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Abstract

Low and time-changing inertia values due to the high percentage of renewable energy
sources (RESs) can cause stability problems in power systems due to rapid frequency
instabilities. Inertia monitoring will assist operators to apply suitable actions and more
proper control methods to alleviate stability issues. Therefore, this paper proposes an
online method to estimate the total inertia of a network using a recursive least-squares
approach. The proposed method uses network measurements with a non-recursive sys-
tem identification approach to initially estimate the network hypothesis model. Then, the
recursive method is used together with time changing measurements to recursively estimate
model parameters and extract online inertia estimates of the network. During the estima-
tion, the method does not need to store previous data after each sample step; therefore,
the computation burden is significantly reduced. More importantly, the technique incor-
porates the use of available electromechanical oscillation modes in the system, which are
linked with system parameters, to determine the network inertia estimates. The applica-
bility of the proposed method has been validated by numerical simulations of the IEEE
39-bus network and the aggregated New Zealand network with its actual inertia data.

1 INTRODUCTION

1.1 Background and motivation

Inertia has a great impact on system dynamics. Inertia takes part
in deciding the ability of the network to retain stability when
exposed to power imbalances. Conventionally, inertia in power
systems has been provided mainly by synchronous generators
[1]. However, due to the increasing renewable energy sources
(RESs) penetration level to power networks, some synchronous
generators are replaced by converter-based RESs. Consequently,
the inertia constant in power system has reduced. For instance,
[2] presents the inertia decrease for different countries between
the year 1996 and 2016. The study shows a decrease of inertia
value in Denmark by 60%. On the other hand, [3] estimated
the inertia value of the UK network to be 9 s by 2008 and
anticipated to be 3 s, around 67% decrease, by 2020. These are
remarkable decreases of inertia in power systems. Therefore, the
study of the power system’s inertia is becoming vital.
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While inertia is only essential in the first instants after the
events of power imbalance, its influence is critical in the net-
work as it suppresses frequency deviations under sudden power
imbalances. When the inertia of the network decreases, the
standard indicator is the rate of change of frequency (RoCoF),
which increases. If the RoCoF increases beyond a critical value
of a specific network, RoCoF protective relays will operate to
isolate a generating unit from the network. Isolating a gen-
erating unit from the network may result in cascading fail-
ures and possibly blackout. To address the problem of the
increased RoCoF because of the high penetration of RESs,
some countries such as Denmark, Germany and UK have
updated their critical RoCoF relay settings from 0.5 to 2.5 Hz/s
to accommodate high RoCoF in their networks [4]. There-
fore, the challenges related to reduced inertia in power sys-
tems, especially during contingencies, should be given research
attention [1, 5].

It is traditionally known that for a network with multi-
synchronous generators, its system equivalent inertia constant
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can be obtained by using Equation (1) [6].

HTotal × STotal =
N∑

i=1

Hi × Si (1)

where HTotal and STotal are the total inertia constant and the
capacity of the entire system, respectively; Hi and Si are the iner-
tia constant and the capacity of the ith synchronous generator,
respectively; N is the number of generators in the network [5, 7].
It is apparent that, for the conventional power system, the sys-
tem inertia could be calculated by using Equation (1). However,
Equation (1) may be unsuccessful at giving an accurate estimate
of the actual network inertia in the presence of a high percent-
age of RESs. The RESs generation units have non-synchronous
inertias called synthetic inertias. The existence of synthetic iner-
tia in the power system can further complicate the use of Equa-
tion (1) in inertia calculation. Failure to estimate the network
reduced inertia might result in difficulties in both network oper-
ation and control schemes planning [8, 9]. An Australian black-
out in 2018 as well as UK’s and the Island of Tenerife’s blackouts
in 2019 are good examples of the latest challenges related to a
failure of estimating the values of network inertia [10]. Other
problems related to the high percentage of RESs in power sys-
tems are presented in [11–13].

Some research works such as in [14, 15] have addressed
the problem of low inertia in power systems by introducing
synthetic inertia as a control strategy to replace reduced con-
ventional synchronous generator’s inertia. As most synthetic
inertias are dependent on stochastic RESs, the future system
inertia expected to be a time-varying quantity in power sys-
tems. The high probability of inertia becoming a time-varying
quantity due to a high percentage of RESs in the network
prompts more consideration of power system stability and
reliability. As a result, for the safety and reliability of modern
and future power systems with low and time-varying values of
inertia, online estimation and monitoring of inertia values as
well as evaluation of frequency response in power systems are
necessary. Prior awareness of inertia values in power systems
will help in planning for frequency response in power systems.
Besides, the deployment of proper frequency containment
services depending on the level of inertia at a given time in
power systems can be planned in advance. Consequently, online
inertia estimation techniques need to operate in real-time to
quickly quantify the risks of power systems blackouts.

1.2 Literature review

A power system with a significant percentage of converter-
based RESs has low inertia that may be inadequate to imme-
diately and effectively respond to system dynamics when the
network is exposed to power imbalances. The low inertia
system is prone to the high RoCoF during contingencies and,
hence, large frequency deviations. The high RoCoF may lead
to frequency instabilities and consequently blackouts. Similarly,

since most of RESs integrated into modern power systems are
weather dependent, the number of committed synchronous
generators over time will be affected by weather conditions.
This tendency, consequently, leads to challenges in the planning,
operation and control of networks [8, 16–18]. Subsequently,
maintaining the stability of the grid is problematic as the pen-
etration levels of the converter-based RESs keep increasing in
the network.

The decrease in the percentage of inertial machines, which
is a result of the increase in the percentage of stochastic RESs
in the power system needs more research. The research is dedi-
cated to ensuring that the stability and flexibility of the modern
and future power grid are maintained [16, 17]. For the safe and
reliable operation of modern and future power systems with low
and time-changing values of inertia, online estimation and track-
ing of inertia in power systems are essential. Besides, real-time
assessment of the frequency response in power systems is also
important. By successfully assessing the frequency response in
real-time, appropriate measures such as control schemes can be
planned [19]. Generally, quick and continuous information of
the inertia value in the network will help power system oper-
ators (PSOs) to plan and act either before the contingency or
very rapidly after the contingency with appropriate measures.

