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Introduction

A wheeled mobile robot (WMR)  can be driven by 
wheels in  various  formations:

Differential Omni Directional Steering
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Differential Wheel  Robot

Omni Wheel  Robot
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A

B

Two basic issues:

1. How to move a robot  from  posture A to  
posture B stand alone ? 

2. How to determine postures A and B  for a  robot 
when a group of robots performing a task (such 
as soccer playing) ?
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Robot’s posture (Cartesian coordinates) cannot be stablized by 
time-invariant feedback control or  smooth state feedback control 
(Brockett R. W. etc.).

Stabilization problem  was solved by discontinuous or time 
varying control  in Cartesian space (Campion G. B., Samson  C. 
etc.)

Asymptotic stabilization  through smooth state feedback was 
achieved by Lyapunov design in Polar coordinates – the system is 
singular in origin, thus avoids the Brockett’s condition (Aicardi M. 
etc ).

Trajectory tracking  control is easier to achieve and  is more 
significant in  practice (desired velocity nonzero)  (Caudaus De Wit, 
De Luca A etc.).

Differential wheel driven  robot (no-holonomic):



Seminar at Monash University,  Sunway Campus,  14 Dec  2009

 It is fully linearisable  for the controller design (D’Andrea-
Novel etc.)
 Dynamic  optimal  control was  implemented (  Kalmar-
Nagy etc.) 

Robot modeled as a point-mass

 Application of Lyapunov-based  and potential field based 
methods  in  the development of    target tracking control
scheme 

Issues to be addressed

Omni-wheel driven  robot

 Potential field method  was used for robot path planning 
(Y.Koren and J. Borenstein)
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General  control approaches

0cossin   yx 
Differential Wheel Robot

• Nonholonomic Constraint 
(rolling contact without slipping) 
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• Kinematic Model

Nonhonolonic (No-integrable) and under actuated  (2-input~3-output)

cannot be stabilized by time-invariant  or smooth feedback control
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Trajectory tracking (Cartesian coordinates based)

Given dddd
yxyx  and,

,

andvfind 

to make dd
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The trajectory needed to be specified in 

prior;  the controller fails when

It can be proved (due to Lyapunov and Barbalat), the 
following control can meet the objective :
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with nonlinear modifications to adjust angular motion:

where, 
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Control task: move the robot  from  its  original 
posture:                 to the  target  posture  ( , , )p p px y θ ( , , )g g gx y θ

Goal / target tracking (Polar coordinates based)

).  :0( arkingparallel p
g
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22 )()( yyxx
gg


The  system model  described in polar coordinates:
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with the Lyapunov  function candidate

• large control effort  or fluctuation when the  angle tracking  error is 
near zero or the linear tracking error is big
• the target is assumed to be stationary
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Potential  field approach  (point mass model)

Attractive and repulsive fields:

Robot move along the negative gradient
of the combined field:

•The law only specifies the direction of the robot velocity
• target is assumed  to be stationary
• local minima
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Lyapunov based target tracking controller 
with limited  control efforts

System model (extended from the 
conventional  one by including  the 

velocity of the target):
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Controller 1:  Extension of the general control approach

Note: 
• target motions  directly affects the control efforts
• sinusoidal functions of the systems states attenuate the magnitude  
of control 

• tracking errors appear as the denominators in  the terms of the    

controller
• linear tracking and angular tracking errors are treated equally – too 
demanding ? 

It can be proved  with Lyapunov method, that under the controller,  

(Lyapunov function candidate:                                 )
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Controller 2: Improvement  from Controller 1

Prioritise  and change  the control objectives:  

and reflect them  in the definition of the Lyapunov function:

New controller:

which can also achieve the convergence of the tracking errors, but with
less control efforts
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Comparison: control efforts of Controllers 1 and Controller 2
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• By observation,  the magnitude of controller 2 is less than that 
controller 1    

• Analysing the  factors (    )  affecting the controller magnitude, 
it is obvious  that,  except for the region  near               that affecting

Controller 1  is larger in magnitude than  that affecting  Controller 2.
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Simulation Results (tracking a target Moving along a circle)

Linear tracking Angular tracking
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Linear velocity Angular velocity
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Experiments

