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Abstract 

The use of building integrated photovoltaic/thermal (BIPVT) concentrators is an effective way to 

harness solar energy within the built environment, particularly for façade applications. However, in 

order to precisely predict the overall performance of building integrated façade collectors it is crucial 

to have a validated model that represents such systems.  

In this study, a combined optical and thermal model was developed to describe the performance of a 

façade integrated BIPVT solar concentrator system and subsequently was validated with a physical 

prototype. Using the validated model, it was shown that key parameters such as tube spacing, and 

thermal conductivity between the solar cell and the absorber have a significant effect on the overall 

efficiency. 

Finally, it is suggested that façade integrated BIPVT solar concentrator systems would serve as a 

complement to roof mounted photovoltaic systems, and that this may be a step towards net zero energy 

buildings. 
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1. Introduction 

Energy consumption in the built environment accounts for nearly one third of global energy demand 

(IEA 2011). A significant portion of this could be met through onsite energy generation utilising solar 

energy. However, traditional solar energy systems such as photovoltaic panels or solar thermal 

collectors retrofitted onto buildings after they have been built may result in poor aesthetics and sub-

optimal energy outputs. Therefore, integration of combined photovoltaic/solar thermal collectors into a 

building’s fabric could provide greater opportunity for the use of renewable energy technologies in 

buildings.  
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Generating thermal and electrical energy simultaneously from solar irradiation using 

photovoltaic/thermal (PVT) systems is an area of research that has received significant attention in 

recent years (Anderson et al. 2009, Ibrahim et al. 2014, Fudholi et al. 2014, Tripanagnostopoulos 2012). 

However, there have been relatively few attempts to utilize such systems with low concentration ratio 

concentrating systems to increase the radiation incident on the PVT absorber, and even fewer that 

incorporate such systems into the fabric of a building.  

A significant advantage of low concentration reflectors is that they do not need to track the sun, making 

them ideal for integration into a building’s facade, though by doing this they will have a lower 

acceptance angle range than tracking collectors (Rabl, 1976). Despite this disadvantage, low 

concentration ratio collectors offer the advantage of collecting diffuse radiation as well as the beam 

component (Petter et al. 2012) and the possibility of using the traditional silicon solar cells less. 

In their study, Tripanagnostopoulos et al (2002), analysed PVT combined collectors incorporating low 

concentration ratio booster reflectors with a view to achieving high combined efficiency. In a parallel 

study, Tselepis and Tripanagnostopoulos (2002) performed a life cycle assessment of the combined 

collector and concluded that they were more cost competitive, had a shorter payback time and less 

environmental impact than that of standalone PV panels. As such, the combination of low concentration 

ratio reflective elements along with hybrid absorbers may further improve the cost competitiveness of 

the system by increasing the radiation on the absorber plate. Similarly, a study by Gajbert, et al. (2007) 

found that low concentration ratio PVT modules have advantages over traditional modules and 

proposed a PVT collector with a parabolic reflector. 

However, there appears to be few active attempts to utilise concentrating building integrated PVT 

systems, and a lack of detail in describing their combined thermal/electrical performances. Moreover, 

there are few studies that have investigated systems with a static reflector combined with a hybrid 

absorber for façade applications. In light of this, this work examines the design and performance of a 

PVT system that incorporates a reflective element with a view to increasing the radiation on a 

photovoltaic/thermal absorber plate, suitable for integration into a building façade. 

 

2. Optical assessment of a BIPVT concentrator 

Based on the literature, a complete design of BIPVT concentrating collector has several challenges at 

the design phase; in particular, a suitable optical arrangement needs to be found. In considering a solar 

concentrator, the most common defining characteristic is the concentration ratio, defined by the ratio of 

the aperture area to the receiver area. Obviously it is desirable to maximize this parameter in order to 

improve the performance of the collector. However, for façade integrated collectors it is far more 

practical to use static solar concentrators with medium to low concentration ratios. With this 

configuration it is not necessary to track the sun thus making them ideal for use as building integrated 

solar collectors, where they are the part of the building and hardly movable.  
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One of the key benefits of low concentration ratio collectors is that they may work with an absorber 

equipped with conventional silicon solar cells to produce significant amounts of electrical energy. These 

absorbers are comparatively cheap, readily available in the market and do not need the precise optical 

design of high/medium concentrator devices. Research on low concentration reflectors conducted in the 

mid-70’s (McDaniels et al. 1975, Rabl 1976) was mainly around two distinctly different reflectors; one 

a modified compound parabolic reflector and the other based on a simple flat plate reflector, often 

referred to as a booster reflector. 

Parabolic reflectors are one of the most widely used non-imaging concentrators; used in linear and 

trough collectors. By modifying the dimensions of the reflectors (either by truncating or extending) 

higher concentration ratios can be achieved. Similarly, changing the area of the reflector material allows 

variation of the acceptance angle without changing the concentration ratio for a particular range of 

angles. In this regard, systems using truncated semi parabolic concentrators have been proposed for 

building facade integrated collectors in the past (Gajbert et al. 2007, Brogren 2004). 

That said, flat reflectors are one of the simplest ways to increase the insolation incident on a solar 

collector. Figure 1 shows a typical flat reflector collector design with an absorber inclination angle θ, 

where LR and LC are the lengths of the booster reflector and the collector respectively. 

