
MODEL CHECKING IN GENERAL

GAME PLAYING : AUTOMATED

TRANSLATION FROM GDL-II TO

MCK

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Supervisors

Dr. Ji Ruan

Dr. Xiaowei Huang

August 2017

By

Darrel Vedant Sadanand

School of Engineering, Computer and Mathematical Sciences

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the library, Auckland University of Technology. Details may be

obtained from the Librarian. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions may not

be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the Auckland University of Technology, subject to any prior agreement

to the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions of

any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Librarian.

© Copyright 2017. Darrel Vedant Sadanand

2

Declaration

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the qualification of any other degree or diploma of a

university or other institution of higher learning.

Signature of candidate

3

Acknowledgements

I would like to thank my supervisor, Ji Ruan, for all of the guidance he has provided. I

would also like to thank Xiaowei Huang for his supervision as well as my peers as the

Centre for Artificial Intelligence Research. Finally, I would like to thank my family for

supporting me during my journey.

4

Abstract

General Game Playing (GGP) is the field of Artificial Intelligence (AI) that investigates

generalized techniques for finding winning strategies in games. GGP agents are expected

to be able to play a game with no prior knowledge by receiving the game shortly before

starting to play. Games with perfect information, such as Tic-Tac-Toe, Chess and Go,

can be described in the Game Description Language (GDL), and games with chance

and hidden information such as Backgammon and Poker, can be describe in Game

Description Language for Incomplete Information (GDL-II), an extension of GDL.

This thesis is mainly concerned with the verification of games in GDL and GDL-II.

Games described in these languages may contain bugs, just like the bugs in a program

written in C or Java language. E.g., a game may never terminate or a player has a legal

move but does not know it. In order to allow GGP agents play games properly, the

games need to satisfy a set of well-formedness properties. In GDL the properties are

Termination, Playability and Winnability and in GDL-II there is also the requirement

that agents have sufficient knowledge to derive these properties. Our approach is to

utilise model checking, which is a well-known method to check if a program is free

from design errors, i.e., satisfying a set of formal properties. We build on an earlier work

in verifying games in GDL-II by systematically translating the game descriptions into a

system description model and the well-formedness properties of games into a logical

language, then feeding them to the model checking program named Model Checking

Knowledge (MCK). We refine the existing translation techniques to automatically

5

generate a MCK System Model from an arbitrary game in GDL-II and verify if they

satisfy the desirable properties. Our automated translation takes significantly less time

to generate models but falls short in efficiency compared with a manual translation. We

explore the ways to do further optimisation to increase the efficiency.

6

Contents

Copyright 2

Declaration 3

Acknowledgements 4

Abstract 5

1 Introduction 11
1.1 Overview . 11
1.2 Research Question . 14
1.3 Contribution . 15

2 Literature Review 17
2.1 General Game Playing . 17
2.2 Game Description Languages . 18
2.3 Game Playing Agents . 20

2.3.1 GGP agents based on heuristics 20
2.3.2 GGP agents based on Monte Carlo Tree Search 21
2.3.3 GGP agents for GDL-II . 21

2.4 Model Checking for Multi-Agent Systems 22
2.4.1 Model Checking . 22
2.4.2 Multi-Agent Systems . 25
2.4.3 Model Checkers . 26

2.5 Game Verification . 27
2.5.1 Game Verification in GDL . 28
2.5.2 Game Verification in GDL-II 29

3 Technical Background and Methodology 31
3.1 Game Description Language with Incomplete Information 32

3.1.1 Syntax, Semantics and Well-formedness for GDL 32
3.1.2 Syntax, Semantics and Well-formedness for GDL-II 38

3.2 Model Checking Knowledge (MCK) 40
3.2.1 Interpreted System . 41
3.2.2 MCK Specification Language 42

7

3.2.3 MCK Input Language . 45
3.2.4 Model Checking Algorithms 49

3.3 Translation from GDL-II to MCK . 51
3.3.1 Parsing . 51
3.3.2 Grounding . 53
3.3.3 Converting to DNF . 55
3.3.4 Minimising . 56
3.3.5 Ordering . 59
3.3.6 MCK Translation Output . 62

4 Analysis 67
4.1 Translation Testing . 68

4.1.1 Compile Time and number of Ungrounded Clauses 69
4.1.2 Number of Grounded Clauses 70
4.1.3 Reduction of Variables . 71

4.2 Verification Testing . 73
4.2.1 Verification Properties . 74
4.2.2 Verification testing . 76

5 Discussion 80
5.1 Interpretation of Results . 80
5.2 Optimization . 81

5.2.1 Minimization . 81
5.2.2 Disjunctive Normal Form . 83
5.2.3 Rule ordering . 84

5.3 Issues in MCK . 85

6 Conclusion 87
6.1 Conclusion . 87
6.2 Future Work . 88

References 90

8

List of Tables

2.1 Winners of the International General Game Playing Competition during
the time there was a monetary prize. (Wikipedia, 2016) 20

2.2 Linear Temporal Logic Operations . 24
2.3 Computation Tree Logic Operations . 24

3.1 Linear Temporal Logic Operations in MCK 42
3.2 Computation Tree Logic Operations in MCK 43

4.1 List of translated games with associated number of grounded clauses in
ascending order . 72

4.2 List of translated games with associated number of grounded clauses in
ascending order . 74

4.3 Time, in seconds, taken to verify a set of well-formedness properties
for different games using Bounded Model Checking. Cells are labelled
with T if they were stopped after a one hour time out or labelled E if
MCK needs more than the available amount of memory. 77

4.4 Time, in seconds, taken to verify well-formedness properties for differ-
ent games using Binary Decision Diagrams. Cells are labelled with T if
they were stopped after a one hour time out. 79

9

List of Figures

2.1 The relationship between agents in a GGP match. 19
2.2 Components of a model checking system. (Baier, Katoen & Larsen, 2008) 23

3.1 Simple dependency graph diagram . 34
3.2 A visualization of the relationship between components required for

using MCK for model checking GDL games 40
3.3 The decorated parse tree of a clause . 53
3.4 A visualisation of the domain generated for the cell predicate of KriegT-

icTacToe. 54
3.5 A literal in Parse Tree and DNF Ruleset forms 56
3.6 Effects of minimization on a partially grounded rule where dotted lines

are removed and solid lines remain. Nodes are green for tautologies
and red for contradictions. 59

3.7 A transition in the ordered dependency graph as a cycle on the left and
an equivalent acyclic version on the right. 62

3.8 A part of the dependency graph generated from KriegTicTacToe for
ordering. The stratification levels are labelled S1...S3 where S1 goes first. 62

4.1 Compare the number of ungrounded clauses in a game against the com-
pile time for that game. Time scale is linear on the left and logarithmic
on the right. 69

4.2 Compare the number of ungrounded clauses in a game against the
number of grounded clauses. The number of grounded clauses is on a
linear scale on the left and a logarithmic scale on the right. 71

4.3 Show the relationship between the final number of removed MCK
variables (blue) vs the potential number of variables (red) in the games
that succeeded in being translated. 73

10

Chapter 1

Introduction

1.1 Overview

A lot of situations come up in life that require strategy; such as deciding what steps

to take in a successful career or which papers to take while studying. Something

as complex as a corporate business plan or as simple as choosing rock in a game of

rock-paper-scissors, involves strategic decision making.

A strategy is how we plan to achieve a long-term goal. Since gaining new in-

formation can influence our plan, strategies are often dynamic and evolve over time.

It can be beneficial to try and track changes in the world to see if they increase our

chances for success. However, the world is a big place and changes happen all the

time which involve complex interdependencies. Most changes occur without noticeable

consequences and are safe to ignore. Even important events such as natural disasters,

political movements, and armed conflicts often have little bearing on choices such as

where to buy a house to live or how to develop a career. In essence, we reduce the

information we consider to specific changes that affect our strategy.

We will use the ideas of game theory to express a scenario we want to study. In a

game, there are clearly defined players, actions, and consequences. Players win and

11

Chapter 1. Introduction 12

lose depending on their own moves as well as the moves of other players. Games like

Chess or Go can give a representation of a military campaign or territory, games in the

First Person Shooter (FPS) genre commonly put you in the shoes of a soldier, games

like Poker rely on the art of bluffing and games like Scrabble rely on an extensive

vocabulary. A game is a small slice of the universe. This simplification has many

advantages including limiting the amount of information needed to be processed, clearly

defining what success means and identifying allies and enemies.

In the field of Artificial Intelligence (AI), we try to understand human intelligence

by trying to recreate it. However, if you look at it in terms of computational complexity,

modelling the human brain is far beyond the capabilities of modern computers. Even

emulating vision-based processes are difficult for computers which only represent one

of the five main senses in a human body.

Games are an area of interest in Artificial Intelligence due to the simplification they

provide. They have been stepping stones for more realistic models of the world. AI

researchers could compare the efficiency of a chess playing program by how many steps

ahead it could foresee. As algorithms and processing power developed, supercomputer

advances were made possible like DeepBlue by IBM which defeated a grandmaster

in chess (Campbell, Hoane & Hsu, 2002). However, there is a major limitation in the

work on chess. As great as an achievement it was for defeating a human master at his

own game, DeepBlue only knew the game of chess. The system relied on chess specific

techniques which could not be generalized to any other games. For instance if you

changed the pieces to those of a similar game, like checkers, the system would not be

able to make a single move.

Now that we have realized the limitation in single game analysis, it is time to shift

the focus of research to techniques which can be generalized to multiple games. This

is the field of General Game Playing (GGP) where players are expected to be able to

interpret games written in a common game description language. The appropriately

Chapter 1. Introduction 13

named Game Description Language (GDL) is the first iteration of this language which

can describe a wide range of games including Tic-Tac-Toe, Chess and Go. Games

described in GDL have a property known as perfect information indicating every player

has knowledge of the full state of the game. This restricted expressibility was very

useful in reducing the paths agents had to analyse while being game agnostic, however,

it was a limitation as a lot of games use incomplete information mechanics. Game

mechanics such as randomness in the form of a coin toss or a dice roll and hidden

information such as a hand of cards are inexpressible in GDL.

The perfect information restriction led to the development of the Game Description

Language with Incomplete Information (GDL-II). GDL-II is a minimal extension of

GDL which adds two mechanics to the language. The first is a special player called

random which models chance events. The random agent decides on a move from a

set of legal ones based on a uniformly random distribution. The second is a keyword,

sees which defines perceptions made by agents. This changes the previous flow of

information where all of the agents knew every change by default. These additions

result in a greater level of expressibility over GDL, but has also led to an exponential

increase in the amount of paths that need to be analysed.

GDL-II also presents a challenge to game developers by making it harder to verify

if a game description is valid and plays as intended. A game which is not well formed

can have turns where there are no legal moves for a player, the game runs forever, or

the game is impossible to win for a player. The extra dimension of complexity that

incomplete information brings makes it that much harder to check a game manually.

This is where tools such as model checkers are useful.

Chapter 1. Introduction 14

1.2 Research Question

The primary aim of this project is to explore the ability to automatically verify properties

of a game expressed in GDL-II. In particular we will focus on the verification of a

number of properties that relate to well-formed games in GDL-II. The well-formedness

properties in GDL-II are an extension of well-formedness in GDL and make for a class

of games which conform to some level of playability and fairness.

In GDL, a well-formed game is one that satisfies three properties as defined in (Love,

Hinrichs, Haley, Schkufza & Genesereth, 2008). The first is playability and it states

that, for each turn before the end of the game, every player has at least one move they

can perform. This adds a requirement that if an agent ‘does nothing’, it is because

it chooses to, as opposed to a technical fault where the agent becomes disconnected

from the game or unresponsive and is unable to submit a move. The second property is

termination where the game always ends after a finite number of moves at which time

we find out who wins and who loses. The third is winnability which states that it is

possible for each player to end the game where they are a winner. If a game satisfies

these three properties then it is considered well-formed.

However, due to the extra dimension of epistemic reasoning in GDL-II, the proper-

ties in GDL are insufficient to guarantee playability of games. The three extra properties

for GDL-II require games to know enough information to be able to evaluate the three

properties in GDL as defined in (Ruan & Thielscher, 2012a). The properties state that

all agents should be able to;

• Know which moves are and are not legal.

• Know if a state marks the end of the game.

• Know who wins and who loses when the game ends.

Without these conditions an agent cannot evaluate a game intelligently and will be

forced to randomly guess if a move is valid or not and what the consequences will be.

Chapter 1. Introduction 15

It should be noted that we will focus on verifying well-formedness properties which

is distinct from the syntactic validity. The syntax for GDL is clearly defined in (Love et

al., 2008) and relates to the definitions of terms, rules and properties such as recursion

and stratification. The well-formedness properties cannot be verified from syntax alone

and requires a level of semantic analysis. The computational complexity of verifying

syntactic validity is lower than verifying the well-formedness properties. As a result,

despite GDL-II being more expressive than GDL, there are only a handful of well-

formed games that GDL-II agents can use to practice. Verification of well-formedness

in GDL-II uses epistemic logic which is not as intuitive as temporal logics and harder

to use manually. This research will automate a process using model checking that will

take a GDL-II game and verify if it is well-formed.

1.3 Contribution

In our research we present a method to automatically translate a game description from

GDL-II to a model that can be used in a model checking program. We will use Model

Checking Knowledge (MCK) as our model checking software of choice and create a

System Model that MCK can use for model checking.

The translation we have developed is based on earlier GDL-II verification work in

(Ruan & Thielscher, 2012a) which uses the MCK program. This process is a manual

translation that relies on high level intelligence. A translator has to have the ability to

understand the game, derive an optimal ordering for the game rules and understanding

MCK enough to make use of its optimization features on a game to game basis. We

have reduced the depth of model checking expertise required to use model checking

with GDL-II. A summary of our process is as follows;

1. Parse the GDL-II file and perform domain analysis.

2. Ground the rules to a variable-free format.

Chapter 1. Introduction 16

3. Convert to DNF to make it easier to do further manipulation.

4. Minimize to remove unnecessary predicates and rules.

5. Order the evaluation of rules for valid MCK transitions.

6. Translate to the final output as a MCK System Model.

We have implemented a version of the translation process and tested it. We have

found that a number of games are successfully translated and are recognized by MCK.

