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Abstract  
 

Chronic diseases cause damage to important organs such as the brain, heart, and liver, 

which can easily cause disability, affect labor ability and quality of life, and the medical 

expenses are extremely high, which increases the economic burden of society and 

families. An effective method is to create predictive models to assess the risk of chronic 

diseases. Researchers have conducted several projects, but challenges still exist. 

 

The challenge is the imbalance of chronic disease data. When encountering unbalanced 

chronic diseases data, the classification algorithms will calculate the majority class 

(non- disease), while the minority class sample (disease) is not calculated. In order to 

accurately identify the disease and non-disease individuals, this research proposes a 

multi-combination method to deal with chronic disease data sets with imbalanced 

categories. The researcher conducted an in-depth analysis of the impact of three 

rebalancing methods: Synthetic minority oversampling technique (SMOTE), 

Resampling and SpreadSubsampling on the classifier processing through six classifiers 

and four data sets. Experimental results show that Random Forest (RF) combined with 

Resample rebalancing method (RF-RESAMPLE) is the best classifier of our selection 

of data sets and achieved 94.8770%. The method can assist doctors to identify chronic 

diseases, and then diagnose and treat patients early to increase their chances of survival. 
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Chapter 1 

Introduction 

As the pace of life accelerates aging, the number of patients with chronic diseases is 

increasing every year, and there is a trend for them to be younger. This is not only a 

personal health problem, but also a major public health problem endangering society. 

Chronic diseases will seriously affect the health and life of patients and many chronic 

diseases are incurable, and even affect patients for life. This brings a heavy burden to 

the patients' families and communities (World Health Organization, 2020). 

In 2019, seven of the top 10 leading causes of death worldwide were chronic diseases, 

accounting for 74% of global deaths. 15 million people between the ages of 30 and 69 

die each year from non-communicable diseases and more than 85 per cent of these 

"premature" deaths occur in low and middle-income countries. Of these, 17.9 million 

die annually from cardiovascular disease, followed by 9 million from cancer, 3.9 

million from respiratory disease and 1.6 million from diabetes (WHO, 2020). 

The number of deaths from heart disease has increased by more than two million since 

2000 to 8.9 million, accounting for 16% of the world's deaths. The number of deaths 

from chronic kidney disease rose from 813000 in 2000 to 1.3 million in 2019. The 

number of deaths from bronchi and lung cancer rose from 1.2 million to 1.8 million. 

Diabetes mortality has also increased by 80% since 2000 (WHO, 2020). 

Chronic disease risk prediction assessment has developed rapidly in the treatment of 

disease in recent years and has an increasing impact on chronic disease outcomes such 

as treatment monitoring and clinical diagnosis, etc. Its purpose is to extract hidden and 

useful information from a large amount of ambiguous disease data and predict future 

trends. The research of chronic disease status and risk prediction technology is mainly 

through clinical epidemiological investigations to obtain a large amount of data 

characteristics, and use risk prediction technology to analyze and research different 
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specific disease statuses, influencing factors and symptom characteristics. This will also 

greatly improve the management level of chronic disease, improve the effectiveness of 

chronic disease prevention and control and reduce medical and costs (Shuja,Mittal and 

Zaman, 2020). 

 

In chronic disease risk prediction assessment, the disease data sets are unbalanced at 

the time of collection. There are always more people with non-disease than those with 

disease. For example, most instances that are non- disease are marked as belonging to 

a group called majority class, while a few instances that are disease are marked as 

belonging to another group called minority class. The imbalance issue is very common 

in medical data and the established classifiers often produce high accuracy for most 

categories and low prediction accuracy for a few categories (Kumari and Singh, 2013; 

Motka, Parmarl, Kumar and Verma, 2013; Vijayan and ravikumar, 2014). 

 

In fact, there are imbalanced data in many areas, such as medical, fraud phone detection, 

information retrieval and filtering tasks. In these areas, we are interested in a few 

categories rather than a majority. Therefore, we have to make fairly high predictions 

about minorities. When the data are extremely unbalanced, most of the samples are 

easier to predict, and the performance of a few classes is poor. If the data set is 

extremely unbalanced, even if the classifier correctly classifies most of the samples and 

misclassifies all a few samples, the accuracy of the classifier is still very high. In this 

case, the accuracy cannot reflect the reliable prediction of a few categories. Therefore, 

a more reasonable evaluation index is needed. 

 

This thesis proposes a risk prediction model based on multiple rebalancing methods and 

multiple machine learning classifiers. Therefore, we will use Weka machine learning 

tool for research experiments and compare three rebalancing methods to reduce class 

imbalance issues on the multiple data sets. In the second part, we use the balanced data 

sets and a multiple of machine learning classifiers to find the best classifier for 

predicting chronic diseases. 
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1.1 Research Motivation 

In the risk assessment of chronic diseases, classifier has become an important decision-

making tool. Researchers have proposed a variety of classifiers to assess the risk of 

chronic diseases in the medical field. The common classifiers include Decision Tree, 

Support Vector Machine (SVM), Naive Bayes, Random Forest, Bayesian Network and 

K-nearest neighbors (KNN).

However, the chronic risk prediction model is based on medical data sets, and most 

medical data sets are not uniformly distributed, and one class is often more instances 

than the other. This leads to an imbalance in the data set. When a classifier is built on 

an unbalanced data set, the classifier tends to produce high accuracy for most classes 

and less prediction accuracy for a few classes. So even though the classifier achieves a 

good result, this result is not accurate. 

The first major landmark Symposium on “Class Imbalance Problem” was presented at 

the American Association for Article Intelligence Conference in early 2000. They 

further understood the factors that affect the accuracy of minority and majority classes, 

because in the imbalanced domain, accuracy highly depends on the trade-off between 

the data and the sampling method is proposed to solve the imbalance issue (Japkowicz 

& Holtz, 2000).  

There are two sampling methods to solve the data imbalance issues: undersampling and 

oversampling; 

The undersampling method can produce more compact data sets, thus reducing the 

processing events and costs faced by the classifier in the training phase. However, the 

disadvantage of undersampling is that it discards most of the counterexample data, 

which weakens the influence of the middle part of the counterexample and leads to a 

large deviation model (Wasikowski & Chen, 2010). 

In order to solve this problem, the oversampling method which does not need to reduce 

the majority sets has been found by researchers. It deals with class imbalance by 
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copying a few class examples. The sampling techniques that are known to belong to 

this category are copied to make use of other examples of a few classes. However, the 

application of random oversampling needs to adjust the important weight of minorities. 

However, only when the learning algorithm is competent to distinguish the category 

type, noise and clustering, can these weights be correctly determined and calculated 

(Wasikowski & Chen, 2010). 

 

Therefore, we will compare the rebalancing methods. This will contribute to the 

research of chronic diseases. In recent years, the field of machine learning has changed 

the field of chronic disease research with higher accuracy and optimization performance.  

 

1.2 Research Gaps  
 

Based on our literature review (Chapter 2) we found the following key research gaps: 

 

Research Gap 1:   

In the chronic disease risk prediction model, only a few classifiers are compared 

because different classifiers have different performance results. Therefore, some 

possibly better classifiers are ignored. See more details in (2.4.1). 

 

Research Gap 2:   

Studies classifiers are performed on imbalanced data sets. This will lead to 

inaccurate results. See more details in (2.4.2). 

 

Research Gap 3:  

Due to the imbalance of medical data, researchers used different sampling methods 

for the imbalanced data, but did not mention to what degree should one balance the 

original data set. See more details in (2.4.3). 

 

Research Gap 4:  

Most articles only use one data set to train and test the classifiers because every 

classifier has different performance results on multiple data sets. Therefore, one 

data set is not enough to verify the classifier performance. See more details in 
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(2.4.4). 

Based on the gaps above, our research aims to answer the following questions: 

Q 1: Which is the best classifier to predict chronic diseases? 

Q 2: Which type of sampling method is most effective for medical data? 

Q 3: What degree should one balance the original data set? 

Q 4: What is the difference between classifiers’ performance on multiple data sets? 

1.3 Research Objectives 

To solve the research gaps we defined the objectives and actions of study as follows: 

Table 1.1 Research Gap 

Limited classifiers issue In this research, we plan to add more 

classifiers and multiple data sets for 

comparison. 

Data rebalancing In this research we plan to use three 

sampling methods: SMOTE, 

Resampling, and SpreadSubsampling to 

rebalance the data sets. 

Parameters issues We will announce the details of the 

adjustment parameters. 

limited data set options for research In the research, we will use multiple data 

sets to train and test classifiers. 

The challenges of this research are to effectively evaluate the risk prediction of chronic 

diseases and the solution of data imbalance issues. The aim is to find the optimal 

classifier and expand our understanding of rebalancing technique, and evaluate its 

usefulness in solving some problems caused by the highly unbalanced distribution of 

chronic disease risk prediction. 
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The scope of this research is defined as follows: 

 Using rebalancing methods to reduce class imbalance in the data sets

 A variety of classifiers are used for comparison to find the best classifier for risk

prediction of chronic diseases

 Multiple data sets are used to train and test the classifiers to verify the fitted

chronic disease risk prediction model

 Release the parameters and describe the parameter adjustment method in detail
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Fig. 1.1 Summary of the complete process of conducting this research. 
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1.4 Research Contributions 

 

 

Our work in solving the research objectives has delivered the following major 

contributions: 

 

 We explored the factors of rebalancing the classes in the data set by SMOTE, 

Resampling, SpreadSubsampling rebalancing methods and obtained useful 

parameters through experiments 

 

 We compared six machine learning classifiers, and found the best classifier for 

chronic disease risk prediction 

 

 We verified the chronic disease risk prediction models through multiple data 

sets for performance assessment 

 

 

 

1.5 Research Benefits 

 

 The major benefit of this research is that it could change and improve the 

treatment and management of disease for governments’ medical departments 

 

 The comparison of classifiers will guide machine-learning researchers in their 

research on classification algorithms and rebalancing methods  

 

 Doctors can use the machine learning risk prediction models to give treatment 

and recommendations for chronic disease issues 
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1.6 Thesis Structure 

 

Chapter 1 - Introduction:  

Presents background of this research, and the research situation of chronic diseases 

analysis is briefly summarized, highlighting the main research content of this thesis 

including research objectives, research contributions, and research benefits.  

 

Chapter 2 – Literature review and research gaps:  

This Chapter describes the previous research results of Resampling, 

SpreadSubsampling and SMOTE rebalancing methods; six classification 

algorithms such as SVM, Naïve Bayes, KNN, Bayesian Network, Random Forest, 

and J48 (Decision tree). In addition, issues and existing gaps are explained.  

 

Chapter 3 - Research Methodology: 

Discusses the design of the research method and procedures of implementing this 

research. In addition, an explanation of the theoretical knowledge, such as 

knowledge and function equation of the six classification algorithms involved in 

this thesis. Weka machine learning tool and the four chronic disease data sets have 

been introduced. The theoretical knowledge points of the data mining processing 

and ROC curve are described in detail. 

 

Chapter 4 – Findings: 

The results of the experiment are compared. 

 

Chapter 5 - Validation: 

Validates the result of the classifiers to verify the performance of the classifiers in 

the testing data sets. 

 

Chapter 6 – Conclusion:  

Summary and outlook. This thesis makes a summary analysis; summarizes the core 

content of the implementation work, explains the contribution, limitations and 

deficiencies, and puts forward suggestions for future research. 
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Chapter 2 

Literature review and research gaps 

Introduction 

In this chapter, previous work on rebalancing methods; oversampling, undersampling, 

and resampling will be reviewed. In addition, the six classifiers, and issues and existing 

gaps will be reviewed and discussed. 

Section 2.1: Guideline of the lecture review in chronic disease risk prediction. 

Section 2.2: Reviews three class rebalancing methods: SMOTE, Resampling, and 

SpreadSubsampleling. 

Section 2.3: Reviews the six classifiers: Bayesian Network, NaiveBayes, SVM, KNN, 

Decision tree, and Random Forest.  

Section 2.4: Presents issues and existing gaps in chronic disease risk prediction research. 
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2.1 Guideline of the lecture review in chronic disease 

risk prediction 

Fig. 1.2 Guideline of the lecture review. 

•A few classifiers are
compared;

•Classifiers were trained
on one data set;

•Classifiers were running
on unbalanced data
sets;

•Did not mention what
degree should resample
technique balance the
original data set on.

•Data-Level Solutions.

•Algorithm-Level
Solutions.

•Bayesian Network

•NaiveBayes

•SVM

•KNN

•J48 (Decision tree )

•Random Forest

•SMOTE.

•Resample.

•SpreadSubsample.

Class 
Rebalancing 
methods

Machine 
Learning 
Classifiers

Existing 
Gaps 

Solutions 
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2.2 Class rebalancing methods research 

2.2.1 Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE (synthetic minority oversampling technique) is an improved scheme based on 

a random oversampling algorithm. Because random oversampling adopts the strategy 

of simply copying samples to increase minority samples, it is easy to produce the 

problem of model overfitting. Smote algorithm is used to analyze the minority samples 

and add new samples to the data set (Chawla et al., 2002). 

Mirza, et al., (2018): The main motivation of this paper was to use SMOTE 

oversampling technique to develop a Decision tree classifier. In the first stage, SMOTE 

was used to rebalanced the data set, and in the second stage, a decision tree classifier 

was used to diagnose diabetes on the balanced data set. This method improves the 

classifier accuracy of the decision tree to 94.7013%. Research shows that SMOTE 

oversampling technique can effectively improve the prediction rate of the classifier 

Abdoh, et al., (2018) presented the SMOTE technique and Random Forest classifier for 

early risk prediction of cervical cancer. The main reason is that the data for cervical 

cancer is unbalanced; the number of patients is far less than that of non-patients, and 

the cure rate can be improved by determining the risk factors of cervical cancer. When 

SMOTE technique was used in the Random Forest classifier, the performance of the 

classifier was improved by 1.7% to 3.5%. 

Pandey, and Janghel (2019) claim through the analysis of electrocardiogram (ECG) 

signal and cardiovascular disease risk prediction to reduce the mortality of patients with 

heart disease using SMOTE technique to deal with minority groups imbalance 

phenomenon. The model of risk prediction is established with the classifier of 

Continuous Neural Network (CNN). The results show that CNN achieves the best 

performance of 98.3% on the rebalanced data set. 
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Apostolopoulos, (2020) used SMOTE oversampling technique to rebalance coronary 

artery disease data and generate a new data set. The main reason was that the 

imbalanced data set makes the classifier unable to analyze the real relationship. 

Artificial Neural Network, Decision Tee, and k-nearest neighbors (KNN) classifiers 

were used to classify the balanced data set. Results show that SMOTE can improve the 

classifier's ability to data-mining information. 

 

Zheng, (2020) focuses on the prediction of heart disease risk by presented sampling 

techniques. This paper has compared the classical SMOTE and the combination of 

SMOTE and various classifiers. They are Borderline - SMOTE, SVM-SMOTE, and 

Kmeans - SMOTE. The results show that SVM-SMOTE and Borderline-SMOTE have 

the best performance. 

 

The purpose of the research by Khadija,& Setiawan,(2020) is to predict the prevalence 

of early liver disease with high accuracy in order to improve the survival rate of patients. 

Four classifiers: Naive Bayes, KNN, Random Forest, and SVM, were used for 

comparison. The SMOTE oversampling technique was used to preprocess liver disease 

data, and then InfoGain feature selection was performed. The accuracy of Random 

Forest was 77.6%. 

 

 

2.2.2 Resampling 
 

Yildirim, (2017): The purpose of this study was to solve the imbalance effect in the 

training set of chronic kidney disease (CKD). SMOTE, SpreadSubsample, and 

Resample methods were used for comparison. The result found that for accuracy, the 

resampling method was a better rebalancing method than the others. It is emphasized 

that the accuracy can be improved by adjusting the parameters. 

 

Mohapatra, and Mohanty, (2018) used feature selection (CFS) and resampling 

technique to analyze heart disease data. The research was divided into two categories; 

before sampling and after sampling. The accuracy of Random Forest classifier achieved 

96%. 
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Qaisar, and Subasi, (2018): In this paper, the Electrocardiogram (ECG) signal collected 

by the event-driven A/D converter (EDADC) was uniformly resampled. The noise 

signal was extracted by the autoregressive (AR) method and classified by Support 

Vector Machine, k-nearest value, and Artificial Intelligence Network classifiers. The 

results show that the best classification (Support Vector Machine) accuracy was 

93.73%. 