 

 
 

Figure 1 Flat reflector collector 

By changing the size of the reflector, the geometric concentration ratio (LR/LC) can be manipulated to 

achieve a higher level of solar radiation on the absorber. Unlike a flat plate collector, inclination angles 

of both the absorber and reflector can be manipulated to achieve an optimum output (Tanaka 2011). 
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Although concentrating systems with flat reflective elements have been used in different applications, 

the possibility of using them in façade applications appears to have been ignored. 

Based on the suitability of CPC and flat reflectors for static concentrators, it was decided to examine 

the concentration ratio of these two possible configurations for a façade integrated concentrator. As 

such, a collector with a parabolic reflector incorporated similar to that described in Gajbert et al. (2007) 

and a second with a flat reflector, as shown in Figure 2, were examined. 

 

 

 

2.1 Comparison of possible geometries 

To characterize the performance of the two systems it was decided to use the ray-tracing program 

FRED. FRED is an optical engineering software program that is capable of performing non-sequential 

ray tracing analysis of non-imaging optics, such as solar concentrators (FRED 2016). To simplify the 

ray tracing, it was decided to perform a one dimensional ray tracing study with a collimated optical 

source of rays, as an approximation of the beam component of solar radiation. It was assumed that the 

reflectors were perfect reflectors while the absorbers (the surface to be analysed) were perfect absorbers.  

To make a fair comparison of the two concentrators the length of each reflector was approximately 

equal, as was the width of the absorber module, such that the geometric concentration ratio for both was 

approximately 3.6. In addition, a horizontal absorber of the same dimensions as that used with the 

concentrators was modelled to serve as a benchmark.  

With each system the illumination pattern on the absorber plate was observed while varying the solar 

elevation angle (α – measured up from horizon) of the rays between 0 and 90°. Figure 3 shows the total 

number of rays received by the absorbers from both modules compared to the reference module for 

different elevation angles of the source. If the number of ray’s incident on the absorbers are then 

normalised against the number of ray’s incident on the horizontal reference we can determine a relative 

concentration ratio, as shown in Figure 3. 

Figure 2 Façade integrated concentrator profiles 
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Figure 3 Number of rays hitting the absorber vs elevation angle (α) of the source 

 

Figure 4 Relative concentration ratio vs elevation angle (α) of the source 

By considering both Figure 3 and Figure 4, the conclusion could be drawn that the parabolic reflectors 

give better performance at a range of elevation angles compared to the flat reflector, as Brogren and 

Karlsson (2002) suggested. However, in drawing this conclusion it is important to also consider the 

local concentration ratio (illumination pattern) on the absorber.  

Figure 5 shows the variation in illumination across the width of the absorber with the parabolic reflector 

(taking the junction of absorber and reflector as the origin). From this, for the mid-range elevation 

angles, there is a significant non-uniformity in the intensity on the absorber. For example, at an elevation 

angle of 60° the illumination near the apex is over seven times that at the edge of the absorber. This 

shows that the illumination profile of parabolic reflectors tends to be non-uniform and the patterns are 

discrete and discontinuous in nature due to them focusing the to a line. 
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Figure 5 Illumination on the absorber module at various elevation angles under parabolic reflector 

Now if we consider the illumination profile from a flat plate reflector, as shown in Figure 6, we can see 

that the magnitude of the illumination is in on average lower than that of a parabolic reflector. This is 

interesting, because it has the same dimensions as the parabolic reflector, but the illumination is more 

uniform in its distribution. That is to say, the local concentration ratio across the absorber with a flat 

reflector is far more consistent at any particular elevation angle. Hence, for a photovoltaic/thermal 

absorber, each part of the module will produce similar electric current output, so that the undesirable 

effect of hotspots and thermal energy dissipation otherwise caused under the parabolic reflectors can be 

avoided. In this respect flat reflectors could be considered analogous to a circular mirror with an infinite 

radius that will focus on a plane. 

 

Figure 6 Illumination on the absorber module at various elevation angles under flat reflector 

It can be seen that the flat reflector gives a uniform local concentration ratio across the absorber for all 

conditions. Hence, the electric current produced at any point on a cell under a flat plate reflector will be 

similar. This reduces the cross currents that cause the hotspot across the cell and so would appear to be 

an appropriate compromise for BIPVT concentrator systems. 
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From these results, it is possible to draw the conclusion that parabolic reflectors are well suited for 

application in mid-latitude locations. However, they are perhaps better suited to thermal applications 

where non-uniform illumination of an absorber surface is less problematic. If one were to utilize a 

parabolic reflector for a BIPVT concentrator, the non-uniform illumination would cause high ohmic 

losses and would also produce internal current flow, even when it is open circuited. Hence, it may not 

improve the performance of the module due to the cross currents forming hotspots in lower irradiated 

cells, rather, this may lead to permanent defects or premature failure of cells (Yang et al. 1991). As 

such, it reinforces the benefits of flat reflectors for BIPVT systems and so flat reflectors form the basis 

of this work. 

2.2 Modelling the optical characteristics of a flat reflector 

Now, in order to verify a suitable geometry for a building integrated concentrator with a flat reflector it 

is important to understand the effect of the absorber and reflector tilt angle on the optical performance 

of the collector. As such the FRED ray tracing software package was used to analyse the effect of the 

parameters such as reflector tilt (θr), absorber tilt (θa) and solar elevation angle (α) on the optical 

performance of a collector, as shown in Figure 7.  