However the models we derive are still rather complex which results in a large require-

ment of time and memory for verification in MCK.

Thesis Structure

We will review the related work for General Game Playing and Model Checking in

Chapter 2. Next is an introduction to the relevant concepts in GDL and MCK as well as

a definition of the translation process in Chapter 3. Following that is an analysis of our

implementation of the translation process in Chapter 4. A discussion of our results and

its consequences is in Chapter 5 before our final conclusion in Chapter 6.

Chapter 2

Literature Review

In this chapter we cover the related research in the fields of General Game Playing

(GGP), Model Checking and Game Verification. We introduce the GGP system includ-

ing the game description languages as well as the different types of existing GGP agents.

Next we talk about the type of Model Checking used in a Multi-Agent System. Finally

we describe the current techniques used for verification in the GGP languages GDL and

GDL-II.

2.1 General Game Playing

The research in this field falls into two broad categories. The first is the development

of AI agents that represent players in the game which are efficient at forming winning

strategies. The second is focused on the game description itself. We look at what kind

of properties can be extracted and how expressive a description language is.

There are three necessary components to have a GGP match as shown in Figure 2.1.

1. A set of game playing agents that process state updates and submit moves with

the aim of maximizing their goal value.

17

Chapter 2. Literature Review 18

2. A game description which defines starting conditions, ending conditions, updates,

possible moves and consequences.

3. A game manager which is the process that collects all agents moves together and

forwards the information to the players according to the game description.

A match requires two extra parameters which are the start clock and play clock.

The play clock, in seconds, is the amount of time allowed for all players to submit their

move. The start clock is the amount of extra time, also in seconds, between receiving

a game description and the first move and allows some initial analysis of the game.

At each turn each player must submit a move before the play clock times out even if

the move itself signals that they choose to do nothing, commonly referred to the move

noop.

The match progresses until a terminal condition is true upon which each player can

evaluate their pay-off. For example, in the game TicTacToe each player takes turns

marking cells in a 3x3 grid with either a naught (O) or cross (X). The first to get three

of their mark in a row wins 100 points while the opponent gets 0 points. However, if

there are no more valid moves and no winner then the game ends in a tie and the players

each receive 50 points. We can name the player marking naughts as O-player and the

player marking crosses as X-player. The rules can be encoded in a Game Description

Language and all that is left are the two agents that play the role of O-player and

X-player.

2.2 Game Description Languages

The description language is a key component of the GGP system with the Game

Description Language (GDL) being the first. GDL sets out to describe games that are

‘finite, discrete, deterministic multi-player games of complete information’ - (Love et

al., 2008). The requirement for a game description forces agent designers to consider

Chapter 2. Literature Review 19

Figure 2.1: The relationship between agents in a GGP match.

any game that can be described in the GDL language. This lets us avoid the trap

of developing techniques which only work on a particular game such as DeepBlue

(Campbell et al., 2002).

The syntax for GDL is based on the logic programming language Datalog and

represents a finite state machine. A number of keywords help define the mechanics of

any synchronous game with discrete moves and perfect information. Although GDL

was designed for describing games it can also model a more general class of multi-agent

systems as described in (Schiffel & Thielscher, 2009b). This paper describes a method

for interpreting a discrete, synchronous and deterministic multi-agent environment in a

GDL format. Although there was no real world example defined, there is potential for a

type of multi-agent systems to be cast as a GGP game and use already developed GGP

agents which reduces the need to develop more scenario specific agents.

There have also been some variations of GDL proposed. The Game Description

Language with Incomplete Information (GDL-II), as defined in (Thielscher, 2010), is a

minimal extension to GDL which allows the expression of games with randomness and

incomplete information. Next is the Incomplete Game Description Language (IGDL)

which is based on Relational Logic. We also have the System Definition Language

(SDL) which adds explicit step numbers to each predicate resulting in a non-markov

Chapter 2. Literature Review 20

Year Game Player Developer
2005 Cluneplayer Jim Clune
2006 Fluxplayer Stephan Shiffel, Michael Thielscher
2007 CadiaPlayer Yngvi Björnsson, Hilmar Finnsson
2008 CadiaPlayer Yngvi Björnsson, Hilmar Finnsson
2009 Ary Jean Mehat
2010 Ary Jean Mehat
2011 TurboTurtle Sam Schreiber
2012 CadiaPlayer Yngvi Björnsson, Hilmar Finnsson
2013 TurboTurtle Sam Schreiber
2014 Sancho Steve Draper, Andrew Rose
2015 Galvanise Richard Emslie
2016 WoodStock Eric Piette

Table 2.1: Winners of the International General Game Playing Competition during the
time there was a monetary prize. (Wikipedia, 2016)

variant as described in (Genesereth & Thielscher, 2014). Although there are some

limitations in using GDL, the GGP model can be used with a different description

language for which interesting properties hold.

2.3 Game Playing Agents

A number of GGP agents have been developed to test different techniques as well as

to compete in the International General Game Playing Competition (Genesereth &

Björnsson, 2013).

2.3.1 GGP agents based on heuristics

The winner of the inaugural competition in 2005 was Cluneplayer written by Jim

Clune (Clune, 2007). Cluneplayer looks for stable features in a game description and

these features are used as part of its heuristic evaluation function. The 2006 winner,

Fluxplayer, was written by Stephan Shiffel and Michael Thielscher, also uses heuristic

based analysis of games to simplify a game tree (Schiffel & Thielscher, 2007).

Chapter 2. Literature Review 21

2.3.2 GGP agents based on Monte Carlo Tree Search

The 2007, 2008 and 2012 winners had a different approach to analysing games. Yngvi

Björnsson and Hilmar Finnsson’s Cadiaplayer used a Monte-Carlo based approach to

evaluating nodes on a game tree called Monte-Carlo Tree Search (MCTS) (Bjornsson &

Finnsson, 2009). The method uses many runs of the game with random joint moves to

approximate the value of a particular node in the game tree. The game tree is constructed

by saving some of these nodes along with their approximate value. The value of the

nodes in the tree affect the distribution of which nodes get followed. When the end of

the current tree is reached then the distribution is uniform among the moves available

till the end of the game.

After Cadiaplayer’s success in using MCTS other players were developed which

were based on this approach. 2009 and 2010 winner, Jean Mehat’s Ary (Méhat &

Cazenave, 2010), and 2011 and 2013 winner, Sam Schreiber’s TurboTurtle, use MCTS

based players with various parameters and optimizations. MCTS has therefore become

a standard technique for GGP agents based on GDL.

2.3.3 GGP agents for GDL-II

The addition of imperfect information to GDL in the form of GDL-II has significantly

increased the complexity of analysing a game tree. HyperPlay is a modelling technique

that can be used for games described in GDL-II to be run on vanilla GDL player

(Schofield, Cerexhe & Thielscher, 2012). The technique derives a sample set of models

valid in the current state. It then gives the model to a GDL based agent as though it

was a state in a GDL based perfect information game. Future move analysis is made on

multiple game trees derived from currently valid states and combined to give a better

approximation.

Chapter 2. Literature Review 22

2.4 Model Checking for Multi-Agent Systems

2.4.1 Model Checking

When developing a software system, errors in the code cause erroneous outputs. There

are different methods for discovering errors or bugs in a system. In a peer reviewed

process, other programmers who did not participate in development of a system read

the source code and manually look for bugs. In testing, a set of tests are run which

execute the code with predefined inputs and check that particular values are as expected

in a case-by-case basis. The third option is to use the model checking technique which

takes a system description and exhaustively checks if a property holds in the system

(Baier et al., 2008).

There are a number of limitations to each of these methods. Peer review relies on the

experience of the reviewers and the developer’s ability to write readable code. Testing

is often done by the developers themselves and generally only cover important cases. It

does not check any scenario not explicitly encoded in a test case. When using model

checking, the verification algorithms can have an exponential time complexity and can

only be as useful as the model used. Despite this, model checking is still considered to

give the most accurate analysis of a system (Baier et al., 2008).

A model checking program takes two inputs as shown in Figure 2.2.

1. A model of the system that needs to be verified.

2. A formally specified property that the model should satisfy.

If the model satisfies the property then we can move on. On the other hand, if the model

does not satisfy the property then the system needs to be reconsidered and another

model constructed to run the property against. System description languages should

not only entail a formal model but should also be understandable by an audience that

is familiar with the system being modelled but not necessarily have an understanding

Chapter 2. Literature Review 23

Figure 2.2: Components of a model checking system. (Baier et al., 2008)

of the theory of model checking (Baier et al., 2008). On the other hand, for describing

requirements there are a few commonly used specification languages.

Formalisms

The main use of a model checking system is to check that the model we are analysing sat-

isfies some requirement, constraint or property. For this we need a language that clearly

expresses the property we want to check which means having a well-defined structure

and meaning. Several specification logics exist that are extensions of propositional logic

and allow us to formally define a range of properties.

Linear Temporal Logic Linear Temporal Logic (LTL) is based on the idea of linear

time which is a sequence of states where there is only one next state. Intuitively this is

represented by steps in a path and a specification holds if it is true in all paths of the

system. The additional operators on top of propositional logic are as follows;

Chapter 2. Literature Review 24

Operator Informal description
◊ f eventually f is true
◻ f f is always true
◯ f f is true in the next state

f ∪ g f is true until g is true

Table 2.2: Linear Temporal Logic Operations

Computation Tree Logic Computation Tree Logic (CTL) is based on the idea of

branching time under which each point in time can move in multiple different directions.

Unlike the paths in LTL, CTL is more suited to describing properties in relation to

states. The use of explicit quantifiers allows the expression of existential properties as

well as the universal ones assumed in LTL.

Operator Description
∀ ◯ f f in all next states
∃ ◯ f f in at least one next state

∀ [f ∪ g] on all paths, f until g
∃ [f ∪ g] on at least one path, f until g
∀ ◊ f on all paths, in some future state, f
∃ ◊ f on at least one path, in some future state, f
∀ ◻ f on all paths, in all future states, f
∃ ◻ f on at least one path, in all future states, f

Table 2.3: Computation Tree Logic Operations

Alternate-time Temporal Logic Alternating-time Temporal Logic (ATL) is a branching-

time logic like CTL but addresses a different type of system than LTL and CTL. ATL

can be used to specify properties of an open system where there is the possibility of

input external to the system (Alur, Henzinger & Kupferman, 2002). These systems can

be interpreted as games and a specification holds if a group of game players, known as

a coalition, can force a property to be true.

Chapter 2. Literature Review 25

State Explosion Problem

A system is represented by an automaton which is an abstract representation of the logic

of the system. The automaton represents a state transition system where there are a

number of states and transitions moving from one state to another. The set of states is

known as the state space and model checking algorithms manipulate the automaton and

increase the state space. The rate of increase in the state space can be exponential which

significantly increases the amount of states that have to be checked and kept in memory.

This phenomenon is known as the State Explosion Problem (Baier et al., 2008) and can

cause a verification to fail because the amount of memory required is larger than the

size of physical memory in the computer being used.

2.4.2 Multi-Agent Systems

In Artificial Intelligence we try to design and/or develop intelligent agents which are

entities that can demonstrate intelligence. This leads to the question How do you

demonstrate intelligence? and the more philosophical follow up What is intelligence?

Different fields of AI have different measures of an agents intelligence such as confusion

matrices and depth of decision trees in machine learning, number of levels and training

time in neural networks, number of state evaluations and win/loss ratio in game playing,

etc... There is no consensus on what constitutes an intelligent agent aside from the

ability for it to think for itself and act accordingly (Wooldridge, 2009). We will add to

the set of agent definitions in Definition 1. Note that in GGP a player can simply make

random legal actions without any consideration hence although interesting players will

likely be agents, it is not necessary for all opponent players to be agents.

Definition 1. Agent

An agent is an entity that can decide on a course of action towards a goal taking into

consideration the environment it is in.

Chapter 2. Literature Review 26

If multiple agents are interacting in the same environment then it is considered a

Multi-Agent System (MAS). The goal for each agent can be to maximize its payoff.

There are systems where sets of agents have goals that partially or fully overlap so they

could try to work with each other. The opposite is also true where agents have mutually

exclusive goal states, resulting in competition.

MAS can be used to model a number of properties that involve communication

such as cooperation, coordination and negotiation (Wooldridge, 2009). A number of

interesting scenarios can be modelled with MAS including;

• Producers and consumers in a market

• Work teams

• Games

• Distributed computer systems

• Network protocols, etc...

2.4.3 Model Checkers

Model checkers have been developed that focus on checking Multi-Agent Systems.

Some common model checking capabilities in a MAS based model checker makes use

of algorithms to check temporal and epistemic properties.

MCK

Model Checking Knowledge (MCK) is a model checker developed at the University of

New South Wales also for Multi-agent Systems (“MCK User Manual”, n.d.). While

also utilizing Interpreted Systems, this program uses algorithms based on Explicit State

Model Checking (ESMC), Binary Decision Diagrams (BDD) and Bounded Model

Checking (BMC). A deeper exploration into the capabilities of MCK is in Section 3.2.

Chapter 2. Literature Review 27

MCMAS

Model Checking Multi-Agent Systems (MCMAS) is a model checker developed at

the Imperial College of London for Multi-agent Systems (Lomuscio, Qu & Raimondi,

2009). This model checker is based on the theory of Interpreted Systems and uses the

Interpreted Systems Programming Language (ISPL) to define a system. It can recognize

specification properties in CTL and uses Ordered Binary Decision Diagrams (OBDD)

based algorithms for model checking.

2.5 Game Verification

The use of a game description language makes game specific techniques largely redund-

ant but does not necessarily rule out techniques that are not fully generalized. There

are multiple ways of defining the same game as there is a need to balance an agent’s

ability to efficiently analyse a game against the designer’s ability to verify if a game

works as intended. As a result, predicate names outside of keywords are still in longer,

human-readable formats to help manually verify that a description runs as intended. For

an agent, the fact that two names are different is more important than what the name

actually is. It is more important to find logical properties of a game than checking if,

for example, the queen has been taken in chess.

