Aninductive argumentthen allows of w; if & < |w;|, ando; = o otherwise. Am-ary relation
us to prove that the isomorphism problem for automatic suc- R is FA recognizablef the set of all convolutions of tuples

cessor trees of height > 2 is I13,,_;-complete. Fromthe (w1, ..., w,) € Ris a regular language.
casen = 2 we can easily deduce that the isomorphismprob- A relational structureS consists of adomain D and
lem for automatic equivalence relationdi$-complete. Fi- atomic relations on the sé. We will only consider struc-

nally, using a similar but technically more involved reduc- tures with countable domain. Fora 4&; | i € I} of re-

tion, we show that the isomorphism problem for automatic lational structures over the same signature, we denote with
linear orders is hard for every level of the arithmetical hi- W{S; | i € I} the disjoint union of these structures. With
erarchy. In fact, since our proof is uniform on the levels in S; W S; we denote the disjoint union of two structuigs

the arithmetical hierarchy, it follows that the isomorphis ~ S,. A structureS is calledautomaticover X if its domain
problem for automatic linear orders is at least as hard as tru is a regular subset df* and each of its atomic relations is
arithmetic, i.e., the first-order theory @N; +, x). At the FA recognizable; any tupl® of automata that accept the
moment it remains open whether the isomorphism problemdomain and the relations & is called anautomatic pre-

for automatic linear orders i8}-complete. A long version  sentation ofS; in this case, we writé& (P) for S. If an auto-

of this extended abstract can be found in [15]. matic structureS is isomorphic to a structur§’, thenS is
called amutomatic copyf S’ andS’ is automatically pre-
2 Preiminaries sentable In this paper we sometimes abuse the terminology

referring toS’ as simply automatic and calling an automatic
resentation of also automatic presentation&f. We also
LetN, = N\ {Q}' Letp_(g_jl’ Tl Tn) € Nfz, ..., an] Eimplify our statements by sayigg “given/compute an auto-
bea po_Iynorl?laI with coefficients iN. Definelme, (p) = matic structures” for “given/compute an automatic presen-
{p(e) [c € N} If p # 0, thenlmg,, (p) € N . tationP of a structureS(P)". The structuregN; <, +) and
Details on the arithmetical hierarchy can be found for in- (Q; <) are both automatic. On the other hafiy; x) and
stance in [20]. Witi9 we denote the" (existential) level (Q; jr) have no automatic copies (see [9, 19] and [21]).

of the arithmetical hierarchy; it is the class of &l C N Let FO ++ 3% be first-order logic extended by the quan-
) . ) Al v
ZUCh that there SX'StS a recursye predidate N™*" with tifier 3°° (there exist infinitely many). The following the-
= {a € N | 3e1V2z---Qan @ (a,21,...,20) € P}, orem (see [19] for references and generalizations) lays out

where@ = 3 S)Q = V) for n odd (evgn). The setof com-  yhe main motivation for investigating automatic structure
plements ofx) -sets is denoted byl,. By fixing some

effective encoding of strings by natural numbers, we can Theorem 2.1 From an automatic presentatidhand a for-
talk abouty? -sets and1-sets of strings over an arbitrary mulap(z) € FO + 3% in the signature ofS(P), one can
alphabet. A typical example of a set, which does not be- compute an NFA whose language consists of those taples
long to the arithmetical hierarchy is the first-order theaty  from S(PP) that makep true. In particular, theFO + 3 the-

(N; +, x), which we denote b OTh(N; +, x). ory of any automatic structuré is (uniformly) decidable.
We assume basic terminologies and notations from au-

tomata theory. For a fixed alphal®et a non-deterministic ~ Let K be a class of automatic structures closed under iso-
finite automator(NFA) is a tupleA = (S, A, I, F) where morphism. Thesomorphism problenfor K is the set of

S is the set of statesA C S x X x S is the transition pairs (P1,P;) of automatic presentations witl(P;) =
relation, I C S is a set of initial states, and® C S S(Py) € K. The isomorphism problem for the class of
is the set of accepting states. mWn of .4 on a word all automatic structures is complete 6t — the first level

u = ajas---a, (a1,az...,a, € X)is a word overA of the analytical hierarchy [12] (this holds already foraut

of the formr = (qo,a1,¢1)(q1,02,42) * * (¢n—1,Ans qn), matic successor trees). However, if one restricts to specia



subclasses of automatic structures, this complexity boundsinceT; = T if and only if isqy (11, r2) holds, where-, is
can be reduced. For example, for the class of automatic orthe root of7,.