 

Dharmarajan, (2020) used the rebalancing technology to rebalance the early prediction 

data set of chronic kidney disease. Logistic Regression, Random Forest, NaiveBayes, 

Decision Tree, Support Vector Machine were used for modeling. The classification 

methods were compared and the optimal classification algorithm was selected. 

 

Rao, Makkithaya,(2017) carried out two experiments using Weka machine learning tool, 

The first experiment was to compare the performance of different classifiers, which 

were Bayesian, Bayesian Network, decision tree, and KNN, to find the best classifier 

for health data set. The second experiment compared the different rebalance methods 

oversampling, undersampling, and SMOTE. Experimental results show that the 

Bayesian classifier performed best on imbalanced data sets. In the Decision tree 

constructed by using undersampling data sets, the accuracy of KNN classifier was  

significantly improved. 

 

Kumari, et al., (2017): In this paper, the prediction model of anti-mycobacterial 

ChEMBL database was constructed by Random Forest, Decision Tree, and KNN 

classifiers. Data rebalancing was performed first; SMOTE, SpreadSubsample, and 

Resample rebalancing methods were used to filter the classes. The results show that 

Random Forest was the best model and LibSVM had the highest sensitivity when 

compared with other classifiers. The original author suggested that prediction models 

are very useful for the analysis of drug candidates for tuberculosis and other diseases. 
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2.2.3 SpreadSubsampling 
 

Pooja, (2013) compares the supervised and unsupervised balancing techniques. The 

reason is that with the increasing amount of data the challenge to data mining algorithms, 

so this research task was to analyze the supervised instance filters including Resample, 

SpreadSubsample, StructuredRemoveFolds and unsupervised instance filters including 

RemoveWithValues, ReserverSample and RemovePercentage. The experimental 

results showed that the resampling filter was the best in terms of accuracy and minimum 

mean absolute difference. 

 

Drajiti, (2016) compared the undersampling of SpreadSubSample with the 

oversampling of SMOTE to solve the issue of diabetes data imbalance. The  

NaiveBayes classifier was used to classify the data. The results show that the over 

sampling method is more accurate in processing the training set data, while the under 

sampling method has a lower recall value in the same process.  

  

Junior, et al., (2018) used three traditional machine learning algorithms, Naive Bayes, 

KNN and Artificial Neural Network, to classify the causes of deaths by lung cancer, 

and the first 100 features were extracted by the feature selection method. At the same 

time, undersampling and oversampling data sets were used for training and testing, and 

compared with individual data sets for verification. Experimental results show that 

Naive Bayes was the best classifier. 

 

Krishnani, et al., (2019) used three classifiers: Random Forest, Decision Tree, and KNN 

to predict coronary heart disease then three sampling algorithms were used to analyze 

the data. The results show that resampling provided the highest accuracy. The 

spreadsubsample algorithm has the least execution time. 

 

Research by Mishra.et al., (2020) found that with the increasing volume of disease data, 

effective analysis and processing of data is becoming more difficult. The main reason 

is the uneven data between disease categories. Therefore, they used three sampling 

techniques: SpreadSubSampling, Resampling and SMOTE to reduce the class 

inequality. The result showed that although there was no uniform balance specification, 

the sampling method for class preprocessing was the ideal choice (Mishra, Mallick,Jena, 
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and Chae,2020). 

Rajendran,et al., (2020) used three different kinds of balance techniques, SMOTE, 

SpreadSubsample and a mixed method of (SMOTE and SpreadSubsample) to predict 

the incidence rate of breast cancer through four classifiers. Because the unbalanced data 

are usually biased to most categories, the prediction results are not accurate. Also,  a 

few disease categories are often the most important in breast cancer research. Therefore, 

the research results show that the hybrid method (smote and spread subsample) is the 

best way to solve the data imbalance. 

2.3 Classifiers research 

2.3.1 Bayesian Network 

In 1763, Thomas Bayes published a paper called “An essay towards solving a problem 

in the doctrine of chances”. The publication did not have much influence at that time, 

but during the 20th century it gradually became valued by people. It gradually became 

apparent that the Bayesian method was not only in line with the way of thinking in 

people's daily lives, but also in line with the law of people's understanding of nature. 

After continuous development, it eventually occupied half of the field of statistics, 

competing with classical statistics. It is a graphic mode to describe the dependency 

relationship between data variables, and a model for reasoning. Bayesian network 

provides a convenient framework to express causality, which makes uncertainty 

reasoning more clear and understandable in logic (Bayes, 1958). 

Bayesian Network expresses the conditional independence relationship between each 

node, and can intuitively get the conditional independence and dependence relationship 

between attributes from Bayesian Network; in addition, it can be considered that 

Bayesian network uses another form to express the joint probability distribution of 

events; according to the network structure and conditional probability table of Bayesian 

network, each node can be quickly obtained of a basic event (Friedman, Geiger, and 

Goldszmidt,1997). 
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2.3.2 Naïve Bayes 
 

Naive Bayes is a classification method based on the Bayesian theorem and independent 

assumption of feature conditions. Bayesian justification was developed by British 

mathematician Thomas Bayes (1702-1761) to describe the relationship between two 

conditional probabilities. It calculates the probability of classification through features 

and selects cases with high probability for classification. Therefore, it is a machine 

learning classification method based on probability theory. Because the goal of 

classification is determined, so it belongs to supervised learning (Rish, 2001). 

 

 

2.3.3 Support Vector Machines (SVM)  
 

SVM was first proposed by Vladimir n. Vapnik and Alexey ya. Chervonenkis in 1963. 

The current version of soft margin was proposed by Corinna Cortes and Vapnik in 1993 

and published in 1995. SVM is considered to be the most successful and best 

performing algorithm in machine learning in recent decades. It is a two classification 

model, which maps the feature vector of the instance to some points in space. The 

purpose of SVM is to draw a line to distinguish the two types of points, so that if there 

are new points in the future, the line can also make a good classification. SVM is 

suitable for small and medium data samples and nonlinear, high-dimensional 

classification problems (Qu and You, 2012). The LibSVM method is used in this thesis, 

which is a set of support vector machine libraries developed by Professor Chih-Chung 

Chang, and Chih Jen Lin of Taiwan in 2001. This set of libraries is fast, and can be used 

to classify or regress data conveniently (Chang, and Lin, 2011). 
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2.3.4 K-nearest neighbors (KNN)  
 

K-nearest neighbor algorithm was first proposed by Cover and Hart in 1968. It is a 

mature method in theory and one of the simplest machine learning algorithms. The idea 

of this method is very simple and intuitive: In order to determine the class of unknown 

samples, the distance between the unknown samples and all known samples is 

calculated by taking all known samples as references, and K known samples which are 

closest to the unknown samples are selected from them. According to the majority 

voting rule, the unknown samples are compared with the class of k nearest samples 

Most of them belong to the same category (Deng, Zhu, Cheng, and Zhang, 2016). 

 

Distance measurement, K value selection and classification decision rules are the three 

basic elements of the k-nearest neighbor method. According to the selected distance 

measure (such as Manhattan distance or Euclidean distance), the distance between the 

test case and each instance point in the training set can be calculated. K nearest neighbor 

points can be selected according to the K value, and the test cases can be classified 

according to the classification decision rules. 

 

2.3.5 Decision Tree 
 

Decision Tree algorithm originated from the paper "Experiments in induction" 

published by E.B.Hunt in 1966, but it is J.R.Quinlan who made Decision Tree the 

mainstream algorithm of machine learning. Decision Tree is a prediction model that 

represents a mapping relationship between object attributes and object values. In the 

tree each node represents an object, each branch path represents a possible attribute 

value, and each leaf node corresponds to the value of the object represented by the path 

from the root node to the leaf node. Decision Tree is a frequently used technology in 

data mining and can be used to analyze data, and also for prediction. Compared with 

other machine learning classification algorithms, Decision Tree classification algorithm 

is relatively simple. As long as the training sample set can be represented by feature 

vectors and categories, Decision Tree classification algorithms can be constructed. The 

complexity of the predictive classification algorithm is only related to the number of 

layers of the Decision Tree, and it is linear. The efficiency of data processing is very 

high, so it is suitable for real-time classification (Quinlan, 1986). 
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2.3.6 Random Forest 

Random Forest is a machine learning algorithm mentioned by Breiman Leo and Adele 

Cutler of the University of California, Berkeley in 2001. It can be used for classification, 

clustering and regression. Here is a brief introduction to the application of the algorithm 

in classification. Random Forest algorithm is used to train multiple Decision Trees, 

generate models, and then use the classification results of multiple Decision Trees to 

vote, so as to achieve classification. The Random Forest algorithm only needs two 

parameters: the number of Decision Trees to be constructed T, and the number of input 

features to be considered when each node of the Decision Tree is split M (Biau, and 

Scornet, 2016) 

2.4 Issues and Existing Gaps in Chronic disease risk 

prediction research 

Based on the literature review, we found the following gaps: 

1. Studies use limited classifiers. (see section 2.4.5)

2. Studies’ classifiers are performed on imbalanced data sets. (see section 2.4.5)

3. Studies did not mention what degree should one balance the original data set.

(see section 2.2)

4. Classifiers are trained and tested on limited data sets. (see section 2.4.5)

2.4.1 Limited Classifiers 

Each classifier has advantages and limitations, so the performance results are different. 

Therefore, to ascertain which classifier is most suitable for chronic disease prediction 

is the purpose of this paper. However, if only one or two classifications are verified, 

some possibly better classifications will be ignored. The solution of this paper is to 

compare various classifiers and find the most suitable to predict chronic diseases (Uddin, 

Khan, Hossain, & Moni, 2019). 
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Evidence 1 - 2.4.5 (Saravananathan, and Velmurugan, 2016). 

In this article, the author only compared the classifier performance of J48 (Decision 

Tree), CART, SVM and KNN. 

Evidence 2 - 2.2 (Mirza, Mittal, and Zaman, 2018). 

In this article, the author only uses the Decision Tree classifier to analyze the data. 

Evidence 3 - 2.4.5 (Rajendran, Jayabalan, and Thiruchelvam, 2020). 

The author compared four classifiers: Naive Bayes, Bayesian Network, Random 

Forest and Decision Tree (C4.5). 

Evidence 4 - 2.4.5 (Vembandasamy, Sasipriya, and Deepa, 2015). 

The author only uses Naive Bayes classifier to analyze the data set. 

Evidence 5 - 2.2 (Abdoh, Rizka, and Maghraby, 2018). 

In this article, the author only uses Random Forest classifier to analyze the data. 

2.4.2 Imbalanced data sets 

In medical data sets, imbalanced data is quite common, mainly reflected in the classes, 

such as a small number of disease people and the majority of non- disease people. As a 

result, in risk prediction, the classifier will analyze the majority of non-disease people 

and ignore the disease people, but the purpose of the prediction is to analyze these 

disease people. Therefore, unbalanced data can lead to inaccurate classifier accuracy. 

The solution of this thesis is to rebalance the data sets through three kinds of sampling 

methods, so as to find the optimal method (Shuja, Mittal,& Zaman,2020). 

Evidence 1 - 2.4.5 (Saravananathan, and Velmurugan, 2016). 

Classifiers are used to analyze data under an unbalanced data set. 

Evidence 2 - 2.4.5 (Abdar, Kalhori, Sutikno, Subroto, and Arji, 2015). 

This article did not use data rebalance method for data balancing, and directly trains 

the classifier on it. 

Evidence 3 - 2.4.5 (Vembandasamy, Sasipriya, and Deepa, 2015). 

This article does not rebalance the data set, but uses the collected data set of 500 

patients 
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2.4.3 Parameters adjustment detail are not specified 

In the literature review, we can see that different sample methods are used to rebalance 

the data set, and the performance of the classifiers are greatly improved by using 

rebalance methods. However, the problem is to what degree should one balance the 

original data set? What parameters can be adjusted to improve the classifier? Therefore, 

this thesis releases details of parameter adjustment, which will be of great help to 

disease researchers and medical institutions (Krawczyk, 2016). 

Evidence 1 - 2.2 (Mirza, Mittal, and Zaman, 2018). 

The parameter adjustment index does not tell us that the performance of the 

classifier is significantly improved after using the rebalanced data set. 

Evidence 2 - 2.2 (Abdoh, Rizka, and Maghraby, 2018). 

The rebalancing techniques are compared and verified by classifier, but the 

parameters are not described in detail. 

Evidence 3 - 2.4.5 (Rajendran, Jayabalan, and Thiruchelvam, 2020). 

No rebalancing parameters were given. 

2.4.4 Limited data sets 

A classifier does not necessarily adapt to all data sets, and the performance results on 

each data set are different, Because the number of attributes and the size of the data set 

will also affect the results, this thesis will use a variety of data sets to train and test the 

classifier. The aim is to find the best classifier for chronic diseases (Özdemir, Yavuz, 

& Dael, 2019). 

Evidence 1 - 2.4.5 (Saravananathan, and Velmurugan, 2016). 

The experiment used data set of 545 patients for analysis 

Evidence 2 - 2.2 (Mirza, Mittal, and Zaman, 2018). 

The data set: 734 patients and 11 features 

Evidence 3 - 2.4.5 (Abdar, Kalhori, Sutikno, Subroto, and Arji, 2015). 

Data set with 270 instances and 13 features 

Evidence 4 - 2.4.5 (Vembandasamy, Sasipriya, and Deepa, 2015). 

Data set with 500 instances and 11 features 
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Evidence 5 - 2.4.5 (Abdoh, Rizka, and Maghraby, 2018). 

Data set used with 858 instances and 32 features 

2.4.5 Existing Gaps 

Table 1.2 Gaps Identified 

Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 

literature 

Analyzing diabetic 

data using 

classification 

algorithms in data 

mining. Indian 

Journal of Science 

and Technology, 

9(43), 1-6. 

Saravananathan, K., 

& Velmurugan, T. 

(2016). 

The relationship between 

classifier (accuracy and 

ROC) performance is 

analyzed.  

Decision Tree (J48) 

classifier was the best 

classifier with accuracy of 

67.15%. 

This paper uses statistical 

measure to avoid over 

fitting issue. 

1) Only four

(J48,CART,SV

M,KNN)classifi

ers are

compared;

2) The

experiment

used data set

of 545

patients for

analysis;

3) Classifiers are

performed on

imbalanced

data sets.
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Table 1.3 Gaps Identified  

Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 

literature 

Comparing 

Performance of Data 

Mining Algorithms in 

Prediction Heart 

Diseases. 

International Journal 

of Electrical & 

Computer 

Engineering (2088-

8708), 5(6). 

Abdar, M., Kalhori, 

S. R. N., Sutikno, T., 

Subroto, I. M. I., & 

Arji, G. (2015). 

Compared four classifiers 

and provided a good overall 

view and analysis. The 

results show that the best 

performance of C5.0 is 

93.02%, followed by KNN, 

SVM and Neural Network 

 

In the experiment, feature 

selection conducted to 

reduce the running time and 

improve the accuracy of the 

classifiers.  

 

 

1) Data set with 

270 instances 

and 13 features; 

 

2) The classifier 

was running on 

unbalanced data 

sets; 

3) Classifiers are 

performed on 

imbalanced 

data sets. 

   
 

   
 

 

Table 1.4 Gaps Identified  

Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 

literature 

Decision Support 

Predictive model for 

prognosis of diabetes 

using SMOTE and 

Decision Tree. 

International 

Journal of Applied 

Engineering 

Research, 13(11), 

9277-9282. 

Mirza, S., Mittal, S., 

& Zaman, M. (2018). 

The SMOTE over-

sampling method shows 

good results. Decision 

Tree classifier 

performance improved by 

2%. 

 

 

 

1) Only used 

Decision Tree 

classifier; 

2) ROC curve 

analysis is 

not 

performed; 

3) The Decision 

Tree 

classifier 

only tested 

on one data 

set; 

4) The data set: 

734 patients and 

11 features; 
 

5) Did not mention 

to what degree 

should SMOTE 

balance the 

original data 

set. 
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Table 1.5 Gaps Identified  

Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 

literature 

Predicting Breast 

Cancer via 

Supervised Machine 

Learning Methods on 

Class Imbalanced 

Data. 

Rajendran, K., 

Jayabalan, M., & 

Thiruchelvam, V. 

(2020) 

The analysis of several 

oversampling and 

undersampling methods for 

class imbalance problem 

shows that SMOTE and 

SpreadSubsample hybrid 

balancing method show 

good results.  

 

Among the four classifiers, 

Bayesian Network and 

Naive Bayes have the best 

performance, reaching 

99.1%, Decision Tree 

98.4%, and Random Forest 

94.8%. 

 

 

 

1) Only four 

classifiers are 

compared;  

 

2) There is no 

describing the 

parameter of the 

sampling 

methods;  

 

3) Did not 

mentioned what 

degree should 

undersampling 

methods balance 

the original data 

set to. 