 

Figure 7 Angle of rotation of reflector and the absorber combination 

As described previously, to perform the ray tracing, it was decided to use a collimated source as an 

approximation of beam component of solar radiation. To explore the angular relationship between the 

absorber and the reflector, it was decided to vary the tilt angle of the absorber and the reflector over a 

range of conditions and combinations. Subsequently, the number of rays received by the absorber was 

determined for a range of source elevation angles.  

As shown in Figures 8,9,10 and 11 increasing the inclination angle of the reflectors decreases the ability 

of the absorber to receive more radiation at higher elevation angles. Furthermore, as shown in Figure 

10, at an absorber angle of 20° to the horizontal, the total number of rays received by the absorber over 

a range of elevation angles is high without it becoming shaded by the reflector at higher elevation 

angles.  

The reason for this being that if the reflector tilt is increased, the reflector starts to shade the absorber 

at higher solar elevation angles, while when the absorber angle is increased the proportion of the rays 
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missing the absorber increases at lower elevation angles. To keep the aperture of the collector 

significantly high, and gather a significant portion of the radiation at moderate elevation angles without 

losing much radiation at high and low elevation angles, a reflector-absorber combination with 

approximately 20° tilt angle would seem appropriate.  

 

Figure 8 Number of rays received by the absorber at different elevation and reflector angles when the 

absorber is fixed at 0° 

 

 

Figure 9 Number of rays received by the absorber at different elevation and reflector angles when the 

absorber is fixed at 10° 
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Figure 10 Number of rays received by the absorber at different elevation and reflector angles when 

the absorber is fixed at 20° 

 

Figure 11 Number of rays received by the absorber at different elevation and reflector angles when 

the absorber is fixed at 30° 

Now, although ray tracing was able to provide insight into potential geometric configurations of the 

concentrator, these results are not particularly generalizable. Hence, to investigate the concentration 

ratio of the particular combination, it was decided to develop a geometric relationship in terms of the 

principle angles. 

Although the geometric concentration ratio is defined by the ratio of area of the aperture and the 

absorber, the relative concentration ratio defined by Kostic, et al. (2010) is a more practical expression 

of concentration ratio C, as shown in equation 1, 

 
ܥ ൌ

௧௢௧ܩ
௡௘௧ܩ

  (1) 

 

Here the Gtot is the total radiation received by the absorber plate with the reflector while the Gnet is the 

total radiation received by a horizontal absorber without any reflector. Given that the beam radiation on 

0

250

500

750

1000

0 20 40 60 80 100

N
um

be
r 

of
 r

ay
s 

on
 th

e 
re

ci
ve

r 
(A

rb
 u

ni
ts

)

Elevation angle α (degrees)

θr=0° θr=10°

θr=20° θr=30°

θa =20°

0

250

500

750

1000

0 20 40 60 80 100

N
um

be
r 

of
 r

ay
s 

on
 th

e 
re

ci
ve

r 
(A

rb
 u

ni
ts

)

Elevation angle α (degrees)

θr=0° θr=10°

θr=20° θr=30°

θa =30°



 10 

a horizontal surface can be easily determined, the total radiation on to the absorber plate can be 

estimated if the appropriate geometrical relationship is established in terms of direct (Gdir) and reflected 

(Gref) radiation. 

As a significant portion of the radiation falling on the absorber comes from the reflector, it is essential 

to include the reflectance of the reflector to precisely calculate the radiation on the absorber. By 

incorporating the reflectance ρAl of the reflector, C can be expressed as in equation 2. 

 
ܥ ൌ

ௗ௜௥ܩ ൅ ௥௘௙ܩ஺௟ߩ
௧௢௧ܩ

  (2) 

 

Exploring this further, considering Figure 12; if α is the solar elevation angle and β is the inclination 

angle of the absorber plate from the horizontal axis. When the elevation angle α < (90-2β), some of the 

reflected rays will not be incident on the absorber surface, as shown in Figure 13(i). 

 

Figure 12 Schematic representation of a collector with a flat reflector 

Furthermore, when the elevation angle α is between (90-2β) < α < (90-β), the reflector will receive the 

sum of all the rays coming from the reflector and rays directly falling on the absorber, as shown in 

Figure 13(ii). However, when the elevation angle is above 90-β, the reflector will shade the absorber 

therefore the number of rays directly falling on the absorber will reduce as shown in Figure 13 (iii). 

 

 

(i)                                        (ii)                                                 (iii) 

Figure 13 Optical ray tracing at different elevation angles 
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Based on this, and from geometry, an expression for the concentration ratio C can be given by equation 

3. 

C ൌ

ە
ۖۖ

۔

ۖۖ

ۓ

	

ቈ
cos	ሺα ൅ βሻ	ሺtan		ሺߙ ൅ β	ሻ ൅ tan ሻ	ߚ

ߙ	݊݅ܵ
቉ ஺௟ߩ ൅

1
cos	 β

									α ൏ 	 ሺ90 െ 2βሻ					

	ቈ
cos	ሺα ൅ βሻ	ሺ3 ൅ tanߚ	ሻ

ߙ	݊݅ܵ
቉ ஺௟ߩ ൅

1
cos	 β

											ሺ90 െ 2βሻ ൏ α ൏ 	 ሺ90 െ βሻ	

	
sin	α		ሺ1 െ ta nሺ90 െ βሻሻ	ሺtan		ሺα െ ሺ90 െ βሻሻሻ

sin		ሺβ ൅ αሻ
						ሺ90 െ βሻ ൏ α ൏ 90	

 
 
(3) 

 

Now, to examine the influence of these optical characteristics across a year, there is a need to understand 

the variation in the sun’s position across the year. Hence, to combine the concentration ratio with the 

solar elevation angle α, the Sun Earth geometric relationship is used, where solar elevation angle α can 

be expressed in terms of latitude (L), declination (δs) and the hour angle (hs) as given by equation 4 

(Goswami et al. 2000). 