dinals and also the class of automatic Boolean algebras, the Fork = n — 2, the treesl"(u;) andT'(uz) have height
isomorphism problem is decidable. Another interesting re- at most2. The statement isp»(u1, u2) can be defined as

sult is that the isomorphism problem for locally finite auto-
matic graphs i$I3-complete [18]. All these classes of auto-

matic structures have the nice property that one can decid
whether a given automatic presentation describes a struc-

ture from this class. Thm. 2.1 implies that this propertyals
holds for the classes of equivalence relations, trees ghliei

at mostk, and linear orders, i.e., the classes considered in

this paper.
3 Automatic Trees

A treeis a structurel’ = (V; <), where< is a partial
order with a least element, called tlw®t, and such that for
everyz € V, the order< restricted to the sefty | y < z}
of ancestors of is a finite linear order. Thievelof a node
z e Vis|{y | y < z}| € N. Theheightof T is the
supremum of the levels of all nodeslify it may be infinite,

but this paper deals with trees of finite height only. One may

also view a tree as a directed grafdi E), where there is
an edggu,v) € E if and only if u is the largest element
in {z | = < v}. The edge relatioly is FO-definable in
(V;<). Inthis paper, we assume the partial order definition
for trees, but will quite often refer to them as graphs for
convenience. We USg, to denote the class of automatic
trees with height at most. Letn be fixed. Then the tree
order< is FO-definable i’ = (V, E) and this holds even
uniformly for all trees fromZ7,,. Moreover, it is decidable
whether a given automatic graph belongs7Zip(since the
class of trees of height can be axiomatized in first-order
logic).

In this section, we prove that the isomorphism problem
for 7, is113,,_;-complete. We start with the upper bound:

Proposition 3.1 The isomorphism problem for the cla&s
of automatic trees of height at maostis (i) decidable for
n = 1and (i) in 19,5 forall n > 2.

Proof. We first show thafl, = 75 is decidable for auto-
matic treesl;, 7> € 7; of height at most.: It suffices to
compute the cardinality df; (« € {1, 2}) which is possible
since the universes @f; andT>» are regular languages.
Now letn > 2 and considefl’, Ty € 7,. LetT; =
(Vi, E)),wlog. VinNnVy, = 0,andV = ViU Vs, E =
E; U Es. Forany node: in V, let T'(u) denote the subtree
(of eitherT; or T») rooted atu and letE(u) be the set of
children ofu. Fork =n —2,n — 3,...,0, we will define
inductively all,, ., s-predicate isg(u1, uz2) for uy, us €
V. This predicate expresses tfatu,) = T'(uz) provided
uy andus belong to level at least. The result will follow

follows: Forall xk € NU {Xy} and all¢ > 1 we have

‘
eﬂxl,...,mgeE(ul): /\ :ciyé:cj/\/\|E(xi)|:/{

1<i<j<t i=1

if and only if

14
Jyis oy € Blug) s N\ wi Ay AN IE@w)| = &

1<i<j<t i=1

In other words: for every, € N U {Xo}, u; andus have
the same number of children with exactlchildren. Since
FO + 3 is uniformly decidable for automatic structures,
this is indeed dI}-sentence (note that — 2k — 3 = 1 for
k=mn-—2). ForO0 < k < n — 2, we define isg(u1, us)
inductively as follows:For all v € E(u1) U E(uz) and all

¢ > 1we have

14

/\ X; 7& Ij/\ /\ i50k+1(’l),1'i>

1<i<j<t i=1

Jz1,...,20 € E(uq) :

if and only if

14

/\ Yi # yj A /\ 150,11 (v, ¥s)-

1<i<s<e

Jy1,. ..,y € E(ua) :

i=1

By quantifying over allv € E(u1) U E(ug), we quantify
over all isomorphism types of trees that occur as a subtree
rooted at a child ofi; or u,. For each of these isomorphism
typest, we express that; andu, have the same num-
ber of childrenz with T'(z) of typer. Since by induction,
iSO+1(v, z;) and isq.41(v,y;) arelld, ,, --statements,
iSO (u1,uz) isally, ,, ;-statement. O

The rest of this section is devoted to proving that the iso-
morphism problem for the clasg, of automatic trees of
height at most: > 2 is alsoll3, _,-hard (and therefore
complete). So leP, (z¢) be all,, _,-predicate. In the fol-
lowing lemma and its proof, all quantifiers with unspecified
range run oveN,.

Lemma 3.2 For anyI1, _;-predicateP,(zo), there exist
119, _s-predicatesP; (zo, 1, Y1, 22, Y2, - - -, Tn—is Yn—i) fOF
2 <i < nsuch that

(@) forall2 < i < n, P,1(7) is logically equivalent to
vxn—iayn—i : P (67 Tn—i, yn—i)y and

(b) if Yyn_; -P;(v,n—i,yn—;) holds, then also
V! > Tn—i Vynfz : _‘]Di(va :C;L—ivynfi)i

n—1

wherev = (l‘(),l‘l,yl, C.. ,l‘n,ifl,yn,ifly



Proof. The predicates?; are constructed by induction,
starting withi = n — 1 down toi = 2 where the con-
struction of P, does not assume that (a) or (b) hold true
for Piy1. So let2 < i < n such thatP;;1(7) is a
I19,,,,)_s-predicate. Then there existsIB;_;-predicate

P (U, Xn—i,yn—s) SUch thatP; () is logically equivalent
to V&, —i3yn—i = P(U, Tn—i,yn—i). But this is logically
equivalent to

vani Vl‘fn_i § Tn—i EIynfz : P(Ev x’/n—ia ynfi) .