 

 

   
 

   
 

 

 

Table 1.6 Gaps Identified  

Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 

literature 

Heart diseases 

detection using Naive 

Bayes algorithm. 

International Journal 

of Innovative Science, 

Engineering & 

Technology, 2(9), 441-

444. 

Vembandasamy, K., 

Sasipriya, R., & 

Deepa, E. (2015). 

This paper presents the 

application of machine 

learning in heart disease 

detection. 

 

The Naive Bayes model can 

reach 86.4198% 

 

 

 

 

 

1) Data set with 

500 instances 

and 11 features; 

 

2) Only used Naive 

Bayes classifier 

is tested; 

 

3) Classifiers 

were 

performed on 

imbalanced 

data set. 
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Table 1.7 Gaps Identified 

Gaps Identified 

Study Author(s) and Date Relevant Findings Gaps in the 

literature 

Cervical cancer 

diagnosis using 

Random Forest 

classifier with 

SMOTE and feature 

reduction techniques. 

IEEE Access, 6, 

59475-59485. 

Abdoh, S. F., Rizka, 

M. A., & Maghraby, 

F. A. (2018). 

SMOTE technique can 

improve the performance of 

the Random Forest classifier 

by 1.7% to 3.5%. 

1) Only Random

Forest classifier

is tested;

2) ROC curve

analysis is not

performed;

3) Data set used

with 858

instances and 32

features;

4) Did not

mention to

what degree

should SMOTE

balance the

original data

set.

2.5 Summary 

In summary, the results show that the three sampling methods SMOTE, Resampling, 

and SpreadSubsampleling have great influence on disease data. In addition, the 

differences and history of Bayesian Network, Naive Bayes, SVM, KNN, J48 (Decision 

Tree), and Random Forest are summarized. The rebalancing problems and existing gaps 

are reviewed and analyzed. Research gap will be the focus of this thesis. 
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Chapter 3  

 

Research Methodology 
 

 

This chapter provides the framework of the methods and techniques used in this 

research. The full text is divided into four parts and summarized as follows: Section 3.1 

is the research design. We discuss how the CRISP-DM data mining process is 

implemented in this research. 3.2 For the background of chronic diseases, the data set 

has an explanation and analysis. 3.3 In-depth understanding of the methods and tool for 

data mining. 3.4 Conduct detailed research on data modelling and algorithms. 3.5 We 

explain the verification part. We verify the high-quality model through the performance 

ranking of the classifier and the ROC curve. 3.6 We compare the accuracy of excellent 

classifiers and find the best model for feature risk prediction, thus completing the 

chapter. 

 

3.1 Research Design 
 

The cross-industry standard process for data mining model is called CRISP-DM for 

short, which provides a structured approach to planning a data mining project. The 

model is particularly concerned with the integrity of machine learning work. Not only 

related to the data control, display processing and operations; it also covers how to 

effectively address and respond to enterprise requirements (Fayyad et. al. 1996).  

 

There are many methodologies to tackle data mining opportunities, such as CRISP-DM, 

Knowledge Discovery in Database (KDD), and Sample, Explore, Modify, Model, and 

Assess (SEMMA). These are designed to improve the success of data mining projects 

and these methodologies are used in many sectors such as medical, or health care 

industries. 

 

This research conducted a CRISP-DM data mining process to experiment and analyze 

chronic disease data. The CRISP-DM process combines Selection-Preprocessing (KDD) 
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or Sample-Explore (SEMMA) stages into the Data Understanding stage. It also 

incorporates Business Understanding and Deployment stages. An important difference 

between CRISP-DM and two other methodologies is that transitions between stages in 

CRISP-DM can be reversed. Especially helps when analysts work with medical data 

that any misstep can be fixed without having to finish the whole cycle and the process 

reminds analysts to put the business projects in the core position, which has more 

advantages than KDD and SEMMA Data methodologies. The purpose of this research 

is to find the best classifier for chronic diseases and solve the imbalance issue in medical 

data through the CRISP-DM method. Therefore, we selected four data sets related to 

chronic diseases and rebalanced them, and then trained the six classifiers to find the 

best classifier. Finally, we used the best classifier for comparison with different articles. 

The following sections provide more details. 

Fig. 1.3 Chronic Disease Experiment Process:  

3.2 Chronic Disease background understanding 

Effective prediction and timely action in the treatment of chronic diseases is the primary 

task of today's society. The crucial step is how to predict more accurate information to 

be transmitted to the front-line health professionals and the general public (WHO, 2020). 

Kidney disease is among the chronic diseases able to be predicted, and this disease can 

be predicted through the rebalanced algorithm and Decision Tree model. The model has 
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a high accuracy rate of 98.73% (Potharaju, and Sreedevi 2016). They also established 

a diabetes prediction model through a classifier, which effectively solved the problem 

of diabetes prediction and rebalancing of medical data (Shuja, Mittal, and Zaman 2020). 

Therefore, this research follows the lines drawn by these works. The purpose of this 

research is to find the optimal classifier and solve the imbalance issues in medical data. 

We used six different classifiers and compared their performance on different data sets. 

We describe this work from the data phase. This includes data collection, mining 

process, and modelling, validation and performance comparison. More details are 

provided in the following sections. 

3.3 Chronic Disease Data Understanding 
 

 

The focus of this stage is to extract information from the original data and understand 

the background and content of the collected data set in detail, including actions to be 

taken in the next phase. 

 

3.3.1 Data sets collection 
 

The selection of chronic disease data is very important for this research. Our data 

collection scope: The data collection on chronic diseases needs to come from different 

resources. The number and type of attributes may vary in data sets, but they must be 

related to chronic diseases and medical issues. Furthermore, because we cannot go 

directly to the hospital to collect the data, we have chosen the public data set for our 

research. The common data sets used in this research are UCI heart disease data set, 

Framingham Heart Study (FHS) data set, Acute Liver Failure data set and Surgery 

Timing data set. We understand that the Surgery Timing data set is not a case of chronic 

disease, but we consider that the complications of surgery and the time of surgery are 

also of great significance for the treatment of chronic diseases, so we chose this data set 

for the experiment. 

 

The details of the data sets are as follows: 
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3.3.1.1 UCI heart disease data set (Manu, 2019) 

 

The UCI heart disease data set is consolidated by combining three different heart 

disease data sets.  The combination of more than 11 common features makes it the 

largest UCI heart disease data set available for research. The three data sets are the 

Cleveland data set (composed of US patient data), Stalog data set (UK patient data), 

and Hungary data set (mainly Swiss and Hungarian patient data). This data set is a 

combination of data sets collected from patients from three different places, because we 

can learn about different patients and ethnicities with heart disease in Europe and the 

United States through this data set. 

Table 1.8 Summary of UCI data set 

 

Age Group Men Women Total  

28-39 69 23 92 

40-49 207 72 279 

50-59 383 99 482 

60-69 220 76 296 

70-77 30 11 41 

Total 909 281 1190 

 

 

The data set comes with 12 attributes and 1190 instances of data.  

 

Exploratory descriptive analysis of the UCI Heart Disease Data set Data Set 

 

These 12 attributes are introduced as follows: 
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Fig 1.4 UCI data set exploration 

age Age in years ; 

sex 1= male, 0 = female; 

chest pain type type of chest pain categorized into 1 typical, 2 typical 

angina, 3 non-angina pain, 4 asymptomatic; 

resting bp s Level of blood pressure at resting mode in mm/HG 

(Numerical) 

cholesterol Serum cholesterol in mg/dl (Numeric); 

fasting blood sugar Blood sugar levels on fasting > 120 mg/dl represents as 

1 in case of true and 0 as false; 

resting ecg result of electrocardiogram while at rest are represented 

in 3 distinct values 0 : Normal 1: Abnormality in; 

max heart rate Maximum heart rate achieved (Numeric); 

exercise angina Angina induced by exercise 0 depicting NO 1 depicting 

Yes (Nominal); 

oldpeak Exercise induced ST depression in comparison with the 

state of rest (Numeric); 

ST slope ST segment measured in terms of slope during peak 

exercise 0: Normal 1: Upsloping 2: Flat 3: 

Downsloping; 

target Heart Risk 1 means heart disease 0 means normal; 

3.3.1.2 Framingham Heart Study (FHS) data set (Aman, 2017) 

The Framingham heart study is seen as a model of medical research. After more than 

10 years of research, the influence of hypertension and hypercholesterolemia on 

coronary heart disease has been confirmed, and the importance of risk factor 

verification has been proposed. It has been proved that the prevention and intervention 

of hypertension, diabetes and other risk factors have effectively reduced the incidence 

and mortality of cardiovascular diseases and saved countless patients' lives.  

Framingham research is very important for creating living research objects and 

selecting and tracking participation. We chose this data set for the purpose of its 

etiological research and long-term data collection. This feature of the FHS data set is 

very beneficial for us in conducting this research. 
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Table 1.9 Summary of FHS data set 

 

Age Group Men Women Total TenYearCHD 

32-39 253 303 556 23 

40-49 721 940 1661 167 

50-59 526 771 1333 263 

60-70 284 406 690 191 

Total 1784 2420 4240 644 

 

 

The data set come with 16 attributes and 4240 instances of data.  

Exploratory descriptive analysis of the Framingham Heart Study Data Set 

 

These 16 attributes are introduced as follows： 

 

Fig 1.5 Framingham Heart Study data set exploration 

sex  1= male, 0 = female; 

age  Age in years ; 

education  1 = Some High School; 2 = High School or GED; 3 

= Some College or Vocational School; 4 = College; 

currentSmoker  0 = non smoker; 1 = smoker 

cigsPerDay  number of cigarettes smoked per day (estimated 

average) 

BPMeds  0 = not on blood pressure medications; 1 = is on 

blood pressure medications 

prevalentStroke  Prevalent stroke; 

prevalentHyp  Prevalent hypertension; 

diabetes  (glucose > 200 mg/dL or on treatment) 0 = No; 1 = 

yes; 

totChol in mg/dL: totChol in mg/dL; 

sysBP  Systolic blood pressure, mmHg; 

diaBP  Diastolic blood pressure, mmHg; 

Body Mass Index (BMI)  calculated as: Weight (kg)/ Height (meter squared); 

heartrate Beats/min 

(Ventricular) 

heartrate Beats/min (Ventricular); 

glucose serum glucose in mg/Dl glucose serum glucose in mg/dL; 

TenYearCHD  those that did or did not develop CHD (Coronary 

Heart Disease) during the study period); 
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3.3.1.3 Acute Liver Failure (ALF) data set (Rahul, 2018) 

The JPAC Center for Health Diagnostics and Control has conducted a national survey 

of Indian adults since 1990. Various demographic and health information was collected 

through direct interviews, examinations, and blood samples. The data set consists of 

expected information from 8,785 adults aged 20 or older from surveys conducted in 

2008-2009 and 2014-2015. We chose this data set because the survey involved a large 

number of people, and the age group from 20-85 is involved. 

Table 2.1 Summary of Acute Liver Failure data set 

Age 

Group 
Male Female Total ALF 

20-29 960 673 1633 2 

30-39 857 671 1528 7 

40-49 752 757 1509 14 

50-59 569 572 1141 34 

60-69 667 668 1335 87 

70-79 476 511 987 143 

80-85 349 303 652 177 

Total 4630 4155 8785 464 

The data set come with 30 attributes and 8785 instances of data. 

Exploratory descriptive analysis of the Liver Failure data set 

These 30 attributes are introduced as follows： 
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Fig 1.6 Acute Liver Failure data set exploration 

Age  Age in years ; 

Gender  M= male, F = female; 

Region  east; south 

Weght  25.6 – 193 kg 

Height 130 - 200 cm 

Body Mass Index kg m/h2 

Obesity  1 = obesity, 0 = non-obesity 

Waist between  58.5 – 173 cm 

Maximum Blood Pressure 72 – 233 mmHg  

Minimum Blood Pressure  10-132 mmHg 

Good Cholesterol 8 – 160 mg/dL 

Bad Cholesterol  27 – 684 mg/dL 

Total Cholesterol 72 – 727 mg/dL 

Dyslipidemia 0 = No, 1 = Yes 

PVD  Peripheral vascular disease 0 = No, 1 = 

Yes 

Physical Activity 1, 2 3 4 

Education  0 = non – educated, 1 = educated 

Unmarried  0 = No, 1 = Yes 

Income  0 = No, 1 = Yes 

Source of Care Private  Hospital 58%, clinic 21% Other 21% 

PoorVision  0 = No, 1 = Yes 

Alcohol Consumption 0 = No, 1 = Yes 

HyperTension 0 = No, 1 = Yes 

Family  HyperTension  0 and 1  

Diabetes  0 = No, 1 = Yes 

Family Diabetes  0 = No, 1 = Yes 1 

Hepatitis  0 = No, 1 = Yes 

Family Hepatitis 0 = No, 1 = Yes 

Chronic Fatigue 0 = No, 1 = Yes 

ALF Acute Liver Failure  0 = No, 1 = Yes 
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3.3.1.4 Surgery Timing data set (Mahesh, 2018) 

 

This data set contains 14,635 instances. Age, sex, race, BMI, several comorbidities, 

timing of surgery predictors (hour, week, month, month), several surgical risk 

indicators, and outcomes (30-day mortality and hospitalization complications) were 

provided. This data set does not belong to chronic diseases, but we consider the time of 

operation and whether there are complications of chronic diseases are critical to the 

success of the operation. 

 

Table. 2.2 Summary of Surgery Timing data set 

 

Age 

Group 
Male Female Total 

6-19 11 14 25 

20-29 62 52 114 

30-39 557 1114 1671 

40-49 515 993 1508 

50-59 1832 2087 3919 

60-69 739 902 1641 

70-79 1264 1282 2546 

80-90 3053 158 3211 

Total 8033 6602 14635 

 

 

The data set come with 25 attributes and 14630 instances of data.  

 

Exploratory descriptive analysis of the Surgery Timing Data set 

 

These 25 attributes are introduced as follows： 
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Fig 1.7 Surgery Timing data set exploration 

age Age in years ; 

gender Gender 1 = male; 2 = female; 

bmi Body Mass Index kg/m2; 

asa_status American Society of Anesthesiologist Physical Status 1 = I – II 2 = 

III 3 = IV - VI; 

baseline_cancer Cancer 0 = No; 1 = Yes; 

baseline_charlson Charlson Comorbidity Index; 

baseline_cvd Cardiovascular/Cerebrovascular Disease 0 = No; 1 = Yes; 

baseline_dementia Dementia 0 = No; 1 = Yes; 

baseline_diabetes Diabetes 0 = No; 1 = Yes; 

baseline_digestive Digestive Disease 0 = No; 1 = Yes; 

baseline_osteoart Osteoarthritis 0 = No; 1 = Yes; 

baseline_psych Psychiatric Disorder 0 = No; 1 = Yes; 

baseline_pulmonary Pulmonary Disease 0 = No; 1 = Yes; 

ahrq_ccs United States Agency for Healthcare Research and Quality’s 

Clinical Classifications Software (AHRQ- CCS) Procedure 

Category; 

ccsComplicationRate Overall incidence of In-Hospital Complications for Each AHRQ- 

CCS Procedure Category; 

ccsMort30Rate Overall Incidence of 30-day Mortality for Each AHRQ-CCS 

Procedure Category; 

complication_rsi Risk Stratification Index (In-Hospital Complications); 

dow Day of Week 1 = Monday 2 = Tuesday 3 = Wednesday 4 = 

Thursday 5 = Friday; 

hour Operation Hour; 

month Month of Year 1 = January 2 = February 3 = March 4 = April 5 = 

May 6 = June 7 = July 8 = August 9 = September 10 = October  

11 = November 12 = December; 

moonphase Phase of Moon 1 = new moon 2 = first quarter 3 = full moon 4 = 

last quarter; 

mort30 30-Day Mortality 0 = No; 1 = Yes; 

mortality_rsi Risk Stratification Index (30-Day Mortality); 

race Race 1 = Caucasian 2 = African American 3 = Other; 

Complication In-Hospital Complication 0 = No; 1 = Yes. 
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3.3.2 Data Mining Tool (Weka) 
 

Weka is an open-source machine learning tool, which was developed at the University 

of  Waikato, New Zealand. The reason for choosing the Weka tool for this thesis is 

that it has the algorithm efficiency of mining control implementation with a huge 

number of tasks and can perform effective pre-control on the data, realize clustering 

processing and other operations, and operate more transparently on the interaction 

interface (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009). 