Techniques move from game-specific to class-specific where a technique or simpli-

fication can be used if a particular property holds or a precondition is met. For example,

the GGP agent Centurio (Möller, Schneider, Wegner & Schaub, 2011) uses a Monte

Carlo Tree Search (MCST) in general but uses a more efficient technique based on

Answer Set Programming if the game is single player. On the other hand, Monte Carlo

Tree Search is a simulation based technique that uses many simulations of a game and

heuristic analysis also uses simulations to approximate the stability of a feature. These

Chapter 2. Literature Review 28

simulation based techniques avoid the potential inefficiency of proving a property at the

expense of repeatedly simulating an efficiently provable one. A number of approaches

and systems have been proposed in (Ruan & Thielscher, 2012a), (Haufe, Schiffel &

Thielscher, 2012), (Schiffel & Thielscher, 2009a), (Ruan, Van Der Hoek & Wooldridge,

2009), (Ruan & Thielscher, 2012b) and (Haufe & Thielscher, 2012) that check for

useful properties in a game description.

2.5.1 Game Verification in GDL

An alternative is proposed in (Schiffel & Thielscher, 2009a) which attempts to prove

properties in GDL instead of approximating. The system converts a GDL game to

an equivalent problem in Answer Set Programming (ASP) in the form of a proof by

induction. First is checking if the property holds in the base case which corresponds to

the initial state in GDL. The second part is the inductive step which involves checking

if the property holds under any valid next state reachable by a legal joint move. The

system can also make use of the proved result to simplify further proofs which depend

on it. The paper stresses the ability to prove properties as opposed to identifying useful

properties to prove.

A more advanced ASP based proof approach is to prove state sequence invariants

as described in (Haufe et al., 2012). State invariants are properties that hold in every

state of the game and are important because they can be proved by analysis of the game

rules directly and avoid a computationally expensive state space search. State sequence

invariants on the other hand are properties that span multiple states. This approach

uses a variant of the inductive proof in (Schiffel & Thielscher, 2009a) which encodes

multiple steps of the game into the ASP output. This sequence invariant technique can

be theoretically extended to any finite number of steps and does not require a full state

space search.

Chapter 2. Literature Review 29

There are also model checking methods available such as in (Ruan et al., 2009) which

is based on Alternating-time Temporal Logic (ATL) and offers a different approach than

ASP for verification. The system uses the Action-based Alternating Transition Systems

(AATS) semantics to interpret ATL properties. ASP is a way of defining a system in

which specifications can be encoded but ATL is a language for specifying properties

which can be checked using an ATL model checker. ATL can express properties about

time as well as actions and strategies. This has advantages over (Schiffel & Thielscher,

2009a) and (Haufe et al., 2012) which details a method of deriving a proof system in

ASP. This is in contrast to interpreting in ATL under which the conversion to AATS

need only be done once and any number of properties can be run through an appropriate

model checker.

2.5.2 Game Verification in GDL-II

In GDL-II we allow the expression of Incomplete Information through the extra

keywords sees, which represents a perception, and random, which represents non-

determinism. Any formalization that we use subsequently needs to be able to express

epistemic logic which describes what each agent knows. The epistemic logic has a

knowledge operator, Kiφ, which can be read as agent i knows that φ is true. There is

also a common knowledge operator, CBφ, which is read as a set of agents B all know

that φ is true. A method for deriving an epistemic model from any round in a GDL-II

game is shown in (Ruan & Thielscher, 2011). It also shows that GDL-II can be used to

express any finite epistemic model.

The more expressive logic, Alternating-time Temporal Logic (ATEL), is used in

(Ruan & Thielscher, 2012b) for expressing GDL-II properties. ATEL is an extension

of the Alternating-time Temporal Logic (ATL) used in (Ruan et al., 2009) with the

knowledge operators used in epistemic logic in (Ruan & Thielscher, 2011). However, in

Chapter 2. Literature Review 30

terms of verification, there is currently no model checker that uses ATEL and therefore

the current practical use is a bit limited. In time, when ATEL model checkers have been

developed, GDL-II based agents may be one of the users.

There are some techniques which do translate to working programs such as a

verification technique for epistemic properties in (Haufe & Thielscher, 2012) This

technique makes use of Answer Set Programming (ASP) and is an extension to the work

in proving state sequence invariants in (Haufe et al., 2012). To minimize the effects

of the state explosion problem (Section 2.4.1) the properties used are limited to linear

time.

Another technique is to translate GDL-II to the model checker MCK for verification

in (Ruan & Thielscher, 2012a). This involves creating a model of a GDL-II game and

checking for properties in CTL*Kn which is a mix of CTL and LTL with knowledge

operators. In a similar vein to using ATL model checking for GDL in (Ruan et al., 2009),

after the model is derived it can be used repeatedly for the verification of different

properties. The key limitation in this method is the fact that an efficient system model

still has to be derived by a human which is a limiting factor its ability to be used by a

GDL-II agent.

Chapter 3

Technical Background and

Methodology

In this chapter we cover the related background information of our translation followed

by a description of our translation process. In section 3.1 we define the syntax and

semantics of the Game Description Language with Incomplete Information (GDL-II)

which is the language we will be translating from.

The MCK Input Language is used to provide the system description and verification

properties required for model checking in MCK. In section 3.2 we detail how MCK

describes a multi agent system using the Interpreted System semantics. We will also

describe how verification properties are specified as well as the algorithms used in

model checking.

In section 3.3 we have a description of our process which translates from GDL-II

to MCK. The translation requires a number of phases. These steps include parsing

the GDL-II description, grounding clauses to a variable-free state and converting to

Disjunctive Normal Form. This is followed by a minimization which reduces redundant

clauses and an evaluation ordering before the final translation.

31

Chapter 3. Technical Background and Methodology 32

3.1 Game Description Language with Incomplete In-

formation

3.1.1 Syntax, Semantics and Well-formedness for GDL

The Game Description Language (GDL) is a language for describing games for GGP

agents. GDL can describe a wide range of games including any game with discrete

moves, pre-defined players and perfect information. The most well-known games would

be the likes of tic-tac-toe, checkers, chess and connect four. GDL can express games

where players make moves at the same time (simultaneous) or one at a time (turn-based),

and games where one player wins alone (purely competitive), all players win together

(purely cooperative) or a hybrid mix. GDL can also express single player games like

hitory and sudoku.

GDL Syntax

GDL is a logic programming language and therefore has a firm mathematical base as a

subset of first order logic. The syntax as it is defined in (Love et al., 2008) is presented

as follows.

Definition 2. GDL Vocabulary

• A set of relation constants with associated arity.

• A set of function constants with associated arity.

• A set of object constants.

Definition 3. Term

• A variable.

• A function constant of arity n applied to n terms

• An object constant.

Chapter 3. Technical Background and Methodology 33

Definition 4. Clause

A clause is an implication of the form.

h← b1 ∧ ... ∧ bn

• The head, h, is an atomic sentence

• The body is a conjunction of literals, bi where i ∈ {1...n}

• Safety: if a variable appears in the head or in a negative literal, it must appear in

a positive literal in the body.

Definition 5. Fluent

A fluent is a predicate which changes over time.

There are two types of predicates in our game description which are fluent predicates

and intermediary predicates. Fluents are associated with the true and does relations and

form the base of our model. The intermediary predicates are ones which can be derived

from other predicates and are also known as view predicates. Predicates whose value

does not change are considered static including all facts, role predicates and distinct

predicates. If a clause for which a predicate, p, is the head has bodies where all of the

predicates are static then p is also static.

Stable models in GDL

There are an infinite amount of logical models that satisfy a GDL game. It is important

for GGP Players to be able to generate the same model independently so they can track

the game state without having the full model transmitted explicitly. GDL games which

are stratified admit a standard model which is minimal and stable and this is considered

the right model. The stable model is defined in terms of a dependency graph as follows.

Chapter 3. Technical Background and Methodology 34

Definition 6. Dependency Graph

Let G be the set of rules. The nodes of the dependency graph for G are the relation

constants in the vocabulary. There is an edge from r2 to r1 whenever there is a rule

with r1 in the head and r2 in the body. That edge is labelled with ¬ whenever r2 is in a

negative literal.

Definition 7. Stratified Rule

Let G be a set of rules, and let ∆ be the dependency graph of G. A set of rules is

stratified if and only if there are no cycles in ∆ that include an edge labelled with ¬.

For example if we had a set of rules then we can construct a dependency graph as in

Figure 3.1. We can see from the graph that this rule set is not stratified due to the cycle

from p to q to p with the negative edge.

• p(X) ⇐ q(x)

• q(X) ⇐ r(x) ∧ ¬p(X)

Figure 3.1: Simple dependency graph diagram

This still allows infinite recursion in our game description which can be problematic.

The following restriction from (Love et al., 2008) will ensure our game descriptions

entail a finite model.

Definition 8. Recursion Restriction

Let G be a set of rules, and let ∆ be the dependency graph of G. Suppose that G

Chapter 3. Technical Background and Methodology 35

contains the rule

p(t1, ...tn) ← b1 ∧ ... ∧ q(v1, ..., vk) ∧ ... ∧ bm

where the literal q appears in a cycle with p in G. Then ∀j ∈ {1, ..., k}, either vj is

ground, vj ∈ {t1, ..., tn}, or ∃i∈{1,...,m}.bi = r(..., vj, ...), where r does not appear in a

cycle with p.

GDL Relations

Here is a definition of the relations which are defined in GDL.

• (role ?player)

The role keyword defines the name for each player. Each role must be explicitly

stated as a fact and is therefore always true in the game.

• (init ?fluent)

The init keyword defines which fluents are true in the initial state. Non-fluent

literals are derived from the fluent values and are therefore not required to be

declared explicitly. Init can only appear in the head of clauses and does not

depend on true, legal, does, next, sees, terminal or goal.

• (true ?fluent)

The true keyword is true if associated fluent of (next ?fluent) was true in previous

state or (init ?fluent) was true in the initial state. True only appears in the body of

clauses.

• (next ?fluent)

The next keyword represents part of the state update and if it is true in the current

state then the associated (true ?fluent) will be true in the next state. Next only

appears in the head of a clause.

• (legal ?player ?move)

Chapter 3. Technical Background and Methodology 36

The legal keyword represents a choice or action for the agent. The player can

choose one of the set of moves which are legal in the current state.

• (does ?player ?move)

The does keyword is true if player did move in the previous state. Does only

appears in the body of clauses and is not a dependency of legal, terminal or goal.

• terminal

The terminal literal marks the end conditions of the game.

• (goal ?player ?n)

The goal keyword represents the payoff for each player when the terminal literal

is set to true. The payoff value n is an integer in the range of 0–100.

• (distinct ?atom1 ?atom2)

The distinct literal is true if and only if atom1 and atom2 are not the same literal.

There are two extra relations that are used as a matter of convention.

• (base ?fluent)

The base relation declares that the literals (next ?fluent) and (init ?fluent) and

therefore (true ?fluent) can be true in the context of a game.

• (input ?player ?move)

The input relation declares that the literal (legal ?player ?move) and therefore

(does ?player ?move) can be true in the game.

Formal semantics of GDL

Formally a game expressed in GDL describes a finite automata or state transition system

which is defined as follows.

Definition 9. GDL Model

A GDL Model is a 6-tuple G = (R,s0, t, l, u, g) such that

• R = {r ∣ role(r) ∈ SM(G)}

Chapter 3. Technical Background and Methodology 37

• s0 = SM(G ∪ {true(f) ∣ init(f) ∈ SM(G)})

• t = {s ∣ terminal ∈ s}

• l = {(r,m, s) ∣ legal(r,m) ∈ s}

• u(M,s) = SM(G ∪ {true(f) ∣ next(f) ∈ SM(G ∪ s ∪Mdoes)})

• g = {(r, n, s) ∣ goal(r, n) ∈ s}

where R is the set of roles which represent players in the game, so is the initial state, t

is the set of terminal states, l is the set of legal actions for each player, u(M,s) is the

update function for all joint moves M and states s and g is the goal relation. SM(G)

denotes the stable model of a set of stratified clauses G.

Well-formed Games in GDL

We have defined the GDL language to a point where we can effectively describe a game.

However our definition lacks a sense of fairness expected in a well-designed game. A

well-formed game as defined in (Love et al., 2008) is as follows.

Definition 10. Well-formed Game in GDL

• Termination For each infinite sequence of legal moves from the initial state, a

terminal state is reached after a finite number of steps.

• Playability For each state from the initial state to the terminal state, each player

has at least one legal move.

• Winnability A game is strongly winnable if for a player there is a sequence of

moves to a terminal state where the goal value is maximal. A game is weakly

winnable if there is a sequence of joint moves but no sequence of individual legal

moves which will reach the maximal goal state.

A game is well-formed if it is playable, terminates and is weakly winnable for

multi-player games and strongly winnable for single-player games.

Chapter 3. Technical Background and Methodology 38

3.1.2 Syntax, Semantics and Well-formedness for GDL-II

GDL-II is a minimal extension to GDL. Two new constructs give GDL-II the ability

to express games with imperfect information (Thielscher, 2010). The first is a special

player called random which the game manager uses to model random choices. The

second is the sees literal which replaces the perfect information assumption in GDL

with a construct which clearly defined the conditions under which an agent is given

information.

Extra Defined Relations in GDL-II

• (sees ?player ?perception)

The sees keyword in GDL-II allows the transfer of specific perceptions to agents.

As agents also have a complete set of rules they can also deduce the cause of the

perceptions they receive. Sees only appears in the head of a clause.

• random

The random keyword is in the form of a special player defined as (role random)

which is run by the system as opposed to bound to an agent. The random players

move chosen by a uniform distribution. Although each move has the same

probability, multiple distinct moves can have the same consequence which allows

game developers control over the distribution of consequences.

Formal semantics of GDL-II

Formally, GDL-II describes a finite automata or state transition system. We will use the

definition from (Ruan & Thielscher, 2012b) which is defined as follows.

