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Abstract 

Spiking neural networks (SNN) represent the third generation of the neural networks. They are 

inspired by the information processing principles in the human brain. The theory and 

applications of SNN can further benefit from: 

a) The use of new brain-inspired learning principles for more efficient learning in SNNs.

b) The use of quantum computation principles for novel learning mechanisms,

improvement in the SNNs’ performance, and parameter optimisation.

c) The use of the integration of the above.

To address point (a) outlined above, novel mathematical and computational models of spiking 

neural networks (SNN) are introduced in this thesis as generic SNN models, to perform both 

off-line and on-line prediction and classification tasks. These generic models are unified into 

one single framework called Evolving Predictive Unsupervised-Supervised deep learning 

algorithms for Spike Streams (EPUSSS) to perform both prediction and classification tasks in 

a hierarchical fashion.  

To address point (b) outlined above, the Quantum-Inspired Evolutionary Algorithm (QIEA) is 

improved using Chirikov chaotic map and used as the learning rule for SNNs. A search 

mechanism is proposed to recall, associatively, a pattern stored in the memory. A new 

parameter optimisation method to improve models’ performance is proposed. A novel 

Quantum Inspired Spiking Neural Network (QISNN) framework is introduced that combines 

a neuron’s macro level structural functionality with its micro level physical and structural 

functionality to demonstrate a biological behaviour and to reinforce the computational power 

of SNNs.  

To address point (c) outlined above, a novel Quantum Inspired Associative Memory for 

Spiking Neural Network (QIASM-SNN) is introduced to preserve the spiking activities 



XX 

produced by the proposed models in SNNs and to recall the stored memories in the presence 

of partial noisy data. 

Several methods for pre-processing and feature extraction of Spatio-temporal EEG data are 

proposed and illustrated on a real-world problem related to brain neurodegenerative disease. 

Also, a novel feature extraction method is introduced based on a combination of the proposed 

Chaotic Quantum-Inspired Evolutionary Algorithm and fuzzy rough set theory for clinical 

static data related to the EEG recordings. The purpose of this approach is to provide a potential 

for weighted learning of Spatio-temporal data based on the clinical and demographical 

observations of the subjects in the proposed methods.  

The thesis has mainly a theoretical contribution to the area of SNN and future investigations 

and applications will follow. To produce precise spiking activities, the idea of a novel neuron 

model inspired by the nuclear physic concept of Microtron Accelerator is presented as a future 

study to add a self-adaptable delay mechanism to the SNNs. As a future study, several pre-

processing techniques are also suggested for real-world datasets. 

Four papers are under preparation to submit in order to publish the main contributions 

elaborated in this thesis. 
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Chapter 1 Introduction 

Abstract 

This chapter presents the motivation for the development of brain- and quantum-inspired 

methods of SNN to further use brain information processing principles as an inspiration to 

improve the functionality of SNN. Both brain- and quantum information principles are 

intermixed in the human brain, and this is also a motivation for this research.   

1.1 Rationale and Motivation 

With the technological advancements in almost every field of human life such as science, 

business, and healthcare, a large amount of data is available to be collected from different 

sources. This data-driven era requires new techniques to analyse this immense data repository 

for various purposes.  

Machine learning techniques have been proven to be effective methods for analysing complex, 

nonlinear data and extracting patterns from them to classify or predict future events based on 

the correlation of historically learned data. Amongst these techniques, SNNs are powerful 

approaches to learn Spatio and/or Spectro-Temporal Data (SSTD) since they are using trains 

of spikes (binary temporal events) transmitted among spatially located synapses and neurons. 

The SNNs’ inherent fast computational power, event-based learning approach, energy 

efficiency, and hardware friendly characteristics make them a proper choice for emerging 

hardware/software computational technologies under the name of neuromorphic computational 

platforms.  

SNNs are composed of neurons that communicate by sequences (trains) of spikes (Ponulak and 

Kasinski, 2011; Maas1997). From 1952, when Hodgkin and Huxley introduced the first spiking 

neuron model (Hodgkin and Huxley, 1952), to the present, a lot of effort has been made to 
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develop and improve SNN and to solve a wide range of applications in the field of engineering, 

economics, health, and medicine.  

A spiking neural model is based on the principle of emitting an output spike signal in the 

presence of stimuli from one or many spike inputs. The probability of emitting a spike is 

increased by excitatory inputs and decreased by inhibitory inputs. To simulate a spiking neuron, 

several models have been proposed, among them Leaky-Integrate-and-Fire (LIF), Spike 

Response Model (SRM), and Izhikevich neuron model are the most popular ones. Spiking 

neuronal models are used to build SNN. The topology of the SNN models can be categorized 

in three classes: feedforward SNN; recurrent SNN, and hybrid SNN, with the latter one 

benefitting from both feedforward and recurrent topology advantages (Gerstner and Kistler, 

2002). 

Many coding strategies have been proposed to convert SSTD to train of spikes such as time to 

first spike, rank order coding, latency code, resonant burst model, coding by synchrony, and 

phase coding. (Gerstner and Kistler, 2002). Some of the popular spike encoding algorithms are 

Ben’s Spiker Algorithm (BSA), Threshold-based Algorithms, Step-Forward Spike Encoding 

Algorithm (SF) and Moving-Window Spike Encoding Algorithm (MW). For a review one can 

referrer to (Kasabov et al, 2015).  

So far, many supervised and unsupervised learning algorithms are proposed to train a SNN 

model. Spike Timing Dependent Plasticity (STDP) is an unsupervised learning algorithm. 

Remote Supervised Method (ReSuMe) and Spike Pattern Association Neuron (SPAN) are 

supervised learning algorithms. STDP which is a variant of Hebbian Learning is an 

unsupervised learning algorithm that is sensitive not only to the spatial but also to the temporal 

correlation between the spikes at pre- and postsynaptic neurons (Song, Miller, and Abbott, 

2000; Buchs and Senn, 2002; Kistler, 2002; Xie and Seung, 2004; Caporale and Dan, 2008). 
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ReSuMe and SPAN are Hebbian based supervised learning algorithms which are based on an 

error measured in a time window (Mohemmed et al., 2013).  

Using the above encoding and learning algorithms, SNN architectures and frameworks have 

been created, such as the evolving Spatio-temporal data machines (eSTDM) (Kasabov et 

al.,2015). The eSTDM has the potential to learn incrementally from data streams, including 

“on the fly” new input variables, output class labels or regression outputs, continuously 

adapting its structure and functionality, be visualised, and interpreted for new knowledge 

discovery and for a better understanding of the data and the processes that generated it. The 

eSTDM can be used for early event prediction due to the SNN’s ability to spike early before 

the whole input vectors (they were trained on) are presented. The eSTDM uses a framework 

called NeuCube (Kasabov, 2014), a 3D evolving Neurogenetic Brain Cube of spiking neurons 

that is an approximate map of the structural and functional areas of interest of an animal or 

human’s brain.  

All the above techniques represent the foundation of SNN. Based on this foundation, new 

methods need to be developed to improve SNN performance. In this thesis we have sought 

further inspiration from the brain and quantum computation to achieve this goal.      

1.2. Aims of Thesis and Research Questions 

This section provides the aims of this research and outlines the contributions that are made to 

achieve them. 

1.2.1 Research Questions 

In this thesis, the following research questions (RQ) are addressed:  
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RQ1 “How can unsupervised learning in SNN be integrated with local supervised and global 

supervised deep learning methods for predictive modelling and classification of spatio-

temporal data?”  

RQ2 “How can different types of neurotransmitter receivers be incorporated into SNN’s model 

synaptic connections to balance the network's spiking activity and help in the deep learning of 

more precise patterns?” 

RQ3 “How can a novel energy function be introduced to facilitate life-long learning in SNNs?” 

RQ4 “How can a quantum-inspired evolutionary algorithm (QIEA) be further developed using 

a quantum chaotic system (to become CQIEA) and applied for optimised learning of noisy 

data, searching a pattern in stored memory, and parameter optimisation in SNN?” 

RQ5 “How can the biologically probabilistic nature of spiking neurons and quantum 

mechanics concepts be integrated to reinforce all levels of computation in SNN, including 

quantum neurons, quantum synapses and chaotic quantum unsupervised-supervised learning?” 

RQ6 “How can spiking patterns be stored and recalled in an SNN for recognition and 

prediction tasks in the presence of noisy or partially incomplete data by introducing a novel 

quantum associative memory (QAM) for Spatio-temporal data?” 

RQ7 “How can the proposed QAM for storing and recalling spike patterns be improved in 

terms of time and space efficiency using the proposed CQIEA algorithm?” 

RQ8 “How to pre-process spatio-temporal data and to extract useful features that can help 

improve the applicability of neuromorphic computation for a real-world application” 

RQ9 “How can the mechanism of producing spiking patterns be improved in a self-adaptive 

manner according to the SNN by introducing a novel neuron model using nuclear physics 

concepts?” 
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1.2.2. Contributions of This Study  

In this thesis, I have suggested a novel Evolving Predictive Unsupervised-Supervised deep 

learning algorithms for Spike Streams (EPUSSS) to predict and classify the events in a unified 

framework. In the EPUSSS framework, both excitatory and inhibitory neurons are embedded 

in four different types of neurotransmitter receivers with different delays and functionality. In 

addition, an energy function and a neuron pruning mechanism are integrated into the EPUSSS 

model to ensure life-long learning behaviour.  

In the thesis, I have introduced an improved Quantum-Inspired Evolutionary Algorithm using 

Chirikov chaotic map (CQIEA) to be used as a learning rule for SNN, a search mechanism for 

associative memory, and a parameter optimisation technique for enhancing the proposed 

models’ performance. 

I have proposed a novel Quantum-Inspired Spiking Neural Network (QISNN) to demonstrate 

the biological neuron’s probabilistic behaviour and to reinforce the computational power of the 

spiking neural network. The QISNN model follows the two-level hierarchical learning 

structure of EPUSSS and consists of quantum neurons, quantum synapses, and quantum 

learning rules to perform both prediction and classification tasks in a unified framework.  

Another contribution of this thesis is introducing a Quantum-Inspired Associative Memory for 

Spiking Neural Network (QIASM-SNN) to store Spatio-temporal patterns and to recall them 

in the presence of noisy information.  

Many SNN models work on raw, unprocessed Spatio-temporal data, but in some cases pre-

processing and feature extraction from the data makes the SNN model more efficient, including 

the proposed models in this thesis. Some of the proposed methods in this thesis, such as CQIEA 

are applied to reduce the dimensionality of the data and the feature space. The real-world 

problem data is collected from existing Alzheimer’s disease and dementia data.   



6 

 

As a future direction, I have proposed a new neuron model based on the Microtron accelerator 

to enhance the proposed spiking model’s performance by controlling spike firing rates and 

delays. Also, a quantum-inspired fuzzy rough set theory is suggested as a future work for static 

and Spatio-temporal feature selection.  

The outcome of my thesis can act as a main source of reference for Artificial Intelligence and 

Machine Learning scientists, as well as neuroscientists and biologists by providing them a basis 

for developing a diagnosis system to predict brain cognitive activities, neurodegenerative 

disease progression and in neurorehabilitation. Figure 1-1 illustrates the main contributions of 

my PhD research. 

 

Figure 1-1: The main contributions of my PhD research 
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1.3 Thesis Structure 

In this thesis, all the developed methods are inspired by the NeuCube brain-like framework 

introduced in (Kasabov, 2014). In the following section, the thesis structure is provided. The 

schematic representation of the thesis structure can be seen in Figure 1-2.  

Figure 1-2: A schematic representation of the thesis structure 

Chapter 1 states the PhD study's motivations, goals, and research questions, and outlines 

methods to address these questions. 

Chapter 2 provides a brief review of biological spike-based learning in the brain and the 

NeuCube computational framework which are the biological inspiration and the basic network 

structure for the spiking neural models proposed in this thesis, respectively. 

Chapter 3 introduces a novel Evolving Predictive Unsupervised-Supervised deep learning 

algorithms for Spike Streams to create an integrated computational model of continuous deep 
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learning of streaming data or alternatively, of temporal (Spatio-temporal) data of fixed time 

window, encoded as spike streams. 

Chapter 4 introduces a novel Chaotic Quantum-Inspired Evolutionary Algorithm (QIEA) by 

suggesting a chaotic quantum gate that can be used as a learning algorithm, a search method 

for retrieving a stored pattern from a memory, and a parameter optimisation technique to 

improve models’ performance. 

Chapter 5 presents a novel Quantum Inspired Spiking Neural Network that combines neuron’s 

macro level structural with its micro level physical and structural functionality to demonstrate 

the biological behaviour and reinforce the computational power of spiking neural networks. 

The QISNN follows the EPUSSS framework principles to perform both prediction and 

classification tasks in a two-level hierarchical fashion. 

Chapter 6 proposes a novel Quantum-Inspired Associative Memory for Spiking Neural 

Networks to recall produced patterns by the SNN in the presence of partially noisy input data, 

achieving better computational efficiency and accuracy. 

Chapter 7 investigates the proposed models’ prediction, classification and pattern recalling 

power by applying them to the real-world brain neurodegenerative disease datasets. To increase 

the accuracy of learning from the data, several pre-processing methods are introduced including 

cleaning the dataset, oversampling techniques for balancing the datasets, and feature extraction 

using the Power Spectral Density (PSD) method for electroencephalogram (EEG) data.  

Chapter 8 summaries the thesis achievements, key findings, and contributions. Future 

directions are also suggested. In the future work, a novel neuron model inspired by the nuclear 

physics concept of Microtron Accelerator is introduced with the aim of adding a self-adaptable 

delay mechanism to SNN. Also, a quantum-inspired fuzzy rough set theory is suggested for 

feature extraction.  
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Chapter 2 . A Review of Biological Spike-Based 

Learning in the Brain and the NeuCube Framework 

Abstract 

This chapter presents some principles of information processing in the human brain which are 

used as source of inspiration for the brain inspired SNN models developed in this thesis. It also 

reveals the functionality of NeuCube which is a brain inspired SNN architecture, used as a 

basic structure for the novel methods and models proposed in this thesis.  

2.1. Introduction 

The first part of this chapter provides some biological perspective on learning and memory in 

the brain which helped to form a strong foundation for the proposed novel brain-like models in 

this thesis. In the second part of this chapter, the NeuCube framework and its modules including 

encoding, connectivity, unsupervised, and supervised learning are explained.  

2.2 Biological Learning in the Brain 

The human brain is the most complex biological system in nature. Understanding the brain 

functionality and behaviour can be used for building machines that can perform efficient 

computation, recognition and learning tasks as well as having a life-long memory storage to 

store and retrieve memories.  

The human brain is the central organ in the nerves system that controls all functions of the body 

and governs emotions, cognitions, memory, motor movements etc.  
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The brain is composed of three main parts: cerebrum, cerebellum, and brainstem (see Figure 

2-1).

The cerebrum is the largest part of the brain which is divided into two hemispheres (left and 

right). The cerebrum is responsible for controlling high level functions such as vision, hearing, 

speech, reasoning, emotions, learning, and fine control of movement.  

The cerebellum is located at the back of the brain, underlying the occipital and temporal lobes 

of the cerebral cortex. Despite the cerebellum small volume (approximately 10% of the brain’s 

volume) it contains over 50% of the total number of neurons in the brain. The cerebellum is 

involved in the functions like maintenance of balance and posture, coordination of voluntary 

movements, motor learning, and certain cognitive functions. 

The brainstem is the most inferior portion of the brain, adjoining and structurally continuous 

with the brain and spinal cord. The brainstem functions include regulation of heart rate, 

breathing, sleeping, and eating. It also conducts all information relayed from the body to the 

cerebrum and cerebellum and vice versa.  
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Figure 2-1: The major parts of the human brain (Bhagat, 2007). 

The brain contains approximately 100 billion nerve cells (neurons). Neurons are the elementary 

processing units in the nerves system with different size and shapes. However, all neurons 

consist of a cell body, dendrites, and an axon. Neurons are connected to each other by their 

dendrites and axons creating a complex lattice. The connection between two neurons is called 

synapse. The neuron which sends information through the synaptic connections to other 

neurons is called presynaptic neuron and the neuron that receives information from a synaptic 

connection is called postsynaptic neuron. The dendrites and axons play the role of receiving 

and sending information respectively and cell body acts as the information processor. Once the 

total input to the neuron’s cell body exceeds a certain threshold an electrical pulse called action 

potentials is generated and passes through axons to other neurons. 

In the brain, the information about a stimulus (e.g., light, sound, taste, smell, and touch) is 

encoded in a temporal pattern of action potentials and transmitted to the neurons in the brain 

through the synaptic connections.  
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Figure 2-2: The neuronal synaptic connections (part of the above image is retrieved from 

https://sbiswasphd.com/alive%3A-the-blog/f/the-broken-mind-mending-the-melancholy) 

There are two types of synapses in the brain: electrical and chemical synapses. Electrical 

synapses send electrical signals from one neuron to another using the direct passage of ions. 

While in chemical synapses, due to an action potential in the presynaptic neuron, a chemical 

messenger called neurotransmitter releases, diffuses through the synapse, and binds to 

receptors on the postsynaptic neuron. This binding between neurotransmitters and receptors 

generates an electrical signal in the postsynaptic neuron. Electrical synapses pass the signal 

very quickly, while chemical synapses transmit the signal from one neuron to another more 

slowly. However, chemical synapses can integrate information from multiple presynaptic 

neurons and determine whether the postsynaptic neuron continue to propagate the signal or not. 

Most of the synapses in the brain are chemical. Neurons can synthesise and release different 

types of neurotransmitters to the chemical synapses. There are two major types of 

neurotransmitters: small-molecule transmitter and large-molecule transmitter. Small-molecule 
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transmitters (neurotransmitters) are fast-acting and produce a short-term response to target cell. 

While large-molecule (neuropeptides) are slow-onset and produce long-lasting modulation of 

synaptic transmission to a group of neighbouring cells. Neurotransmitters have two types in 

terms of functionality: excitatory and inhibitory neurotransmitters. Excitatory 

neurotransmitters increase the likelihood of a postsynaptic action potential. In contrast, 

inhibitory neurotransmitters decrease the likelihood of a postsynaptic action potential. One of 

the most abundant excitatory neurotransmitters in the vertebrate nervous system is glutamate. 

There are two receptors in the postsynaptic cell to bind glutamate and activated an action 

potential: the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (known as 

AMPA receptor) and the N-methyl-D-aspartate receptor (known as the NMDA receptor). 

NMDA type receptors typically possess slower kinetics than AMPA type receptors.  

The gamma-Aminobutyric acid, or γ-aminobutyric acid or GABA is the most common 

inhibitory neurotransmitter in the central nervous systems and have two types of receptors: 

GABAA receptors and GABAB receptors. GABAA is involved in fast synaptic inhibition 

while GABAB is considered in slow synaptic inhibition. 

Glutamate neurotransmitters are involved in cognitive functions such as learning and memory 

in the brain while GABA neurotransmitters reduce the neuronal excitability throughout the 

nervous system (Pickel and Segal, 2014; Clark and Pazdernik, 2013; Watson and Greger, 2017; 

Smith, 2013).  

According to the neurological evidence, the brain physically changes throughout the lifetime 

which is the basis of adaptation, learning, and memory. Although the large-scale changes such 

as the growth of new neurons or dendrites can occur very rarely, minute-to-minute changes are 

continuously happening between neuronal connections. These changes in neuronal connections 
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which are the primary mechanism for learning and memory are known as “synaptic plasticity” 

(Ramirez & Arbuckle, 2016).  

Although most neurons and glial cell are formed by birth, the brain continues to develop by 

refining synapses till early adulthood. The synaptic refinement which includes dendrite 

development, synaptic pruning, and changes in neurotransmitter system allows brain to be 

modulated for learning and memory (Stephan et al. 2012).  

2.3 Biological Memory in the Brain 

Memory is referred to as the brain ability to recall experiences or information that is 

encountered or learnt previously. As developed in this thesis, the proposed methods of SNN 

are also memory based, here I give a brief review of the types of brain memories.  

According to Squire (2009), the study of learning and memory in the human brain has been 

divided into three main areas: philosophy, psychology, and biology. Based on the biological 

study of memory three main principles has been established to guide experimental work: 1) 

memory is a distinct cerebral function which is separable from other cognitive abilities. 2) The 

medial temporal lobe is not needed for immediate memory. 3) The medial temporal lobe is not 

the ultimate repository of memory. It can be deduced from these three principles that memory 

is not a unitary part of the mind but is composed of multiple systems that have different 

operating principles and different neuroanatomy (Squire, 2004).  

2.3.1 Types of Memory 

There are three main types of memory: sensory memory, short-term or working memory and 

long-term memory which function in different ways (see Figure 2-3). 
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Figure 2-3: Human memory types (Mastin, 2010) 

2.3.1.1 Sensory Memory 

Sensory memory is the shortest form of memory (less than half a second) which acts as a buffer 

for stimuli received through the five senses sight, hearing, smell, taste, and touch, which are 

retained accurately, but very briefly.  

2.3.1.2 Short-term Memory 

Short-term memory, often interchanged with the term "working memory," is a temporary recall 

of the information which last less than a minute. It can be considered as the ability to remember 

and process information in a small chunk for a short period of time. In fact, short-term memory 

has a low capacity and once the information is processed either is quickly dismissed or transfer 

to the long-term memory by consciously repeat to retain the information. The short-term 

memory is supported by transient patterns of neuronal communication in the regions of the 

frontal, prefrontal, and parietal lobes of the brain. 
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2.3.1.3 Long-term Memory 

Long-term memory is the brain mechanism for storing, managing, and recalling information 

over a long period of time. The process of establishing long-term memory requires physical 

changes in the neuron’s structure which is called long-term potentiation (LTP). LTP occurs 

when neuron’s synaptic connections strengthening persistently upon recent patterns of activity, 

this phenomenon is called synaptic plasticity. In other words, making meaningful association 

amongst information that process in the short-term memory can establish a long-term memory 

semantically which is widely spread throughout the interconnected brain regions. One of the 

brain regions that has an important role in transition of information from short-term memory 

to long-term memory is hippocampus. Although the hippocampus is not itself used to store 

information, it is an essential part of forming and indexing memories for later access. 

There are different types of long-term memories which sometimes require conscious efforts to 

recall a piece of information which is called declarative memory and is mostly about facts and 

events. Other times unconsciously recollect stored information without actively thinking about 

it which is called procedural memory abilities such as skill learning and habit learning.  

2.3.2 Brain Regions Involve in Formation of Different Memory 

Types  

Although the human brain is highly interconnected, there are six major regions identified for 

different types of memory to store: the hippocampus, the neocortex and the amygdala which 

are responsible for long-term memories, the basal ganglia and cerebellum which are regions to 

store sensory memories, and prefrontal cortex that is known for storing short-term memories 

(ScienceDaily, 2021). These regions are shown in Figure 2-4 and their functionality is briefly 

described in the following. 
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2.3.2.1 Hippocampus 

The hippocampus is located in the brain's temporal lobe and contains a group of neurons that 

involve forming and indexing episodic memories for later access. Episodic memories are 

autobiographical memories from specific events. As it was mentioned before, although the 

hippocampus is an essential part of the brain for the transition from short-term memory to long-

term memory, it is not the place for permanent memory storage, and it is not needed for motor 

memories. 

2.3.2.2 Neocortex 

The neocortex or cerebral cortex is a sheet of neural tissue that forms the outside surface of the 

brain. The neocortex is 2 – 4 mm thick and contains six distinct but interconnected layers. Its 

groovy and folded pattern allows covering a large surface area (typically almost 0.12 𝑚2) to

fit within the confines of the skull. Hereupon, about 90% of all the brain’s neurons are located 

in the neocortex, mainly in its surface layer which is known as the “grey matter”. The inner 

surface of the neocortex or the “white matter” consists of over 170,000 km myelinated axons 

to support the active nerve cells. The sensory perception, generation of motor commands, 

spatial reasoning and language are part of the neocortex functionality. Information that forms 

temporally in the hippocampus can be transferred to the neocortex and form long-term 

memories. 
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Figure 2-4: Brain regions for storing memories (retrieved from https://qbi.uq.edu.au/brain-

basics/memory/where-are-memories-stored) 

2.3.2.3 Amygdala 

The amygdala is an almond-shaped structure in the brain’s temporal lobe which modifies the 

strength and emotional content of memories. Therefore, the amygdala role is important since 

the strong emotional memories such as those associated with shame, joy, love, or grief are 

difficult to forget. This fact shows that there are interactions between the amygdala, 

hippocampus and neocortex which forms ‘stability’ of a memory. Another key function of the 

amygdala is forming new memories specifically related to fear. Fearful memories can be 

formed after only a few repetitions.  

2.3.2.4 Cerebellum 

The cerebellum located at the rear base of the brain which plays an important role in fine motor 

control is also involved in some cognitive functions such as attention, language, emotional 

functions by regulating fear and pleasure responses in the processing of procedural memories. 
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2.3.2.5 Prefrontal Cortex 

The prefrontal cortex is the part of the neocortex that is placed at the very front of the brain. 

The prefrontal cortex is involved in many complex cognitive functions that require to hold 

information in the short-term memory. There is also a functional separation between the left 

and right sides of the prefrontal cortex. The left side is more involved in verbal working 

memory while the right side is more active in spatial working memory, such as remembering 

where an event occurred.  

The biological information related to the brain structure, nerves system, and its learning 

mechanisms which is reviewed in the above sections has helped to build the foundation of the 

brain-like computational models proposed in this thesis. 

In the following sections, the SNN structure and the NeuCube framework is reviewed since 

they provide the structural and computational basis for the proposed models in this thesis.  

2.4. A Brief Overview of Spiking Neural Networks and the 

NeuCube Framework 

Since the proposed models in this thesis follow the NeuCube framework principles, a brief 

overview of this framework is provided below. 

NeuCube is a generic unified framework based on spiking neural network to learn, visualise, 

and interpret Spatio and/or Spatio-temporal Data (SSTD), introduced by Professor Nikola 

Kasabov in 2014 (see Figure 2-5). The NeuCube framework is an approximated map of 

structural and functional areas of interest of the brain with a 3D recurrent structure of spiking 

neurons connected to each other according to small world connectivity (Hu et al., 2014; Bassett 

& Bullmore, 2017). NeuCube framework consists of three main modules: input data encoding 
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module, 3D SNN reservoir module, and evolving output classification module which are 

briefly overviewed in the following sections.  

 

Figure 2-5: The overall NeuCube framework architecture (a simplified presentation- only one encoding 

algorithm is shown out of many possible and only one type of a classifier) 

2.4.1 Input Data Encoding Module  

As it was mentioned before in chapter 1, most of the problems in nature require spatial and/or 

Spatio-temporal data (SSTD) that include measuring spatial or/and spectral variables over time. 

SNNs have the potential to learn SSTD using trains of spikes (binary temporal events) 

transmitted among spatially located synapses and neurons. Since these data are intrinsically 

continuous valued, the encoding strategies needed to be applied to convert SSTD to train of 

spikes. NeuCube uses a variant of spike encoding strategies such as Ben’s Spiker Algorithm 

(BSA), Temporal Contrast (Threshold-based representation—TBR), Step-Forward Spike 

Encoding Algorithm (SF), Moving-Window Spike Encoding Algorithm (MW) (Schrauwen & 

Campenhout, 2003; Dhoble, Nuntalid, Indiveri, & Kasabov, 2012; Petro, Kasabov, & Kiss, 

2020). In this thesis, the BSA encoding algorithm (Schrauwen and Campenhout, 2003) was 

preferred over other methods because it is less sensitive to changes in the filter and threshold 

and as a result provides a more accurate spike train even for bipolar cases. BSA uses the finite 
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impulse response (FIR) filter for converting analog waveforms to spike trains. To convert the 

continuous-valued data to spike train using BSA, for every instant of the input analog signal 𝑠 

at in time 𝜏 two error metrics are calculated as follow: 

𝑒1 =∑𝑎𝑏𝑠(𝑠(𝑘 + 𝜏) − ℎ(𝑘))

𝑀

𝑘=0

(2-1) 

and  

𝑒2 =∑𝑎𝑏𝑠(𝑠(𝑘 + 𝜏))

𝑀

𝑘=0

(2-2) 

Where, 𝑀 is the number of filter taps, 𝑠 is input signal, and ℎ(𝑘) is the impulse response of a 

FIR filter at tap 𝑘. Error 𝑒1 is yielded from subtracting the filter coefficients from the 

subsequent signal values at each time point and error 𝑒2 is the signal value without changing 

at each time point. If 𝑒1 ≤ 𝑒2 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then a spike is generated, and the filter 

(coefficients) is subtracted from the input signal. The optimal value for the threshold is 0.9550 

according to (Schrauwen and Campenhout, 2003). Figure 2-6 shows a sample signal (one 

channel of an EEG signal) converted to spike train using BSA. The pseudocode of the BSA 

algorithm can be seen in  Figure 2-7. 
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Figure 2-6: BSA encoding algorithm result for a sample input signal. 

The BSA algorithm pseudocode can be seen in Figure 2-7. 

Bens Spiker Algorithm (BSA) 

1: for i = 1 to size(𝑠) 

2: 𝑒1 = 0 , 𝑒2 = 0  

3:       for j = 1 to size(ℎ) 

4:  if i+j-1 <= size(𝑠) 

5: 𝑒1 += abs(𝑠(i+j-1) - ℎ(j))

6: 𝑒2 += abs(𝑠(i+j-1));

7:     end if 

8:         end for 

9: if 𝑒1<= (𝑒2- threshold)

10:     output(i)=1 

11:    for j = 1 to size(ℎ) 

12:   if i+j-1 <= size(𝑠) 

13:       𝑠(i+j-1) - = ℎ (j) 
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14:   end if 

15:     end for 

16:     else 

17:         output(i)=0 

18:    end if 

19:  end for 

Figure 2-7: Pseudocode for BSA algorithm (Schrauwen and Campenhout, 2003) 

2.4.2 3D SNN Reservoir (SNNr) Module 

The SNNr module in NeuCube has a 3D structure inspired by the structural or functional 

connections between different areas of the human brain. SNNr can provide an approximate 

map of spatially located areas of the brain according to standard brain atlas coordinate systems 

such as Talairach Atlas (Talairach and Tournoux, 1988). Although NeuCube is inspired by 

human brain structural and functional neuronal connectivity, it can approximate a map of 

spatial information of different types of data such as environmental (geographical) data. It has 

a default map for data with no specific structures. In this section, the SNNr network 

connectivity, its neuron models, and the unsupervised learning algorithm that governs the 

changes of the synaptic connection strength are explained. 

2.4.2.1 Small-world Connectivity 

Establishing an initial topological (structural) connectivity amongst network’s neurons as well 

as assigning initial weights to these synaptic (neuronal) connections is important for learning 

the Spatio-temporal properties of the data in the model. 
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One of the successful approaches to creating connectivity that resembles the biological 

connectivity structure of the brain’s neurons (Bullmore and Sporns, 2009) is small-world 

connectivity proposed by Watts and Strogatz in 1998. 

Small-world connectivity is mathematical graph connectivity in which the probability of 

neurons connected to each other is proportional to their distance. In a small-world network, the 

typical distance 𝐿 between two randomly chosen neurons increases proportionally to the 

logarithm of the number of neurons 𝑁 in the network. 

 𝐿 ∝ log𝑁 (2-3) 

 

Figure 2-8: Small-world connectivity creates a local recurrent reservoir network within the NeuCube architecture 

After establishing the neuronal synaptic connections, the initial weights’ value can be a random 

uniform distribution between (1, 0) or all weights can be simply initialised to a small 

homogeneous value (see Figure 2-8). 
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2.4.2.2 Spiking Neuron Models 

In biological neurons, an input electrical pulse (spike) can cause the potential difference in the 

postsynaptic neuron’s cell interior and its surroundings. This potential difference is called the 

membrane potential 𝑢(𝑡). If the change in the neuron’s membrane potential is positive, the 

presynaptic connection to the neuron is called excitatory. While the negative change in the 

neuron’s membrane potential is said to be caused by an inhibitory presynaptic connection. 

When there is no input spike, the neuron is at resting state with a resting membrane potential 

𝑢𝑟𝑒𝑠𝑡. When the neuron is at resting state, the membrane potential has a strong negative 

polarisation of about -65 mV. Once an input spike arrives at the neuron, the membrane potential 

changes (eighter positively or negatively) and decays back to constant membrane potential. 

Input spike from an excitatory synapse decreases the negative polarisation which is called 

depolarization. On the other hand, input from inhibitory synapse increases the negative 

polarisation of the membrane potential further and is called hyperpolarisation. 

 When the membrane potential reaches the firing threshold 𝜗 a spike (action potential), with an 

amplitude of about 100 mV, propagates from the neuron to all the postsynaptic neurons 

connected to it. Then the membrane potential decays back to a value below the resting potential 

through a hyperpolarisation phase which is called spike-afterpotential. The critical membrane 

values that can surpass the firing threshold and release a spike is about 20 to 30 mV above the 

resting potential. To reach this critical value about 20 to 50 presynaptic spikes must arrive 

within a short time window before the postsynaptic action potentials are triggered. After an 

action potential, a refractory period occurs in which the neuron is not able to emit a spike even 

though it reaches the firing threshold and generally lasts one millisecond. 

In Figure 2-9, the shape of a postsynaptic action potential (PSP) is determined by the time 

course (𝑡 − 𝑡𝑖
(𝑓)
) which denoted the time that has passed since the last output spike. Presynaptic
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input spikes that arrive shortly after neuron 𝑖 emits a spike, have a smaller effect on the 

membrane potential than those which arrive much later. 