Even though inertia estimation methods have been imple-
mented in the traditional network, the methods may not be
suitable for modern and complex networks. The methods used
traditionally include the well-established equation expressed by
Equation (1), probing test [20, 21] and transient test [22]; all
these techniques estimate the inertia constants of the networks
predominantly driven by synchronous generators. As synthetic
inertia is becoming a reality in power systems, hence making the
total inertia a time-varying quantity, traditional methods would
not work in estimating variable inertia in modern power sys-
tems. To address inertia estimation in modern networks, new
methods have been proposed recently [5, 19, 23–25]. However,
the majority of them are still dependent on Equation (1) and
based on historical data analysis as well as large data sets after
frequency events.

Furthermore, the system inertia estimation in [26] is con-
ducted by using an equivalent system model. Unfortunately, the
model requires a large amount of recorded data, which slows
down the entire process. Therefore, this approach is not suit-
able for online inertia estimation. Similarly, [23] uses historical
data and the Bayesian approach in the methods to estimate the
aggregated inertia of the network. But the approach is prone
to computational problems owing to using a large and com-
plex computational model that stores large historic data during
computation. Therefore, it is unsuitable for online inertia esti-
mation. Besides, [27] presents a method that has a drawback of
downtime revising and updating the entire system model when
considering the addition or exclusion of a generator or load in
the system. Due to this drawback, the method is irrelevant for
online inertia estimation. A downside of decreased precision
due to phase step issues as clarified in [28] makes the methodol-
ogy for inertia estimation in [29] lack credibility for online inertia
estimation.
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Ref. [30] proposes an online inertia estimation technique,
which overlooks the variable inertia due to the high percent-
age of RESs in modern networks. Furthermore, the method
proposed in [31] is also built on the Bayesian approach, which
is associated with high computation burden as analysed in
[32]. The computation burden associated with the Bayesian
approach makes the method impractical for online inertia track-
ing in power systems. Alternatively, [32] proposes two inertia
estimation techniques for estimating synchronous and non-
synchronous generators’ inertias. The techniques are mainly
developed based on the approach in [33] and [34]. However,
the techniques are limited to individual devices only.

The challenges revealed in the analysed literature above lead
to the development of a compact online inertia estimation
and monitoring technique. The developed technique should
consider time-varying inertia for the entire network, should
not suffer from phase step issues and should have minimum
computation burden.

1.3 Novelty and organisation

To overcome the above-mentioned vulnerabilities and to pro-
vide an accurate and reliable online inertia estimation and track-
ing, this paper proposes a recursive parameter estimation and
online inertia tracking in power systems. The proposed tech-
nique has the following merits:

∙ Reduces computation burden significantly as it does not need
to store previous data after each sample step during estima-
tion.

∙ Does not suffer from phase step issues and reduces the size
of the estimated network model during computation.

∙ Provides only updates of the model parameter estimates after
each sample step and not the whole model of the entire net-
work.

∙ Incorporates the use of available electromechanical oscilla-
tion modes in the extraction of the network inertia estimates.

This paper covers the gaps that exist in most proposed esti-
mation methods such as having high computation burdens, con-
sidering only electrical model information and leaving behind
electromechanical oscillations, which limit most of the inertia
estimation methods to only post-event analysis. The remaining
parts of this paper are structured as follows. Theoretical back-
ground is presented in Section 2. In this section, the role of
inertia in frequency stability is discussed. Furthermore, dynamic
modes and eigen structures in relation to inertia extraction in
power systems are introduced. Section 3 describes the proposed
online inertia estimation method based on the recursive least-
squares approach. Moreover, the application of the proposed
technique on the case study network is presented and examined
in Section 4. The application and validation of the proposed
technique on the real network data is examined in Section 5.
Lastly, Section 6 presents the conclusion and briefly underlines
the future work.

2 THEORETICAL BACKGROUND

2.1 Inertia in power system dynamics

Inertia has a critical role in maintaining the stability of the net-
work after power imbalances [1, 35]. Inertia determines how
fast or slow the frequency can change after power imbalances
in the network [5, 23, 36]. To describe the behaviour of fre-
quency response in networks, the traditional swing equation is
very important. When the traditional swing equation is simpli-
fied and normalised with respect to the unit values as depicted in
[9], the transfer function (TF) of the system expressed in Equa-
tion (2) can be obtained.

G (s) =
Δ f

ΔPe
= −

1
2Hs + D

(2)

where G (s) is the TF from ΔPe to Δ f , ΔPe is the active electrical
power deviation, Δ f is the frequency deviation of the rotor of
the generator, H is the inertia constant, D is the damping coeffi-
cient and s is the Laplace transform operator. As the PMUs are
employed to measure the network’s parameters, a system esti-
mation technique can be employed to estimate the TF of the
network. Then, network parameters such as inertia can be esti-
mated.

For a network with several synchronous generators, the
total inertia constant of the entire network can be obtained
by employing Equation (1). Also, a network with several syn-
chronous generators can be combined and assumed as a single
generator network [19]. To achieve the combined network, all
generators’ output active powers are aggregated to give a single
value of active power. The frequencies of different buses can be
averaged at a selected bus to have the so-called centre of inertia
(COI) frequency. Traditionally, the COI frequency of the aggre-
gated network is given by Equation (3) [37].

fCOI =

∑N

i=1 Hi × fi∑N

i=1 Hi

(3)

where, fCOI is centre of inertia frequency of the network, Hi and
fi is inertia constant and frequency of the ith synchronous gen-
erator, respectively, and N is the total number of synchronous
generators in the network.