Robot trajectory under Controller 1

Robot trajectory  under Controller 2
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Under Controller 1:

Under Controller 2:

Tracking errors

Tracking errors

Velocities 

Velocities 
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Demonstrations

Controller 1 Controller 2
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Conclusions: 

 It is feasible to reduce  the control efforts through 

 prioritization of control objectives

 defining of Lyapunov function to reflect  that priority

 attenuation of  controller outputs with some special functions of 
the system states (like sinusoidal functions etc.)

while achieving the same  or  better control results  in 
comparison with the conventional controllers

 The performance of  the controller is affected by the  noises   
of the sensors for state feedback (esp. velocity). 
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Potential field based control approach for 

robot’s target tracking

System model:

Potential fields:
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Case 1: Moving target free of  obstacles

Minimization  of the angle between the gradient of the field and the  direction 
of robot motion  relative to the target.
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Robot direction is adjusted around the directional line pointing to the target
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It  leads to:
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One of the choices is:

The speed determined  by the relative  linear distance, the target velocity 
and there directional relationship.



Seminar at Monash University,  Sunway Campus,  14 Dec  2009

The robot does not need to be always  faster than the target 
(e.g. . when                    )

Comparison of the robot and target speeds:
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The approach can be extended to   solve the path/speed planning 
of  the robot surrounded by multiple obstacles.

Case 2:  Moving target with moving  obstacles
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Simulation Results:
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Trajectories Relative Distance

Solid line: target
Dashed line : robot under the proposed controller
Dotted line :robot  under  the  conventional potential field controller
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Speed Angle

Solid line: target
Dashed line : robot under the proposed controller
Dotted line :robot  under  the  conventional potential field controller
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Performance  of the conventional field method with a high gain

Trajectories Speed
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Conclusion:
• the speed as well as the direction of the robot motion are 

determined  with potential field method

• the velocity of the moving  target  is taken into consideration

• the proposed approach maintains or improves tracking accuracy

and reduce  control efforts, in comparison to the traditional 

approaches

• further study on  the determination of the  optimum speed of 

the robot can be done  by specifying additional performance 

requirements.
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Speed control considering dynamic coupling 

between the actuators

• Synchronisation of the  wheels’ motion  affects the robot’s  trajectory
• Coupling between the actuators needs to be considered
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Dynamic model:

Model based adaptive control
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Introducing new variables            

Dynamic model is transformed to a more  compact form :
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Based on the  transformed dynamic model, the adaptive  speed controllers 
are derived:

Modified to reduce the amplitudes of the control outputs:
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Simulation results
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Model free  PID control

A loop for  the coupling of the wheels’ speeds is added.
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Transfer functions :
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• First order  motor model is adopted:

• PID controller  is used for the speed control

• Implemented with one  PIC18F252 microcontroller 
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Modeling (Kinematics)
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Omni Wheel  Robot

Speed Control of an Omni-wheel robots
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Inverse kinematic model:
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• Chooped fed motors  with drivers  to drive the 
wheels
• PID controller implemented with one  one 
80296 microcontrollers (three PWM outputs)
• Encoder resolution 512 ppr
• Sampling time 1 ms
• Control loop  completed  within 0.5ms 

This is achieved through:

• codes written in an assembly language without 
using floating point libraries (too slow)
• fixed point notation  and a look up table of 
whole numbers to represent a floating point 
number with reasonable accuracy 
• only the simple operations like addition, 
substration, multiplication  and  bits-shifting are 
used.
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Implementation
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Demonstrations
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Conclusion

 Lyapunov and potential field based target tracking controllers, and speed 
controller for dynamically coupled wheels for  mobile robots were presented
 Both  position and velocity of the target were considered in the target tracking  
controller design
 Functions of the system states, especially those of the target, are 
are designed to moderate the magnitude  or fluctuation of the control effort 
 The states of the system were assumed to be available;  sensor noises affect 

the performance of the controller.
 To get a good  system states estimation  and prediction from the  sensor data 

is  another big issue to be addressed together with the  controller design        
(Kalman filtering, Bayesian method etc.)
 Further study can be undertaken on  integrating open-loop optimal 
control, closed-loop control and system states estimation and prediction


