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Abstract

Even though Support Vector Machines (SVMs) are capable of identifying patterns

in high dimensional spaces that are presented by kernels without a computational

decrease, their performance is determined by two main factors: SVM cost param-

eter and kernel parameters. It is empirically proven that the optimum parameter

combination for both SVM cost and kernel yield high pattern recognition accuracies

in SVMs. Various methods are discussed in the literature to optimize these SVM

parameters, namely trial and error method, grid optimization, leave-one-out cross

validation, generalization error estimation using gradient descent, and evolutionary

algorithms. However, these optimization methods have downfalls: the trial and error

method is considered to be imprecise and unreliable (Zhang & He, 2010), the grid

parameter search requires complex computation (Friedrichs & Igel, 2005), leave-one-

out cross validation is considered to be computationally expensive, and the gradient

descent method can fall into a local ‘minima’ (Zhang & He, 2010). Also, these meth-

ods mainly optimize numeric kernels. However, when optimizing string kernel SVMs

in string classification, researchers are confronted with two main obstacles. Firstly,

there is little or no literature pertaining to string kernel SVM optimization at the

moment. Secondly, according to the experiments: Rieck and Laskov (2007), Lodhi,

Saunders, Shawe-Taylor, Cristianini, and Watkins (2002), Sharma, Girolami, and

Sventek (2007) and S.Sonnenburg (2006), string dataset characteristics influence the

optimum parameter combination of string kernel SVMs. The current string kernel

SVM optimization methods do not take string dataset characteristics into account.

Baring this in mind, the thesis initially attempts to identify a mechanism to extract

string dataset characteristics from a string dataset. It then, attempts to derive a

string kernel SVM optimization method which uses these extracted string dataset

characteristics. The initial objective is achieved by explaining that a sting dataset
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is presentable in token-frequency space (where each dimension is represented by a

token) and then computing string meta-features by the points of this token-frequency

space. Now for a machine learning algorithm, a meta model is trained using computed

string meta-features for each dataset in a string dataset pool, learning algorithm

parameters, and accuracy information. This trained meta model helps to predict

string classification accuracy for a new string dataset by computing relevant string

meta-features. This principle is employed to optimize string kernel SVMs in the

proposed meta learning algorithm (this fulfills the second objective of the thesis)

where it only computes the relevant string meta-features to yield optimum parameter

combination for the machine learning algorithm on the new string dataset.

In the experiments, three string kernel SVMs, edit-distance SVM, bag-of-words SVM

and n-gram SVM, were optimized using the proposed algorithm on four string

datasets: spam, Reuters-21578, Network Application Detection and e-News Cate-

gorization. The experiment results revealed that the algorithm was able to produce

parameter combinations which yield good string classification accuracies for string

kernel SVMs on most string datasets. It is also revealed that some string kernel

SVMs may not be suitable on certain string datasets.

As future work, one could research for more string meta-features that help to employ

meta learning on string classification more effectively. Also, one could introduce

upper and lower bounds to the proposed algorithm, which help the predicted string

classification accuracy to be within the range (0,100). Further experiments on more

string datasets will help to identify the robustness of the algorithm.



Chapter 1

Introduction

Support Vector Machines (SVMs) are a set of supervised learning techniques, which

use statistical learning principles, kernel mapping, and optimization techniques for

classification and regression. SVMs were originally introduced by Boser, Guyon, and

Vapnik (1992). In its simplest form, SVM learns a separating hyperplane which max-

imizes the distance between the hyperplane and its closest point by solving a convex

quadratic optimization problem. The optimization problem has several interesting

statistical properties which make SVMs suitable for generalization. Moreover, kernel

mapping allows SVMs to work with non linearly separable data, by mapping them

into high dimensional feature space.

As Shawe-Taylor and Cristianini (2004) elucidate, there are seven main kernel fami-

lies: kernels in closed form (i.e. gaussian and polynomial), ANOVA kernels, kernels

from graphs, diffusion kernels on graph nodes, kernels on sets, kernels on real numbers

and randomized kernels. Also, there are application specific kernels such as string

kernels (i.e. bag-of-words kernel, edit-distance kernel, n-gram kernel, subsequence,

etc.) which are used for specific classification tasks like document classification or

network anomaly detection (Lodhi et al., 2002; Rieck & Laskov, 2007). Furthermore,

one can derive a novel kernel function that satisfies the ‘finitely positive semi-definite

property’ (Shawe-Taylor & Cristianini, 2004). Even though there are bulk of viable

kernel functions, each has its own unique way of deriving data into feature space,

allowing the kernel selection to have considerable influence on the performance of a

pattern recognition task (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002; Frohlich

& Zell, 2005).
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The effectiveness of SVM is heavily dependent upon three main factors: kernel selec-

tion, SVM cost parameter, and kernel parameters (Chapelle et al., 2002; Frohlich &

Zell, 2005). Apparently, as diverse sets of kernel functions are available, identifying

the most suitable one for a given pattern recognition task is quite challenging, where

the researcher spends considerable time on kernel identification. On the other hand,

for a suitable kernel function, the performance is again influenced by two factors:

SVM cost (C) parameter and kernel parameters. As Rieck and Laskov (2007) and

Burges (1998) explain different SVM cost values yield different classification accura-

cies. Also, according to Zhang and He (2010) and Friedrichs and Igel (2005), multiple

kernel parameters affect the performance of SVMs pattern recognition ability. For

an example, parameters like gamma (γ) and coefficient in polynomial kernel, and

parameter sigma (σ) in gaussian kernel, largely influence the pattern recognition

ability of SVM (Chapelle et al., 2002; Eitrich & Lang, 2006). Also, for string ker-

nel parameters like substring length in n-gram kernel and subsequence size in fixed

length subsequence kernel affects the performance of SVM (Lodhi et al., 2002; Rieck

& Laskov, 2007). Hence, the initial problem of kernel identification, and then SVM

kernel parameter optimization, can be as challenging as the initial pattern recogni-

tion task, due to the higher dimensionality of the parameter space (Eitrich & Lang,

2006).

Various optimization techniques are being used in SVM kernel parameter optimiza-

tion, namely trial and error method, grid optimization, leave-one out cross validation,

generalization error estimation using gradient descent and evolutionary algorithms.

Each of these optimization methods has its own disadvantages: the trial and error

method is considered to be imprecise and unreliable (Zhang & He, 2010), the grid

parameter search requires complex computation (Friedrichs & Igel, 2005), leave-one

out cross validation is considered to be computationally expensive and the gradi-

ent descent method can fall into a local ‘minima’ (Zhang & He, 2010). The above

mentioned SVM optimization methods mainly optimize numeric kernels. But, for

string kernel SVM optimization, researchers are confronted with two main obstacles.

Firstly, there is very little or no literature pertaining to string kernel SVM optimiza-

tion at the moment. Secondly, as experiments: Rieck and Laskov (2007), Lodhi et

al. (2002), Sharma et al. (2007) and S.Sonnenburg (2006) explain, string dataset

characteristics also influence string kernel SVM optimization. This allows one to in-

clude string dataset characteristics into a potential string kernel SVM optimization



1.1. Motivation 3

method. The thesis explains a novel string kernel SVM optimization method taking

string dataset characteristics, meta learning techniques and regression methods into

account.

1.1 Motivation

The research work addressed in this thesis is originally inspired by works of Lam

and Lai (2001) and Furd́ık, Paralič, and Tutoky (2008), where meta learning is used

to select algorithms for each text category in text categorization. In their approach,

the text meta-features which are extracted from a text dataset along with model

performance information (classification accuracy and root mean squared error) are

used to train a prediction model that predicts the performance of each algorithm

on each text category. The algorithm with the highest predicted performance on a

particular text category is chosen to perform the actual text categorization on that

category. The text meta-features are calculated using terms and their frequencies

in a text dataset. The approach helps to acquire meta knowledge about a novel

text dataset by calculating its relevant text meta-features. Later, this text meta

knowledge is used for model selection in text classification.

Similarly, the meta knowledge about a string dataset is acquirable (or the string

meta-features are computable), if the string dataset is presented in the form of terms

and their frequencies, so that, the acquired string meta knowledge (from string meta-

features) can be used to select models in string classification.

1.2 Objectives and Approach

1.2.1 Research Questions

The research questions addressed in this thesis are:

Can a string dataset be represented in such a way like terms and their

frequencies as in Lam and Lai (2001) and Furd́ık et al. (2008)?
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If one is able to represent a string dataset as terms and their frequencies, then using

the calculated sting meta-features via terms and their frequencies,

How can we optimize string kernel SVMs using meta learning?

Here, the initial step is to identify a mechanism which transforms a string dataset to

a space like term-frequency space. Next, the sting meta-features are calculated by

points in this new space, so that the sting meta-features can be used to train a meta

model which optimize string kernel SVMs.