Fig 1.8 Weka GUI Chooser 

 

 

 

 

The main interface of WEKA is the GUI chooser. It provides multiple main applications: 

Explorer, Experimenter, KnowledgeFlow, workbench and Simple CLI are the five 

buttons on the right as shown in the figure above.  

 

The Explorer interface is mainly used in this research, as shown in Figure 1.8. The 

interface contains six tabs at the top: Preprocess, Classify, Cluster, Associate, Select 

Attributes, and Visualize. Different tabs have different functions, which basically 

include all data pre-processing functions and machine learning algorithm 

implementation. The focus of this thesis is to use the Preprocess, Classify, and Select 

Attributes tab, enter the Preprocess interface, click the Open File button, import the data 

set and Implement the relevant processing operations.  

 

 



46 

Fig. 1.9 Weka Working Dashboard 

WEKA conducts use a form of the associated Select Attributes tab in Figure 1.9 to assist 

with effective attribute selection processing. To implement the attribute selection 

process, researchers have to set the search mode and the attribute evaluator. The option 

groups that exist at the top of the form are Attribute Evaluator and Search Method. The 

search method and the parameters of the evaluator can be set in the form of setting the 

information of the two option groups to get the best combination of attributes. 

Fig. 2.1 Weka Select Attributes 
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ARFF file 

 

There are many file types that can be supported by WEKA, and ARFF is a text file for 

ASCII processing. We will take a data set as an example (FHS data set). The generated 

ARFF file format is shown in the figure below: 

 

Fig. 2.2 Data set in ARFF file 

 

 

Line 1 is the relation name, where the author uses the name of the data set. 

Lines 2-17 are the feature lists, where columns 2-14 are the feature descriptions and 

column 15 is the feature value range. 

@data (line 18) is the description of the data field, and all the data below it is data. Each 

row contains one piece of data. 
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3.4 Chronic Disease Data Preparation 

Through the below data exploration, the overall process of the mining process in this 

research is shown in the following Figure 2.3:  

Fig. 2.3 Mining Process 

3.4.1 Missing Value 

By using Excel's “Data-Filter” function we can view the details of this data set by 

checking each attribute. As shown in Figure 2.4, the missing value is “NA”, which 

means "unknown". The reason is that Weka cannot recognize “NA” as a missing value; 

it needs to be replaced with blank in the CSV file before importing to Weka. 

Fig. 2.4 Missing value with FHD data set 
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There are multiple ways to deal with missing values in the data sets. For example, if 

there are few instances with missing values, we can delete them because they will not 

affect the overall forecast. However, there are not many missing values in the current 

four data sets so if we delete them directly, the experiment will be inaccurate. Therefore, 

according to Frank, Hall and Witten (2016), the strategy for dealing with missing values 

is as follows: 

 Numeric attributes: In order to maintain the consistency of the data set; it is

common practice to replace the missing numeric attributes. In this research, the

strategy is to replace the average value of the existing value of the attribute with

the numeric attribute of the missing value.

 Nominal property: Since this property contains binary and 0 or 1, the method

here is to replace the missing value with the nominal value that occurs most

frequently in this property.

Therefore, Weka-unsupervised – ReplaceMissingValues has been chosen. The missing 

value instance is replaced by average value. 

3.4.2 Split the data sets into Training and Testing 

In order to obtain a high-performance classifier based on machine learning, it is 

necessary to train and test the classifier. The data set uses a training classifier. However, 

after training, a test data set is needed for fitting test, which should be different from 

the training set. Therefore, the solution is to divide the data set into two groups before 

training the model, one for training and the other for testing. 

According to O’Meara (2019), a typical measure is to split the data in a random way 

and use most of the data for training (eg. 70% / 30% ratio), setting the smaller part as a 

test to keep the training set similar to the test set. By retaining similar data for training 

and testing, we can minimize the impact of data differences and better understand the 

characteristics of the model.  
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Therefore, by choosing Weka – unsupervised – instance – Remove Percentage, in order 

to maintain a similar distribution and ratio between training and test data sets, this paper 

performs stratified random sampling on Weka. Set Remove Percentage to 70 

percentage, and create a new training file named Training.arff, and create a test data set 

file Testing.arff. We will take one of the data sets as an example, the results show that 

the FHS data set are 2968 examples in the training data set after split up; including 2530 

no Coronary HD, and 438 Coronary HD yes. 

3.4.3 Data Rebalancing 

Since the classifications are severely unbalanced, the currently selected training data 

set will be biased towards the majority class during classification. Next, a method of 

rebalancing was used to improve performance. 

Compare oversampling and undersampling in rebalancing: 

According to Li, Wang, and Yue (2005) the use of the hitting technique on 

oversampling (Synthetic Minority oversampling Technique) keeps the information 

unchanged, but the chance of a few classification errors increases. 

Thus, to generate a subset of the data, one should use a supervision and 

SpreadSubsample WEKA resampling method, because it can be balanced with a 

minority proportion of the majority, and the total number of instances can be controlled. 

Even if we cannot create too few instances to capture, here we still try to use the hits 

technique to perform some processing on the oversampling to compare the results. 

Resampling in supervised filters is better than resampling in unsupervised filters, 

because as described by Eibe,et al., (2016), it can maintain the distribution of classes in 

the subsample, and can be configured to bias the classes in a uniform direction. 

SpreadSubsample: random subsamples will be generated between the rarest and most 

common categories and control the frequency difference. In this report, the author uses 
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two methods to obtain a balanced data set. 

Resampling parameters: For resampling methods, there are some parameters to choose 

from. The parameter biasToUniformClass represents the ratio of the minority category 

to the majority category; randomSeed refers to the random number seed used for 

random sampling. Therefore, we can have multiple options to resample the data set (as 

shown in Table. 2.3). 

 

SpreadSubsample parameters: Similarly, SpreadSubsample parameters also have some 

parameters. By setting the maximum number of instances maxCount new equilibrium 

data set, allows us to control the number of new data sets (Table 2.3). 

 

SMOTE and random sampling tests to practice the balance of the training data set. 

SMOTE uses the nearest neighbor algorithm (Eibe,et al., 2016) to calculate new 

eigenvalues and create new instances for minority categories. Here, the default value of 

neighborNeighbors is 5, which is very beneficial to the calculation. By adjusting the 

parameters of the number of "percent", we can set the number of new few instances, for 

example, 200 “percent” means that the original few examples we will create two times 

(200% = 2) However, due to the limitations of computing resources, it is impossible to 

set a larger "percent" value. Therefore, we only use a percentage of 100 to 300 for 

training, which means that a few instances will be twice or three times the original data 

set. 

 

Table.2.3 Rebalance methods and Parameters values 

 

Methods Parameters methods 

Resample biasToUniformClass 0, 1, 0.8, 0.4 default randomSeed 

SpreadSubsample distributionSpread 1,3,5 default maxCount  

SMOTE percentage 100,200,300 default nearestNeighbors 
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3.4.4 Performance comparison 

There are various indicators for measuring the performance of classifiers. The new 

metric formula created here is mainly used as a performance metric, and other functions 

(such as time, ROC, area under the curve (AUC), and number of features) are also very 

important (Shuja, Mittal, & Zaman, 2020). 

A new metric formula: Suppose N (HD) is heart disease, and N (nHD) is non-heart 

disease. Here we can use the four parameters in the confusion indicator, namely N (HD-> 

HD) = TP: correct classification of heart disease; N (nHD-> nHD) = TN: correctly 

classified as non-heart disease; N (nHD-> HD) = FP: the number of non-heart diseases 

classified as heart disease; N (HD-> nHD) = FN: the number of heart diseases classified 

as non-heart disease. The accuracy, precision and recall rate are shown as three 

formulas. 

Table 2.4 Confusion matrix 

Confusion Matrix 
True Value 

Positive Negative 

Predict Value 
Positive TP FP 

Negative FN TN 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁   
Precision =  

𝑇𝑃

𝑇𝑃+𝐹𝑃   
Recall =  

𝑇𝑃

𝑇𝑃+𝐹𝑁   

After analyzing the "detailed accuracy by category" based on the WEKA results, we 

can create a new indicator formula by the following method. 

According to the results of the WEKA confusion matrix, two Precision and Recall can 

be marked as P1 (0, absent) and P2 (1, present) and R1 (0, absent), R2 (1, present) for 

calculation, as shown below:  
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P1(absent) =  
𝑇𝑃

    𝑇𝑃+𝐹𝑃    
        P2(present) =  

𝑇𝑁

    𝑇𝑁+𝐹𝑁   
 

 

R1(absent) =  
𝑇𝑃

    𝑇𝑃+𝐹𝑁    
         R2(present) =  

𝑇𝑁

    𝑇𝑁+𝐹𝑃    
 

 

 

Then we will use the average precision and recall by linear weighted value. The 

following： 

𝐏̅ = P1 × y1 + P2 × y2 ;   while y1 =  
TP + FN

TP + FP + TN + FN
 × 100%; 𝑦2

=  
𝑇𝑁 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100% ; 𝑠𝑜 𝑦1 + 𝑦2 = 1 

 

𝐑̅ = R1 × y1 + R2 × y2；while y1 =  
TP + FN

TP + FP + TN + FN
 × 100%; 𝑦2

=  
𝑇𝑁 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100% ; 𝑠𝑜 𝑦1 + 𝑦2 = 1 

 

 

 

 

𝐏̅ and 𝐑̅ results provided by WEKA. 

 

Fig 2.5 Example of FHD data set detailed accuracy by category 
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f  

P2

1  

R1

1  
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From Fig 2.5, we can see that: 

 

T P  =  2 3 0 3 ;  T N  =  11 7 ;  FP  =  3 2 1 ;  FN  =  2 2 7 ;  S um  =  2 9 6 8  in s t an ce . 

 

P 1  =  2 3 0 3 / ( 2 3 0 3 + 3 2 1 )  =  0 . 8 7 7 ;  P 2  =  1 1 7 / ( 1 1 7 + 2 2 7 )  =  0 . 3 4 0  

R 1  =  2 3 0 3 / ( 2 3 0 3 + 2 2 7 )  =  0 . 9 1 0 ;  R 2  =  1 1 7 / ( 1 1 7 + 3 2 1 )  =  0 . 2 6 7 

 

Here, y1 = (2303+227)/2968 * 100% = 85.2%; y2 = (117+321)/2968 * 100% = 14.7% 

Then, 𝐏̅= 0.877 * 85.2% + 0.340*14.7% = 0.797; and 𝐑̅= 0.910 * 85.2% + 0.267 * 

14.7% = 0.814 

 

 

 

 

 

 

 

3.5 Classifiers algorithms 
 

 

In this research we chose six classification algorithms, and each classification algorithm 

has its own characteristics. The performance of multiple conditions are also different, 

and the impact of performance in different data sets is not the same. Therefore, we 

conduct in-depth analysis and comparison of them through mathematical formulas. The 

principle of evaluating the quality of a classification algorithm is to evaluate the 

classification algorithm by accuracy. 

 

 

We will use a formula to explain the results we want to obtain in chronic disease data 

mining and analysis. In this formula, Y is the dependent variable, which is the result we 

want in this study, and 𝑓 is the method of converting the input into the result, which 

is the six classifier algorithms we use. X is the independent variable is the performance 

of the classifier used, and the ε random error term is caused by many factors that cannot 

be explained in the chronic disease data. 
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Y =   𝑓（X） + ε 

 

In the classifier model, we are more concerned about the estimated accuracy of the 

target variable Y so we expect that the model is as accurate as possible. In addition, the 

classifier model f in the form of the model itself, will not get more explanation, as long 

as the structure can improve our prediction accuracy, and achieve the goal. 

 

Y =  𝑓（X） 

 

In the control task, we describe the relationship between X and Y as clearly as possible. 

The result is certainly important, but we are also concerned about the specific form of 

the model, or what kind of discriminant rules are generated by the statistical mining 

model to help us generate. 

 

Y =  𝑓（X） 

The following information is the six classifier algorithms to be used in this experiment, 

and we will analyze them in depth. 

 

3.5.1 Support Vector Machine (SVM)  
 

Support vector machine (SVM) is a supervised machine learning algorithm. This 

algorithm has better prediction accuracy, mainly because it can transform low 

dimensional linear non-separable space into high dimensional linear separable space 

(Jakkula, 2006). Due to the high prediction accuracy, the algorithm is very popular in 

medical prediction.  

 

SVM classifier has several advantages in the classification or prediction of dependent 

variable rows. For example, because SVM classifier leads to the increase or decrease 

of the support-vector of the sample points, it will not change the effect of the classifier 

and avoids the occurrence of dimension disaster. The model has good generalization 

ability and avoids overfitting to a certain extent. It also avoids the local optimality when 

running the model in the program. 
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Furthermore, the main reason that we choose the SVM classifier is because this 

classifier can achieve better results than other algorithms on the medical medium- sized 

sample training set and has excellent generalization ability. Our selected chronic disease 

data set is mainly composed of four medium-sized data sets, so we believe that SVM 

will get good results.  

The principle of the formula is as follows: 

As shown in the figure (Fig 2.6) below, w * x + B = 0 is the separating hyperplane. The 

linear separable data sets of such hyperplanes are numerous, but the separable 

hyperplane with the largest geometric distance is unique. 

Fig 2.6 Principle of SVM formula 

(Zhihua, 2016) 

We assume that given a training data set on the feature space, 

T = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) , … , (𝑥𝑁 , 𝑦𝑁)}

Where, 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {+1, −1}, 𝑖 = 1,2, … 𝑁, 𝑥𝑖 is the i eigenvector, 𝑦𝑖 is the class

mark, In addition, it is a positive example when it is equal to +1, and negative when is 

-1. We can also assume that the training data set is linearly separable.
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3.5.2 Naïve Bayes 
 

Naive Bayes classification algorithm is based on the probability theory and 

mathematical statistics knowledge which is suitable for medical big data sets. Its 

advantages are simple, high classification accuracy and high speed. The classification 

algorithm based on Naive Bayes mainly uses the deviation theorem to predict the 

unknown categories, gives the probability of each category, and finally selects the most 

likely category as the final prediction category of the sample (Webb, Keogh, & 

Miikkulainen, 2010). 

 

The principle of the formula is as follows: 

 

Naïve Bayes conditional probability (also known as posterior probability) is the 

probability that event A will occur if another event B has already occurred. The 

conditional probability is expressed as P (A|B), pronounced as "the probability of A 

under B". 

P(A|B) =  
𝑃(𝐴𝐵)

𝑃(𝐵)
 

 

We assume that A is non-disease and B is disease, so the above formula is explained as 

follows:  

 

P (A|B) - Probability of A under B conditions. That is, the probability of occurrence of 

event A under the condition that another event B has already occurred. 

 

P (AB) - the probability of events A and B occurring at the same time, that is, the joint 

probability. Joint probability represents the probability of two events occurring together. 

The joint probability of A and B is expressed as P (AB). 

 

P (B) - the probability of event B occurring. 

 

Conditional probability: This is the probability of event A occurring under the condition 

that another event B has already occurred. P (A|B), which is the probability of A under 

the condition of B. 
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3.5.3 K- Nearest Neighbour (KNN) 
 

 

KNN is a relatively mature method in theory first proposed by Cover in 1968, and it is 

also one of the simplest machine learning algorithms (Cover, 1968). This idea is simple 

and intuitive: If a sample belongs to a category, and K samples are the most similar in 

features, then the sample also belongs to this category. This method only determines 

the category of the samples to be divided according to the category of the latest one or 

more samples. 

 

If most of them belong to the nearest K samples in a certain class of feature space, then 

these samples also belong to this class and the features of this class of samples. When 

the KNN algorithm determines the classification decision, it only determines the 

classification of the samples to be classified according to the category of the nearest 

one or more samples. When making classification decisions, KNN method is related to 

a few adjacent samples because the KNN method mainly depends on the limited 

samples around, rather than identifying the class domain to determine the class (Guo, 

Wang, bell, Bi, & Greer, 2003). The KNN method is superior to other methods in the 

division of overlapping or more overlapping sample sets, because it mainly depends on 

a limited number of adjacent samples rather than the method to determine the class 

domain. 

 

 

 

 

K value choosing 

 

When choosing a smaller K value, using smaller adjacent training examples for 

prediction can reduce the approximation error of learning. Only the training sample 

close to the input instance can help to predict the result. 

 

The disadvantage is that the learning estimation error increases, and the prediction 

result is sensitive to the adjacent instance points. If adjacent instance points happen to 

have noise, the prediction will be wrong. In other words, the decrease of K value means 

that the whole model becomes more complex and the division is not clear, so over fitting 
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may occur (Guo, Wang, bell, Bi, & Greer, 2003). The disadvantage is that the 

estimation error increases. If the adjacent instance points have noise, the prediction is 

wrong. It can be said that the decrease of K value means that the whole model becomes 

more complex and the division is not clear, so fitting is likely to occur (Guo, Wang, 

bell, Bi, & Greer, 2003). 