ߙ  ൌ ଵሺsinି݊݅ݏ ܮ sin ௦ߜ ൅ cos ݏ݋ܿ	ܮ  ௦ሻ   (4)݄ݏ݋௦ܿߜ

 

Here solar declination angle δs can be estimated by equation 5 

 
௦ߜ ൌ 23.45	sin	ቆ

360ሺ284 ൅ ݊ሻ

365
ቇ  (5) 

    

Where n is the Julian day number. 

The hour angle (hs) can be expressed in terms of the local solar time (LST) as given in equation 6. 

 ݄௦ ൌ 15ሺܶܵܮ െ 12ሻ  (6) 

 

Local solar time LST can be found in terms of local time (LT) and the time correction factor (TC) as 

given in equation 7. 

 
ܶܵܮ ൌ ܶܮ ൅

ܥܶ
60

  (7) 

 

In equation 7 the time correlation factor TC can be given by equation 8. 

ܥܶ  ൌ 4	ሺ݈݁݀ݑݐ݅݃݊݋ െ 15ሺܶܮ െ ሻሻܶܯܩ ൅  (8)  ܶܧ

Here, the Greenwich Mean Time is denoted by GMT and ET is a correction factor given in minutes that 

accounts for the irregularity of the speed of earth’s motion around the sun that can be expressed by 

equation 9. 

ܶܧ  ൌ 9.87 sin 2ܾ െ 7.53 cos ܾ െ 1.5 sin ܾ  (9) 

b is defined by equation 10. 
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ܾ ൌ

360	ሺ݊ െ 81ሻ
364

  (10) 

Finally, by combining equation 3 and 4 the concentration ratio of the collector at any time on a particular 

day can be calculated. 

2.3 Validation of the flat reflector model 

Having formulated an analytical expression that could be used to describe the optical characteristics of 

a flat reflector BIPVT concentrator, an experiment was conducted in order to validate the derived 

mathematical model. For the experiment, the absorber plate was assembled by placing standard silicon 

solar cells (156mm x 156mm) under a static reflector. The reflector (3M Solar Mirror Film 1100 on an 

aluminium backing sheet) was fixed to a supporting frame with an inclination of approximately 20° to 

the vertical while the photovoltaic cells were placed at an angle of 20° to the horizontal. Subsequently, 

a Delta-T SPN1 sunshine pyranometer (±5%) was mounted adjacent to the concentrator to measure the 

beam and diffuse radiation. The voltage generated by the photovoltaic absorber was measured 

simultaneously with the current, measured across a 1mΩ shunt resistor, in order to determine the power 

produced by the concentrator. A schematic representation of the experiment that was developed is 

shown in Figure 14. 

 

Figure 14 Schematic diagram of the test rig 

Now, when radiation falls on a solar cell it produces a current proportional to the radiation falling on it, 

so to determine the concentration ratio, the current produced by the concentrator was compared with 

the current produced by a reference cell mounted adjacent to the concentrator. By finding the ratio 

between the short circuit current measured across the absorber and across the reference cell, the relative 

concentration ratio C could be estimated.  

To validate the optical model several sets of readings were taken from the test rig at various solar 

elevation angles. In order to do so, the readings were taken on different days over the year, when the 

sun was near solar noon to reduce the effect of shading due to the design of the mounting enclosure. As 

shown in Figure 15 the geometric model of the concentration ratio, including the solar elevation angle, 

is capable of predicting the concentration ratio with good accuracy. 
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Figure 15 Experimental concentration ratio and calculated concentration ratio 

2.4 Flat reflector modelling results and analysis 

Having shown experimentally that the geometric model can be used to evaluate the performance of the 

collector, it was decided to examine its capabilities on any given day and time of the year. When the 

annual concentration ratio variation is plotted, as shown in Figure 16, the optical concentration ratio is 

higher during winter days with low solar elevation angles (for example day numbers 120-210) than 

during the summer period (for example day numbers 330-60) with a higher solar elevation angle. 

Similarly, for a given day, the concentration ratios in the morning and evening are again high due to 

low elevation angle of the sun while as noon approaches, the concentration ratio decreases. 

 

Figure 16 Concentration ratios over the year 
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To illustrate this point, the total radiation reaching the absorber on a typical clear summer day (January 

9 in Kaitaia, -35.1°, 173.3°) is shown in Figure 17. Here the total radiation falling on the absorber is 

high in the morning and the afternoon and the collector responds with higher concentrations, as the 

solar elevation angle is lower than that at midday. However, as the elevation angle of the sun approaches 

75° during the middle of the day, the reflector shades the absorber and reduces the radiation falling on 

it. 

 

Figure 17 Change in radiation on absorber during summer 

Notably though, as shown in Figure 18, the radiation falling on the absorber on a typical clear winter 

day (June 30 in Kaitaia) does not encounter shading from the reflector, as the sun elevation angle at 

solar noon is only 34°. Furthermore, it is important to note that, the reflector has increased the radiation 

falling on the absorber by at least 3 times throughout this winter day, and this highlights one of the 

major benefits of the flat reflector. 