For traditional networks whose parameters of the installed
generators are known in advance, the approach in Equation (3)
can be implemented when considering a multi-generators net-
work. However, due to the nature of the modern grid with
significant RESs penetration and synthetic inertia inclusion,
the inertia of some components in the network may not be
known in advance. The advanced wide-area measurement sys-
tems (WAMS) that are equipped in modern networks can pro-
vide measurements of different units in the network, which can
facilitate real-time tracking of each component added in the net-
work [38]. The information of each component can be obtained
and immediately incorporated into the network. Therefore, the



4 MAKOLO ET AL.

sum of active power deviations and the frequency responses,
which are tracked in real-time, are used as inputs for the pro-
posed adaptive algorithm to calculate COI frequency in actual
networks. The algorithm in this proposed method is designed
in such a way it adaptively adjusts to incorporate reduced inertia
in the network.

2.2 Dynamic modes and eigen structure
analysis

An interesting interpretation of system dynamic behaviour can
be achieved by examining the eigenvalues of a dynamic matrix
A of the state-space model of a power system [39]. As matrix
A describes the dynamics of the system as characterised by its
eigenvalue, the system’s inertia constant can be extracted from
this matrix. To do this, the dynamic modes of the system are
found and then the eigenvalues of matrix A, which are poles
of the system, are calculated [40, 41]. The general form of a
dynamic system can be expressed as in Equation (4).

ẋ = Ax (4)

where 𝔵 represents the vector of the state variable and A is the
state matrix. If it is assumed that matrix A is diagonalisable with
eigenvalue decomposition, then the estimated state variable can
be given as in Equation (5).

x̃ = 𝚽Λ𝚪̃m (5)

where 𝚽 is a set of functions obtained from the system
data, which physically represents the oscillation of the sys-
tem, 𝚪̃m represents the estimated row vectors containing
the temporary coefficient evaluated at each observation, and
𝚲 = diag[𝜆1 𝜆2 … 𝜆m] ∈ ℝm×m is a diagonal matrix consist-
ing of empirical Ritz eigenvalues 𝜆 j of the dynamic matrix
A [42]. Therefore, the estimated state variable x̃ can then be
expanded in a linear combination of modal components as in
Equation (6).

x̃ ≈
m∑

j=1

𝜙 j𝜆 j ã j (t ) (6)

where ã j is a set of temporal amplitudes, 𝜙 j is a set of dynamic
modes, and 𝜆 j is the associated eigenvalues of the dynamic
matrix A of the system model. In this way, the eigenvalues and
eigenvectors of the state matrices can then be found.

Since there is a cross-coupling between the state variables and
the dynamic matrix, it is reasonable to assume that, for nth order
system, the homogeneous response of each of n state variables
xi (t ) is a weighted sum of n exponential components given by a
derivative of a state variable in Equation (7) [43].

ẋi (t ) =
n∑

j=1

𝜆 j mi j e
𝜆 j t (7)

If a set of mi j and 𝜆 j can be found that satisfy Equation (7),
the assumed exponential form is a solution to the homogeneous

FIGURE 1 Summarised diagram of the proposed method

state equation. In this case, 𝜆 j is the j th eigenvalue and m j is the
corresponding eigenvector of a given square dynamic matrix.
Since system dynamics correlate with eigenvalue and eigenvec-
tor, any change in dynamic parameters can indirectly change the
eigenvalue and eigenvector through the state variable. By deter-
mining the modes of the system and analysing the eigenvalues
of the dynamic matrix A, network parameters such as inertia can
be determined.

3 THE PROPOSED ONLINE INERTIA
ESTIMATION TECHNIQUE

The proposed online inertia estimation method is summarised
in the algorithm flow diagram presented in Figure 1. It should be
noted that PMUs are used to measure power system data. The
recorded data is passed through a non-causal Butterworth low-
pass filter with 0.5 Hz cut-off frequency to attenuate the higher
frequency components that may impair the inertia estimation.
The filtered recorded data is then used to estimate the time-
variant TF model of the discrete-time process as the hypothesis
model of the system. From the hypothesis model identified, the
recursive least-squares method is applied to recursively estimate
the parameters of the model. A model reduction is then per-
formed, followed by a transformation to the state-space model.
From the state space representation, the dynamic matrix A can
be obtained from which the eigenvalues and eigenvectors can
be attained to extract the inertia estimate of the system.

3.1 Identification of the hypothesis model

The PMU network measurements are categorised as input vec-
tors (u0, u1, u2,… .um ) and output vectors (y0, y1, y2,… .ym ). The
PMU measurements are evenly sampled with the sampling
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period Ts = 1/fs, where fs is the sampling frequency. Consid-
ering a time t at a discrete-time index k, which corresponds to
the maximum number of data points, tk is given by tk = kTs. The
obtained data vectors are used to attain the estimated hypothesis
model of the network.

For the identification procedure, a non-recursive least squares
approach is employed to obtain a system hypothesis model. The
hypothesis model is represented as a time-variant parametric
system in the form of G (s) in Equation (8).

G (s) =
bn−1sn−1 + bn−2sn−2 +⋯+ b0

ansn + an−1sn−1 +⋯+ a0
(8)

where bk (for k = 0 to n-1) and am (for m = 0 to n) define model
parameters in the numerator and the denominator, respectively.
n − 1 and n are the highest orders of the operator “s” in the
numerator and the denominator, respectively.

To use discrete data sets for model identification, the s

domain TF Equation (8) must be transformed to z domain as
given in Equation (9).

G
(
z
)
=

b1z + b2z2 +⋯+ bmzm

1 + a1z +⋯+ an−1zn−1 + anzn
=

B
(
z
)

A
(
z
) (9)

where a1 … . an, b1 … . bm are system parameters, n and m are
real numbers, while z is a forward shift operator. For a decreas-
ing time index (k-1), different data samples can be incorporated
into Equation (9) to estimate the parameters ai and bi of the
hypothesis TF. However, Equation (9) must be in the difference
equation form as given by Equation (10) [44].

y (k) + a1y (k − 1) +⋯+ any (k − n)

= b1u (k − 1) +⋯+ bmu (k − m) (10)

where y(k) and u(k-1) are the output and input discrete data
samples at time indexes t = k and t = (k-1), respectively. Equa-
tion (10) can, therefore, be reordered to get Equation (11).

y (k) = [−y (k − 1)… − y (k − n) u (k − 1)

… u (k − m)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
.
.
.

an

b1
.
.
.