1)
Let (v, x,—;) be the formulave), _, < x,_; Jyn—; :

P, x},_;,Yn—:). Then foranyr,_; € N,
()

Sinceva,,_, < z,_, is a bounded quantifier, the formula
(v, ,,—;) belongs tox2y, , (see for example [20, p. 61]).
Thus there is a1, ,-predicate?; (v, x,,—;, yn—i) Such that

3)

Therefore (1) (and therefor®;;, (7)) is logically equiv-
alent toVa,—; Jyn—i : Pi(U, Zn—i, yn—i), Which shows
statement (a). For (b) note thé,,—; : P, (0, zpn—i, Yn—i)

if and only if (by (3)) (7, z,—;), which by (2) implies
Yo > x,—; : (v, x). By (3) again, this is equivalent to
vV > Tn— vynfi : _‘Pi (67 z, ynfz) a

(T, p—i) = Y& > Tp_;: (T, x).

O(T, Tp—s) <= Tyn—i: Pi(T, Tpn—i, Yn—i) .

Let us fix the predicate®; for the rest of Sec. 3. By
induction on2 < ¢ < n, we construct the following trees:

e testtreeq? € 7, foré € N'"2"~") (which depend on
Pz) and

e treesU. € 7; for k € N U {w} (we assume the
standard order oN U {w}).

Theideais thaf =~ U! ifand only if xk = 1 +inf({z;,—; |
Yyn—i € Ny : 2P;(¢, xpn—i, yn—i)} U {w}). We will not
prove this equivalence, but the following simpler conse-
quences for any € N, " ~9:

(P1) Pi(c)ifandonlyif T2 = U?.
Ui

(P2) —P;(c) ifand only if T2 = U!, for somem € N.

The first property is certainly sufficient for providg,, -
hardness (with = n), the second property and therefore
the treedJ;, for m < w are used in the inductive step. We
also need the following property for the construction.

(P3) No leaf of any of the tree$’ or U} is a child of the
root.

In Section 3.1, we will describe the tred§ and U} of

height at most and prove (P1) and (P2). Condition (P3)
will be obvious from the construction. Section 3.2 is then
devoted to proving the effective automaticity of thesedree

3.1 Construction of trees

We start with a few definitions: A forest is a disjoint
union of trees. Letd and.J be two forests. The forest
H* is the disjoint union of countably many copies 8f.
Formally, if H = (V, E), thenH* = (V x N, E’) with
((v,1), (w,7)) € E'ifand only if (v,w) € E andi = j.

We write H ~ J for H¥ = J“., ThenH ~ J if they are
formed, up to isomorphism, by the same set of trees (i.e.,
any tree is isomorphic to some connected compone#f of

if and only if it is isomorphic to some connected component
of J). If » does not belong to the domain &f, then we
denote withr o H the tree that results from addimgo H

as new least element.

3.1.1 Induction base: construction of 722 and U?2

For notational simplicity, we writé: for 1 + 2(n — 2).
Hence, P, is a k-ary predicate. By Matiyasevich’s the-
orem, we find two non-zero polynomials (z1,...,z¢),
p2(21,...,2¢) € N[Z], £ > k, such that for ang € N% :

PQ(E) — Vze Nﬂik :p1(67f) 7é pQ(EaE) .
It is well known that the functiod : N x N — N with

Clz,y) = (z+y)* + 3z +y 4)
is injective C(z,y)/2 defines a pairing function, see e.g.
[8]). For two numbersn,n € N4, let T'[m, n] denote the
tree of heightl with exactlyC(m,n) leaves. Then define
the following forests, where € N U {w}:

H? = L—Ij{T[m,n] | m,n € Ny,m #n}

H? = B> & T p1(F) + 2011, 02 F) + e14] |
TeNTF 20 e Ny}

J? ZHQL'HE'J{T[J;‘,I]|$€N+,$>I€}

Note that/? = H?2. Moreover, the forestd? (x € Ny U
{w}) are pairwise non-isomorphic, sin€éis injective.
The treelZ (resp. U2) is obtained fromH2 (resp. J2)
by taking countably many copies and adding a root:
T2 =ro (H2)¥

and U2 =ro(J?)“, (5)

see Fig.1 and 2. The following lemma states (P1) for the
19-predicater, , i.e., fori = 2.

T.

Il

Lemma3.3 Forallc e N¥: Py(0) «—

ol

UZ.