1.2.2 Approach

Considering the idea mentioned in section 1.2.1 for string dataset representation,

section 4.2 explains a novel method of representing a string dataset in the token-

frequency space. Now string meta-features are computed by the points in this token-

frequency space. Later, section 4.3 explains the principle of meta learning for string

classification, where a meta model is trained for a machine learning algorithm using

computed string meta-features for each dataset in a string dataset pool, learning

algorithm parameters, and accuracy information. This principle is used to derive a

novel string kernel SVM optimization algorithm in section 4.3.2, where string kernel

SVMs are optimized using computed string meta-features.

1.3 Thesis Structure

The thesis is structured as follows:

Chapter 2 discusses the main concepts of SVM by explaining SVM, kernel trick,

string kernels and SVM parameter optimization.

Chapter 3 explains the principles of meta learning. It also discusses the applica-

tion of meta learning for text categorization by explaining text meta-features.

The chapter clearly defines text data and string data which brings about the

motivation to use meta learning for string classification.
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Chapter 4 initially, explains the mechanism to present a string dataset into the

token-frequency space. It then elucidates sting meta-features, which are calcu-

lated by the points in this token-frequency space. The chapter then discusses

the principle of using meta learning for string classification. Based on this prin-

ciple, the chapter explains a novel string kernel SVM optimization algorithm

via meta learning.

Chapter 5 discusses the experimental results for optimizing three string kernel

SVMs (edit-distance SVM, bag-of-words SVM and n-gram SVM) using the

proposed meta learning algorithm for string kernel SVM optimization, on four

string datasets. It also explains the experimental setup, evaluation criteria and

dataset description.

Chapter 6 concludes the thesis by discussing contributions, limitations and future

work.



Chapter 2

String Kernel SVM

2.1 Introduction

As mentioned in previous chapter, the main objective of the research is to optimize

string kernel SVMs. Hence, this chapter focuses on explaining concepts related to

SVMs such as, SVMs, kernel trick and SVM optimization. Section 2.2 discuses the

principles of SVMs and kernel trick. The section also explains three string kernels,

namely edit-distance, bag-of-words and n-gram. Furthermore, section 2.3 discusses

the issue of SVM optimization along with currently available SVM optimization

strategies specially for numeric kernels, followed by string kernel SVM optimization

in section 2.4.

2.2 SVMs and Kernel Trick

To understand the principle of SVMs, we consider a simple binary classification

situation. For a given training data set D ((xi, yi), ..., (xn, yn)) in input space X

(X ∈ Rd) having class label y ({−1, +1}), there exists an element ω where ‖ω‖2 = 1

and b (b ∈ R) such that,

〈ω, xi〉+ b > 0 for all i with yi = +1

〈ω, xi〉+ b < 0 for all i with yi = −1
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According to Boser et al. (1992), a solution to the above can be found by solving the

below optimization problem:

minimize 〈ω, ω〉 over ω ∈ Rd, b ∈ R
subject to yi(〈ω, xi〉+ b) ≥ 1, i = 1, ..., n

(2.1)

Although the solution of (2.1) optimization is geometrically compelling, it has two

shortcomings by which it avoids generalization:

1. The linear form of the decision function is not ideal for situations where the

training data set is not linearly separable.

2. The current form of the decision function tends to overfit in most instances,

hence a mechanism is required to misclassify some data to avoid overfitting.

To resolve the first issue, the input data (xi, ..., xn) is mapped into a possibly-infinite-

dimensional Hilbert space Ho (feature space) using non liner mapping Φ : X →
Ho, and then the generalized portrait algorithm (Vapnik, 1963) is applied to data

((Φ(xi), yi), ..., (Φ(xn), yn)) in this new space (Ho). The second issue is addressed in

soft margin support vector machines (Cortes & Vapnik, 1995), by introducing slack

variables (ξi, ..., ξn) to the objective function. The idea of feature mapping and slack

variables ultimately leads (2.1) to a quadratic optimization problem as,

minimize
1

2
〈ω, ω〉+ C

n∑
i=1

ξi for ω ∈ Ho, b ∈ R, ξ ∈ Rn

subject to yi(〈ω, Φ(xi)〉+ b) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

(2.2)

Here, C is a penalty parameter which is often determined through cross validation

tests. One can rewrite the first constrain in (2.2) as ξi ≥ 1 − yi(〈ω, Φ(xi)〉 + b) and

combine it with second constraint (ξi ≥ 0) to get,

ξi ≥ max{0, 1− yi(〈ω, Φ(xi)〉+ b)} = L(yi, 〈ω, Φ(xi)〉+ b), (2.3)

where L is the hinge loss. One drawback of this new optimization problem (2.2) is

that it needs to be solved in a high or infinite dimensional Hilbert space Ho. But, in
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practice, the Lagrange approach is used to compute the corresponding dual program

for hinge loss,

minimize
n∑

i=1

αi − 1

2

n∑
i,j=1

yiyjαiαj〈Φ(xi), Φ(xj)〉 over α ∈ [0, c]n

subject to
n∑

i=1

yiαi = 0,

(2.4)

If (α∗i , ..., α
∗
n) is the solution to (2.4), then the solution (ω∗D, b∗D) to the optimization

problem (2.2) can be computed as below,

ω∗D =
n∑

i=1

yiα
∗
i Φ(xi)

and

b∗D = yj −
n∑

i=1

yiα
∗
i 〈Φ(xi), Φ(xj)〉 ,

where j is an index (0 < α∗j < C). One can note that ω∗D only depends on samples xi

where α∗i 6= 0. This means that hyperplane described by (ω∗D, b∗D) is only supported

by those Φ(xi)s, where α∗i 6= 0. The relevant data points (xi, yi) are called ‘support

vectors’ (Cortes & Vapnik, 1995). The decision function fω∗D,b∗D : X → R is written

as,

fω∗D,bD∗(x) = 〈ω∗D, Φ(x)〉+ b∗D =
n∑

i=1

yiα
∗
i 〈Φ(xi), Φ(x)〉+ b∗D x ∈ X (2.5)

Interestingly, in both the dual optimization problem (2.4) and the decision function

(2.5) only the inner product of Φ with itself occur. Hence, instead of computing the

feature map (Φ), it is sufficient to know about a function 〈Φ(.), Φ(.)〉 : X ×X → R.

As Cortes and Vapnik (1995) explain, there are instances where we can compute this

function (〈Φ(.), Φ(.)) without knowing about the feature map (Φ) itself. Especially

for kernels functions k : X ×X → R, there exists a feature map as below,

k(x, z) = 〈Φ(x), Φ(z)〉 x, z ∈ X (2.6)
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The method of directly using kernels instead of computing the feature map, works

well for algorithms which require the inner product of the feature map but not the

feature map itself. This approach is known as ‘kernel trick’, it was first introduced

by Aizerman, Braverman, and Rozoner (1964).

2.2.1 Kernel Trick

As the idea of kernel is raised in previous subsection, this subsection discuses the

functionality of kernel and kernel matrix in detail. According to Shawe-Taylor and

Cristianini (2004), the kernel is a function for all x, z ∈ X that satisfies:

k(x, z) = 〈Φ(x), Φ(z)〉,

where, Φ is a mapping from X to a feature (inner product) space F . Also, the gram

matrix G (l × l) for a set of vectors S = {x1, ...,xl}, is defined as:

Gij = 〈xi,xj〉.

Now using the idea of kernel function k with feature map Φ, the entries for the gram

matrix are rewritten as:

Gij = 〈Φ(xi), Φ(xj)〉 = k(xi,xj) for i, j = 1, ..., l.

This form of gram matrix is referred to as the ‘kernel matrix’ in literature (Shawe-

Taylor & Cristianini, 2004). Furthermore, these kernel matrices are positive semi-

definite for all training data sets, which is called the finitely positive semi-definite

property of the kernel function (Shawe-Taylor & Cristianini, 2004). This positive

semi-definite property of kernel matrix enables it be manipulated without concerning

about the underlying feature map. This allows the kernel function to be redefined

as follows. The kernel is a function,

k : X ×X → R,

from a continuous or finite domain X, through pairs:

k(x, z) = 〈Φ(x), Φ(z)〉 x, z ∈ X,
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via feature map Φ into Hilbert space F , if and only if it satisfies the finitely positive

semi-definite property.

This definition of kernel function does not require the X to be a vector space, where

any input space is viable as long as the relevant kernel matrix is positive semi-definite.

This means one can use kernel functions like string kernels, where their input spaces

are not vector spaces, but the relevant kernel matrices are positive semi-definite.