 

Figure 2-9: The shape of postsynaptic potential (PSP) 

The membrane potential linearly responds to all input spikes received form presynaptic 

neurons. In other words, the total PSP of a neuron at time 𝑡 is the summation of all PSPs before 

it surpasses the firing threshold 𝜗. This behaviour can be formalised as follows: 

 𝑢𝑖(𝑡) =  ∑∑𝜖𝑖𝑗 (𝑡 − 𝑡𝑗
(𝑓)
)

𝑓𝑗

+ 𝑢𝑟𝑒𝑠𝑡 
(2-4) 

In Eq. 2-4, 𝑢𝑖(𝑡) is the membrane potential of the postsynaptic neuron 𝑖 at time 𝑡 which has 

several synaptic connections to the presynaptic neurons 𝑗 = 1,2, … , 𝑛, 𝜖𝑖𝑗 is the postsynaptic 

potential (PSP) which is evoked by a spike,  𝑡𝑗
(𝑓)

 indicates the time that the presynaptic neuron 

𝑗 propagates a spike to the postsynaptic neuron 𝑖, and 𝜖𝑖𝑗 (𝑡 − 𝑡𝑗
(𝑓)
) is the time course of PSP 

that evokes by presynaptic spikes. Figure 2-10, shows the schematic diagram of the behaviour 

of a postsynaptic neuron 𝑖 when receives spikes from two presynaptic neurons 𝑗 = 1 and 𝑗 =

2. 
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Figure 2-10: A schematic diagram of a postsynaptic neuron behaviour which receives spikes from two 

presynaptic neurons (Gerstner and Kistler, 2002) 

The firing time 𝑡𝑖
(𝑓)

  (𝑓 = 1,2, … ) is the moment of passing the firing threshold 𝜗. The spike

train of the neuron 𝑖 which is the neuron’s response to a stimulating current is denoted as a 

sequence of firing times: 

𝑆𝑖(𝑡) =  ∑𝛿(𝑡 − 𝑡𝑖
(𝑓)
)

𝑓

(2-5) 

where 𝛿(𝑥) is the Dirac function, 𝛿(𝑥) = 1 means a spike occurs and 𝛿(𝑥) = 0 means no 

spike: 

{

𝛿(𝑥) = 0  𝑥 = 0 

∫ 𝛿(𝑥)𝑑𝑥 = 1
∞

−∞

  𝑥 ≠ 0 

(2-6) 

Since the action potential always has roughly the same form, the trajectory of the membrane 

potential during spike can be described by a certain time course denoted by 𝜂(𝑡 − 𝑡𝑖
(𝑓)
). The

term 𝜖𝑖𝑗 in Eq. (2-4) describes the neuron 𝑖 response to spikes of presynaptic neuron j and 𝜂 

describes the form of the spike and spike-afterpotential. 
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In a biological study of neurons, four types of neuronal dynamics are observed in the presence 

of a stimulating current 𝐼 (Gerstner and Kistler, 2002). 

1) Adaptation – Most neurons in the brain will respond to the stimulating current steps

with a spike train. The time intervals between spikes increase successively until the

neuron reaches a steady state of periodic firing dynamics. This adaptation behaviour is

a slow process and happens after several spikes’ arrival.

2) Inhibitory – In the brain, there are fast spiking neurons as well that show a faster

adaptation. Many inhibitory neurons in the brain show fast neuronal dynamics in the

presence of a stimulus.

3) Bursting – In this type of neuron, neuronal response to a constant stimulation is a

sequence of spikes that is periodically interrupted by rather long intervals.

4) Rebound – Another observed neuronal dynamic, is a response to an inhibitory input

called a post-inhibitory rebound. Even an inhibitory input can trigger an action

potential, many neurons respond to the inhibitory spike with one or more rebound

spikes.

Figure 2-11 shows the aforementioned four types of neuronal dynamics in the presence of a 

stimulating current 𝐼. 



29 

Figure 2-11: Four types of neuron response dynamics to a stimulating current (Gerstner and Kistler, 2002) 

The biological neural dynamics are very complex and depends on a lot of environmental 

parameters. So far, several simplified models have been proposed to model the above-

mentioned biological behaviour of a neuron for computational purposes. Amongst them, three 

formal neuron models: Leaky-Integrate-and-Fire (LIF), Izhikevich neuron model, and 

Probabilistic Spiking Neuron model (Knight, 1972; Izhikevich, 2003; Kasabov, 2010) are 

chosen to explain in this thesis because of their computational efficiency and biological 

plausibility. In this chapter, LIF and Izhikevich neuron models are explained as the basic 

neuron models for the SNNr module. Furthermore, in chapters 4 and 8, the Probabilistic 

Spiking Neuron model, as well as a novel neuron model based on Microtron nuclear 

accelerator, are introduced, respectively. 

The Leaky-Integrate-and-Fire (LIF) neuron model is the best-known formal spiking neuron 

model. LIF model which simulates a threshold model of neuronal firing, is a parallel capacitor 



30 

 

𝐶 – resistor 𝑅 circuit driven by a current 𝐼(𝑡). The stimulating current 𝐼(𝑡) charges the RC 

circuit and causes the membrane potential voltage 𝑢(𝑡) increases over the capacitor. Once 𝑢(𝑡) 

passes the firing threshold 𝜗 (i.e., 𝑢(𝑡) =  𝜗) at time 𝑡𝑖
(𝑓)

, an output pulse 𝛿(𝑡 − 𝑡𝑖
(𝑓)
) is 

generated. After applying a low-pass filter on the presynaptic spike 𝛿(𝑡 − 𝑡𝑖
(𝑓)
) an input current 

pulse 𝛼(𝑡 − 𝑡𝑖
(𝑓)
) is generated. After a spike is generated by the postsynaptic neuron 𝑖, the 

membrane potential leaks to 𝑢𝑟𝑒𝑠𝑡 < 𝜗 and the neuron enters the refractory phase. The leakage 

between spikes is determined by the 𝜏𝑚 parameter which is referred to as the membrane time 

constant. Eq. 2-7, formulate the LIF model. 

 
𝜏𝑚
𝑑𝑢

𝑑𝑡
=  𝑢𝑟𝑒𝑠𝑡 − 𝑢(𝑡) + 𝑅𝐼(𝑡) 

(2-7) 

 

 

Figure 2-12: LIF neuron model (Gerstner and Kistler, 2002) 

In a network of spiking neurons with the LIF model, the current 𝐼(𝑡) is generated by the activity 

of the presynaptic neurons. As it was mentioned before, if the presynaptic neuron 𝑗 fires a spike 
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at 𝑡𝑗
(𝑓)

, the postsynaptic neuron 𝑖 receives a current with time course 𝛼(𝑡 − 𝑡𝑖
(𝑓)
). Then the total 

input current to neuron 𝑖 can be calculated as follows: 

 𝐼𝑖(𝑡) =  ∑𝑤𝑖𝑗
𝑗

∑𝛼(𝑡 − 𝑡𝑖
(𝑓)
)

𝑓

 
(2-8) 

where he 𝑤𝑖𝑗 is a measure of the efficacy of the synaptic connection between neuron 𝑗 and 𝑖. 

Figure 2-12 demonstrates the LIF neuron model behaviour. 

The Izhikevich neuron model benefits from both the computational efficiency of the 

integrate-and-fire neurons and the biologically plausible principle of the Hodgkin–Huxley 

model. This model is a two-dimensional (2-D) system of ordinary differential equations of the 

form: 

 𝑑𝑣

𝑑𝑡
= 0.04𝑣2(𝑡) + 5𝑣(𝑡) + 140 − 𝑢(𝑡) + 𝐼(𝑡) 

(2-9) 

 

 𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣(𝑡) − 𝑢(𝑡)) 

(2-10) 

where 𝑣 represents the membrane potential of the neuron, 𝑢 is a membrane recovery variable, 

which provides negative feedback to 𝑣, and 𝐼 is the synaptic current injected to the neuron. 

Once the membrane potential reaches the firing threshold 𝜗 (+30 mV), the membrane voltage 

and the recovery variable are reset according to Eq. 2-11. 

 𝑖𝑓 𝑢 > 𝜗 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 (2-11) 

where 𝑎 is the time scale of the recovery variable 𝑢. The smaller values of 𝑎 result in slower 

recovery. The parameter 𝑏 illustrates the sensitivity of the recovery variable 𝑢 to the 

subthreshold fluctuations of the membrane potential 𝑣. The parameter 𝑐 indicates the after-
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spike reset value of the membrane potential 𝑣. The parameter 𝑑 describes the after-spike reset 

of the recovery variable 𝑢. The recommended parameter setting according to Izhikevich (2003) 

are 𝑎 = 0.02, 𝑏 = 0.2, 𝑐 = −65 mV and 𝑑 = 2. Izhikevich demonstrated that with different 

parameter setting for 𝑎, 𝑏, 𝑐, and 𝑑 the neuronal dynamics of well-known cortical excitatory 

neurons can be simulated. The current 𝐼(𝑡) is generated by the activity of the presynaptic 

neurons in a network of spiking neurons can be calculated using Eq. 2-8. 

2.4.2.3 Unsupervised Learning in the NeuCube SNNr Module 

After creating the network connectivity, initialising the synaptic weights, and defining the 

neurons’ model in the reservoir module, the synaptic weights must be modified according to a 

learning rule to perform recognition tasks. 

According to the biological observation of neuron dynamics, the amplitude of the postsynaptic 

response can change over time in the presence of the incoming stimulus. This phenomenon 

indicates a characteristic of the synaptic connections that are said to be the basis of memory 

and learning in the brain. The efficacy of the synaptic changes called synaptic plasticity can be 

described by a synaptic weight parameter. If the incoming stimulus causes a persistent increase 

in the synaptic transmission efficacy, then it is called long-term potentiation (LTP) of a 

synapse. On the other hand, if the result of stimulation causes a decrease in the synaptic 

efficacy, it is called long-term depression of synapse (LTD). 

In the spiking neural network, a synaptic weight parameter 𝑤𝑖𝑗 is assigned to each synaptic 

connection to illustrate the amplitude of the postsynaptic response to an incoming action 

potential (spike). These synaptic weights can be adjusted or modified based on a learning rule 

to optimise the performance of the network for a given recognition task. 

Spike-Timing Dependent Plasticity (STDP) learning (Song, Miller, & Abbott, 2000) is a type 

of Hebbian learning rule. It governs the synaptic efficacy based on the temporal correlation 
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between presynaptic spike arrival and postsynaptic firing. STDP decreases the amplitude of 

postsynaptic response if repeated presynaptic spikes arrive a few milliseconds before 

postsynaptic action potentials. This early arrival leads to Long-Term Potentiation (LTP) of the 

synapses. On the other hand, STDP increases the amplitude of postsynaptic response if repeated 

presynaptic spikes arrive a few milliseconds after postsynaptic action potentials. This late 

arrival leads to Long-Term Depression (LTD) of the synapses (Martinez and Derrick, 1996). 

The change in the synaptic weight between a presynaptic neuron 𝑗 and a postsynaptic neuron 𝑖  

(∆𝑤𝑗) depends on the relative timing between presynaptic spike arrivals and postsynaptic firing. 

Considering 𝑡𝑗
𝑓
 is a presynaptic spike arrival time at synapse 𝑗  where 𝑓 = 1,2,3,… and 𝑡𝑖

𝑓
 with

𝑓 = 1,2,3,… is the firing times of the postsynaptic neuron 𝑖. The total weight change ∆𝑤𝑗 is 

calculated as: 

∆𝑤𝑗 =∑∑𝑊(𝑡𝑖
𝑓
− 𝑡𝑗

𝑓
)

𝑁

𝑛=1

𝑁

𝑓=1

(2-12) 

where 𝑊(𝑥) is the learning window calculated as follows: 

𝑊(𝑥) = 𝐴+ exp (−
𝑥

𝜏+
)   𝑓𝑜𝑟 𝑥 > 0 

𝑊(𝑥) = 𝐴− exp (
𝑥

𝜏−
)   𝑓𝑜𝑟 𝑥 < 0 

(2-13) 

The parameters 𝐴+ and 𝐴− scale the strength of potentiation and depression, respectively. The 

time constants 𝜏+ = 10𝑚𝑠 and 𝜏− = 10𝑚𝑠 define the width of the positive and negative 

learning window. Figure 2-13 illustrate the schematic diagram of the STDP rule. 
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Figure 2-13: Spike-Timing Dependent Plasticity (STDP) rule 

2.4.3 Evolving Output Classification Module in NeuCube 

In one implementation, the output classification module in NeuCube uses the dynamic evolving 

spiking neural network (deSNN) (Kasabov et al., 2013) which is a fast online classifier to train 

the output neurons based on an association between class labels and the training samples. To 

this end, after the SNNr module is trained using STDP unsupervised learning rule, the input 

data is again propagated through the network and the output classifier learns its behaviour and 

dynamically assigns it to an output class neuron. In the NeuCube architecture, all the SNNr 

neurons are connected to each of the evolved neurons of the deSNN classifier. This network 

structure allows deSNN to learn the complex Spatio-temporal patterns generated in the SNNr. 
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The following section describes the deSNN supervised learning rule used in NeuCube in more 

detail. 

2.4.3.1 Supervised Learning in the Output Classification Module 

As it was mentioned before, NeuCube uses deSNN as its supervised learning mechanism along 

with the STDP unsupervised learning rule to adapt the postsynaptic weights connected to the 

classifier from reservoir neurons. 

The deSNN algorithm uses the rank-order (RO) learning and Spike Driven Synaptic Plasticity 

(SDSP) spike-time learning rule in a semi-supervised way to train neurons to recognise the 

Spatio-temporal pattern using only one iteration of training in an online mode (Kasabov et al., 

2013). In fact, deSNN uses both the information which is contained in the order of the first 

input spikes and the information extracted from the timing of the later incoming spikes that is 

learnt by the dynamic synapses. In deSNN, the information coming from the order of the 

incoming spikes is learnt using RO learning rules and then the initial connection weights are 

modified through SDSP learning over the rest of the Spatio-temporal pattern. 

The deSNN method in NeuCube creates output neurons (evolved) incrementally for each 

training sample to capture clusters of input data and assign them to a winning class output node. 

There are two variants of deSNN used in NeuCube during the recall phase; a) deSNNm which 

uses the SNNr neurons’ postsynaptic potentials (PSP) dynamics to identify the winning neuron, 

b) deSNNs which defines the winning neuron based on Euclidean distance between neurons’

synaptic weights over time. The following deSNN learning mechanism is described in more 

detail. 

In the deSNN training phase, for each M-dimensional training input pattern 𝑃𝑖, a new output 

neuron 𝑖 is created and connected to each neuron in the “trained” SNNr module. The synaptic 

weights 𝑤𝑗𝑖 (𝑗 = 1,2, … ,𝑀) between the input neuron 𝑗  in the reservoir and the newly created 
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output neuron 𝑖 are calculated based on the order of the incoming spikes on the corresponding 

synapses using the RO learning rule: 

 𝑤𝑗,𝑖 =  α.𝑚𝑜𝑑
𝑜𝑟𝑑𝑒𝑟(𝑗.𝑖) (2-14) 

where α is a learning parameter (between 0 and 1), the 𝑚𝑜𝑑 is a modulation factor which 

indicates the importance of the order of the first spike (between 0 and 1), 𝑤𝑗,𝑖 is the synaptic 

weight between a presynaptic neuron 𝑗 and the postsynaptic neuron 𝑖, and 𝑜𝑟𝑑𝑒𝑟(𝑗, 𝑖) denotes 

the order of the first spike arriving through synapse 𝑗𝑖 among all spikes arriving from all other 

synapses to the neuron 𝑖. For the first spike to neuron 𝑖 the 𝑜𝑟𝑑𝑒𝑟(𝑗, 𝑖) is 0 and increases 

according to the input spike order at other synapses. 

After initializing the synaptic weight 𝑤𝑗,𝑖 according to the first spike at the synapse 𝑗, this 

synaptic weight is adjusted using the SDSP (or STDP) learning rule. According to SDSP rule, 

if there is a spike at synapse 𝑗 at time 𝑡, the synaptic weight 𝑤𝑗,𝑖 increases with a small positive 

value called the positive drift parameter. On the other hand, if there is no spike at synapse 𝑗 at 

time 𝑡, the synaptic weight 𝑤𝑗,𝑖 decreases with a small negative value called the negative drift 

parameter. 

 ∆𝑤𝑗,𝑖(𝑡) =  𝑒𝑗(𝑡). 𝐷 (2-15) 

In Eq. 2-15, while presenting the learnt input pattern 𝑃𝑖 to the output neuron 𝑖, if at time 𝑡 there 

is a successive spike at synapse 𝑗, e𝑗(𝑡) = 1 and if at time 𝑡 there is no spike at synapse 𝑗, 

e𝑗(𝑡) = −1. Under the influence of synaptic dynamisms denoted by e𝑗(𝑡) parameter, the 

parameter 𝐷 can have positive or negative values for up and down synaptic drifts. This 

behaviour helps the output neurons capture the temporal relationship of spike timing across the 

learnt pattern 𝑃𝑖 at time 𝑡. 
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While presenting the input training pattern to the output neurons, a spiking threshold 𝑇ℎ𝑖 is

assigned to the output neuron 𝑖. The firing threshold 𝑇ℎ𝑖 is calculated as a fraction (𝐶) of the 

total 𝑃𝑆𝑃𝑖 (called 𝑃𝑆𝑃𝑖𝑚𝑎𝑥) of neuron 𝑖 accumulated during the presentation of the input 

pattern in a time-window 𝑇. During the recall phase, this firing threshold makes the output 

neuron release a spike in the presence of patterns similar to the learnt ones during training. 

𝑃𝑆𝑃𝑖𝑚𝑎𝑥 = ∑∑𝑓𝑗(𝑡). 𝑤𝑗,𝑖(𝑡)

𝑀

𝑗=1

𝑇

𝑡=0

(2-16) 

𝑇ℎ𝑖 =  𝐶. 𝑃𝑆𝑃𝑖𝑚𝑎𝑥 (2-17) 

In Eq. 2-16,  𝑇 represents the time units in which the input pattern is presented to the output 

neuron, 𝑀 is the number of the input synapses to the neuron 𝑖, 𝑓𝑗(𝑡) shows the firing dynamics

of synapse 𝑗 at time 𝑡 (i.e.,  𝑓𝑗(𝑡) = 1 if there is a spike at synapse 𝑗 for this learnt input pattern

at time 𝑡 and 𝑓𝑗(𝑡) = 0 if otherwise), and 𝑤𝑗𝑖(𝑡) is the efficacy of the synapse 𝑗𝑖 calculated at

time 𝑡 using of Eq. 2-15. 

The parameter 𝐶 that is used for calculating the 𝑇ℎ𝑖  threshold (Eq. 2-17) enables neuron 𝑖 to 

emit a spike (recognise the input pattern) before the whole learnt pattern is presented. 

As it was mentioned before, in the recall phase, deSNN can use two different approaches for 

comparing input patterns with already learnt patterns in the output neurons: 

a) deSNNm – In this approach, the output neuron’s membrane potential (PSP) is used to

define the best output match for the input pattern. Namely, the new data input which is

encoded to a spike train is propagated to all trained output neurons and the first output

neuron that responds to it with a spike (i.e., its PSP reaches the 𝑇ℎ𝑖 threshold) determines
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the output class. Eq. 2-18, formulate the membrane potential calculation for recalling a 

pattern: 

𝑃𝑆𝑃𝑖(𝑡) =  ∑∑𝑓𝑗(𝑙).𝑤𝑗,𝑖(𝑙)

𝑀

𝑗=1

𝑇

𝑙=0

(2-18) 

where 𝑡 is the current time unit during pattern presentation in the recall mode, 𝑀 is the 

number of the input synapses to the neuron 𝑖, 𝑓𝑗(𝑙) = 1 if there is a spike at time 𝑙 at

synapse 𝑗 for the recall pattern and 𝑓𝑗(𝑙) = 0 if there is no spike, and 𝑤𝑗𝑖(𝑡) is the efficacy

of the synapse 𝑗𝑖 calculated at time 𝑙. 

b) deSNNs – In this approach, for each recall input pattern a new output neuron is created in

the way that is created in the training phase, then the synaptic weight vector of the newly

created output neuron is compared to the existing output neurons using Euclidean distance.

The closest output neuron in terms of synaptic connection weights to the new neuron is the

‘winner’ output class. This method, which is inspired by transductive reasoning principles,

uses nearest neighbour classification in the synaptic weight space to capture a new pattern

or match it to an existing one. Figure 2-14 and Figure 2-15 illustrate the deSNN

pseudocode and learning schema, respectively.

Dynamic Evolving Spiking Neural Network (deSNN) 

1: Initialise deSNN parameters: 𝑀𝑜𝑑, 𝐷, 𝐶, 𝛼, and 𝑠𝑖𝑚 (similarity threshold) 

2: for each input pattern 𝑃𝑖  

3:       create a new output neuron 𝑖 

4: initialise synaptic weights 𝑤𝑖(0) using RO learning rule denoted in Eq. 2-14

5: 

modify the synaptic weights 𝑤𝑖  for successive spikes on the corresponding synapses using SDSP

rule denoted in Eq. 2-15 

6: calculate 𝑃𝑆𝑃𝑖𝑚𝑎𝑥 using Eq. 2-16

7: calculate the firing threshold 𝑇ℎ𝑖  for neuron 𝑖 using Eq. 2-17
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8: 

        if the new wight vector 𝑤𝑖  is similar to an existing output neuron using Euclidean distance 

similarity measure and 𝑠𝑖𝑚 threshold 

9:                   merge the two neurons by averaging their threshold and synaptic weights 

10:         else 

11:                  add new output neuron to the network 

12:        end if 

13:          end for 

Figure 2-14: Pseudocode for deSNN algorithm (Kasabov et al., 2013) 

The deSNN algorithm is a computationally efficient learning algorithm due to its one-pass 

online incremental learning mechanism and improves the classification times remarkably. 

 

Figure 2-15: The deSNN learning schema. 

2.5 Chapter Summary 

This chapter provided the background information about some principles of brain information 

processing used further in this thesis for the development of new SNN methods. The chapter 

also describes the SNN architecture NeuCube (Kasabov, 2014) used as a baseline and as 

inspiration for the development of the new SNN methods in the rest of the chapters. Altogether, 
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the biological brain structure, learning, and memory along with the computational models and 

framework introduced in this chapter have helped to propose and develop the brain-like 

structural and functionality for the novel framework and learning algorithms in this thesis. 
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Chapter 3 . Evolving Predictive Unsupervised 

Supervised deep learning algorithms for Spike 

Streams: EPUSSS 

Abstract 

This chapter presents the Evolving Predictive Unsupervised Supervised deep learning 

algorithms for Spike Streams (EPUSSS). EPUSSS is a unified framework for SNN, including 

different algorithms to perform prediction and classification in a two-level hierarchical fashion. 

The main principles of this model were first proposed in (Kasabov, 2018, pages 221-226), and 

here they are fully developed and improved as a working framework, along with their 

illustration on exemplar data. Since EPUSSS is a deep learning SNN model, this chapter 

introduces and reviews deep learning neural networks as a relevant comparative background 

to the topic. 

The chapter addresses the following research questions: 

• RQ1 “How an unsupervised learning in SNN be integrated with local supervised and

global supervised deep learning methods for predictive modeling and classification in

one unified framework?”

• RQ2 “How can different types of neurotransmitter receiver be incorporated into SNN’s

model synaptic connections to balance network’s spiking activity and help to create

more precise patterns?”

• RQ3 “How can a novel energy function be introduced for a life-long learning in

SNNs?”
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3.1 Introduction 

One of the most prominent challenges scientists face is making sense of complex dynamic 

patterns found in multimodal streaming data, ‘hidden deep in time’. If such patterns can be 

interpreted, then our ability to explain phenomena in nature, understand the mechanisms of 

human cognition, and predict future events will be significantly improved. The current state-

of-the-art of Artificial Intelligence (AI) is deep neural networks (DNNs) (Bengio, 2009; 

Schmidthuber, 2014; LeCun et al., 2015; Goodfellow et al, 2016). Despite their success in 

large-scale pattern recognition (Krizhevsky et al., 2012; Esteva et al. 2017), they have severe 

constraints when learning from continuous streaming data. They do not capture patterns from 

data that include both time and space, they are slow to learn, require the processing of 

unnecessarily large amounts of data, and are mainly applied to static datasets. 

Inspired by the ability of the human brain to learn and predict long temporal sequences (e.g., 

music, texts, navigation pathways, etc.), a novel computational model for deep-in-time 

machine learning and predictive modelling of streaming data called Evolving Predictive 

Unsupervised-Supervised deep learning algorithms for Spike Streams (EPUSSS) is introduced 

here. In the proposed approach, data continually stream into a brain-like model at every time 

point (millisecond, day, etc.). As causal relationships of patterns are learnt, the model retains 

and evolve its structure. The knowledge of these causal relations become more deeply 

embedded as more temporal data enters the model. 

The model is characterized by 1) learning patterns from multimodal streaming data; 2) fast, 

incremental adaptive, and theoretically ‘life-long’ learning; 3) the rule allows the SNN to 

evolve its structure from data; 4) apply unsupervised and supervised learning modes; 5) early 

and accurate future event prediction including events that are hidden deep-in-time. 
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The objective of the proposed method is to create an integrated computational model of 

continuous deep learning of streaming data or alternatively, of temporal (Spatio-temporal) data 

of fixed time window, encoded as spike streams. As only a partial case, the data can be of a 

fixed time window, but without any restrictions in the length. A model will learn all data 

entered as a sequence of spike frames and will evolve meaningful internal Spatio-temporal 

patterns that can be stored from time to time for retrospective analysis. If an input pattern of a 

specified length is entered, with a known output, a specific pattern will be activated (as a deep 

trajectory of spikes in the model) and this pattern can be learnt for the prediction task. 

3.2 Previous Work 

A Predictive model uses historical data to provide a calculated suggestion for future events by 

modelling the dynamics of a complex system. Predictive models have been widely used in 

many real-world applications like financial time series prediction, weather and natural hazards 

forecasting, prediction of the progress of a disease, etc. In the following, a brief review of 

spiking neural models for prediction tasks is provided. 

3.2.1 Predictive Models Using Spiking Neural Networks 

Yang and Zhongjian (2011) introduced a predicting model based on spiking neural networks 

(SNNs) to predict China annual grain yields. Kaplan et al. (2013) inspired by the retinotopic 

cortical areas architecture, presented a network model of conductance-based integrate-and-fire 

neurons. They implemented predictive coding through network connectivity using connection 

delays and tuned properties of the source and target cells to predict the motion in tracking a 

moving dot experiment. Reid et al. (2013) used a Polychronous Spiking Network for financial 

time series prediction. Reid et al. (2014), in another effort, used a Polychronous Spiking 
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Network for the prediction of sunspot and auroral electrojet index. Tu et al. (2014) used a 

Spiking Neural Network reservoir (SNNr) and dynamic evolving Spiking Neuron Network 

(deSNN) classifier within the NeuCube framework for the prediction tasks. Gibson et al. (2014) 

presented learnable temporal delays at both dendrites and axons for a spiking neural network 

to forecast temporal sequences in a multi-step prediction mechanism. In their model, neurons 

can function asynchronously to predict future events in a video sequence by learning the 

temporal structure of space-time events adapting to multiple scales. Gibson et al. (2014) 

proposed a spiking neural network to perform a long-range prediction task based on the 

DVS128 data. Gilra and Gerstner (2017) proposed a supervised learning scheme for the 

feedforward and recurrent connections in a network of heterogeneous spiking neurons to 

reproduce the non-linear body dynamics caused by motor commands. They backpropagated 

the output error, which depends on the presynaptic activity, through the random connections 

with a negative gain, causing the network to follow the desired dynamics. At the same time, an 

online and local rule changes the weights. Zhou and Wachs (2017) proposed the Cognitive 

Turn-taking Model (CTTM) to achieve early turn-taking prediction. This model process 

multimodal human communication cues both implicit and explicit and predict human turn-

taking intentions in an early stage. Brusca et al. (2017) utilized the NeuCube framework for 

the prediction of wind farm energy production. Hamano et al. (2017) used a 3-dimensional 

network of locally connected neurons with the NeuCube framework to predict blood pressure. 

Despite the remarkable outcome of the above-mentioned research works, spiking neural 

networks suffer from scalability and accuracy. They also lack a proper mechanism to deal with 

large scale data without affecting the accuracy and computational time. Another missing 

concept here is deep learning techniques to improve the ability to extract hidden features from 

input data to improve learning outcomes. In the following, some of the works in the literature 

on the deep learning approaches combined with SNNs are reviewed. 
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3.2.2 Deep Learning in Spiking Neural Networks 

Since the last decade, the concept of deep structured learning, which is commonly called deep 

learning or hierarchical learning, has emerged as a new area of machine learning and signal 

processing research. Deep learning models consist of multiple layers or stages of nonlinear 

information processing and includes methods for supervised or unsupervised learning of 

feature representation at successively higher, more abstract layers. Some of the deep learning 

techniques proposed so far are Stacked Autoencoders, Deep Belief Networks, Deep Boltzmann 

Machine, Convolutional Neural Networks, Data Stacking Networks, Compound Hierarchical-

Deep Models, Convolutional Deep Belief Networks and Deep Long-Short Term Memory 

Neural Networks (Deng and Yu, 2013; Langkvist et al., 2014; Cai and Liu, 2016). 

Although deep learning has demonstrated very successful performance in learning complex, 

high dimensional features, it suffers from the famous problem of vanishing or exploding 

gradients when the error signal is back-propagated, also known as the longtime lag problem. 

Initialization of the deep learning architecture including the number of layers and their neurons’ 

activation functions and input connections is another difficulty (Langkvist et al., 2014; 

Schmidhuber, 2015). Currently, many researchers are trying to overcome deep learning 

drawbacks (Schmidhuber, 2015). 

Deep learning techniques have been successfully applied to time-series data (Langkvist et al., 

2014; Gashler and Ashmore, 2016) which share a lot of similar features with spatio-spectro 

temporal data (SSTD) which Spiking Neural Networks (SNNs) due to using trains of spikes 

(binary temporal events) transmitted among spatially located synapses and neurons have 

potential to learn them effectively (Gerstner and Kistler, 2002). Although deep learning relies 
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on a differentiable activation function and cannot handle discrete spikes, there are several 

efforts done to adapt deep learning mechanisms to SNNs: 

Diehl et al. (2016) presented a train-and-constrain methodology that enables the mapping of 

machine-learnt (Elman) RNNs on a substrate of spiking neurons while being compatible with 

the capabilities of current and near-future neuromorphic systems. This "train-and-constrain" 

method consists of first training RNNs using backpropagation through time, then discretizing 

the weights and finally converting them to spiking RNNs by matching the responses of artificial 

neurons with those of the spiking neurons. O’Connor and Welling (2016) introduced a spiking 

Multi-Layer Perceptron to do backpropagation on a spiking network. The authors formulate a 

deep spiking network whose function is equivalent to a deep network of Rectified Linear 

(ReLU) units. Then a spiking version of backpropagation to train this network is introduced. 

Compared to a traditional deep network, the Deep Spiking Network can make “early guess” 

about the class associated with a stream of input events, before all the data has been presented 

to the network, the training procedure consists only of addition, comparison, and indexing 

operations, which potentially makes it very amenable to efficient hardware implementation, 

the amount of computation that the network does is a function of the data, rather than the 

network size. This is especially useful given that the proposed network tends to learn sparse 

representations. Lee et al. (2016) proposed a novel technique, which treats the membrane 

potentials of spiking neurons as differentiable signals, where discontinuities at spike times are 

only considered as noise. This enables an error backpropagation mechanism for deep SNNs, 

which works directly on spike signals and membrane potentials. Thus, compared with previous 

methods relying on indirect training and conversion, their technique has the potential to capture 

the statics of spikes more precisely. Esser et al. (2016) adapted deep convolutional neural 

networks to perform classification tasks on neuromorphic hardware. The authors provided a 

description of the relevant elements of deep convolutional networks and the TrueNorth 
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neuromorphic chip. They described how the essence of the former can be realized on the latter. 

Esser et al. (2015) resolved the incompatibility between backpropagation, which uses 

continuous-output neurons and synaptic weights, and neuromorphic designs, which employ 

spiking neurons and discrete synapses. Their approach was to treat spikes and discrete synapses 

as continuous probabilities, which allows training the network using standard backpropagation. 

The trained network naturally maps to neuromorphic hardware by sampling the probabilities 

to create one or more networks, which are merged using ensemble averaging. Hunsberger and 

Eliasmith (2015) trained spiking deep networks using leaky integrate-and-fire (LIF) neurons 

and achieve state-of-the-art results for spiking networks on the CIFAR-10 and MNIST dataset. 

They showed that biologically plausible spiking LIF neurons can be integrated into deep 

networks and can perform as well as other spiking models. Diehl et al. (2015) presented a set 

of optimisation techniques to minimize performance loss in the conversion process for 

ConvNets and fully connected deep networks. Their techniques include using rectified linear 

units (ReLUs) with zero bias during training and using a new weight normalization method to 

help regulate firing rates. The authors used a method for converting an ANN into an SNN that 

enables low latency classification with high accuracies already after the first output spike. Cao 

et al. (2015) proposed a novel approach for converting a deep CNN into an SNN that enables 

mapping CNN to spike-based hardware architectures. Their approach first adapts the CNN 

architecture to fit the requirements of SNN, then trains the adapted CNN in the same way as 

one would with CNN, and finally applies the learnt network weights to an SNN architecture 

derived from the tailored CNN. Henderson et al. (2015) proposed a scheme for learning 

connectivity in spiking neural networks that learns instantaneous ring rates that are conditional 

on the activity in other parts of the network. Their scheme is independent of the choice of 

neuron dynamics or an activation function and network architecture. Their method involves 

two simples, online, local learning rules that are applied only in response to occurrences of 
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spike events. Indiveri et al. (2015) presented a full custom hardware implementation of a deep 

neural network, built using multiple neuromorphic VLSI devices that integrate analogue 

neuron and synapse circuits together with digital asynchronous logic circuits. The deep network 

comprises an event-based convolutional stage for feature extraction connected to a spike-based 

learning stage for feature classification. Huang et al. (2015) provided an overview of the 

Extreme Learning Machine (ELM) from the theoretical perspective, including the interpolation 

theory, universal approximation capability, and generalization ability. They reviewed 

improvements made to ELM to enhance its stability, sparsity, and accuracy under general or 

specific conditions and compared it with the deep learning system. 

Most of the works in the above literature suggested the concept of deep learning in SNNs by 

combining convolutional layers with SNNs or using spiking neurons in CNN architecture. 

There is no method that can demonstrate deep learning of input patterns in SNN as part of its 

internal learning mechanism instead of embedding convolutional layers or borrowing the 

concept of spiking neurons in the CNN structure. 