Vm,n
m#n

T[p1(¢,T) + ze41, T[m,n]

p2(¢,T) + 4]
Figure 1. The tree 72

r

Ve > Kk Vm,n
m#mn
Tz, z] T[m,n]

Figure 2. The tree U2

Proof. By (5), it suffices to show thaP,(¢) holds if and
only if H2 ~ J2. So first assumé () holds. We have to
prove that the forest&/2 and.J2 = H? contain the same
trees (up to isomorphism). Clearly, every tree fréfd is
contained inH2. For the other direction, let € NY~* and
zo41 € Ny. Then the tred’[p,(¢,T) + x¢41,p2(C,T) +
Te41] OCCUrs inHZ. SincePx () holds, we have (¢, T) #
p2(¢,T) and therefore, (¢, T) + o1 # p2(¢,T) + xoq1.
Hence this tree also occurs .

Conversely supposH2 ~ H? and letz € N %, Then
the treel'[p; (¢, T) + 1, p2 (¢, T) + 1] occurs inH2 and there-
fore in H2. Hencep; (¢,T) # p2(¢, 7). Sincez was chosen
arbitrarily, this impliesP;(2). O

Now consider the forest’2 once more. If it contains a
tree of the formI'[m, m] for somem (necessarilyn > 2),
then it contains all tre€®/[z, z] for z > m. Hence,H2 ~
J2 for somex € Ny U {w}, which impliesT2 = U? for
somex € Ny U {w}. Thus, with Lemma 3.3 we get:

—Pe) = TZ2U2
< ImeN TZ2U}
Thus, we proved (P2) for the!-predicate. This finishes
the construction of the treds andU? for k € N U {w},
and the verification of properties (P1) and (P2). Clearly,
also (P3) holds fofl’? and U? (all maximal paths have
length 2).

3.1.2 Induction step: construction of 7:*! and U+

Again, we writek for 1 + 2(n — i — 1). Thus,P,4; is a
k-ary predicate and; a (k + 2)-ary one. We now apply
the induction hypothesis. For amye N¥, z,y € N,

U,i

m

Figure 4. The tree Ui t!

€ Ny U{w} letT,,, andU; be trees of height at most
such that:
= 1z, =2U,

ImeNL: T, =U..

P, z,y)
-F; (Ea Z, y) <~
In a first step, we build tre€s;, andUj, , (» € N;) from
T:,, and U}, resp., by adding: leaves as children of the
root. This ensures:
r=a NTE

czy

Ty 22U >y, (6)
since, by property (P3), no leaf of any of the tré%y or
Ut is a child of the root. Next, we collect these trees into

forests as follows:

H* = (U, . | 2,m e Ny},

Hi' = H' W {TY,, | 2,y € Ny}, and

I =HT wlH{UL,, [1 <z <k}fore e Ny U{w}

The treel ™! (resp.U’+!) is obtained from the foregfZ™!
(resp.Jit1) by taking countably many copies and adding a
root:

T =ro (HIYY and UM =ro (JIHH)Y, (7)
see Fig.3 and 4. Note that the height of any of these trees
is one more than the height of the forests defining them and
therefore at most+ 1. Since none of the connected com-
ponents of the forest&:"! and.Ji*! is a singleton, none
of the trees in (7) has a leaf that is a child of the root and
therefore (P3) holds. The next lemma states (P1) for:

Lemma34 Foralle € Nk: Py (e) = Tt = UL



Proof. By (7), it suffices to show tha®; 1 (¢) if and only define the treanfold(D, v) as follows: First we restricD
if ' ~ Jitl. First assumeH: ™ ~ Jit! and let  tothose nodes that are reachable froand then we unfold
x > 1 be arbitrary. We have to find some > 1 with the resulting dag. We need the following lemma.
Pi(c,z,y). Note thatU/, . belongs toJ5"! and therefore

to H:'. SinceU!, , % U/, . foranym, z, 2’ € Ny, this

m,xz’
implies the existence af 5’ > 1 with T2, = U/, . By
(6), this is equivalent tas = 2’ andT%,, , = U:. Now the
induction hypothesis implies tha; (¢, z,y’) holds. Since
x > 1 was chosen arbitrarily, we gét 1 (¢).

Conversely supposB;, ; (). LetT belong toH."'. By
the induction hypothesis, it is one of the tré€s, for some
x € Ny, k € NyU{w}. Inany case, italso belongsg+!.
Hence it remains to show that any tree of the fdrfn, be-
longs to H:t'. So letz € N;. Then, byP;(¢), there
existsy € N with P;(¢, z,y). By the induction hypothe-
sis, we have, = U/, and thereford?, = U/ , (which

belongs taH™! by the very definition). i For2 < i < n, let F' be the forest

e | e NP wlH{UE | 5 e Ny U{w))

Lemma 3.7 From givenk € N and an automatic da@ =
(V, E) of height at mosk, one can construct effectively an
automatic presentatioft with S(IP) = unfold(D).