2.2.2 String Kernels

SVMs have shown success in numerical pattern recognition with the help of the

kernel functionality (Chow, Zhong, Blackmon, Stolz, & Dowell, 2008; Steinwart &

Christmann, 2008). Which has led the researchers to focus on using SVMs with

string kernels for string classification (Lodhi et al., 2002; Rieck & Laskov, 2007).

As Shawe-Taylor and Cristianini (2004) and Lodhi et al. (2002) explain, apart from

popularly used string kernels like bag-of-words and edit-distance, one can also use

string kernels like n-gram kernel or fixed length subsequence kernel to classify strings.

Results from previous experiments by Shawe-Taylor and Cristianini (2004), Lodhi

et al. (2002) and Rieck and Laskov (2007) show that an SVM with string kernel

functionality is able to recognize string patterns much more efficiently than other

methods due to its ability to handle high dimensional data like string data without

a performance decrease. This has made the SVM with string kernels as an ideal

candidate for DNA prediction, document classification, language recognition, image

recognition and network anomaly detection tasks. The following subsections explain

three widely used string kernels, namely edit-distance, bag-of-words and n-gram

string kernels.

Levenshtein Distance (Edit-Distance)

The Levenshtein (or edit) distance computes the difference between two strings. The

computed difference refers to the number of insertions, substitutions and deletions

required to transform a string s to string t. Initially, the function r is defined as

below:

r(a, b) =

{
0 if a=b

1 otherwise.
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where, a and b are two characters.

Now, the (n + 1), (m + 1)th item of the matrix M (n + 1) × (m + 1) furnishes the

Levenshtein distance L(s, t) between string s and string t. Here, M is computed in a

recursive manner by, initially setting M(i, 0) = i for all i = 1, 2, ..., n and M(0, j) = j

for all j = 1, 2, ..., m and then, computing all M(i, j) as below:

M(i, j) = min(M(i− 1, j) + 1,M(i, j − 1) + 1,M(i− 1, j − 1) + r(s(i), t(j))).

Here, n is the length of string s and m is the length of t. Also, s(i) is the ith character

of s and t(j) is the jth character of t. Furthermore, in order to get positive values,

L(s, t), e−λLM(i,j) is used, where λL ∈ (0, 1) is a decay factor. The computational

complexity of Levenshtein distance is O(|s||t|).

Bag-of-Words Kernel

In document categorization, a collection of documents is called a ‘corpus’, which

consists of a set of predefined terms and is identified as a dictionary. A term or

synonymously a word in the dictionary is any sequence of letters separated by punc-

tuation or spaces. On the other hand, a bag, is defined as a set which allows repeated

items. This definition of bag helps one to view a document as a bag of terms or bag

of words. This allows a document to be presented as a vector where each dimension

is associated with a term in the dictionary. This representation (Φ) is given as:

Φ : d 7−→ φ(d) = (tf(t1, d), tf(t2, d), ...., tf(tN , d)) ∈ RN ,

here tf(ti, d) is the frequency of the tthi term in document d. Also, N is the space

dimensionality and the size of the dictionary (Shawe-Taylor & Cristianini, 2004).

Now, one can define a function k in this document space to compare the similarity

between two documents d1 and d2:

k(d1, d2) =

n1∑
i=1

n2∑
j=1

f(ti, tj)
j,
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where, d1 has n1 terms and d2 has n2 terms. Also, f is defined as:

f(tx, ty) =

{
λ2

B if tx = ty, λB ∈ (0, 1)

0 otherwise

where tx and ty are two terms.

N-gram Kernel

In n-gram kernel, a string s is defined from alphabet Σ of |Σ| symbols, and is pre-

sented in a feature space F , where each dimension is a string (Shawe-Taylor & Cris-

tianini, 2004; Lodhi et al., 2002). Also, Σ∗ represents the set of all strings and Σn

represents the string set of length n. Furthermore, ss′ represents the concatenation

of strings s and s′. Now, the substrings : u, v1, v2 of string s, are defined such that:

s = v1uv2,

where, if v1 = ε (ε is the empty string of 0 length) then, u is called to be the prefix

of s and if v2 = ε, then u is called to be the suffix of s. Now, a feature map Φ is

defined in feature space F , with below embedding,

Φn
u(s) = |{(v1, v2) : s = v1uv2}|, u ∈ Σn.

The associated kernel is defined as:

Kn(s, t) = 〈Φn(s), Φn(t)〉 =
∑
u∈Σn

Φn
u(s)Φn

u(t).

Also, the computational complexity of n-gram kernel is written as O(n|s|t|) (Shawe-

Taylor & Cristianini, 2004).

2.3 Parameter Optimization for Numeric Kernels

According to the redefinition of the kernel function in section 2.2.1, a novel kernel

can be defined to satisfy the finitely positive semi-definite property. This allows
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to have large number of feasible kernel functions, where the kernel matrix is pos-

itive semi-definite. These kernel functions have their own individual parameters.

For example: polynomial kernel has parameter gamma (γ) and coefficient, gaussian

kernel has parameter sigma (σ), there can be different orders of ANOVA kernels,

the Von Neumann diffusion kernel is bound with parameter lambda (λ), substring

length in the n-gram kernel derives different kernel matrices, and subsequence size in

the fixed length subsequences kernel also derives different kernel matrices (Hofmann,

Scholkopf, & Smola, 2008; Shawe-Taylor & Cristianini, 2004). As different kernel ma-

trices yield different classification accuracies, it is vital in pattern recognition with

SVM to identify the optimum parameter combination that produces the kernel ma-

trix, which yields the highest accuracy. This optimum parameter identification can

be quite challenging, if the kernel function has more than one parameter, where the

optimization method has to search in a high dimensional parameter space. Adding

to the complexity, the SVM cost parameter also affects the classification accuracy of

a pattern recognition task. This requires one to use various optimization techniques,

to identify optimum parameters for both SVM and kernel function.

There are several SVM optimization techniques discussed in the literature, namely

trial and error method, grid optimization, leave-one-out cross validation, general-

ization error estimation using the gradient descent method, and evolutionary algo-

rithms. In the trial and error method, a set of parameters are selected empirically,

and the combination yielding the least error are taken into consideration (Imbault

& Lebart, 2004). However, the method dose not produce good results, due to its im-

preciseness and unreliability (Zhang & He, 2010). Grid parameter search does a grid

search with a fixed step-size over the parameter space, while the performance of each

parameter combination is assessed via a performance measurement. This method is

efficient in situations where the number of parameters are less. In practice, it re-

quires complex computation and therefore can be time consuming (Friedrichs & Igel,

2005). The leave-one-out cross validation method has the disadvantage of being com-

putationally expensive (Chapelle et al., 2002). The gradient descent method, which

minimizes the estimates of the generalization error via gradient descent algorithm is

prone to fall into a local ‘minima’ (Zhang & He, 2010). Furthermore, swarm opti-

mization (Souza, Carvalho, Calvo, & Ishii, 2006), ant colony optimization (Zhang &

He, 2010) and evolutionary algorithms, (particularly genetic algorithms) (Friedrichs

& Igel, 2005) are also being used to optimize SVM parameters.
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2.4 Parameter Optimization for String Kernels

As one can see from section 2.2.2, string kernels also have different parameters like λL

in edit-distance kernel, λB in bag-of-words kernel, substring size in n-gram kernel and

subsequence size in fixed length subsequence kernel, which derives different kernel

matrices. Hence, the parameter optimization problem discussed in section 2.3 applies

to string kernels as well. Adding to the complexity, the computation cost for strings

can be quite expensive compared to numeric data, where most of the string kernels

require an internal function to map strings to numbers (i.e. function r in edit-

distance and function f in bag-of-words kernel that is explained in section 2.2.2).

Also, if one observes the experimental results mentioned in Rieck and Laskov (2007),

Lodhi et al. (2002), Sharma et al. (2007) and S.Sonnenburg (2006) even the same

string kernel requires different parameter combinations on different string datasets to

yield good classification accuracies. This brings about the point that string dataset

characteristics also need to be included in a string kernel SVM optimization method.

Even though the methods mentioned in section 2.3, optimizing SVM parameters

(mainly on numeric kernels), to our knowledge, none have focused their attention

on optimize SVM string kernel parameters, in particular by taking string dataset

characteristics in to consideration. Chapter 4 explains a novel method of string kernel

SVM optimization, considering sting meta-features, meta learning and regression

techniques.

2.5 Summary

SVMs are able to detect patterns in a high dimensional feature space without a com-

putational decrease. Kernels are used to present data in high dimensional spaces, in

situations where the pattern recognition algorithm requires only the inner product

of the feature map (not the feature map itself). A kernel can be derived to have the

finitely positive semi-definite property. There are many types of kernels available at

the moment. Specially, string kernels are used with SVMs for string classification.