 In this thesis, a novel computational SNN model for deep learning of spike streams is 

introduced which demonstrates deep learning as part of its learning mechanism within a 

recurrent network of spiking neurons. 

As it was stated in chapter one, learning methods in spiking neural networks are mostly based 

on Spiking Time Dependent Plasticity (STDP) which is an unsupervised learning algorithm. 

However, there are many attempts that have been made to introduce an effective supervised 

learning mechanism to enhance the accuracy of the SNNs. Supervised learning in SNNs is not 

an easy process in comparison to Artificial Neural Networks (ANNs) because of their 

discontinuous nature. One of the popular supervised learning algorithms in ANNs is the error 

backpropagation technique because of its fast convergence that is a result of using the gradient 
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descent optimisation technique. However, this technique requires differentiability, which is 

suitable for continuous networks, while SNNs are discontinuous networks. 

To overcome the limitation of using the backpropagation algorithms in SNNs, the discrete-

valued functions can be approximated with linear functions during the learning phase by using 

a threshold function or firing rates as continuous values to solve the problem of differentiability 

(Bohte & Poutré, 2000; Bohte et al. 2002; Schrauwen & Campenhout 2004; Lee et al., 2016; 

Matsuda, 2016; Wu et al., 2018; Zhang et al., 2020; Anwani & Rajendran, 2020). 

In some other approaches, STDP is combined with reinforcement learning reward and penalty 

mechanism inspired by the roles of neuromodulators such as Dopamine (DA) and 

Acetylcholine (Ach) called rewarded-modulated spike timing-dependent plasticity (R-STDP) 

to provide supervised learning ability for spiking neural networks (Farries & Fairhall, 2007; 

Legenstein, Pecevski, & Maass, 2008; Gardner, Sporea, & Gruning, 2014; Frémaux & 

Gerstner, 2015; Aswolinskiy & Pipa, 2015; Mozafari, et al. 2018). 

The novel EPUSSS computational model introduced in this chapter has a two-level learning 

structure: a local learning mechanism based on the SpikeProb (Bohte, Kok, & Poutré, 2000) 

and a global learning mechanism according to the R-STDP rule to demonstrate more 

biologically plausible learning behaviour like the brain. 

3.3 The EPUSSS Learning Principles 

Neuroscientists proposed theories that in which learning in the brain is not only because of 

synaptic plasticity but also is due to some sort of error backpropagation mechanism (neuronal 

feedback) that leads to self-regulation of brain activities (Strehl, 2014). However, the 

backpropagation algorithms in artificial neural networks are biologically implausible due to the 

lack of local error representation, symmetry of forwards and backwards weights, and 
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unrealistic models of neurons (Whittington and Bogacz, 2019). The EPUSSS model which is 

inspired by biologically learning theories and adopted the NeuCube framework as its backbone 

structure provides a more biologically plausible learning model with brain-like characteristics 

by addressing the above-mentioned issues. EPUSSS, which is a type of recurrent SNN model 

has two-level learning mechanisms that resemble the biological learning in the brain: 

a) a local learning mechanism in which the synaptic plasticity is combined by neuronal 

feedback from input data dynamics for self-regulation of synaptic activities to learn and 

predict input data behaviour without considering the target class label. 

b) a global learning approach in which learning is reinforced by a neuromodulatory signal 

that is generated by the classification results to adjust the neuron’s synaptic weights in 

the proportion of their contribution to learning a specific time course. 

The EPUSSS architecture, which is influenced by the NeuCube framework, has three major 

modules: the encoder module which uses the BSA algorithm that encodes input data into spike 

trains; a 3D SNN reservoir module in which the local learning mechanism of EPUSSS governs 

the synaptic efficacy in a semi-supervised way, and the output module which deploys the global 

learning mechanism of EPUSSS, combined with a modified deSNN model to provide 

neuromodulatory feedback to modify synaptic efficacy in a supervised way.  EPUSSS uses 

spiking neuron models such as LIF and Izhikevich. 

In the EPUSSS 3D SNN reservoir, an input neuron is connected to reservoir neurons by 

synaptic connections and to other input neurons - by “hypersynaptic” connections. The input 

neurons are mapped in a 3D (2D) SNN structure according to their 3D (2D) spatial coordinates 

or the similarity between the input data streams. The model always learns from a spike 

sequence time series data to predict the next spikes in a certain time-window. Predictive 

modelling is achieved through a semi-supervised local learning mechanism using the error of 
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prediction in a certain time-window and a backpropagation rule that adjust the efficacy of 

synaptic weights of the reservoir neurons. The output neurons inspired by the deSNN model’s 

concept are created incrementally for each training sample to associate the input data with a 

class label. For this purpose, all the input neurons and reservoir neurons (or just input neurons) 

are connected to output neurons using the RO method, and their synaptic weights are adjusted 

based on the EPUSSS global learning rule using a neuromodulatory signal that is generated by 

the results of the classification in the training phase. The principle behind the algorithm is to 

perform both prediction and classification in a two-level hierarchical learning structure. In the 

proposed model, the input neurons contribute enormously to both local and global learning. In 

local learning, the system learns to predict the input data dynamics through modifying the 

oscillatory rhythmic patterns of neuronal firing activities. A sliding time-window allows 

EPUSSS to capture the firing behaviour of the input neurons for a certain time course in which 

the input data is exposed to the network. The input neurons have recurrent connections from 

the last layer of reservoir neurons that helps them to learn the activity of the reservoir neurons 

and influence other input neurons to have optimal learning like the cooperative learning in the 

brain. Then by cross-matching input neurons fining behaviour with the input data dynamics in 

one (several) time unite(s) ahead the error will be calculated and backpropagated to modify the 

synaptic and hypersynaptic connections. This process is similar to synaptic plasticity based on 

local signals in the brain. 

At the end of each episode of learning corresponding to the presentation of the entire input 

pattern with 𝑇 lasting duration to the network, a neuromodulatory signal from the output 

neurons is generated based on the target labels. Using a Rewarded-Modulated Spike-Time-

Dependent Plasticity (R-STDP), rule the generated neuromodulatory signal helps reward or 

penalise the synaptic and hypersynaptic connections efficacy. This process is the global 

learning mechanism of EPUSSS which resembles the feedback loop learning from external 
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stimuli in the brain. The EPUSSS architecture and its learning principles can be seen in Figure 

3-1.

Figure 3-1: EPUSSS - Evolving Predictive Unsupervised-Supervised deep learning framework for Spike 

Streams 

3.4 EPUSSS Novel Characteristics 

The EPUSSS model has several novel characteristics that make it a powerful computational 

model which is more biologically plausible. In this section, biological resemblant 

characteristics, and computational characteristics of EPUSSS is explained. 

3.4.1 Biological Resemblance Characteristics 

The EPUSSS local error representation mechanism uses local signals from neuronal pre-and 

postsynaptic activities to modify synaptic connections’ efficacy like what is known as synaptic 

plasticity in the brain. The aim of this mechanism is to capture the Spatio-temporal correlation 

in the input data space by adapting to the statistical properties of the neuronal firing behaviours. 

The global learning mechanism of EPUSSS uses the concept of neuromodulatory signals in the 
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brain, which influence the synaptic activities by reward and punishment to help learn and create 

memories. Neuromodulators change the excitability of neurons to form memories. Some 

neuromodulatory signals which have been linked to reward are released both as a response to 

the moment of rewards and to stimuli that are predictive of rewards. Some other 

neuromodulatory signals are related to sensory map remodelling and inhibitory avoidance in 

training. Using neuromodulatory concepts, neurons in the proposed model get feedback of 

reward or punishment to modify their spiking activities to form memories and recognize the 

learnt pattern in the presence of the external stimuli (i.e., target class labels). Another biological 

aspect of EPUSSS is theoretically being capable of life-long learning with the ability of transfer 

learning. These characteristics that allow EPUSSS to continuously learn from the input data 

without being saturated are as follow: 

➢ In one implementation, EPUSSS has 80 percent excitatory and 20 percent inhibitory 

neurons in its spiking neural network in such a way that the inhibitory neurons spike faster 

than excitatory neurons to balance the network spiking behaviour. 

➢ The synaptic connections in EPUSSS have four types of neurotransmitter receptors: 

• Excitatory neurons have two types of neurotransmitter receptors: 

o  AMPAR: fast excitatory synaptic transmission receptors 

o  NMDAR: slow excitatory synaptic transmission receptors 

• Inhibitory neurons have two types of neurotransmitter receptors: 

o  GABAAR: fast inhibitory synaptic transmission 

o  GABABR: slow inhibitory synaptic transmission 

By introducing synaptic delays, the synaptic transmission time can be controlled 

to mimic fast and slow signal transmission like biological neurotransmitters 

behaviour. 
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➢ Synaptic pruning which is part of brain development is another feature of EPUSSS in

which neurons that do not show activity for a certain time-window will lose their synaptic

connections gradually by decreasing their postsynaptic weights. This mechanism helps to

eliminate noisy neurons from the learning process and improve the model prediction and

classification performance.

3.4.2 Computational Characteristics 

Besides the biological characteristic, EPUSSS has adopted several computational methods to 

perform its learning mechanisms in a more efficient way. 

In the local learning, the error backpropagation method, which is based on the SpikeProp error 

backpropagation rule, uses the temporal derivative of the postsynaptic input neuron’s activity 

to adjust synaptic connections. The global learning mechanism uses the R-STDP rule to 

feedback the reward and penalty according to the target class labels from the deSNN output 

neuron to adjust both hypersynaptic and synaptic connections. In this mechanism, neurons’ 

synaptic connections are modified according to the proportion of their contribution to the 

learning of input patterns. Finally, the modified Lyapunov energy function (Kobuchi, 1991; 

Yerramalla et al., 2003; Lee et al., 2010; Yan et al., 2013; Frady and Sommer, 2019; Stern and 

Shea-Brown, 2020) is used to keep the network stable while accelerating the learning process 

by a closed-loop control mechanism. This characteristic of EPUSSS also plays an important 

role in “life-long” learning ability. Namely, by controlling the synaptic activities corresponding 

to the outcome of learning (i.e., the energy of the network), the Lyapunov energy function 

prevents the network’s synaptic weights saturation while EPUSSS performs classification 

tasks. 
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3.5 The Proposed EPUSSS Learning Mechanisms 

EPUSSS learns from both local and global feedbacks from neuronal activities and external 

stimuli, respectively. In the EPUSSS architecture, multiple hierarchical areas are connected to 

each other through input neurons. This feature allows information from different areas (input 

neurons) to contribute to the learning process by affecting each other and their locally 

connected networks more efficiently. Furthermore, the input neurons can represent different 

types of data, different topological connections, and areas of interest which makes EPUSSS a 

powerful learning tool with explainability and interpretability that can analyse the impact of 

each type, areas of interest and topological connectivity on the outcome of learning. 

The idea behind the EPUSSS two-phase synaptic weight updating mechanism (local and global 

learning) is to provide a self-regulatory ability in both unsupervised and supervised ways. In 

other words, the memory of unsupervised local learning will transfer from the locally 

connected reservoir neurons to the input neurons at the higher level. Then, these biologically 

plausible computational units adjust their learning experience by updating their hypersynapses 

according to the classification outcome. The hypersynaptic connections provide an ability to 

engage a different spatial region of the EPUSSS model which is a 3d representation of the 

brain. This approach helps to mimic the real brain learning mechanism to some extent as well 

as offering an efficient predictive model that can predict the next step(s) in the input patterns 

and classify the predicted patterns simultaneously. 

3.5.1 EPUSSS Local Learning Mechanism 

In the EPUSSS local learning process, the input neurons propagate the input pattern to the 

locally connected reservoir neurons. Then in a semi-supervised manner, the input neurons 

behaviour is observed in a certain time-window and compared to the input pattern dynamics at 

the same time-window or several steps ahead. Thereupon, the error from the comparison 
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between the input pattern dynamics and the input neuron spiking activity is used to adapt the 

synaptic efficacy of locally connected reservoir neurons to force the input neuron to capture 

the spikes (events) rhythm hidden in the input pattern. The process of backpropagating the 

temporal derivative of input neuron activity in proportion to the input pattern dynamics in a 

sliding time-window repeats until the end of simulation time which is the length of the input 

pattern. 

The reason that the spiking activity of the input neuron in a specific time-window is used for 

the error calculation is that unlike observing the input neuron spiking activity at each time 

point, this value is continuous and differentiable. Moreover, using the average firing rate in a 

certain time-window provides a more robust approach that is less affected by the noise in the 

input pattern and gives the post-synaptic neuron enough time to capture the temporality hidden 

in the input pattern dynamics. 

Figure 3-2: EPUSSS local error backpropagation mechanism 
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As it was mentioned before, in the EPUSSS model there are 80 percent excitatory and 20 

percent inhibitory neurons with two different types of neurotransmitter receptors for each: fast 

and slow receptors. 

 To simulate the behaviour of neurotransmitter receptors in the network a delay factor is 

introduced for the synaptic connections. This delay mechanism helps the input neuron to adapt 

to the temporal rhythm of input pattern dynamics and create the memory for prediction tasks. 

The synaptic delay value 𝑑, firing threshold 𝜗, and synaptic efficacy 𝑤𝑖𝑗 are modified during 

the learning process using an error backpropagation method to enhance model performance. 

The backpropagation method used in the EPUSSS local learning is a modified version of the 

SpikeProb (Bohte, Kok, & Poutré, 2000). As it was mentioned before, EPUSSS uses LIF 

(Izhikevich) to model neuronal activity. Considering the postsynaptic neuron 𝑖 receives a 

current with time course 𝛼(𝑡 − 𝑡𝑖
(𝑓)
) from several presynaptic neurons 𝑗 which their synaptic 

connections according to their type of receptors (fast or slow) has a delay factor, then the total 

input current to the neuron 𝑖 can be calculated as follow: 

 𝐼𝑖(𝑡) =∑𝑤𝑖𝑗∑𝛼(𝑡 − 𝑡𝑗
𝑓
− 𝑑𝑖𝑗

𝑓
)

𝑓𝑗

 
(3-1) 

where 𝑤𝑖𝑗 is a measure of the efficacy of the synaptic connection between neuron 𝑗 and 𝑖 and 

𝑡𝑗
𝑓
 is the time at which the presynaptic neuron spikes. 

The target of the local learning is to predict the next values in the input pattern by capturing 

the input pattern dynamics in a specific time-window. Therefore, the input neuron firing 

activity (firing rate) in a specific time window is compared to the desired firing behaviour to 

calculate the local error. The error function is the least mean squares error function that is 

calculated as follow: 
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𝐸𝑙𝑜𝑐𝑎𝑙 =

1

2
∑(𝑓𝑟𝑗

𝑎 − 𝑓𝑟𝑗
𝑑)2

𝑗∈𝑅

 
(3-2) 

 

where, 𝑓𝑟𝑗
𝑎 is the input firing rate in the time-window and 𝑓𝑟𝑗

𝑑 is the desired firing rate that 

needed to be predicted from input pattern dynamics. 

Using the differentiable error term in Eq. (3-2), the synaptic weight, the delay parameter, and 

the neuron firing threshold can be adjusted according to the desired internal input pattern 

behaviour. 

 
∆𝑤𝑖𝑗 = −𝜂𝑤

𝜕𝐸

𝜕𝑤𝑖𝑗
 

(3-3) 

 
∆𝑑𝑖𝑗 = −𝜂𝑑

𝜕𝐸

𝜕𝑑𝑖𝑗
 

(3-4) 

 
∆𝜗𝑖 = −𝜂𝜐

𝜕𝐸

𝜕𝜗𝑖
 

(3-5) 

where ∆𝑤𝑖𝑗 is the weight changes proportional to the error in a certain time window observation 

of neuron firing activity, ∆𝑑𝑖𝑗 is the changes for synaptic delay adaptation, and ∆𝜗𝑖 is the 

changes for neuron firing threshold adjustment. Parameters 𝜂𝑤, 𝜂𝑑, and 𝜂𝜐 are learning rate for 

synaptic weights, synaptic terminal delays, and firing thresholds, respectively. The error is 

minimised by changes in the weights, delays, and firing thresholds according to the negative 

local gradient. 
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Figure 3-3: The error backpropagation schema using modified SpikeProp algorithm (Bohte, Kok, & Poutré, 

2000) 

Figure 3-3, illustrates the schematic description of the modified SpikeProp backpropagation 

algorithm used in the EPUSSS local learning mechanism. During the training phase using the 

proposed local error backpropagation, the STDP rule changes the synaptic weights of reservoir 

neurons until the observation time to enable the input neuron to capture the temporality 

behaviour in the input pattern. Afterwards, the backpropagation rule changes the synaptic 

efficacy, delay values, and firing threshold according to the error in the input neuron firing 

activity. This process continues until the sliding time-window reaches the end of the input 

pattern length. Another important fact in the EPUSSS model is that the inhibitory neurons are 

implemented by considering a negative sign for the synaptic connections between an inhibitory 

presynaptic neuron and a postsynaptic neuron. This important feature helps EPUSSS use the 

same STDP rule and error backpropagation mechanism for both inhibitory and excitatory 

connections. In other words, using (−1) to label inhibitory and (+1) to label excitatory 
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connections allows to decrease and increase synaptic efficacy with the same rule which is 

another novel characteristic in the EPUSSS model. 

3.5.2 EPUSSS Global Learning Mechanism 

In the global learning mechanism, learning takes place on an episodic basis, meaning that at 

the end of each episode corresponding to the presentation of an input pattern to the network, a 

feedback signal is generated according to the success or failure of the target class detection. 

Thereupon, this reward signal which is analogous to the neuromodulatory signal in the brain 

contributes to synaptic weight adjustment at the end of each episode of learning (presenting the 

entire input pattern to the network). 

In the EPUSSS global learning mechanism, a rewarded-modulated STDP approach similar to 

the model described by Legenstein et al. (2008) is used to link the higher-level supervised 

learning with the lower-level semi-supervised learning using a reinforcement signal. In this 

approach, at the end of each learning episode, a neuromodulatory signal according to the firing 

behaviour of the input neuron is produced by comparing the deSNN’s output and the desired 

classification outcome. Then, this neuromodulatory signal is feedbacked into the STDP’s 

weight change formula to adjust the synaptic weights proportional to the neuron contribution 

in the classification results. 

In the EPUSSS model, the deSNN output layer follows the same procedure described in chapter 

2 to create the output neurons. However, the learning rule for adjusting the synaptic efficacy is 

the R-STDP rule instead of the SDSP rule which is described in the following. 
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Figure 3-4: EPUSSS global learning mechanism using R-STDP rule  

In the EPUSSS model, the deSNN output neuron can either have synaptic connections to only 

input neurons or both input neurons and reservoir neurons. The former approach is more 

desirable because the locally connected reservoir neurons can transfer the memory captured 

during the local learning to the input neurons thus by connecting only the input neurons to the 

deSNN output neurons, the performance of detection will be increased while the risk of 

carrying noise to the high-level information processing at classifier will be reduced (see Figure 

3-4).  All the connections from input neurons (reservoir neurons) to the deSNN output neurons 

are excitatory connections to mimic dopaminergic neurons’ behaviour which are related to the 

novelty and reward prediction (Legenstein et al. 2008). 

In order to learn through R-STDP to classify Spatio-temporal presynaptic firing activities to 

match with a specific input pattern, a reward signal 𝑑(𝑡) is generated at the time of 

classification outcome observation. This signal reinforces the synaptic efficacy of connections 

between excitatory input neurons and deSNN output neurons through rewards. To be more 

specific, neurons are rewarded for increasing and decreasing their synaptic efficacy based on 

their contribution to the classification outcome. This provides an asynchronous irregular firing 

behaviour in the network that resembles neuronal activity in the cortex. 



63 

 

The positive and negative weight changes in the pre- and postsynaptic weights between input 

neurons and deSNN output neurons are collected in an eligibility trace 𝑐𝑖𝑗(𝑡). The eligibility 

trace is the moment that memory is created at the synapse site after a temporal delay between 

the sensory input and the moment of reward delivery. Then, the weight changes according to 

the R-STDP rule explained here for EPUSSS global learning can be formulated as follow: 

 ∆𝑤𝑗𝑖(𝑡) = 𝑐𝑗𝑖(𝑡)𝑑(𝑡) (3-6) 

Where 𝑤𝑗𝑖 is the weight of the synaptic connection between presynaptic input neuron 𝑖 and 

postsynaptic output neuron 𝑗, 𝑐𝑗𝑖(𝑡) is the eligibility trace of this synapse which collects weight 

changes proposed by STDP, and 𝑑(𝑡) = ℎ(𝑡) − ℎ̅ is the reward resulted from a 

neuromodulatory signal ℎ(𝑡) with mean value ℎ̅. 

In the R-STDP rule, an eligibility kernel function 𝑓𝑐(𝑡), scales the contribution of pre- and 

postsynaptic neurons with the second spike at time 0 and to the eligibility trace at time 𝑡. 

 

𝑓𝑐(𝑡) = {

𝑡

𝜏𝑒
𝑒
𝑡
𝜏𝑒                 𝑖𝑓 𝑡 > 0

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

(3-7) 

where the 𝜏𝑒 is a time constant set to 0.4. Then, the eligibility trace 𝑐𝑗𝑖(𝑡) can be calculated as 

follow: 

 

𝑐𝑖𝑗(𝑡) = 𝑓𝑐(𝑡)∑∑𝑤𝑖𝑗(𝑡𝑖
𝑛 − 𝑡𝑗

𝑓
)

𝑁

𝑛=1

𝑁

𝑓=1

 

(3-8) 

In Eq. (2-8), 𝑓𝑐(𝑡) is the eligibility kernel function, 𝑡𝑗
𝑓
 is the time of presynaptic firing, 𝑡𝑖

𝑛 is 

the firing time of the postsynaptic neuron, and 𝑤𝑖𝑗 is the weight of the synaptic connection 

between presynaptic neuron 𝑗 and postsynaptic neuron 𝑖 that follows STDP rule formulated in 

Eq. (2-13). 
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The reward signal 𝑑(𝑡) generated at the end pattern presentation to output neuron is calculated 

using the following formula: 

 𝑑(𝑡) =

=  

{
 

 𝛼𝑃∑ 𝛿(𝑡 − 𝑡𝑖
𝑛)𝜀𝑟

𝑁

𝑛=1
  , 𝑖𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑃 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝛼𝑁∑ 𝛿(𝑡 − 𝑡𝑖
𝑛)𝜀𝑟

𝑁

𝑛=1
 , 𝑖𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑃 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑             

 

(3-9) 

 

Where, 𝛼𝑁 and 𝛼𝑃 are reward constant (𝛼𝑁 < 0 < 𝛼𝑃) and 𝜀𝑟 is the reward kernel calculated 

as follow: 

 
𝜀𝑟(𝑡) = 𝐴𝑟

+
𝑡

𝜏𝑟
+ 𝑒

1−
𝑡

𝜏𝑟
+
− 𝐴𝑟

−
𝑡

𝜏𝑟−
𝑒
1−

𝑡
𝜏𝑟
−
 

(3-10) 

As it was stated before 𝑑(𝑡) = ℎ(𝑡) − ℎ̅(𝑡) which is a signal with zero mean. To satisfy this 

constraint, the reward kernel 𝜀 should have a zero mean, i.e., 𝜀𝑟̅ = ∫ 𝑑𝑟
∞

0
𝜀𝑟(𝑟) = 0. The 

reward kernel 𝜀𝑟 is the difference between the positive 𝛼 function and the negative 𝛼 function 

to satisfy the abovementioned condition. The parameters in the reward kernel according to 

Legenstein et al. (2008) are set as follow: 𝐴𝑟
+ = 1.379, 𝐴𝑟

− = 0.27, 𝜏𝑟
+ = 0.2, and 𝜏𝑟

− = 1. 

As can be deduced from Eq. (3-9) and Eq. (3-10) the reward signal depends both on the input 

neuron spiking activity and the output neuron behaviour in pattern recognition. The reward 

signal both adjust the hypersynapses and synaptic connections between input neurons and 

deSNN output neurons. This mechanism allows the network to feedback the outcome of 

learning to the lower-level reservoir neuron to reinforce the local learning as well as global 

learning. 

To avoid unbounded weights growth, the changes in the synaptic weights are limited between 

𝑤𝑚𝑖𝑛 and  𝑤𝑚𝑎𝑥. In the next section, a Lyapunov energy function is introduced as an extra 
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control mechanism over synaptic weight changes to guarantee life-long learning in the 

EPUSSS model without the risk of network saturation. 

3.5.3 Lyapunov Energy Function 

The artificial neural networks that use the Lyapunov function to govern their learning rule for 

either memory retrieval or performing classification tasks are based on Hopefield’s 

symmetrically connectivity structure assumption, which facilitates analytical calculations of 

network behaviour (Kobuchi, 1991; Yerramalla et al., 2003; Lee et al., Stern and Shea-Brown, 

2020). 

However, spiking neural networks which are proven to be more realistic in comparison to the 

traditional artificial neural networks, have asymmetrically connectivity structures. Due to this 

characteristic, SNNs can perform synaptic plasticity to capture input dynamics which cannot 

be applied in a symmetrical structure or bidirectional connectivity. 

In symmetric neural networks, the network energy landscape is constructed in a way that 

decreases with time by starting from an initial state and following a gradient path that falls into 

its minimum value (the equilibrium state). In the spiking neural networks which are asymmetric 

models, the original Hopefield energy function is not applicable since the synaptic plasticity 

makes following the trajectory evolution impossible (Yan et al., 2013). 

The Lyapunov energy function introduced in EPUSSS is constructed from neuronal 

potentiation in relation to the outcome of learning for controlling synaptic plasticity which 

ensures EPUSSS life-long learning mechanisms. Therefore, the energy of the output neuron’s 

excitations is used to control the network’s activity instead of the synaptic plasticity of network 

connections which is like free energy. Free energy is the maximum amount of work that a 

thermodynamic system can perform in a process. An increase in the output neurons excitation 
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means that the network is performing classification by assigning input learnt patterns to an 

existing class or a new one continuously. 

EPUSSS model is an open system that constantly exchanges energy and information with its 

environment. In the EPUSSS model, while the local and global learning attracts the system 

down to the state of cognition using internal neuronal activity and external environmental 

stimulus, the STDP rule is responsible for the asymmetric synaptic plasticity of the neuronal 

connectivity. 

The overall dynamics of the EPUSSS model can be described using the free energy concept. 

The thermodynamical definition of system free energy can be used to characterise the EPUSSS 

model neuronal activity in terms of output neuron excitation level. 

𝐸 =  
1

2
 ∑∑𝑤𝑘𝑗∑𝑎(𝑡 − 𝑡𝑘

𝑓
)

𝑓𝑗𝑘

 
(3-11) 

In Eq. (3-11), 𝐸 is the Lyapunov energy function for calculating the deSNN output neurons 

activity, 𝑘 is the output neuron connected to input neurons through synaptic connections with 

𝑤𝑘𝑗 efficacy, and 𝑎(𝑡 − 𝑡𝑘
𝑓
) is a time course that within a postsynaptic output neuron receives 

presynaptic spikes from input neurons. 

∆𝐸 = 𝐸(𝑡) − 𝐸(𝑡 − 1) (3-12) 

At the end of each episode of learning, the change in the model’s energy is calculated using 

Eq. (3-12) and by introducing a parameter 𝛾 the synaptic weights of the network are adjusted 

to ensure the life-long learning concept in EPUSSS. 

𝛾 = {
𝜁  𝑖𝑓 ∆𝐸 > 0
0  𝑖𝑓 ∆𝐸 ≤ 0

(3-13) 
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If the changes in the model energy are positive, it means that the excitation level of the output 

neurons is increasing, then all the synaptic weights in the EPUSSS model are decreased by the 

amount of 𝜁, otherwise, the synaptic weights will remain unchanged. 

This strategy helps EPUSSS to learn continuously from input patterns without going to a 

saturation phase. 

3.6 The Proposed EPUSSS Algorithm 

EPUSSS is a predictive model that can perform prediction and classification by learning 

Spatio-temporal information hidden in the input pattern. In the EPUSSS model, learning 

happens both at the microscopic level using synaptic plasticity and at the macroscopic level 

using neuromodulatory signals. As it was explained in detail in the previous section, this novel 

powerful computational brain-like model benefits from a broad range of biological learning 

characteristics and computational features. In this section, the pseudocode of the EPUSSS 

algorithm is provided. 

Evolving Predictive Unsupervised Supervised deep learning model for Spike Streams (EPUSSS) 

1: 

Generate 3D-SNN network including input neurons 𝐼, Reservoir neurons 𝑅 using neurons 

coordinates (e.g., Talairach map for EEG data). 

2: 

Create EPUSSS network connectivity by establishing hypersynapses and synaptic connections 

amongst input neurons and between input neurons and reservoir neurons, respectively using small 

world connectivity algorithm (see chapter 2). 

3: Set 80% of synaptic connections excitatory (+1) and 20% of synaptic connections inhibitory (-1). 

4: 

Set neuron firing thresholds 𝜗 for excitatory and inhibitory neurons (if at least one of the 

postsynaptic connections is inhibitory the neuron is considered as inhibitory neuron). 

5: 

Set 50% of excitatory connection to AMPAR with delay value 0 and 50% excitatory connection to 

NMDAR with random delay value. 
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6: 

Set 50% of inhibitory connection to GABAAR with delay value 0 and 50% inhibitory connection to 

GABABR with random delay value. 

7: Initialise random weights for synaptic and hypersynaptic connections. 

8: Set 𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 value (e.g., 10 time units) and max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 value (e.g., 50) 

9: Encode all input pattern to spike train using BSA algorithm (see chapter 2). 

10: while  𝑖𝑡 ≤ max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

11:      for each input pattern 𝑃𝑠 

12:         for each input neuron 𝐼𝑖  

13:               while l ≤  length(𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤) 

14:                      Propagate input spikes to reservoir neurons using LIF neuron model (Eq. 3-1) 

15:                      Adapt synaptic and hypersynaptic weights according to STDP rule (Eq. 2-12) 

16:                Calculate 𝐸𝑙𝑜𝑐𝑎𝑙𝑖  (Eq. 3-2). 

17:                 Update weights, delays, and firing thresholds using Eq. 3-3, Eq. 3-4, and Eq. 3-5. 

18:                 Set the synaptic weights for inactive neurons to zero. 

19:                𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 += 𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 

20: Initialise deSNN parameters: 𝑀𝑜𝑑, 𝐷, 𝐶, 𝛼, and 𝑠𝑖𝑚 (similarity threshold) 

21: for each input pattern 𝑃𝑖  

22:       Create a new output neuron 𝑖 

23:       Initialise synaptic weights 𝑤𝑖(0) using RO learning rule denoted in Eq. 2-14 

24:       Calculate 𝑃𝑆𝑃𝑖𝑚𝑎𝑥 using Eq. 2-16  

25:       Calculate the firing threshold 𝑇ℎ𝑖  for neuron 𝑖 using Eq. 2-17  

26: 

        if the new wight vector 𝑤𝑖  is similar to an existing output neuron using Euclidean distance 

similarity measure and 𝑠𝑖𝑚 threshold  

27:              if the desired class labels of the similar weight vectors are different 

28:                      Generate the corresponding 𝑑(𝑡) reward signal according to Eq. 3-9. 

29: 

                      Update the synaptic weights 𝑤𝑖  for successive spikes on the corresponding synapses 

using R-STDP rule denoted in Eq. 3-6. 

30:                       Add new output neuron to the network 
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31:               else 

32:                       Generate the corresponding 𝑑(𝑡) reward signal according to Eq. 3-9. 

33: 

                      Update the synaptic weights 𝑤𝑖  for successive spikes on the corresponding synapses 

using R-STDP rule denoted in Eq. 3-6. 

34:                        Merge the two neurons by averaging their threshold and synaptic weights 

35:        Calculate energy function 𝐸 (Eq. 3-11) 

36:                   Adapt all synaptic weights according to Eq. 3-13.     

Figure 3-5: The EPUSSS learning algorithm pseudocode  

In the implementation phase of the EPUSSS model, to avoid conflict between the input 

spike train and the processed spike in the next time point, a twin neuron for each input 

neuron is created. These twin neurons have the same synaptic connections as their former 

counterparts (input neurons) but with the reverse direction from the reservoir to twin 

neurons. 

 

 

Figure 3-6: The figure shows twin input neurons that each represent one input/output neuron. 
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3.6.1 EPUSSS Computational Complexity 

Assume that there are 𝑁 neurons, including input neurons (𝐼𝑛), reservoir neurons (𝑅𝑛), and 

output neurons (𝑂𝑛) with 𝑀 synaptic connections in the EPUSSS model. 𝑃𝑇 input patterns with 

the length of 𝑇are presented to the network during local and global learning. According to 

Maass (1994), if the computational complexity for each synaptic weight 𝑤𝑖𝑗 is 𝑂(1) and each 

input pattern log 𝑃𝑇, then the by considering 𝐾 epoch of training in the local error 

backpropagation process, the computational complexity of EPUSSS model is 𝑂(log 𝑃𝑇((𝐾 ×

 𝐼𝑛 × 𝑅𝑛) + (𝐼𝑛 × 𝑂𝑛)). 

3.7 Implementation and Experimental Analysis  

In this section, the EPUSSS implementation details are explained, and the performance of its 

learning mechanisms are explored by using Wrist Movement EEG data (Taylor et al., 2014) as 

a testbed. All the simulations and experiments were conducted in MATLAB R2020a and in an 

Intel Core-i7 - 2.80GHz processor. 

3.7.1 The EPUSSS Framework Implementation  

The EPUSSS framework implementation consists of several modules, including network, 

connectivity, encoding, neuron models, unsupervised learning, supervised learning, cross-

validation, and visualisation. The EPUSSS framework structure can be seen in detail in Figure 

3-7. 
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Figure 3-7: EPUSSS framework from implementation point of view 

The EPUSSS network module creates the 3D-SNN topological structure using Talairach map 

neuron coordinates (or any arbitrary coordinates) for the reservoir neurons, EEG input channel 

coordinates (or any arbitrary coordinates) for the input neurons, and arbitrary coordinates for 

the output neurons to create a brain-like 3D structure for the SNN. In the connectivity module, 

the EPUSSS connectivity algorithm establishes synaptic connections between input neurons 

and reservoir neurons and hypersynaptic connections amongst input neurons. Furthermore, in 

this module, the synaptic types, neurons firing thresholds, four types of neurotransmitter 

receptors AMPAR, NMDAR, GABAAR, GABABR with their corresponding delay values, 

and the initial synaptic and hypersynaptic weights are defined and assigned to the EPUSSS 

model. 80 per cent of the synaptic connections are labelled as excitatory and 20 per cent 

inhibitory. If at least one of the postsynaptic connections of a reservoir neuron is inhibitory, 

then that neuron is considered as an inhibitory neuron with an inhibitory firing threshold. 