Proof. The universe for our automatic copywaififold(D)

is the setP of all convolutions @ va ® - - - @ v,,,, Wherevy
isarootandv;,v;+1) € Eforall1 <i < m. SinceD has
height at mosk, we havem < k. Since the edge relation
of D is automatic and since the set of all rootdlris first-
order definable and hence regulBris indeed a regular set.
Moreover, the edge relation ahfold(D) becomes clearly
FA recognizable orP. O

Lemma 3.5 Forallc € N% there exists: € N U{w} such
that7/+! = Ui+t By induction overi, we will prove:

_ - _ Proposition 3.8 There is an an automatic cop¥® of F*
Proof. It suffices to prove that{;"' ~ Ji™! for some  and anisomorphisnfi : Fi — Fi that maps (i) the root of

k€ NyU{w}. Le_'m be the smallest value i U{w} with the treeTg toa® (forall ¢ € N1++2(n7i))’ (ii) the root of the
Va2 kVy: ~Fi(c,z,y). By property (b) fromLemma 3.2 yee i to, and (i) the root of the tred/?, to b™ (for all
for P;, we getvVl < z < k3y : Pi(¢, z,y). By the in- m e N,).

duction hypothesis, we getv > rVy : T, % U, , and

Vi<z<k3y:T.,=U,, Thus,H.*' contains, apart

from the trees il *! = W{U!,., | ,m € Ny}, exactly
the trees from{U/, , | 1 <z < k}, e, H ~ gitl O

This will give the desired result sin@&" is then isomorphic
to the connected component®f that contains the word*
(and similarly forU}?). Note that this connected component
is again (effectively) automatic by Thm. 2.1, since the $bre
F™ has bounded height.

By Lemma 3.7, it suffices to construct an automatic dag
D' such that there is an isomorphigm unfold(D?) — F?

Proposition 3.6 For the I13, ,-predicate P(z) we have  thatis theidentity on the set of roots Df.
forall c e N.: P(c) ifand only if T = U

Lemma 3.4 and 3.5 immediately imply also (P2)ferl.
Finally, (P1) fori = n gives:

3.21 Induction base: the automatic dag D?

It remains to show that the tre@¥ andU; are effectively ) .

automatic — this is the topic of the next section. Recall that, fori = 2, we used two polynomials;, andp,
from Matiyasevitch’s theorem and constructed the tfEes

andU. that then formed the fore$t?. To show automatic-
ity of this forest (more precisely: of a suitable dRg), we
therefore have to represent polynomials by automata. The
basis for this representation, that is inspired by Honkala’
work [8], is provided by the following construction.

For a symbola, let ¢ denote the alphabefy =
{a,o}*\ {(o,...,0)} and lets; denote the'” component
of o € 3¢. Fore = (e1,...,ex) € NE, define

3.2 Automaticity

For constructing automatic presentations for the trees
from Section 3.1, it is actually easier to work wilags(di-
rected acyclic graphs Theheightof a dagD is the length
(number of edges) of a longest directed pattbinWe only
consider dags of finite height. foot of a dag is a node
without incoming edges. A da@ = (V, E) can be un-
folded into a forestinfold(D) in the usual way: Nodes of
unfold(D) are directed paths iy that cannot be extended
to the left (i.e., the initial node of the path is a root) and For a languagé, we write®y,(L) for the language
there is an edge between two paths’ if and only if p’
extendsy by one more node. For a nodec V of D, we {u1 @u2 @ ®@ug | ur,...,up € L}.

a°*=a" ®a?®- - ®@a* € ()",



Lemma 3.9 There exists an algorithm that, given a non-
zero polynomialp(z) € N[z] in k variables, constructs
an NFA A[p(T)] on the alphabet{ with L(A[p(T)]) =
®x(a™) such that for allc € N%: A[p(Z)] has exactly(c)
accepting runs on input®.

Proof. The NFAA[p(Z)] is build by induction on the con-
struction of the polynomigh, the base case is provided by
the polynomiald andz;.

Let A[1] be a deterministic automaton with(A[1]) =
®k(a™). Next, suppose(z1,...,zr) = x; for somel <
i < k. Let Ap@)] = ({a1, 2}, {a1}. A, {gz}) with A =
{(QI;Ua QJ) | ] € {172}a0 € Eivo—i = a} U {(Q2;f7; Q2)_|
o € X¢}. When the NFAA[p(z)] runs on an input word®,
it has exactlye; many times the chance to move from state
q1 to the final stat@,. Therefore there are exactly= p(c)
many accepting runs aif.

Let p1(Z) andp2(Z) be polynomials inN[Z]. Assume
as inductive hypothesis that there are two NB; (Z)] =
(Si, A;, I;, F;) such that the number of accepting runs of
Alpi(T)] ona® equals;(c) fori € {1,2}

Forp(Z) = p1(T) + p2(T), let A[p(Z)] denote the dis-
joint union of A[p,(Z)] and A[p2(T)]. For any worda®,
the number of accepting runs gfjp(z)] on u is equal to
the sum of the numbers of accepting runs4ip, (z)] and
Alp2(Z)] ona®, which isp(c).