Definition 11. GDL-II Model

A GDL-II model is a 7-tuple G = (R,s0, t, l, u, g,I) such that

• R = {r ∣ role(r) ∈ SM(G)}

Chapter 3. Technical Background and Methodology 39

• s0 = SM(G ∪ {true(f) ∣ init(f) ∈ SM(G)})

• t = {s ∣ terminal ∈ s}

• l = {(r,m, s) ∣ legal(r,m) ∈ s}

• u(M,s) = SM(G ∪ {true(f) ∣ next(f) ∈ SM(G ∪ s ∪Mdoes)})

• g = {(r, n, s) ∣ goal(r, n) ∈ s}

• I = {(r,M, s, p) ∣ sees(r, p) ∈ SM(G ∪ s ∪Mdoes)}

where R is the set of roles which represent players in the game, so is the set of initial

states, t is the set of terminal states, l is the set of legal actions for each player, u(M,s)

is the update function for all joint moves M and states s, g is the goal relation and I is

the information relation which defined player perceptions. SM(G) denotes the stable

model of a set of stratified clauses G.

A game description in GDL ensures perfect information by passing the joint move

to each player. Every state in GDL can be derived by the previous state plus the joint

move. Under GDL-II passing the information of the joint move to all players can be

expressed by the following rule.

(<= (sees ?player ?move) (does ?player ?move))

With the addition of this rule any game description under GDL can be expressed in

GDL-II, therefore GDL-II has strictly greater expressibility.

Well-formed Games in GDL-II

Without the assumption for perfect information, the simplified model in GDL moves

to an epistemic model in GDL-II. This leads to some unintended consequences which

require some additions to the definition of a well-formed game for GDL-II. Two key

points that need to be addressed are the possibility that a player has a legal move but

does not know it and that the game has terminated but the player doesn’t know it. A

game in GDL-II is well-formed if it satisfies the definition below.

Chapter 3. Technical Background and Methodology 40

Definition 12. Well-formed Game in GDL-II

• Knows Termination For each infinite sequence of legal moves from the initial

state, a terminal state is reached after a finite number of steps and each player

knows the state is terminal.

• Knows Playability For each state from the initial state to the terminal state, each

player has at least one legal move and knows the set of legal moves in that state.

• Knows Winnability For each player there is a sequence of joint moves to a terminal

state where the goal value is maximal and if there is more than one player, there

is no sequence of individual legal moves which will reach the maximal goal state.

A game in GDL-II is well-formed if it satisfies the well-formedness properties for

GDL from Definition 10 and knows when the game terminates, knows that the game is

playable and knows that the game is winnable.

3.2 Model Checking Knowledge (MCK)

Model Checking Knowledge (MCK) is a model checking program which is used to

check if logical properties hold in a system. The properties we want to check can be a

mix of temporal (time-dependent) and epistemic (knowledge-dependent). To use MCK

we need to describe the system to be checked and specify what properties we want to

check on it.

Interpreted
System

Specification System
Model

Game
Description

Figure 3.2: A visualization of the relationship between components required for using
MCK for model checking GDL games

The key components of the MCK system are shown in Figure 3.2. The components

are the Interpreted System which forms the theoretic base of MCK, the Specification

Chapter 3. Technical Background and Methodology 41

Language which is how we will define properties to be checked and the System Model

which is our description of the agents and their environment. Our contribution is the

automated translation of a Game Description to a System Model.

3.2.1 Interpreted System

The logical base of MCK is in relation to the concept of an interpreted system as said in

(Ruan & Thielscher, 2012a). An interpreted system consists of a n number of agents

running in the context of an environment. The environment and each agent have a local

state.

S is the set of environment states

Li is the set of local state for agent i

The global state, SG, at a point in time, t, is defined as the state of the environment

combined with the local states of each agent.

SG = {(S,L1, L2, ..., Lk) ∣ i ∈ 1...k}

We will now define a run on the interpreted system as the function.

r ∶ N → S ×L1 ×L2 × ... ×Ln

On a run, r, at time, m, r(m) represents the global state. We can also write

the environment state as re(m) and each local agent state as ri(m). An interpreted

system over environment states Se is a tuple IS = (R, π) where R is a set of runs over

environment states Se and π ∶ S → ρ(ψ) is the interpretation function.

Chapter 3. Technical Background and Methodology 42

3.2.2 MCK Specification Language

The specification language in MCK will help us express a logical property we want to

check. MCK lets us use a mix of temporal and epistemic operators. The knowledge

operator, Ki, holds if agent, i, knows the specified property is true. The temporal oper-

ators are expressed as a combination of Linear Time Logic (LTL) and Computational

Tree Logic (CTL) as stated in (Baier et al., 2008) which are summarized below.

Linear Time Logic

The Linear Time Logic (LTL) syntax describes properties that hold on all paths in the

system. In an interpreted system a path is equivalent to a run on the system. A list of

operations can be found in Table 3.1.

Operator Description
F f eventually f
G f always f
X f f in the next state

f U g f until g
f R g f release g

Table 3.1: Linear Temporal Logic Operations in MCK

The following are some examples of LTL usage in MCK based on a translation of

tic-tac-toe.

-- cell 1 1 is controlled by x after the one move

spec_obs = X (cell_1_1_o)

-- After 3 moves (equivalent to XXX) if

-- cell 1 1 is controlled by o then

-- in the next move cell 1 1 will be

-- controlled by o

spec_obs = X^3 (cell_1_1_o => X cell_1_1_o)

Chapter 3. Technical Background and Methodology 43

-- Eventually cell 1 1 is not blank

spec_obs = F (neg cell_1_1_b)

-- There is a run where cell 1 1 is either

-- marked x, o or b at every point in time

spec_obs = G (cell_1_1_x \/ cell_1_1_o \/ cell_1_1_b)

Computational Tree Logic

The Computational Tree Logic (CTL) syntax expresses properties about states. A list of

operations can be found in Table 3.2.

Operator Description
AX f f in all next states
EX f f in at least one next state

A[f U g] on all paths, f until g
E[f U g] on at least one path, f until g
A[f R g] on all paths, f release g
E[f R g] on at least one path, f release g

AF f on all paths, in some future state, f
EF f on at least one path, in some future state, f
AG f on all paths, in all future states, f
FG f on at least one path, in all future states, f

Table 3.2: Computation Tree Logic Operations in MCK

The following are some examples of CTL usage in MCK.

-- For all paths eventually terminal is true

spec_obs = AF (terminal)

-- There is a state which is terminal and

-- player 1 has 100 points

spec_obs = EF (terminal /\ goal_player_1_100)

Chapter 3. Technical Background and Methodology 44

CTL*Kn

Specifications written in LTL or CTL can be encapsulated by the syntax of Computation

Tree Logic of Knowledge (CTL*Kn) which is a superset of LTL and CTL with epistemic

operators. CTL*Kn is defined as follows.

Definition 13. Computation Tree Logic of Knowledge (CTL*Kn)

The language of CTL*Kn is given by the following grammar

ϕ ∶∶== p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ Aϕ ∣Xϕ ∣ ϕUψ ∣Kiϕ

where Φ is a set of atomic propositions and p ∈ Φ. Other logic constants and connectives

⊺,�,∨,→ are defined as usual.

The language CTL*Kn can be interpreted using the Interpreted System semantics

we introduced in Section 3.2.1 as shown in (Ruan & Thielscher, 2012a).

Definition 14. CTL*Kn in an Interpreted System

The semantics of CTL*Kn i defined by the relation IS, (r,m) ⊧ ϕ where IS is an

interpreted system, (r,m) is a point in IS where r ∈ R and m ∈ N, and ϕ is a formula.

This relation is defined inductively as follows.

• IS, (r,m) ⊧ p if p ∈ π(r(m))

• IS, (r,m) ⊧ ¬ϕ if IS, (rm)) /⊧ ϕ

• IS, (r,m) ⊧ ϕ ∧ ψ if IS, (r,m) ⊧ ϕ and IS, (r,m) ⊧ ψ

• IS, (r,m) ⊧ Aϕ if for all runs r′ ∈ R with r′(k) = r(k) and ∀k ∈ [0...m],

we have IS, (r′,m) ⊧ ϕ

• IS, (r,m) ⊧Xϕ if IS, (r,m + 1) ⊧ ϕ

• IS, (r,m) ⊧ ϕUψ if ∃m′ ≥m such that IS, (r,m′) ⊧ ψ and IS, (r,m′′) ⊧ ϕ

∀m′′ with m ≤m′′ <m′

Chapter 3. Technical Background and Methodology 45

• IS, (r,m) ⊧Kiϕ if ∀(r′,m′) of IS such that ri(m) = r′i(m′),

we have IS, (r′,m′) ⊧ ϕ

The algorithms implemented in MCK define subsets of CTL*Kn for which they

work. This includes some algorithms which allow a hybrid of LTL and CTL as shown

in the examples below.

-- For all states if terminal is false and move 1

-- is legal the in the next turn player 1 did move 1

spec_obs = AG ((neg terminal /\ legal_move_1) =>

X (did_player_1 == move_1))

3.2.3 MCK Input Language

MCK Model

The environment of a system describes the context under which the agents interact. All

global or common knowledge variables are represented here.

Definition 15. Environment Model

The Environment Model is a 5-tupleMe = (Agt,Acts, V are, Inite, P roge) such that

• Agt is a set of agents

• Acts is the set of actions available to the agents

• V are is the set of typed MCK variables

• Inite is an initial state and

• Proge is a transition function

where e denotes the environment.

The behaviour of an agent is defined by a protocol which decides which action to

send to the environment. At each time step an agent performs a local update of its own

Chapter 3. Technical Background and Methodology 46

state and chooses an action to pass to the environment. Agents run independent of one

another so they are safe to run concurrently at each time step. After a joint action has

been formed, the environment state is updated according to the environment’s state

transition function.

Definition 16. Protocol Model

The Protocol model for agent i in the environmentMe is the 6-tuple

Proti = (PV ari, LV ari,OV ari, Initi,Actsi, P rogi) such that

• PV ari is a set of parameter variables where PV ari ⊆ V are

• LV ari is a set of local variables

• OV ari is a set of observable environment variables such

that OV ari ⊆ PV ari ∪LV ari

• Initi is the local initial state

• Actsi is a set of actions

• Progi is the agents transition function

Now we will take a deeper look at the language in which we define a system

for MCK. The input language is a domain specific language (DSL) for describing a

modelling scenario to MCK. This section will cover parts of the language used in

translation with full details covered in Chapter 2 of (“MCK User Manual”, n.d.).

The Environment

Types The input language is a strongly and statically typed language which means

each variable has an explicitly defined type which doesn’t change. A type is a finite set

of elements with a built-in type Bool defined which consists of False, True. Custom

types can also be defined either as an explicitly enumerated set(enumerated type) or a

range of integers(arithmetic type). This helps simplify variable definitions which might

have to be specified as a set of variables if only boolean types were permissible. Type

Chapter 3. Technical Background and Methodology 47

names as well as the elements they contain are all constants and therefore begin with an

upper-case letter.

type Weekday = {Mon,Tue,Wed,Thu,Fri,Sat,Sun} -- Enumerated type

type Int7 = {0..7} -- Arithmetic type

Variables Variables in MCK are defined with an explicit mention of their type

and can take any value of the set of elements in that type. Aside from the standard

variables there are also special define-based variables. Define-based variables are a type

of dynamic variable declared with an expression instead of a type. Whenever a define-

based variable is used MCK substitutes the variable with the associated expression

within the scope of the environment. This can be used to simplify the environment

update function as the expression gets substituted as needed and you don’t need to

worry about ordering assignment so that the define-based variable is evaluated first to

use its current value.

terminal : Bool -- Boolean variable

day : Weekday -- Typed variable

define weekend = day==Sat \/ day==Sun -- Define variable

Agent Declaration Each agent in the system also needs to be declared along

with which protocol defines their behaviour and the set of observable environment

variables. A protocol describes the behaviour of an agent relative to a set of observable

variables. Multiple agents can use the same protocol but act differently according to

which environment variables they are able to observe.

agent Player1 "player" (terminal, day)

% Agent name := Player1

% Agent protocol := player

% Observable variables := terminal, day

Chapter 3. Technical Background and Methodology 48

Inital Condition In this section each variable is assigned an initial value from its

type set. However, it is not necessary that an initial condition is unique and multiple

initial conditions can be specified.

init_cond =

control_player1 == True /\ control_player2 == False \/

control_player1 == False /\ control_player2 == True

State Transition Program This is the section which defines the state update

function in the form of a restricted program. The program allows assignment, evaluation

of expressions and if then else conditional statements. The program does not allow

loops such as do or while loops which can be used in other sections of the program.

The Protocol

Protocol Header The header is the signature for the protocol and defines the

protocol name and the set of observable variables. The observable variables defined

here are place holders for observable environment variables. The agent declaration

section defines which environment variables these place holders are linked to.

Local Variables This is where local variables only visible to the agent are defined.

This includes local define-based variables as described above.

Local Initial Condition Here we can initialize local variables. The syntax is the

same as for specifying the environment initial condition.

Local State Transition Program This is where the agent update function is

defined. There is no restriction on looping but the control flow for actions can be rather

unintuitive. An action can be explicitly emitted in one of two ways.

Chapter 3. Technical Background and Methodology 49

1. << Action >>

2. << Action ∣ var1 ∶= expr1; ...; varn ∶= exprn >>

And implicitly in the following ways.

3. [skip] →<< NilAction >>

4. [var ∶= expr] →<< NilAction ∣ var ∶= expr >>

5. [<< var1 ∶= expr1; ...; varn ∶= exprn >>]

→<< NilAction ∣ var1 ∶= expr1; ...; varn ∶= exprn >>

Actions consume one unit of time so every time an agent emits an action the

environment is updated. As noted in the conditions above this means any time an

assignment happens a time step is consumed unless they are grouped in <<>> like the

assignments in lines 2 and 5 above.

3.2.4 Model Checking Algorithms

Levels of Knowledge

For specifications that include knowledge operators there are different levels of visibility

for the agent or agents in question. Each agent has a set of observable variables which

are affected by the type of specification used.

• Observational semantics use the current values the observable variables only and

represent the least information provided to the agent.

• Clock extends observational to also include the global clock value.