Excitatory neurons have an excitatory firing threshold that should always be greater than 
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inhibitory neurons’ firing threshold which allows them to fire at a higher rate. Finally, the initial 

synaptic and hypersynaptic weights are assigned to the neuronal connections. 

The Encoding module converts input signals to spike trains using the BSA encoding algorithm. 

In the neuron model module, LIF and Izhikevich neuron models are implemented and adapted 

to the EPUSSS local and global learning algorithms. Unsupervised and supervised modules are 

the local and global learning implementation of the EPUSSS model, respectively. The cross-

validation module consists of leave-one-out, leave-many-out, and k-fold cross-validation 

methods, and a confusion matrix for evaluating the model performance. Eventually, the 

visualisation module presents a visual graph demonstration for the EPUSSS model for a better 

understanding of the proposed model behaviour. 

3.7.2 Experimental Analysis 

To explore the performance of the EPUSSS model, the Wrist Movement dataset (Taylor et al., 

2014) is used as a testbed. The hypothesis behind using this dataset was to explore the NeuCube 

capabilities for developing a brain-computer interface (BCI) system to assist in the 

rehabilitation of complex upper limb movements (Taylor et al., 2014). The dataset is described 

in more detail in the following section. 

Here I use the Wrist Movement dataset. It contains EEG recordings of three healthy volunteers 

from KEDRI1 with no history of neurological disorders and all right-handed. The participants 

were requested to perform the specified Wrist Movements or imagine the movements or remain 

at rest. The Wrist Movement task includes three stages, resting, flexing the wrist, and extending 

the wrist all with closed eyes to reduce visual and blink related artefacts. Participants were 

asked to perform the movement intention task starting from a mid-pronation with the forearm 

 
1 Knowledge Engineering and Discovery Research Institute – AUT, https://www.kedri.aut.ac.nz 

 

https://www.kedri.aut.ac.nz/
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resting on their lap and eighter imaging or performing the demanded movements each in 2 

seconds and repeating it 10 times. The Emotiv Epoc EEG Neuroheadset with 14 channels based 

on International 10-20 locations (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) 

was used to record EEG data. Also, two additional electrodes (P3, P4) were used as reference. 

The recorded data were digitized at a 128 Hz sampling rate with no filtering applied to the data, 

neither online nor offline. 

The dataset includes 60 recordings with 14 input channels that each of these recordings were 

labelled as one of the three joint classes flexion, extension, and rest of real and imagined 

movements of the hand. The dataset is perfectly balanced since Each class label has equally 20 

samples. The input electrode position and the Talairach map coordinates were used to create 

the input and reservoir neurons position in the 3D-SNN topological structure in EPUSSS (see 

Figure 3-8). Table 3-1 shows the EPUSSS model parameter settings. As it was mentioned 

before using the Talairach map coordinates 1485 reservoir neurons were created in the EPUSSS 

model and according to the Emotiv Epoc EEG Neuroheadset electrodes’ position, input neuron 

coordinates were mapped to the 3D-SNN structure. The output neurons were evolved through 

the learning process and arbitrary coordinates were assigned to them. The EEG recordings 

through 14 input neurons (the same as EEG channels) were fed to the model and the results of 

simulations were plotted in the figures below. 



74 

Figure 3-8: Input neurons and reservoir neurons positions according to (a) wireless Emotiv Epoc EEG 

Neuroheadset (Blanco and Ramirez, 2019) and (b) Talairach map (Lancaster, et al., 2000). 

Table 3-1: The EPUSSS model parameter settings 

Algorithm Parameters Settings 

BSA 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.9550 

LIF 𝜗𝐼 = 0.5,  𝜗𝐸 = 0.2

STDP 𝐴+ = 0.001, 𝐴− = −0.001, 𝜏+ = 10, 𝜏− = 10 

Local Learning 

𝑑AMPAR = 0, 𝑑NMDAR~𝑁(0,1), 𝑑GABAAR = 0,  𝑑GABABR~𝑁(0,1),

𝜂𝑤 = 0.0075, 𝜂𝑑 = 0.0075, 𝜂𝜗 = 0.0075, 𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 = 10,

max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 50 

Global Learning 

𝛼 = 0.5, 𝑚𝑜𝑑 = 0.8, 𝐶 = 0.55, 𝜏𝑒 = 0.4, 𝛼𝑁 = −1.4, 𝛼𝑃 = 1.4,

𝐴𝑟
+ = 1.379, 𝐴𝑟

− = 0.27, 𝜏𝑟
+ = 0.2, 𝜏𝑟

− = 1, 𝜁 = 0.05, , 𝑠𝑖𝑚 = 0.25
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Figure 3-9 represents some steps taken in one experiment: encoding the data; mapping; 

downsampling the mapped coordinates to reduce computational time complexity. 
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Figure 3-9: The steps of mapping brain coordinates, creating the EPUSSS network with excitatory/inhibitory 

neurons, 4 types of neurotransmitter receivers with different synaptic delay and functionality in propagating 

information, the hypersynaptic connections, and encoding the input data into spike trains for processing by the 

EPUSSS two-level hierarchical learning model. 

 

Due to the high computational complexity of the EPUSSS model, in the experiments, the brain 

coordinates are downsampled by 8 times to 186 reservoir neurons to improve the processing 

speed.  

The above experiment reflects projecting the input space into a 4-dimensional space 

(spatiotemporal projection) by EPUSSS to extract hidden correlation amongst input data and 

then use that extracted information for prediction and classification. 

The twin input neurons are connected to the deSNN output layer in the EPUSSS model to 

interact with the upper-level learning in the hierarchical learning structure of the EPUSSS 

framework. In this way, the learnt neuronal behaviour in a semi-supervised manner will transfer 

to the higher level to empower the classification results. Then the neuromodulatory signal from 

the outcome of the classification at the end of each episode of the training is used to correct the 

connections between the local and global learning hierarchy (Figure 3-10). 
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Figure 3-10: The downsampled coordinates to improve computational time complexity in the EPUSSS 

framework. 

The EPUSSS framework has many neurons and a complicated connectivity structure that can 

increase the computation time polynomially. This limitation of the EPUSSS model will be 

addressed in chapter 5 by introducing a quantum-inspired SNN model to reduce the 

computation time. 
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a) 

 

b) 

 

Figure 3-11: EPUSSS SNN weights distributions: a) initial weights, b) learnt weights 

The Gaussian distribution in the learnt weights confirms learning fulfilled in EPUSSS local 

learning. 

 

a)

 

b) 

 

Figure 3-12: EPUSSS local learning errors convergence, a) training error, b) test error 

In Figure 3-12, the average local learning of the EPUSSS model in the training and testing 

phase can be seen. Each plot shows that the error backpropagation mechanism in the EPUSSS 

local learning mechanism decreases the error rate between the desired and actual firing rates. 
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Figure 3-13: EPUSSS local error for each input in training phase for sample 1 

Figure 3-13 illustrates the EPUSSS local error of all 14 input channels in the training phase for 

sample 1. The average local error for all channels for this sample can be seen in Figure 3-14. 
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Figure 3-14: EPUSSS final local error for sample 1 (all input channels) in the training phase 

In Figure 3-15, the EPUSSS local error of all 14 input channels in the testing phase for sample 

30 is shown. The average local error for all channels for this sample can be seen in Figure 3-16. 
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Figure 3-15: EPUSSS local error for each input in testing phase for sample 30 

 

 

 

Figure 3-16: EPUSSS final local error for sample 30 (all input channels) in the testing phase 
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a) b) 

Figure 3-17: EPUSSS SNN connectivity with learnt weight, a) four types of synaptic connections, b) excitatory 

and inhibitory connections. 

Figure 3-18 shows the neuromodulatory signals generated for global learning training phase. 

The results of classification of the Wrist Movement dataset using EPUSSS global learning can 

be seen in Table 3-2 and Table 3-3.  

Figure 3-18: Neuromodulatory (reward/penalty) signal in the EPUSSS global training 

In this thesis, NeuCube and LSTM models have been used for the comparative analysis. The 

same parameter setting as EPUSSS was applied for BSA, STDP, and deSNN models in 

NeuCube to have a fair comparison. Moreover, the LSTM model was designed with 5 layers 

including a sequence input with 14 dimensions, a BiLSTM layer with 100 hidden units, and 
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three fully connected layers. The SoftMax model was used as the activation function and the 

cross-entropy loss was used for measuring the classification error.  

The comparative results of applying NeuCube and LSTM on the Wrist Movement dataset can 

also be found in Table 3-2 and Table 3-3. 

 

Table 3-2: The comparative analysis of Global Learning Classification Results 

 Classification  Accuracy Precision Recall F-score 

EPUSSS Class 1 81% 0.80 0.72 0.76 

 Class 2 73% 0.65 0.65 0.65 

 Class 3 78% 0.55 0.73 0.62 

      

NeuCube Class 1 66% 0.55 0.50 0.52 

 Class 2 61% 0.66 0.44 0.53 

 Class 3 71% 0.55 0.57 0.56 

      

LSTM Class 1 48% 0.30 0.24 0.21 

 Class 2 38% 0.10 0.09 0.9 

 Class 3 56% 0.20 0.28 0.22 
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Table 3-3: The comparative analysis of Global Learning Classification Results Confusion Matrix 

 Confusion Matrix Class 1 Class 2 Class 3 

EPUSSS Class 1 16 3 1 

 Class 2 4 13 3 

 Class 3 3 6 11 

     

NeuCube Class 1 11 6 3 

 Class 2 7 8 5 

 Class 3 4 5 11 

     

LSTM Class 1 6 10 4 

 Class 2 12 2 6 

 Class 3 7 11 4 

 

NeuCube SNN network’s learning behaviour and LSTM training plot on the hand Wrist 

Movement can be seen in Figure 3-19 to Figure 3-21. 

 

  

Figure 3-19: NeuCube SNN learnt weight distribution for Wrist Movement dataset 
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a) b) 

c) d) 

Figure 3-20: NeuCube SNN spiking behaviour for Wrist Movement dataset: a) spiking behaviour of input 

channels connected to reservoir, b) reservoir neurons regions according to their connectivity to EEG input 

channels c) excitatory and inhibitory connections, d) EEG channels correlations. 
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Figure 3-21: LSTM training accuracy and error plot for Wrist Movement dataset 

In the above experiments, the EPUSSS model outperformed LSTM and NeuCube in the 

classification of the Wrist Movement dataset. Also, EPUSSS good prediction capability was 

demonstrated by the error convergence plots provided above. As it can be seen both in the 

numerical results and training plot, the LSTM model showed a poor performance in the 

classification of the Wrist Movement dataset. In contrast, EPUSSS and NeuCube demonstrate 

an acceptable learning outcome. This happened because EPUSSS and NeuCube can learn from 

events, and both have structure to capture spatiotemporally in the input data.  

The above results prove that the spatiotemporally of EEG data cannot be captured by 

conventional deep learning models like LSTM but spiking neural networks with the capability 

of capturing both temporality and spatiality can outperform their traditional learning models 

counterparts.  
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Despite EPUSSS acceptable performance in prediction and classification of the Wrist 

Movement EEG data, due to a large number of neurons, complicated connectivity structure, 

and the iterative process of local and global learning, the computation time of EPUSSS 

increases polynomially by the size of the problem. This limitation of the EPUSSS model will 

be addressed in chapter 5 by introducing a quantum inspired SNN model to reduce the 

computation time. Another aspect of the EPUSSS framework that needs to be explored more 

is the encoding algorithm. Currently, the BSA algorithm has been used to encode the input data 

to spike train. Although BSA has been proved to be less sensitive to changes in the filter and 

threshold and as a result provides a more accurate spike train even for bipolar cases, the nature 

of the problem should be considered to choose a proper encoding algorithm.  

 

3.8 Chapter Summary 

This chapter presents an Evolving Predictive Unsupervised Supervised deep learning 

algorithms for Spike Streams (EPUSSS). The EPUSSS framework consists of several novel 

algorithms and computational components to mimic the brain learning process and cognitive 

behaviour in a two-level hierarchical manner. The proposed strategies in the EPUSSS model 

allows having a unified framework to perform both prediction and classification tasks in a 

hierarchical fashion. 

Overall, the following are the advantages of the proposed EPUSS model, some of them 

demonstrated in the experimental analysis above: 

• Prediction of the next time step(s) by learning input pattern’s dynamics. 

• Learning from the semi-supervised local learning outcome for classification purposes 

to improve the classification outcome in a supervised manner. 
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• The ability of life-long learning by controlling the energy of the system and avoiding

network saturation.

• Keep the balance between network excitation and inhibition to empower the life-long

learning behaviour and avoid vanishing and exploding in the learnt weights.

• The pruning mechanism and energy function integrated into the EPUSSS model helps

to boost the idea of long-life learning.

The EPUSSS method is a subject of a paper under construction. 
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Chapter 4 Using Chaos Theory to Develop a New 

Quantum-Inspired Evolutionary Algorithm: CQIEA 

 

Abstract 

SNN are known for having difficulties in optimising their numerous parameters and its 

performance. The EPUSSS model from chapter 3 also suffers from polynomial computational 

complexity. Evolutionary algorithms can provide promising solutions to overcome these 

drawbacks. Quantum-Inspire Evolutionary Algorithm (QIEA) is one of the fastest evolutionary 

algorithms that use quantum computation concepts to perform optimisation tasks. In this 

chapter an improved version of QIEA using chaos theory is introduced to address the research 

question 4: 

 RQ4 “How can the QIEA be further developed using a quantum chaotic system and applied 

for optimised learning, searching a pattern in stored memory, and parameter optimisation in 

SNN?” 

The Chirikov chaotic map is used to improve the convergence rate and the quality of the final 

solution of the Quantum-Inspired evolutionary algorithm. The new method, which is called 

Chaotic Quantum-Inspire Evolutionary Algorithm (CQIEA) extends the methods proposed by 

Defoin-Platel, Schliebs and Kasabov (2009) and by Dias, Vellasco and Abs da Cruz (2020) 

and its illustration here demonstrates a faster convergence to an optimal solution. 

The method is also subject to a paper under construction. 
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4.1 Introduction 

While the first part of this thesis was more focused on introducing a novel predictive model 

consisting of methods more biologically plausible to mimic the brain behaviour in learning and 

cognitive tasks, in this chapter and the next two chapters 5 and 6, computational models 

inspired by the quantum computing theory are proposed to empower the computational 

capacity of spiking neural networks. This chapter provides a new chaotic quantum-inspired 

evolutionary algorithm based on chaos theory that serves three purposes through this thesis, 1) 

used as an optimisation mechanism to optimise the proposed models’ parameters to improve 

their performance, 2) applied as a learning rule in the novel quantum-inspired spiking neural 

network proposed in chapter 5, and 3) is part of the novel quantum-inspired associative memory 

for spiking neural network introduced in chapter 6 to retrieve the learnt patterns. Although 

these three chapters including the novel quantum-based computational models might look 

completely different from the first part of this thesis, there is a strong connection between the 

biological behaviour of neurons in the macrolevel (molecular level) and the quantum-based 

behaviour at the microlevel (atomic level) suggested by Hameroff and Penrose (2014). 

In the following sections, quantum mechanics concepts related to the proposed quantum-

inspired models are briefly reviewed. Afterwards, a short introduction to chaos theory is 

presented. Finally, the novel chaotic quantum-inspired evolutionary algorithm (CQIEA) is 

introduced for both discrete and continuous optimisations. 

4.2 Quantum Mechanics Concepts 

The idea of quantum theory first was sparked in 1900, when Max Planck shook the foundation 

of two classical physics concepts of particle and electromagnetic wave by publishing a theory 

about black-body radiation. In classical physics, a particle is a discrete entity with definite 

position and momentum which obeys Newton’s laws of motion, and an electromagnetic wave 
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is an extended entity that can exist at any point of space provided by electric and magnetic 

fields which change according to Maxwell’s laws of electromagnetism (Phillips, 2003). 

Planck’s observation about black-body radiation that changed the previous assumption of two 

distinct, unrelated concepts of particle and wave in classical physics, revealed a strange 

phenomenon in which a physical entity can have both wave-like and particle-like properties. 

Later, in 1923, Louis de Broglie formally proposed the idea that particles of matters such as 

electrons can be both particle-like and wave-like. Thomson in 1972, proved that electrons’ 

particles with no doubt can behave like waves. Since 1972, so many experiments done by 

researchers providing evidence about the wave-like behaviour of electrons, protons, neutrons, 

atoms, and molecules. These findings were in contrast with the classical definition of particles 

with well-defined trajectories. Therefore, the ambiguous word “particle” was not well suited 

for describing these microscopic objects. Instead, the term “quantum particle” shows that the 

object under discussion can have both particle-like and wave-like properties. A quantum 

particle does not have a clear position until the time of observation meaning that the probability 

of distribution of positions defines the quantum particle. 

Figure 4-1: The quantum mechanical model of the atom 
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According to the Bohr atom model, the electrons in free atoms can exist in certain quantised 

energy states. The Bohr model provided the foundation for understanding the quantum theory 

of the atom and consecutively developing the quantum mechanical model of the atom (see 

Figure 4-1). These quantised energy states are associated with the orbits or shells of electrons 

in an atom. 

According to the Pauli Exclusion Principle, the quantised state of any electron in the atom can 

be described by four unique quantum numbers: (1) principal quantum number, (2) azimuthal 

quantum number, (3) magnetic quantum number, and (4) spin quantum number (Beiser, 1987; 

Sherwin, 1959; Phillips, 2003; Peleg et al., 2010; Jankovic et al., 2014; Dommelen, 2018;). 

4.2.1 Principal Quantum Number 

The principal quantum number designates the energy level of the electron (electron shell) and 

is represented by 𝑛 ranges from 1,2,3, … , 𝑛(𝑛 ∈ ℕ). In other words, the principal quantum 

number shows the shell level (energy level) in which the electron is located. Higher principal 

energy levels consist of orbitals that are larger in size than the orbitals from lower energy levels. 

4.2.2 Azimuthal Quantum Number 

The azimuthal quantum number, also known as the angular quantum number or orbital 

quantum number, designates the subshell in which the electron is located. In other words, the 

azimuthal quantum number represents the magnitude of the orbital angular momentum using 

the following equation: 

 𝐿2 = ℏ2𝑙(𝑙 + 1) (4-1) 

 

Where 𝐿 is the angular momentum which is related to its azimuthal quantum number 𝑙 (𝑙 =

0, … , 𝑛 − 1) and ℏ is the Planck's constant which is ℏ = 6.626 × 10−34𝐽𝑠. 
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The azimuthal quantum number 𝑙 refers to the shape of orbitals in any subshell. These shapes 

represent the most probable location that the electron can be found and are denoted by a letter 

according to a spectroscopy convention. Table 4-1, illustrates a brief description of the 

azimuthal quantum number and the corresponding subshell shapes2 (Roesler and Mobley, 

2015). 

Table 4-1: Azimuthal quantum number subshell description 

Azimuthal 

quantum 

number 

(𝒍) 

Correspon

ding letter 

Orbital 

shape 

Maximum 

electron in a 

subshell 

Visual representation 

0 sharp Spherical 2 
 

1 principal 

Three 

dumbbell-

shape on x, 

y and z axes 

6 
 

2 diffuse 

Complex 

dumbbells 

10 
 

 
2 In quantum physics, it is known that electrons move in orbitals around an atom's nucleus which is called the electron shell, 

or a principal energy level. The closest shell to the nucleus has the lowest energy and the shells further away from the nucleus 

have a higher energy level. Each shell contains a fixed number of electrons. Electrons occupy outer shells only if the more 

inner shells have already been completely filled by the maximum number of electrons that the shell can hold (the 𝑛𝑡ℎ shell 

can hold up to 2𝑛2 electrons). Each shell is also composed of one or more subshells. The first shell has one subshell (1s), the 

second shell has two subshells (2s and 2p), the third shell has three subshells (3s, 3p, and 3d), the fourth shell has four subshells 

(4s, 4p, 4d and 4f), and the fifth shell has five subshells (5s, 5p, 5d, and 5f) and can theoretically hold more in the 5g subshell 

that is not occupied in the ground-state electron configuration of any known element. 
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3 

fundamenta

l 

Complex 

multi lobes 

dumbbells 

14 

4 g 

Complex 

multi lobes 

dumbbells 

18 

The 5th shell or higher theoretically defined for 

unknown atoms 

4.2.3 Magnetic Quantum Number 

The magnetic quantum number describes the orientation of orbitals in any subshell in the three-

dimensional space and is denoted by (𝑚𝑙). The magnetic quantum number determines the exact 

orbital in which the electron is located. The value of 𝑚𝑙 can range from −𝑙 to +𝑙 (−𝑙 ≤ 𝑚𝑙 ≤

𝑙).  Each subshell (s, p, d, or f) contains a certain number of orbitals. In the 𝑠 subshell (𝑙 = 0), 

the magnetic quantum number is zero, therefore there is one possible orientation of the orbital. 

In the 𝑝 subshell (𝑙 = 1), the magnetic quantum number has three values (−1, 0, 1), therefore, 

there are three possible orientations of the orbitals. In the 𝑑 subshell (𝑙 = 2), the magnetic 

quantum number has five values (−2,−1, 0, 1,2), therefore, there are five possible orientations 

of the orbitals. In the 𝑓 subshell (𝑙 = 3), the magnetic quantum number has seven values 

(−3,−2,−1, 0, 1,2,3), therefore, there are five possible orientations of the orbitals. All three 

axes for orbital orientations are perpendicular. 

4.2.4 Electron Spin Quantum Number 

The spin quantum number designates the type of spin that electron has in orbital (clockwise or 

counterclockwise) and is denoted by (𝑚𝑠). In one orbital, the orientation of the spin of two 

electrons is always the opposite of each other, hence, the electrons can have 𝑚𝑠  of 
1

2
or −

1

2
. 

In other words, one electron spins up and the other electron spins down. For a spin up the 𝑚𝑠 =
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1

2
  and for a spin down the 𝑚𝑠 = −

1

2
. The electron spin creates a small magnetic field that 

determines the magnetic property of an atom. If all the electrons in an atom are paired in the 

orbitals, then the atom is diamagnetic. Meaning that the spins with opposite signs (+
1

2
 and −

1

2
) 

repel each other magnetic fields and the total spin value is zero. If an atom has unpaired 

electrons in the orbitals, then the atom is paramagnetic. Meaning that electrons are attracted to 

a magnetic field and the whole atom will have a net spin. 

 

Figure 4-2: The spin quantum number schematic 

 

Walter Heitler and Fritz London in 1927, proposed a model for hydrogen atoms that explains 

atomic magnetism (Magnasco, 2007; Misra, 2012; Jascur, 2013). According to their model 

hydrogen molecules are formed from hydrogen atomic orbitals 𝑢𝐴 and 𝑢𝐵 with nuclei centres 

𝐴 and 𝐵. The hydrogen atoms orbital Θ(𝑟1, 𝑟2) in their model which is called two-body 

molecular orbitals are calculated using the following formula: 
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Θ(𝑟1, 𝑟2) =  

1

√2
(𝑢𝐴(𝑟1)𝑢𝐵(𝑟2) + 𝑢𝐵(𝑟1)𝑢𝐴(𝑟2)) 

(4-2) 

In Eq. (4-2), 𝑟1 and  𝑟2 are the first and the second electrons in an atomic hydrogen-orbital with 

𝐴 and 𝐵 nuclei as their centres. The later product term in the above formula shows electrons 

exchange between nuclei 𝐴 and 𝐵 in which the first electron 𝑟1 is in the atomic orbital cantered 

at the second nucleus while the second electron orbits around the first nucleus. This electron 

exchange depicts the quantum concept in which particles with identical properties cannot be 

distinguished. Furthermore, the electron exchange leads to chemical bond formation as well as 

atomic magnetism. As it was mentioned before, magnetism is generated because of atomic 

spins. Therefore, according to Pauli’s principle, the spin function 𝑥(𝑠1, 𝑠2) can be represented 

as follows using Heitler and London model: 

 
𝑥(𝑠1, 𝑠2) =  

1

√2
(𝛼(𝑠1)𝛽(𝑠2) − 𝛽(𝑠1)𝛼(𝑠2)) 

(4-3) 

In Eq. (4-3), the symmetric spin function 𝑠1 (with the + sign as spin-up ↑) multiplies by an 

antisymmetric spin function 𝑠2 (with the – sign as spin-down ↓), and vice versa. The 𝑠𝑖 = ±
ℏ

2
 

which in particles constitute ordinary matters is 𝑠 = ±
1

2
  is a discreet value with 𝛼 and 𝛽 spin 

orientation (0 and 1 respectively). 

The abovementioned formula helps to explain the diamagnetic and paramagnetic behaviour in 

materials according to quantum mechanics theory (Eisberg, 1974; Tang, Toennies, and Yiu, 

1998; Esposito and Naddeo, 2013). 
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4.2.5 Quantum Wave Function 

In classical physics, the wave function for a freely moving particle is the real function of space 

and time. However, in quantum mechanics, the wave functions which describes the hidden 

wave-like behaviour of a quantum particle are complex functions. In fact, the wave function 

which is denoted by 𝜓 is a complex-valued probability that defines all possible results of 

measurements made on a quantum system (Beiser, 1987). The wave function is described by 

the Schrodinger equation in quantum mechanics which is analogous to Newton's Second Law 

for describing a classical particle motion (Eq. (4-4)) (Phillips, 2003). 

 

 
Ψ(𝑥, 𝑡) =  ∫ 𝐴(𝑘)𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑑𝑘

+∞

−∞

 
(4-4) 

 

With  

 ℏ𝜔 =
ℏ2𝑘2

2𝑚
   (4-5) 

Where 𝑘 =
2𝜋

𝜆
 is the wave number with 𝜆 wavelength, 𝜔 is velocity, 𝑚 particle mass, and 𝐴(𝑘) 

is an arbitrary complex function of 𝑘 and the integral indicates the sum over all possible values 

of 𝑘. In the above equation, ℏ𝜔 represents the energy of the particle and ℏ𝑘 is the particle 

momentum. In other words, Eq. (4-4) describes a wave moving in the 𝑥 direction with wave 

number 𝑘 and angular velocity 𝜔 with a momentum  𝑝 = ℏ𝑘 and energy ℏ𝜔. The Schrodinger 

wave function in agreement with the Heisenberg uncertainty principle represents uncertainty 

in the position and momentum of a quantum particle. 
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4.3 Quantum Computation 

Quantum computing is an interesting research area in which researchers adopt quantum 

mechanics concepts to develop more powerful computational models. 

In quantum computation theory, a quantum system is described by a wave function 𝜓 that is 

formed based on quantum states in the Hilbert space: 

 |𝜓⟩ = ∑ 𝐶𝑖|𝜙𝑖⟩𝑖    (4-6) 

Where, 𝐶𝑖 is the probability amplitudes and |𝜙𝑖⟩ is the quantum states. These quantum states 

are called quantum bits or qubits. The qubit can be in a superposed state. It means that, unlike 

the classical bit, in addition to the usual state “0” and “1” the qubit can take both values 

simultaneously. Hence, according to the superposed state definition of the qubits Eq. (4-6) can 

be rewritten as follows: 

 |𝜓⟩ = ∑ 𝛼𝑖|0⟩ + 𝛽𝑖|1⟩𝑖    (4-7) 

 |𝛼|2 + |𝛽|2 = 1       𝛼, 𝛽 ∈ 𝐶    (4-8) 

|𝛼|2and |𝛽|2are the probabilities of the qubit to be found in the states |0⟩ and |1⟩ respectively 

after a measurement and 𝑖 = 1,… , 𝑛. 

In the quantum system |𝜓⟩ qubits have a quantum correlation which means that any interaction 

with one of the qubits affects instantaneously the other. This phenomenon is called quantum 

entanglement. The superposition and the entanglement properties of a quantum system make 

it capable of performing multiple computations simultaneously in a parallel way. 
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While a quantum system is in a linear superposition of its basis states it is coherent. Once the 

system intersects in any way with its environment, the superposition is destroyed. This loss of 

coherence is called decoherence and is governed by the wave function |𝜓⟩. In other words, at 

the time that the system is observed, its qubits can only be in one state. Quantum gate operators 

on a Hilbert space describe how one wave function is changed into another. These quantum 

gates are unitary and reversible which includes, Feynman gate, Walsh-Hadamard gate, Not 

gate and rotation gate. 

The changes in the state of the wave function can be represented by the Bloch sphere which is 

a generalised representation of Hilbert space. 

Figure 4-3: Bloch sphere representation of the evolution of the wave function 

The equivalent Bloch sphere representation of the wave function described in Eq. (4-7) for 

two-level quantum system |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ is formulated as follows: 

|𝜓⟩ = cos
𝜃

2
|0⟩ + 𝑒𝑖𝜙𝑠𝑖𝑛

𝜃

2
|1⟩ 

(4-9) 

With: 
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 0 ≤ 𝜃 ≤ 𝜋    𝑎𝑛𝑑    0 ≤ 𝜑 ≤ 2𝜋 (4-10) 

where 𝜃 and 𝜑 are angles of rotation in the 𝑧 and 𝑥 direction. 

In the Bloch sphere, the poles represent classical bits |0⟩ and |1⟩, and the changes in the 

quantum bits that can cover the whole sphere represents the possibility of the positions that 

qubits can hold in the wave function. Thus, the quantum bits can represent much more 

information in comparison to the classical representation of bits. 

In the next section chaos theory and linear systems are briefly reviewed to provide an insight 

into the proposed CQIEA algorithm. 

4.4 Chaos Theory 

Chaos is not a strange concept to human beings. In fact, we can see chaotic systems all around 

us. Some of the chaotic systems examples in nature can be found in meteorology, solar system, 

heart, and brain of living organisms (Boccaletti et al., 2000). This natural phenomenon has 

been attracting scientists’ attention in almost every discipline such as physics, engineering, 

economics, biology, and philosophy since the 1880s. 

Chaos theory studies the behaviour of a dynamic system that is deterministic intrinsically but 

reacts random and unpredictable whenever small changes happen in its initial conditions 

(Ogorzalek, 1993; Gaspard and Wang, 1993; Rovatti et al., 1998; Hirsch et al., Stojanovski and 

Kocarev, 2001; 2004; Werndl, 2010; Strogatz, 2014). In other words, a dynamic system is 

called chaotic if it is sensitive to initial conditions and small changes in those conditions can 

lead to quite different outcomes (Ogorzalek, 1993; Rovatti et al., 1998; Stojanovski and 

Kocarev, 2001; Werndl, 2010). 

The dynamic of a chaotic system is relatively simple and can be expressed in the form of a 

mathematical expression with few variables (Strogatz, 2014). Since chaotic systems are 
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evolving dynamic systems, in their trajectory movement they tend to stabilise to a set of 

numerical values which are called strange attractors. A chaotic attractor is a collection of an 

infinite number of periodic orbits, each one being unstable. Due to the ergodic nature of a 

chaotic attractor, during its temporal evolution, the system ergodically visits a small 

neighbourhood of every point in each one of the unstable periodic orbits embedded within the 

chaotic attractor (Gaspard and Wang, 1993; Yang and Chua, 1997; Hirsch et al., 2004). These 

important properties of chaotic systems can inspire evolutionary meta-heuristic search 

algorithms so that by mimicking chaotic behaviour, these algorithms will be more powerful 

and precise in terms of solving complex non-linear NP-hard problems. 

The trajectory of a chaotic system through the space of possible states is a complicated tangle 

of looping paths of unstable periodic orbits. The geometry of these unstable periodic orbits is 

one of the distinctive characteristics of chaos. Due to the critical dependence of chaotic systems 

on the initial conditions, these systems are naturally unpredictable (Strogatz, 2014). However, 

using mathematical notions such as the Lyapunov exponent, the speed at which the trajectories 

of a chaotic system starting out with similar initial conditions will diverge, can be quantified 

(Gaspard and Wang, 1993; Hirsch et al.,2004). As it was mentioned before and based on the 

ergodic nature of chaotic attractor, chaotic dynamics of a system can be seen as periodic 

behaviour at a given time, and erratically jumping from one to another periodic orbit. 

Therefore, controlling chaos when a trajectory approaches ergodically a desired periodic orbit 

embedded in the attractor, by applying small perturbations to stabilise such an orbit (Yang and 

Chua, 1997), can motivate designing more sophisticated search mechanisms for evolutionary 

meta-heuristics algorithms. 
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4.5 Previous Work 

In this section, some of the worthwhile research work related to quantum-inspired evolutionary 

algorithms and using chaos theory in optimisation methods are briefly reviewed. 

4.5.1 Quantum-Inspired Evolutionary Algorithms 

Quantum-Inspired Evolutionary Algorithms (QIEAs) are inspired by the concepts of quantum 

computing like quantum bits and quantum gate, was first introduced by Feinman (Feinman, 

1980) A brief review of the work done so far on QIEAs is provided in the following: 

A simple QIEA was used  by Narayanan and Moore in (1996) to solve the travelling salesman 

problem. Han and Kim (2000) proposed the genetic quantum algorithm (GQA) which was 

based on the concept and principles of quantum computing such as qubits and superposition of 

states. They used qubit chromosome for representation of the individual and quantum gates as 

genetic operators for searching the solution space. Han and Kim (2002) proposed the quantum-

inspired evolutionary algorithm (QEA) based on the concept and principles of quantum 

computing, such as a quantum bit and superposition of states. They introduced qubit for 

representation of the individual and a q-gate as a variation operator to drive the individuals 

toward better solutions. Han and Kim (2004) proposed a new termination criterion, a q-gate, 

and a two-phase scheme quantum-inspired evolutionary algorithm to improve the performance 

of QEA. Zhang et al. (2006), combined the quantum computing concept with genetic algorithm 

and called it novel quantum genetic algorithm (NQGA) and introduced a rotation quantum gate 

to enhance the search capability and avoid premature convergence. NQGA is used for selecting 

features in radar emitter signal recognition. Zhang and Rong (2007), proposed a real-

observation quantum-inspired evolutionary algorithm (RQEA) to solve a class of globally 

numerical optimisation problems with continuous variables. Platel et al. (2009), proposed the 
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versatile quantum-inspired evolutionary algorithm (vQEA) which uses the attractor concept to 

move the population through the search space and can adapt the search toward the last 

promising solution found. Zhang et al. (2008), introduced an evolutionary algorithm that 

combined the concepts and principles of the quantum-inspired evolutionary approach with the 

hierarchical arrangement of the compartments of a P system for solving the knapsack problem. 