 

Figure 18 Change in radiation on absorber during winter 

From the results, it was shown that the optical model incorporated with the Sun-Earth geometrical 

relationship presented in this section was able to calculate the total radiation falling on the absorber 

plate. Further, it was found that collector performance can be significantly improved during the winter 
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days with lower elevation angle. This can potentially increase the performance of the collector 

significantly especially during the winter, spring and autumn seasons, possibly when energy is needed 

the most. 

 

3. Performance modelling of the BIPVT concentrator 

Having examined the optical design of the BIPVT concentrator and found a design suitable for façade 

integration it was decided to analyse the thermal performance of the proposed façade integrated 

collector shown in Figure 19. To achieve this, a one dimensional steady state thermal model was 

developed based on a simplified thermal resistance network as shown in Figure 20. 

 

 

Figure 19 Façade Integrated Concentrator 

         

Figure 20 Simple thermal resistance network of the proposed module 
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For a typical solar thermal collector, the useful thermal energy gain Q can be determined from equation 

11.  

ܳ ൌ ܩሻ௉௏ߙோሾሺ߬ܨܣ െ ௅ܷሺ ௜ܶ െ ௔ܶሻሿ        (11) 

This equation can be further modified, as shown in equation 12, to incorporate the concentration ratio 

C of the proposed low concentration collector. 

ܳ ൌ .ܩሻ௉௏ߙோሾሺ߬ܨܣ ܥ െ ௅ܷሺ ௜ܶ െ ௔ܶሻሿ       (12) 

where Q is given by a function of the absorber area (A), heat removal factor (Fr), the transmittance-

absorptance product of the photovoltaic absorber (ταPV), the solar radiation (G), the concentration ratio 

(C) is given by Equation 3, the overall heat loss coefficient (UL) and the temperature difference between 

inlet (Ti) and the ambient temperature (Ta).  

In practice it is not possible to cover the whole absorber module with photovoltaic cells, hence equation 

12 can be further modified to include a packing factor (S) (the ratio of the area covered by PV cells to 

the total absorber area) and the transmittance-absorptance product of the thermal absorber (ταT) and the 

PV material (ταPV), as shown in equation 13 (Piratheepan, 2016). 

ܳ ൌ .ܩሻ௉௏ߙோሾሺ߬ܨܣൣܵ ܥ െ ௅ܷሺ ௜ܶ െ ௔ܶሻሿ൧ ൅ ሺ1 െ ܵሻൣܨܣோሾሺ߬ߙሻ்ܩ. ܥ െ ௅ܷሺ ௜ܶ െ ௔ܶሻሿ൧  (13) 

The ratio of the heat collected for the irradiation falling on the absorber plate gives the thermal 

efficiency of the collector as shown in equation 14 

ƞ௧௛௘௥௠௔௟ ൌ ሻ௉௏ߙோሾܵሺ߬ܨ ൅ ሺ1 െ ܵሻሺ߬ߙሻ்ሿ െ ோܨ ௅ܷ
ሺ்೔ି்ೌ ሻ

ீ஼
     (14) 

Furthermore, the collector heat removal efficiency factor (Fr) can be expressed in terms of heat loss 

coefficient (UL), mass flow rate (m) and the collector efficiency factor (F’) as given by equation 17. 

௥ܨ ൌ
௠஼೛
஺
ቈ1 െ ݌ݔ݁

ି
ಲೆಽಷᇲ
೘಴೛ ቉        (17) 

The collector efficiency factor (F’) can be calculated using equation 18 in terms of its fin efficiency 

factor F. 

ᇱܨ ൌ
ଵ ௎ಽ⁄

ቈ
భ

ೆಽሾ೏శሺೢష೏ሻಷሿ
ା

భ
ೢ೓ುೇಲ

ା
భ

ഏ೏೓೑೗
቉
   (18) 

Here hPVA accounts for the bond resistance between the PV cell and the absorber plate as shown by 

(Zondag et al. 2002). The forced convection heat transfer coefficient (hfl) in the cooling tube can be 

determined from equation 19. 

݄௙௟ ൌ
ே௨∗௞೑೗

ௗ
     (19) 

Where kfl is the conductivity of the fluid at the mean temperature, d is the hydraulic diameter of the tube 

and Nu is the Nusselt number that can be determined from any number of relationships for forced 

convective heat transfer in a tube, in this study the Gnielinski (Cengel 2007) correlation was used.  
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In order to calculate the fin efficiency factor (F), it is necessary to calculate the coefficient (M) that 

accounts for the overall thermal conductivity and the thickness of the PVT absorber plate as given by 

equation 20 in terms of overall thermal loss coefficient (UL). 

ܯ ൌ ට
௎ಽ

௄ೌ್ೞ௅ೌ್ೞା௄ುೇ௅ುೇ
     (20)	

As such, the modified fin efficiency (F) can be calculated using equation 21, where w is the tube spacing 

(or the absorber width for a single tube absorber) and d is the hydraulic diameter of the tube. 

ܨ ൌ
௧௔௡௛ቂ

ಾሺೢష೏ሻ
మ

ቃ
ಾሺೢష೏ሻ

మ

     (21) 

In the determination of M in equation 20, the overall thermal loss coefficient (UL) is the sum of the heat 

losses via top, rear and edge of the collector as given by equation 22. 

 ௅ܷ ൌ ௧ܷ௢௣ ൅ ௥ܷ௘௔௥ ൅ ௘ܷௗ௚௘     (22) 

As the rear heat loss and edge losses are through the insulation, the rear loss coefficient (Urear) and the 

edge loss coefficient (Uedge) can be determined from Fourier’s Law using the thickness and thermal 

conductivity of the insulation and the outer wall (though typically heat loss by these paths is relatively 

small).  