 

Choosing a larger K value is equivalent to using a training instance to predict in a larger 

neighborhood. Its advantage is that it can reduce the estimation error of learning, but 

the approximation error will increase, and the prediction of input instance is not 

accurate. The increase of K value means that the whole model is simple. 

 

Approximation error: the training error of the existing training set. 

Estimation error: test error on test set. 

The approximation error is concentrated on the training set. If the K value is small, there 

will be over fitting phenomenon, which is a good prediction for the existing training set, 

but for the unknown test samples, there will be large bias prediction. The model itself 

is not the closest to the best model. The smaller the estimation error is, the better the 

prediction ability of unknown data is. The model itself is closest to the best model (Guo, 

Wang, bell, Bi and Greer, 2003). 

 

The K value used in our experiment is 1, because when it is 1, the error is the smallest 

and will give the best accuracy. 

 

 

3.5.4 Random Forest 
 

Random Forest is very suitable for medical data sets. The classifier is reflected in that 

the training sample of each tree is random, and the split attribute set of each node in the 

tree is also determined by random selection. It can process high-dimensional data 

without feature selection, and the training speed is fast. 

 

Random Forest algorithm is composed of classification tree, with rows representing 

random numbers and columns representing variables. They randomly assign values to 
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rows and columns to generate more classification trees. The branch determines the 

random forest algorithm, and the structure of the branch belongs to the content of 

recursive control. All information can be accurately classified and controlled to get 

effective types, but in practical application, it is difficult to achieve. Even if there are 

usually a large number of nodes behind the model obtained by construction, it also 

shows over fitting (Esmaily, Tayefi, Doosti, Ghayour-Mobarhan, Nezami, & 

Amirabadizadeh, 2018). 

 

In practical operation, it should be able to achieve high performance in the control 

treatment of branch and leaf construction. Random Forest can be used to control this 

situation. In order to realize the classification construction, it is necessary to vote the 

decision tree of the forest obtained from multiple decision trees. In the process of 

decision tree generation and control, each part of the decision tree inevitably shows a 

strong effect of random execution, and the required content can be obtained by 

optimizing the segmentation. 

 

Fig 2.7 Random Forest illustration 

 

(Github. 2020) 

 

 

Each classification tree in the random forest is also a vertical binary tree, and each tree 

conforms to the principle of top-down recursive segmentation, that is, starting from the 

root interrupt to divide the training set. The split continues with all the training data, a 

subset of the left routine, and a subset of the upper right routine. They can only stop 

splitting if they meet the splitting stop rule (Github. 2020). 
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Random Forest algorithm can use a classification method for medical data which 

improves the accuracy of the estimation information. The analysis can only be carried 

out in the case of unbalanced control or missing data. It can predict explanatory 

variables thousands of times, and the algorithm is powerful. 

 

3.5.5 Bayesian Network 
 

Bayesian network has a powerful uncertainty reasoning method, which will solve some 

uncertainty of medical diagnosis. This ability is exactly what we need for this 

experiment. 

 

As a causal inference model, Bayesian network algorithm is widely used in medical 

diagnosis, electronic technology, information retrieval and industrial engineering, etc. 

 

The probability graph model is a Bayesian network algorithm, which was first proposed 

by Judeapall in 1985 (Judeapall, 1985). It is an uncertainty processing model and a 

model simulating human reasoning causality. The structure is directed acyclic graph 

(DAG). In the use of Bayesian network, probability reasoning and decision-making 

methods are used. In the case of incomplete information, invisible random variables can 

be inferred from observable random variables, and invisible random variables can be 

more. In general, invisible variables are initially set to random values, and then 

probabilistic reasoning is performed. 

 

The Bayesian network stipulates that the parent node of node Xi is the condition, and 

Xi is conditionally independent of any non-Xi child nodes. According to this agreement, 

the joint probability distribution of a Bayesian network with n nodes is: 

 

𝑃(𝑥1, 𝑥2 … , 𝑥𝑛) = ∏ 𝑃

𝑛

𝑖=1

(𝑥𝑖|𝜋(𝑥𝑖)) 

 

Among them, π(𝑥𝑖)is a combination of the values of the variables in the 𝑥𝑖 parent node 

set ∏ 𝑥𝑖 in the network. If 𝑥𝑖 has no parent node, then the set ∏ 𝑥𝑖 is empty, that is 

p(𝑥𝑖|π(𝑥𝑖)) = p(𝑥𝑖) 
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According to the above formula, we can write the joint probability distribution of 

Bayesian network. 

The difference between the two expressions lies in the conditional probability part. In 

Bayesian networks, if its dependent variable is known, some nodes will be conditionally 

independent of its “dependent” variable, and only the nodes related to the “dependent” 

variable have conditional probability.  

If the number of dependencies of joint distribution is very small, the Bayesian function 

method can save considerable memory capacity. For example, 10 variables with a value 

of 0 or 1 are stored in the conditional probability table type. The intuitive idea is that 

we need to calculate a total of 2 ̂  10 = 1024 values; however, if none of the 10 variables 

has more than three related "dependent" variables, then the conditional probability table 

of Bayesian network only needs to calculate 10 * 2 ^ 3 = 80 values at most. 

3.5.6 J48 (Decision Tree) 

The benefit of the Decision Tree classifier for this chronic disease analysis is that it is 

easy to interpret the classification results and can handle the association between 

features without considering whether abnormal samples or data are linearly separable. 

Decision Tree calculates the probability that the expected value is greater than or equal 

to zero by constructing a branch structure on the basis of knowing the occurrence 

probability of various situations. This is a graphical method that intuitively uses 

probabilistic analysis (Bhargava, Sharma, Bhargava, and Mathuria, 2013). The 

calculation process of Decision Tree algorithm is a sigmoid function, which does not 

need to standardize or normalize the original data. The construction image of decision 

branch is similar to a branch tree, so it is called Decision Tree. The type of decision tree 

depends on the type of target variable, which can be divided into two categories: 

 Categorical variable Decision Tree: also known as classification tree. When the

target variable of a Decision Tree is an attribute class and the output data is a

sample class label, it is characterized as a discrete variable Decision Ttree.



 

63 

 

 Continuous variable Decision Tree: It is also called a regression tree. When the 

target variables of the Decision Tree are a series of continuous variables, the 

value of the output data is expressed as a Decision Tree body of continuous 

variables. 

 

A Decision Tree is composed of root nodes, decision nodes, leaves, subtrees, etc. 

The related concepts are introduced as follows:  

 Root node: represents the entire group or sample, which can be further divided 

into two or more homogeneous sets 

 

 Splitting: The process of dividing a node into two or more child nodes 

 

 Decision node: When a child node splits into more child nodes, the node is a 

decision node 

 

 Terminal node: also known as a leaf node, that is, a node that can no longer be 

split 

 

 Pruning: represents the process of deleting the child nodes of the decision node, 

which is the inverse process of splitting 

 

 Branch: also known as a subtree, sub-parts of the entire tree can be called 

branches or subtrees 

 

 Parent node and child node: Every node except the root node has a parent node. 

If a node has child nodes, the node is called the parent node of these child nodes, 

and the child nodes of the same parent node are called siblings 
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Fig 2.8 Decision Tree illustration 

 

 

 

(Avinash, 2018) 

The functions and advantages of Decision Trees are as follows: 

 

(1) Extract important features 

 

Decision Tree is a method of mining the most important variables and 

relationships among multiple acting variables. Through Decision Tree, new 

functions can be created to predict target variables (Rokach, & Maimon, 2005). 

 

(2) Low data cleaning requirements 

 

Compared with other methods, Decision Trees have lower requirements for data 

cleaning, because invalid values and missing values have no effect on the 

decision-making process. In addition, the decision-making process is 

characterized as a sigmoid function, and there is no need to standardize or 

normalize the original data (Rokach, & Maimon, 2005). 

 

(3) No requirement for data type 

 

Decision Tree algorithm and its optimization algorithm are suitable for 

numerical and nominal data (Rokach, & Maimon, 2005). 
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3.6 Validation 
 

 

When performing the evaluation process, the models will be built under the test data 

set. At this stage, it is necessary to ensure that the models can effectively completely 

achieve the goals. (Mariscal, Marban and Fernandez, 2010). 

 

Therefore, In this part, we use the testing data set to rank the performance of the selected 

SVM, Naive Bayes, KNN, Random Forest, Bayesian Network and J48 (Decision Tree) 

classifiers, and verify whether the results are the same as the results in the training data 

set. We use the 10 fold cross validation method to verify it again in the experiment. 

Also, we verify the ROC curve of the optimal classifiers generated in each data set. 

 

The following are the arguments of these two methods： 

 

3.6.1 10-fold cross-validation  
 

The 10-fold cross-validation is used to prevent over fitting. It divides the chronic 

disease data sets into 10 fold for experiments. 10 fold is the appropriate choice to obtain 

the best error estimate and repeatedly uses random. The generated sub-samples are 

trained and verified, and the results are verified once each time. K = 10, that the data 

set is divided into 10 parts. The cycle extracts 1 part as the verification set and the other 

9 parts as the training set. 

 

3.6.2 ROC (Receiver Operator Curve) 
 

The ROC value reflects the diagnostic ability of the classifier under different thresholds. 

The graph is based on the true positive rate and false positive rate (Sarang, 2018). The 

ROC curve is described as follows: 

 

1. The curve shows the trade-off between specificity and sensitivity (specificity 

decreases with the increase of sensitivity, and vice versa). 

 

2. The curve inclination in the upper left quadrant of the curve indicates that the test 
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result is more accurate. Therefore, the compactness of the curves and diagonals indicate 

that the accuracy of the test results is low. 

 

3. The area under the curve is the measurement accuracy, which is called the area under 

the curve. 

 

The area under the curve represents the test accuracy. If the area under the curve is large, 

the test is more accurate. The area under the ROC curve is greater than 0.5, which 

proves that the diagnostic experiment has a certain diagnostic value. At the same time, 

the closer the area under the ROC curve is to 1, the better the authenticity of the 

diagnostic experiment is. 

 

3.6.3 Performance Comparison of Classifiers 
 

The realization and creation of the model is only a part of the whole project. In the 

follow-up, corresponding reports are given based on performance effects to complete 

effective mining control (Mariscal, Marban and Fernandez, 2010). We found the best 

three classifiers in the training set of the four data sets. So 4*3=12, we selected 12 

classifiers in the training set to enter the next step. We made the same adjustments on 

the testing set for the 12 selected classifiers at the same time and through training and 

testing the two models to compare the errors between them, selected the closest model. 

The model with the closest accuracy is the best model. 

 

 

3.7  Summary  
 

In summary, this chapter aims to establish a set of research methods suitable for this 

thesis. We describe in detail the process and method of data mining. The six classifiers 

used are theoretically explained. Finally, the verification method and the method of 

classifier comparison are described. 
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Chapter 4 

Findings and Discussion 

This experiment is based on four different versions of chronic disease data sets, through 

six different classifiers and three rebalancing methods to analyze different degrees of 

imbalance in the data sets. 

The first experiment used the original data set; the distribution of class data was 

unchanged, and six different classifiers were used for training and performance 

comparison. 

In the second experiment, we used SMOTE, Resampling and SpreadSubsampling 

rebalancing methods to rebalance the data sets. Then six classifiers were trained and 

compared on the rebalanced data sets. This gave a total of 72 (6*3*4) 6 = six classifiers, 

3 = three rebalancing methods and 4 = four data sets metric results that were calculated 

from the experiments.  

There are nine parameter combinations of different values, therefore 216 experiments 

can be performed. The summary of ranking and the average score was obtained. The 

purpose of this experiment is to use these metrics to evaluate the relationship between 

rebalancing techniques and the performance achieved by the model.  

Our experiments mainly verify the improvement of classifier performance with and 

without a rebalancing method. This method is implemented in two configurations; one 

configuration being the original data set. In the experiment, we used Bayesian Network, 

Naive Bayes, Support Vector Machine (LibSVM), KNN, J48 (Decision Tree) and 

Random Forest classifiers to model on the unbalanced data set, and by using the 10-

fold cross-validation technique trained the data set to construct all the classifiers to 

provide accuracy. 
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In the second set of experiments, in order to improve the prediction accuracy of the 

classifier and eliminate the bias of the algorithm on minority classes, we adopted the 

SMOTE, Resampling, and SpreadSubsamping rebalancing methods to rebalance the 

data sets. The main principle of SMOTE is to fill several types of synthetic instances. 

It uses two main parameters: N and k, which represent the percentage of oversampling 

and the number of nearest neighbors to be considered. In the Weka machine learning 

tool, we can set the parameters n100 and k5 as the default parameters of the SMOTE 

method.  The main principle of resampling is to increase the number of instances in 

the minority class by randomly copying them, thereby increasing the representativeness 

of the minority class in the sample. The main parameters it uses are: 

biasTouniformClass and randomSeed as default. In the Weka machine learning tool, 

we set the parameters biasTouniformClass to 1, 0.8, and 0.4 respectively. The main 

principle of SpreadSubsampling is to balance the class distribution by randomly 

eliminating samples of the majority class because the goal is not achieved until the 

instances of the majority class and the minority class are balanced. For the main 

parameters we used distributionSpread and maxCount as the default. In the Weka 

machine learning tool, we set the parameter distributionSpread to 1, 3, and 5 

respectively. 

The following is a comparison of the results of each classifier models on data sets. 



69 

4.1 Classifier Models 

4.1.1 SMOTE (Appendix C) 

Fig 2.9 UCI Data set - SMOTE 

Firstly, the SMOTE rebalancing method was used on the UCI data set. The results show 

that the overall situation is that with the improvement of the parameters, the accuracy 

of the six classifiers has also been improved. We found the three best classifiers to be 

KNN (IBK) 96.7892%, Random Forest 94.6142% and Bayesian Network 92.4909%. 

However, they are not the fastest classifiers to improve. In the figure above, the 

classifier improvement rate of J48 (Decision Tree) is as fast as 15.9%. Meanwhile, 

KNN increased from 91.7167% to 96.7892%, with a difference of 5.07%. The worst 

classifier in this data set is SVM (LibSVM). We can see that the accuracy of SVM 

(LibSVM) is 82.8331% on the imbalanced data set, but it only improved by 1.58% to 

84.4122%. 

Bayesian
Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 85.2341% 85.2341% 82.8331% 91.7167% 71.1885% 91.8367%

SMOTE 100 88.9074% 88.5738% 84.8207% 94.5788% 74.9791% 93.4946%

SMOTE 200 91.1821% 90.7987% 85.1757% 95.9105% 83.4505% 93.7380%

SMOTE 300 92.4909% 92.2320% 84.4122% 96.7892% 87.0533% 94.6142%
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Fig 3.1 FHS Data set - SMOTE 

As can be seen from the above figure, the best classifiers are Random Forest 91.0089%, 

Bayesian Network 86.6885% and Naive Bayes 86.2447%. The overall situation is that 

with the increase of SMOTE percentage, the accuracy of the classifiers also increased. 

But we can see that LibSVM and J48 (Decision Tree) are not like this. In other words, 

with the increase of percentage, the accuracy of LibSVM decreases. The accuracy of 

LibSVM is 85.2426% on an imbalanced data set, but the accuracy of LibSVM is 

64.3624% on SMOTE 300 balanced data set. The J48 (Decision Tree) classifier has a 

similar situation, especially the accuracy on SMOTE 300 rebalanced data set 77.0668% 

which is 2.5% higher than SMOTE 200 74.6098%. 

Bayesian
Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 81.5364% 82.5472% 85.2426% 82.2102% 85.2426% 85.2426%

SMOTE 100 82.3253% 81.9143% 74.2807% 82.9072% 74.2807% 85.4375%

SMOTE 200 85.1977% 84.6514% 65.8169% 86.3944% 74.6098% 90.4006%

SMOTE 300 86.6885% 86.2447% 64.3624% 85.9178% 77.0668% 91.0089%
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Fig 3.2 ALF Data set - SMOTE 

 

In the ALF data set, we found that the accuracy of SVM (LibSVM) and J48 (Decision 

Tree) decreases with the adjustment of the parameters. In particular, LibSVM reduced 

from 95.2350% in the unbalanced data set to 83.3228%. Using the SMOTE 300 data 

set, the accuracy was reduced by 11.9%. The performance of J48 (Decision Tree) is 

also 95.2350% on the non - rebalanced data set from the initial experiment. On the 

87.2368% SMOTE300 data set, the accuracy is reduced by 7.99%. The best performing 

classifier is Random Forest 96.5851% on the SMOTE300 data set. With it we see an 

increase of 1.35% compared to the unbalanced data set. This is followed by J48 

(decision tree) 95.2350% and Bayesian network 94.9133%. 