Vlachogiannis and Lee (2008), used a quantum computation evolutionary algorithm for the 

combinatorial optimisation problem of optimal real and reactive power (P-Q) dispatch 

considering the bid-offered cost. Platel et al. (2009), stated that QEA belongs to the class of 

estimation of distribution algorithms (EDAs) and provided a comparison between versatile 

QEA and three classical EDAs in terms of loss of diversity, scalability, solution quality, and 

robustness to fitness noise. Zhang (2010) provided a unified framework and comprehensive 

survey of work done in the field of Quantum-Inspired Evolutionary Algorithm. The author 

discussed the main concepts and key ideas behind quantum-inspired evolutionary algorithms 

and the advantages and limitations of those methods. Zhang et al. (2010), combined the 

quantum-inspired evolutionary algorithm and P systems and introduced a modified variant 

quantum-inspired evolutionary algorithm for analysing radar emitter signals, called MQEPS. 

Their model used the hierarchical framework of cell-like P systems consisting of quantum-

inspired bits and classical bits which the system rules are quantum-inspired gate evolutionary 

rules, evolution rules in P systems, and a tabu search in the skin membrane. Nowotniak and 

Kucharski (2014) introduced a higher-order quantum-inspired genetic algorithm in which 

genes relations are modelled using quantum phenomena for optimisation tasks. Silveira et al. 

(2016) proposed a Quantum Inspired Evolutionary Algorithm for Ordering Problems. 

González et al. (2019) proposed resource optimization for elective surgical procedures using 

quantum-inspired genetic algorithms. Dias et al. (2020) proposed a quantum-inspired method 
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for optimisation applications. Pereira et al. (2020) proposed a Quantum-Inspired Genetic 

Programming Algorithm for the Crude Oil Scheduling of a Real-World Refinery. 

QIEAs have a weak local search. In other words, QIEAs have poor performance in searching 

the neighbourhood of the best solution. The other limitation of these techniques is that the 

rotation quantum gate’s angle and the direction of its movement require prior knowledge to be 

initialised. 

Celecia et al. (2020) proposed perhaps the first Chaotic Quantum-inspired Evolutionary 

Algorithm and applied it to enhance feature selection in Brain-computer Interface (BCI). This 

thesis continues the above direction with the introduction of a new CQIEA. 

4.5.2 Chaotic Optimisation Algorithms 

The non-repetition nature of chaotic systems can speed up search mechanisms in meta-heuristic 

algorithms. To overcome the premature convergence drawback of these algorithms and to 

perform an efficient fast exploration and exploitation in the problem space, many researchers 

deployed different kinds of chaotic maps in combination with evolutionary algorithms such as 

Genetic Algorithm, Particle Swarm Optimisation, Differential Evolution algorithm etc. to 

improve these meta-heuristics performances. Logistic map, Tent map, Sinusoidal map, Gauss 

map, Circle map, Sinus map, Henon map, Ikeda map, Zaslavskii map, Sprott-Linz chaotic 

attractor, Lozi map, Lorenz attractor are some of these chaotic maps. In the following, some of 

the remarkable recent research which has been combining chaotic mechanism with meta-

heuristic algorithms are mentioned. 

Differential Evolution (DE) algorithm convergence rate and population diversity were 

improved by applying different chaotic maps (chaotic logistic map, Lozi’s map and Tent Map) 

into its control parameters such as the population initialization, the mutation, and the crossover 
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operators (Santos Coelho, 2009; Santos Coelho, et al., 2009; Lu et al., 2011). A wide range of 

Particle Swarm Optimisation (PSO) variations are enhanced by various chaotic maps (such as 

Henon map, Zaslavskii map, dissipative standard map, Lozi map, Arnold’s Cat map and 

logistic map) to speed up their convergence rate and avoid premature convergence to local 

optima (Santos Coelho and Mariani, 2009; Santos Coelho and Rodrigues Coelho, 2009; Alatas 

and Akin, 2009; Tang et al., 2010; Chuang et al., 2011;  Pluhacek, et al., 2013; Gandomi et al., 

2013; Chen et al., 2014; He et al., 2014; Kaveh et al., 2014). In these works, researchers 

combined chaos theory in particle position, velocity formula, and particle acceleration control 

parameter to improve PSO exploration and exploitation capabilities. In references (Enayatifar 

et al., 2014; Yu and Xu, 2014; Chen et al., 2014), Genetic Algorithm search ability is improved 

by using chaotic sequence generators (logistic map and Cat map) into crossover and mutation 

operators. In another effort, the chaotic logistic map was applied to fireflies’ movements in 

Firefly Algorithm to improve the quality of solutions and prevent the algorithm from trapping 

in local optima (Kazem et al., 2013). 

To overcome QIEA limitations, Chirikov standard map is used to substitute the rotation gate 

since it satisfies all the conditions that a quantum gate requires. 

4.6. The Proposed Chaotic Quantum-Inspired 

Evolutionary Algorithm (CQIEA) 

The prosed here CQIEA is inspired by the QIEA (Defoin-Plate, Schliebs and Kasabov, 2009) 

and by the CQIEA (Celecia, Alimed & Vellasco (2020). 

The novel Chaotic Quantum-Inspired Evolutionary Algorithm (CQIEA) proposed in this thesis 

is an improved version of the QIEA algorithm as it is modified by the Chirikov standard map 

as the quantum gate to change the qubits states in the search space and with the help of the 
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strange attractor concept the search mechanism can be guided in a more sophisticated way 

towards the global optimum solution. 

The QIEA algorithms have a strong searching capability, rapid convergence, short computing 

time, and small population size in comparison to other population-based evolutionary 

algorithms. The QIEA is based on quantum computation concepts that were introduced in the 

previous section of this thesis. This algorithm like every other population-based evolutionary 

algorithm has a population of possible solutions called qubits and a mechanism to guide this 

population towards the optimum places in the search space using a quantum gate (q-gate) 

operator. 

In QIEA, qubits are the smallest unit of information that provide the probabilistic 

representation of the individual solutions and are defined with a pair of 𝛼 and 𝛽 as [
𝛼
𝛽]. The 𝛼 

represents the probability in which the qubit is in the ‘0’ state while 𝛽 expresses the probability 

in which the qubit is in the ‘1’ state. According to quantum mechanics, the qubit can be in the 

‘0’ state, in the ‘1’ state, or in a linear superposition of both states. 

In QIEA, a qubit individual solution consists of 𝑚 qubit is defined as follow: 

 
[
𝛼1
𝛽1

|
|
  
𝛼2
𝛽2
 
|
|
…
|
|
 
𝛼𝑚
𝛽𝑚
] 

(4-11) 

where |𝛼|2 + |𝛽|2 = 1 and where 𝑖 = 1,2, … ,𝑚. 

 The linear superposition of states probability in the qubit representation allows creating a more 

diverse population in comparison to other representations. For instance, one qubit individual 

consisting of three qubits [
𝛼1
𝛽1

|
|
  
𝛼2
𝛽2
 
|
|
 
𝛼3
𝛽3
] can represent eight entangled states 𝛼1𝛼2𝛼3|000⟩ +
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𝛼1𝛼2𝛽3|001⟩ + 𝛼1𝛽2𝛼3|010⟩ + 𝛼1𝛽2𝛽3|011⟩ + 𝛽1𝛼2𝛼3|100⟩ + 𝛽1𝛼2𝛽3|101⟩ +

𝛽1𝛽2𝛼3|110⟩ + 𝛽1𝛽2𝛽3|111⟩ while in the binary representation at least eight individuals are

needed to code these states. 

The state of qubits can be changed by the quantum gate (q-gate) operator. As it was mentioned 

before, a q-gate is a reversible unitary operator. A unitary operator 𝑈 which is defined on a 

Hilbert space 𝐻 is a bounded linear operator that maps a vector space to another. To be a unitary 

operator, 𝑈 must satisfy the following condition. 

𝑈𝑈† = 𝑈†𝑈 = 𝕀 (4-12) 

where 𝑈† is the Hermitian adjoint of 𝑈. QIEA uses the quantum rotation gate as a q-gate:

𝐺(𝜃𝑖) = [
𝑐𝑜𝑠 𝜃𝑖 − 𝑠𝑖𝑛 𝜃𝑖
𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝜃𝑖

] 
(4-13) 

where 𝜃𝑖, is a rotation angle of each qubit that can change the qubit’s state to either 0 or 1 

depending on its sign. The 𝜃𝑖 angle should be defined according to the problem.  

The QIEA algorithm consists of a population of qubit individuals to search the solution space 

for the optimum solution. The population of qubits at generation 𝑡 is 𝑄(𝑡) = {𝑞1
𝑡 , 𝑞2

𝑡 , … , 𝑞𝑛
𝑡  }, 

where 𝑛 is the size of the population. The binary solutions 𝑃(𝑡) = {𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡  } can be 

obtained by observing the state of 𝑄(𝑡) at generation 𝑡. The binary solution 𝑥𝑗
𝑡, 𝑗 = 1, … , 𝑛, is

a binary string of length 𝑚 in which each bit in the string can be selected to be 0 or 1 using 

|𝛼𝑖
𝑡| and |𝛽𝑖

𝑡| , 𝑖 = 1,2, … ,𝑚, probabilities determined by the q-gate. At observation time, at

each generation, the best local solutions 𝐵(𝑡) =  {𝑏1
𝑡, 𝑏2

𝑡 , … , 𝑏𝑛
𝑡 } are selected among the binary 

solutions 𝑃(𝑡) by evaluating the qubits’ fitness value (i.e., by observing the states of 𝑄(𝑡 −

1)). Then, the best local solution(s) at each generation will be compared with the best global 
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solutions found so far and if the migration condition is satisfied the current the best local 

solution(s) will be migrated to the global 𝐵(𝑡). This process will be repeated until the 

termination criteria are satisfied and then the global best solution(s) will be provided at the 

final generation. 

 

Figure 4-4: The structure of QIEA algorithm (Han and Kim,2002). 

The steps in the QIEA algorithm are described as follow: 

Step 1 initializing 𝑄(𝑡): a population 𝑄(𝑡) with the qubit individual is generated, 𝑄(𝑡) =

{𝑞1
𝑡 , 𝑞2

𝑡 , . . . , 𝑞𝑛
𝑡 }, each arbitrary individual in 𝑄(𝑡) is represented as 

 
𝑞𝑖
𝑡 = [

𝛼𝑖,1
𝑡

𝛽𝑖,1
𝑡

|
|

𝛼𝑖,2
𝑡

𝛽𝑖,2
𝑡

|
|
 …  

𝛼𝑖,𝑙
𝑡

𝛽𝑖,𝑙
𝑡

|
|
] 

(4-14) 
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Where 𝑙 is the number of qubits (the string length of the qubit). In the initial population, all 

possible states are superposed with the same probability at the beginning. 

Step 2 By observation, the states 𝑄(𝑡), binary solutions in 𝑃(𝑡) = {𝑥1
𝑡 , 𝑥2

𝑡 , . . . , 𝑥𝑛
𝑡 }, are 

generated at step 𝑡. According to the current probability, either |𝛼𝑖
𝑡|2 or |𝛽𝑖

𝑡|2 of 𝑞𝑖
𝑡(𝑖 =

1,2, . . . , 𝑙), a binary bit 0 or 1 is generated. Thus, a binary solution 𝑥𝑗
𝑡(𝑗 = 1,2, . . . , 𝑛) consists 

of 𝑙 binary bits. 

Step 3 The fitness value for each value for each binary solution 𝑥𝑗
𝑡(𝑗 = 1,2, . . . , 𝑛) is calculated 

by using an evaluation function. 

Step 4 In this step, the 𝑗th qubit in the 𝑖th qubit individual 𝑞𝑖
𝑡, 𝑗 = 1,2, . . . , 𝑙 , 𝑖 = 1,2, . . . , 𝑛 is 

updated by applying the current q-gate 𝐺𝑖𝑗
𝑡 (𝜃). The quantum rotation gate is used in QIEA as 

a q-gate: 

 𝐺𝑖𝑗
𝑡 (𝜃) = [

𝑐𝑜𝑠 𝜃𝑖𝑗
𝑡        − 𝑠𝑖𝑛 𝜃𝑖𝑗

𝑡

𝑠𝑖𝑛 𝜃𝑖𝑗
𝑡          𝑐𝑜𝑠 𝜃𝑖𝑗

𝑡  
] (4-15) 

Where 𝜃𝑖𝑗
𝑡  is an adjustable q-gate rotation angle. The updated qubit states after applying 

quantum rotation gate are as follow: 

 
[
𝛼𝑖𝑗
𝑡+1

𝛽𝑖𝑗
𝑡+1] = 𝐺𝑖𝑗

𝑡 (𝜃) [
𝛼𝑖𝑗
𝑡

𝛽𝑖𝑗
𝑡 ] 

(4-16) 

 𝜃𝑖𝑗
𝑡 = 𝑠(𝛼𝑖𝑗

𝑡  , 𝛽𝑖𝑗
𝑡  )∆𝜃𝑖𝑗

𝑡  (4-17) 

where 𝑠(𝛼𝑖𝑗
𝑡  , 𝛽𝑖𝑗

𝑡  ) is the direction of the quantum gate rotation (the sign of 𝜃) and ∆𝜃𝑖𝑗
𝑡  is the 

magnitude of rotation angle 𝜃. 

Step 5 The best solutions among P(t) are selected and stored. 
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As it was mentioned before in the literature review, QIEAs have a weak local search. In other 

words, QIEAs have poor performance in searching the neighbourhood of the best solution. The 

other limitation of these techniques is that the rotation quantum gate’s angle and the direction 

of its movement require prior knowledge to be initialised. 

To overcome these shortages, a new quantum gate using Chirikov Standard Map is introduced 

here to provide a fast and effective local search that does not require any prior knowledge to 

set the q-gate parameters. The Chirikov Standard Map is a chaotic map that has both 

characteristics of the quantum gates; it is unitary and reversible. A chaotic map is a 

mathematical expression with few variables which shows the dynamic of a chaotic system. A 

chaotic system is a dynamic system that is deterministic intrinsically but reacts random and 

unpredictable whenever small changes happen in its initial conditions (Ditto and Munakata, 

1995; Strevens, 2006; Baranger, 2013). Since chaotic systems are evolving dynamic systems, 

in their trajectory movement they tend to stabilise to a set of numerical values which is called 

strange attractors. A chaotic attractor is a collection of an infinite number of periodic orbits, 

each one being unstable. Due to the ergodic nature of a chaotic attractor, during its temporal 

evolution, the system ergodically visits the small neighbourhood of every point in each one of 

the unstable periodic orbits embedded within the chaotic attractor (Boccaletti et al, 2000). 

Inspiring by these important properties of chaotic systems, the Chirikov Standard map is 

introduced as a q-gate to improve the QIEA search ability. 

4.6.1 Chirikov Standard Map 

The Standard map which was proposed by Boris Chirikov (Chirikov, 1971), is an area-

preserving map for two dynamical variables momentum and coordinate which is generated by 

the time-dependent Hamiltonian system. The standard map has many symmetries, the most 
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important of which is the time-reversibility symmetry (Meiss, 2008; Miguel et al., 2013) that 

makes it a good candidate for designing a q-gate. 

The following is one of the canonical forms of the map: 

 𝑟𝑛+1 = 𝑟𝑛 + 𝐾 𝑠𝑖𝑛( 𝜃𝑛)  (4-18) 

 𝜃𝑛+1 = 𝜃𝑛 + 𝑟𝑛+1  (4-19) 

In polar coordinates the value of 𝑟 becomes the magnitude of the radial vector, 𝜃 is the polar 

angle, and 𝐾 is a dimensionless parameter that controls the degree of chaos. The periodic nature 

of sin 𝑥 can result of a cylinder shape dynamic for 𝜃 mod 2𝜋 or a torus shape dynamic for both 

𝜃 and 𝑟 mod 2𝜋. Chirikov map is a conservative system that can demonstrate both regular and 

chaotic dynamics. The map’s regular behaviour occurs in the Kolmogorov-Arnold-Moser 

(KAM) islands of stability which are embedded in the chaotic sea. These islands are stable 

periodic orbits, and their eigenvalues are equal to one (Kob and Schilling, 1989). Figure 4-5 

illustrates examples of Poincare sections (i.e., the periodic and quasi-periodic orbits of a 

discrete dynamical system with state space of one dimension lower than the original continuous 

dynamical system) of the Chirikov standard map on a torus that are resulted from different 𝐾 

values. For 𝐾 = 0 the map is linear and by increasing the 𝐾 value the nonlinearity of the map 

grows higher. Chirikov standard map shows chaotic behaviour for 𝐾 > 1.2  which is the critical 

value. 
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Figure 4-5: Chirikov standard map with different k values, k=0.5, 0.8, 0.971635, 1.5, 1.8, 2 (from the left most 

top to the right most bottom). 

4.6.2 The Proposed Quantum Chirikov Standard Map 

The Chirikov standard map is generated by a time-dependent Hamiltonian system: 

 𝐻(𝑟, 𝜃, 𝑡) =
𝑟2

2
+ 𝐾 cos(𝜃)𝛿1(𝑡) (4-20) 

where 𝛿1(𝑡) is a periodic function with period 1 in time 𝑡. The map dynamics describes 

Poincare’s surface of a discrete mechanical system called the kicked rotator. Kicked rotator 

which is a basic model for chaos and quantum chaos studies describes a particle that is 

constrained to move on a circle in a system with no friction and gravity (or can be considered 

as a pendulum swinging with no gravity) and is kicked periodically by a homogeneous field.   

Therefore, the Chirikov standard map can be expressed in quantised format to give the quantum 

map for the wave function 𝜓: 

 𝜓̅ = 𝑈̂𝜓 = 𝑒−𝑖𝑟̂
2/2ℏ𝑒−𝑖𝐾/ℏcos 𝜃̂𝜓 (4-21) 
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Where, 𝜓̅ is the new value of the wave function after map iteration, ℏ is the Planck constant, 

and 𝑈̂ is the unitary evolution operator. An increase in the 𝐾 values can increase the energy of 

the system linearly over time (Giorgilli and Lazutkin, 2000; Meiss, 2008; Gorodetski, 2012; 

Frahm and Shepelyansky, 2013; Miguel, Simó, and Vieiro, 2013; Karimov, et al., 2017; 

Blumenthal, 2021).  Eq. 4-21 shows that the Chirikov standard map is a unitary operator that 

either can be directly used to change the current state of a quantum system in a chaotic manner 

or the chaotic angular position presented in Eq. 4-18 and 4-19 can be considered as the angle 

for the rotation gate. In this thesis, we choose the latter approach and leave the former for future 

work. 

4.6.3 The Proposed Chirikov Quantum Gate 

As it was mentioned before, a quantum gate is a reversible unitary operator which ensures the 

sum of probabilities of all possible states of a qubit during the evolution of the quantum systems 

always equals to one. In the previous sections, it was shown that the Chirikov standard map 

has all the characteristics required for a quantum gate. Using Chirikov standard map as a q-

gate (diversity operator), the problem search space can be explored and exploited more 

efficiently (see Figure 4-6). As it was mentioned before, the Chirikov standard map can 

produce both chaotic and regular behaviour with different values of 𝐾. Therefore, during the 

evolution, the dynamic of the system can be controlled efficiently using adaptive values for 𝐾. 

At the beginning of the search/optimisation problem by setting a higher value for 𝐾 and 

increasing the chaotic behaviour of the system the search space can be explored more 

efficiently. By decreasing the values of 𝐾 over time, the system will produce more regular 

behaviour than chaotic dynamics which can results in converging to more stable states and 

exploiting search space to find an optimum solution. 
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Figure 4-6: Polar plot of the rotation gate and Chirikov map for qubit individuals 

The proposed Chirikov quantum gate uses the chaotic angular position presented in Eq. 4-18 

and 4-19 as the 𝜃 angle for the rotation gate. 

 

4.6.4 The Proposed CQIEA algorithm 

In the proposed CQIEA search mechanism by controlling the chaos with an adaptive parameter 

𝐾, the population movements in the CQIEA will guide to the desired locations during the 

evolution of the search algorithm. Therefore, the problem search space will be explored and 

exploited in a more sophisticated way through time. Setting the 𝐾 parameter to a higher value 

in the Chirikov quantum gate at the beginning of the search process causes more chaotic 

behaviour in the system and by decreasing it over time the system behaviour will be more 

regular and stable. This mechanism 𝐾 will decrease through the search period by a decay factor 

of 0.05. Figure 4-7 shows the proposed CQIEA algorithm pseudocode.  
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Chaotic Quantum-Inspired Evolutionary Algorithm (CQIEA) – Discrete Optimisation 

1: Set 𝑡=0 and 𝐾 = 5, population_size = 10, max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 200, and  𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 = 0.05. 

2: Initialise the 𝑄(𝑡) population with all the 𝛼 and 𝛽 probabilities set to 
1

√2
. 

3: Generate 𝑃(𝑡) by observing the state of 𝑄(𝑡). 

4: Evaluate 𝑃(𝑡) using the fitness function. 

5: Store the best solutions in 𝑃(𝑡) to 𝐵(𝑡). 

6: while  𝑖𝑡 ≤ max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

7:      𝑡 ← 𝑡 + 1 

8:      Generate 𝑃(𝑡) by observing the state of 𝑄(𝑡 − 1). 

9:      Evaluate 𝑃(𝑡) using the fitness function. 

10:      Update 𝑄(𝑡) using the Chirikov q-gate  

11:           𝐾 ← 𝐾 − 𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 

12:      Store the best solutions among 𝐵(𝑡 − 1) and 𝑃(𝑡) to 𝐵(𝑡). 

13:      Store the best solution 𝑏 among 𝐵(𝑡). 

14:               if (global migration condition is met) 

15:                      Migrate 𝑏 to 𝐵(𝑡) globally. 

16:               else if (local migration condition is met) 

17:                Migrate 𝑏𝑗
𝑡 in 𝐵(𝑡) to 𝐵(𝑡) locally. 

18:                   end if     

19: end while 

Figure 4-7: CQIEA algorithms pseudocode for discrete optimisation 

By adding a simple binary to decimal (real value) and decimal to binary conversion CQIEA 

algorithm can be used for continuous optimisation too. The pseudocode of the algorithm is 

depicted in Figure 4-8. 
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Chaotic Quantum-Inspired Evolutionary Algorithm (CQIEA) – Continuous Optimisation 

1: Set 𝑡=0 and 𝐾 = 5, population_size = 10, max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 200, and 𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 = 0.05. 

2: 

Initialise the random real-valued population 𝑅(𝑡) bounded between the lower and upper bounds of 

the problem space. 

3: 

Convert the real-valued initial population 𝑅(𝑡) to the binary-valued 𝑄(𝑡) population with all the 𝛼 

and 𝛽 probabilities set to 
1

√2
.

4: Convert the binary-valued 𝑄(𝑡) population to real-valued population 𝑅(𝑡). 

5: Generate 𝑃(𝑡) by observing the state of 𝑅(𝑡). 

6: Evaluate 𝑃(𝑡) using the fitness function. 

7: Store the best solutions in 𝑃(𝑡) to 𝐵(𝑡). 

8: while  𝑖𝑡 ≤ max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

9:      𝑡 ← 𝑡 + 1 

10:       Convert the binary-valued 𝑄(𝑡 − 1) population to real-valued population 𝑅(𝑡). 

11:      Generate 𝑃(𝑡) by observing the state of 𝑅(𝑡 − 1). 

12:      Evaluate 𝑃(𝑡) using the fitness function. 

13:      Update 𝑄(𝑡) using the Chirikov q-gate 

14:  𝐾 ← 𝐾 − 𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 

15:      Store the best solutions among 𝐵(𝑡 − 1) and 𝑃(𝑡) to 𝐵(𝑡). 

16:      Store the best solution 𝑏 among 𝐵(𝑡). 

17:      if (global migration condition is met) 

18:       Migrate 𝑏 to 𝐵(𝑡) globally. 

19:      else if (local migration condition is met) 

20: Migrate 𝑏𝑗
𝑡 in 𝐵(𝑡) to 𝐵(𝑡) locally.

21:           end if 

22: end while 

Figure 4-8: CQIEA algorithms pseudocode for continuous optimisation 
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4.7.  Benchmark combinatorial optimisation problems   

In other to evaluate the CQIEA algorithm for discrete optimisation, two combinatorial 

problems were chosen here which are close to the application of CQIEA for the methods 

proposed in the following chapters. The combinatorial optimisation problems are those where 

mathematical techniques are applied to find optimal solutions within a finite set of possible 

solutions. The set of possible solutions is generally defined by a set of restrictions that is too 

large for exhaustive search to solve. The first well-known example is the knapsack problem, 

where the value of the goods carried in the knapsack must be maximized, while the weight of 

the goods that can be carried is limited. The second example is the travelling salesman problem, 

where the total travelling distance must be minimized while each client is visited exactly once. 

To evaluate the CQIEA algorithm for continuous optimisation which can be used for model’s 

parameter optimisation, four well-known benchmark functions Sphere, Rastrigrin, 

Rosenbrock, and Ackley have been chosen and shown in Table 4-2. 

4.7.1 Knapsack 

Knapsack NP-combinatorial optimisation problem is defined as: 

 max
𝑥
∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1
            𝑥𝑗 ∈ {0,1},   𝑗 = 1,… , 𝑛    (4-22) 

Subject to:  

 ∑𝑤𝑖,𝑗𝑥𝑗 ≤ 𝑐𝑖,              𝑖 = 1,… ,𝑚

𝑛

𝑗=1

 (4-23) 

where 𝑝𝑗 and 𝑤𝑖,𝑗 are positive weights, 𝑐𝑖 is positive cost parameters, and 𝑥 = (𝑥1, … , 𝑥𝑛). 
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4.7.2 Travelling Salesman Problem (TSP) 

The TSP NP-combinatorial optimisation problem is defined as: 

 𝑚𝑖𝑛∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛

𝑗

𝑛

𝑖
 (4-24) 

Subject to:  

 ∑𝑥𝑖𝑗 = 1,    𝑗 = 1,… , 𝑛

𝑛

𝑖

 (4-25) 

 ∑𝑥𝑖𝑗 = 1,    𝑖 = 1, … , 𝑛

𝑛

𝑗

 (4-26) 

 0 ≤ 𝑥𝑖𝑗 ≤ 1,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗         (4-27) 

where 𝑐𝑖𝑗 is the cost matrix (or the distance) to travel from city 𝑖 to city 𝑗 and 𝑥𝑖𝑗 value is 1 if 

the path goes from city 𝑖 to city 𝑗 and is 0 otherwise. 

4.7.3 Continuous Optimization Benchmarks  

Table 4-2: The benchmark functions for continuous optimisation 

Function Mathematical expression Bounds 

Sphere 𝑓1(𝑥) =  ∑ 𝑥𝑖
2

𝐷

𝑖=1
 

(-100, 100) 

Rastrigrin 𝑓2(𝑥) =∑(𝑥1
2 − 10 × cos(2𝜋𝑥𝑖) + 10)

𝑛

𝑖=1

 
(-10, 10) 

Rosenbrock 𝑓3(𝑥) =  ∑ (100 × (𝑥𝑖+1 − 𝑥𝑖)
2 + (𝑥𝑖 − 1)

2)
𝑛

𝑖=1
 

(-600, 600) 

Ackley 

𝑓4(𝑥) =  −20 exp(−0.2√
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

)

− exp (
1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 

(-32,32) 



122 

 

  

  

Figure 4-9: 3D representation of benchmark functions 

 

4.8. Implementation and Experimental Analysis 

In this section, the experimental results of applying the proposed CQIEA and QIEA on both 

discrete and continuous environments problems are illustrated and a comparative analysis via 

tables and plots is provided.  

Figure 4-10 to Figure 4-12 show the comparative diagrams of the CQIEA and QIEA 

performance on the Knapsack problem with 10, 100, and 500 items.  
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Figure 4-10: The comparison between the CQIEA and QIEA for Knapsack problem with 10 items 

Figure 4-11: The comparison between the CQIEA and QIEA for Knapsack problem with 100 items 
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Figure 4-12: The comparison between the CQIEA and QIEA for Knapsack problem with 500 items 

As it can be seen the CQIEA algorithm outperforms the QIEA algorithm both in the 

convergence time and the quality of the final solution. The changes in the chaotic rotation gate 

angles are shown in Figure 4-13 and Figure 4-14. 

 

Figure 4-13: The changes of the chaotic rotation gate’s angle over time in CQIEA in the unit circle 
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Figure 4-14: The changes of the chaotic rotation gate’s angle over time in CQIEA 

Table 4-3 provide the numerical analysis of CQIEA and QIEA performance on the Knapsack 

problem.  

Table 4-3: The average results of applying CQIEA and QIEA algorithm on Knapsack problem for 20 runs 

Algorithm Knapsack 

 

10 items with  

capacity = 36.30463 

100 items with 

capacity = 4130 

500 items with 

capacity = 21239 

QIEA    

mean 21.1646 3819 19727 

std 0.0490 0.0447 0.0533 

CQIEA    

mean 21.2319 3966 20397 

std 0.0144 0.0250 0.0237 
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The CQIEA and QIEA algorithms were applied to the TSP problem to visit New Zealand cities, 

both algorithms achieve the same results. Figure 4-15 to Figure 4-17 show the performance of 

CQIEA algorithm on the TSP problem for the New Zealand cities.  

Figure 4-15: New Zealand cities map for TSP problem 

Figure 4-16: CQIEA resulted paths for the TSP problem on New Zealand cites map. 



127 

 

 

Figure 4-17: CQIEA result for the TSP problem on New Zealand cities map. 

Table 4-4 depicts the comparative numerical analysis of applying CQIEA and QIEA to the 

continuous optimisation problem’s benchmarks. 

Table 4-4: The average results of applying CQIEA and QIEA algorithm to the continuous benchmark functions 

for 20 runs 

Algorithm  Continuous optimisation 

 Sphere Rastrigrin Rosenbrock Ackley 

QIEA     

mean 2.4027 × 10−7 0.0994 20.4150 1.0738 

std 0.0915 0.0866 0.0575 0.0814 

CQIEA     

mean 2.0108× 10−7 6.9273 × 10−4 19.3936 0.1395 

std 0.0480 0.0823 0.0743 0.0855 
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The above comparative analysis demonstrates the superiority of the proposed CQIEA 

algorithm over its former counterpart both in terms of convergence time and the resulting 

quality.  

The CQIEA algorithm improvement can help to boost the proposed model learning mechanism 

in the following chapters. The convergence time and better-quality results are important 

capabilities that can be added to improve the EPUSSS framework and the quantum associative 

memory. 

4.9 Chapter Summary 

In this chapter, a novel search algorithm is proposed based on chaos theory and the quantum-

inspired principals called Chaotic Quantum-Inspired Evolutionary Algorithm (CQIEA). The 

Chirikov chaotic map is used here to improve the convergence rate and the quality of the final 

solution of the Quantum-Inspired evolutionary algorithm-Using chaos theory to speed up the 

optimisation process. In this chapter, both discrete and continuous version of CQIEA has been 

proposed to serve as a learning mechanism to adjust SNN’s weights, as an optimisation 

technique to improve proposed models’ performance, and as a search mechanism for the 

proposed Quantum Associative Memory in the following chapters. The results of experiments 

prove the effectiveness of the proposed approach in both continuous and discrete environments. 

The method is subject to a paper under construction. 
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Chapter 5 . A Novel Quantum Inspired Spiking 

Neural Network: QISNN 

 

Abstract 

In this chapter, a novel Quantum Inspired Spiking Neural Network (QISNN) is introduced 

based on the probabilistic spiking neuron model (Kasabov, 2010). The proposed QISNN 

follows the EPUSSS framework with a two-level hierarchical learning structure. The novel 

proposed QISNN hierarchical architecture consist of quantum neurons, quantum synapses, and 

quantum learning rule to perform prediction and classification tasks in a unified framework. 

The quantum information processing principles are used here to enhance the EPUSSS model 

performance and flexibility when dealing with Spatio-temporal data. 

The following research question has been addressed in this chapter: 

RQ5 “How can the biological probabilistic nature of a spiking neuron be demonstrated using 

quantum mechanics concepts to reinforce all levels of computations in SNN including quantum 

neurons, quantum synapses and chaotic quantum unsupervised-supervised learning?” 

The material is subject to a journal paper in preparation. 

5.1 Introduction 

In this chapter, a novel Quantum Inspired Spiking Neural Network (QISNN) is introduced 

based on the probabilistic spiking neuron model (Kasabov, 2010). The proposed QISNN 

follows the EPUSSS framework with a two-level hierarchical learning structure. As it was 

mentioned in the previous chapter, although brain behaviour studies historically were led by 

disciplines such as biology, neuroscience, psychology and cognitive science, there were some 
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discussions about relating mater and mind using complex system physics and quantum physics 

(Hameroff and Penrose, 2014). To be more precise, according to the Penrose–Hameroff “Orch 

OR” model, the brain neurons process information, regulate membrane potential, and synaptic 

activities using quantum computation. The fact that the brain is a physical system composed of 

atoms whose behaviour can be explained by quantum physics, motivated the quantum-inspired 

brain-like model proposed in this chapter. The proposed QISNN model in this chapter 

combined the biological behaviour of neurons in the macrolevel (molecular level) and the 

quantum-based behaviour at the microlevel (atomic level) to perform both prediction and 

classification tasks in a unified framework similar to EPUSSS. The QISNN model extends the 

probabilistic spiking neuron model proposed by Kasabov (2010) by introducing quantum 

neurons, quantum synapse, and quantum learning rule in two levels of learning. The local 

learning in QISNN performs prediction while the global learning carries out the classification 

task. In the following section, a brief review of quantum spiking neural network ideas is 

provided. 