Pattern recognition ability of SVMs depends upon the kernel matrix, where differ-

ent parameters in the kernel function produce different kernel matrices. Also, it is

effected by penalty parameter in SVM (SVM cost). Various optimization techniques
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are elucidated in the literature to optimize numeric kernels with SVMs. But there

is little or no literature pertaining to string kernel SVM optimization, particularly

taking string dataset characteristics in to account.



Chapter 3

Motivation of Meta Learning for

String Categorization

3.1 Introduction

This chapter discusses the motivation to use meta learning for string classification.

The section 3.2 defines and explains meta learning, then elucidates the process of

meta learning and its applications, followed by an explanation on meta-features.

Section 3.3 discusses the application of meta learning for text categorization using

a set of text meta-features, which are calculated from text data. Section 3.4 clearly

demarcates the difference between text and string data, clarifying their ability to use

some of the text meta-features for string classification in section 3.5.

3.2 Meta Learning

As Giraud-Carrier, Vilalta, and Brazdil (2004) explain, meta learning is the process

of acquiring and exploiting meta-knowledge through re-learning from meta-features.

Re-learning, which is to maintain the learning algorithm unchanged or to modify it,

helps the learning system to profit from repetitive use of similar tasks. It can be

applied on a single learning system to optimize parameters, or on a set of algorithms

to select the best algorithm for a given classification task (Vilalta, Giraud-Carrier,
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Brazdil, & Soares, 2004; Furd́ık et al., 2008; Brazdil, Soares, & Da Costa, 2003)

(Giraud-Carrier et al., 2004). The process of re-learning requires a set of domain

specific characteristics so called ‘meta-features’ to evaluate the performance of a

algorithm or algorithms (Brazdil et al., 2003). In practice, meta learning is used to

select the best algorithm for a text classification (Lam & Lai, 2001; Furd́ık et al.,

2008), predict optimum parameters for kernels in SVMs (Soares, Brazdil, & Kuba,

2004), and to optimize neural networks (Kordk et al., 2010).

Apart from parameter optimization, meta learning on a single learning system is

used to evolve the architecture of the learning system via experience, such as evolv-

ing a decision tree using past experience (Brazdil, Giraud-Carrier, Soares, & Vilalta,

2008) or to evolve a neural network considering past topology parameters (Kordk

et al., 2010). On the other hand, meta learning on a set of algorithms is used in

situations such as algorithm ranking (Brazdil et al., 2003) and algorithm identifica-

tion in text categorization (Furd́ık et al., 2008). Sound meta features that effectively

describe domain characteristics are required in both these systems (single learning

and systems with multiple algorithms) (Brazdil et al., 2008; Giraud-Carrier et al.,

2004).

Generally, there are three types of meta-features. Firstly, simple statistical and

information-theoretic meta-features are calculated from the dataset, such as number

of classes, number of features, degree of correlation between features, and average

class entropy (Brazdil et al., 2008). Secondly, there are model based meta-features :

which describe certain characteristics of the learning system, such as maximum num-

ber of nodes per feature in a decision tree, kernel width of the gaussian kernel, or

maximum depth of a decision tree. Thirdly, landmark meta-features describe the

performance (i.e., accuracy, mean squared error) of a learning algorithm (Kordk et

al., 2010; Brazdil et al., 2008).

Section 3.3 of the thesis discusses previous work using meta learning for text cate-

gorization. Furthermore, section 3.5 explains the motivation for using meta learning

for string classification.
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3.3 Review of Meta Learning for Text Categoriza-

tion

Lam and Lai (2001) explain nine text meta-features for text categorization, later ex-

panded by Furd́ık et al. (2008) in their work. Both the studies by Lam and Lai (2001)

and Furd́ık et al. (2008) use the text meta-features to build a meta model, which

selects the best algorithm for a given document category in document categorization.

3.3.1 Text Meta-features

The text meta-features elucidated by Lam and Lai (2001) and Furd́ık et al. (2008)

for document categorization are:

1. TraningInstancesPerCategory: Number of positive training instances per

category.

2. TestingInstancesPerCategory: Number of positive testing instances per

category.

3. AvgDocLenPerCategory: The average document length of a category. The

document length refers to the number of index terms in a document. The

average is taken across all the positive documents within a category.

4. AvgTermValPerCategory: The average term weight of a document within

a category. The average index term weight is taken for single document and

the average is then computed for all the documents in a category.

5. AvgMaxTermValPerCategory: The average maximum term weight of a

document within a category. The maximum index term weights for individual

documents are summed and the average is taken for a category.

6. AvgMinTermValPerCategory: The average minimum term weight of a

document within a category. The minimum index term weights for individual

documents are summed and average is taken for a category.
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7. AvgTermThrePerCategory:The average number of terms above a term

weight threshold for a given category. The ‘term weight threshold’ is set glob-

ally. The number of index terms above the term weight threshold are summed

for category, and the average is computed for all instances in the category.

8. AvgTopInfoGainPerCategory:The average information gain of the top n

index terms of a category. The information gain of each individual index term

is computed for each category and ranked. The average is taken across top n

index terms with the highest information gain within a category.

9. NumInfoGainThresPerCategory:The number of index terms in a category,

where the information gain value exceeds a globally specified threshold.

The above text meta-features explained by Lam and Lai (2001) and Furd́ık et al.

(2008) extracts statistical and information-theoretic information from the dataset,

and later used them to train a meta model, which identifies the most suitable algo-

rithm for a given document category.

3.4 Text Data versus String Data

As the main focus of our research is to optimize string kernel SVMs, this section

attempts to clearly define the difference between text and string data. According

to Singhal (2001), De-Bie and Cristianini (2004) and Shawe-Taylor and Cristianini

(2004) a text dataset is a collection of words, where word or synonymously term is

any sequence of letters separated by punctuation or spaces. On the other hand, a

string is a finite sequence of symbols from an alphabet (Shawe-Taylor & Cristianini,

2004). This means even the word demarcation symbols like space and punctuation

can be in a string.

If one is given a string and a text dataset, it is easy to categorize them both into

their respective data types, considering their term separability (De-Bie & Cristianini,

2004). This can be illustrated more clearly using Figure 3.1 where there are three

types of data: network data (Figure 3.1a), Reuters-21578 news data (Figure 3.1b),

and spam data which consists of spam and non-spam emails (Figure 3.1c). It is
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(a) Network Data (b) Reuters-21578 Data

(c) Spam Data

Figure 3.1: String and Text Data: (a) Network traffic data produced by network
applications. (b) Data from Reuters-21578 dataset. (c) Spam data which consists
of ham and Spam E-mail messages (in every instance, the first character represents
the class label followed by actual data)
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difficult to separate terms in both network data and spam data compared to Reuters-

21578 data, but, terms are easily separable in Reuters-21578 data. This helps one

to categorize both network data and spam as string data and reuters-21578 as text

data.

By keeping this difference between string data and text data in mind, section 3.5

explains our motivation to use text meta-features explained in section 3.3.1 for string

classification.

3.5 Motivation of Meta Learning for String Cate-

gorization

In section 3.3.1, except for meta features TraningInstancesPerCategory (1) and

TestingInstancesPerCategory (2) all other text meta-features are computed using

terms and their frequencies. In this way one is able to represent a string dataset

as a collection of terms and their frequencies, which helps to derive some string

meta-features that are computed by terms and their frequencies. Now these string

meta-features help to employ meta learning on string classification.

3.6 Summary

Meta learning enables the exploitation of meta knowledge via re-learning using

a set of meta-features. Lam and Lai (2001) explain a set of text meta-features,

which enable the use of meta learning for algorithm selection in text classification.

These text meta-features are computed using terms and their frequencies in a text

dataset. Presenting a string dataset like terms and their frequencies enables it to

be transformed to a new space. The string meta-features can be computed by the

points in this new space, where it enables meta learning for string classification.



Chapter 4

Meta Learning for String Kernel

SVM Optimization

4.1 Introduction

Chapter 3 explains the applicability of meta learning for model selection in text

categorization. This chapter elucidates the applicability of meta learning for string

kernel SVM optimization. Section 4.2, explains a mechanism to represent a string

dataset in a new space, in which the points help to calculate string meta-features.

Which in turn help to employ meta learning for string classification, discussed in

section 4.3.1. Based upon this principle, section 4.3.2 explains the meta learning

algorithm for string kernel SVM optimization.