Forp(Z) = p1(Z)-p2(T), let A[p(T)] = (S1xS52, A, I1
IQvFl X FQ)’ where A {((p17p2)707 (QquQ» |
(p1,0,q1) € A1,(p2,0,q2) € Az}. Then the number of
accepting runs afl[p(7)] on a worda® is the product of the
numbers of accepting runs gifp, ()] andA[p2(Z)] onaf,
which isp(¢). O

Lemma3.10 Letgs, g2 € N[zq,..., 2] and leta be some
symbol. There is an automatic forest of heightver an
alphabet w I' such that: (i) the roots are the words from
®¢(a™), (i) the leaves are words fromi*, and (iii) the tree
rooted ata® is isomorphic tal'[q (€), g2(€)].

Proof. Setp(z) = C(q1(T),q2(T)) (C is defined in (4))
and letAlp] = (S,1, A, F) be the NFA over the alphabet
¢ from Lemma 3.9. Define the NFR[p] = (S,I,A’, F)
with alphabetA and A’ = {(p, (p,0,49),q9) | (p,0,q) €
A}; it accepts the set of accepting runs.éfp]. Let 7 :
A* — (29)* be the projection morphism with(p, a, ¢) =

a. Then, for alle € N, the size ofr—'(a®) N L(Bp])
equals the number of accepting runs4ip] ona, which is
p(e). Let

L=&¢(a™)U(n (@e(a™)) N L(B[p])) and
E={(u,v) |u€ ®¢lat),ve€nr (u)NL(B[p))}.

Then L is regular andE is FA recognizable, i.e(L; E)

is an automatic graph. It is actually a forest of height
the words fromz,(a™) form the roots, and the tree rooted
at a® has preciselyp(e) leaves, i.e., it is isomorphic to
T(q1(€), g2(e)]. O

From now on, we use the notations from Sec. 3.1.1. By
Lemma 3.10, we can compute automatic forestand 7

over alphabetX{, | & I'y andX} @ I', resp., such that

(@) theroots ofF; (resp.F») are the words fron®, 1 (a™)
(resp.®2(b™)),

(b) the leaves ofF; are words fronT'}" (i € {1,2}),

(c) the tree rooted au®®c+! is isomorphic to the tree
T[pl(é) + 6[+1,p2(€) -+ €g+1] fore e Nﬁ_, €r41 € N+,

(d) the tree rooted &i®“2 is isomorphic toT [eq, 2] for
e1,es € N,

We can assume that the alphabiétsT',, &3¢, |, andx} are
mutually disjoint. LetF = (Vz, Ex) be the disjoint union
of F; and F5; it is effectively automatic. The universe of
the automatic da@? is the regular language

Qr(aT)Ub* U ($* @ Vir),
where$ is a new symbol. We have the following edges:

e Foru,v € Vi, $™ ® u is connected t¢" ® v if and
only if m = n and(u,v) € Ex. This producesty
many copies ofF.

e a° is connected to all words frod* @ ({a“* | T €
NF U {2 | ey # ep}). By point (c) and
(d) above, this means that the treafold(D?, a°)
has Xg many subtrees isomorphic t&[p,(¢Z) +
x¢+1,p2(éf) + Ig_H] forz e Nﬁ_k, To+1 € Ny
and T'le1, eq] for e1,ea € Ny, e1 # e2. Hence,
unfold(D?, a®) = T2,

e cisconnected to allwords froff @{b°1°2 | e; # ex}.
By (d) above, this means that the treefold(D?, ¢)
has Xy many subtrees isomorphic t&e,es] for
e1,e2 € Ny, e; # ez. Henceunfold(D?,e) = UZ2.

e b™ (m € N,) is connected to all words frod* ®
{b°1°2 | e # eg Ore; = ea > m}. By (d), this means
that the treenfold(D?, b™) hasX, many subtrees iso-
morphic toT[eq, ez] for all e1, e2 € N1 with eq # es
ore; = ex > m. Thus,unfold(D?,b™) = U2,

Hence,unfold(D2) = F? and the roots are as required in
Prop. 3.8. Moreover, it is clear that, is automatic.



3.2.2 Induction step: the automatic dag D**+!

SupposeD’ = (V, E) is such thatF! = unfold(D?) is as

described in Prop. 3.8. We use the notations from Sec. 3.1.2.

We first build another automatic ddg/, whose unfolding
contains (copies of) all treeS;, , (v € Ny U {w}, z €
Ny) and7%,, (¢ € Nk, 2,y € Ny). Recall that the set of
roots of D! is ®y42(a™) U b* C V. The universe oD’
consists of the following regular set, whetrel;, ands, are
new symbols:

(VA U @b ) UL,
We have the following edges iP’:

¢ All edges fromFE except those with an initial node in
b* are present iD’.

e a®¥ € V is connected to all words of the forhs —*
forc € N%, z,y € N4, andl < i < z. This ensures
that the subtree rooted@t*¥ getsz new leaves, which

are children of the root. Thusnfold(D’, a®"¥) =
!

cxy’

o ¥ ® 0™ for x € N, andm € N is connected to (i)
all nodes to whichh™ is connected irD¢ and to (ii) all
nodes fromyi42~* for 1 < ¢ < x. This ensures that
unfold(D’, §* ® b™) = U], . in casem € N, and
unfold(D', * @ e) = U/, . l

In summary,D’ is a dag, whose unfolding consists of (a
copy of) U, , rooted atf” ® ¢, Uy, , (m € N ) rooted at
#* @ b™, andTy,, rooted at“*¥.