5.2. Previous Work 

Although recently both spiking neural networks and quantum computing attract many 

researchers’ interest, there is very little research done to couple these two areas together. 

Kristensen et al. (2021) proposed a quantum spiking neuron to improve SNN performance on 

custom-designed neuromorphic hardware based on Hamiltonian measurements. The authors 

introduced a spin system similar to the biological thresholding behaviour of spiking neurons 

with 3 states. States 1 and 2 are considered as input states and states 3 labelled as output. The 

chain interaction between the inputs and output cause energy differences among the possible 

states which results in the output excitation in presence of a certain state. Another research 

conducted by Sun et al. (2020), encodes the input information to spike trains using quantum 
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superposition concepts. Then a two-compartment spiking neural network with time 

convolution kernel synapse is introduced to process the encoded information to perform vision 

tasks. Chen et al. (2020) suggested a quantum spiking neural network called QSNN that uses 

quantum systems to measure the neurons voltage changes when a synapse receives temporal-

space stimuli. Then the voltage of neurons compares to the threshold voltage in the observation 

time, through measuring quantum registers. To calculate the quantum probability, the authors 

used the quantum amplitude estimation (QAE) algorithm combined with the swap-test 

algorithm and applied the proposed method on the MNIST dataset to perform character 

recognition. 

The above worthwhile research, partially deployed quantum computation to improve SNN 

performance. However, none of the above models suggested a complete quantum-based 

framework from network components to the learning algorithms. In this chapter, a novel 

Quantum Inspired Spiking Neural Network (QISNN) is introduced that not only consists of 

quantum neurons and quantum synapses but also has a two-level hierarchical quantum-inspired 

learning algorithm to perform both prediction and classification tasks. 

The next section introduces the probabilistic neuron model which is the core idea in the QISNN 

proposed model. 

In the probabilistic spiking neuron model (pSNM), probabilistic parameters determine spikes 

occurrence and the propagation of spikes across the synaptic connections (Kasabov, 2010). 

According to the pSNN model, a neuron 𝑛𝑖 receives input spikes from pre-synaptic neurons 𝑛𝑗  

(𝑗 = 1,2, . . , 𝑚).  The sum of all received inputs from 𝑚 pre-synaptic neurons determine neuron 

𝑛𝑖 post-synaptic potential at time 𝑡, 𝑃𝑆𝑃𝑖(𝑡). Once 𝑃𝑆𝑃𝑖(𝑡) reaches a firing threshold 𝜗𝑖(𝑡),  

neuron 𝑛𝑖 emits a spike. In pSNN, synaptic weights 𝑤𝑗,𝑖 are established during learning using 

Thrope’s rule (Thrope et al., 2001): 



133 

 

 ∆𝑤𝑗.𝑖 = 𝑚𝑜𝑑
𝑜𝑟𝑑𝑒𝑟(𝑗) (5-1) 

Where 𝑚𝑜𝑑 is a modulation factor in range (0,1), and 𝑜𝑟𝑑𝑒𝑟(𝑗) is a time-dependent order in 

which a spike from neuron 𝑛𝑗  arrives at synapse 𝑠𝑗,𝑖. This learning mechanism is a fast method 

that needs one pass data propagation to adapt the synaptic weights. In pSNN three probabilistic 

parameters determine neuron response to the input stimuli and its propagation along with post-

synaptic connections: 

1. 𝑝𝑐𝑗,𝑖(𝑡) which is the probability for emitting a spike from a pre-synaptic neuron 𝑛𝑗  to a 

post-synaptic neuron 𝑛𝑖 at time 𝑡 through the synapse 𝑠𝑗,𝑖. In other words, in pSNN 

model, each synaptic connection has 𝑝𝑐𝑗,𝑖(𝑡) that represents the structural and 

functional uncertainty observed in biological synapses. 𝑝𝑐𝑗,𝑖(𝑡) = 0 shows that there is 

no synaptic connection and subsequently no spike can propagate to the post-synaptic 

neuron. 

2. 𝑝𝑠𝑗,𝑖(𝑡) which is the probability of the synapse 𝑠𝑗,𝑖 to take part in 𝑃𝑆𝑃𝑖(𝑡) after receiving 

a spike from a pre-synaptic neuron 𝑛𝑗 . This probability stimulates the probability for 

ion channels to open or close during the release of neurotransmitters. 𝑝𝑠𝑗,𝑖(𝑡) 

probability can change during the learning process. In pSNN the assumption is that 

𝑝𝑠𝑗,𝑖(𝑡) = 1 (𝑗 = 1,… ,𝑚) for most synaptic connections unless there is a reason to 

change this parameter in the model. 

3.  𝑝𝑖(𝑡) which is the probability for neuron 𝑛𝑖 to emit a spike at time 𝑡 when its 𝑃𝑆𝑃𝑖(𝑡) 

reaches the firing threshold. This probability represents the probability density for firing 

in a biological neuron.  𝑃𝑆𝑃𝑖(𝑡) is defined using the following formula: 

 𝑃𝑆𝑃𝑖(𝑡) =  ∑ ∑𝑒𝑗𝑔 (𝑝𝑐𝑗,𝑖(𝑡 − 𝑝)) 𝑓(𝑝𝑠𝑗,𝑖(𝑡 − 𝑝))𝑤𝑗,𝑖(𝑡)

𝑚

𝑗=1

+ 𝜂(𝑡 − 𝑡0)

𝑡

𝑝= 𝑡0

 (5-2) 
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Where 𝑒𝑗 is 1 if neuron 𝑛𝑗  emits a spike and 0 otherwise; probability 𝑝𝑐𝑗,𝑖(𝑡) can 

determine   𝑔 (𝑝𝑐𝑗,𝑖(𝑡)) is 1 or 0; probability 𝑝𝑠𝑗,𝑖(𝑡) can determine 𝑓(𝑝𝑠𝑗,𝑖(𝑡)) is 1 or 

0;  𝑡0 is the time of the last spike emitted by 𝑛𝑖, and  𝜂(𝑡 − 𝑡0) represents decay in PSP. 

The pSNN is the generalization of the Integrate and fire (IF) model which if all its 

probability parameters set to 1 it behaves as IF neuron model. 

 

In pSNN two approaches has been proposed to modify the probability parameter 𝑝𝑖(𝑡): 

a) Traditional probability theory which neuron 𝑛𝑖 spiking activity changes the 

probability parameters. To be more specific, 𝑝𝑐𝑗,𝑖 (𝑗 = 1,2, . . , 𝑚) probability 

changes by Hebbian learning rule in this sense that if neuron 𝑛𝑖 spikes within a time 

frame after a spike releases from 𝑛𝑗 , 𝑝𝑐𝑗,𝑖 will increase by a small amount (learning 

rate); 𝑝𝑠𝑗,𝑖 (𝑗 = 1,2, . . , 𝑚) probability increases slightly every time that a spike is 

received at the synapse 𝑠𝑗,𝑖 and a PSP contribution is emitted form this synapse. 

b) Quantum information approach which each of the probability parameters 𝑝𝑖, 𝑝𝑐𝑗,𝑖, 

and 𝑝𝑠𝑗,𝑖 is considered as a quantum probability represented by a quantum bit (qubit) 

to allow spike propagation through the network. The qubit states for pSNN 

probability parameters are defined by the wave function indicated by equation (4-

5). The probability of the qubit to be in state “1” is calculated by 𝑝(1) = 𝛽2. The 

probability amplitudes of spikes at all 𝑚 synapses at time 𝑡 is represented by the 

following matrix: 

 [
𝛼1|𝛼2| … |𝛼𝑚
𝛽1|𝛽2| … |𝛽𝑚

] (5-3) 
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To change the qubits corresponding to 𝑝𝑖, 𝑝𝑐𝑗,𝑖, and 𝑝𝑠𝑗,𝑖 probabilities in pSNN according to 

spike propagation within a time interval in the connected neurons 𝑛𝑖 and 𝑛𝑗  the quantum 

rotation gate operator is applied: 

 [
𝛼𝑖
𝑗(𝑡 + 1)

𝛽𝑖
𝑗(𝑡 + 1)

] = [
cos(∆𝜃)       − 𝑠𝑖𝑛(∆𝜃)

𝑠𝑖𝑛(∆𝜃)             𝑐𝑜𝑠(∆𝜃)
] [
𝛼𝑖
𝑗(𝑡)

𝛽𝑖
𝑗(𝑡)

] (5-4) 

The qubits will be initialized with a normal distribution with two states 0 and 1, then the 

quantum rotation gate will change the probability of seeing 0 and 1. All the 2𝑚 combinations 

of incoming spikes to neuron 𝑛𝑖 at time 𝑡 is represented by an 𝑚-qubit vector 𝑝𝑐𝑗,𝑖 (𝑗 =

1,2, . . , 𝑚). 

The proposed QISNN is an extended version of pSNN (Kasabov, 2010) which is described in 

the following section. 

5.3. The Proposed Quantum Inspired Spiking Neural 

Network (QISNN) 

As it was mentioned before, the QISNN follows EPUSSS architecture and the two-level 

hierarchical learning structure. In the QISNN, the neuron model, synaptic connections, and 

learning rules are a combination of biologically plausible models and quantum-inspired models 

introduced in chapters 3 and 4, respectively. Therefore, it is fair to say that the QISNN 

framework is a brain-like quantum-inspired model. 

Like EPUSSS, QISNN has local and global learning mechanisms: 

a) In the local learning mechanism, the input data dynamics is learnt and predicted in a 

semi-supervised manner using the STDP rule and the chaotic quantum learning rule. 
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b) In the global learning approach, the classification result at end of each episode of 

learning is used to adjust the neuron’s synaptic weights utilising deSNN structure 

combined with the chaotic quantum learning rule in a supervised manner. 

Although the learning mechanisms of QISNN is fundamentally similar to EPUSSS, the 

learning algorithms, neuron’s firing behaviour, and post-synaptic connections are controlled 

and governed by quantum computation models. 

QISNN like EPUSSS architecture has the same three major modules in its framework: the 

encoder module which uses BSA algorithm that encodes input data into spike trains, the 3D 

SNN reservoir module in which the local learning mechanism of QISNN governs the synaptic 

efficacy in a semi-supervised way, and the output module which deploys the global learning 

mechanism of QISNN combined with modified deSNN model to update synaptic efficacy in a 

supervised way.  QISNN uses spiking neuron models such as LIF and Izhikevich combined 

with a quantum model to control neurons’ firing behaviour. 

QISNN connectivity both in the 3D SNN reservoir and the deSNN output layer is completely 

akin to EPUSSS. The QISNN model learns from time-series data to predict the next values of 

the input data in a certain time-window in the reservoir. Predictive modelling is achieved 

through a semi-supervised local learning mechanism using the error of prediction in a certain 

time-window and rule that adjust the efficacy of synaptic weights of the reservoir neurons.  The 

output neurons inspired by the deSNN model’s concept are created incrementally for each 

training sample to associate the input data with a class label. For this purpose, all the input 

neurons and reservoir neurons (or just input neurons) are connected to output neurons using 

the RO method and their synaptic weights are adjusted based on the QISNN global learning 

rule using a neuromodulatory signal that is generated by the results of classification in the 

training phase. The principle behind the algorithm is to perform both prediction and 
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classification in a two-level hierarchical learning structure. In the proposed model the input 

neurons contribute strongly to both local and global learning. In local learning, the system 

learns to predict the input data dynamics through modifying the oscillatory rhythmic patterns 

of neuronal firing activities. A sliding time-window allows QISNN to capture the firing 

behaviour of the input neurons for a certain time course in which the input data is exposed to 

the network. The input neurons have recurrent connections from the last layer of reservoir 

neurons that help them to learn the activity of the reservoir neurons and influence other input 

neurons to have optimal learning like the cooperative learning in the brain. Then by cross-

matching input neurons fining behaviour with the input data dynamics in one (several) time 

unite(s) ahead the error will be calculated and backpropagated to modify the synaptic and 

hypersynaptic connections. This process is similar to synaptic plasticity based on local signals 

in the brain. 

At the end of each episode of learning corresponding to the presentation of the entire input 

pattern with 𝑇 lasting duration to the network, a neuromodulatory signal from the output 

neurons is generated based on the target labels. Using the QICEA learning rule the generated 

neuromodulatory signal helps to reward or penalise the synaptic and hypersynaptic connections 

efficacy. This process is the global learning mechanism of QISNN which resembles the 

feedback loop learning from external stimuli in the brain. The QISNN architecture and its 

learning principles can be seen in figure 5-1. 
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Figure 5-1: The QISNN two-level hierarchical learning framework 

5.3.1 Quantum Local Learning 

 Inspiring by pSNN model, a quantum neuron model is introduced for neurons and their 

synaptic connections. In this model, the spiking neural network will be presented by two 

quantum elements: 1) quantum neuron whose firing probability is controlled by a quantum 

wave function, 2) quantum post-synaptic connections which the probability of forming a 

connection between neuron  𝑛𝑖 and 𝑛𝑗  is controlled using a quantum wave function. 

A Chaotic quantum rotation gate is used to change the probabilities of firing in a quantum 

neuron and forming a synaptic connection in quantum post-synaptic connections according to 

two-level observation.  At the first level observation quantum neuron probability of firing is 

modified using the average firing rate in a predefined time window that slides over the input 

spike trains. If the spiking activity is not like the firing average of the input spike train in a time 

window, the quantum gate operator will apply to change the firing probabilities to decrease or 

increase them. 

The predictive accuracy is used as the fitness function to evaluate the quantum solution quality. 
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Figure 5-2: The role of quantum state probability amplitudes in the learning mechanisms of QISNN 

Since the use of a single qubit cannot underline the power of quantum computation in 

information processing in spiking neural networks, the quantum entanglement can help to 

highlight the correlation amongst the quantum neurons in the process of emitting spikes 

through the synaptic connections. 

In the QISNN, the quantum neurons are entangled together through the small-world 

connectivity. The CQIEA learning rule will control the time that a neuron propagates the 

information, and it also helps to choose the synapses that contribute to the learning. This 

approach can help to reduce multiple synaptic paths for propagating information to a few more 

influential paths that can improve the learning results by reducing noisy paths. 

5.3.2 Quantum Neurons and Quantum Synapses 

Figure 5-3, shows both quantum neurons and quantum synapses qubits and their wave 

functions. 



140 

 

 

Figure 5-3: The local learning quantum neurons and synaptic qubits and the quantum wave function for the 

probability amplitudes for the entangled neurons. 

The probability of amplitudes of both quantum neurons and quantum synapses will be 

controlled according to the prediction results by CQIEA. At the observation time (end of each 

time window) the error between the actual firing rate and the input neurons’ firing rate will be 

used as the fitness value to change the states of the qubits towards a better solution in an 

iterative way. The neurons membrane potential will be calculated using the LIF model, 

however, it is the CQIEA algorithm that decided if the neuron which has reached the firing 

threshold can emit the spikes to the post-synaptic neurons or not. Also, although there might 

be several post-synaptic neurons connected or entangled with the pre-synaptic neuron, only the 

synapses that have the higher probability amplitude will be chosen to emit the spike to the 

target neurons. In this way, not only the time of the spike but also the path of information 

propagation will be improving at each iteration to boost the learning process. This approach 

helps to create a learning path according to the observed outcome. 
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5.3.3 Quantum Global Learning 

In the level 2 observation (global learning), post-synaptic connections probabilities will be 

modified according to the result of the classification of the input patterns in the deSNN layer 

using the CQIEA learning rule. 

By introducing spin quantum number to each quantum neuron, a diamagnetic field will be 

created for those neurons which contribute to form a similar path for similar input patterns and 

a paramagnetic field for paths for different input patterns. In this way, all the quantum neurons 

that contribute to forming a certain path for similar input patterns are entangled together. The 

spin quantum number will be updated based on the spiking neuron activities for input patterns 

at the end of simulation times for each input sample. Therefore, through the learning time, 

those neurons that contribute to the same class input will assign the same spin number. This 

mechanism helps us to extract knowledge of spiking behaviour during learning and provide a 

clear synaptic connection path for better pattern recognition. 

To mimic the hippocampus role in biological learning, a neuron that is connected to presynaptic 

inhibitory neurons, will not spike even though the probability of firing reaches the threshold. 

This approach guarantees to balance excitatory and inhibitory activity in the network. 

The synaptic weights between pre- and post-synaptic neurons will be updated according to the 

STDP rule and the probabilities of firings and synaptic connections will be updated using 

CQIEA. Figure 5-4 provide a schematic illustration of the quantum neurons and quantum 

synapses in the global learning.  
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Figure 5-4: The global learning quantum neurons and synaptic qubits and the quantum wave function for the 

probability amplitudes for the entangled neurons 

The same process performed in the local learning will be followed for the global learning too. 

The only difference is that in global learning the error for the observation time will be the 

classification error at the end of each episode of training. Figure 5-5 shows the QISNN 

pseudocode.  

Quantum Inspired Spiking Neural Network (QISNN) 

1: 

Generate 3D-SNN network including input neurons 𝐼, Reservoir neurons 𝑅 using neurons 

coordinates (e.g., Talairach map for EEG data).  

2: 

Create QISNN network connectivity by establishing hypersynapses and synaptic connections 

amongst input neurons and between input neurons and reservoir neurons, respectively using small 

world connectivity algorithm (see chapter 2). 

3: Set 80% of synaptic connections excitatory (+1) and 20% of synaptic connections inhibitory (-1). 

4: 

Set neuron firing thresholds 𝜗 for excitatory and inhibitory neurons (if at least one of the 

postsynaptic connections is inhibitory the neuron is considered as inhibitory neuron). 

7: Initialise random weights for synaptic and hypersynaptic connections. 

8: Set 𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 value (e.g., 10 time units) and max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 value (e.g., 50) 

9: Encode all input pattern to spike train using BSA algorithm (see chapter 2). 

10: while  𝑖𝑡 ≤ max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

11: for each input pattern 𝑃𝑠

12: for each input neuron 𝐼𝑖
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13:               while l ≤  length(𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤) 

14:                      Propagate input spikes to reservoir neurons using LIF neuron model (Eq. 3-1) 

15:                      Adapt synaptic and hypersynaptic weights according to STDP rule (Eq. 2-12). 

16:                Calculate 𝐸𝑙𝑜𝑐𝑎𝑙𝑖  (Eq. 3-2). 

17:                 Update weights using CQIEA. 

18:                 Set the synaptic weights for inactive neurons to zero. 

19:                𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 += 𝑡𝑖𝑚𝑒 − 𝑤𝑖𝑛𝑑𝑜𝑤 

20: Initialise deSNN parameters: 𝑀𝑜𝑑, 𝐷, 𝐶, 𝛼, and 𝑠𝑖𝑚 (similarity threshold) 

21: for each input pattern 𝑃𝑖  

22:       Create a new output neuron 𝑖 

23:       Initialise synaptic weights 𝑤𝑖(0) using RO learning rule denoted in Eq. 2-14 

24:       Calculate 𝑃𝑆𝑃𝑖𝑚𝑎𝑥 using Eq. 2-16  

25:       Calculate the firing threshold 𝑇ℎ𝑖  for neuron 𝑖 using Eq. 2-17  

26: 

        if the new wight vector 𝑤𝑖  is similar to an existing output neuron using Euclidean distance 

similarity measure and 𝑠𝑖𝑚 threshold  

27:              if the desired class labels of the similar weight vectors are different 

28:                      Generate the corresponding 𝑑(𝑡) reward signal according to Eq. 3-9. 

29: 

                      Update the synaptic weights 𝑤𝑖  for successive spikes on the corresponding synapses 

using CQIEA rule. 

30:                       Add new output neuron to the network 

31:               else 

32:                       Generate the corresponding 𝑑(𝑡) reward signal according to Eq. 3-9. 

33: 

                      Update the synaptic weights 𝑤𝑖  for successive spikes on the corresponding synapses 

using CQIEA rule. 

34:                        Merge the two neurons by averaging their threshold and synaptic weights 

35:        Calculate energy function 𝐸 (Eq. 3-11) 

36:                   Adapt all synaptic weights according to Eq. 3-13.     

Figure 5-5: The QISNN pseudocode 
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In Figure 5-6, the modular schematic of the QISNN framework is illustrated. 

 

Figure 5-6: The QISNN implementation modular schematic 

 The proposed QISNN’s needs to be investigated by performing more experiments with various 

data. Also, since the model is a hybrid of the SNN model and quantum computation concepts, 

there is a potential for designing combined neuromorphic and quantum computing hardware. 

Quantum computers, which was first invented in 1998, are immensely difficult to engineer, 

build and program. Quantum computers are limited errors arising from noise, faults, and loss 

of quantum coherence in their operations. The loss of coherence caused by vibrations, 

temperature fluctuations, electromagnetic waves and other interactions with the outside 

environment can cause damage to the quantum computer’s components. Thus, the current 

quantum computers are not quite reliable even for programs with modest execution times. On 

the other hand, neuromorphic hardware, which adapts the SNN properties in its architecture, is 

proven to be fast and energy-efficient and can support high-performance applications. The 

proposed models in this thesis have the potential to be implemented on quantum computers, 

neuromorphic hardware, and even hybrid hardware that supports both SNN and quantum 
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computing architecture. This can be an exciting and promising area to be explored further in 

the future.  

5.4. Conclusion 

Theis chapter demonstrates a quantum-inspired framework for a brain-inspired SNN that uses 

quantum computations in combination with biologically plausible learning rules to perform 

both prediction and classification tasks at the same time within a unified model. The proposed 

QISNN framework is an improved version of the EPUSSS framework to solve the polynomial 

time complexity of learning mechanisms. 
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Chapter 6 . Quantum Inspired Associative Memory 

for Spiking Neural Networks (QIASM-SNN) on 

Spatio-temporal Data  

 

Abstract 

Associative memories (AM) relate to learning some patterns and recalling them from partial 

information. This is a typical brain function. Creating a neural network for associative memory 

for static images is what the current state-of-the-art is (see John Holland). This chapter proposes 

new types of AM for Spatio-temporal data, which is exactly what the brain does, rather than 

AM for single images. So, it is about Spatio-temporal associative memories (STAM). Two 

methods are proposed and subject to pending publications: Brain-inspired and STAM Quantum 

inspired STAM.  

In this chapter, the following research questions are addressed: 

RQ6 “How can Spatio-temporal spiking patterns be stored and recalled by the spiking neural 

network for recognition and prediction tasks in the presence of noisy or partial incomplete data 

by introducing a novel approach using associative memory and quantum computation 

concepts?” 

RQ7 “How can the proposed Quantum Associative Memory for storing and recalling spiking 

patterns be improved in terms of time and space efficiency using the proposed CQIEA 

algorithm?” 
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6.1 Introduction  

A human can learn and understand many concepts by finding the relation between apparently 

unrelated data. In other words, our mind is capable to recognize the patterns in data and label 

them to classify or using them to predict future events. This ability of our brain is called 

associative memory. 

Inspiring by this human brain capability, associative memory has been introduced to the 

machine learning field to memorize information and retrieve them from partial or noisy data. 

Associative memory in neural networks is an unsupervised technique that was first proposed 

by Hopfield (1982). Inspiring by Quantum Associative Memory proposed by Ventura et al. 

(2000) and Techapet Najafa and Nana Engo (2018), The Quantum Associative Memory for 

Spiking Neural Network to store produced patterns by the network and recall them in the 

presence of partial noisy input data is introduced in this chapter. Before describing the proposed 

method some basic concepts about quantum mechanics is explained in the following section.  

6.2 Previous Work 

Associative memory is the ability to learn and remember the relationship between different 

objects or concepts such as remembering the name of someone we have just met or the aroma 

of a particular perfume (Suzuki, 2005). In artificial neural networks, associative memory is 

referred to the ability to retrieve the most similar pattern to the stored memory vector in the 

network. 

Ezhov et al. (2000), discussed a model of quantum associative memory which generalizes the 

completing associative memory proposed by Ventura and Martinez. The authors suggested the 

use of a distributed query of general form. Ventura and Martinez (2000), combined quantum 
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computation with classical neural network theory to produce a quantum associative memory 

(QuAM). Their method was based on Grover’s well-known algorithm for searching an unsorted 

quantum database. Zhou et al. (2012), introduced a storage method for multiple patterns by 

constructing the quantum array with the binary decision diagrams. They used the nonlinear 

search algorithm to increase the pattern recalling speed. Techapet Najafa and Nana Engo 

(2012), proposed a quantum associative memory model using the quantum matrix with binary 

decision diagram and the nonlinear search algorithm. Their model can retrieve one of the 

sought states in the multi-values retrieving scheme. According to the authors, their model is 

faster and robust to the noise in comparison to Grover’s algorithm. Techapet Najafa et al. 

(2015), proposed an improved quantum associative algorithm with the distributed query. The 

authors optimized data retrieval of correct multi-patterns by modifying the probability 

amplitudes of the memory patterns states. Techapet Najafa and Nana Engo (2018), introduced 

a model of Quantum Associative Memory called QAMDiagnos to diagnose four tropical 

diseases with similar signs and symptoms. Their proposed memory model can distinguish a 

single infection from a polyinfection. This model is a combination of the improved version of 

the original linear quantum retrieving algorithm proposed by Ventura and the non-linear 

quantum search algorithm. Hunter et al. (2008), compared associative memory function in a 

spiking neural network with a simple artificial neural network and investigate the biological 

plausibility of the model to improve the recalling process within a sparsely connected network. 

Agnes et al. (2012), assembled a synaptic connectivity model on a spiking neuron network to 

build a dynamic pattern recognition system. In their model, neurons’ responses to different 

current injections are mapped onto a subspace using Principal Component Analysis to form 

different trajectories. Hu et al. (2015), proposed a spiking associative memory model to encode 

different memories using different subsets of encoding neurons with temporal codes. The 

authors used the STDP learning rule to form associative memory by modification of the 
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synaptic connections between the input layer and hidden layers, and recurrent connections of 

hidden layers, respectively. Haga and Fukai (2019), introduced a memory system for a neural 

network based on an attractor network which is a group of connected nodes that display patterns 

of activity and tend towards certain states. They applied the concept of excitatory and inhibitory 

nodes to their proposed network to mimic the role of the hippocampus in balancing the network 

to form new associations. The problem with their approach is using a random sampling of the 

possible outputs instead of a systematic review of every possible combination. 

 All these worthwhile works have problems with the computer physical storage capacity, the 

computation time to retrieve a certain pattern, and deploying an efficient search mechanism for 

all possible output combinations. 

6.3 Brain-inspired STAM based on NeuCube 

6.3.1 Introduction 

The brain can function as an associative memory (AM) to recall previously learned 

spatio/spectrotemporal (ST) information even though only partial or related information is 

provided. In this case, only part of the brain areas involved in the previous learning is activated 

with the provided input data. It then gets other parts activated through polychronisation and 

synfire chains until the full information is recalled. Inspired by this amazing brain ability, here 

we propose a method for the realisation of Spatio-temporal associative memory (STAM) in a 

brain-inspired spiking neural network (SNN) architecture. We call the proposed method 

STAM-SNN. It is implemented and experimented here on several STAM case studies, 

including EEG, fMRI and financial temporal data, manifesting robustness to missing temporal 

or Spatio-temporal components in the recall data.  Future studies will involve the realization of 
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different types of STAM manifested in the brain for the creation of brain-inspired artificial 

intelligence. 

6.3.2 STAM on NeuCube Using EEG Data 

Used data: the Wrist Movement EEG data; length of the EEG signals 128 time points; 3 classes; 

20 samples of each class. 

Training the SNNcube with all 60 samples of data. 

Testing the recall accuracy with all 60 samples, but with partial temporal data (from 90% down 

to only 5% from the initial part of the EEG signals). 

The accuracy achieved: 100% recall of samples and classification of the movements for 5% 

(just 7 time points from the beginning of each EEG sample) or a higher percentage of the input 

temporal information used. The accuracy starts to decline from 4% down to 2 % of data used 

(just 3 time points at the beginning of the signals). 

NeuCube SNN parameters: Encoding: SF; Classifier: Mod=0.9; Drift=0; k=1; Firing threshold: 

0.5; STDP rate 0.01; training iterations 1; LDC probability 0; Refractory time 6; Potential leak 

rate 0.02 (see Figure 6-1). 
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Figure 6-1: Training on full data and recall from 100% down to only 5% of the input temporal data results in 

100% classification accuracy. 

 

Figure 6-2: Training on full data and recall on only 2% of the temporal input data results in less than 100% 

accuracy of recall, but still 88% classification accuracy is achieved. 

Training with full data (14 channels, full temporal sequences) and validation with 13 EEG 

channels, full temporal sequences): 100% accuracy (see Figure 6-3). 
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Figure 6-3: Training with full data (14 channels, full temporal sequences) and validation with only 13 EEG 

channels, full temporal sequences): 100% accuracy. 

6.3.3. Challenges For Further Development of STAM-SNN 

A challenge in STAM-SNN is to design a system that associates different stimuli during 

learning so that if one of them is available the other one can be recalled. Can for example a 

STAN-SNN model learn brain data from synesthetic subjects who can hear music when they 

see a colour? The challenge can be addressed if prior knowledge is used about brain structural 

and functional pathways, along with the stimuli data and the corresponding ST data from a 

subject or multiple subjects. At present much is known about structural connectivity and 

functional pathways during perception (Carter et al, 2009; Stam, 2004; Hellwig, 2000; 

Braitenberg and Schutz, 1998). This prior knowledge can be used to initialise the SNN Cube 

connectivity before training. 
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An open question is how to enter sound-, image and brain response data (e.g., EEG, fMRI) as 

associated Spatio-temporal patterns into appropriately dedicated groups of neurons? Entering 

stimulus signals to different parts of the brain is a major principle used in neuroprosthetics 

(Nicolelis, 2012) so that damaged parts of the brain are ‘skipped’ (Paulun et al, 2019). Could 

experiments with the STAM-SNN framework provide some insights and ideas about new types 

of neuroprosthetics? 

The STAM-SNN framework makes it possible to use neuromorphic sensory systems, such as 

the silicon retina DVS camera (Delbruck et al, 2007; Lichetnstein and Delbruck, 2008). It could 

be done by converting analogue input data into spike trains based on fast AER and then entering 

these spike trains into appropriate neuronal structures of the model. A trained STAN-SNN 

model can be developed for the recognition of obscured moving objects. 

6.4 The Proposed Quantum-Inspired STAM for SNN 

By introducing quantum computation to the machine learning field, especially artificial neural 

networks, the performance of these techniques has been boosted up both in terms of speed and 

storage capacity. Quantum associative memory can provide a storage capacity of 𝑂(2𝑛) 

patterns using only 𝑛 neurons, which is enormous memory storage, while the conventional 

associative memory approaches struggle with severe storage restrictions (Ventura et al., 2000).  

In this chapter a novel quantum associative memory scheme for spiking neural networks is 

proposed to perform a fast, online pattern recognition for classification and prediction tasks 

just by partial pattern exposure. 

For the implementation of the quantum associative memory for spiking neural networks, the 

network requires the ability to store patterns in a medium and the ability to recall those patterns 

later. In previous work on quantum associative memory, the information needed to be presented 
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in a binary code to construct quantum states that can be stored or retrieved by the quantum 

algorithms. By embedding the quantum associative memory into EPUSSS or QISNN models, 

the spike encoding module of these frameworks will convert the information into the spike 

trains which is a binary representation. Each input neuron in the EPUSSS or QISNN models 

can act as a register to store memory of the produced patterns by its locally connected reservoir 

neurons. To find a pattern in the quantum associative memory, the system should be measured 

and collapsed with the near certainty to the basis state which corresponds to the sought pattern. 

To this end, the retrieving quantum algorithm inverts the phase of desired basis state and all 

the other basis states using the quantum gate operator in a way that the probability amplitude 

of the desired basis state increases to near unity and the probability amplitude all the other 

states decrease to near zero. 

The proposed local learning in EPUSSS or QISNN simulates the neocortex neurons that are 

responsible for long-term memory storage and uses excitatory and inhibitory neurons with 

different types of neurotransmitters to mimic the regulatory role of the hippocampus in forming 

cognitive patterns in a distributed quantum memory all over the network. Using local learning 

algorithms introduced in chapters 3 and 5, the memory forms in the proposed network. Then, 

by introducing quantum memory storage for each input neuron (qubit memories) the learnt 

patterns can be retrieved in an “Ergodic” manner meaning that the system visits all its possible 

states to find the pattern that matches to the input (partial or noisy) information. 

In the proposed quantum associative memory, we assume that a set of 𝑝 of 𝑚 binary patterns 

of length 𝑛 are stored. Which 𝑛 is the number of neurons. We consider the problem of 

associative pattern completion – learning to produce one of the full patterns when presented 

with only a partial pattern. Recall a given pattern in an associative fashion allows fill in a 

reasonable guess as to the rest of the pattern so that even a partial pattern that may never have 



156 

 

been seen during the learning of the pattern set 𝑝 can be retrieved from the stored memory. 

Quantum associative memory has a capacity of 𝑂(2𝑛) for storing patterns with length 𝑛 using 

𝑛 neurons. 

In the novel proposed quantum associative memory, the learnt patterns which are produced 

during the local learning of eighter EPUSSS model or QISNN by the input neurons (input twin 

neurons) will be stored as qubits in the quantum memory. In this way, the associative memory 

is integrated into both models and after local learning when the input spike trains dynamic is 

captured and learnt by the network, the patterns can be recalled in a more time-efficient manner.  

After storing patterns in the local learning phase of the EPUSSS model or the QISNN model 

two quantum search algorithms can be used to retrieve the sought pattern, Grover’s algorithm 

and the CQIEA algorithm. The schematic of the proposed quantum associative memory for 

spiking neural network is shown in Figure 6-4. 
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Figure 6-4: The pattern retrieval mechanism in the proposed spiking quantum associative memory 

 

6.4.1 The Grover’s Algorithm 

The Grover’s algorithm (Grover, 1996; Grover, 1998) is a quantum counterpart of classical 

which offers 𝑂(√𝑁) time complexity for searching an unstructured database containing 𝑁 

items to find a specific pattern. 