4.2 String Meta-features

In order to use the meta-features as discussed in section 3.3.1 for string classifica-

tion, the string dataset needs to be presented as terms and term frequencies. We

accomplish this in a string dataset by using splitting characters: ”+’:(){}[]. ,-\” to

split a string into set of terms or synonymously tokens. This approach is referred

as ‘tokenization’ in the literature (Shawe-Taylor & Cristianini, 2004). To explain

tokenization, consider the highlighted string in Figure 4.1, which is from a network
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Figure 4.1: String Data: Network traffic data produced by network applications
(in every instance, the first character represents the class label of the network
application, followed by actual network traffic data)

application that uses http protocol. Using specified splitting characters, one can

split the string into tokens: “akt = 0;”, “r”, “nvarbbisflash = 0;”, “r”, “nif”,

“navigator”, and “appV ”. Now a token frequency table is generated, as shown in

Table 4.1. This token-frequency information is used to compute the sting meta-

features explained in this section.

The main difference between the text meta features discussed in section 3.3.1 and

sting meta-features explained here, is that the text meta-features are calculated for

a text category in a text dataset, but, the sting meta-features are calculated for the

entire string dataset. Out of nine text meta-features discussed in the section 3.3.1,

seven are considered in deriving these string meta-features.

Assume a string dataset which has n number of instances, the seven sting meta-

features are:

1. AvgInstanceLen: The average instance length of the dataset. The instance

length refers to number of tokens in an instance. The average is taken across

all the instances. If ith instance has Ni tokens, then the average instance length



4.2. String Meta-features 24

Token Token Frequency
akt = 0; 1

r 2
nvarbbisflash = 0; 1

nif 1
navigator 1

appV 1

Table 4.1: Token Frequency Table: Tokens and their frequencies for highlighted
string in Figure 4.1

for that dataset is
∑n

i=1 Ni

n
.

2. AvgTokenVal: The average token weight of an instance across a string dataset.

Initially, the token weight is calculated for each token and the average is com-

puted for single instance. Then, the average token weights for each instance

are summed and the average is computed for all the instances.

If there are m unique tokens in ith instance, the average token weight for a

string dataset is written as:

Average token weight of the string dataset =

∑n
i=1

∑m
j=1 TW (j, i)

mn
, (4.1)

where TW (j, i) is the token weight of jth token in ith instance. According to

Hersh (2008)s interpretation of term weight, the TW (j, i) can be written as:

TW (j, i) = TF(j, i)× IDF(j), (4.2)

where IDF(j) is the inverse document frequency of jth token, and TF(j, i) is the

frequency of jth token in instance i. Furthermore, according to Hersh (2008),

the IDF(j) is computed as:

IDF (j) = log
n

TF (j)
+ 1, (4.3)

where TF (j) is the frequency of the jth token in the dataset. Now, considering
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(4.2) and (4.3), equation (4.1) is rewritten as:

Average token weight of the string dataset =

∑n
i=1

∑m
j=1 TF (j)

(
log n

TF (j)
+ 1

)

mn
(4.4)

3. AvgMaxTokenVal: The average maximum token weight of an instance across

a string dataset. Maximum token weights of an instance are summed and the

average is taken across all instances.

4. AvgMinTokenVal: The average minimum token weight of an instance across

a given string dataset. Minimum token weights of an instance are summed and

the average is taken across all instances.

5. AvgTokenThre: The average number of tokens above a token weight thresh-

old for a given string dataset. The token weight threshold is set globally. The

number of tokens where the token weight is above the threshold are summed

and the average is taken across all instances.

6. AvgTopInfoGain: The average information gain of the top r tokens in the

string dataset. The information gain of each individual token is computed for

each instance and raked. Then, the average is taken across top r terms with

highest information gain.

7. NumInfoGainThres:The average number of tokens in an instance where the

information gain value exceeds a globally specified threshold.

4.3 Meta Learning for String Classification

The mentioned string meta-features help to employ meta learning on a string clas-

sification. The principle of using meta learning for string classification is discussed

in section 4.3.1. A novel string kernel SVM optimization method is elucidated in

section 4.3.2.
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Figure 4.2: String Meta-feature Generation Process
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Figure 4.3: The Procedure to Employ Meta Learning for String Classification

4.3.1 Meta Learning for String Classification: Principle

Consider a string dataset D, which is represented as a vector in token-frequency space

Ω, where each dimension in Ω is associated with one token. Now, the dataset D is

represented via function ω in this new Ω token-frequency space:

ω(D) = (TF (t1, D), TF (t2, D), ...., TF (tN , D)) ∈ Ω,

where TF (tj, D) is the token frequency of jth token in the string dataset D, and

N is the number of unique tokens in the dataset. Now one can derive a function

fp : Ω → R:

fp(D) = f ′p,D
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where f ′p,D represents the value for the pth string-meta feature for D. For the string

dataset D, there are p′ finite meta-features, where all string meta-features fp(D)

(p = 1, 2, 3, ..., p′) are well defined. This sting meta-feature generation process is

shown in Figure 4.2.

Using the above discussed sting meta-features, Figure 4.3 explains the principle of

meta learning for string classification. Assume there is a string dataset pool L with l′

datasets, where, each string dataset Dl (Dl ∈ L, l = 1, ..., l′) is again subdivided into

unique DlTR (training) and DlTS (testing) datasets, which creates training (LTR) and

testing (LTS) dataset pools. The string meta-feature f ′p,DlTR
is computed for dataset

DlTR. Also, for DlTR, the machine learning algorithm LA with parameter combina-

tion c, generates YDlTR,c classification accuracy. These computed string meta-features

(f ′p,DlTR
), parameter combinations (c) and accuracy information (YDlTR,c) generate a

meta model via regression, which is able to predict the classification accuracy for

a new string dataset, given the computed sting meta-features and the parameter

combination. Hence, for a new string dataset DlTS, the meta model predicts the

accuracy YDlTS ,c′ for parameter combination c′ by computing string-meta features

f ′p,DlTS
.

4.3.2 Meta Learning for String Kernel SVM Optimization:

Algorithm

According to the principle introduced in section 4.3.1, the built meta model is able

to predict the string classification accuracy for a machine learning algorithm on a

novel string dataset, using computed string meta-features. This section explains the

procedure to use this principle (meta learning for string classification) to optimize

string kernel SVMs, which is shown in Algorithm 1.

Algorithm 1 explains the procedure to use meta learning to optimize string kernel

SK with SVM. The proposed algorithm uses training string dataset pool LTR, test-

ing string dataset pool LTS, training parameter pool C and testing parameter pool

C ′ as inputs. Also, SVM with string kernel SK is set as the learning algorithm

(LA). Initially, a meta model is built using meta features calculated for each dataset

in LTR with accuracy information obtained for each parameter combination in C via

n-fold cross validation. Then, for each new string dataset in LTS, the built meta
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input :
LTR =Training String Dataset Pool
LTS =Testing String Dataset Pool
C =Parameter Combination Pool for Training (c ∈ C)
C ′ =Parameter Combination Pool for Testing (c′ ∈ C ′)
LA =SVM with String Kernel SK

output: Parameter combination ĉl which yields the best accuracy for
sting dataset DlTS

for l ← 1 to l′ do
Pick DlTR from LTR

for p ← 1 to p′ do
Compute f ′p,DlTR

end
repeat

Pick a parameter combination c from C
Do 10-fold cross validation on DlTR, using LA with parameter
combination c which yields YDlTR,c accuracy

until no more parameter combinations in C;

end

Build a regression model (meta model) using f ′p,DlTR
, c, and YDlTR,c

for l ← 1 to l′ do
Pick DlTS from LTS

for p ← 1 to p′ do
Compute f ′p,DlTS

end
repeat

Pick a parameter combination c′ from C ′

Predict accuracy YDlTS ,c′ for LA with parameter combination c′

using build meta model
if YDlTS ,c′ is maximum then

ĉl = c′

end

until no more parameter combinations in C;

end

Algorithm 1: The Proposed Meta Learning Algorithm for String Kernel
SVM Optimization
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model predicts the classification accuracy for each combination in C ′. The combina-

tion (ĉl) which yields the highest accuracy is presented as the optimum parameter

combination for dataset DlTS.

4.4 Summary

A string dataset is defined in a new space using tokens and their frequencies (token-

frequency space). A set of string meta-features is computed by the points of this

new space. These string meta-features, learning algorithm parameters and accuracy

information help to train a meta model which predicts string classification accuracy

for a learning algorithm on a new string dataset. This principle is used to optimize

string kernel SVMs in the proposed algorithm (Meta Learning Algorithm for String

Kernel SVM Optimization).



Chapter 5

Experiments and Results

The chapter presents the results of experiments carried out to demonstrate the effec-

tiveness of the proposed meta learning algorithm for string kernel SVM optimization.

Three string kernel SVMs: edit-distance SVM, bag-of-words SVM and n-gram SVM

were experimented, on four string datasets: Spam, Reuters-21578, Network Appli-

cation Detection and e-News categorization using the proposed algorithm. Section

5.1 explains the experimental setup, evaluation criteria and dataset description. The

experiment results for the three string kernel SVMs are presented in section 5.2.