• Asynchronous Perfect Recall provides a view of the history of each observable

variable but does not recall how long an observation went on for.

• Synchronous Perfect Recall provides a view of the history of each observable

variable as well as the length of time each observation was.

Chapter 3. Technical Background and Methodology 50

Model checking techniques

MCK implements a number of model checking algorithms making use of 3 core

approaches. These are Explicit State Model Checking (ESMC), Binary Decision

Diagram (BDD) and Bounded Model Checking (BMC) with each method having some

restriction on the specification format.

Explicit State Model Checking Explicit State Model Checking (ESMC) is the clas-

sical approach to model checking where every reachable state is constructed and checked

to see if properties hold. Unfortunately, this method becomes impractical for games

with a large state space. The advantages of this method are the visualization option

and the added ability to debug a system which is currently unimplemented in other

approaches.

Bounded Model Checking The Bounded Model Checking (BMC) technique takes

a different approach by means of refuting a property instead of justifying it. BMC

restricts properties to those expressed in terms of universal operators such as those

prefixed with AG or Ki. The BMC method starts by checking possible runs of the

system of length 1 for counter-examples. If no counter-example is found in any runs of

length i, then a run of length i + 1 is used until we reach a point where i = k where k

is a user defined boundary value. The advantage of this method is the computational

efficiency. A property that can be checked under BMC will finish computation faster

with a lower chance of running out of memory than the other approaches.

The major disadvantage of this method is the requirement that the user supply an

integer upper bound. Without an understanding of the system described, it can be

difficult to decide a reasonable upper bound. In a situation where MCK might be used

by an autonomous agent like our GGP Player, the agent has to do some analysis to be

able to decide a reasonable number of steps a property should hold for.

Chapter 3. Technical Background and Methodology 51

Binary Decision Diagram The last technique is Binary Decision Diagrams which are

a type of symbolic model checking and the default technique in MCK. Binary Decision

Diagrams are a representation of a boolean function as a directed, acyclic graph. A

key advantage of BDDs is that they are the most flexible in terms of specification of

properties to check.

3.3 Translation from GDL-II to MCK

Interpreted
System

Specification System
Model

Game
Description

The final step is to translate our game to a system model suitable for MCK. As

a consequence our game description can also be analysed using interpreted system

semantics.

We will now lay out the steps taken to perform the translation. We will use a

variation of the two player game TicTacToe called KriegTicTacToe as an example. The

rules follow regular TicTacToe except each player in KriegTicTacToe is unable to see

the other players move. You only know the value of a cell by remembering your own

observations and trying to mark a cell as an occupied cell already has the opponents

mark and a free cell gets your mark. The price of gaining new information about an

opponents position is the loss of an opportunity to claim a cell with your mark.

3.3.1 Parsing

The first step of the process is to read the GDL file. The official file format for GDL

is the .kif which is a prefix based format for logic programs. Terms with a non-zero

arity are surrounded by parentheses with the name of the term first, followed by a list

of parameters which can also be terms. Clauses are a list of terms which start with a

Chapter 3. Technical Background and Methodology 52

’<=’ and variable names which start with a ’?’. Comments start with a ’--’ and

end with a newline. The scanning phase produces a list of tokens without white space

or comments ready for parsing.

-- This line is commented out.

(does player1 (move 1)) -- Nested term

-- A clause where control goes to a player

-- in the next turn if a different player

-- has control in the current turn.

-- ?p and ?q are variables.

(<= (next (control ?p))

(control ?q)

(distinct ?p ?q)

(role ?p) (role ?q))

The parsing phase takes the list of tokens and turns it into a tree structure. There is

one global root node whose children are the set of clauses and facts in the game. The

children of the clauses are a head predicate and a set of body literals, which are either

positive or negative predicates, in the clause. Each predicate may have parameters which

are terms. The parameters of terms are also terms which can be repeatedly followed

down to 0-arity terms which are the leaves of the tree.

(<= (next (control ?p))

(control ?q)

(distinct ?p ?q)

(role ?p) (role ?q))

Chapter 3. Technical Background and Methodology 53

ROOT

<=
CLAUSE

next
LITERAL

control
TERM

?p
VARIABLE

control
LITERAL

?q
VARIABLE

distinct
LITERAL

?p
VARIABLE

?q
VARIABLE

role
LITERAL

?p
VARIABLE

role
LITERAL

?q
VARIABLE

Figure 3.3: The decorated parse tree of a clause

transforms to a token list

{(,<=, (, next, (, control, ?p,),),

(, control, ?q,), (, distinct, ?p, ?q,),

(, role, ?p,), (, role, ?q,),)}

which in turn transforms to the parse tree in Figure 3.3.

3.3.2 Grounding

Games in GDL are described with constant and variable terms, however our translation

needs a variable-free version of the rule set. The process of grounding involves instan-

tiating each variable with a variable-free term. The domain of each variable is finite

and can be derived from the game description itself. We can determine the domain of a

variable by constructing a directed graph defined as follows.

Definition 17. Domain Graph

A Domain Graph of a game is the graph DG = (V,E) such that V is the set of vertices

Chapter 3. Technical Background and Methodology 54

and E is the set of edges.

The set of vertices V is defined with the following rules

• {c ∈ V ∣ if c is a constant terms in G}

• {p ∈ V ∣ if p is a n-ary relational or functional terms in G}

• {bi ∈ V ∣ if bi is a parameter in a n-ary relational or functional

term p(b1, ..., bn) in G}

The set of edged E is defined with the following rules.

• {p→ pi ∈ E ∣ if pi is a parameter for relation or function p}

• {pi → c ∈ E ∣ if constant c is the i-th argument of relation or function p}

• {pi → q ∈ E ∣ if function q is the i-th argument of relation or function p}

• {pi → qj ∈ E ∣ if variable X is the i-th argument of relation or function p

and the j-th argument of relation or function q}

• {base1 → true1 ∈ E}

• {input1 → does1 ∈ E}

• {input2 → does2 ∈ E}

The graph in Figure 3.4 shows a visualization of subsection of the domain graph for

KriegTicTacToe which follows the cell predicate. The predicate itself is denoted by the

node cell/3 and all of the parameters are distinct nodes denoted by their position in the

predicate, cell[1], cell[2] and cell[3].

cell/3

cell[1] cell[2] cell[3]

x o b1 2 3

Figure 3.4: A visualisation of the domain generated for the cell predicate of KriegTic-
TacToe.

Chapter 3. Technical Background and Methodology 55

After constructing a domain graph we can find the domain of any variable by

following the edges on the graph to the set of constant nodes. With a method of

finding the domain of a variable all that is left is to replace a clause which contains

variables with an equivalent variable-free set. For example the following clause from

KriegTicTacToe has the variables m and n. cell[1] and cell[2]

(<= open (true (cell ?m ?n b)))

From the domain graph cell1 and cell2 each have the domain {1,2,3} so this clause is

replaced with the set of ground clauses

(<= open (true (cell 1 1 b)))

(<= open (true (cell 1 2 b)))

...

(<= open (true (cell 3 2 b)))

(<= open (true (cell 3 3 b)))

3.3.3 Converting to DNF

As per definition 4 for a clause the set of body literals is already in Conjunctive Normal

Form (CNF). Multiple clauses with the same head can be interpreted as a disjunction

as only one clause has to be true for the head to be true. The GDL syntax is defined

without a logical OR relation and as we do not need to maintain compatibility with kif

we can convert sets of clauses to a rule in Disjunctive Normal Form (DNF) as defined

below.

Definition 18. DNF Rule is an implication of the form

h← (b11 ∧ ... ∧ b1n) ∨ (b21 ∧ ... ∧ b2n) ∨ ... ∨ (bm1 ∧ ... ∧ bmn)

• h, is an atomic sentence

Chapter 3. Technical Background and Methodology 56

• b11...bmn, are literals in Disjunctive Normal Form

A set of clauses with the same head can be rearranged to a DNF rule like the

following set of ground clauses.

Note: (next (tried xplayer 1 1)) is the head of the clause

(<= (next (tried xplayer 1 1))

(does (xplayer (mark 1 1)))

(not validmove))

(<= (next (tried xplayer 1 1))

(true (tried (xplayer 1 1)))

(not validmove))

Which is transformed to

(next (tried xplayer 1 1)) ← [((does (xplayer (mark 1 1)))) ∧ ¬validmove)

∨ ((true (tried (xplayer 1 1))) ∧ ¬validmove)]

does

xplayer move

1 1

↔ (does xplayer (move 1 1))

Figure 3.5: A literal in Parse Tree and DNF Ruleset forms

3.3.4 Minimising

After grounding we usually have a lot of clauses which need to be simplified either

because predicates are redundant or logically impossible. Using this information we

can simplify the rule set to a more compact version of the game description. But before

that we need to introduce some ideas.

Chapter 3. Technical Background and Methodology 57

Definition 19. Tautology

A proposition is called a tautology if it is true under all interpretations.

Definition 20. Contradiction

A proposition is called a contradiction if it is false under all interpretations.

There are also transformations for simplifying rules when predicates are known

Tautologies or Contradictions. The game descriptions work under the closed world

assumption which assumes that any predicate which is not explicitly stated is implicitly

false. Therefore, the most compact way of expressing a rule where the head is a

contradiction is by removing it. We can also say the most compact way to express a rule

where the head is a tautology is as a fact. For the DNF rules in our game description he

minimizing rules are as follows.

Minimizing transformation Let G be a set of DNF rules which describe a game.

Also, let T and C be labels for propositions which are Tautologies and Contradictions

respectively.

• A predicate, p

– p ∈ T if p is a fact in G

– p ∈ C if p not a fact or the head of a rule in G

• A literal, l

– l ∈ T if p ∈ T or ¬p ∈ C

– l ∈ C if p ∈ C or ¬p ∈ T

• A conjunction of literals, conj

– conj ∈ C if ∃l ∈ conj ∶ l ∈ C

– conj ∈ T if ∀l ∈ conj ∶ l ∈ T

– conj ∈ T if conj = ∅

Chapter 3. Technical Background and Methodology 58

– conj = conj ∖ {l} if l ∈ T

• A disjunction of conjunctions, disj

– disj ∈ T if ∃conj ∈ disj ∶ conj ∈ T

– disj ∈ C if ∀conj ∈ disj ∶ conj ∈ C

– disj = disj ∖ {conj} if conj ∈ T

• And finally for the implication, head← disj.

– if disj ∈ T then head ∈ T and head is a fact

– if disj ∈ C then head ∈ C and rule is removed

By following the minimization rules defined above we can significantly reduce the

complexity of our translated output without changing the system described. This helps

reduce the output file size and unnecessary overhead in processing rules which aren’t

necessary to the game.

As an example consider the clauses which describe the conditions under which the

predicate (next (cell 1 2 x)) are true. After the grounding phase we have 38

clauses whose disjunction form a DNF rule with (next (cell 1 2 x)) as the

head.

(<= (next (cell 1 2 x))

(true (cell 1 2 x)) validmove

(does xplayer (mark 1 1)) (distinct 1 1)))

(<= (next (cell 1 2 x))

(true (cell 1 2 x)) validmove

(does xplayer (mark 1 2)) (distinct 1 1)))

(<= (next (cell 1 2 x))

(true (cell 1 2 x)) validmove

(does xplayer (mark 2 1)) (distinct 2 1)))

(<= (next (cell 1 2 x))

Chapter 3. Technical Background and Methodology 59

(cell 1 2 x) OR

AND

(cell 1 2 x)
(does xplayer (move 1 1))
validmove
(distinct 1 1)

AND

(cell 1 2 x)
(does xplayer (move 1 2))
validmove
(distinct 1 1)

AND

(cell 1 2 x)
(does xplayer (move 2 1))
validmove
(distinct 1 2)

AND

(cell 1 2 x)
(does xplayer (move 2 2))
validmove
(distinct 1 2)

Figure 3.6: Effects of minimization on a partially grounded rule where dotted lines
are removed and solid lines remain. Nodes are green for tautologies and red for
contradictions.

(true (cell 1 2 x)) validmove

(does xplayer (mark 2 2)) (distinct 2 1)))

The DNF rule for (next (cell 1 2 x)) can be expressed as a tree. The

root is the head, the first level is the set of disjuncts, the second level are the sets of

conjuncts, the third level the sets of literals and finally the predicates are on the fourth

level. Figure 3.6 is a tree showing part of the rule tree with contradictions coloured red

and tautologies coloured green. After minimization the original rule made of 38 clauses

gets reduced to 18, 16 of which also remove a literal from the clause.

3.3.5 Ordering

Our final pre-processing phase has to do with constraints on our ability to update the

logical model. The transition section of the MCK language is a limited program where

we are unable to define recursive methods or loops and therefore unable to implement

Chapter 3. Technical Background and Methodology 60

traditional model update algorithms directly such as backtracking or DPLL (Davis,

Logemann & Loveland, 1962). The alternative would be to store old values of literals

in a separate variable but that would not only add avoidable steps to evaluation but also

double the memory footprint of the translation in the worst case.

We can remove most of the additional variables by ordering the evaluations of each

of the DNF rules in our game description. We can do this using a variation of the

dependency graph in Definition 6. This graph will show us the relationship between

ground literals in the head and body of DNF rules. We will use the graph to do a

stratification which will give us a partial order of the DNF rules in the rule set. We will

redefine the dependency graph for DNF rules as follows.

Definition 21. Ordering Dependency Graph

Let G be the set of predicates in the game description and for each DNF rule h is the

head predicate and B is the set of predicates in the body.

{f ∈ V ∣ (truef) ∈ G ∨ (nextf) ∈ G}

{p ∈ V ∣ p ∈ G}

{h→ b ∈ E ∣ b ∈ B}

{h→ f ∈ E ∣ (truef) ∈ B}

{f → b ∈ E ∣ h = (nextf) ∧ b ∈ B}

From this graph we can do a stratification which will determine the order in which

the DNF rules will be evaluated. We will resolve cycles, should we find any, by splitting

one of the variables in two. We will create a version of the variable with the prefix old_

which will store its original value. Any reference to the old value will be changed to the

old_ variable and references to the variable after evaluation will refer to the original

Chapter 3. Technical Background and Methodology 61

variable after it has been updated as shown in Figure 3.7. The stratification algorithm is

defined in Algorithm 1.