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

From Equation (9), m and n determine the number of model
parameters for the numerator and the denominator, respec-
tively. For N data points available in the experiment but only

l data points to be used, i.e., (l < N and l > n), then, general
matrices Equations (12), (13) and (14) are defined for the vec-
tor equations representation of measurements data and system
parameters, respectively.

Y l =
⎡⎢⎢⎣

y (n)
⋮

y (l − 1)

⎤⎥⎥⎦ (12)

X l =⎡⎢⎢⎢⎣
−y (n − 1) ⋯ −y (0) u (n − 1) ⋯ u (0)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

−y (l − 2) ⋯ −y(l − n − 1 u (l − 2) ⋯ u(l − n − 1

⎤⎥⎥⎥⎦
(13)

𝚯 =

⎡⎢⎢⎢⎢⎢⎢⎣

a1
⋮
an

bn−m

⋮
bn

⎤⎥⎥⎥⎥⎥⎥⎦
(14)

Combining Equations (12), (13) and (14) to represent Equa-
tion (11) with vectors of several data points (l), Equation (15)
is obtained. Equation (15) connects several discrete data sets of
the network to estimate 𝚯 system parameters.

Y l = X l 𝚯 (15)

It is also possible for N data sets to be used in Equation (15).
For this case, when l = N, Equation (16) is obtained. Equa-
tion (16) is comparable to Equation (15) with an exception that
all data sets are used in Equation (16). When more data sets are
used, it makes Equation (16) to be overdetermined, and there-
fore, the system parameters identification is simplified [44].

Y N = X N 𝚯 (16)

3.2 Recursive model parameter estimation

Before the recursive least square approach is applied, the non-
recursive least square method is used to obtain the hypothesis
model of the network. It should be noted that the non-recursive
method is used with offline measurements of the network to
estimate the network’s model and its order dimension. Then,
the recursive least square approach is employed for online
inertia estimation. For online inertia estimation in this proposed
approach, only parameters of the model should be recursively
estimated and updated concurrently with the measurement
process. After each sample step or a certain number of sample
steps, the parameter estimates should be available. The recursive
approach is appropriate in online estimation as it reduces the
computation burden and provides an update of the parameter
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estimates after each sample step. The previous data do not need
to be stored.

However, the recursive least squares approach is derived
based on the non-recursive least-squares method. The parame-
ter estimate 𝚯̂(k) for the non-recursive method of least squares
for the sample step k is given as Equation (17) [45].

𝚯̂ (k) = P (k)𝝍T (k) y (k) (17)

where

P (k) =
(
𝝍T (k)𝝍 (k)

)−1
(18)

y (k) =

⎛⎜⎜⎜⎜⎝
y (1)

y (2)

⋮

y (k)

⎞⎟⎟⎟⎟⎠
(19)

𝝍 (k) =

⎛⎜⎜⎜⎜⎜⎝

𝝍T (1)

𝝍T (2)

⋮

𝝍T (k)

⎞⎟⎟⎟⎟⎟⎠
(20)

where 𝝍 represents the data matrix of time sampled input and
output measurement of the system as in Equation (21).

𝝍T = (−y (k − 1) − y (k − 2)…

−y (k − m) |u (k − d − 1)… u (k − d − m)) (21)

Likewise, the parameter estimates 𝚯̂(k + 1) for the sample
step k + 1 can be given as in Equation (22).

𝚯̂ (k + 1) = P (k + 1)𝝍T (k + 1) y (k + 1) (22)

When Equation (22) is split up and evaluated for 𝝍(k)y (k) =
P−1(k)𝚯̂(k) as in Equation (17), then Equation (23) is obtained.

𝚯̂ (k + 1) = 𝚯̂ (k) +
(
P (k + 1) P−1 (k) − I

)
𝚯̂ (k) +

+P (k + 1)𝝍 (k + 1) y (k + 1) (23)

Based on Equation (18), Equation (24) can be achieved.

P−1 (k) = P−1 (k + 1) − 𝝍 (k + 1)𝝍T (k + 1) (24)

Combining Equations (23) and (24) yields Equations (25) and
(26).

𝜽̂ (k + 1) = 𝜽̂ (k) + P (k + 1)𝝍 (k + 1) (25)

(y(k = 1) = 𝝍T (k + 1)𝜽̂(k)) (26)

where 𝜽̂(k + 1) is the new parameter estimate, 𝜽̂(k) is the old
parameter estimate and P(k + 1)𝝍(k + 1) is the correction vec-
tor. From Equation (26), y(k = 1)is the new measurement and
𝝍T (k + 1)𝜽̂(k) is the predicted measurements based on the last
parameter estimate.

From Equations (25) and (26), a recursive formulation of
the estimation problem can be realised. To calculate P−1(k + 1)
recursively as per Equation (24), it needs one matrix inversion
per update step. However, to prevent computation burden by
inversion of a matrix each time step, Equation (24) can be re-
written as Equation (27).

P (k + 1) = P (k) − P (k)𝝍 (k + 1)(
𝝍T (k + 1) P (k)𝝍 (k + 1) + 1

)−1
𝝍T (k + 1) P (k)

(27)

Since the term (𝝍T (k + 1)P(k)𝝍(k + 1) + 1) is a scalar
quantity only, there is no need to invert a full matrix any longer.

If Equation (27) is multiplied by𝝍(k + 1), then Equation (28)
is obtained.

P (k + 1)𝝍 (k + 1)

=
1(

𝝍T (k + 1) P (k)𝝍 (k + 1) + 1
)P (k)𝝍 (k + 1) (28)

When Equation (28) is combined with Equation (25), they
return a recursive method of least squares as Equation (29).

𝚯̂ (k + 1) = 𝚯̂ (k) + 𝜸 (k) (y(k + 1) − 𝝍T (k + 1)𝚯̂(k))
(29)

where 𝜸 (k) is the correction vector given by Equation (30).

𝜸 (k) = P(k + 1)𝝍(k + 1)

=
1

(𝝍T (k + 1)P(k)𝝍(k + 1) + 1)
P(k)𝝍(k + 1) (30)

From Equation (27), it follows that Equation (31) can be
obtained.