5.1 Experiments

The experiment setup, the evaluation criteria and string datasets are explained in

this section.

5.1.1 Experiment Setup

The proposed algorithm was experimented on three string kernel SVMs (edit-distance

SVM, bag-of-words SVM and n-gram SVM). As shown in Table 5.1, the algorithm

was trained using training string dataset pool LTR, and was tested on testing string

dataset pool LTS, for each string kernel SVM. In the experiments, SVM cost param-

eter (c) was selected as 20, 21, ..., 216 for all string kernel SVMs. The string kernel
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parameters λL and λB for edit-distance and bag-of-words string kernels, were selected

as 0.001, 0.1, 0.25, 0.5. The substring length in n-gram string kernel was selected as

1, 2, ..., 8 in the experiments. The string meta-feature, AvgMinTokenV al was not

considered in the training stage, as it was having the value 0 for all datasets. Also,

the global threshold for the AvgTokenThr was set to 2 in all the experiments. Sup-

port Vector Regression (SVR) was used to build the meta model. In the training

stage, the parameters which yield lowest cross validation RMSE for SVR, were con-

sidered in regression (in building the meta model), for each string kernel SVM. 10

fold- cross validation was done for the top 10 predicted parameter combinations, on

each string dataset. The performance evaluation was done considering Root Mean

Squared Error (RMSE) for the top 10 predicted parameters on each dataset.

In the experiments, edit-distance and bag-of-words string kernels were implemented

using Libsvm-2.9 Chang and Lin (2001) and n-gram string kernel was implemented

using shogun octave interface (S.Sonnenburg, 2006). The string meta-feature com-

putation program was coded using C++ language. All the experiments were run on

a PC having Intel Core2 Duo 3GHz processor and 2.96 Gb RAM.

5.1.2 Datasets

Four string datasets were used in the string dataset pool L = {Spam, Reuters-21578,

Network Application Detection, e-News Categorization}. It was again subdivided

into training dataset pool (LTR) and testing dataset pool (LTS), where each consisted

of unique string datasets. String dataset pool LTR was used to train the meta model

in the proposed algorithm and string datasets pool LTS was used to test the proposed

algorithm. For edit-distance and bag-of-words string kernel SVMs, training dataset

pool LTR = {Spam, Reuters-21578, Network Application Detection} was used, and

for n-gram SVM, LTR = { Spam, Reuters-21578, Network Application Detection,

e-News Categorization } was used. In testing, for edit-distance and bag-of-words

string kernel SVMs, testing pool LTS = {Spam, Reuters-21578, Network Application

Detection} was used, and for n-gram SVM, the testing pool LTR = { Spam, Reuters-

21578, Network Application Detection, e-News Categorization } was used. Table 5.1

summarizes algorithm training and testing information on each string dataset. A

detailed description about each string dataset is given below.
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Dataset String Dataset Sting Kernel SVM
Pool (Dataset Label) Edit-Distance Bag-of-Words N-gram

LTR

Spam X X X
Reuters-21578 X X X
Network Application Detection X X X
e-News Categorization - - X

LTS

Spam(1) X X X
Reuters-21578(2) X X X
Network Application Detection(3) X X X
e-News Categorization(4) - - X

Table 5.1: The String Datasets used in Training and Testing the Proposed Algo-
rithm

Class Label Document Category Training Testing
0 Earn 152 40
1 Acquisition 114 25
2 Crude 76 15
3 Corn 38 10

370 90

Table 5.2: Data Distribution-Reuters-21578 Dataset

Spam Dataset

This dataset consists of 696 ham messages and 384 spam messages from Spam Assas-

sin public mail corpus (2002). There are two types of ham e-mails: easy ham (646)

and hard ham (50). Easy ham e-mails are non-spam messages without any spam

signatures and hard ham are non-spam messages similar in many aspects to spam

messages which use unusual HTML markup, coloured text, spam-sounding phrases,

etc. Each e-mail message has a header, a body and some potential attachments.

The training dataset consists with 810 messages (484 easy ham, 38 hard ham and

288 spam) and testing dataset has 270 messages (162 easy ham, 12 hard ham and

96 spam).
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Class Label Application/protocol Training Testing
0 AIM 18 7
1 Bittorrent 140 59
2 http 583 249
3 pop 17 7

770 329

Table 5.3: Data Distribution-Application Detection Dataset

Reuters-21578 Dataset

The Reuters dataset used in the experiments has the exact split to Lodhi et al.

(2002). It consists of 470 documents: 380 for training and 90 for testing. Four

document categories, those of earn, acquisition, crude and corn are available in the

dataset. Table 5.2 shows the document distribution among the different categories.

Network Application Detection Data

The dataset consists of network traffic data produced by network applications, such

as http, https, imap, pop3, ssh, ftp and bittorent. All network data were captured,

and sorted according to their protocols using “Wireshark” (Combs et al., 2008) and

split into individual connections using tcpflow (Elson, 2003). Only TCP traffic was

taken into account in the data capturing stage. The option ‘-s’ in “tcpflow” (Elson,

2003) was used to remove all non printable characters in a connection. Also, only

the first 50 bytes of a connection were considered in preparing the dataset. Every

connection was labelled according to the application type. Table 5.3 shows the

label number for every application type and the number of instances in training and

testing datasets.

e-News Categorization Data

The dataset is collected from four electronic newspapers: New Zealand Herald (2010),

The Australian (2010), The Independent (2010) and The Times (2010), on five news

topics (business, education, entertainments, sport and travel). Each document is

labelled manually by skimming over the text to identify the category. Punctuations
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Class Lable News Category Training Testing
0 Business 227 97
1 Education 93 40
2 Entertainments 99 42
3 Sport 118 50
4 Travel 131 56

668 285

Table 5.4: Data Distribution e-Newsgroup Dataset

and stop words were removed from the dataset in advance. Table 5.4 shows detailed

information about the dataset.

5.2 Results

Experiment results for three string kernel SVMs are discussed in this section. Section

5.2.1 explains the results for edit-distance SVM optimization, using the proposed al-

gorithm. The experimental results for bag-of-words SVM optimization are presented

in section 5.2.2. Section 5.2.3 explains the results for n-gram SVM optimization,

using the proposed algorithm.

5.2.1 Meta Learning for Edit-Distance SVM Optimization

Here, the proposed algorithm was used to optimize edit-distance SVM. The algorithm

attempts to find the optimum parameter combination (λL and SVM cost) for edit-

distance SVM on three string datasets: spam, Reuters-21578 and network application

detection, in test dataset pool LTS (refer Table 5.1). In the experiments, the SVR

parameters: γ = 0.084 and SVR Cost=5400 were used in regression. The actual

accuracy and the predicted accuracy for the top 10 predicted parameter combinations

are shown in Table 5.5. Also, the table shows the RMSE for top 10 predicted

parameter combinations on each dataset.

According to Table 5.5a and Table 5.5b, the optimum parameters produced by the

proposed algorithm yield very low predicted and actual classification accuracies, for

edit-distance SVM, on spam and Reuters-21578 string datasets. This shows that
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cost λL rank predicted% actual%
65536 0.000488 1 2.36387 0.37

2 0.000488 2 2.36381 5.19
4 0.000488 3 2.36377 4.44
8 0.000488 4 2.36371 3.33
16 0.000488 5 2.36357 1.11
32 0.000488 6 2.36331 0.37
2 0.000976 7 2.36302 4.44
4 0.000976 8 2.36299 3.33
8 0.000976 8 2.36292 1.11

65536 0.000976 10 2.36286 0.37
root mean squared error 1.831455

(a) Spam Data

cost λL rank predicted% actual%
65536 0.000488 1 3.30463 23.33

2 0.000488 2 3.30454 24.44
4 0.000488 3 3.30451 26.67
8 0.000488 4 3.30445 23.33
16 0.000488 5 3.30432 23.33
32 0.000488 6 3.30407 23.33
2 0.000976 7 3.3038 26.67

65536 0.000976 8 3.30379 23.33
4 0.000976 9 3.30377 23.33
8 0.000976 10 3.30371 23.33

root mean squared error 20.846794

(b) Reuters-21578

cost λL rank predicted% actual%
32768 0.0625 1 73.1729 75.99
32768 0.03125 2 73.1653 75.99
32768 0.125 3 73.1602 75.99
32768 0.015625 4 73.1556 75.99
8192 0.125 5 73.1526 75.99
16384 0.125 6 73.1526 75.99
8192 0.25 7 73.1518 75.99
32768 0.5 8 73.1515 75.99
4096 0.25 9 73.1514 75.99
65536 0.25 10 73.1512 75.99

root mean squared error 2.833499

(c) Network Application Detec-
tion

Table 5.5: Experimental Results for Edit-Distance SVM Optimization: (the top
10 predicted parameter combinations using the proposed algorithm on each string
dataset)

the edit-distance SVM is not suitable for string classification on spam and reuters-

21578 datasets. However, according to Table 5.5c, the algorithm produces optimum

parameters which yield good string classification accuracies on network application

detection dataset, for edit-distance SVM (with a low RMSE).

