COMPUTING AN 4

Journal of Applied Computing and Information Technology
ISSN 2230-4398, Volume 19, Issue 1, 2015

Incorporating the NACCQ publications:
Bulletin of Applied Computing and Information Technology, ISSN 1176-4120
Journal of Applied Computing and Information Technology, ISSN 1174-0175

++ Refereed Poster Al:

Scaffolding, the zone of proximal development, and novice programmers

Awbi, N.K., Whalley, J.L., and Philpott, A. (2015). Scaffolding, the zone of proximal development, and novice programmers. Journal of Applied Computing and Information
Technology, 19(1). Retrieved January 15, 2015 from http://www.citrenz.ac.nz/jacit/JACIT1901/2015Awbi_Scaffolding.html

Abstract

The work reported here is part of a larger research program that aims to explore the learning strategies that novice computer programmers adopt, the ways in which they integrate knowledge, and the
processes they employ when applying their knowledge and skills in different contexts. Our findings, based on a narrative analysis of think-aloud retrospective interviews, indicate that scaffolding can
influence progression in learning and can extend a student’ s zone of proximal development (Vygotsky, 1978).

Keywords
K.3 [Computers & Education], Computer & Information Science Education, Computer Science Education

Poster

A3 sized PDF file (289 kb)

A1l sized PDF file (313 kb)

Hadiz Kasto &wbi®, Jacqueline Whalley, ang Anne Fhilpott
Schoo! of Camputer and Mathem atica! Soiances, Auckland Uinfwarsity of Techrology, New Sealond

Eaga, tha waye i w

RAIECERIS. they arIRIDy Whan spkIE ik cakdge and ool
wrw W QrGAnE 3 SEalyiL of e Ea

pactan s re e o PAE Feras Bragy

L Qur f

N8t BeMTaking c

e af proakmald

Ouestinnd: Write a precodure 1o eaeulat the lgeh of @ single
[

Quaitiond: Write a grocedas Lo caltulal
iz

Cuestinnd: Wil & procedus Lo
arsiche

e s et o th showrest

Fimume 2 shows the
e

wepgriiion of Lo o L preenls &
 the v of scalfukig that wan provided, o well s
annpstr e o kb L issim e

(S i wnrk g

7

rew cde Ll
dl Curesligriint (2P0) of &

s e yuanile ol
Licws L |

Figura 2: Psgression ul b

g o L partisirants

peariien 3 provided @ eealfokd that abomed Dasny e sceseully ok

abis ki o i 2P

epuarilien 4 an

Figuran 12 Thee riatierribip bistasenen sealfking ared the 200

References

12] iskes, B, Sion, B, Tharnpean, . Waalies, L, a3 Prasaé, £, 3006 % seeing o ik rem andihe BGOST B W, L2

13] Parkins, 0 M. are Martin, 7. {136). Fagte Aaafesie ooc Meplecsed Sroomgies o Mcics Programvoars. b €. Soioeny 5. e {0}, Erpson’ Stusies of Frogrammems. Renvond, Fe
feruzy: Ables Fublishing Casporesion.

3] Tasgus, 0, Carmrg WA, Al . st Lt B 211 & Suaiutivn 48k si2e tucky 2 s aurly 6 Jagstian siuges of Smsyrg n nosics prograrrars fras of the 25 Aurotiey
Comasiieg Cerrsian Confeence, 136, B7-3%

] Mot L1570 berocion Detman Woroing and #iwiopreast. Ao o Cod Sociks CaTEridgs, MACHanar ity s

151 Whalbey, L ansiamnn, . 3334, A cuasitures 1HIrk-32 6 Sty of ROSI08 SISIFATIMEY COos wrting mmagien. Proc. 2f the 19t confemnce on inaavation & Tecteckany 1 Cormpstar
Dot Mo, 17320