Assume that we have an unstructured database containing 𝑁 patterns binary patterns 

𝑓: {1,2,3, … ,𝑁} → {0,1}, the search problem is to find 𝑥∗: 𝑓(𝑥∗) = 1. The Grover’s algorithm 

performs the search process in two iterative steps, phase inversion and inversion about the 
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mean. Grover’s algorithm starts with initialising the probability of amplitudes for qubits all to 

equal superposition states: 

|𝜓⟩ =
1

√𝑁
∑ 𝛼𝑥|𝑥⟩

𝑁−1

𝑥=0

(6-1) 

Afterwards the amplitude 𝛼 for the sought pattern 𝑥∗ is changed using the phase inversion

operator: 

𝑃ℎ𝑎𝑠𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 

{

 

∑ 𝛼𝑥|𝑥⟩

𝑁−1

𝑥≠𝑥∗

  𝑖𝑓 𝑥 ≠ 𝑥∗ 

∑ −𝛼𝑥|𝑥⟩  𝑖𝑓 𝑥 = 𝑥∗
𝑁−1

𝑥=𝑥∗

(6-2) 

In the phase inversion, the amplitude of the sought pattern is inverted and the amplitudes of the 

rest of the patterns remain unchanged. 

In the next step, the inversion about the mean operator is applied to flip the amplitudes of the 

patterns about the mean amplitude. 

𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 = ∑(2𝜇 − 𝛼𝑥)|𝑥⟩

𝑁−1

𝑥

 (6-3) 

Where 𝜇 is the mean amplitude and is calculated as follows: 

𝜇 =
∑ 𝛼𝑥|𝑥⟩
𝑁−1
𝑥=0

𝑁
(6-4) 
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The phase inversion and the inversion about the mean steps are repeated until the sought pattern 

is found.  

Figure 6-5 illustrates the mathematical representation for the phase inversion and inversion 

about the mean operators of Grover’s algorithm. The iterative process of phase inversion and 

inversion about the mean helps to increase the probability amplitude of the pattern similar to 

the sought pattern and decrease the probability of other non-similar patterns.  

 

Figure 6-5: The mathematical representation for Grover’s algorithm 

 

To implement the Grover’s algorithm the following operators are used to perform phase 

inversion and inversion about the mean. 

 𝐼 𝜙 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝜙𝜙 = −1 (6-5) 

The 𝐼 𝜙 which inverts the phase of the state |𝜙⟩.  
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 𝑊̂ =
1

√2
[
1 1
1 −1

] (6-6) 

The 𝑊̂ (Walsh or Hadamard transform) operator which performs a special case of the discrete 

Fourier transform. 

Using Grover’s algorithm to search for a specific pattern in a database of size 𝑁 = 2𝑛 where 

𝑛 is the number of qubits, all the states are initialised to |0̅⟩ using 𝑊̂ operator which results in 

amplitudes 
1

√𝑁
. Then the 𝐼𝜏 phase inversion operator is applied to change the amplitude of the 

sought state |𝜏⟩. Ultimately, the 𝐺̂ operator is applied to invert all the states’ amplitude about 

the mean: 

 𝐺̂ = −𝑊̂𝐼𝑂̅𝑊̂ (6-7) 

 

 

Figure 6-6: The Quantum circuit for Grover’s Algorithm 
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Figure 6-6 shows the quantum circuit for Grover’s search algorithm and Figure 6-7 

demonstrates the Grover’s algorithm pseudocode. 

 

Grover’s Algorithm 

1: Generate the initial state |0̅⟩. 

2: Initialise all the states’ amplitude using  𝑊̂|0̅⟩ = |1̅⟩ = |𝜓⟩ 

3: For 𝑖 ≤  
𝜋

4
√𝑁 

4:       Apply the phase inversion using   |𝜓⟩ =  𝐼𝜏|𝜓⟩ 

5:       Apply the inversion about the mean using |𝜓⟩ =  𝐺̂|𝜓⟩ 

6:       Observe the system 

18: end for 

Figure 6-7: Grover’s algorithm pseudocode 

 

 

6.4.2 The CQIEA Pattern Retrieving Algorithm 

 

In the proposed CQIEA pattern retrieval method by moving a sliding window across the sought 

pattern and comparing it with the stored firing memories of neurons the highest similarity 

amongst the neural activities produced by the network is selected and retrieved as the output. 

The similarity threshold is set to 95%. The performance of the proposed algorithm highly 

depends on the number of neurons and synaptic connections amongst them and the sparsity of 

the training patterns.  

The CQIEA will be used as a pattern retrieval on the stored quantum memory (the number of 

qubits depends on the sought patterns length). The state of the patterns will be changed using 

the Chirikov chaotic quantum gate introduced in chapter 4. Using chaotic quantum gate the 
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amplitude of the stored quantum patterns will be changed in a way that the similar patterns to 

the sought pattern have the highest amplitude. This process will be repeated for all the stored 

patterns until the most similar pattern to the stored patterns is retrieved. 

Figure 6-8 illustrates the schematic representation of CQIEA pattern retrieval algorithm for the 

Quantum Associative Memory in SNNs. 

 

Figure 6-8: Schematic representation of CQIEA pattern retrieving algorithm 

Both CQIEA pattern retrieval algorithm and Grover’s algorithm use the Jaccard proximity 

measurement to compute similarity between the sought binary input and the stored patterns. 

 

 𝑑𝑠𝑡 =
#[(𝑥𝑠𝑗 ≠ 𝑦𝑡𝑗) ∩ (𝑥𝑠𝑗 ≠ 0) ∪ (𝑦𝑡𝑗 ≠ 0)]

#[(𝑥𝑠𝑗 ≠ 0) ∪ (𝑦𝑡𝑗 ≠ 0)]
 (6-8) 

Where the 𝑑𝑠𝑡 is the similarity value, the 𝑥𝑠𝑗 is the sought pattern, and 𝑦𝑡𝑗 is the stored pattern. 

Theoretically, both Grover’s algorithm and CQIEA algorithm can search unstructured 

databases in an acceptable time for the desired patterns and retrieving the sought pattern even 

in the presence of partial noisy input data. As a future direction and to reveal the power of 
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quantum associative memory, more experiments with large scale dataset needed to be conduct. 

As mentioned before, combining the SNN models with quantum computing principals can lead 

to powerful models with computational advantages and is a promising future for the new 

generation of quantum computers and neuromorphic hardware.  

6.5 Conclusion 

In this chapter, a novel quantum associative memory scheme for spiking neural networks is 

proposed to perform a fast, online pattern recognition for classification and prediction tasks 

just by partial pattern exposure. Two quantum pattern retrieval algorithms are proposed here 

to be embedded into EPUSSS or QISNN models: Grover’s algorithm and CQIEA algorithm. 

In the novel proposed quantum associative memory, the learnt patterns which are produced 

during the local learning of either the EPUSSS model or QISNN by the input neurons (input 

twin neurons) will be stored as qubits in the quantum memory. In this way, the associative 

memory is integrated into both models. After local learning, when the input spike trains 

dynamic is captured and learnt by the network, the patterns can be recalled in a more time-

efficient manner. After storing patterns in the local learning phase of the EPUSSS model or 

QISNN model, Grover and the CQIEA search algorithms are used to retrieve the sought 

pattern. Both algorithms use Jaccard proximity measurement to compute the similarity between 

two binary inputs. The proposed methods set a new direction for building AM in the future as 

STAM. 

Publications that present the two methods are under construction. 
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Chapter 7 . Pre-processing and Feature Extraction 

from Brain Spatio-temporal EEG Data 

Abstract 

Almost all the real-world datasets suffer from being incomplete, inconsistent, inaccurate due 

to data acquisition errors or outliers, and often contain missing values. The quality of the dataset 

has a great impact on machine learning performance in learning and extracting meaningful 

insights from data. Therefore, data pre-processing and feature extraction play an important role 

in enhancing machine learning’s efficiency. In this chapter, data pre-processing and feature 

extraction methods have been applied to increase the proposed SNN models’ efficiency.  

This chapter addresses the following research question. 

RQ 8 “How to pre-process Spatio-temporal data and to extract useful features that can help 

improve the applicability of neuromorphic computation for a real-world application”. 

The application problem here relates to the analysis of EEG brain data collected from dementia 

patients. 

7.1 Introduction 

In the last century, dementia diseases become the main concern all over the world due to the 

increase individuals’ life expectations. Dementia occurs when the brain has been affected by a 

specific disease or condition that causes cognitive impairment (Hampel et al., 2010). 

Alzheimer’s disease (AD), Vascular Dementia (VaD) and Mixed Dementia (MD), which is a 

combination of Alzheimer’s disease and Vascular Dementia, are the most common forms of 
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dementia (Cedazo-Minguez and Winblad, 2010; DeKosky and Marek 2003; Gorelick, 1997). 

The AD, VaD, and MD are very similar in their symptom’s characteristics. Since the treatment 

of different types of dementia depends on the correct diagnosis, clinically distinguishing them 

is very important and challenging for the physician. 

Alzheimer Disease (AD) is the most common form of dementia, accounting for two-thirds of 

all dementia diagnoses. AD causes a gradual and progressive decline in cognitive capabilities 

including episodic memory loss and executive functions disablement that can lead to social or 

occupational impairment. Since the early detection of AD may increase the chance of success 

in therapies and help AD patients to be managed more effectively, an accurate clinical 

diagnosis in the early stages of the disease becomes very important to neuropsychologists 

(Galimberti and Scarpini, 2010; Saykin et al, 2010; Linnenbringer et al, 2010; Goldman et al, 

2011). 

However, since the clinical diagnosis of AD relies on the comparison of a patient’s cognitive 

performance with that of normal non-demented individuals who are matched for age, gender, 

and education with the subject, may cause failure in capturing some subjects in the early stages 

of the disease. Moreover, the earliest symptoms of mild impairment can be mistaken with 

healthy ageing, stress or can be confused with symptoms of other brain disorders. Therefore, 

diagnosis of AD is a very difficult task that requires the rich clinical experience of physicians. 

Due to the non-invasive nature of electroencephalographic (EEG) recording, it is a common 

technique to collect data from brain disorders patients to understand their mental activities. 

EEG recordings provide a direct measure of cortical activity with millisecond temporal 

resolution. Hence, there are various types of data available for analysing brain disorders, 

specifically AD, including EEG recordings, fMRI images, clinical and demographic 

information. Most of these collected data are spatio and/or Spatio-temporal data (SSTD) that 
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include measuring spatial or/and spectral variables over time that making them a suitable 

application for spiking neural networks. 

Despite spiking neural network biological plausibility, fast information processing, and the 

ability to preserve the Spatio-temporal relationship of the data stream, the pattern recognition 

and prediction of its occurrence is a difficult task for SNNs. Finding spiking patterns that can 

represent the learnt information is a challenging task and so far, few attempts have been done 

to develop a predictive model based on spiking neural networks. To have a good prediction 

performance, the network behaviour (pattern) for a specific sample should be produced and 

stored to recall it in the future. It will be more efficient if the desired pattern can be recognized 

in the presence of partial information, as the human associative memory. In this thesis, to 

develop a predictive model that can both perform off-line and on-line prediction and recall the 

whole desired pattern when just some part of the information is exposed to the network, I 

proposed novel strategies to capture, store and retrieve the patterns. 

In this chapter, as a case study, the proposed models are applied to predict the development of 

brain disorder risk. To this end, a dataset related to Dementia and Alzheimer Disease are used. 

The dataset is collected by Russian neuroscientists from demented patients. This dataset 

consists of 67 patients’ static clinical data along with their EEG recordings. These patients 

belong to three different dementia classes: Alzheimer Disease (8 patients), Vascular Dementia 

(14 patients) and, Mixed Dementia (45 patients). The dataset suffers from several issues: 

• EEG recordings suffer from: 

o Different recording times 

o Different EEG channels 

o Highly imbalanced 

• Static clinical data suffers from: 
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o Missing values 

o Highly imbalanced 

To overcome these issues, data pre-processing methods including data cleaning, data 

oversampling, and feature extraction techniques have been used which are explained in the 

following sections. 

7.2 The Dementia EEG Recordings Pre-processing 

As was stated above, the Dementia dataset needed several pre-processing steps to be ready to 

be fed into the proposed models in this thesis. This original dataset contained the raw EEG data 

in “EDF” format. The EDF is the abbreviation of European Data Format which is a simple and 

flexible format for the exchange and storage of multichannel biological and physical signals. 

EDF became a standard format for EEG and PSG recordings since 1992 in biological signal 

recording equipment and research projects (Alvarez-Estevez, 2021). 

The first step before deploying the proposed models on the Dementia dataset is to read the EDF 

format files into “csv” format which is an acceptable format by all the proposed models 

implemented in this thesis using a MATLAB script. Afterwards, the above-mentioned pre-

processing techniques are performed to increase the performance of the proposed models. 

Figure 7-1 provides a visual representation of the different pre-processing techniques used on 

the Dementia dataset. 
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Figure 7-1: Data pre-processing phase diagram for the Dementia dataset 

7.2.1 Unifying EEG Channels 

During data collection for the Russian Dementia EEG datasets, the EEG “eeg-nevropoligraf” 

device with two different EEG recording schemes have been used which resulted in different 

EEG channels for the recorded data. One scheme recorded the data with 20 channels (Figure 

7-2) and the other with 17 channels (Figure 7-3). The three extra channels in the data recorded

by the first scheme are removed after consulting with an expert to have a uniform format for 

all EEG recordings. 
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Figure 7-2: EEG recording scheme with 20 electrodes 

 

 

Figure 7-3: EEG recording scheme with 17 electrodes 

Table 7-1, shows the EEG channels for the two recording schemes for the Dementia dataset. 

The highlighted channels are those three extra channels that were removed from the recording 

scheme with 20 electrodes to create a uniform format for all EEG recordings in the dataset. 
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Table 7-1: The EEG channels for the two recording schemes. 

EEG channels for scheme 1 EEG channels for scheme 2 

PZA1 A2A1 

A2A1 O1A1 

O1A1 C3A1 

FZA1 P3A1 

C3A1 FP1A1 

P3A1 F3A1 

FP1A1 T3A1 

F3A1 T5A1 

T3A1 F7A1 

T5A1 F4A2 

F7A1 Fp2A2 

F4A2 P4A2 

Fp2A2 C4A2 

P4A2 O2A2 

C4A2 F8A2 

O2A2 T6A2 

CZA2 T4A2 

F8A2  

T6A2  

T4A2  
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7.2.2 EEG Feature Extraction using Power Spectral Density 

EEG recordings are notable for their high temporal precision and are often recorded with 

sampling rates around 1000 Hz or higher. This is good when precise timing of events is 

important to the experimental design or analysis plan, but also consumes more memory and 

computational resources when processing the data. In cases where high-frequency components 

of the signal are not of interest and precise timing is not needed downsampling, the signal can 

be a useful time-saver. The Dementia EEG dataset was recorded with different recording times 

varying between 35500 milliseconds up to 204500 milliseconds. Learning and analysing these 

long varying recordings are a very memory intensive function and computationally expensive 

task for almost all the machine learning models. Besides, the different recording length of each 

sample makes the implementations of the proposed models challenging. To overcome these 

issues Power Spectral Density is used as the feature extraction method to extract the most 

representative features of the signals to have more informative signals with the same length 

without losing important information. The Power spectral density (PSD) filter which describes 

the distribution of average signal power in the frequency domain has been widely used for 

stationary signal processing and is suitable for narrowband signals. PSD is a common signal 

processing technique for EEG recordings that distributes the signal power over frequency and 

show the strength of the energy as a function of frequency (Al-Fahoum and Al-Fraihat, 2014; 

Bascil et al., 201; Hong et al., 2018). The PSD is calculated by applying Fast Fourier Transform 

(FFT) to the estimated autocorrelation sequence using nonparametric methods like the Welch's 

method. In Welch’s method, a moving window slides over the data segments, then FFT is 

applied to each segment to compute the periodogram, finally the average of all periodograms 

results in a modified periodogram or the Welch PSD of signals. 
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 Let the input signal be 𝑥[𝑛] where 𝑛 = 0,1,2, … , 𝑁 − 1, then the signal is split into 𝑁𝑠 

overlapping segments (e.g., 50% overlap) with length 𝐿 . The 𝑖th segment of the signal can be 

represented as follow: 

 𝑥𝑖 = 𝑥[𝑖 +
𝐿

2
+ 𝑛] (7-1) 

Where 𝑖 = 0,1, … , 𝐿 − 1 and 𝑛 = 0,1, … ,𝑁 − 1. The sampling length 𝑁 can be calculated as 

below: 

 𝑁 = 𝐿 + (𝐿 − 𝑁𝐷)(𝑁𝑠 − 1) (7-2) 

where 𝑁𝐷 is the number of overlapping points, 𝑁𝑠 is the number of segments, and 𝐿 is the 

length of the segment. After dividing the signal into the 𝑁𝑠 segments, the Hamming window 

𝑤(𝑛) is applied to each segment: 

 𝑤(𝑛) = 0.54 − 0.46 cos [
2𝑛𝜋

𝐿
] (7-3) 

The Hamming window function prevents the spectral leakage (Xiong et al., 2020). The window 

function can apply to the 𝑖th segment of the signal as follow: 

  

 𝑊𝑖 = 𝑥𝑖(𝑛) × 𝑤(𝑛) (7-4) 

Then, the Fourier transform of each windowed segment is computed as below: 
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 𝐴𝑖(𝑘) = 𝑥𝑖(𝑛) × 𝑤(𝑛)𝑒
−(𝑖(

2𝜋
𝑁
)𝑛𝑘) (7-5) 

Where 𝐴𝑖(𝑘) is the Fourier transform of the 𝑖th windowed segment. Thereupon, the 

periodogram of each Fourier transformed windowed segment is computed as follow: 

    

 𝜙𝑖 =
1

𝐿𝑈
|𝐴𝑖(𝑘)|

2 (7-6) 

Where 𝑈 =
1

𝐿
∑ 𝑤2(𝑛)𝐿−1
𝑛=0  indicates the mean power of the window 𝑤(𝑛) and accordingly the 

𝐿𝑈 is the energy of the window function 𝑤(𝑛) with length 𝐿. 

Eventually, the PSD Welch of the signal can be obtained by averaging all the computed 

periodograms: 

  

 𝑆(𝑘) =
1

𝐿
∑𝜙𝑖

𝐿−1

𝑖=0

(𝑘) (7-7) 

 

Power Spectral Density (PSD) normalizes the amplitudes by the frequency resolution to give 

the amplitudes a similar appearance. Therefore, it can preserve the shape of the signal after 

extracting the most informative features. 
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Power Spectral Density (Welch’s method) 

1: Divide data into overlapping segments. 

2: Add specified windows to each segment. 

3: Apply FFT to windowed segments. 

4: Compute periodogram of each windowed segment. 

5: Compute average of all periodograms to obtain Welch PSD 

6: End 

Figure 7-4: Power Spectral Density Welch algorithm pseudocode 

Applying this method for feature extraction from the described dementia data set is illustrated 

below ( Figure 7-5 to Figure 7-8). 

Figure 7-5: Power spectrum estimator 
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Figure 7-6: Preprocessing of Mixed Dementia EEG recordings 

  

  

Figure 7-7: Preprocessing of Vascular Dementia EEG recordings 
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Figure 7-8: Preprocessing of Alzheimer’s Disease EEG recordings 

After applying the PSD Welch method on the Dementia EEG recordings, the time points are 

reduced to 524. In the proposed PSD Welch method, the frequency is set to 100 and the size of 

the window is set to 250.  

7.2.3 Balance Dementia EEG Dataset 

As it was mentioned before the Dementia dataset was highly imbalanced which could affect 

the reliability of the outcome of learning using the proposed models in this thesis. To balance 

the EEG recordings dataset, the Synthetic Minority Oversampling Technique (SMOTE) is used 

to generate artificial data based on the similarities between the feature spaces of the existing 

minority class samples. The algorithm generates some random points in between the two 

specified vector points and thus more generalises the minority class decision region (Han, 

Wang, and Mao, 2005). After applying SMOTE oversampling technique, the Dementia dataset 
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consists of 135 data including 45 Mixed Dementia, 45 Vascular Dementia, and 45 Alzheimer’s 

Disease subjects. 

 

7.3. Experimental Result of Applying EPUSSS Model to the 

Dementia Dataset 

In this section, the comparative analysis of applying EPUSSS, NeuCube and LSTM on the 

Dementia dataset is provided. Figure 7-9 to Figure 7-18 represent the EPUSSS local learning, 

global learning, and the Energy function behaviour in the process of training with the Dementia 

dataset. 

 

  

  

Figure 7-9: EPUSSS SNN initialisation for Dementia 
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Figure 7-10: EPUSSS SNN learnt weights and connectivity for Dementia 

 

a) 

 

b)

 

Figure 7-11: EPUSSS local learning errors convergence, a) training error, b) test error 
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Figure 7-12: EPUSSS SNN weights distributions: a) initial weights, b) learnt weights 
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Figure 7-13: EPUSSS local error for each input in training phase for sample 1 
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Figure 7-14: EPUSSS final local error for sample 1 (all input channels) in the training phase 
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Figure 7-15: EPUSSS local error for each input in testing phase for sample 30 
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Figure 7-16: EPUSSS final local error for sample 30 (all input channels) in the testing phase 

 

 

Figure 7-17: Neuromodulatory (reward/penalty) signal in the EPUSSS global training 
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Figure 7-18: Spiking energy of the EPUSSS SNN network during training for Dementia Dataset 

The increase in the Energy function proves that the network learnt the input patterns by 

demonstrating more excitations in neuronal activities.   

Like chapter 3, NeuCube and LSTM models have been used for the comparative analysis. The 

same parameter setting as it was mentioned in chapter 3 was applied to EPUSSS and NeuCube. 

Following the same parameter setting of LSTM model in chapter 3, the LSTM deep learning 

recurrent model was designed with 5 layers including a sequence input with 14 dimensions, a 

BiLSTM layer with 100 hidden units, and three fully connected layers. The SoftMax model 

was used as the activation function and the cross-entropy loss was used for measuring the 

classification error.  

The comparative results of applying NeuCube and LSTM on the Dementia dataset can also be 

found in Figure 7-2 and Figure 7-3. 
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Table 7-2: The comparative analysis of Global Learning Classification Results for Dementia Dataset 

 Classification  Accuracy Precision Recall F-score 

EPUSSS Class 1 82% 0.84 0.73 0.78 

 Class 2 81% 0.66 0.75 0.70 

 Class 3 83% 0.73 0.76 0.75 

      

NeuCube Class 1 80% 0.80 0.66 0.72 

 Class 2 79% 0.68 0.70 0.69 

 Class 3 81% 0.62 0.77 0.69 

      

LSTM Class 1 80% 0.80 0.66 0.72 

 Class 2 77% 0.64 0.67 0.65 

 Class 3 82% 0.66 0.78 0.72 
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Table 7-3: The comparative analysis of Global Learning Classification Results Confusion Matrix for Dementia 

Dataset 

 Confusion Matrix Class 1 Class 2 Class 3 

EPUSSS Class 1 38 3 4 

 Class 2 9 30 6 

 Class 3 5 7 33 

     

NeuCube Class 1 36 5 4 

 Class 2 10 31 4 

 Class 3 8 9 28 

     

LSTM Class 1 36 7 2 

 Class 2 10 29 6 

 Class 3 8 7 30 

 

 

NeuCube and LSTM learning process for Dementia classification can be seen in the following 

figures. 

  

Figure 7-19: NeuCube SNN learnt weight distribution for Dementia 
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a)

 

b)

 

c)

 

d)

 

Figure 7-20: NeuCube SNN spiking behaviour for Dementia: a) spiking behaviour of input channels connected to 

reservoir, b) reservoir neurons regions according to their connectivity to EEG input channels c) excitatory and 

inhibitory connections, d) EEG channels correlations. 
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Figure 7-21: LSTM training accuracy and error plot for Dementia 

The results of classification of the Dementia using EPUSSS outperform NeuCube and LSTM. 

However, both NeuCube and LSTM demonstrated acceptable performance in the training and 

testing phase using Dementia EEG data.  

In the following section, a novel feature extraction method is introduced based on a 

combination of the proposed Chaotic Quantum-Inspired Evolutionary Algorithm and fuzzy 

rough set theory for clinical static data related to the EEG recordings. The purpose of this 

approach is to provide a potential for weighted learning of Spatio-temporal data based on the 

clinical and demographical observations of the subjects in the proposed methods. 



190 

 

7.4. Using CQIEA to Improve Traditional Fuzzy Rough Set Feature 

Selection Method to Better Tackle the Curse of Dimensionality Problem 

7.4.1. Fuzzy Rough Sets 

The rough set theory is a method to extract hidden patterns in a dataset with discretised attribute 

values without requiring any additional information about the data. However, most of the real-

world datasets may have continuous attributes or contain both symbolic and real-valued 

(numerical and categorical) features where the rough set theory is not efficient enough to 

handle the situation. In other words, for these kinds of datasets, rough set theory cannot help to 

determine whether two attributes’ values are similar and to what extent they are the same. Some 

approaches suggest discretising the continuous datasets beforehand and considering different 

sets of numerical and categorical attributes for the mixed datasets. However, these approaches 

fail to determine the membership degrees of the discretised values or degree of similarities of 

numerical and categorical features resulting in information loss and poor classification 

performance. Applying fuzzy concepts can empower rough set theory to deal with these kinds 

of complexity in the datasets. 

7.4.2.  Fuzzy Rough Membership Function 

In the classical set theory, an element either belongs to a set or not, while fuzzy set theory 

determines a membership degree for the element so that it can be partially included in a set. 

The rough set theory uses approximations to determine whether the element belongs to a set or 

not. In other words, the fuzzy set uses infinite-valued logic to describe the belongingness of an 

element of the universe of discourse while the classical (crisp) set employs bi-valued logic or 

“yes / no” logic (Bandemer and Gottwald,1995). 
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The fuzzy rough membership function can be defined as the degree of relative overlap between 

the set 𝑋 and the equivalence [𝑥]𝐵 class to which 𝑥 belongs (Skowron and Rauszer 1992; 

Pawlak and Skowron, 1994): 

 

𝜇𝑋
𝐵: 𝑈 → [0,1]   𝑎𝑛𝑑   𝜇𝑋

𝐵(𝑥) =  
|[𝑥]𝐵 ∩ 𝑋|

|[𝑥]𝐵|
 

Where 

𝜇𝑋
𝐵(𝑥) ∈ [0,1] 

(7-1) 

The value of the membership function 𝜇𝑋
𝐵(𝑥) is a conditional probability that represents the 

degree of certainty to which 𝑥 belongs to 𝑋. 

The rough set approximations and the boundary region of a set can be redefined using fuzzy 

rough membership as follow: 

 𝐵(𝑋) = {𝑥 ∈ 𝑈: 𝜇𝑋
𝐵(𝑥) = 1} (7-2) 

 𝐵(𝑋) = {𝑥 ∈ 𝑈: 𝜇𝑋
𝐵(𝑥) > 0} (7-3) 

 𝐵𝑁𝐵(𝑋) =  {𝑥 ∈ 𝑈: 0 < 𝜇𝑋
𝐵(𝑥) < 1} (7-4) 
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Figure 7-22: Fuzzy rough set membership 

As it can be seen in Figure 7-22: 

• 𝜇𝑋
𝐵(𝑥) = 1              𝑖𝑓𝑓     𝑥 ∈ 𝐵(𝑋) 

• 𝜇𝑋
𝐵(𝑥) = 0             𝑖𝑓𝑓      𝑥 ∈ −𝐵(𝑋) 

• 0 < 𝜇𝑋
𝐵(𝑥) < 1    𝑖𝑓𝑓       𝑥 ∈ 𝐵𝑁𝐵(𝑋) 

Some of the fuzzy rough membership properties are: 

• 𝜇𝑈−𝑋
𝐵 (𝑥) = 1 − 𝜇𝑋

𝐵(𝑥)                       𝑓𝑜𝑟    𝑎𝑛𝑦 𝑥 ∈ 𝑈 

• 𝜇𝑋∪𝑌
𝐵 (𝑥) ≥ max(𝜇𝑋

𝐵(𝑥), 𝜇𝑌
𝐵(𝑥))      𝑓𝑜𝑟    𝑎𝑛𝑦 𝑥 ∈ 𝑈 

• 𝜇𝑋∩𝑌
𝐵 (𝑥) ≤ min(𝜇𝑋

𝐵(𝑥), 𝜇𝑌
𝐵(𝑥))      𝑓𝑜𝑟     𝑎𝑛𝑦 𝑥 ∈ 𝑈 

As can be seen from the above properties, the fuzzy rough membership is a generalization form 

of the fuzzy membership and has a probabilistic nature. In other words, the fuzzy rough 

membership function is a conditional probability Pr (𝑥 ∈ 𝑋|𝑢) which determines object 𝑥 

belongs to set 𝑋, giving knowledge 𝑢 of 𝑥 regarding attributes 𝐵. 
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7.4.3. Fuzzy Rough Equivalence Classes 

The fuzzy rough equivalence class [𝑥]𝐵 can also be defined using indiscernibility relation on 

objects of the universe of discourse. In this definition, 𝐵 is a fuzzy set that determines the extent 

to which objects of the universe are close to 𝑥. 

The usual fuzzy properties of reflexivity (𝜇𝐵(𝑥, 𝑥) = 1), symmetry (𝜇𝐵(𝑥, 𝑦) = 𝜇𝐵(𝑦, 𝑥)), 

and transitivity (𝜇𝐵(𝑥, 𝑧) ≥ 𝜇𝐵(𝑥, 𝑦) ⋀  𝜇𝐵(𝑦, 𝑧)) are preserved here too. The fuzzy rough 

equivalence class can be defined as follow: 

 𝜇[𝑥]𝐵(𝑦) =  𝜇𝐵(𝑥, 𝑦) ∀𝑦 ∈ 𝑋 (7-5) 

The following principles should be satisfied for the fuzzy equivalence class [𝑥]𝐵: 

1. 𝜇[𝑥]𝐵 , ∃𝑥, 𝜇[𝑥]𝐵(𝑥) = 1 

2. 𝜇[𝑥]𝐵(𝑥)⋀ 𝜇𝐵(𝑥, 𝑦)  ≤ 𝜇[𝑥]𝐵(𝑦) 

3. 𝜇[𝑥]𝐵(𝑥)⋀  𝜇[𝑥]𝐵(𝑦)  ≤  𝜇𝐵(𝑥, 𝑦) 

The first principle indicates that an equivalence class is non-empty. The second principle states 

that elements in 𝑦’s neighbourhood are in the equivalence class of 𝑦. The final principle shows 

that any two elements in [𝑥]𝐵 are related via 𝐵. Using these definitions, the concepts of the 

rough-fuzzy and fuzzy rough set can be introduced. 

Using fuzzy equivalence class definition which means that the decision and the conditional 

attributes may all be fuzzy, the lower and upper approximations can be redefined as follow 

(Yao, 1998; De Cock et al., 2007): 

 𝜇𝑋([𝑥]𝐵) =  𝑖𝑛𝑓𝑥𝑚𝑎𝑥{1 − 𝜇[𝑥]𝐵(𝑥), 𝜇𝑋(𝑥)} ∀𝑖 (7-6) 
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 𝜇𝑋([𝑥]𝐵) =  𝑠𝑢𝑝𝑥𝑚𝑖𝑛{𝜇[𝑥]𝐵(𝑥), 𝜇𝑋(𝑥)} ∀𝑖 (7-7) 

Where [𝑥]𝐵 denotes a fuzzy equivalence class and tuple 〈𝑋, 𝑋〉 is a fuzzy rough set. If all the 

equivalence classes are crisp, then these definitions can represent traditional rough sets. In the 

following section, applying the fuzzy rough set to reduce dataset dimensionality is explained. 

7.4.4. Dimensionality Reduction Using Fuzzy Rough Set 

Consider the crisp partitioning 𝑈/𝐷 = {{𝑃1, 𝑃2, 𝑃3, 𝑃6}{𝑃4, 𝑃5, 𝑃7}} for the dementia 

information system presented in table 2 which contains two equivalence classes 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎 = 

{𝑃1, 𝑃2, 𝑃3, 𝑃6} and 𝑁𝑜 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎 = {𝑃4, 𝑃5, 𝑃7} . Using the rough set concept, the elements of 

the universe of discourse belong to these two classes with a membership of one or zero, e.g., 

for the class 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎, the objects 𝑃4, 𝑃5 and 𝑃7 have a membership of zero. By extending the 

crisp membership of these objects to fuzzy values in the interval [0,1] the crisp partitioning 

𝑈/𝐷 becomes a fuzzy partition. 

In order to calculate the 𝑟𝑒𝑑𝑢𝑐𝑡𝑠, the lower approximations are calculated using equation (7-

6). Similar to the rough set approach, the positive region is determined using the equivalence 

classes in 𝑈/𝐷. The membership of each object 𝑥 in the universe of discourse to the fuzzy 

equivalence class [𝑥]𝐵 is obtained from the definition of [𝑥]𝐵. For example, for the first 

equivalence class 𝑋 = {𝑃1, 𝑃2, 𝑃3, 𝑃6}, both 𝜇{𝑃1,𝑃2,𝑃3,𝑃6}(𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐷) and 

𝜇{𝑃1,𝑃2,𝑃3,𝑃6}(𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐷) should be calculated,  because both 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐷 and 

𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐷 are the fuzzy equivalence classes in  𝑈/𝐷. The membership of each object 𝑥 

in the universe to the fuzzy equivalence class 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐷 is obtained from the definition of 

𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐷. Since 𝑈/𝐷 in this case is crisp, the extent to which 𝑥 belongs to {𝑃1, 𝑃2, 𝑃3, 𝑃6} is 

1 only if 𝑥 ∈ {𝑃1, 𝑃2, 𝑃3, 𝑃6}, and 0 otherwise. 
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As it was discussed before, the crisp positive region in the rough set theory is defined as the 

union of the lower approximations. Therefore, using the fuzzy extension principle, the fuzzy 

positive region of a fuzzy equivalence class [𝑥]𝐵 ∈ 𝑈/𝐷 can be defined as: 

 𝜇𝑃𝑂𝑆𝐷([𝑥]𝐵) = 𝜇𝑋([𝑥]𝐵𝑋∈𝑈/𝐷 
𝑠𝑢𝑝 ) (7-8) 

In the same way, using the fuzzy extension principle, the membership of an object 𝑥 ∈ 𝑈 to the 

fuzzy positive region can be calculated using equation (7-8). 