5.2.2 Meta Learning for Bag-of-Words SVM Optimization

Here, the the proposed algorithm attempts to find the optimum parameter combina-

tion (λB and SVM cost) for bag-of-words SVM. Initially, the algorithm was trained

on a training dataset pool LTR (refer Table 5.1). Then, the algorithm predicted the

string classification accuracies for bag-of-words SVM on three different string datasets

in test dataset pool LTS (refer Table 5.1). The SVR parameters: γ = 0.88 and SVR

Cost=450 were used in regression. 10-fold cross validation was done for the top 10

predicted parameter combinations, and RMSE was calculated for the same. Table

5.6 shows the top 10 predicted parameter combinations on three string datasets for

bag-of-words SVM.
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cost λB rank predicted% actual%
2 0.000488 1 61.6244 64.44
4 0.000488 2 61.6207 64.44
8 0.000488 3 61.6135 64.44
16 0.000488 4 61.5989 64.44
32 0.000488 5 61.5699 64.44
64 0.000488 6 61.5117 64.44
2 0.000976 7 61.4788 64.44
4 0.000976 8 61.4752 64.44
8 0.000976 9 61.4679 64.44
16 0.000976 10 61.4534 64.44

root mean squared error 2.899333

(a) Spam Data

cost λB rank predicted% actual%
4096 0.5 1 87.9839 86.67
2048 0.5 2 87.9734 86.67
1024 0.5 3 87.9551 86.67
512 0.5 4 87.9422 86.67
256 0.5 5 87.9347 86.67
8192 0.5 6 87.9307 86.67
128 0.5 7 87.9307 86.67

32768 0.5 8 87.9304 86.67
64 0.5 9 87.9287 86.67
32 0.5 10 87.9276 86.67

root mean squared error 1.273886

(b) Reuters-21578

cost λB rank predicted% actual%
4 0.000488 1 75.3987 75.99
2 0.000488 2 75.3987 75.99
8 0.000488 3 75.3986 75.99
16 0.000488 4 75.3985 75.99
32 0.000488 5 75.3983 75.99
64 0.000488 6 75.3978 75.99
128 0.000488 7 75.3968 75.99
4 0.000976 8 75.3967 75.99
2 0.000976 9 75.3967 75.99
8 0.000976 10 75.3966 75.99

root mean squared error 0.592261

(c) Network Application Detec-
tion

Table 5.6: Experimental Results for Bag-of-Words SVM Optimization: (the top
10 predicted parameter combinations using the proposed algorithm on each string
dataset)

According to Table 5.6b and Table 5.6c, the proposed algorithm produces parameter

combinations which yield high classification accuracies on reuters-21578 and network

application detection datasets with a very low RMSE. However, on spam dataset,

the optimized parameter combinations produced by the proposed algorithm yield

average string classification accuracies (see Table 5.6a). Considering the overall high

string classification accuracy (with a very low average RMSE) shown in Table 5.6 and

Table 5.8, on all three datasets, one can say that the proposed algorithm produces

optimized parameter combinations which yield good string classification accuracies,

for bag-of-words SVM.

5.2.3 Meta Learning for N-gram SVM Optimization

In this experiment, the algorithm attempts to find optimized parameters (substring

length and SVM cost) for n-gram SVM. The algorithm was trained on string dataset

pool LTR and tested on testing string dataset pool LTS (refer Table 5.1). The

SVR parameters: γ = 0.95 and SVR Cost=500 were used in regression. 10-fold

cross validation was done for the top 10 predicted parameter combinations on each
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cost substring length rank predicted% actual%
16384 8 1 99.3074 98.33333
4096 8 2 99.2982 98.33333
32768 7 3 99.2683 98.33333
16384 7 4 99.2652 98.33333
4096 7 5 99.2628 98.33333
4096 6 6 99.2524 98.33333
4096 5 7 99.2066 98.33333
2048 8 8 99.1935 98.33333
32768 6 9 99.1862 98.33333
4096 2 10 99.1803 97.81251

root mean squared error 0.971167898

(a) Spam Data

cost substring length rank predicted% actual%
4096 6 1 92.6961 95.36587
2048 6 2 92.6842 95.36587
8192 6 3 92.6771 95.36587
1024 6 4 92.6636 95.36587
512 6 5 92.6474 95.36587

16384 6 6 92.6405 95.36587
256 6 7 92.6376 95.36587
128 6 8 92.6322 95.36587
64 6 9 92.6294 95.36587
32 6 10 92.6279 95.36587

root mean squared error 2.712372587

(b) Reuters-21578

cost substring length rank predicted% actual%
16384 2 1 99.6656 98.22917
2048 2 2 99.5895 98.22917
1024 2 3 99.5776 98.22917
32768 2 4 99.5685 98.22917
4096 2 5 99.5634 98.22917
512 2 6 99.5607 98.22917
256 2 7 99.5489 98.22917
128 2 8 99.542 98.22917
64 2 9 99.5384 98.22917
32 2 10 99.5365 97.81252

root mean squared error 1.386738588

(c) Network Application Detection

cost substring length rank predicted% actual%
4096 5 1 90.8189 74.35295
4096 6 2 90.6225 75.05881
4096 4 3 90.5267 73.76471
8192 5 4 90.484 73.88235
32768 5 5 90.3336 73.64706
16384 5 6 90.3317 73.64706
8192 6 7 90.3088 75.17647
4096 3 8 90.2765 74.70588
8192 4 9 90.275 73.41176
32768 4 10 90.1778 73.17646

root mean squared error 16.34502652

(d) e-News Categorization

Table 5.7: Experimental Results for N-gram SVM Optimization: (the top 10 pre-
dicted parameter combinations using the proposed algorithm on each string dataset)

string dataset. Table 5.7 summarizes the experiment results for the top 10 predicted

combinations on each dataset.

According to Table 5.7, the proposed algorithm produces optimized parameters,

which yield good string classification accuracies for n-gram SVM, on all four string

datasets. The algorithm has a very low RMSE for top 10 predicted on spam, Reuters-

21578 and network application detection datasets (see Table 5.7a, Table 5.7b, and

Table 5.7c). Even though, the algorithm has quite a high RMSE on the e-News cat-

egorization dataset, the top 10 predicted parameter combinations yield good string

classification accuracies on the dataset (see Table 5.7d).

5.2.4 Affection of SVR Parameters to N-gram SVM Opti-

mization

This experiment attempts to identify the effect of SVR parameters on building the

meta model in the proposed algorithm. The n-gram SVM was optimized using the

proposed algorithm. SVR Cost was considered as 400, 450, 500, 550, 600, 650 in the

experiments and gamma (γ) was chosen as 0.05, 0.1, 0.15,...,0.95 for SVR. All four
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String Kernel Dataset RMSE Avg RMSE

Edit-Distance
Spam 1.831455

8.503916Reuters-21578 20.846794
Network Application Detection 2.833499

Bag-of-Words
Spam 2.899333

1.588493Reuters-21578 1.273886
Network Application Detection 0.592261

N-gram
Spam 0.971168

5.353826
Reuters-21578 2.712373
Network Application Detection 1.386739
e-News Categorization 16.345027

Table 5.8: Root Mean Squared Error (RMSE) for String Kernel SVM Optimiza-
tion on each String Dataset (for top 10 predicted parameter combinations)
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Figure 5.1: Effectiveness of SVR Parameters in the Proposed Algorithm for N-
gram SVM Optimization

string datasets were considered in the experiment. The 10-fold cross validation was

done for all 512 (4 datasets × 16 SVM cost values × 8 substring lengths) n-gram

SVM parameter combinations on four datasets. RMSE was calculated considering

actual string classification accuracy and predicted string classification accuracy for

all 512 n-gram SVM parameters, for a given SVR parameter combination. Figure
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5.1 shows the RMSEs for different SVR parameter combinations. According to the

figure one can see that higher SVR cost values with higher γ values yield low RMSEs,

but, the degree of affect on RMSE gets lower as SVR cost and γ increase. Detailed

information regarding the relevant RMSEs can be found in Table A.1 in the Appendix

A.