 

 

 

 

 

 

 

 

 

 

 

Bayesian
Network

NaiveBaye
s

LibSVM KNN (IBK)
J48

(Decision
tree)

Random
Forest

Non-rebalancing 90.4049% 91.2018% 95.2350% 93.1696% 95.2350% 95.2350%

SMOTE 100 93.1543% 92.6576% 90.9034% 93.6045% 90.9034% 94.7687%

SMOTE 200 94.9133% 93.9085% 86.9488% 92.5167% 86.9488% 96.2732%

SMOTE 300 94.8776% 94.5931% 83.3228% 91.8896% 87.2368% 96.5851%
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Fig 3.3 Surgical Timing Data set - SMOTE 

 

 

 

From the surgical timing data set, we can see that the accuracy of the overall classifier 

increases with the percentage of SMOTE. In particular, the accuracy of J48 (Decision 

Tree) on the non-rebalanced data set is 71.0269% and the accuracy on the SMOTE300 

balanced data set is 86.4080%. It can be seen that the accuracy has increased by 15.38%.  

Another classifier with higher improvement is KNN (IBK); from the initial experiment 

76.1228% on the non-rebalanced data set to 90.6024% on the SMOTE300 data set, the 

accuracy increased by 14.47%. The best classifier in the data set is KNN (IBK) 

90.6024%, followed by Random Forest 88.2002%. 

 

 

 

 

 

 

 

 

 

Bayesian
Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 74.3167% 74.2581% 77.8309% 76.1226% 71.0269% 75.5662%

SMOTE 100 80.9889% 80.5296% 75.8648% 85.5103% 76.0299% 86.5078%

SMOTE 200 84.8672% 84.4360% 79.9138% 88.8675% 83.4998% 87.1425%

SMOTE 300 87.5715% 87.1024% 82.8939% 90.6024% 86.4080% 88.2002%

0.0000%
10.0000%
20.0000%
30.0000%
40.0000%
50.0000%
60.0000%
70.0000%
80.0000%
90.0000%

100.0000%

Surgical timing SMOTE

Non-rebalancing SMOTE 100 SMOTE 200 SMOTE 300



 

73 

 

4.1.2 Resampling (Appendix C) 
 

Fig 3.4 UCI Data set - Resampling 

 

 

 

In the UCI data set, we can see that the accuracy of the overall classifier increases with 

the adjustment of the parameters. The accuracy of Bayesian Network initially obtained 

on the unbalanced data set was 85.2341%. After tuning, the accuracy reached 89.4231%. 

During this period, an increase of 4.189% was achieved. At the same time, the accuracy 

of KNN (IBK) increased from 91.7167% of the unbalanced data set in the initial 

experiment to 94.2308% of the Resample0.4 data set. However, the performance of the 

J48 (Decision Tree) classifier is the worst here. It increased from 71.1885% on the 

unbalanced data set to 75.3606% on the Resample0.8 data set. Although it has increased 

by 4.17%, it is comparable to other classifiers. In this experiment, the best classifier is 

KNN (IBK) 94.2308%, followed by random forest 92.4279%. 

 

 

 

 

 

 

Bayesian
Network

NaiveBaye
s

LibSVM KNN (IBK)
J48

(Decision
tree)

Random
Forest

Non-rebalancing 85.2341% 85.2341% 82.8331% 91.7167% 71.1885% 91.8367%

Resample 1 88.9423% 88.5817% 85.0962% 94.2308% 74.8798% 92.6683%

Resample 0.8 87.7404% 87.6202% 84.4952% 94.7715% 75.3606% 92.6683%

Resample 0.4 89.4231% 88.9423% 84.6154% 94.2308% 74.8798% 92.4279%
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Fig 3.5 FHS Data set - Resampling 

 

 

From the FHS data set, we can see that the accuracy of the classifiers are not stable, and 

the accuracy of some classifiers is not increased by parameters. For example, the 

accuracy of SVM (LibSVM) on the non-rebalanced data set is 85.2426%, but the 

accuracy on the Resample1 data set has dropped to 64.3194%. At the same time, the 

accuracy has increased to 71.1493% as the parameters continue to be adjusted. We can 

find that the performance of the SVM (LibSVM) classifier in the FHS data set is not 

suitable. The accuracy of the J48 (Decision Tree) classifier is reduced as the parameters 

are adjusted, from 85.2426% on the non-rebalanced data set initially to 71.1493% on 

the Resample0.4 data set, which reduces the accuracy by 14.09%. In addition, the 

accuracy of the NaiveBayes classifier has some small pulsations from the 82.5472% on 

non-rebalanced data set to 76.4746% on Resample0.8 data set which reduces the 

accuracy by 6.07%. The best classifier in this data set is Random Forest 94.4388%, 

followed by KNN (IBK) 91.1021%. 

  

Bayesian
Network

NaiveBaye
s

LibSVM KNN (IBK)
J48

(Decision
tree)

Random
Forest

Non-rebalancing 81.5364% 82.5472% 85.2426% 82.2102% 85.2426% 85.2426%

Resample 1 77.6280% 77.1563% 64.3194% 89.6900% 81.5701% 93.0593%

Resample 0.8 77.2835% 76.4746% 57.0610% 89.8888% 78.4631% 94.8770%

Resample 0.4 80.6539% 79.8450% 71.1493% 91.1021% 71.1493% 94.4388%
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Fig 3.6 ALF Data set – Resampling 

On the ALF data set, we can see that the SVM (LibSVM) classifier is the most unstable. 

On the non-rebalanced data set, 95.2350% it gradually dropped to 59.0436% and the 

Resample0.8 data set has a difference of 36.19%. Secondly, the accuracy of the J48 

(Decision Tree) classifier decreases with the adjustment of the parameters, from 

95.2350% on the non-rebalanced data set to 83.9460% on the Resample0.4 data set. In 

this experiment, we found the highest accuracy classifier to be Random Forest through 

tuning parameters to 99.6584%. We believe that its accuracy is the highest in all 

experiments. The next highest-precision classifiers are Bayesian Network (93.2824%) 

and NaiveBayes (91.3142%). In our previous experiment, KNN (IBK) was a higher 

classifier, but the accuracy in this experiment also reached 95.7547%. 

Bayesian
Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 90.4049% 91.2018% 95.2350% 93.1696% 95.2350% 95.2350%

Resample 1 94.9902% 93.7053% 76.4964% 94.1282% 87.2642% 98.0644%

Resample 0.8 94.6812% 93.1360% 59.0436% 94.5836% 87.8497% 99.3169%

Resample 0.4 93.2824% 91.3142% 77.1470% 95.7547% 83.9460% 99.6584%
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Fig 3.7 Surgical Timing Data set - Resampling 

 

 

In the operation time data set, we can see that the two classifiers Random Forest and 

KNN (IBK) perform best. We analyzed the Random Forest classifier from the 

perspective of accuracy and we can see that the accuracy on the non-rebalanced data 

set is not very good, only 75.5662%, but with the adjustment of the parameters, it 

reached 92.6877% on the Resample0.4 data set. The KNN (IBK) classifier is 76.1226% 

on the non-rebalanced data set, which is also a relatively low accuracy. However, with 

the adjustment of the parameters, it reaches 90.2470%, which is a difference of 14.12%. 

The accuracy of the other four classifiers is less Bayesian Network reached 80.2226% 

on the Resample1 data set, and the remaining classifiers did not reach more than 79%. 

So the best classifier in this experiment are Random Forest and KNN (IBK). 
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Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 74.3167% 74.2581% 77.8309% 76.1226% 71.0269% 75.5662%

Resample 1 80.2226% 79.6369% 75.0586% 90.6384% 75.5174% 91.4487%

Resample 0.8 79.4884% 79.1077% 73.8163% 90.7449% 74.9780% 92.1214%

Resample 0.4 78.1021% 77.5456% 71.7563% 90.2470% 72.8595% 92.6877%
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4.1.3 SpreadSubsampling (Appendix C) 
 

Fig 3.8 UCI Data set - SpreadSubsampling 

 

 

In the UCI data set, we can see that the accuracy of J48 (Decision Tree) and SVM 

(LibSVM) are relatively low among these six separators. In particular, the accuracy of 

J48 (Decision Tree) on the non-rebalanced data set is only 71.1885%, and after tuning 

parameters, the accuracy only increased by 1.44% to 72.6291% on the 

SpreadSubsample3 data set. The accuracy of the SVM (LibSVM) classifier increased 

from 82.8331% to 83.0732%, which is only an increase of 0.24%. On the other hand, 

the optimal classifier in this data set is KNN (IBK), which achieved an accuracy of 

93.0372% on the SpreadSubsample3 data set. Random Forest achieved an accuracy of 

92.7971%. 

  

Bayesian
Network

NaiveBaye
s

LibSVM KNN (IBK)
J48

(Decision
tree)

Random
Forest

Non-rebalancing 85.2341% 85.2341% 82.8331% 91.7167% 71.1885% 91.8367%

SpreadSubsample 1 84.6995% 85.2459% 81.9672% 91.1202% 73.7705% 87.5683%

SpreadSubsample 3 86.3145% 85.9544% 83.0732% 93.0372% 72.6291% 92.7971%

SpreadSubsample 5 86.3145% 85.9544% 83.0732% 93.0372% 72.6291% 92.7971%
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Fig 3.9 FHS Data set - SpreadSubsampling 

On the FHS data set, we can see that the overall accuracy of the classifiers is not very 

good. First of all, let's look at the accuracy of KNN (IBK) on the non-rebalanced data 

which reached 82.2102%, but with parameter adjustment, the accuracy dropped to 

57.4201% on the SpreadSubsample1 data set, which is a difference of 24.7901%. 

Therefore, it can be seen that the accuracy of the classifier on the data set of 

SpreadSubsample1 is not very high. SVM (LibSVM) is only 57.3059%, J48 (Decision 

Tree) 56.7352%, and Random Forest 60.0457%. However, the best classifiers produced 

in this data set are Random Forest and J48 (Decision Tree), their accuracy is equal at 

85.2426%. 

Bayesian
Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 81.5364% 82.5472% 85.2426% 82.2102% 85.2426% 85.2426%

SpreadSubsample 1 64.6119% 64.8402% 57.3059% 57.4201% 56.7352% 60.0457%

SpreadSubsample 3 73.5731% 74.4292% 75.0000% 71.0046% 75.0000% 75.3425%

SpreadSubsample 5 79.2998% 80.7458% 83.3330% 80.2511% 83.3333% 83.3333%
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Fig 4.1 ALF Data set - SpreadSubsampling 

 

 

 

In the ALF data set, we found that the six classifiers on the non-rebalanced data set 

achieved high accuracy. Random Forest, SVM (LibSVM) and J48 (Decision Tree) both 

achieved accuracy of 95.2350%. In addition, KNN achieved accuracy of 93.1696%, 

and the accuracy of Bayesian Network and NaiveBayes was 90.4049% and 91.2018% 

respectively. However, the accuracy of the six classifiers on the SpreadSubsample1 data 

set are all degraded. Compared with the non-rebalanced data set, the accuracy of 

LibSVM is reduced by 35.508%, KNN (IBK) 25.9341%, and J48 (Decision Tree) 

25.2691%. 
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Fig 4.2 Surgical Timing Data set - SpreadSubsampling 

 

 

On the Surgical timing data set, we found that the Random Forest classifier has the best 

performance, increasing from 75.5662% to 84.4494%, an increase of 8.8832%. 

However, the performance of the other five classifiers is not so good. For example, the 

accuracy of J48 (Decision Tree) on the non-rebalanced data set is only 71.0269%, but 

after adjusting the parameters, it increased to 74.9564% on the SpreadSubsample1 data 

set; it then dropped back to 71.0269%. We can see that other classifiers except Random 

Forest also had this problem. 
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Network

NaiveBaye
s LibSVM KNN (IBK)

J48
(Decision

tree)

Random
Forest

Non-rebalancing 74.3167% 74.2581% 77.8309% 76.1226% 71.0269% 75.5662%

SpreadSubsample 1 77.8862% 77.8049% 73.8753% 75.3252% 74.9864% 81.7615%

SpreadSubsample 3 74.3850% 74.2483% 77.9774% 76.0543% 71.0269% 84.4494%

SpreadSubsample 5 74.3850% 74.2483% 77.9774% 76.0543% 71.0269% 84.4494%
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4.2  Summary 
 

 

In Summary, this experiment was carried out to ascertain whether oversampling and 

undersampling techniques including SMOTE, Resampling and SpreadSubsampling 

achieved highest performance of the classifiers. We found that the use of SMOTE and 

Resampling methods significantly improved the accuracy of the classifiers. They are 

reliable sampling methods that can be used for chronic disease data sets. However, 

SpredSubsampling has a great impact on the performance of the classifier, resulting in 

unstable accuracy. 

 

Furthermore, we found that the accuracy of the classifier is different on multiple data 

sets. We had to adjust the parameters of the rebalancing method, but different data sets 

gave us different results, some greatly improved, some decreased. This once again 

shows that a multiple data set is very important for the evaluation of classifiers. 

 

Of the classifiers, we found that Random Forest has the best stability and accuracy on 

the four data sets. It even reached the highest accuracy recorded (99.6584%) on the data 

set of ALF Resample0.4. 

 

Therefore, we recommend using strategies that include these classifiers or sampling 

techniques to build a risk assessment model for chronic disease data sets. 
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Chapter 5  

 

Validation  
 

 

Introduction 
 

 

Model validation is the process of predicting the credibility of results. Validation can 

ascertain whether the predicted value of the model can accurately predict the model. 

Validation techniques include fitting degree analysis, model calibration and checking 

the accuracy of observed and predicted values (Blischke, & Murthy, 2011). It is 

important to obtain a high degree of certainty when developing models for diagnostic 

or predictive purposes (Polyzotis, Zinkevich, Roy, Breck, & Whang, 2019).  

 

We described in Chapter 3 that this experiment used 70% of the data for training and 

30% of data for testing, so we can minimize the impact of data differences and better 

understand the characteristics of the model. Therefore, we selected the optimal three 

classifiers of the four data sets, put them on a testing set with the same adjustments and 

compared the accuracy obtained to find the classifier with the smallest error. The second 

way was to validate the ROC curve performance of the top three classifiers. 
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5.1 Classifiers Performance Validation  
 

 

5.1.1 UCI Data Set  

 

Fig 4.3 UCI Top 3 Classifiers  

 

 

 

 

Table 2.5 UCI Data set Training  

UCI Data set Training 

Classifier Rebalance method Accuracy Precision Recall  F-Measure 
ROC 

Area 

KNN (IBK) SMOTE 300 96.7892% 0.968 0.968 0.967 0.971 

Random Forest SMOTE 300 94.6142% 0.946 0.946 0.945 0.992 

Bayesian 

Network 
SMOTE 300 92.4909% 0.925 0.925 0.925 0.966 

 

Table 2.6 UCI Data set Testing 

UCI Data set Testing 

Classifier Rebalance method Accuracy Precision Recall  F-Measure 
ROC 

Area 

KNN (IBK) SMOTE 300 93.2624% 0.933 0.933 0.930 0.932 

Random Forest SMOTE 300 89.7163% 0.896 0.897 0.891 0.969 

Bayesian 

Network 
SMOTE 300 91.3712% 0.918 0.914 0.915 0.962 
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In the UCI data set, we selected three optimal classifiers from the training set. They 

were KNN (IBK) 96.7892% Random Forest 94.6142% and Bayesian Network 

92.4909%. These were the results produced in the SMOTE 300 method. We can see 

that the accuracy is very high. Then, in Table 2.6, we can see that the accuracy of these 

three classifiers in the testing set dropped significantly. KNN (IBK) dropped by 3.527%, 

Bayesian Network dropped by 1.119%, and Random Forest dropped by 4.898%. So in 

this data set we conclude that the Bayesian Network classifier is the most stable and has 

the least error. 