P (k + 1) =
(

I − 𝜸 (k)𝝍T (k + 1)
)

P (k) (31)

The recursive method of least squares is, therefore, given by
the three equations above, which need to be performed in the
sequence of Equations (30), (29) and (31).

It should be noted that only the network’s model parameters,
not the whole model of the network, is updated recursively. If
the model of the entire network is updated using a recursive
approach, then the computation burden is significantly experi-
enced in the proposed method. To avoid the computation bur-
den, only the parameters of the hypothesis model that show a
significant effect in the estimation process are updated recur-
sively. The order dimension of the identified hypothesis model
is kept constant throughout the simulation time.
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3.3 Model reduction

Big dataset-driven system identification methods are associated
with huge and complex models. Besides, the obtained models
have very high degrees of freedom that represent the network.
The high order models obtained, which are also complex to
analyse, result in high computational burden algorithms. Due
to these reasons, the resulted high order models need to be
reduced. However, the application of reduction methods should
be done in such a way it maintains the essential dynamics of
the system. To achieve low order models from high order mod-
els, the singular value decomposition (SVD) technique can be
applied. To obtain the decomposed model, the SVD technique
is applied to the oblique projection vector of the model i ,
which is defined in Equation (32) [46].

i =
Δ
= Y N∕W p (32)

where W p =

[
XN

YN

]
As a result, SVD is given as Equation (33).

W 1i W 2 = U𝚺V T (33)

where W 1 and W 2 are the identity weighting matrices, U and V
are orthogonal matrices, while matrix 𝚺 is the diagonal matrix
with real entries. Likewise, SVD can be presented as a matrix
multiplication by Equation (34). The decomposed order of the
system is chosen as 𝜎1 provided 𝜎1 major singular values are
identified in matrix 𝚺 [46].

U𝚺V T = [U1 U2] .

[
𝜎1 0

0 𝜎2

]
.

[
V T

1

V T
2

]
(34)

where U1 and U2 are the components of U , while V1 and V2
are the components of V . Then, the TF model of the network
at each sample time step is transformed into a state-space repre-
sentation. From the state-space model, the dynamic matrix A of
the system that contains the dynamic behaviour of the system
can be extracted.

3.4 Inertia extraction

The dynamic matrix A can be represented by an estimated gen-
eral form of a dynamic system as in Equation (4). Then, the
aggregated system dynamic behaviour is estimated by the swing
Equation (35).

2H 𝜔̇ + D𝜔 = Pm − Pe (35)

Since the mechanical power is constant during the transient
state, the linearized form of the swing equation can be repre-
sented as Equation (36).

2HΔ𝜔̇ + DΔ𝜔 = −Pe (36)

The related TF of the swing equation is given in Equation
(37).

G (s) =
Δ𝜔
ΔPe

≈ −
1

2Hs + D
(37)

For any output signal y(t ), the system model comprises a
sequence of the dynamic behaviour of 𝔡 modes. This sequence
can be approximated in a linear model around a stable operating
point where TF is written as Equation (38).

G j (s) =
Δy j (s)

Δu (s)
=

d∑
i = 1

Ri

s − 𝜆i

(38)

where j = 1, 2, … , m;i = 1, 2, … , 𝔡; with m being the num-
ber of outputs and 𝔡 is the number of modes. Ri is the residual,
which is directly coupled with the amplitude of each mode to
generate the output signal. When the output signal of the system
is sampled at a constant sampling rate Δt , the sampled signal is
represented as Equation (39).

y j (k) =
d∑

i = 1

Riz
k
i (39)

where k denotes the samples, and zi = 𝔢𝜆iΔt is the discretization
of model variable z (t ), with 𝜆 = 𝜎 + j𝜔 (eigenvalue).

The set of snapshot matrix of A representing the dynamic
modes of the system is given by Equation (40).

X =
[
Δ f ΔPe

]T
∈ ℝ2 ×N (40)

Since the states of the system in the time domain can be esti-
mated as a linear combination of the terms 𝛼i e

𝜆i t , it can be seen
that eigenvalues 𝜆i can be linked to the physical parameters of
the system by a linear combination factor (LCF) 𝛼i [43]. Con-
sidering that dynamic modes are observed during the dynamic
response of the system and each observed variable is recorded
by N samples with interval Δt , the dynamic modes and eigen-
values can be used to approximate the dynamic characteristics
of the system.

To estimate the inertia, the frequency and power deviations
are recorded as input and output of the reduced power system
model in samples to construct the snapshot matrix. Considering
that the LCFs for the frequency deviation and active power vari-
ation for ith dynamic modes are 𝛼i, Δ f and 𝛼i, ΔPe

, respectively,
and 𝜆i is the ith eigenvalue, the time progressions of the dynamic
mode reconstructions for the frequency and power deviations
can be given as Equation (41) [47].

[
Δ f

ΔPe

]
=

d∑
i = 1

e𝜆i t bi

[
𝛼i, Δ f

𝛼i, ΔPe

]
(41)

where 𝔟i represents initial value coefficient corresponding to
the ith eigenvalue. Inserting Equation (41) in the linearized
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swing Equation (36) and neglecting the damping, the linearized
dynamic equation is reconstructed by the dynamic mode as pre-
sented in Equation (42).

2H

𝜔0

d∑
i = 1

𝜆i e
𝜆i t bi 𝛼i,Δ f = −

d∑
i = 1

𝜆i e
𝜆i t bi𝛼i,ΔPe

(42)

Rewriting Equation (42) for arbitrary t , e𝜆t can be eliminated
from Equation (42) to obtain Equation (43).

2H𝛼i,Δ f 𝜆b = −𝛼i,ΔPe
b𝜔0 (43)

The effective inertia of the system He can therefore be
obtained by solving Equation (43). Since the equation is linear
and does not contain the derivative of the rotor speed, the pro-
posed methodology can accommodate large-scale power sys-
tems with high dimension.