Algorithm 1 Dependency Graph Ordering
for all r ∈ dnfRuleset do

if r.bodyLiterals() = ∅ then
stratum(r) ← 0

else
unstratified ← r

end if
end for ▷ Initialization
oldSet ← ∅
while unstratified ≠ ∅ do

for all r ∈ unstratified do
for all literal ∈ (r.bodyLiterals() ∩ oldSet) do

rename(literal, literal_old)
end for ▷ Rename old literals
if (r.bodyLiterals() ∩ unstratified) = ∅ then

stratum(r) ← max(stratum(r.bodyLiterals()))
unstratified.remove(r)
changed ← true

end if ▷ Evaluate stratum if sufficient information
end for
if ¬changed then

dnfHeadOld ← (r.headPredicate ∈ unstratified) + "Old"
stratum(dnfHeadOld) ← 0
oldSet ← r.headPredicate()

end if ▷ Use changed bool flag to detect cycles
end while

As an example let us consider the following fragment of a logic program.

(<= terminal (line x))

(<= (line x) (true (cell 1 1 x)))

(<= (line x) (true (cell 1 2 x)))

...

(<= (line x) (true (cell 3 2 x)))

(<= (line x) (true (cell 3 3 x)))

Chapter 3. Technical Background and Methodology 62

fluent 1

fluent 2

fluent 1

fluent 2

old fluent 1

Figure 3.7: A transition in the ordered dependency graph as a cycle on the left and an
equivalent acyclic version on the right.

S3

S2

S1

terminal

(line x)

(cell 1 1 x) (cell 1 2 x)
...

(cell 3 2 x) (cell 3 3 x)

(goal xplayer 100) (goal oplayer 0)

Figure 3.8: A part of the dependency graph generated from KriegTicTacToe for ordering.
The stratification levels are labelled S1...S3 where S1 goes first.

(<= (goal xplayer 100) (line x))

(<= (goal oplayer 0) (line x))

These clauses will form the graph in Figure 3.8. We can see from the graph that

each predicate can be sorted into stratum which result in the ordering as follows.

S1 = {(cell 1 1 x),(cell 1 2 x),...,(cell 3 2 x),(cell 3 3 x)}

S2 = {(line x)}

S3 = {(terminal),(goal xplayer 100),(goal oplayer 0)}

3.3.6 MCK Translation Output

Now we are at the translation stage of the process which will define how to derive the

final output file which will be used in the MCK program.

Chapter 3. Technical Background and Methodology 63

Variable declaration

There are three types of statements that go in this section which are custom type

definitions, variable declarations and define-based expressions.

Custom types First we have to define any custom types that we will use as each

variable in MCK is associated with a type. Our translation has a custom type, Act_player,

defined for the does variable, did_player, for each player in the game. The associated

Act_player type contains a set of elements which represent valid actions for that agent

as well as the special elements NULL, STOP and INIT which will be used in MCK

specific parts of our translation.

type Act_xplayer = {NULL, STOP, INIT, M_mark_1_1,

M_mark_1_2, ..., M_mark_3_3}

Variables Second we have to declare any variables used in the program which is

any literal in the ruleset formatted in a MCK friendly manner. MCK is a statically typed

language so we will also declare each variable as a boolean type except for does literals

which are formatted as did_agent and declared as the associated custom type defined

above.

cell_1_1_b : Bool

cell_1_1_x : Bool

cell_1_1_o : Bool

...

did_xplayer : Act_xplayer

Definitions Third is a section for the define construct in MCK. We use this section

to define our intermediary relations which are the set of rules whose head is not a fluent.

Expressions defined here are automatically substituted when referenced elsewhere in

the environment. This is advantageous as we can reduce the number of variables which

Chapter 3. Technical Background and Methodology 64

have to be remembered and reduce the complexity of reading the state transition section

below.

define terminal = (neg open) \/ (line x) \/ (line o)

...

Initial state

A game description has a single model for the initial state therefore our translation

defined in an unambiguous way and will not take advantage of MCKs’ ability to specify

multiple initial states. Each of the did_agent variables have a value of INIT and all

of the variables declared using the init predicate are true. GDL-II does not specify

intermediary literals using init as they would be derived when constructing a model. As

such it falls on us to construct an initial model and also tell MCK which intermediary

variables are true. All other variables are set to false.

init_cond =

cell_1_1_b == True /\

cell_1_1_x == False /\

cell_1_1_o == False /\

...

Agent declaration

In this section we declare each agent in the system and the protocol which defines their

behaviour. In our game translation this is one agent and protocol per role including

random if it is defined. We also declare which variables from the environment are

visible to each agent which is the set of fluents and the set of sees variables defined for

the agent.

agent "xplayer" xplayer (cell_1_1_b, cell_1_1_x, ...)

Chapter 3. Technical Background and Methodology 65

Environment program

This section defines the global state update function. Each agent decides on an action

based on their protocol which is defined bellow. After the agents have chosen their

actions this is where all the variables in the program are updated. We already have an

ordered set of rules due to our pre-processing and it is simply a matter of formatting the

ordered rules in a form MCK understands.

cell_1_1_b = (cell_1_1_b) /\ (neg did_xplayer == M_mark_1_1)

/\ (neg did_oplayer == M_mark_1_1)

...

Specification

In this section the user can define the logical properties they want to check in the

program. The first part defines the level of information used to process the specification,

and optionally, the algorithm used. Then there is a = followed by the specification

that can take a mixture of LTL and CTL operators. Most algorithms only support a

clearly defined subset of CTL*Kn and will fail if the specification is not supported. If

no algorithm is specified or it is incompatible with the specification then MCK will

make an assumption as to which algorithm to use. MCK will try to choose the most

appropriate valid algorithm to use although not necessarily the most efficient.

spec_obs = F terminal

spec_spr_bmc 1 = EX cell_1_1_x

Protocol definition

This part of the output defines which parts of the environment are visible to the agent

and how the agent will update its state and choose an action.

Chapter 3. Technical Background and Methodology 66

Protocol Header Our translation declares the set of sees variables for the player

as observable which will be used for knowledge based specification as described in the

section above. We also give each agent visibility to the set of fluents which are required

for the expressions defined in the next section.

protocol "xplayer" (cell_1_1_b :Bool, cell_1_1_x :Bool, ...)

Local variables and expressions The define-based expressions in the environ-

ment are not visible to the protocol. Our translation restates these expressions again

for each agent. We also define a local observable did variable which has the custom

Act_player type defined for this agent. This allows our agent to remember its own past

actions when we are using recall based(SPR or APR) visibility for specifications.

did : Act_xplayer

Local agent program Our agent program consists of a while loop under the

condition that the state is non-terminal or emits the special action STOP when a terminal

state is reached. At each iteration of the loop a move is chosen out of the set of moves

which are legal in that state and the corresponding action is emitted to the environment.

Chapter 4

Analysis

In this chapter we analyse the effectiveness of our translation process. We do the

analysis using an implementation we have developed called GGPMCK which can be

found in the GitLab repository at (https://gitlab.com/jiruan/GGPMCK.git).

We have run a number of GDL-II games through the translator and look at the run

time to construct a MCK System Model. We establish that the number of grounded

clauses is the primary metric for the success of translation. We find that a number

of games fail to be translated because the number of grounded clauses is too large,

confirmed by performing a running of the grounding phase alone.

We check the validity by running the translated output in MCK. The first test is

getting MCK to recognize the generated system model which is much quicker after

adding the minimization phase. This is important because the actual verification takes a

long time depending on the system model generated and the model checking techniques

used. The second test is verification using BMC based algorithms which can be used to

verify some of the well-formedness properties. The third test is verification using the

BDD based algorithms which can be used to verify all of the well-formedness properties

but takes more time than BMC.

We find that our general techniques has a larger overhead than the game specific

67

Chapter 4. Analysis 68

techniques used in (Ruan & Thielscher, 2012a). It prevents us to get the verification

results in a timely manner. In the following, we give the details of our tests and results.

Testing environment

The program runs on a Linux machine running Ubuntu version 16.04 LTS with kernel

version 4.4.0 and an AMD Opteron 6348 CPU (2.8GHz) with 32GB of RAM available.

We use Java 8 with the -Xmx=30g option enabled to increase the maximum memory

allocation of the JavaVM.

4.1 Translation Testing

We are using a range of games to test our implementation. The games we use are defined

in GDL-II which we obtained from the Dresden GGP Server (Technische Universität

Dresden, 1999). As there are only a limited number of GDL-II games to test with, we

also test some games defined in GDL. There are 13 games in GDL-II and 17 games in

GDL which gives a total of 30 games in the test set.

The key metric we are going to look at is the time taken to compile a game to a

MCK equivalent. We will also track the number of clauses after the grounding phase

as well as the final number of variables in the MCK System Model. The number of

grounded clauses represents the peak memory usage in the translation process which is

a point where we commonly run out of memory. The number of MCK variables will

affect the amount of time and memory MCK needs to verify a property in our generated

model.

Chapter 4. Analysis 69

0 100 200 300 400

0

20

40

60

No. Ungrounded Clauses

L
in

ea
rT

im
e

(s
)

0 50 100 150 200 250 300

10−1

100

101

102

No. Ungrounded Clauses

L
og

ar
ith

m
ic

Ti
m

e
(s

)

Figure 4.1: Compare the number of ungrounded clauses in a game against the compile
time for that game. Time scale is linear on the left and logarithmic on the right.

4.1.1 Compile Time and number of Ungrounded Clauses

The compilation time is the time it takes for our translation program to compile a

translation of the game. This is a key metric as this process can be time consuming.

In Table 4.1 we can see that the games smaller than meier, with 135,616 clauses after

grounding, compile in less than 4 seconds. We can also see that the compile time

between the games meier, with 135,616 grounded clauses, and mastermind448, with

264405 grounded clauses, jumps from 4 seconds to 19 seconds. The games the size of

knightfight with 6,405,576 grounded clauses and larger did not successfully compile.

The relationship between the compile time and the number of clauses is shown in

Figure 4.1. The games with grounded clauses that are either similar to or smaller than

the size of meier form the shallow line at the bottom. The games that successfully

compile that are larger than meier form a distinct line which is much steeper. There

is no strong linear relationship between the number of ungrounded clauses and the

compile time. Instead we have two distinctly diverging lines which makes the number

of clauses a bad predictor for the amount of time or memory the translation process will

take.

Chapter 4. Analysis 70

4.1.2 Number of Grounded Clauses

A game description consists of a finite amount of clauses which describe the game.

Games can use variables to encode a single clause that is equivalent to multiple clauses

to produce a more compact version of the game. The number of ungrounded clauses in

a game represents a compacted game description with variables included. The number

of grounded clauses is the size of a game after the grounding phase expands the game

by removing variables. The facts in a game are also counted as clauses.

The grounding phase of the translation throws an OutOfMemory error when the

process runs out of RAM. It would be useful to be able to predict which games are

likely to use more memory than available and cause this error. We can get the exact

size of a grounded game after grounding but can only estimate the size of a game

that fails the grounding phase. Our estimates are based on a dry run of the grounding

phase which produces grounded clauses but does not save them in memory. There

are two groups visible in Figure 4.2 which seem to be due to a lack of games with a

number of ungrounded clauses between 203 for capture_the_king and 299 clauses for

backgammon. We can see that the linear graph on the left does not show much insight

due to the exponential nature of the grounding phase. Half of the games that failed the

grounding phase are in the left group with the other half being in the right. We can

see that one of the four quadrants is empty so there were no games which had a large

number of ungrounded clauses and a small number of grounded clauses but this was

likely affected by the fact that the grounding phase strictly increases the number of

clauses in a game. We have found that the dry run method that we used to estimate

the number of grounded clauses is likely the best way of getting an accurate estimate

of the number of grounded clauses in a game. This method has also proven useful in

confirming that the number of grounded clauses affected memory usage as all of the

games that failed the grounding phase had more clauses than knightfight which did

Chapter 4. Analysis 71

succeed.

0 100 200 300 400

0

0.5

1

1.5
⋅109

No. Ungrounded Clauses

N
o.

G
ro

un
de

d
C

la
us

es
(L

in
ea

r)

0 100 200 300 400
101

103

105

107

109

No. Ungrounded Clauses

N
o.

G
ro

un
de

d
C

la
us

es
(L

og
ar

ith
m

ic
)

Figure 4.2: Compare the number of ungrounded clauses in a game against the number
of grounded clauses. The number of grounded clauses is on a linear scale on the left
and a logarithmic scale on the right.

4.1.3 Reduction of Variables

The minimization phase reduces the number of rules in a game after grounding. This

leaves behind a set of rules which are essential to defining a game. After the grounding

phase we have the conversion to dnf phase, the minimization phase and the translation

phase which all have the potential to remove a clause or rule. As we can see in Table

4.2, the range of the number of clauses removed increases in proportion to the size of

the grounded game from 21 clauses in MontyHall to 6334625 in knightfight.

Another notable point is the small sizes of the resulting sets of variables. The game

with the largest set of MCK variables is quarto with 84802 variables. This is 94.4%

smaller than the 1509256 clauses after the grounding phase. A vast majority of clauses

end up being removed in larger games as shown in Figure 4.3.