 𝜇𝑃𝑂𝑆𝐷(𝑥) = min (𝜇[𝑥]𝐵(𝑥),  𝜇𝑃𝑂𝑆𝐷([𝑥]𝐵))[𝑥]𝐵∈𝑈/𝐷
𝑠𝑢𝑝

 (7-9) 

According to the equation (7-9), the extent to which object 𝑥 belongs to 𝑃𝑂𝑆𝐷 is the degree to 

which it belongs to each fuzzy equivalence class and the degree to which the equivalence class 

belongs to 𝑃𝑂𝑆𝐷. 

Eventually, using the definition of the fuzzy positive region, the fuzzy dependency function 

can be defined as follows: 

 𝛾𝐷
′ (𝑄) =  

|𝜇𝑃𝑂𝑆𝐷(𝑥)|

|𝑈|
=
∑ 𝜇𝑃𝑂𝑆𝐷(𝑥)𝑥∈𝑈

|𝑈|
 (7-10) 

The fuzzy dependency, similar to the rough set approach, is the proportion of objects that are 

discernible in the universe of discourse using only the information in 𝐷. In other words, the 

fuzzy dependency is the cardinality of 𝜇𝑃𝑂𝑆𝐷(𝑥) divided by the total number of objects in the 

universe of discourse. 

Since objects may belong to many equivalence classes in the fuzzy rough set, to find the fuzzy 

dependency for all various subsets of the original attribute set, the cartesian product of all 

indiscernible sets of objects should be calculated: 
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 𝑈/𝐷 = ⨂{𝑎 ∈ 𝐷:𝑈/𝐼𝑁𝐷(𝑎)} (7-11) 

For example, consider 𝐷 = {𝐴, 𝐵} and 𝑈/𝐴 =  {𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴, 𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴}, 𝑈/𝐵 =

 {𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵, 𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵}: 

𝑈/𝐷 = 𝑈/𝐴⨂𝑈/𝐵 = {𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴, 𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴}⨂{𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵, 𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵}

= {
{𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴, 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵}, {𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴, 𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵}, {𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴, 𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵},

{𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐴, 𝑁𝑜𝐷𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝐵}
} 

Each set in 𝑈/𝐷 is an equivalence class and the extent to which an object belongs to such a 

class is calculated by the conjunction of the membership degrees to all sets in the class: 

 𝜇{[𝑥]𝐵1, … , [𝑥]𝐵2 }(𝑥) = min (𝜇[𝑥]𝐵1(𝑥), 𝜇[𝑥]𝐵2(𝑥),… , 𝜇[𝑥]𝐵𝑛(𝑥))  (7-12) 

7.4.5. Computational Reduction Using Fuzzy Rough Set 

As it was mentioned before, reducing irrelevant or redundant attributes from the dataset can 

improve the classification performance. The QUICKREDUCT algorithm is a conventional 

method that uses rough set theory to find the minimal subset of attributes that preserve the same 

classification power as the original dataset. 

As it can be seen, the algorithm starts with an empty set 𝑅 and adds those attributes that result 

in the greatest increase in 𝛾𝑅(𝐷), until it reaches its maximum possible value for the dataset 

(usually 1). The algorithm is a non-optimal heuristic and suffers from information loss in the 

discretization procedure. The fuzzy version of the QUICKREDUCT algorithm is introduced to 

improve the computation time and decrease information loss. Fuzzy QUICKREDUCT uses the 

dependency function 𝛾′ to choose which attributes to add to the current reduct candidate in the 

same way as the original QUICKREDUCT process. However, the algorithm terminates when 

the addition of any remaining attributes does not increase the dependency. 
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QUICKREDUCT algorithm 

1: 
𝑅 ← {}, 𝛾𝑏𝑒𝑠𝑡

′ ← 0, 𝛾𝑝𝑟𝑒𝑣
′ ← 0 

2: Do 

3:     Set 𝑇 ← 𝑅 

4:  
𝛾𝑝𝑟𝑒𝑣
′ ← 𝛾𝑏𝑒𝑠𝑡

′

5: 
  ∀𝑥 ∈ (𝐶 − 𝑅) 

6: If 𝛾𝑅∪{𝑥}
′ (𝐷) > 𝛾𝑇

′ (𝐷) 

7: 
 𝑇 ← 𝑅 ∪ {𝑥} 

8: 𝛾𝑏𝑒𝑠𝑡
′ ← 𝛾𝑇

′ (𝐷) 

9:         𝑅 ← 𝑇 

10: 
Until 𝛾𝑏𝑒𝑠𝑡

′ = 𝛾𝑝𝑟𝑒𝑣
′

18: 
Return 𝑅 

Figure 7-23: Fuzzy rough QUICKREDUCT algorithm 

The minimal reduct in fuzzy QUICKREDUCT is found using the information on the degree of 

membership. Although the introduction of some threshold values to terminate the algorithm if 

the change in dependency is not significant enough could alleviate this problem, still the 

computation time is a major drawback. 

7.5. Conclusion 

In this chapter, several methods for pre-processing and feature extraction of Spatio-temporal 

EEG data are proposed and illustrated on a real-world problem related to brain 

neurodegenerative disease. Also, a novel feature extraction method is introduced based on a 

combination of the proposed Chaotic Quantum-Inspired Evolutionary Algorithm and fuzzy 

rough set theory for clinical static data related to the EEG recordings. The purpose of this 

approach is to provide a potential for weighted learning of Spatio-temporal data based on the 

clinical and demographical observations of the subjects in the proposed methods.  
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Chapter 8 . Conclusions and Recommendations for 

Future Work 

 

Abstract 

This chapter summarises the main contributions of this thesis along with paving ways for 

further research. The chapter also addresses the following research question related to new 

ideas for further development.  

RQ9 “How can the mechanism of producing spiking patterns be improved in a self-adaptive 

manner according to the spiking neural network activities by introducing a novel neuron model 

based on nuclear physics concepts?” 

8.1. Main Contributions of The Thesis 

The main contributions of the thesis are in the proposed new theoretical methods for deep 

learning in SNN inspired by brain-and quantum principles, namely: 

1. Brain-like computational unified framework EPUSSS to perform both prediction and 

classification tasks by introducing a hierarchical two-level learning, excitatory/inhibitory 

neurons, 4 different synaptic neurotransmitter receivers with different delays and functionality 

in propagating information, energy function, and pruning mechanism to support life-long 

learning. 

2. Chaotic quantum gate to improve the QIEA search mechanism to help parameter 

optimisation and developing learning algorithm for a quantum inspired SNN and search 

mechanism for associative memory. 
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3. Quantum inspired brain-like computational unified framework QISNN to perform both 

prediction and classification tasks by introducing hierarchical two-level learning, quantum 

neurons, quantum synapses, and quantum learning. 

4. Quantum associative memory with two different quantum search mechanisms using 

Grover’s algorithm and CQIEA for pattern retrieval. 

5. Prep-processing and feature extraction from Spatio-temporal data for real-world 

applications. 

In this thesis, I have explored the human brain’s physiological components and 

behaviour in the learning process and forming memories of past events and quantum 

physics principles in computational models. I have proposed two novel frameworks 

for deep learning in spiking neural networks, including eight new algorithms 

inspired by the brain physiological learning behaviour, quantum computation 

principles, and a combination of brain-like and quantum-inspired principles to learn, 

predict, classify, and recall Spatio-temporal data. 

These two novel frameworks have a 3D spiking neuronal network topology 

according to the Talairach brain atlas to predict several steps ahead of the brain data 

and classify them using a 2-level hierarchical structure. The proposed frameworks 

EPUSSS and QISNN benefit from biologically plausible characteristics and 

quantum computational principles to provide robust, fast, and accurate 

computational models.  

Both EPUSSS and QISNN can learn the spatial and temporal correlation of the 

input data by mapping them into a 3D space and capturing their temporal 

relationship in a two-level learning hierarchy using hybrid learning mechanisms. 

Then a memory of this learnt pattern is created using two different Quantum 
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Inspired Associative memory models and later used to recall and match new 

patterns to the data stored in the quantum memory.  

These novel frameworks were tested on neurorehabilitation of Wrist Movement and 

Dementia disease EEG data for prediction and classification as a proof of concept. 

In the following, a brief overview of my PhD study contributions is provided. 

8.1.1 Chapter 3 Contributions and Future Directions 

In chapter 3 of this thesis, a novel framework for Evolving Predictive Unsupervised Supervised 

deep learning algorithms for Spike Streams (EPUSSS) is proposed.  

EPUSSS is inspired by biological learning behaviour in the human brain and performs both 

prediction and classification of spatio-temporal data in a two-level hierarchical fashion under 

one unified framework. The EPUSSS architecture is influenced by the NeuCube framework 

and has three major modules: 

1. The encoder module which uses BSA algorithm that encodes input data into spike 

trains. 

2. A 3D SNN reservoir module in which the local learning mechanism of EPUSSS 

governs the synaptic efficacy in a semi-supervised way. 

3. The output module which deploys the global learning mechanism of EPUSSS, 

combined with a modified deSNN model to provide a neuromodulatory feedback to 

modify synaptic efficacy in a supervised way. 

In the EPUSSS 3D SNN reservoir, the input neuron is not only connected to the reservoir 

neurons by synaptic connections but also is connected to other input neurons by 

“hypersynaptic” connections. This ability of EPUSSS, allows spatial correlation as well as 

temporal correlation amongst input patterns’ channels to be captured and the collaboratively 
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impact on the learning process like the biological learning in which different parts of the brain 

with various inputs empower the learning experience in an individual.  

The input neurons and reservoir neurons are mapped in a 3D SNN structure according to their 

3D spatial coordinates. This visual representation allows observing the interaction between 

input neurons and reservoir neurons and amongst input neurons themselves. In the case of brain 

data, the coordinates are set according to the Talairach brain atlas, which helps to perceive the 

neuronal behaviour in the presence of input patterns in a brin-like simulation. This feature of 

EPUSSS is not only interesting from a computational aspect but also can help neuroscientists 

to have a better understanding of brain data (e.g., EEG, fMRI, MRI, etc.).  

The learning mechanism in EPUSSS is designed in a two-level hierarchy to mimic 

physiological learning locally and globally to reinforce learning behaviour in the network.  

EPUSSS local learning captures the Spatio-temporal correlation in the input data space by 

adapting to the statistical properties of the neuronal firing behaviours. The global learning 

mechanism of EPUSSS uses the concept of neuromodulatory signals in the brain, which 

influence the synaptic activities by reward and punishment to help learn and create memories. 

Using neuromodulatory concepts, neurons in the proposed model get feedback of reward or 

punishment to modify their spiking activities to form memories and recognize the learnt pattern 

in the presence of the external stimuli (i.e., target class labels).  

The EPUSSS framework is theoretically capable of life-long learning with the ability of 

transfer learning. To achieve the life-long learning ability, EPUSSS has several important 

characteristics that help to learn from the input data continuously without being saturated and 

are listed as follow: 



203 

 

➢ EPUSSS has 80 percent excitatory and 20 present inhibitory neurons in its spiking neural 

network in such a way that the inhibitory neurons spikes faster than excitatory neurons to 

balance the network spiking behaviour. 

➢ The synaptic connections in EPUSSS have four types of neurotransmitter receptors: 

• Excitatory neurons have two types of neurotransmitter receptors: 

o  AMPAR: fast excitatory synaptic transmission receptors 

o  NMDAR: slow excitatory synaptic transmission receptors 

• Inhibitory neurons have two types of neurotransmitter receptors: 

o  GABAAR: fast inhibitory synaptic transmission 

o  GABABR: slow inhibitory synaptic transmission  

By introducing synaptic delays, the synaptic transmission time can be controlled 

to mimic fast and slow signal transmission like biological neurotransmitters 

behaviour.  

➢ Synaptic pruning which is part of the brain development is another feature of EPUSSS in 

which neurons that do not show activity for a certain time-window will lose their synaptic 

connections gradually by decreasing their post synaptic weights. This mechanism helps 

to eliminate noisy neurons from the learning process and improve the model prediction 

and classification performance.  

Another important feature of EPUSSS is using a Lyapunov energy function as an extra control 

mechanism over synaptic weight changes to guarantee life-long learning without the risk of 

network saturation.  

The EPUSSS framework has been tested on two real-world datasets containing EEG recordings 

of neurorehabilitation of Wrist Movement and Dementia disease and its results and 

performance compared to NeuCube and LSTM. The EPUSSS model outperforms the two 
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models. However, due to a large number of neurons, complicated connectivity structure, and 

the iterative process of local and global learning, the computation time of EPUSSS increases 

polynomially by the size of the problem. This limitation of the EPUSSS model has been 

addressed in chapter 5 by introducing a quantum inspired SNN model to reduce the 

computation time. Another aspect of the EPUSSS framework that needs to be explored more 

is the encoding algorithm. Currently, the BSA algorithm has been used to encode the input data 

to spike train. Although BSA has been proved to be less sensitive to changes in the filter and 

threshold and as a result provides a more accurate spike train even for bipolar cases, the nature 

of the problem should be considered to choose a proper encoding algorithm. As a future 

direction, this area needs to be investigated by performing more experiments with various data 

and different encoding methods.  

8.1.2 Chapter 4 Contributions and Future Directions 

In chapter 4, a novel search algorithm is proposed based on chaos theory and the quantum-

inspired principals called Chaotic Quantum-Inspired Evolutionary Algorithm (CQIEA). The 

Chirikov chaotic map is used here to improve the convergence rate and the quality of the final 

solution of the Quantum-Inspired evolutionary algorithm. Chirikov standard map is generated 

by a time-dependent Hamiltonian system and has all the requirements that a quantum gate must 

have such as being a reversible unitary operator. The Chirikov standard map is used as a q-gate 

(diversity operator) for QIEA to explore and exploit the problem search space more efficiently. 

In this thesis, it was shown that the Chirikov standard map can produce both chaotic and regular 

behaviour with different values of 𝐾. Therefore, during the evolution, the dynamic of the 

system can be controlled efficiently using adaptive values for 𝐾. At the beginning of the 

search/optimisation problem by setting a higher value for 𝐾 and increasing the chaotic 

behaviour of the system the search space can be explored more efficiently. By decreasing the 

values of 𝐾 over time, the system will produce more regular behaviour than chaotic dynamics 
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which can result in converging to more stable states and exploit search space to find an 

optimum solution. In this thesis, both discrete and continuous version of CQIEA has been 

proposed to serve as a learning mechanism to adjust SNN’s weights, as an optimisation 

technique to improve proposed models’ performance, and as a search mechanism for the 

proposed Quantum Associative Memory. The results of experiments prove the effectiveness of 

the proposed approach in both continuous and discrete environment. As a future direction, the 

Chirikov standard map will be investigated more to be directly used to change the current state 

of a quantum system in a chaotic manner instead of serving as the chaotic angular position for 

the rotation gate.  

8.1.3 Chapter 5 Contributions and Future Directions 

In chapter 5, a novel Quantum Inspired Spiking Neural Network (QISNN) is introduced based 

on the probabilistic spiking neuron model (Kasabov, 2010). The QISNN framework, which is 

a brain-like quantum-inspired model, follows EPUSSS architecture and the two-level 

hierarchical learning structure. In the QISNN, the neuron model, synaptic connections, and 

learning rules are a combination of biologically plausible models and quantum-inspired models 

introduced in chapters 3 and 4, respectively.  

QISNN like EPUSSS architecture has the same three major modules in its framework: the 

encoder module which uses BSA algorithm that encodes input data into spike trains, the 3D 

SNN reservoir module in which the local learning mechanism of QISNN governs the synaptic 

efficacy in a semi-supervised way and the output module which deploys the global learning 

mechanism of QISNN combined with modified deSNN model to update synaptic efficacy in a 

supervised way. QISNN uses spiking neuron models such as LIF and Izhikevich combined 

with a quantum model to control neurons’ firing behaviour. Despite the learning mechanisms 

of QISNN being fundamentally similar to EPUSSS, the learning algorithms, neuron’s firing 
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behaviour, and post-synaptic connections are controlled and governed by quantum 

computation models.  

The QISNN model learns from a time series data to predict the next values of the input data in 

a certain time-window in the reservoir as part of local learning process. Predictive modelling 

is achieved through a semi-supervised local learning mechanism using the error of prediction 

in a certain time-window and rule that adjust the efficacy of synaptic weights of the reservoir 

neurons. The output neurons inspired by deSNN model’s concept are created incrementally for 

each training sample to associate the input data with a class label in the global learning stage. 

For this purpose, all the input neurons and reservoir neurons (or just input neurons) are 

connected to output neurons using RO method and their synaptic weights are adjusted based 

on QISNN global learning rule using a neuromodulatory signal that is generated by the results 

of classification in the training phase. The principle behind the QISNN is to perform both 

prediction and classification in a two-level hierarchical learning structure. In the proposed 

model the input neurons contribute strongly to both local and global learning.  

The QISNN framework benefits from biologically plausible learning principals and quantum 

computation concepts. Therefore, theoretically, it is a potent tool compared to other machine 

learning models and can improve the computation complexity of EPUSSS to overcome the 

slow learning process speed.  

As a future direction, QISNN’s needs to be investigated by performing more experiments with 

various data. Also, since the model is a hybrid of the SNN model and quantum computation 

concepts, there is a potential for designing combined neuromorphic and quantum computing 

hardware. 

Quantum computers, which was first invented in 1998, are immensely difficult to engineer, 

build and program. Quantum computers are limited errors arising from noise, faults, and loss 
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of quantum coherence in their operations. The loss of coherence caused by vibrations, 

temperature fluctuations, electromagnetic waves and other interactions with the outside 

environment can cause damage to the quantum computer’s components. Thus, the current 

quantum computers are not quite reliable even for programs with modest execution times. On 

the other hand, neuromorphic hardware, which adapts the SNN properties in its architecture, is 

proven to be fast and energy-efficient and can support high-performance applications. The 

proposed models in this thesis have the potential to be implemented on quantum computers, 

neuromorphic hardware, and even hybrid hardware that supports both SNN and quantum 

computing architecture. This can be an exciting and promising area to be explored further in 

the future.  

8.1.5 Chapter 6 Contributions and Future Directions 

In chapter 6, a novel quantum associative memory scheme for spiking neural networks is 

proposed to perform a fast, online pattern recognition for classification and prediction tasks 

just by partial pattern exposure. To model the quantum associative memory for spiking neural 

networks, the network requires the ability to store patterns in a medium and the ability to recall 

those patterns later. By embedding the quantum associative memory into EPUSSS or QISNN 

models, the spike encoding module of these frameworks will convert the information into spike 

trains which is a binary representation. Each input neuron in the EPUSSS or QISNN models 

can act as a register to store memory of the produced patterns by its locally connected reservoir 

neurons. To find a pattern in the quantum associative memory, the system should be measured 

and collapsed with the near certainty to the basis state which corresponds to the sought pattern. 

To this end, the retrieving quantum algorithm inverts the phase of desired basis state and all 

the other basis states using the quantum gate operator in a way that the probability amplitude 

of the desired basis state increases to near unity and the probability amplitude all the other 

states decrease to near zero. 
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In the novel proposed quantum associative memory, the learnt patterns which are produced 

during the local learning of either the EPUSSS model or QISNN by the input neurons (input 

twin neurons) will be stored as qubits in the quantum memory. In this way, the associative 

memory is integrated into both models. After local learning, when the input spike trains 

dynamic is captured and learnt by the network, the patterns can be recalled in a more time-

efficient manner. After storing patterns in the local learning phase of the EPUSSS model or 

QISNN model, two quantum search algorithms can be used to retrieve the sought pattern, 

Grover’s algorithm and the CQIEA algorithm. Both algorithms use Jaccard proximity 

measurement to compute the similarity between two binary inputs. Theoretically, both 

Grover’s algorithm and CQIEA algorithm can search unstructured databases in an acceptable 

time for the desired patterns and retrieving the sought pattern even in the presence of partial 

noisy input data. As a future direction and to reveal the power of quantum associative memory, 

more experiments with large scale dataset needed to be conduct. As mentioned before, 

combining the SNN models with quantum computing principals can lead to powerful models 

with computational advantages and is a promising future for the new generation of quantum 

computers and neuromorphic hardware.  

8.1.6 Chapter 7 Contributions and Future Directions 

In chapter 7, several methods for pre-processing and feature extraction of Spatio-temporal EEG 

data are proposed and illustrated on a real-world problem related to brain neurodegenerative 

disease. Also, a novel feature extraction method is introduced based on a combination of the 

proposed Chaotic Quantum-Inspired Evolutionary Algorithm and fuzzy rough set theory for 

clinical static data related to the EEG recordings. The purpose of this approach is to provide a 

potential for weighted learning of Spatio-temporal data based on the clinical and 

demographical observations of the subjects in the proposed methods.  
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To produce precise spiking activities, the idea of a novel neuron model inspired by the nuclear 

physic concept of Microtron Accelerator is presented as a future study to add a self-adaptable 

delay mechanism to the SNNs.  

Due to the extensive research, this thesis has a great potential for future work. One original 

idea by the author is explained in this section addressing the below research question: 

“How can the mechanism of producing spiking patterns be improved in a self-adaptive manner 

according to the spiking neural network activities by introducing a novel neuron model using 

nuclear physics concepts?” 

8.2 Microtron Neuron Model  

Assigning the fixed random synaptic delays to neurons in polychronous spiking networks 

restricts the PNGs to produce fixed random patterns. This blind inefficient mechanism for 

producing patterns ignores network real spiking activities. 

Despite biological plausibility and acceptable performance of previous neuron models 

(Hodgkin and Huxley, 1952; Gerstner and Kistler, 2002; Izhikevich, 2003) in spiking neural 

networks, these models are not capable to produce adaptable delays for emitting spikes in the 

proposed polychronous spiking neural network. To have an efficient adaptable delay 

mechanism for PNGs, I have proposed a novel neuron model using the nuclear physics concept 

of Microtron Accelerator. 

The Microtron is a cyclic particle accelerator for low to intermediate energies (up to some tens 

of MeV). In fact, Microtron is a linear accelerator that accelerates particles using a high-

frequency electric field to pass through a resonant cavity. The Microtron can only accelerate 

particles whose kinetic energy can be increased by an amount comparable to their rest energy 
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during one single pass through the accelerating cavity. Therefore, the only particles that can be 

accelerated by the Microtron are electrons and positrons (Lidbjork, 1994; Sobenin et al., 1996; 

Kostin et al., 1999; Froelich and Manca, 1975; Penner et al., 1981; Kaiser, 1956). 

The layout of the classical Microtron can be seen in Figure 8-2. 

 

Figure 8-1: The classical Microtron (Lidbjork, 1994) 

Microtron accelerates a particle (electron/positron) in a relativistic motion to pass it through a 

gap. In this gap, there is a (spatially) uniform time-dependent electric field that can either 

accelerate or decelerate the particle which results in a change of particle kinetic energy. The 

particle paths are different for each pass because of their increasing momentum. Therefore, the 

time needed for the particle to pass through the gap is proportional to the pass numbers. The 

slow particles need one electric field oscillation while the faster ones need an integer multiple 

of this oscillation. Outside the gap the particle orbits around due to a uniform magnetic field 

B. 

The acceleration mechanism in the Microtron is based on a relation between the magnetic field 

and the frequency and amplitude of the accelerating voltage. The magnetic field, B, and the 

energy gain,  are adjusted so that the revolution time in the first orbit can be calculated by: E
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𝑇1 = (
2𝜋

𝑒𝑐2𝐵
)𝐸1 (8-1) 

Where 𝑇1 is the revolution time and 𝐸1 is the total energy in the first orbit, 𝑒 is the particle 

energy and 𝑐 is the light speed. For all other orbits the revolution time must increase relative 

to the previous orbit: 

∆𝑇 = (
2𝜋

𝑒𝑐2𝐵
)∆𝐸 (8-2) 

Where ∆𝑇 is the difference in revolution time between two orbits and ∆𝐸 is the energy gain in 

the resonator. The total energy in the first orbit is: 

𝐸1 = 𝐸0 + 𝐸𝑖 + ∆𝐸 (8-3) 

Where 𝐸0 is the particle rest energy and 𝐸𝑖 is the injection energy. 

The total energy in orbit 𝑛 and the magnetic field are then: 

𝐸𝑛 = ∆𝐸(𝑇𝑛/∆𝑇 + 𝑛 − 1) (8-4) 

𝐵 = (
2𝜋

𝑒𝑐2
)∆𝐸/∆𝑇 (8-5) 

According to the above explanation about the Microtron working principle, I devised the 

Microtron Neuron Model as follow: 

In my proposed scheme each neuron in the spiking neural network is a Microtron accelerator 

that can emit electrons (excitatory spikes) or positrons (inhibitory spikes) that respectively 

depolarizes or hyperpolarizes post-synaptic neurons. Each Microtron neuron has a magnetic 
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field as a memory of spiking activity which can be weakened or strengthened by the injection 

energy (pre-synaptic spikes) based on the type of emitted particles. Equation (8-3) can be 

considered as neural integration equilibrium in conventional neuron models. The memory will 

be updated with a modified STDP or EPUSSS learning rule to capture temporal spiking 

activities by the post-synaptic neuron (see equations (8-4 and 8-5)). The time of emitting a 

spike and the frequency of firing is controllable according to the Microtron neuron energy as 

it can be seen in equation (8-2). Therefore, the new Microtron model can control spike emitting 

time and frequency in order to improve polychronous network performance in a more effective 

manner using network activity information to produce self-adaptive patterns. 

 

Figure 8-2: The novel Microtron model 

Figure 8-2, shows the Proposed Microtron neuron model. The performance of the new model 

in the proposed network will be compared with LIF and Izhikevich neuron models in terms of 

network ability to perform prediction tasks. 
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8.2.2 Other Directions for Further Research 

Other directions for further research include: 

• Full implementation of the proposed in this thesis methods. 

• Experimentation of the proposed methods on large scale data. 

• Evaluation of the applicability of the proposed methods for what of class of Spatio-

temporal data and problems they will be most efficient. 

• Application of the proposed methods on real-world problems. 
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Appendix A 

Fuzzy Rough Set Feature Selection 

The performance of the fuzzy rough set feature selection method proposed in chapter 7 is 

evaluated by applying it to a real-world dataset of Dementia patients which consist of 84 

nominal and continuous features for 67 patients. These patients belong to three different 

dementia classes: Alzheimer Disease (8 patients), Vascular Dementia (14 patients) and, Mixed 

Dementia (45 patients). Although the main purpose of this research is to perform feature 

selection on the Dementia dataset, four additional datasets from the UCI Repository of machine 

learning databases are also used to provide a fair comparison. The description of these datasets 

is summarized in table 1. Then the results of the fuzzy rough set feature selection algorithm are 

compared with three other feature selection algorithms. 

Table 8-1: The characteristics of the Datasets used for experiments 

Dataset Number of Attributes 

Number of 

Instances 

Missing Values 

Dementia 
85 67 Yes 

Insurance Company 

(COIL2000) 

86 4000 No 

Heart Disease 75 303 Yes 

Wine 13 176 No 

Breast Cancer 

Wisconsin (Diagnostic) 
32 569 No 

 

K-nearest Neighbors for Missing Data Imputation 
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Dementia and Heart disease datasets have some missing values. K-nearest neighbours are used 

as a data imputation technique to replace these missing values by defining a set of K-nearest 

neighbours for each sample or individual and replacing the missing data for a given variable 

by averaging (non-missing) values of its neighbours. 

SMOTE Oversampling Technique 

Another issue with the dementia data set is that the class members distribution of the data is 

highly imbalanced. To handle this problem, the Synthetic Minority Over-Sampling Technique 

(SMOTE) is used to generate artificial data based on the similarities between the feature spaces 

of the existing minority class samples. The algorithm generates some random points in between 

the two specified vector points and thus more generalises the minority class decision region. 

In these experiments, KNN, Decision Tree, Multilayer Perceptron, and Random Forest 

classifiers’ accuracy are used to measure the quality of the feature subsets. 

In table Table 8-2, a triangle fuzzy neighbourhood with neighbour radius N is shown. The 

neighbour radius in fuzzy roughest is related to granularity and determines the number of 

training samples in the classification boundary region. As it can be seen, the greater amount of 

neighbourhood radiuses results in a lower classification error. 

     

Table 8-2: Dementia dataset feature selection results with different Neighborhood radius using fuzzy rough set-

based information entropy 

FRFS Classifiers Error    

Neighbourhood 

radius 

KNN Decision Tree 

Multilayer 

Perceptron 

MLP 

Random 

Forest 

N=0.25 
0 0 0.4104 0.2278 

N=0.5 0 0 0.3603 0.2258 
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N=0.75 0 0 0.3723 0.2242 

N=1 
0 0 0.3104 0.2036 

Table 8-3: The classifiers’ accuracy comparison for Dementia dataset using four feature selection algorithms 

Methods/Classifiers 

Error 

KNN Decision Tree 

Multilayer 

Perceptron 

(MLP) 

Random 

Forest 

GAFS 
0.4708 0.0846 0.3612 0.3538 

DEFS 0.4670 0.2149 0.3821 0.3112 

PSOFS 0.5769 0.4876 0.5606 0.5182 

FRFS 
0 0 0.3104 0.2036 

In Table 8-4, the results of the fuzzy rough set-based information entropy algorithm are 

compared with three feature selection algorithms which are wrapper methods based on genetic 

algorithm, deferential algorithm, and particle swarm optimization technique, respectively. The 

results proved the acceptable performance of the fuzzy rough set-based information entropy 

algorithm. However, Dementia small sample space here is a drawback and affects the results. 

As you can see, although the fuzzy rough set-based information entropy algorithm archived 

100% accuracy for KNN and decision tree classifiers, for multilayer perceptron and random 

forest which are highly dependent on the training samples it couldn’t provide a good result.  

Therefore, for more investigation, four additional datasets from the UCI Repository of machine 

learning databases are used to test the classification accuracy. 
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Table 8-4: Dementia dataset feature selection results using SMOTE data sampling method 

FRFS  

Classifiers 

Error 

   

 Parameter 

settings 
KNN 

Decision 

Tree 

Multilayer 

Perceptron 

(MLP) 

Random 

Forest 

      

SMOTE N=1 0 0 0.0537 0.1472 

Imbalanced N=1 0 0 0.3104 0.2036 

 

Another issue with the Dementia dataset is its imbalanced class members. In table 4, the result 

of applying SMOTE technique on Dementia datasets is compared with imbalanced Dementia 

datasets. The results show improvement in classification accuracy by decreasing classifiers’ 

errors. 

 

Figure 8-3: K-Nearest Neighbor classification errors for Dementia dataset 
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Figure 8-4: Decision Tree classification errors for Dementia dataset 

 

Figure 8-5: Multilayer perceptron classification errors for Dementia dataset 
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Figure 8-6: Random Forest classification errors for Dementia dataset 
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Table 8-5: Feature selection results for UCI datasets 

Dataset 

Methods/Classifiers 

Error 

KNN 

Decision 

Tree 

Multilayer 

Perceptron 

(MLP) 

Random 

Forest 

Insurance Company 

(COIL2000) 

 DEFS 0.0375 0.0375 0.0696 0.0617 

 PSOFS 0.1107 0.1107 0.0728 0.1107 

 FRFS 0.0252 0.0252 0.0621 0.0584 

 GAFS 0.058 0.058 0.0781 0.0734 

Heart Disease 
     

 GAFS 0.0242 0.0242 1.018 0.2814 

 DEFS 0 0 0.9539 0.2309 

 PSOFS 0.0455 0.0455 0.5789 0.2545 

 FRFS 0 0 0.4950 0.1142 

Wine 
     

 GAFS 0 0 0.1198 0.029 

 DEFS 0 0 0.1077 0.031 

 PSOFS 0 0 0.0699 0.0363 

 FRFS 0 0 0.0715 0.045 

Breast Cancer 

Wisconsin 

(Diagnostic) 

     

 GAFS 0 0 0.1066 0.0325 

 DEFS 0 0 0.1128 0.0256 

 PSOFS 0 0 0.1616 0.051 

 FRFS 0 0 0.1014 0.0271 

 GAFS 0 0 0.1066 0.0325 
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In Table 8-5, four datasets from the UCI Repository of machine learning databases are used to 

test the performance of the selected algorithms. As it can be seen, the fuzzy rough set-based 

information entropy algorithm in three datasets performs better compared to the other three 

algorithms. However, in the Wine dataset, the wrapper method using the deferential evolution 

algorithm is more successful. Although the performance of the fuzzy rough set-based 

information entropy algorithm is good in these experiments, the computation time is a critical 

issue, especially when the dataset dimension increases this algorithm performance is very poor 

compared to the other three wrapper methods. Among the selected methods, the deferential 

evolution-based wrapper is the fastest one and as it can be seen the result produced by this 

algorithm are also acceptable. The disadvantage of evolutionary-based wrapper methods is 

parameter tuning and defining a fixed set of features for selection. In general, the combination 

of fuzzy rough set precision and evolutionary wrapper speed seems to be a promising approach 

to benefit the advantages of both techniques. 

Conclusion 

In this report, the impact of feature selection methods on the heterogeneous real-world datasets 

is studied. Among the proposed methods in the literature, the fuzzy rough set-based information 

entropy algorithm is chosen for performing feature selection because of its ability to handle 

mixed data and providing more precise results in terms of classification. The results of applying 

the algorithm on four real-world datasets were compared with three other feature selection 

algorithms from the literature. Although the selected filter-wrapper method outperforms three 

other feature selection methods in all the experiments, its main and important disadvantage is 

time computation cost, especially for a large data set. Moreover, in some cases the fuzzy lower 

space approximation exceeded the upper bounds which leads to producing incorrect feature 

subsets. In future work to overcome these issues, combination of this method with quantum 
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inspired evolutionary algorithm is recommended to both decrease computation time 

complexity and provide a better approximation in fuzzy lower space. 