 

 

 

5.1.2 FHS Data Set  
 

Fig 4.4 FHS Top 3 Classifiers  

 

 

 

Table 2.7 FHS Data set Training  

FHS Data set Training 

Classifier 
Rebalance method 

Accuracy Precision Recall  F-Measure 
ROC 

Area 

Random Forest Resample 0.8 94.8770% 0.949 0.949 0.949 0.986 

KNN (IBK) Resample 0.8 89.8888% 0.906 0.899 0.803 0.947 

Bayesian Network SMOTE 300 86.6885% 0.866 0.867 0.866 0.920 
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Table 2.8 FHS Data set Testing 

FHS Data set Testing 

Classifier 
Rebalance method 

Accuracy Precision Recall F-Measure
ROC 

Area 

Random Forest Resample 0.8 94.8113% 0.951 0.948 0.943 0.919 

KNN (IBK) Resample 0.8 92.6101% 0.923 0.926 0.924 0.863 

Bayesian Network SMOTE 300 88.6351% 0.886 0.886 0.886 0.936 

In the FHS data set, our results in the training set are Random Forest 94.8770% obtained 

in the parameter resample 0.8, KNN (IBK) 89.8888% obtained in the parameter 

resample 0.8, and Bayesian Network 86.6885% obtained in the parameter SMOTE. We 

selected these three categories for the testing set, and the results (Table 2.8) show that 

Random Forest decreased by 0.065% to 94.8113%, KNN (IBK) increased by 2.721% 

to 92.6101%, and Bayesian Network increased by 1.946%. The results of these three 

classifiers in the training set and the testing set have relatively few errors. Particularly, 

Random Forest has a minimum error of only 0.065%. Therefore, Random Forest is the 

optimal classifier in the FHS data set. 

5.1.3 ALF Data Set  

Fig 4.5 ALF Top 3 Classifiers 

99.6584%
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Table 2.9 ALF Data set Training  

ALF Data set Training 

Classifier 
Rebalance method 

Accuracy Precision Recall  F-Measure 
ROC 

Area 

Random Forest Resample 0.4 99.6584% 0.997 0.997 0.99 0.998 

KNN (IBK) Resample 0.4 95.7547% 0.963 0.958 0.959 0.985 

SVM (LibSVM) Non-Rebalancing 95.2350% 0.952 0.952 0.952 0.500 

 

Table 3.1 ALF Data set Testing 

ALF Data set Testing 

Classifier 
Rebalance method 

Accuracy Precision Recall  F-Measure 
ROC 

Area 

Random Forest Resample 0.4 97.7117% 0.978 0.977 0.974 0.978 

KNN (IBK) Resample 0.4 96.8579% 0.966 0.969 0.967 0.957 

SVM (LibSVM) Non-Rebalancing 94.7063% 0.947 0.973 0.500 0.900 

 

In the ALF data set, we found that Random Forest achieved the highest 99.6584% 

obtained in the parameter resample 0.4, KNN, (IBK) reached 95.7545% in the 

parameter resample 0.4, and for SVM (LibSVM), 95.2350% was achieved in the 

unbalanced data set. The performance of these three classifiers in the training set is very 

good so let's look at their performances in the testing set. Random Forest 97.7117% is 

1.947% lower than its result in the training set, KNN (IBK) 96.8579% is 1.103% higher 

than its result in the training set, and SVM (LibSVM) is 0.529% lower than its result in 

the training set. Therefore, we found that with the lowest error, SVM (LibSVM) is the 

best classifier in the ALF data set. 
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5.1.4 Surgical Timing Data Set  
 

Fig 4.6 Surgical Timing Top 3 Classifiers  

 

 

Table 3.2 Surgical Timing Data set Training  

Surgical Timing Data set Training 

Classifier 
Rebalance method 

Accuracy Precision Recall  F-Measure 
ROC 

Area 

Random Forest Resample 0.4 92.6877% 0.928 0.927 0.927 0.985 

KNN (IBK) SMOTE 300  90.6024% 0.909 0.906 0.903 0.914 

Bayesian Network SMOTE 300 87.5715% 0.876 0.876 0.871 0.954 

 

Table 3.3 Surgical Timing Data set Testing  

Surgical Timing Data set Testing 

Classifier 
Rebalance method 

Accuracy Precision Recall  F-Measure 
ROC 

Area 

Random Forest Resample 0.4 94.6697% 0.949 0.947 0.942 0.991 

KNN (IBK) SMOTE 300  85.9168% 0.879 0.859 0.860 0.933 

Bayesian Network SMOTE 300 93.5747% 0.937 0.936 0.936 0.984 
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In the Surgical Timing data set, we found that the optimal classifiers are Random Forest 

92.6877% obtained in the parameter Resample 0.4, KNN (IBK) 90.6024% obtained in 

the SMOTE 300 parameter, and Bayesian Network 87.5715% in the SMOTE 300 

parameter. The result obtained from the testing set is that Random Forest 94.6697% is 

1.982% higher than in the training set, KNN(IBK) 85.9168% is 4.687% lower than in 

the training set, and Bayesian Network 93.5747% is 6.003% higher than in the training 

set. From this comparison, we found that the Random Forest classifier has the lowest 

error so is the best classifier in the Surgical Timing data set. 

 

 

5.2 ROC Curve Validation 
 

 

We selected the optimal classifiers obtained in the previous step to verify through the 

ROC curve. Our goal was to finally find the best classifier. The method of ROC curve 

verification is that the area under the curve represents the test accuracy. If the area under 

the curve is large, the test is more accurate.  

 

For our experiment, the diagnostic value is low when the area under the ROC curve is 

between 0.5 and 0.7; 

 

The diagnostic value is moderate when it is between 0.7 and 0.9; 

 

The diagnostic value is higher when it is above 0.9. 

 

 

The following Table 3.4 shows the top 3 optimal classifiers we have selected from the 

four data sets. 

 

Table 3.4 Top three classifiers 
 

Classifier Rebalance 

method 

Data 

Set 

Accuracy Precision Recall F-

Measure 

ROC 

Area 

Random 

Forest 

Resample 0.8 FHS 94.8770% 0.949 0.949 0.949 0.986 

Bayesian 

Network 

SMOTE 300 UCI 92.4909% 0.925 0.925 0.925 0.966 

SVM 
(LibSVM) 

Non-
Rebalancing 

ALF 95.2350% 0.952 0.952 0.952 0.500 
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5.2.1 Random Forest (FHS Data Set) 

ROC Curve 

Random Forest Resample 0.8 94.8770% 

ROC curve for Random Forest classifier with area of curve = 0.9863 (minority class) 

Fig 4.7 ROC curve for Random Forest (minority class) 

ROC curve for Random Forest classifier with area of curve = 0.9863 (majority class) 

Fig 4.8 ROC curve for Random Forest (majority class) 
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We found that Random Forest classifier has an area of curve of 0.9863 in both minority 

and majority classes on the Roc Curve. This result is very good and as we mentioned 

previously, when it is above 0.9 the diagnostic value is higher.  

5.2.2 Bayesian Network (UCI Data Set) 

ROC Curve 

Bayesian Network SMOTE 300 92.4909% 

ROC curve for Bayesian Network classifier with area of curve = 0.9661 (minority Class) 

Fig 4.9 ROC curve for Bayesian Network (minority class) 
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ROC curve for Bayesian Network classifier with area of curve = 0.9661 (majority class) 

Fig 5.1 ROC curve for Bayesian Network (majority class) 

The Roc Curve of Bayesian Network is 0.9661 in both minority and majority Classes. 

This verification shows that this model is very reliable.  
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5.2.3 SVM (LibSVM) (ALF Data Set) 
 

ROC Curve 

 

SVM (LibSVM) Non-Rebalancing 95.2350% 

 

ROC curve for SVM (LibSVM) classifier with area of curve = 0.5 (minority class) 

Fig 5.2 ROC curve for SVM (LibSVM) (minority class) 

 

ROC curve for SVM (LibSVM) classifier with area of curve = 0.5 (majority class) 

Fig 5.3 ROC curve for SVM (LibSVM) (majority class) 

 

 

 

The Roc Curve of SVM (LibSVM) is only 0.5 in both minority and majority classes. 

We also pointed out previously that the diagnostic value is only moderate when it is 

between 0.7 and 0.9 so the performance of this model is not very good. 
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5.3 Summary 
 

In summary, different experiments were conducted. The combination of various 

algorithms and processing methods constitutes the experimental study. In this study, 

different experimental combinations T= A * P were processed to select the best classifier. 

The values of different combinations are: A (algorithm) uses 6 classifiers; P (parameter) 

uses the SMOTE, Resample and SpreadSubsample of parameter combinations. 

 

We selected the top three classifiers from the four data sets and placed them in a test set 

for training with the same adjustments, and compared the accuracy of the obtained 

results. The classifier with the lowest error is the optimal classifier. Then we screened 

and used Roc Curve to confirm that Random Forest (RF) as found by the resample 

rebalancing method (RF-RESAMPLE) is the optimal classifier. 
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Chapter 6 

Conclusion 

This thesis undertook analysis research on the performance of resampling, 

oversampling, and undersampling techniques based on SMOTE, Resample, and 

Spreadsubsample methods in the diagnosis of chronic diseases. Using four chronic 

disease data sets, six different classifiers were evaluated and compared. Data sets are 

obtained by evaluating the performance of all different combinations of classifiers and 

rebalancing techniques. In addition, all the strategies were trained under different 

conditions, resulting in 72 different combinations (Table 3.5). By comparing these 

combinations, a more robust strategy was determined. 

Table 3.5 72 different combinations 

Six classifiers Three rebalancing Method Four Data sets 

SVM SMOTE UCI data set 

Naïve Bayes Resampling FHS data set 

KNN SpreadSubsampling ALF data set 

Random Forest Surgery Timing data set 

Bayesian Network 

Decision Tree 

The findings of this research restate the importance of techniques designed to help 

handle highly unbalanced data, such as SMOTE, Resample, and Spreadsubsample. The 

medical data is very complex, data set is extremely unbalanced especially in the case 

of disease and non-disease, so these techniques can be used to significantly improve the 

performance of the classifier. 

Furthermore, we trained and tested the performance of six classifiers and discovered 

the Random Forest classifier can get the best results. Therefore, the conclusion is that 



95 

Random Forest (RF) combined with Resample rebalancing method can achieve good 

results in the classification of chronic diseases. From the results, we can see that the 

RF-RESAMPLE classifier is the most effective classifier to predict chronic diseases 

based on the four data sets. On the other hand, it can be concluded that Resample 

method can improve the performance of the classifier by reducing the class imbalance. 

6.1 Contributions 

The main contribution of this research is our analyses’ of the classifiers and rebalance 

methods, and finding the best classifier to predict chronic diseases risk. This is very 

encouraging. The findings of this thesis are significant in at least four main areas. 

 We compared the performance of six classifiers; Support Vector Machine (SVM),

Naive Bayes, K-Nearest Neighbor (KNN), Random Forest, Bayesian Network and

J48 (Decision Tree). This has value for machine learning researchers to better

understand the performance of the six classifiers.

 In machine learning, different data sets have varying effects on classifier

performance. For this reason, we used four data sets to analyze and compare the

classifiers and find the optimal classifier. In the end, we found that Random Forest

performed best and most effectively of the four data sets.

 The analysis generated by this research is useful for machine learning, class

imbalance and chronic diseases. The conclusion of this research confirms the

importance of SMOTE, Resample and Spreadsubsample in dealing with highly

unbalanced data. Especially in the case of chronic diseases, there are many data

attributes and class imbalance. These techniques can be used to significantly

improve the performance of the classifier in accurately distinguishing diseases from

non-diseases.
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 Basically, the purpose of establishing a risk prediction model for chronic diseases 

should be to help medical researchers and doctors make correct judgments on 

patients, Therefore, an important development of the risk prediction model is to 

find the optimal classifier and rebalance method to help determine the most stable 

strategy. So we hope this research will be used for reference by doctors and 

medical researchers, ultimately eliminating the suffering caused by chronic 

diseases to patients. 

 

6.2 Limitations 
 

The limitations of our research need to be recognized. 

  

 The data sets chosen for this thesis are mainly from Europe and India and different 

ethnicities can have different results. Therefore, the effectiveness of chronic disease 

risk prediction models should be evaluated in multi ethnic groups. 

 

 The data sets used are open data sets, we did not actually collect the data in the 

hospital, so we question the applicability of the data collection. Furthermore, there 

was no feedback from these patients, which may reduce the performance of the 

results of this research. 

 

 We have compared six classification algorithms and found the best classifier. More 

classification algorithms can provide better diagnosis for chronic diseases. In 

addition, the model needs to be tested by doctors, especially chronic disease experts, 

before it can be applied to hospitals. 

 

 

 As for the selection of analysis tools, we found in the experimental stage that Weka 

tool's analysis speed slows down in the face of a large amount of data. And some 

effective algorithm packages are not available yet. Therefore, more efficient and 

comprehensive data analysis tools are needed for data analysis. 
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 For the research of rebalancing methods, we only compared SMOTE, Resample

and Spreadsubsample. Using more rebalancing methods for comparison could

help to find the best rebalancing methods.

6.3 Future Work 

In order to avoid the prejudice caused by the limited scale of chronic disease issues, 

future research should expand the data scale for data analysis. More data frames need 

to be included and pre-processed. The possible methods are as follows: 

 Collect large data sets of habits and medical, meteorological, environmental

data to help identify the causes of chronic diseases

 Can collaborate with a hospital to collect data from patients, obtain feedback

from patients and conduct follow-up study on the condition of patients, so as to

ensure the integrity of data.

 Considering the large expansion of SMOTE, Resample and Spreadsubsample,

it is necessary to create a more systematic framework to help determine which

methods are more suitable for chronic disease data sets and the basic

characteristics of data.

 Future work can be done to understand why the Resample - Random Forest is

superior to other strategies.

 More classifiers could be added for comparison to find the best risk prediction

model for chronic diseases.

 The research methods of the thesis can be applied to other disease surveillance

or other scientific research fields. The analytical procedures used in this thesis

are fully applicable to other areas of disease surveillance and scientific research,

and provide a solid theoretical basis for the analysis of the association between

different diseases, which could be of great benefit to disease surveillance and

prevention, and needs further research in the future.
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Appendix A 
 

 

Abbreviations 
 

CVD Cardiovascular Disease  

 

NCD non-communicable disease  

 

CHD Congenital heart disease 

 

T2DM Type 2 Diabetes Mellitus 

 

SMS short message service 

 

CAD coronary artery disease 

 

WHO World Health Organization 

 

HBP high blood pressure  

 

HF heart failure 

 

AHCD Adult Congenital Heart Disease 

 

BP blood pressure 

 

BMI body mass index  

 

ICC intra-class correlation coefficient 

 

EE energy consumption  

 

TST total sleep time  

 

SVM support vector machine 

 

FT function tree  

 

KNN k nearest neighbor 

 

ROC Curve Receiver Operating Characteristic Curve 

 

Weka Waikato Environment for Knowledge Analysis 
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Appendix B  
 

Missing value replacement  

 

 

 

 

Data set Splitting  
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Data Rebalancing With SMOTE: 

Filter – Supervised – Instance - SMOTE 
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Data Rebalancing With Resample: 

 

 

 
Filter – Supervised – Instance - Resample 

 

 

 

Data Rebalancing With SpreadSubsample: 
 

 
Filter – Supervised – Instance – SpreadSubsample 
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Appendix C 
 

 

 

 

SMOTE  
 

UCI Data set 

 

 
 

 
 

 
 

 

FHS Data set 

 

 
 

 

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 88.9074% 0.889 0.889 0.889 0.950

NaiveBayes 88.5738% 0.886 0.886 0.759 0.947

LibSVM 84.8207% 0.847 0.848 0.847 0.833

KNN (IBK) 94.5788% 0.946 0.946 0.945 0.958

J48 (Decision tree) 74.9791% 0.750 0.750 0.750 0.763

Random Forest 93.4946% 0.935 0.935 0.935 0.985

UCI Dataset

SMOTE 100 5 (default)

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 91.1821% 0.912 0.912 0.912 0.960

NaiveBayes 90.7987% 0.907 0.908 0.907 0.957

LibSVM 85.1757% 0.854 0.852 0.842 0.777

KNN (IBK) 95.9105% 0.959 0.959 0.959 0.960

J48 (Decision tree) 83.4505% 0.835 0.835 0.823 0.835

Random Forest 93.7380% 0.938 0.937 0.936 0.990

5 (default)SMOTE 200

UCI Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 92.4909% 0.925 0.925 0.925 0.966

NaiveBayes 92.2320% 0.922 0.922 0.922 0.964

LibSVM 84.4122% 0.857 0.844 0.819 0.688

KNN (IBK) 96.7892% 0.968 0.968 0.967 0.971

J48 (Decision tree) 87.0533% 0.869 0.871 0.860 0.848

Random Forest 94.6142% 0.946 0.946 0.945 0.992

SMOTE 300 5 (default)

UCI Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 82.3253% 0.817 0.823 0.819 0.844