Also, to avoid some eigenvalue computation problems such
as singularity in state matrices and difficulty in finding a com-
plete set of unstable poles of the state matrices in analysing big
power systems, the proposed algorithm is incorporated with the
following additional attributes:

∙ The algorithm extracts only significant eigenvalues.
∙ The algorithm incorporates subspace accelerated Rayleigh

quotient iteration to speed up eigenvalue computation,
improve convergence, and compute poorly damped eigenval-
ues.

∙ The algorithm is designed to avoid any singularity in state
matrices.

Figure 2 presents the generalized flow diagram of the pro-
posed method. Likewise, Tables 1 and 2 provide additional clar-
ity on the algorithm of the proposed technique.

4 SIMULATION CASE STUDY: IEEE 39
BUS NETWORK

In this section, a modified IEEE 39-bus system is considered
to demonstrate the applicability and accuracy of the proposed
method. The system is a typical interconnected power system,
which can be used to validate a proposed technique in power
system studies. The network has 10 generators, 12 transform-
ers and 19 loads. Besides, the network is interconnected by
34 lines as depicted in Figure 3, which includes RESs. DIgSI-
LENT PowerFactory 2019 is used to model, test and simulate
the dynamic behaviour of the system.

4.1 Data pre-processing and model
preparation

The case study network is used to obtain data sets to be used
for the proposed online inertia constant estimation method.
The real theoretical inertia constant value (H) is entered for

FIGURE 2 Flow diagram of the proposed recursive algorithm for online
inertia estimation

TABLE 1 Online inertia estimation algorithm—part I

Part I: System identification and recursive parameters estimation

1. Collect a sequence of input-output data vectors, u(k), y(k) measured at
time step k.

2. Estimate the hypothesis of the system TF model using (10) to (17)
applying the non-recursive least-squares approach.

3. Start a recursive least squares method to estimate the parameters of the
model by running (31), (30) and (32) sequentially.

4. Perform the SVD of the weighted oblique projection to determine the
order by inspecting the singular values in S using: W1i W2 = USV T

5. Transform TF to state-space model and extract system dynamic matrix A.

TABLE 2 Online inertia estimation algorithm—part II

Part II: Eigenvalue and inertia extraction

1. Determine the eigenvectors and eigenvalues from the obtained dynamic
matrix A of the system.

ẋ = Ax

A V⃗ = 𝜆V⃗

2. Determine the quantitative relationship between the eigenvalue of the
dynamic matrix A of the model and the linear estimated swing equation.

2H

𝜔0

d∑
i = 1

𝜆i e
𝜆i t bi 𝛼i, Δ f = −

d∑
i = 1

𝜆i e
𝜆i t bi𝛼i, ΔPe

3. Extract the estimated inertia of the system by defining the dynamic mode
corresponding to the eigenvalue that corresponds to the inertia of the
system.

2H𝛼i, Δ f 𝜆b = −𝛼i, ΔPe
b𝜔0
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FIGURE 3 A modified single line diagram representing the IEEE 39-bus
network

each synchronous generator in the case study network. Then,
the technique is used to estimate individual inertia value of
each generator in the network by investigating the electrome-
chanical responses of the generators. Subsequently, the related
modes are extracted. To perform these steps, the algorithm to
estimate the total inertia constant for the aggregated network
is presented on Tables 1 and 2 and summarize in Figure 2.
For the aggregated network, permanent magnet synchronous
generator (PMSG) wind power plants with synthetic inertia
controls are also integrated into the model to replace some of
the synchronous generators. The PMSG wind power plants
with synthetic inertia controls are integrated step by step to
emulate different levels of penetration of RESs into the grid as
presented in the modified IEEE 39-bus network in Figure 3.
For each level of RESs penetration, the algorithm is used to
estimate the available inertia in the system.

To capture the network transients, root mean square/electro-
magnetic transient (RMS/EMT) is used as the simulation type
in PowerFactory. For the modes and eigenstructure analysis,
Model/Eigenvalue analysis is used as the simulation type in
PowerFactory. The case study network is aggregated to perform
as a single generator network. Furthermore, all the PMUs mea-
surements from all generator buses are aggregated to perform
as a single machine infinity bus network.

Before performing the algorithm for online effective inertia
estimation of the network, it is essential to construct the oper-
ational structure of the system and to determine the required
measurements and the COI where the effective inertia can be

FIGURE 4 Step response of the IEEE 39-bus network model showing
frequencies at different generator buses and COI frequency

estimated. Equation (3) is used to locate the relatively acceptable
COI, and frequency is measured from this COI. By definition,
the COI frequency is the frequency of the bus at or around the
centre of the network relative to other buses of the network [37].
For the aggregated IEEE 39-bus network, Figure 4 presents the
frequency of bus 14 as the selected best bus to represent the
COI frequency using Equation (3), where all frequency mea-
surements for effective inertia estimation are taken.

Based on power variations at different buses, which further
cause frequency responses of the network, the data are col-
lected as presented in Figure 5. Before the model identifica-
tion step, the data is pre-processed to improve the identification
process and the estimation performance. In this case, the algo-
rithm part I procedure of the proposed method, as presented
in Table 1, is performed to estimate the hypothesis model and
recursive parameters of the system model. The model is cross-
validated using data collected in a different time span. The cross-
validation is intended to authenticate the relevance of the model
in representing the dynamics of the system. The cross-validation
for the model is presented in Figure 6, which gives a fitting ratio
(FR) of 96%.