From the automatic daBf’, we now build in a final step
the automatic da@**!. This is very similar to the con-
structions ofD? andD’ above. LetV’ be the universe of

D’. The universe oD*! is the regular language
Qi@ Ub U ($* V).
The edges are as follows:

e Foru,v € V/,$™®uis connected t§” @ if and only
if m = n and(u,v) is an edge o’. This generates
Ny many copies of’.

e a° is connected to every word frof* @ ({a“¥ |
r,y € Ny} U (T ® bT)). Hence, the tree
unfold(D**1, a®) hask, many subtrees isomorphic to
17,, forz,y € Ny andUy, , for z,m € Ny. Thus,
unfold(D+!, a®) = TET.

e cis connected to all words froft @ (1 ®b*). Hence,
the treeunfold(Di*1, ¢) hask, many subtrees isomor-
phictoU,, , forallz € Ny andx € Ny U {w}. Thus,
unfold(Di+!, e) =2 ULHL,

e V™ (m € N,) is connected to all words fro* ®
(FrebH)u{t*®e |1 < x < m}). This means
that the treeunfold(D**!, b™) has®, many subtrees
isomorphic taU;, . forallm,» € N andU, , for all
1 <z < m. Henceunfold(D"1 y™) = Ui+t

m

This finishes the proof of Prop. 3.8.

Theorem 3.11 For anyn > 2, the isomorphism problem
for automatic trees of height at mastis I19,,_,-complete.

The isomorphism problem for the class of auto-
matic trees of finite height is recursively equivalent to
FOTh(N; 4+, x).

Proof. We first prove the first statement. Containment in
I19,,_5 was shown in Prop. 3.1. For the hardnessHgtC

N, be anyIlj, ;-predicate and let € N,.. Then, above,
we constructed the automatic forest of heightn. The
treesT* andU_} are first-order definable iF" since they
are (isomorphic to) the trees rootediétande, resp. Hence
these two trees are effectively automatic. By Prop. 3.6 the
are isomorphic if and only if?, (¢) holds.

We now come to the second statement. Since the proof
of Prop. 3.1 is uniform in the level, we can compute from
two automatic treed?, 7> of finite height an arithmetical
formula, which is true if and only if} = T5. The other di-
rection follows from the first statement because of the uni-
formity in constructing the tre€g”* andU. O

From Thm. 3.11 we can easily deduce a corollary on au-
tomatic equivalence structures. An equivalence strudggure
of the form& = (D; E) whereF is an equivalence relation
onD.

Corollary 3.12 The isomorphism problem for automatic
equivalence structures i8{-complete.

Proof. By Thm. 3.11 fork = 2 it suffices to show that the
isomorphism problem fa¥; is recursively equivalent to the
isomorphism problem for automatic equivalence structures
First, let€ = (V; =) be an automatic equivalence structure
and let<j., be the length-lexicographic order én Now
build the treeT' (£) of height at most 2 as follows: Let

be a new letter that serves as root. Its children arecthe
minimal elements of the equivalence classes=sf and the
children ofu are the remaining elements of the equivalence
classfu]. Itis clear thatl'(£) is a tree of height at most
Moreover, if€ is automatic, then alsg (&) is automatic and

an automatic presentation f@i(£) can be computed from
an automatic presentation fér Finally, &, = & if and
only if T(&;) = T'(&;). This gives us a reduction from the
isomorphism problem for automatic equivalence structures
to the isomorphism problem fdk.



For the reverse reduction, l&tbe a tree of height 2. We  root by theshuffle sum The shuffle sum of a countable
construct an equivalence structdr@") as follows: W.1.0.g. set of linear order types is constructed as follows: First,
assume thaf” is not a single node. Then we first add to we densely colof) with the order types i, i.e., for all
each child of the root of" a further child. This ensures rationalsz < y and allL € L there exists < z < y such
that every maximal path iffi' has length 2. Lef” be the that z is colored with the order typé (it doesn’t matter
resulting tree. Then the elements &fT") are the leaves  which dense coloring we choose). The shuffle sunt d$
of 77 and two leaves. andv are equivalent if and only if  the linear order that results frof®, <) by replacing each
the have the same parent node. Again it is easy to see thatL-colored rational . € L£) with the orderL. Assuming
(i) If T is automatic then alsé(T") is automatic and an that every order type irC starts with some ordinab - ¢
automatic presentation fét(7") can be computed from an (¢ € N) and does not contain - ¢ as an interval elsewhere,
automatic presentation far. (i) 77 = 75 if and only if the shuffle sum ofZ encodes the set as a linear order. In
E(T) 2 E(Th). O our proof of Thm. 4.1 we use iterated shuffle sums. In order

to stay within automatic linear orders, we have to realize

Let us close this section, with a brief discussion on the shuffle sums in an automatic way, details can be found in
isomorphism problem for computable trees of finite height. the complete version [15] of this paper.