However, in the determination of the top losses the glazing on the proposed collector, as shown in 

Figure 19, is not parallel to the absorber plate. Recently though, Piratheepan and Anderson (2015) 

showed that the natural convection heat loss in an air filled enclosure such as this could be predicted by 

equation 23, where b is the breadth of the absorber and h is the height of the reflector.  

ݑܰ  ൌ 0.67ܴܽ଴.ଷ଺ሺܾ ݄ൗ ሻଵ.଻ହ    (23) 

This can subsequently be rearranged to determine the value of the natural convection heat transfer 

coefficient hcc inside the concentrator enclosure as given in equation 24. 

݄௖௖ ൌ ቀ௞
௕
ቁ 0.67ܴܽ଴.ଷ଺ቀܾ ݄ൗ ቁ

ଵ.଻ହ
   (24) 

To estimate the radiation heat transfer coefficient inside the concentrator hrc the enclosure was assumed 

to be a two-surface enclosure consisting of the absorber plate and the glazing by assuming the reflector 

is adiabatic. Hence an  expression for hrc can be written in terms of area of the absorber plate (A), area 

of the glazing (Ag), the view factor (Fcg) from the absorber to the glazing, and the emittance of absorber 

plate and the glazing ߝp and ߝg, as shown in equation 25. 

݄௥௖ ൌ
ఙሺ ೛்೘

ర ି ೒்
రሻ	

ቀ
భష಍೎
ಲ಍೎

ቁା൬
భ

ಲಷ೎೒
൰ା൬

భష಍೒
ಲ೒಍೒

൰	
    (25)  

Where Tpm and Tg are the mean plate temperature and the internal glazing temperature of the collector 

respectively. 

The view factor Fcg can be deduced from equation 26 in terms of the enclosure dimensions 

௖௚ܨ ൌ
ଶ௕

௕ቀଵା
భ

ೞ೔೙	ഁ
ቁି௛

     (26)     
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Subsequently, the heat loss through the glass cover can be calculated using the heat transfer coefficient 

of the glass kg internal glazing temperature Tg and external glazing temperature Tg
’. 

Now, the external heat loss from the glazed cover is the sum of the radiation, natural and the forced 

convection heat losses. As majority of the collector faces the ambient environment, it was assumed that 

the glass cover radiated heat to the surroundings with an ambient temperature Ta. Hence, the radiation 

heat transfer coefficient from the glazing hrcg can be expressed in terms of external glazing temperature 

Tg
’ and the ambient temperature Ta as shown in equation 27. 

݄௥௖௚ ൌ σߝ௚ሺ ௚ܶ
ᇱଶ ൅ ௔ܶ

ଶሻሺ ௚ܶ
ᇱ ൅ ௔ܶሻ   (27) 

Furthermore, the losses due to natural and forced convection also must be taken in to account. The 

forced convection heat transfer coefficient hfcg will be a function of velocity of the wind, an 

approximation of which can be expressed by equation 28, where V is the wind velocity (Eicker, 2006). 

݄௙௖௚ ൌ 4.214 ൅ 3.575ܸ    (28) 

The natural heat transfer coefficient hncg can be expressed by equation 29 (Eicker, 2006). 

݄௡௖௚ ൌ 1.78ሺ ௚ܶ
ᇱ െ ௔ܶሻ

ଵ
ଷൗ     (29) 

Using this approximation, it is possible to calculate the overall convection heat transfer coefficient hc 

by integrating both forced and natural heat transfer coefficient using equation 30 (Eicker 2006). 

݄௖ ൌ ൫݄௙௖௚
ଷ ൅ ݄௡௖௚ଷ ൯

ଵ
ଷൗ     (30) 

In summary; the combination of heat losses and the total useful energy extracted, considering the energy 

balance of the collector, mean the thermal efficiency of the façade integrated collector can be 

established. 

In examining the performance of the system, it is possible to utilise the knowledge of the thermal 

performance to determine the electrical performance. In this regard, one trade-off of using silicon solar 

cells under concentrated radiation is that their efficiency degrades with the temperature increase. Hence 

it is essential to express the electrical efficiency in terms of the temperature of the absorber plate. 

In exploring this the electrical power generated by the cell is given by the product of the current (Imp) 

and voltage (Vmp) at its maximum power point, as shown in equation 31.  

ܲ ൌ ௠௣ܫ ௠ܸ௣     (31) 

This can also be expressed in terms of fill factor (FF) and the open circuit voltage (Voc) and short circuit 

current (Ioc) as shown in equation 32.  

ܲ ൌ ௦௖ܫ	ܨܨ ௢ܸ௖     (32) 

However, Voc and FF decrease significantly with increased temperature, while short circuit current 

increases marginally with the temperature (Zondag 2008). Taking this into account gives a good 

approximation of the electrical efficiency of a photovoltaic cell under various temperatures (ƞe) given 

that the nominal operating cell temperature (NOCT) (Dubey et al. 2013). The efficiency of the cell at 

NOCT conditions are known from the manufacturer’s datasheet and for typical crystalline Si modules 



 19 

β can be assumed as 0.004 (Notton et al. 2005). In this respect, when the packing factor S is taken in to 

account, the electrical efficiency of the collector on a relative area basis ƞelect can be expressed by 

equation 33. 