1. Introduction

There is no doubt that learning to program is hard and there is a wealth of literature reporting on these difficulties. Difficulty is often attributed to dependency between program concepts (Robins,
2010). Research has found that novice programmers have few schemas available in their long-term memory. Therefore, their knowledge is fragile (Perkins, & Martin, 1986) and the intrinsic cognitive
load is high. This high cognitive load (Miller, 1956) means that many novice programmers focus on the programming language syntax and concepts and as a result find the extra load of problem
solving impossible. In recent years, researchers have focused on the Bloom and SOLO taxonomies (Lister, Simon, Thompson, Whalley, & Prasad, 2006) and Neo-Piagetian levels of development (Teague,
Corney, Ahadi, & Lister, 2013) as possible sources of explanation of students' abilities to reason about code. A recent study into the cognitive aspects of the early stages of learning to write computer
programs found that with the right behavioural approaches to learning students are able to expand their zone of proximal development (ZPD) (Whalley, & Kasto, 2014) .

Here we present an analysis of the data obtained using think-aloud retrospective interviews (Van Someren, Barnard, & Sandberg, 1994) of two novice programmers attempting to solve a set of
programming tasks. This method is detailed in an earlier paper (Whalley, & Kasto, 2014). The programming tasks were designed to progressively provide for the development of building blocks which
make it possible for the student to solve the next problem in the hierarchy of difficulty.

2. The questions

The four questions, discussed in the poster, were designed using a robot world. Each question provided a small incremental increase in the conceptual complexity of the task. For example in order to

solve question two the schema developed in question one, to find the length of a corridor, must be used along with the schema to find the larger of two numbers. The length of the corridor schema
requires the use of a plan to count the number of moves a robot makes and one for navigation of the robot within the world. In question 2 there were only ever two corridors. For questions 3 and 4, a
correct answer must be able to code with any number (obviously limited by the dimensions of the world) of interconnected n corridors which were always connected at the same point (column 0). The
students did not progress to the next question until they were able to solve the previous question. The students were asked to write a procedure to:

. calculate the length of a single corridor.

. find the longest corridor of two corridors.

. calculate the length of the longest corridor.
. calculate the length of the shortest corridor.

ENERENE

3. Results and discussion

If a student was unable to answer a question unaided the interviewer then provided assistance. In order to analyse the results we classified the level of assistance as either soft or hard (Saye, & Brush,
2002). Soft scaffolding was further classified according to Perkins and Martins system as either clarify, general prompts, hint, or exact solution (Perkins, & Martin, 1986). The ZPD can be defined as
"the distance between the actual developmental level as determined by independent problem solving and the level of potential development as determined through problem solving under guidance "
((Vygotsky, 1978) p. 86). We therefore identified that a student was within their ZPD if they could solve a problem with scaffolding of the clarify, general prompts or hint types. A student was
considered to be within their comfort zone (CZ) if they were able to solve a given problem independently (Anderson, & Gegg-Harrison, 2013) and outside of their ZPD if they were unable to solve the
problem.

L

Clari 3
Sy Soft scaffolding

General Prompt

Hint

Figure 1: The relationship between scaffolding and the ZPD

Figure 2 shows the progression of two students, each circle represents a question. Colours in the circle indicate the level of assistance (as illustrated in Figure 1) that was provided as well as illustrating
points where the student appears to be able to extend their ZPD indicating key learning events for that student and evidence for momentum at the edge of their learning (Robins, 2010).

Andre Danny

of ing of two

Figure 2:

For question 1 Andre required one hint related to program syntax but, while he required assistance, it is likely that question 1 was below or at his actual developmental level. To solve question 2 he used
two variables to hold the lengths of the two corridors and compare them. However, for question 3 he realized that this strategy would not work and needed a hint to realize that a most wanted holder
variable was required. He also required a second hint in order to update the most wanted holder variable correctly.