In [13], it is shown that every linear order has finite FC-
Theorem 3.13 For everyn > 1, the isomorphism problem rank. We do not define the FC-rank of a linear order in

for computable trees of height at mests 119, ,-complete. general, see e.g. [13]. A linear ordérhas FC-rank 1, if
after identifying allz, y € L such that the interval, y] is
Proof. Forthe upper bound, let us first assume that 1. finite, one obtains a dense ordering or the singleton linear

Two computable tree; andT; of heightl are isomorphic ~ order. The result of [13] mentioned above suggests that the
if and only if: for everyk > 0, there exist at least nodes isomorphism problem might be simpler for linear orders of

in T if and only if there exist at leadt nodes inZ5. This low FC-rank. We now prove that this is not the case:
is allJ-statement. For the inductive step, we can reuse thecorollary 4.2 The isomorphism problem for automatic
arguments from the proof of Prop. 3.1. linear orders of FC-rank 1 is at least as hard as

For the lower bound, we first deal with the case- 1. It FOTh(N; +, x).
is known that the problem whether a given recursively enu-
merable set is infinite i§lY-complete [20]. For a given de-
terministic Turing-machiné/, we construct a computable
treeTy, of heightl as follows: the set of leaves @f, is
the set of all accepting computationsaf. We add a root
to the tree and connect the root to all leaves.L(f\/) is
infinite, thenT), is isomorphic to the heighttree with in-
];':L"éeg sn;imr:;ar\:;?s ié%rg\gr?oésicflcglttﬁetr?gigr:: f;;ee %{?S identified, and the resulting order is isomorphid @, <).

m leaves. We can use this construction as the base case folyloreover,L is isomorphic to the set of all € L satisfying

our construction in Sec. 3.1.2. This yields the lower bound =% > V¥ : (z<y Szoy= #)- HenceL, = Lo if and
foralln > 1. O only if Ly = Lo, which completes the reduction. 0

Proof. We provide a reduction from the isomorphism
problem for automatic linear orders of arbitrary rankL lis

an automatic linear order, then sdlis= ((—1,0]+[1,2)) -

L. This linear order is obtained froth by replacing each
point with a copy of the rational numbers(r1,0]U[1, 2).
ThenL has FC-rank 1: Only the copies 6fand1 will be

o 5 Arithmetical isomorphisms
4 Automatic Linear Orders
We conclude this paper with an application of
Our main result for automatic linear orders is: Thms. 3.11 and 4.1. The following corollary shows that
although automatic structures look simple (especially for
Theorem 4.1 The isomorphism problem for the class of au- gutomatic trees), there may be no “simple” isomorphism
tomatic linear orders is at least as hard 89 Th(N; +, x). between two automatic copies of the same structure. An

) isomorphismf between two automatic structures with do-
The proof of this result follows our arguments for trees of mains 7, and L., resp., is ax?-isomorphism, if the set

finite height but is technically more involved. Looking_back {(z, f(z)) | € L1} belongs tax?.

to the proof of Thm. 3.11, we see that trees are used in order

to encode sets of sets of. sets of natural numbers. For Corollary5.1 Foranyk € N, there exist two isomorphic
linear orders, we replace the basic tree operation of g|uingautomatic trees of finite height (and two automatic linear
together a set of trees into a single tree by adding a neworders) without anyj-isomorphism.



Proof. Assume that between any two isomorphic auto-
matic trees of finite height, there always exists>4-
isomorphism. Then the isomorphism problem for automatic
trees of finite height would belong ®2+2 (which contra-
dicts Thm. 3.11): two automatic tre€s = (D;; E;) and

T, = (D2; E») of finite height are isomorphic there exists

a X-predicateP(z, y) such that for allz1, x5 € D, there
existy;,y2 € Dy (and vice versa) such thatP(x1,y1),
P(x2,y2), (x1 = 22 < y1 = y2), and ((z1,22) €

Ei < (y1,y2) € E»). SinceP is aX}-predicate, this is
aXj ,-statement, which expresses the existence of a
isomorphism fronil’; to T». For linear orders we can argue [10]
in the same way. O

[7]

(8]

9]

6 Open problems (1]

The main open problem, which remains, is the precise
complexity of the isomorphism problem for automatic lin-
ear orders. Is this probled!-complete or does it belong to
the hyperarithmetical hierarchy (which makesX§n11})?
Another interesting problem is the isomorphism problem
for automatic well-founded trees (trees without an infinite
path). In the proof of [12]X1-completeness of the isomor-
phism problem for automatic successor trees), trees with in [13]
finite paths arise. Finally, it seems to be open, whether the
isomorphism problem for automatic groups (in the sense of
[10] and not [5]) is decidable.

[12]

[14]
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