Chapter 4. Analysis 72

Game GDL
Version

Compile
Time (s)

No.
Ungrounded
Clauses

No.
Grounded
Clauses

MontyHall GDL-II 0.115 27 53
guess6 GDL-II 0.79 24 94
tictactoe GDL 0.17 49 518
latenttictactoe GDL-II 0.457 74 788
kriegtictactoe GDL-II 0.262 43 1189
chomp GDL 0.271 93 1494
kriegTTT_5x5 GDL-II 1.646 84 3502
pawn_whopping GDL 1.157 57 26069
transit GDL-II 3.208 100 80810
3pttc GDL 3.487 106 89278
meier GDL-II 3.325 70 135613
mastermind448 GDL-II 36.133 51 264405
catcha_mouse GDL 19.132 133 447680
endgame GDL 56.18 151 561245
breakthrough GDL 59.341 78 1082702
quarto GDL 31.536 139 1509256
backgammon GDL-II 28.155 299 5817218
knightfight GDL 54 75 6405576
mastermind GDL-II 0 81 47911050
chinesecheckers6 GDL 0 312 66062539
vis_pacman3p GDL-II 0 366 212482730
connect4 GDL 0 105 344852961
vacuumcleaner_random_bigGDL-II 0 302 816516359
smallest GDL 0 73 1401488587
tttcc4 GDL 0 86 0
stratego GDL-II 0 124 0
othello-comp2007 GDL 0 179 0
capture_the_king GDL 0 203 0
checkers GDL 0 350 0

Table 4.1: List of translated games with associated number of grounded clauses in
ascending order

Chapter 4. Analysis 73

M
ontyH

all
guess6
tictactoe
latenttictactoe
kriegtictactoe
chom

p
kriegT

T
T

5x5
paw

nw
hopping

transit
3pttc
m

eier
m

asterm
ind448

catcham
ouse

endgam
e

breakthrough
quarto
backgam

m
on

knightfight
m

asterm
ind

0

1

2

3

4

5

6

7
⋅106

N
o.

G
ro

un
de

d
C

la
us

es

No. Grounded Clauses per Translated Game

Figure 4.3: Show the relationship between the final number of removed MCK variables
(blue) vs the potential number of variables (red) in the games that succeeded in being
translated.

4.2 Verification Testing

In this section we analyse the verification performance of MCK. We perform the test

by setting a specification to verify against the system model we have generated and

recording the time taken to verify.

The MCK program implements multiple model checking algorithms for different

subsets of the specification language. We run our generated translation through MCK

without any specification first to check the validity of the syntax. Next we use algorithms

based on Bounded Model Checking (BMC) which require an input value, n, which

Chapter 4. Analysis 74

Game GDL
Version

No.
Ground
Clauses

No.
Variables
removed

No.
Variables

MontyHall GDL-II 53 21 32
guess6 GDL-II 94 57 37
tictactoe GDL 518 425 93
latenttictactoe GDL-II 788 665 123
kriegtictactoe GDL-II 1189 1103 86
chomp GDL 1494 1108 386
kriegTTT_5x5 GDL-II 3502 3173 329
pawn_whopping GDL 26069 25723 346
transit GDL-II 80810 79606 1204
3pttc GDL 89278 87619 1659
meier GDL-II 135613 134929 684
mastermind448 GDL-II 264405 263740 665
catcha_mouse GDL 447680 445608 2072
endgame GDL 561245 558834 2411
breakthrough GDL 1082702 1078018 4684
quarto GDL 1509256 1424454 84802
backgammon GDL-II 5817218 5814887 2331
knightfight GDL 6405576 6334625 70951

Table 4.2: List of translated games with associated number of grounded clauses in
ascending order

represents an upper bound for the number of time steps checked. BMC can only be

used for some of the properties we need to check but Binary Decision Diagrams (BDD)

based algorithms can be used for all specification in CTL*KN . We finally use BDD to

verify all of our specifications.

4.2.1 Verification Properties

The verification properties we are going to test for are the well-formedness properties

for GDL and GDL-II. Due to the perfect information requirement in GDL, the extra

knowledge based properties are trivially true if and only if the corresponding GDL

properties are true. In the following we have a short description of each property

checked as well as an example of statement from the translation of the Monty Hall

Chapter 4. Analysis 75

GDL-II game.

Playability checks that there is a legal move to perform for every agent for every

move.

spec_obs = G (neg terminal -> (legal_candidate_switch \/

legal_candidate_noop \/ legal_candidate_choose_1 \/

legal_candidate_choose_2 \/ legal_candidate_choose_3))

spec_obs = G (neg terminal -> (legal_random_open_door_1 \/

legal_random_open_door_2 \/ legal_random_open_door_3 \/

legal_random_open_door_1 \/ legal_random_open_door_2 \/

legal_random_open_door_3 \/ legal_random_noop))

Termination checks that a terminal state is reached after a finite amount of steps.

This specification is formatted the same for every game.

spec_obs = F terminal

Winnability checks that it is possible for each player to reach a maximal goal state.

In the context of GDL, goal values have a domain of [0,100] so the maximal goal value

is 100. More specific to GDL-II is the fact that we have a special random player which

is used to model random actions, therefore, it is not necessary that random can win.

spec_obs = neg AG (neg goal_candidate_100)

Knowledge of Playability checks that the legal predicates required to determine

playability are known to a player.

spec_obs = G (neg terminal =>

((Knows R_candidate legal_candidate_noop \/

neg Knows R_candidate legal_candidate_noop) /\

(Knows R_candidate legal_candidate_choose_1 \/

Chapter 4. Analysis 76

neg Knows R_candidate legal_candidate_choose_1) /\

(Knows R_candidate legal_candidate_choose_2 \/

neg Knows R_candidate legal_candidate_choose_2) /\

(Knows R_candidate legal_candidate_choose_3 \/

neg Knows R_candidate legal_candidate_choose_3) /\

(Knows R_candidate legal_candidate_switch \/

neg Knows R_candidate legal_candidate_switch)))

Knowledge of Termination checks that the terminal predicates required to determine

termination are known to a player.

spec_obs = G (terminal => Knows R_candidate terminal)

Knowledge of Winnability checks that the goal predicates required to determine

winnability are known to a player.

spec_obs = G (terminal =>

(Knows R_candidate goal_candidate_0 \/

neg Knows R_candidate goal_candidate_0) /\

(Knows R_candidate goal_candidate_100 \/

neg Knows R_candidate goal_candidate_100))

4.2.2 Verification testing

MCK Parse Test

The first test has to do with MCK recognizing our generated translation as a valid system

model. The test is run by commenting out all of the generated verification properties in

our translation and running the resulting system in MCK. This test helps establish that

the translation is syntactically sound before evaluating semantic based tests.

Chapter 4. Analysis 77

We have found that runs of all 14 translated games finish within 6 seconds without

any errors as seen in Table 4.3. The longest run was catcha_mouse with 5.47 seconds

with 9 of the games finishing within one second.

Game Version No.
MCK
Variables

Without
Specification

Playable Terminal Knows
Terminal

tictactoe GDL 85 0.02 0.80 0.52 -
chomp GDL 315 0.25 69 E 61 E -
breakthrough GDL 517 3.77 3600 T 3600 T -
3pttc GDL 1014 2.26 687 E 657 E -
catcha_mouse GDL 1980 5.47 3600 T 3600 T -
guess6 GDL-II 27 0.01 0.18 0.10 0.19
MontyHall GDL-II 32 0.01 0.21 0.13 0.23
kriegtictactoe GDL-II 83 0.04 0.88 0.60 1.47
latenttictactoe GDL-II 121 0.06 1.92 1.50 2.58
transit GDL-II 182 0.22 29.74 29.45 32.15
kriegTTT_5x5 GDL-II 296 0.42 38 E 37 E 45 E
meier GDL-II 401 0.47 143 E 141 E 226 E
mastermind448 GDL-II 639 1.06 3600 T 3600 T 3600 T
backgammon GDL-II 1537 1.12 2419 E 2294 E 2316 E

Table 4.3: Time, in seconds, taken to verify a set of well-formedness properties for
different games using Bounded Model Checking. Cells are labelled with T if they were
stopped after a one hour time out or labelled E if MCK needs more than the available
amount of memory.

Bounded Model Checking (BMC)

Bounded Model Checking tests were used with the specification that supported them. If

an unsupported specification is used with BMC then MCK automatically switches to

BDD based model checking which is covered in the following section. When forced

to use an unsupported specification, BMC based verification fails. The properties that

were supported by BMC are;

1. Playability

2. Termination

3. Knowledge of Termination

Chapter 4. Analysis 78

We have the output of verification using BMC with an upper bound of 1 in Table 4.3.

Setting the BMC value to 1 means we are only looking at what is effectively the first

move of the game but even at this level we have mixed results. Out of the 14 system

models we ran BMC testing on, only 6 succeeded with a bound of 1, 5 failed by giving

a Stack Overflow error and 3 were automatically stopped after one hour. As with

the BDD based verification, the knowledge based property in Knows Terminal does not

make sense in the model of a GDL game as is therefore not included.

We can see a couple of key points in this table. First is that verification times are

very similar over the different specifications. Second is the fact that the verification time

seems to increase as the number of variables increases. transit is the largest game to

be successfully verified with 183 variables and finishing in approximately 30 seconds.

kriegTTT_5x5 is the smallest game to have a stack overflow error and has 296 variables.

It appears that a system model with a number of variables between 183 and 296 is the

largest model that MCK can handle in this configuration.

Binary Decision Diagram (BDD)

Binary Decision Diagram tests were run with a one hour timeout for each of the

properties on the corresponding system models of games. As we can see from Table 4.4,

almost all of the games timed out after a one hour run of MCK verifying the associated

property. The game guess6 is the only one that finished any of the verifications within

the timeframe with times ranging from 19 to 21 minutes. The game MontyHall has

a similar amount of MCK variables with 32 variables vs. 37 in guess6. We tried

running MontyHall for an extended period of 2 hours and still did not get any of the

specifications to finish despite the similarity in the number of variables. The knowledge

based properties are not run for the GDL based game models as the translation does not

model how perfect information is achieved in GDL and the specification, as used for

testing, does not make sense in context.

Chapter 4. Analysis 79

Game Version Playable Terminal Winnable Knows
Playable

Knows
Terminal

Knows
Winnable

tictactoe GDL 3600T 3600T 3600T - - -
chomp GDL 3600T 3600T 3600T - - -
breakthrough GDL 3600T 3600T 3600T - - -
3pttc GDL 3600T 3600T 3600T - - -
catcha_mouse GDL 3600T 3600T 3600T - - -
guess6 GDL-II 1156 1193 1185 1147 1224 1143
MontyHall GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
kriegtictactoe GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
latenttictactoe GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
transit GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
kriegTTT_5x5 GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
meier GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
mastermind448 GDL-II 3600T 3600T 3600T 3600T 3600T 3600T
backgammon GDL-II 3600T 3600T 3600T 3600T 3600T 3600T

Table 4.4: Time, in seconds, taken to verify well-formedness properties for different
games using Binary Decision Diagrams. Cells are labelled with T if they were stopped
after a one hour time out.

Chapter 5

Discussion

5.1 Interpretation of Results

We have run a number of games through our program to get an idea of how usable our

process is. Out of the 28 games we started with, 14 were able to be translated to a MCK

System Model that is recognized by MCK. We run the verification using the Bounded

Model Checking (BMC) and Binary Decision Diagram (BDD) algorithms and of all of

the verifications that did complete; none of them failed the specification. When using

BMC verification only 6 games completed in a timely manner without a memory error

and when using BDD only guess6 was able to go through the translation process and

have properties verified in a reasonable amount of time, in this case within an hour.

The key bottleneck in our implementation was in the grounding phase. Any suffi-

ciently large game will have an OutOfMemory error during this phase as it is the one

where the largest amount of memory is used, regularly exceeding the 32GB of RAM in

the test system. The limits of my setup and implementation are around the complexity

of knightfight. During the testing phase of development as bugs were being fixed

this game would not consistently succeed in being translated. Any games that passed

the grounding phase would not have any problems with time or memory in the later

80

Chapter 5. Discussion 81

phases.

Little can be done about the MCK output after the system model has been generated.

In terms of debugging, the options and their outputs are unclear and few parameters

can be set on the command line. A more important place to look is at the system

model, or in my case, the system model generator which is the final phase of the

translation process. In the BDD testing we found that even simple properties, like

checking if a variable is true in the initial state, take a similarly long time to process.

This suggests that there might be a pre-processing stage inside MCK that is taking a

long time to finish that might be more heavily affected by the format of my generated

translation than the complexity of the model it is trying to express. We have already

reduced the complexity of transitions and the number of variables by implementing the

minimization and ordering phases respectively. Unfortunately it is unclear if there is

another parameter that will increase MCKs performance when optimized.

5.2 Optimization

The first priority for this project was to get a valid output first before doing any optimiz-

ations. However, the time and memory complexity of my initial implementation ran out

of RAM too quickly in the best case, or went on indefinitely in the worst case. We will

now discuss some of the optimizations which were applied.

5.2.1 Minimization

If you are familiar with grounding then you know that grounding exponentially increases

the number of clauses. Of the games that grounded successfully, 4kb input files resulted

in output files that were several megabytes in size. There was a noticeable delay

when inputting a translated file into MCK due to the time it took to parse the file. In

Chapter 5. Discussion 82

response to this we decided to simplify the set of grounded clauses which turned into

the minimization phase of the translation.

I will now present an example that highlights the grounding problem with an excerpt

of the game "meier". The following clauses set up an order where succ_values

states values which are next to each other and better_values fulfils the transient

property that A < B and B < C then A < C. The first point to note is that grounding will

provide better_values(A,B) and better_values(B,A). If A < B is true

then B < A is false so we can see that half of the clauses will be true and half will be

false. The second point to note is the fact that none of these clauses depend on true(F)

or does(R,M) which means their values are state invariant and can be written as facts if

they are true which removes the clause body. More importantly, if they are false then,

due to the closed world assumption, they do not need to be stated at all. In this case

there are 21 succ_values clauses where better_values has domains of 7, 7, 6

and 6 for each of its 4 parameters respectively. After grounding, you would get 1764

clauses of better_values which would minimize to 882 facts give or take some

edge cases.

(succ_values 0 0 3 1)

(succ_values 3 1 3 2)

(succ_values 3 2 4 1)

...

(succ_values 4 4 5 5)

(succ_values 5 5 6 6)

(succ_values 6 6 2 1)

(<= (better_values ?mx ?my ?x ?y)

(succ_values ?mx ?my ?x ?y))

Chapter 5. Discussion 83

(<= (better_values ?mx ?my ?x ?y)

(succ_values ?mx ?my ?ix ?iy)

(better_values ?ix ?iy ?x ?y))

5.2.2 Disjunctive Normal Form

The original version of the translation represents a game in a tree data structure. The

tree represents a hierarchy as follows;

ROOT → CLAUSE → LITERAL→ PREDICATE → TERM → CONSTANT

It is to be noted that, after grounding, terms and constants do not have a practical

consequence beyond making one predicate syntactically different from another one.