In Danny's case (Figure 2, right) questions 1 and 2 were within his comfort zone and are within his ZPD. Question 3 was clearly outside of his ZPD, but model answer code was discussed with the
interviewer in the retrospection phase. Question 4 is very similar to question 3. It requires the use of the same program schemas but requires the length of the shortest rather than the longest
corridor to be calculated. Danny was able to recognize the similarity and arrive at a solution to question 4 with minimal intervention in a follow up interview. Therefore in this case it appears that the
exact solution to question 3 provided a scaffold that allowed Danny to successfully solve question 4 and also extend his ZPD.

4. Conclusion

We have demonstrated that it is possible to observe a student's ZPD and that appropriate scaffolding enables students to extend their ZPD and CZ. We also found that if used appropriately model
answers can help a student's development. We have found that it is possible to learn from a model answer in cases where the model answer allows the students to move forward onto a similar but
different question that leads to a new understanding. These findings suggest that Lev Vygotsky's ZPD theory should be a useful tool for informing teaching practice and formative assessment design in
computer programming.

Acknowledgements

The first version of the poster was displayed and discussed at the First Doctoral Symposium at the 5 annual conference of Computing and Information Technology Research and Education New
Zealand (CITRENZ2014) incorporating the 27" Annual Conference of the National Advisory Committee on Computing Qualifications, Auckland, New Zealand, October 7-10, 2014.

References

Anderson, N. & Gegg-Harrison, T. 2013. Learning computer science in the comfort zone of proximal development. Proc of the 44th ACM technical symposium on Computer science education - (SIGCSE
'13),495-500.

Lister, R., Simon, B., Thompson, E., Whalley, J.L., & Prasad, C., 2006. Not seeing the forest for the trees: novice programmers and the SOLO taxonomy. SIGCSE Bull. 38(3), 118-122.

Miller, G. A. 1956. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63, 2 (1956), 81-97.

Perkins, D. N. & Martin, F. (1986). Fragile Knowledge and Neglected Strategies in Novice Programmers. In E. Soloway & S. Iyengar (Eds.), Empirical Studies of Programmers. Norwood, New Jersey:
Ablex Publishing Corporation.

Robins, A. 2010. Learning edge momentum: a new account of outcomes in CS1. Computer Science Education 20, 1 (2010), 37-71.

Saye, J.W., & Brush, T. 2002. Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3),
77-96.

Teague, D., Corney, M., Ahadi, A. & Lister, R. 2013. A qualitative think aloud study of the early neo-piagetian stages of reasoning in novice programmers. Proc. of the 15th Australasian Computing
Education Conference, 136, 87-95.

Van Someren, M.W., Barnard, Y.F., & Sandberg, J.A.C. 1994. The think aloud method a practical guide to modelling cognitive processes. Academic Press, London.

Vygotsky, L. 1978. Interaction between learning and development. From: Mind and Society. Cambridge, MA: Harvard University press.

Whalley, J. & Kasto, N. 2014. A qualitative think-aloud study of novice programmers' code writing strategies. Proc. of the 19th conference on Innovation & Technology in Computer Science Education
(ITICSE'14), 279-284

Copyright © 2015 Awbi, N.K., Whalley, J.L., and Philpott, A.
Journal of Applied Computing and Information Technology (JACIT): ISSN 2230-4398
(Incorporating the Bulletin of Applied Computing and Information Technology, NACCQ: ISSN 1176-4120 and
Journal of Applied Computing and Information Technology, NACCQ: ISSN 1174-0175)
Copyright ©2015 CITRENZ.
The author(s) assign to CITRENZ and educational non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided that the article is used
in full and this copyright statement is reproduced.
The author(s) also grant a non-exclusive licence to CITRENZ to publish this document in full on the World Wide Web (prime sites and mirrors) and in printed form within the Journal of Applied
Computing and Information Technology. Authors retain their individual intellectual property rights.
Michael Verhaart, Donald Joyce and Nick Wallingford (Eds.).

An Open Access Journal, DOAJ #22304398, (v zotero)