ƞ௘௟௘௖௧ ൌ 	 ƞேை஼் ቀ1 െ ൫ߚ ௣ܶ௠ െ ൯ቁܶܥܱܰ ∗ ܵ   (33) 

By combining equation 14 and equation 33 the combined efficiency ƞtot of the collector can be 

calculated from equation 34. 

ƞ௧௢௧ ൌ ƞ௧௛௘௥௠௔௟ ൅ ƞ௘௟௘௖௧     (34) 

3.1 Experimental method 

In order to validate the mathematical model and findings derived from its use, it is necessary to compare 

the outcome with an experimental prototype. As there is no standard method for testing 

photovoltaic/thermal hybrid modules it was decided use a standard steady state test method similar to 

that given in AS/NZS 2535.1 (2007) for determining the thermal performance of glazed liquid heating 

collectors. As such, an experimental testing system was constructed on the roof of Auckland University 

of Technology’s School of Engineering building (-36.8°, 174.7°), facing true north. In doing this, T-

type thermocouples (±0.3°C) were used to measure the inlet and the outlet of the coolant as well as the 

ambient temperature. A cup anemometer and a wind vane were mounted adjacent to the collector to 

measure the wind speed and direction. Finally, a Delta-T SPN1 type sunshine pyranometer was used to 

measure the radiation incident on a plane parallel to the absorber. For the electrical output, the voltage 

and current were measured simultaneously while keeping the system loaded at its maximum power 

point. 

Fabricating the façade collector (as shown in Figure 19) involves three main parts; the PVT absorber, 

the reflector and the insulation elements including the glass cover. For this work two finned tube 

absorbers were fabricated from 1.2 m lengths of 2 mm thick aluminium, painted matte black. A single 

10 mm square aluminium tube was attached to the back of each absorber using a thermally conductive 

adhesive to act as the cooling channel. Square tube was used as it provides a larger contact surface 

between the absorber plate and the cooling tube, thus improving the fin efficiency. Each absorber plate 

was then fitted with a custom made string of seven 150 mm mono-crystalline solar cells connected in 

series and bonded to the absorber using a silicone conformal coating. This thin layer of clear conformal 

coating protects the cells under extreme environmental and climatic condition and insulates the rear 

wiring of the solar cells when the absorber is exposed to the concentrated radiation. As described 

previously, a reflector was prepared by attaching 3M Solar Mirror Film 1100 to an aluminium backing 

sheet. 

Due to the practical issues associated with integrating the façade integrated collector into an actual 

building façade, two vertical “wall” sections were fabricated to mount the concentrators. Each wall was 

packed with mineral wool insulation (R2.8) to insulate the rear of the concentrator, and replicate a 
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building façade, while the front surface was glazed using a low-iron glass cover. A schematic 

representation of the combined collector test system is shown in Figure 21. 

 

Figure 21 Experimental test rig and the circuit diagram for electrical measurements 

In summary, the design parameters of the prototype collector tested are given in Table 1.  

Table. 1: Physical characteristics of experimental prototype 

Parameter Symbol Value Unit 
System flow rate m 0.8 l/min 
Absorber length L 2.4 m 

Absorber breadth b 0.2 m 
Reflector height h 0.6 m 

Collector area A 0.48 m2 

PV Transmit/apsorpt ταPV 0.8 (Anderson 2009) - 

Thermal Transm/apsorpt ταT 0.87 (Anderson 2009) - 

Absorber thickness Labs 0.002 m 

PV thickness LPV 0.0004 m 

PV conductivity KPV 130 W/mK 

Tube hydraulic diameter d 0.0088 m 

Tube spacing w 0.2 m 

Cell-absorber Quasi heat 
transfer coefficient  

hPVA 45 (Zondag et al. 2002) W/m2K 

Insulation conductance kins 0.045 W/mK 

Back insulation thickness Lins 0.1 m 

Edge insulation thickness Ledge 0.025 m 

Absorber conductivity Kabs 130 W/mK 

Packing factor S 0.7 - 

Conductance of glass kg 0.9 W/mK 

Reflectance of silver metalized 
film 

ρAl 0.9 - 

Drain 
Flow meter Pump 

Façade integrated collector 

Cup anemometer 

Pyranometer 

Water feed 

Thermocouples 

1000L 

Tank 

Electric heater 

Flow control valve 

V 

A

Volt meter 

Amp meter 
α 
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3.2 Experimental validation of the thermal model 

To validate the mathematical model, the test rig was fed with hot water at different temperatures from 

an electric heater. The beam radiation on a horizontal surface, mass flow rate of the water, input-output 

temperatures of the water at the entrance and the exit of the collector, the ambient temperature and the 

wind speed were also measured. These were taken when the sun was near solar noon, such that the 

effect of shading, due to the design of mounting enclosure, was minimised. Furthermore, in order to 

find the electrical output, the current and the voltage was also measured at maximum power point by 

measuring the voltage signal across the collector using a dynamic load. Finally, the combined efficiency 

was calculated by taking the ratio of the electrical and thermal output, to the total solar radiation incident 

on the absorber (G*C). 

As shown in Figure 22 the mathematical model incorporating the new heat transfer relationship for the 

concentrator (Piratheepan and Anderson, 2015) and the concentration ratio, is capable of predicting the 

performance with reasonable accuracy. 