In spite of this each predicate has its own sub-tree, even different instances of the

same predicate. This data structure contributed to the significant memory usage of the

program.

Another point to make is the fact that the parse tree stores clauses with the same

head separately. Although this does not significantly increase memory it makes it much

more difficult to evaluate if a predicate is true. The entire set of clauses has to be iterated

over to find ones that are relevant as is required to derive a model representing the initial

state.

The solution to the second point is to represent the rules of the game in Disjunctive

Normal Form (DNF). According to (Love et al., 2008) a clause is a conjunction between

body literals therefore conversion to DNF is simply a disjunction of the bodies of

clauses with the same head. At the same time we can also represent the data in a form

that uses less memory by encoding a literal as a single String object as opposed to a tree

of multiple objects. With the amount of repeated elements in our game the reduction in

memory usage is significant.

Chapter 5. Discussion 84

The use of the literal level instead of the predicate level is a matter of computational

overhead vs memory overhead. If the cut-off is at the literal level any evaluation will

have to extract whether or not a predicate is negated. On the other hand, if the cut-off is

at the predicate level then evaluation will be easier but there will have to have at least

one level of additional objects to represent the negation. We chose the former but both

are reasonable cut-off points.

5.2.3 Rule ordering

The state update program in MCK consists of a set of statements which are evaluated

in order without looping. A trivial method of processing the state update would be to

have an old copy of each variable followed by the set of statements used to derive the

new model which is saved in a new copy of the variable. With this method we do not

need to consider the order of the statements but would require two MCK variables for

each predicate in the original GDL. The amount of RAM we have available is small

compared with what will be required if we do not use memory sparingly. The problem

is that each predicate is represented by two variables but for some predicates this is

not required. There are some predicates, called static predicates, whose value do not

change from state to state and therefore can be represented as one variable. We also

have the true and does keywords which are the base of our model and do not need to

have multiple variables represent them. If we consider the static, true and does variables

as level 0, then the statements that only have these variables in their body, which we

will call level 1, can simply be evaluated in place and do not need separate old and new

variables. We can do this repeatedly whereby the head of any clause will have a level

n strictly greater than the maximum level of any body predicate. This is akin to the

stratification described in (Love et al., 2008) where each predicate can be assigned a

finite level or stratum. Due to the stratifiability requirement in the GDL specification

Chapter 5. Discussion 85

we can always derive an ordering and effectively half the memory consumption of a

translation.

5.3 Issues in MCK

MCK is a relatively closed project and has no publicly visible source code, issue

tracking or wiki. At the time of writing the binaries for current version (1.1.0) were

taken down while the program is being updated. We can not expect a piece of research

software to be built with usability in mind but this approach makes it harder to verify or

resolve bugs in the program.

Being unable to verify a bug is especially frustrating. When writing the translator

one of the issues had to do with the type system which is represented by finite sets

with named elements. If an element was a member of multiple sets then MCK would

sometimes take the element as a member of a different set and throw an error. Before

realizing what the issue was it was very confusing and we had to go back and verify that

the formatting was right and tried iterating over different output to see if there was a

version that worked. We contacted the developers to verify the bug was in their system

and a solution was to use globally unique elements in the type system. A list of known

issues could have helped reduce the guesswork.

There is also inflexibility from the lack of access to source code or at least a

range of supported platforms. During the experimentation we tried replicating the

results published in (Ruan & Thielscher, 2012a; Huang, Ruan & Thielscher, 2013) and

compared with their original logs. We tried with the current version, MCK 1.1.0, and

also MCK 1.0.0 (the version the original authors used), in both Linux and macOSX

systems. But we had some difficulties of replicating the results and were not able to

identify the main problem, even after consulting the MCK developers.

We might have ran into some issues when using MCK but at the time of writing

Chapter 5. Discussion 86

another version is being developed with the potential of fixing bugs and implementing

improvements.

Chapter 6

Conclusion

6.1 Conclusion

In this project we are trying to automatically construct a system model of a GDL-II

game. The automatic generation of a system model will reduce the time and expertise

required to use model checking techniques for analysing a game in GDL-II. Model

checking techniques can be used to verify if a set of properties, such as well-formedness

in GDL-II, hold in the system model, and therefore, in the original system. Being able

to verify well-formedness properties in a GDL-II game will help the General Game

Playing field as there is only a small set of well-formed games with which to develop

GDL-II based agents with.

We have succeeded in automating the process for generating a system model of

a GDL-II game that is recognized by the MCK program. This includes using only a

subset of the features available in MCK to those that can be used in arbitrary GDL-II

games. Unfortunately, this increases the time and memory requirements for verifying

our generated system model and even medium sized games exceed the memory available

in our testing set up.

The memory requirement is the key limitation of the translation process as well as

87

Chapter 6. Conclusion 88

the MCK system as the translation of an arbitrary game will usually result in a memory

error at some stage of the translation process. This means that optimization, such as

the minimizing and ordering phases, were necessary to get closer to producing usable

models. More work is needed to be able to generate a system model that comes close to

an expertly crafted manual translation. That being said, the generated system model

can serve as a starting point for manual optimization.

6.2 Future Work

Pre-ground Minimization

Grounding is the key bottleneck phase of the translation and the minimization phase

happens after grounding. There are techniques that can be used to simplify the rule

set before grounding and reduce the amount of work the grounding stage has to do. It

should also be possible to have the conversion to DNF happen before grounding which

could potentially have benefits in allowing DNF based simplification and/or reducing

memory required. This would allow more complex games to be translated with the

same amount of memory available.

External Grounding

It is possible to use a built-for-purpose grounding program to produce a grounded,

and possibly minimized, rule set. A new approach to grounding game descriptions is

discussed in (Schiffel, 2016) which uses techniques based on Answer Set Programming

(ASP) for the grounding. The key challenge involves converting the game to a format

that the grounding program understands and then parsing the results.

Chapter 6. Conclusion 89

Expanded KIF Support

GDL uses the KIF format for transmitting games between agents. There is extra syntax

that is expressible by KIF but not part of the GDL specification. These include the and

and or keywords which represent explicit conjunction and disjunctions respectively.

We have found that in practice these features are rarely used in game descriptions as

only one of the games in our test set (guess6) used either of these keywords. The key

complication occurs when we try converting to DNF as we assume that the body of a

clause is a conjunction of literals whereby conversion is trivial. If there is a disjunction

anywhere in the body then extra processing has to be done to convert a rule to DNF. A

clause with disjunctions might be equivalent to multiple clauses without disjunctions

which will increase the amount of memory the resulting rule consumes. Using these

keywords allow a more intuitive game description which would reduce the rigidity of

the language and help game development without changing the languages expressibility.

A GDL-II based Agent

The first step beyond translation is to develop a prover that can handle GDL-II. A

rudimentary proving capability has already been added to allow the derivation of a

full model of the initial state. However, the initial state is common knowledge to all

players and therefore requires no epistemic capabilities to derive. The epistemic nature

of GDL-II will require a prover to handle epistemic systems efficiently.

After a valid prover is developed that can derive states, a system also needs to be

developed for strategically choosing the best move to make. The strategic element will

be the last key component to developing an agent which can play GDL-II games which

are crucial to the study of the systems that GDL-II games can describe.

References

Alur, R., Henzinger, T. A. & Kupferman, O. (2002, September). Alternating-time
temporal logic. J. ACM, 49(5), 672–713. Retrieved from http://doi.acm
.org/10.1145/585265.585270 doi: 10.1145/585265.585270

Baier, C., Katoen, J.-P. & Larsen, K. G. (2008). Principles of model checking. MIT
press.

Bjornsson, Y. & Finnsson, H. (2009). Cadiaplayer: A simulation-based general game
player. IEEE Transactions on Computational Intelligence and AI in Games, 1(1),
4–15.

Campbell, M., Hoane, A. J. & Hsu, F.-h. (2002). Deep blue. Artificial intelligence,
134(1-2), 57–83.

Clune, J. E. (2007). Heuristic evaluation functions for general game playing. In AAAI
(Vol. 7, pp. 1134–1139).

Davis, M., Logemann, G. & Loveland, D. (1962, July). A machine program for
theorem-proving. Commun. ACM, 5(7), 394–397. Retrieved from http://doi
.acm.org/10.1145/368273.368557 doi: 10.1145/368273.368557

Genesereth, M. & Björnsson, Y. (2013). The international general game playing
competition. AI Magazine, 34(2), 107.

Genesereth, M. & Thielscher, M. (2014). General game playing. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 8(2), 1-229. Retrieved from
https://doi.org/10.2200/S00564ED1V01Y201311AIM024 doi:
10.2200/S00564ED1V01Y201311AIM024

Haufe, S., Schiffel, S. & Thielscher, M. (2012). Automated verification of state
sequence invariants in general game playing. Artificial Intelligence, 187, 1–30.

Haufe, S. & Thielscher, M. (2012). Automated verification of epistemic properties for
general game playing. In KR.

Huang, X., Ruan, J. & Thielscher, M. (2013). Model checking for reasoning about in-
complete information games. In S. Cranefield & A. C. Nayak (Eds.), AI 2013: Ad-
vances in artificial intelligence - 26th australasian joint conference, dunedin, new
zealand, december 1-6, 2013. proceedings (Vol. 8272, pp. 246–258). Springer. Re-
trieved from https://doi.org/10.1007/978-3-319-03680-9_27
doi: 10.1007/978-3-319-03680-9_27

Lomuscio, A., Qu, H. & Raimondi, F. (2009). MCMAS: A model checker for the
verification of multi-agent systems. In International conference on computer
aided verification (pp. 682–688).

90

http://doi.acm.org/10.1145/585265.585270
http://doi.acm.org/10.1145/585265.585270
http://doi.acm.org/10.1145/368273.368557
http://doi.acm.org/10.1145/368273.368557
https://doi.org/10.2200/S00564ED1V01Y201311AIM024
https://doi.org/10.1007/978-3-319-03680-9_27

References 91

Love, N., Hinrichs, T., Haley, D., Schkufza, E. & Genesereth, M. (2008). General
game playing: Game description language specification. Stanford Logic Group
Computer Science Department Stanford University, Technical Report LG-2006-
01.

Mck user manual [Computer software manual]. (n.d.).
Méhat, J. & Cazenave, T. (2010). Ary, a general game playing program. In Board

games studies colloquium.
Möller, M., Schneider, M., Wegner, M. & Schaub, T. (2011). Centurio, a general game

player: Parallel, java-and asp-based. KI-Künstliche Intelligenz, 25(1), 17–24.
Ruan, J. & Thielscher, M. (2011). The epistemic logic behind the game description

language. In AAAI.
Ruan, J. & Thielscher, M. (2012a). Model checking games in GDL-II. In Proceedings

of the computer games workshop at ECAI.
Ruan, J. & Thielscher, M. (2012b). Strategic and epistemic reasoning for the game

description language GDL-II. In Proceedings of the 20th european conference on
artificial intelligence (pp. 696–701).

Ruan, J., Van Der Hoek, W. & Wooldridge, M. (2009). Verification of games in the game
description language. Journal of Logic and Computation, 19(6), 1127–1156.

Schiffel, S. (2016). Grounding gdl game descriptions. In Computer games (pp.
152–164). Springer, Cham.

Schiffel, S. & Thielscher, M. (2007). Fluxplayer: A successful general game player. In
AAAI (Vol. 7, pp. 1191–1196).

Schiffel, S. & Thielscher, M. (2009a). Automated theorem proving for general game
playing. In IJCAI (pp. 911–916).

Schiffel, S. & Thielscher, M. (2009b). Specifying multiagent environments in the game
description language. Proceedings of ICAART .

Schofield, M. J., Cerexhe, T. J. & Thielscher, M. (2012). Hyperplay: A solution to
general game playing with imperfect information. In AAAI.

Technische Universität Dresden. (1999). Ggp games. Retrieved 2017-06-16, from
http://ggpserver.general-game-playing.de/ggpserver/
public/show_games.jsp

Thielscher, M. (2010). A general game description language for incomplete information
games. In AAAI (Vol. 10, pp. 994–999).

Wikipedia. (2016). General game playing — wikipedia, the free encyclopedia. Re-
trieved 2017-07-14, from https://en.wikipedia.org/w/index.php
?title=General_game_playing&oldid=736555436

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

http://ggpserver.general-game-playing.de/ggpserver/public/show_games.jsp
http://ggpserver.general-game-playing.de/ggpserver/public/show_games.jsp
https://en.wikipedia.org/w/index.php?title=General_game_playing&oldid=736555436
https://en.wikipedia.org/w/index.php?title=General_game_playing&oldid=736555436

	Copyright
	Declaration
	Acknowledgements
	Abstract
	Introduction
	Overview
	Research Question
	Contribution

	Literature Review
	General Game Playing
	Game Description Languages
	Game Playing Agents
	GGP agents based on heuristics
	GGP agents based on Monte Carlo Tree Search
	GGP agents for GDL-II

	Model Checking for Multi-Agent Systems
	Model Checking
	Multi-Agent Systems
	Model Checkers

	Game Verification
	Game Verification in GDL
	Game Verification in GDL-II

	Technical Background and Methodology
	Game Description Language with Incomplete Information
	Syntax, Semantics and Well-formedness for GDL
	Syntax, Semantics and Well-formedness for GDL-II

	Model Checking Knowledge (MCK)
	Interpreted System
	MCK Specification Language
	MCK Input Language
	Model Checking Algorithms

	Translation from GDL-II to MCK
	Parsing
	Grounding
	Converting to DNF
	Minimising
	Ordering
	MCK Translation Output

	Analysis
	Translation Testing
	Compile Time and number of Ungrounded Clauses
	Number of Grounded Clauses
	Reduction of Variables

	Verification Testing
	Verification Properties
	Verification testing

	Discussion
	Interpretation of Results
	Optimization
	Minimization
	Disjunctive Normal Form
	Rule ordering

	Issues in MCK

	Conclusion
	Conclusion
	Future Work

	References