NaiveBayes 81.9143% 0.812 0.819 0.814 0.839

LibSVM 74.2807% 0.743 0.743 0.743 0.500

KNN (IBK) 82.9072% 0.864 0.859 0.642 0.882

J48 (Decision tree) 74.2807% 0.743 0.743 0.743 0.499

Random Forest 85.4375% 0.874 0.854 0.833 0.888

100 5 (default)

FHS Dataset

SMOTE
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ALF Data set 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 85.1977% 0.850 0.852 0.851 0.895

NaiveBayes 84.6514% 0.845 0.847 0.845 0.893

LibSVM 65.8169% 0.658 0.658 0.658 0.500

KNN (IBK) 86.3944% 0.876 0.864 0.866 0.911

J48 (Decision tree) 74.6098% 0.738 0.746 0.737 0.770

Random Forest 90.4006% 0.911 0.904 0.900 0.927

5 (default)SMOTE

FHS Dataset

200

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 86.6885% 0.866 0.867 0.866 0.920

NaiveBayes 86.2447% 0.862 0.862 0.862 0.919

LibSVM 64.3624% 0.768 0.644 0.549 0.565

KNN (IBK) 85.9178% 0.874 0.859 0.860 0.933

J48 (Decision tree) 77.0668% 0.771 0.771 0.771 0.831

Random Forest 91.0089% 0.913 0.910 0.909 0.944

300 5 (default)SMOTE

FHS Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 93.1543% 0.939 0.932 0.935 0.934

NaiveBayes 92.6576% 0.936 0.927 0.930 0.931

LibSVM 90.9034% 0.909 0.909 0.909 0.500

KNN (IBK) 93.6045% 0.945 0.936 0.940 0.914

J48 (Decision tree) 90.9034% 0.909 0.909 0.909 0.498

Random Forest 94.7687% 0.951 0.948 0.938 0.931

SMOTE 100 5 (default)

ALF Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 94.9133% 0.945 0.943 0.944 0.959

NaiveBayes 93.9085% 0.942 0.938 0.939 0.957

LibSVM 86.9488% 0.869 0.869 0.869 0.500

KNN (IBK) 92.5167% 0.941 0.925 0.930 0.936

J48 (Decision tree) 86.9488% 0.869 0.869 0.869 0.499

Random Forest 96.2732% 0.964 0.963 0.960 0.957

SMOTE 200 5 (default)

ALF Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 94.8776% 0.949 0.949 0.949 0.969

NaiveBayes 94.5931% 0.947 0.946 0.946 0.969

LibSVM 83.3228% 0.833 0.833 0.833 0.500

KNN (IBK) 91.8896% 0.936 0.919 0.923 0.950

J48 (Decision tree) 87.2368% 0.859 0.872 0.860 0.792

Random Forest 96.5851% 0.967 0.966 0.964 0.969

SMOTE 300 5 (default)

ALF Dataset
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Surgical Timing Data set 

 

 
 

 
 

 
 

 

 

Resampling 
 

UCI Data set 

 

 
 

 

 

 
 

 

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 80.9889% 0.828 0.810 0.805 0.932

NaiveBayes 80.5296% 0.823 0.805 0.801 0.928

LibSVM 75.8648% 0.796 0.759 0.747 0.747

KNN (IBK) 85.5103% 0.859 0.855 0.854 0.904

J48 (Decision tree) 76.0299% 0.775 0.760 0.755 0.747

Random Forest 86.5078% 0.879 0.865 0.863 0.967

5 (default)SMOTE 100

Surgical timing Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 84.8672% 0.853 0.849 0.844 0.946

NaiveBayes 84.4360% 0.848 0.844 0.839 0.942

LibSVM 79.9138% 0.844 0.799 0.777 0.731

KNN (IBK) 88.8675% 0.893 0.889 0.886 0.898

J48 (Decision tree) 83.4998% 0.853 0.835 0.825 0.791

Random Forest 87.1425% 0.886 0.871 0.865 0.980

5 (default)SMOTE 200

Surgical timing Dataset

Filter Percentage nearestNeighbor Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 87.5715% 0.876 0.876 0.871 0.954

NaiveBayes 87.1024% 0.870 0.871 0.867 0.950

LibSVM 82.8939% 0.863 0.829 0.805 0.722

KNN (IBK) 90.6024% 0.909 0.906 0.903 0.914

J48 (Decision tree) 86.4080% 0.875 0.864 0.854 0.798

Random Forest 88.2002% 0.895 0.882 0.874 0.985

5 (default)SMOTE 300

Surgical timing Dataset

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 88.9423% 0.889 0.889 0.889 0.950

NaiveBayes 88.5817% 0.886 0.886 0.886 0.946

LibSVM 85.0962% 0.851 0.851 0.851 0.851

KNN (IBK) 94.2308% 0.942 0.942 0.942 0.959

J48 (Decision tree) 74.8798% 0.759 0.749 0.746 0.744

Random Forest 92.6683% 0.927 0.927 0.927 0.982

UCI Dataset

1 (default) 100 (default)Resample 1

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 87.7404% 0.877 0.877 0.877 0.949

NaiveBayes 87.6202% 0.876 0.876 0.876 0.944

LibSVM 84.4952% 0.845 0.845 0.845 0.844

KNN (IBK) 94.7715% 0.947 0.947 0.947 0.956

J48 (Decision tree) 75.3606% 0.767 0.754 0.751 0.735

Random Forest 92.6683% 0.927 0.927 0.927 0.982

UCI Dataset

Resample 0.8 1 (default) 100 (default)



116 

FHS Data set 

ALF Data set 

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 89.4231% 0.894 0.894 0.894 0.948

NaiveBayes 88.9423% 0.889 0.889 0.889 0.943

LibSVM 84.6154% 0.846 0.846 0.846 0.844

KNN (IBK) 94.2308% 0.943 0.942 0.942 0.957

J48 (Decision tree) 74.8798% 0.752 0.749 0.749 0.777

Random Forest 92.4279% 0.924 0.924 0.924 0.982

UCI Dataset

Resample 0.4 1 (default) 100 (default)

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 77.6280% 0.776 0.776 0.776 0.862

NaiveBayes 77.1563% 0.772 0.772 0.772 0.855

LibSVM 64.3194% 0.647 0.643 0.641 0.643

KNN (IBK) 89.6900% 0.909 0.897 0.896 0.958

J48 (Decision tree) 81.5701% 0.817 0.816 0.815 0.903

Random Forest 93.0593% 0.934 0.931 0.93 0.991

FHS Dataset

1 (default)Resample 1 100 (default)

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 77.2835% 0.772 0.773 0.772 0.854

NaiveBayes 76.4746% 0.764 0.765 0.764 0.846

LibSVM 57.0610% 0.571 0.571 0.571 0.500

KNN (IBK) 89.8888% 0.906 0.899 0.803 0.947

J48 (Decision tree) 78.4631% 0.784 0.785 0.783 0.865

Random Forest 94.8770% 0.949 0.949 0.949 0.986

FHS Dataset

Resample 0.8 1 (default) 100 (default)

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 80.6539% 0.802 0.807 0.804 0.841

NaiveBayes 79.8450% 0.792 0.798 0.794 0.833

LibSVM 71.1493% 0.711 0.711 0.711 0.500

KNN (IBK) 91.1021% 0.912 0.911 0.911 0.926

J48 (Decision tree) 71.1493% 0.711 0.711 0.711 0.498

Random Forest 94.4388% 0.947 0.944 0.943 0.968

FHS Dataset

Resample 0.4 1 (default) 100 (default)

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 94.9902% 0.951 0.950 0.950 0.992

NaiveBayes 93.7053% 0.940 0.937 0.937 0.989

LibSVM 76.4964% 0.766 0.765 0.765 0.765

KNN (IBK) 94.1282% 0.947 0.941 0.941 0.983

J48 (Decision tree) 87.2642% 0.888 0.873 0.871 0.974

Random Forest 98.0644% 0.981 0.981 0.981 1.000

ALF Dataset

1 (default) 100 (default)Resample 1

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 94.6812% 0.949 0.949 0.947 0.991

NaiveBayes 93.1360% 0.936 0.931 0.932 0.987

LibSVM 59.0436% 0.590 0.590 0.590 0.500

KNN (IBK) 94.5836% 0.952 0.946 0.946 0.985

J48 (Decision tree) 87.8497% 0.897 0.878 0.879 0.979

Random Forest 99.3169% 0.993 0.993 0.993 1.000

Resample 0.8 1 (default) 100 (default)

ALF Dataset
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Surgical Timing Data set 

SpreadSubsampling 

UCI data set 

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 93.2824% 0.938 0.933 0.934 0.981

NaiveBayes 91.3142% 0.922 0.913 0.916 0.975

LibSVM 77.1470% 0.771 0.771 0.771 0.500

KNN (IBK) 95.7547% 0.963 0.958 0.959 0.985

J48 (Decision tree) 83.9460% 0.832 0.839 0.834 0.889

Random Forest 99.6584% 0.997 0.997 0.990 0.998

Resample 0.4 1 (default) 100 (default)

ALF Dataset

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 80.2226% 0.827 0.802 0.798 0.930

NaiveBayes 79.6369% 0.821 0.796 0.792 0.923

LibSVM 75.0586% 0.800 0.751 0.740 0.751

KNN (IBK) 90.6384% 0.907 0.906 0.906 0.942

J48 (Decision tree) 75.5174% 0.775 0.755 0.751 0.748

Random Forest 91.4487% 0.920 0.914 0.914 0.985

Surgical timing Dataset

Resample 1 1 (default) 100 (default)

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 79.4884% 0.825 0.795 0.792 0.929

NaiveBayes 79.1077% 0.821 0.791 0.788 0.922

LibSVM 73.8163% 0.793 0.738 0.730 0.749

KNN (IBK) 90.7449% 0.908 0.907 0.907 0.945

J48 (Decision tree) 74.9780% 0.774 0.750 0.747 0.762

Random Forest 92.1214% 0.925 0.921 0.921 0.986

Surgical timing Dataset

Resample 0.8 1 (default) 100 (default)

Filter biasToUniformClass: randomSeed sampleSizePercent Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 78.1021% 0.824 0.781 0.781 0.929

NaiveBayes 77.5456% 0.819 0.775 0.776 0.922

LibSVM 71.7563% 0.791 0.718 0.714 0.749

KNN (IBK) 90.2470% 0.902 0.902 0.902 0.943

J48 (Decision tree) 72.8595% 0.776 0.729 0.728 0.743

Random Forest 92.6877% 0.928 0.927 0.927 0.985

Surgical timing Dataset

Resample 0.4 1 (default) 100 (default)

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 84.6995% 0.848 0.847 0.847 0.914

NaiveBayes 85.2459% 0.853 0.852 0.852 0.912

LibSVM 81.9672% 0.820 0.820 0.820 0.820

KNN (IBK) 91.1202% 0.912 0.911 0.911 0.930

J48 (Decision tree) 73.7705% 0.748 0.738 0.735 0.719

Random Forest 87.5683% 0.876 0.876 0.876 0.953

SpreadSubsample 1 1 (default)

UCI Dataset
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FHS Data set 

 

 

 
 

 
 

ALF Data set 

 

 
 

 

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 86.3145% 0.864 0.863 0.863 0.921

NaiveBayes 85.9544% 0.860 0.860 0.860 0.917

LibSVM 83.0732% 0.831 0.831 0.830 0.825

KNN (IBK) 93.0372% 0.931 0.930 0.930 0.936

J48 (Decision tree) 72.6291% 0.737 0.726 0.727 0.740

Random Forest 92.7971% 0.928 0.928 0.928 0.964

SpreadSubsample 3 1 (default)

UCI Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 86.3145% 0.864 0.863 0.863 0.921

NaiveBayes 85.9544% 0.860 0.860 0.860 0.917

LibSVM 83.0732% 0.831 0.831 0.830 0.825

KNN (IBK) 93.0372% 0.931 0.930 0.930 0.936

J48 (Decision tree) 72.6291% 0.737 0.737 0.726 0.740

Random Forest 92.7971% 0.928 0.928 0.928 0.964

SpreadSubsample 5 1 (default)

UCI Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 64.6119% 0.646 0.646 0.646 0.690

NaiveBayes 64.8402% 0.649 0.648 0.648 0.695

LibSVM 57.3059% 0.574 0.573 0.572 0.573

KNN (IBK) 57.4201% 0.576 0.574 0.572 0.587

J48 (Decision tree) 56.7352% 0.575 0.567 0.557 0.587

Random Forest 60.0457% 0.601 0.600 0.600 0.632

SpreadSubsample 1 1 (default)

FHS Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 73.5731% 0.719 0.736 0.725 0.686

NaiveBayes 74.4292% 0.721 0.744 0.728 0.692

LibSVM 75.0000% 0.750 0.750 0.750 0.500

KNN (IBK) 71.0046% 0.656 0.710 0.672 0.582

J48 (Decision tree) 75.0000% 0.750 0.750 0.750 0.497

Random Forest 75.3425% 0.737 0.753 0.656 0.633

SpreadSubsample 3 1 (default)

FHS Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 79.2998% 0.775 0.793 0.783 0.684

NaiveBayes 80.7458% 0.783 0.807 0.793 0.689

LibSVM 83.3330% 0.833 0.833 0.833 0.500

KNN (IBK) 80.2511% 0.740 0.803 0.763 0.574

J48 (Decision tree) 83.3333% 0.833 0.833 0.833 0.498

Random Forest 83.3333% 0.833 0.833 0.833 0.608

SpreadSubsample 5 1 (default)

FHS Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 73.3788% 0.734 0.734 0.734 0.802

NaiveBayes 74.7440% 0.748 0.747 0.747 0.814

LibSVM 59.7270% 0.597 0.597 0.597 0.597

KNN (IBK) 67.2355% 0.673 0.672 0.672 0.731

J48 (Decision tree) 69.9659% 0.707 0.700 0.697 0.668

Random Forest 67.5768% 0.676 0.676 0.676 0.717

SpreadSubsample 1 1 (default)

ALF Dataset
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Surgical Timing Data set 

 

 
 

 

 
 

 

 
 

 

 

 

 

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 76.7065% 0.772 0.767 0.769 0.801

NaiveBayes 77.5597% 0.776 0.776 0.776 0.810

LibSVM 75.0000% 0.750 0.750 0.750 0.500

KNN (IBK) 72.2696% 0.702 0.723 0.710 0.696

J48 (Decision tree) 75.0000% 0.750 0.750 0.750 0.496

Random Forest 76.0239% 0.778 0.760 0.670 0.719

SpreadSubsample 3 1 (default)

ALF Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 80.6030% 0.817 0.806 0.811 0.804

NaiveBayes 81.5131% 0.817 0.815 0.816 0.813

LibSVM 83.3333% 0.833 0.833 0.833 0.500

KNN (IBK) 79.4653% 0.766 0.795 0.778 0.668

J48 (Decision tree) 82.9352% 0.768 0.829 0.772 0.543

Random Forest 83.3902% 0.806 0.834 0.760 0.714

SpreadSubsample 5 1 (default)

ALF Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 77.8862% 0.806 0.779 0.774 0.900

NaiveBayes 77.8049% 0.804 0.778 0.773 0.896

LibSVM 73.8753% 0.806 0.739 0.724 0.739

KNN (IBK) 75.3252% 0.755 0.753 0.753 0.838

J48 (Decision tree) 74.9864% 0.770 0.750 0.745 0.740

Random Forest 81.7615% 0.833 0.818 0.816 0.912

SpreadSubsample 1 1 (default)

Surgical timing Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 74.3850% 0.812 0.744 0.748 0.905

NaiveBayes 74.2483% 0.811 0.742 0.747 0.901

LibSVM 77.9774% 0.785 0.780 0.782 0.771

KNN (IBK) 76.0543% 0.756 0.761 0.756 0.835

J48 (Decision tree) 71.0269% 0.781 0.710 0.715 0.740

Random Forest 84.4494% 0.843 0.844 0.843 0.923

SpreadSubsample 3 1 (default)

Surgical timing Dataset

Filter distributionSpread: randomSeed Classifier Accuracy Precision Recall  F-Measure ROC Area

Bayesian Network 74.3850% 0.812 0.744 0.748 0.905

NaiveBayes 74.2483% 0.811 0.742 0.747 0.901

LibSVM 77.9774% 0.785 0.780 0.782 0.771

KNN (IBK) 76.0543% 0.756 0.761 0.756 0.835

J48 (Decision tree) 71.0269% 0.781 0.710 0.715 0.740

Random Forest 84.4494% 0.843 0.844 0.843 0.923

SpreadSubsample 5 1 (default)

Surgical timing Dataset