4.2 Online inertia constant estimation for
each generator

Based on the recorded rotor speed response at each generator
as shown in Figure 7, the input snapshot matrix for the dynamic
modes of generator G01 and the dynamic matrix A extraction
as presented in Equation (4) is constructed. The examples of
extracted dynamic modes of G01 are presented in Figure 8. The
eigenvalues are extracted from the dynamic matrix A as pre-
sented in Figure 9. According to the suggested approach in [39],
estimating inertia for each generator requires at least a fourth-
order estimated state-space model. This means that at least four
distinctive eigenvalues must be attained. Figure 9 shows a rea-
sonable number of obtained stable pair of conjugate and real
eigenvalues. By using the FR comparison, the results show that
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FIGURE 5 Simulation results of case study network indicating
trajectories of active power and COI frequency

FIGURE 6 Representation of 96% fitting ratio to justify the estimated
model

FIGURE 7 The time-domain trajectory of rotor speed for generators

FIGURE 8 Oscillation modes extracted from generator G01

FIGURE 9 Stable eigenvalues of generator G01
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TABLE 3 Inertia estimation for different generators

G/No. Bus No. Actual inertia [s] Estimated inertia [s] %Error

G01 39 5.00 4.861 2.78

G02 31 4.329 4.508 1.94

G03 32 4.475 3.459 0.74

G04 33 3.575 3.459 3.24

G05 34 4.333 4.402 1.59

G06 35 4.35 4.451 2.32

G07 36 3.771 3.671 2.65

G08 37 3.471 3.497 0.75

G09 38 3.45 3.573 3.57

G10 30 4.2 4.110 2.14

FIGURE 10 Comparison of actual inertia and average estimated inertia
for different generators

the extracted eigenvalues and eigenvectors are acceptable by
achieving the FR of more than 95% [5]. In this simulation, the
inertia values are provided by each synchronous generator.

The proposed algorithm is intended to estimate the inertias
from different generators. The comparison between the actual
inertia and the average estimated inertia results in an estimation
error. Table 3 presents the average estimated inertia for each
generator in the network with the associated percentage error
for each estimation. Figure 10 presents pictorial comparisons of
the actual and the average estimated inertia for each generator
in the network. The corresponding error graph for each gen-
erator is depicted in Figure 11. The worst-case is observed at
bus 38, where G09 is located. At this generator, the algorithm
returns the inertia estimation with a percentage error of 3.57,
which is the worst-case compared to the rest of the generators’
estimations.

4.3 Online inertia constant estimation for
aggregated network

The proposed inertia estimation technique is tested on the
aggregated IEEE 39-bus network to further verify its applica-

FIGURE 11 Actual inertia and corresponding estimation error for
different generators in the case study network

TABLE 4 Generators’ actual inertias and the total inertia constant for the
case study network

Bus No. Generator SB [MVA] H [s] SBxH

Bus39 G_1 10,000 5 50,000

Bus31 G_2 700 4.329 3030.3

Bus32 G_3 800 4.475 3580

Bus33 G_4 800 3.575 2860

Bus34 G_5 300 4.333 1299.9

Bus35 G_6 800 4.35 3480

Bus36 G_7 700 3.771 2639.7

Bus37 G_8 700 3.471 2429.7

Bus38 G_9 1000 3.45 3450

Bus30 G_10 1000 4.2 4200

Total 76,969.6

SB 10,000

Heq 7.6969

bility and accuracy. Initially, the equivalent inertia (Heq) is cal-
culated using Equation (3) for all generators in the network as
presented in Table 4.

To incorporate RESs in the network, PMSG wind power
plants are used to replace the conventional synchronous genera-
tors in the network. Based on the topology of the IEEE 39-bus
network, a modified system is generated in steps by increasing
the percentage of RESs in the network from 0% to 65%. The
first scenario considers a purely conventional network driven
by traditional synchronous generators only. Then, wind gener-
ators replace synchronous generators G08 and G09 at buses
37 and 38, respectively, to incorporate the second scenario of
10% RESs penetration in the network. The third scenario is the
replacement of generators G07, G08, G09 and G10 for pen-
etration of 20% RESs in the network. The fourth scenario is
the replacement of generators G02, G03, G04, G05, G06, G07,
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TABLE 5 Average RoCoF values for various percentages of RESs
penetration

RESs penetration [%] RoCoF value recorded [Hz/s]

0 0.01

10 0.25

20 0.5

40 1.1

60 2.0

65 2.2

TABLE 6 Actual inertia compared to average estimated inertia for various
percentages of RES in the case study network

RESs

penetration

[%]

Actual inertia

value, H [s]

Average

estimated

inertia [s]

Percentage

error [%]

0 7.69 7.48 2.73

10 7.11 6.94 2.39

20 6.69 6.50 2.80

40 5.01 4.85 3.10

60 3.73 3.60 3.50

65 3.08 2.96 3.80

G08, G09 and G10 to obtain a penetration of 40% in the net-
work. Furthermore, the fifth scenario of 60% penetration is
obtained by replacing G01 in the network. The last scenario
is obtained by replacing G01, G02 and G05 to achieve a 65%
penetration of RESs in the network.

For each penetration of RESs in the network, the average
RoCoF is obtained. Table 5 presents different average RoCoF
values as recorded for different levels of RESs penetration in
the case study network used for simulations.

The electromechanical response of each of the modified net-
work scenario is stimulated by power variations to record the
frequency response. The measured data of power variations and
frequency response of each scenario as presented in Figure 5
are employed in the proposed algorithm to estimate the total
inertia of the study case network with the corresponding per-
centage of RESs penetration. The effective inertia value corre-
sponding to every level of RESs penetration in the network is
presented in Table 6. Figure 12 compares the actual inertia in
the case study network to the average inertia estimated by the
proposed method. The corresponding errors are presented in
Figure 13.

4.4 Online inertia constant tracking for
aggregated network

In support of the applicability of the proposed method, Fig-
ure 14 presents the simulation results of time-varying inertia
together with a tracking estimation trajectory. The tracking tra-

FIGURE 12 Actual inertia compared to average estimated inertia for
various percentages of RES in the aggregated case study network

FIGURE 13 Actual inertia and corresponding estimation error for the
aggregated IEEE 39-bus network with different RESs penetrations

jectory is obtained using the proposed method explained in Sec-
tion 3. Using the recursive model parameters estimation to track
the inertia of the aggregated network, it takes a total of 8 s to run
a 200 s simulation with a sampling time of 0.01 s. On the other
hand, a 1 s simulation of the entire hypothesis model with a sam-
pling time of 0.01 s updated using the recursive method takes a
total time of 5.6 h to complete. For these simulations, an office
computer (Intel(R) Core (TM) i7-9700 CPU @ 3 GHz, 32GB
RAM) is used to simulate both models. A massive difference in
computation time can be noted between the two approaches.
Hence, the significant reduction in computation burden using
the proposed method is verified.