 

Figure 22 Experimental and theoretical efficiencies of façade integrated collector 

3.3 Thermal modelling results and analysis 

Now in Table 1, there are number parameters that could be modified to improve the performance of the 

collector.  In order to find out the critical design variables, the mathematical model was used to perform 

a sensitivity analysis on the system. Where possible, only one design variable was varied at a time and 

the effect of that particular parameter on the efficiency was observed. This allows us to determine the 

design variables that are critical in terms of efficiency of the system and its design. 

In the concentrator it is likely that high temperatures will be achieved and so there is a need for improved 

cooling. Heat transfer in the cooling channel is a function of Reynold’s number and thus varying the 

flow rate may have the effect on the overall efficiency of the collector. However as shown on Figure 

23, the efficiency of the collector does not significantly improve with the increased fluid flow rate. The 

slight increase in efficiency can be attributed to an increase in the turbulence in the system increasing 
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the heat transfer marginally. Furthermore, a reduction in temperature will increase the electrical 

efficiency marginally, though the pumping power required to achieve this may offset any gains. 

 

Figure 23 Combined efficiency by varying flow rate 

Another means of improving the efficiency could be to reduce the width of the absorber for a single 

tube, or by decreasing the spacing between adjacent tubes in systems with multiple cooling tubes. As 

shown in Figure 24, this will increase the efficiency significantly. This can be explained by the fact that 

an increase in the number of tubes across the absorber plate improves the fin efficiency and thus 

increases the performance of the collector. However, it can be seen that, at higher (Ti-Ta)/G*C values 

they tend to converge. This suggest that although decreasing the tube spacing increases the efficiency 

initially, there are other factors which will decrease the efficiency at higher (Ti-Ta)/G*C.  

 

Figure 24 Combined efficiency by varying tube spacing 

Further, the combined efficiency of the collector could be also improved by improving the heat transfer 

coefficient between the solar cells and the thermal absorber. Unlike a thermal collector that has a bond 

resistance between the tube and absorber (Duffie and Beckman 2006), a “quasi” heat transfer 

coefficient, with a value of 45W/m2K, between the PV cells and the absorber plate is used (Zondag et 
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al. 2002). Based on this Anderson et al (2009) stated that this thermal conductance might be improved 

by means introducing a thermally conductive adhesive. Following on from this recommendation, in 

Figure 25 it can be seen that when the heat transfer coefficient is doubled from 30W/m2K to 60W/m2K 

the efficiency is improved by approximately 10%. 

 

Figure 25 Combined efficiency by varying cell to absorber heat transfer coefficient 

It is also important to see how, the packing factor of the solar collector (accounts for the ratio of the 

area covered by PV solar cells out of total area of the absorber) influence its efficiency due to the low 

thermal absorptance of the silicon cells (ταPV). As shown on Figure 26, the thermal efficiency of the 

collector decreases with the PV cell coverage. However, as shown in Figure 27, although the thermal 

efficiency of the collector decreases significantly with the packing factor, the overall efficiency of the 

collector increased marginally. This shows that covering the thermal absorber with the PV cells will 

increase the overall efficiency thus compensating for the thermal efficiency reduction. 

 

Figure 26 Thermal efficiency varying packing factor 
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Figure 27 Combined efficiency varying packing factor 

To understand the effect of reflector reflectance for different scenarios, the electrical output of the 

collector was modelled for a sunny day using data for Kaitaia, New Zealand.. As shown in Figure 28 

the output of the collector increases with the reflector’s reflectance. It is important to note that, the 

performance of the collector strongly depends on the reflector reflectance, and reduction in reflectance 

will reduce the output of the collector dramatically. 

 

Figure 28 Performance of the collector varying the reflectance of the reflector 

Exploring this further, the electrical output of the collector was analysed for a typical sunny summer 

and winter day in Kaitaia. As shown in Figure 29, the output of the collector increases before 12 pm 

and after 2 pm, peaking at 10 am and 4 pm compared to an absorber without a concentrating element 

(this behaviour is due to shading of the reflector as described previously). During the summer the 

collector will produce more power at lower elevation angles, coincidently this is the time a typical house 

has higher power demand.  
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Figure 29 Performance of the collector on 9th of January 

Likewise, in winter, the performance of the collector compared to the absorber without the 

concentrating element, improves dramatically throughout the day, as shown in Figure 30. 

 

Figure 30 Performance of the collector on 30th of June 

In this respect it demonstrates the potential for a combination of roof top collectors, with low 

concentration ratio façade integrated solar collectors, and this may well be a step towards net zero 

energy buildings. 

 

4. Conclusion 

From this work, there are number of conclusions that can be drawn with regard to the design and 

operation of BIPVT concentrators for façade integration; firstly, increasing the flowrate in the cooling 

tubes appears to offer little benefit with respect to increasing the efficiency of the collector. However, 

the combined efficiency of the collector can be improved by increasing the number of cooling channels 

across the absorber plate, though this may not be economical. Hence increasing the number tubes has 
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to be considered as a trade-off between the efficiency and the cost of the collector. Furthermore, 

improved thermal contact between the solar cells and the thermal absorber will increase the efficiency 

to a greater extent and appears to offer significant potential in improving the performance of the façade 

integrated BIPVT solar concentrator system.  

More importantly, the output of the collector appears to be heavily dependent on the reflectance of the 

reflector. Hence it is important to have a quality reflector that can keep its reflectance throughout the 

lifetime of the collector. Finally, the façade integrated collector performs well under moderate and low 

elevation angles, which often corresponds to times of peak electrical demand and would appear to be 

well suited to operating in combination with the roof mounted collectors. 
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