It can also be noted from the simulation result on Figure 14
that the tracked inertia, which is obtained by using Equation
(1) for each step of inertia reduction, exhibits a step change for
each variation. It should be noted that even after the penetration
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FIGURE 14 Online inertia constant tracking for the aggregated IEEE
39-bus network with different RESs penetrations

of RESs, the network frequency response is still dictated by the
synchronous generator inertia though at a reduced level. With
these fast-changing actual inertia values, the proposed method
can still track the changes. It can further be noted from Fig-
ure 14 that the tracking trajectory has an average speed of 1.5 s
in tracking the actual inertia changes. This means, after each
step change in the actual inertia, the proposed method takes an
average of 1.5 s to estimate the new value of inertia change in
the network. This is a good speed of estimation given the fact
that weather changes might not result in a step change of the
actual inertia in the network. The step changes of inertia pro-
vided in the simulation are faster than weather dependent inertia
changes. For this reason, the proposed method can easily track
the weather-dependent time-changing inertia in power systems.

5 VALIDATION USING REAL
MEASUREMENTS DATA

The effectiveness of the proposed technique is tested using
data from the New Zealand network. The New Zealand net-
work is one of the smallest networks worldwide [48]. It includes
North and South islands, which are interlinked with an HVDC
line. The network consists of hydro generators, Combined Cycle
Gas Turbines (CCGTs) and geothermal stations. The respective
ranges of inertias for the generators are 2 to 4 s, 5 to 6 s and 3
to 6 s. In addition, the network comprises wind generation units
that do not supply any inertia to the network. Therefore, more
integration of wind power units into power systems, which may
replace some synchronous generators, reduces the total inertia
of the network.

The wind power contribution in the current status of the
New Zealand network is small as it contributes less than 5%
of the entire installed capacity. The total inertia value of the net-
work is calculated by using Equation (3) as presented in Table 7.
Figure 15 shows the normal record of the network frequency

TABLE 7 New Zealand network power generating units with related
power capacities and inertia constants

Generating

units

Average active

power [MW]

Average

capacity

[MVA]

Average

inertia H [s]

North Island (NI)

Wind 240 564 0

Hydro 720 1838 3.4

Geothermal 882 1064 3.1

Coal 184 500 1.5

Gas 797 1150 3.8

Co-Generation 160 277 1.2

NI total 2799

South Island (SI)

Wind 45 94 0

Hydro 2410 3670 3.5

SI total 2455

NZ total 5254 8.02

FIGURE 15 Logged frequency fluctuations at the COI of the New
Zealand network

on 15 December, 2019, from 09:10:00 AM to 09:35:00 AM
as recorded from the COI. The information of the generators
including the inertia values for the network is obtained from
[49].

Using Equation (3), the total inertia value of the network was
calculated to be 8.02 s. This value was obtained with a wind
power contribution of 0.9% in the network. This contribution
is too low to make a sound effect of the total inertia variation
in the network. The system bases power and frequency used for
the calculation of the total inertia constant value in the network
are 3000 MVA and 50 Hz, respectively. Table 6 also presents
different information for different types of generators at the
time of data recording. The field measured data is pre-processed
to enhance identification by improving efficiency and accuracy.
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FIGURE 16 An FR of 85% to justify the estimated model when
compared to the actual New Zealand network model

The obtained signals are detrended by eliminating mean values.
To remove noise from the data, the signals are passed through
an order of ten non-causal, zero-phase low-pass filter set at 3 Hz
and then down-sampled to four samples per second [50]. The
data is down-sampled to increase the estimation accuracy of
modes of the generators.

The recorded active power variation and the frequency
responses are sampled to represent input data u(t ) and out-
put data y(t ), respectively. Then, the non-recursive least-squares
approach steps 1 and 2 from the algorithm in Table 1 are used
to estimate the model of the network. Then, the comparison
between the estimated and the actual models is done by calcu-
lating their FR. For this test network, the resulted FR is 85%.
This FR is good, satisfactory and acceptable for the network
data used [44]. Figure 16 represents the graphs of the actual and
estimated models of the network with the FR of 85%.

The proposed recursive least squares method is used for
parameters estimation of the estimated model and recursively
estimating and extracting the inertia value of the network. Using
the proposed method, the estimation of the average inertia con-
stant (H̄ ) of the network is found to be 7.5 s. Comparing the
actual total inertia constant H with estimated inertia as pre-
sented in Table 6, the percentage error is computed to be 8.54%.
As the percentage error is less than 10%, this confirms and val-
idates the applicability of the proposed method.

6 CONCLUSION AND FUTURE WORK

An online inertia estimation technique is presented in this paper.
First, the inertia estimation is carried out for each generator in
the network. Second, inertia estimation is also carried out for
different levels of inertia constant in the aggregated case study
network. The different levels of inertia constant presented are a
result of different percentage of RESs in the network. Further,
consistent estimates using the proposed online inertia estima-

tion technique are obtained, which are in the range of 0.74%
to 3.57% for individual generators in the network. Besides, the
error range of 2.39% to 3.80% is observed for the equivalent
inertia of the aggregated network. Finally, an error of 8.54% is
obtained for the actual data from the real network. Besides, the
proposed method proves to be effective in online estimating the
power system inertia. On top of that, since the method does not
need to store previous data after each sample step, the computa-
tion burden is significantly reduced in the proposed technique.
More importantly, the technique incorporates the use of avail-
able electromechanical oscillation modes in the system, which
can be linked to parameters of the power system for online esti-
mation of the network inertia.

Future work of this research is to extend the online iner-
tia estimation method while incorporating coordinated syn-
thetic inertia in the network as a support for reduced inertia in
future power systems. Likewise, due to the high penetration of
weather-dependent generation units, the study of weather fore-
cast effects in the equivalent inertia of the network is important
to be incorporated. In the same way, how fast the estimated iner-
tia can be communicated to PSOs for fast stability control of the
network will be looked at.
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