5.2.5 Prediction Behaviour of the Meta Learning Algorithm

for N-gram SVM Optimization

This experiment attempts to identify the prediction behaviour of the proposed
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Figure 5.2: N-gram SVM Optimization using the Proposed Algorithm for 512 Pa-
rameter Combinations (SVR-Cost=500, gamma (γ)=0.95 and RMSE=0.810938),
index: 0 ≤ Spam < 200 ≤ Reuters-21578 < 400 ≤ Network Application Detection
< 600 ≤ e-News Categorization < 800

algorithm when optimizing the n-gram SVM. Here, the 10-fold cross validation was

done for all 512 (4 datasets× 16 SVM cost values× 8 substring lengths) n-gram SVM

parameter combinations on four datasets. RMSE was calculated considering actual

string classification accuracy and predicted string classification accuracy for all 512
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n-gram SVM parameter combinations. SVR cost=500 and γ=0.95 were considered

in the experiments.

Figure 5.2 shows actual classification accuracy and predicted string classification

accuracy by the proposed algorithm, on four string datasets. In Figure 5.2, the x

axis or the index is chosen in such a way that it is able to represent all parameter

combinations on each dataset. This is achieved by labeling the testing datasets in

dataset pool LTS, according to the schema shown in Table 5.1, and then computing

the index as:

index = (dataset− 1)× 200 + log2(cost)× 10 + substring length.

Now, the index values (0,168) represent spam dataset, (200,368) represent Reuters-

21578 dataset, (400,568) represent network application detection dataset and (600,768)

represent e-News categorization dataset. According to the figure, one can see that

the proposed algorithm nicely represents the actual parameter behaviour of n-gram

SVM on all four datasets. This is further analyzed in Figure 5.3 considering network

application dataset. According to Figure 5.3a, it can be clearly seen that substring

length 2 yields good string classification accuracies on network application detection

dataset. This behaviour is clearly represented by the proposed algorithm in Figure

5.3b and in Table 5.7c by producing parameter combinations that include substring

length 2 in the top 10 predicted parameter combinations. (Figures that show the

parameter behaviour on other string datasets can be found in the Appendix B)

5.3 Summary

The proposed meta learning algorithm for string kernel SVM optimization produces

optimized parameters for n-gram SVM, yielding good string classification accuracies

on all four datasets. Furthermore, the algorithm produces optimized parameters

which yield good string classification accuracies for bag-of-words SVM, on three out

of two string datasets in the test dataset pool LTS. The algorithm produces opti-

mized parameters which yield good string classification accuracies only on network

application detection dataset for edit-distance SVM.

The low string classification accuracies (actual and predicted) for the top 10 param-
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eter combinations, by the proposed algorithm, on spam and Reuters-21578 datasets,

for the edit-distance SVM, reveals that edit-distance SVM may not be suitable for

string classification on those two string datasets.

Regression parameters also have an effect on the prediction behaviour of the proposed

algorithm. According to experimental results regression parameters: SVR cost=600

and γ=0.95 yields good n-gram SVM parameters for the proposed algorithm.
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(a) Actual Parameter Behaviour: Network Application
Detection (different colours represent different substring
lengths)
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Figure 5.3: Prediction Behaviour of the Proposed Algorithm for N-gram
SVM Optimization on Network Application Detection String Dataset (using SVR
cost=500 and γ=0.95 in regression): (a) Actual parameter behaviour of n-gram
SVM on Network Application Detection string dataset. (b) Predicted parameter
behaviour of n-gram SVM, by the proposed algorithm on Network Application De-
tection string dataset.



Chapter 6

Discussions and Conclusions

6.1 Brief Review of the Work

Section 1.2.1 explains the two research objectives of the research. The first is to assess

the feasibility of representing a string dataset in a space similar to term-frequency

space, as discussed in Lam and Lai (2001) and Furd́ık et al. (2008). Secondly, if a

string dataset is presented in such a space, to assess whether string kernel SVMs can

be optimized via meta learning?

In order to understand the principle concepts of string kernel SVMs, chapter 2 does

a literature review on SVMs, kernel trick, and string kernels. The chapter also

explains the SVM parameter optimization problem, along with currently available

SVM parameter optimization techniques for numeric kernels. Finally the chapter

discusses the string kernel SVM optimization problem.

As meta learning techniques are to be used in string kernel SVM optimization, chap-

ter 3 discusses the principle of meta learning and its functionality. It also explains the

application of meta learning for text classification using a set of text meta-features,

which are calculated from text data. Furthermore, the chapter clearly defines the

difference between text and string data, which motivates one to use meta learning for

string classification, if there exist any defined string meta-features over string data.

The chapter 4 discusses a set of string meta-features which are defined over the

token-frequency space. These string meta-features help to employ meta learning on
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string classification. Based on this principle, a novel meta learning algorithm for

string kernel SVM optimization is presented later in the chapter.

Chapter 5 explains the experimental results for parameter optimization of three

string kernel SVMs (edit-distance SVM, bag-of-words SVM and n-gram SVM) using

the proposed algorithm, on four string datasets.

6.2 Conclusion of the Work

The experimental results show that the proposed algorithm produces parameter com-

binations which yield good string classification accuracies on most of the datasets.

They also reveal that some string kernel SVMs may not be suitable for carrying out

the string classification required on certain string datasets. Specifically, edit-distance

SVM yields poor string classification results on both spam and Reuters-21578 string

datasets.

There are three main contributions from the thesis to the field of machine learning:

1. String Meta-features: The defined string meta-features can be used to ex-

tracting meta knowledge from any string dataset.

2. Meta Learning for String Classification Principle: explains the pro-

cedure to apply meta learning on string classification, using extracted meta

knowledge via string meta-features.

3. Meta Learning Algorithm for String Kernel SVM Optimization: us-

ing the Meta Learning for String Classification Principle, a novel string kernel

optimization method is derived, which is able to predict optimum string ker-

nel SVM parameters for a given string kernel SVM on a string dataset by

calculating relevant string meta-features.

6.3 Limitations of the Research

Below are limitations that could be found in the research.
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Firstly, According to Figure A.1 in the appendix A, for n-gram SVM, the pro-

posed algorithm yields classification accuracies over 100% on spam and Reuters-21578

string datasets. This can be resolved if one is able to set upper and lower bounds in

the algorithm. Secondly, the string meta-features could be more descriptive, since,

they can explain the string dataset more clearly than just numbers representing the

string dataset. Thirdly, in general, a meta learning algorithm is tested on a large

number of datasets, but due to the high computational cost of string data and the

unavailability of bench marked string datasets, have forced to use only four string

datasets in the experiments.

6.4 Future work

Even though the proposed meta learning algorithm for string kernel SVM optimiza-

tion was able produce parameter combinations which yield good string classification

accuracies for string kernel SVMs on most of the string datasets, one can see that

some string kernel SVMs (specially edit-distance SVM) do not produce good clas-

sification results on certain string datasets. This can be further analyzed by do-

ing more experiments for edit-distance SVM on relevant string datasets (spam and

Reuters-21578). Also, instead of using string classification accuracy as the landmark

meta-feature, one can use a response variable:

yij = ln
eij

1− eij

where, eij is the classification error for ith string kernel SVM parameter combination

on jth string dataset (Lam & Lai, 2001). Here, the classification error (eij) is sent

through a logistic transformation to yield the response variable (yij) which has the

range (0,1). This avoids situations like predicting over 100% classification accuracy

on a given string dataset by the proposed algorithm. Furthermore, one could imple-

ment the string meta-features: AvgTopInfoGain and NumInfoGainThres (explained

in section 4.2) in a future string kernel SVM optimization algorithm. Also, identi-

fying more string meta-features helps to employ meta learning more effectively on

string classification. Finally, one could include more string datasets to the string

dataset pool, where it could help to check the robustness of the proposed algorithm.
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AIM AOL Instant Messenger

ANOVA Analysis of Variance

AOL America On Line
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HTTP Hypertext Transfer Protocol

ML Machine Learning

POP Post Office Protocol

RMSE Root Mean Squared Error

SVM Support Vector Machine

SVR Support Vector Regression
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Table A.1: Effect of SVR Parameters for N-gram SVM Optimization using the
Proposed Algorithm

SVRCost gamma (γ) RMSE

400 0.05 8.50992

400 0.1 5.555247

400 0.15 4.053595

400 0.2 3.346517

400 0.25 2.86574

400 0.3 2.550911

400 0.35 2.36238

400 0.4 2.24941

400 0.45 2.124799

400 0.5 2.042941

400 0.55 1.953107

400 0.6 1.862597

400 0.65 1.7832

400 0.7 1.697626

400 0.75 1.629563

400 0.8 1.567929

400 0.85 1.507324

400 0.9 1.465667

400 0.95 1.407006

450 0.05 1.890609

450 0.1 1.708259

450 0.15 1.500529

450 0.2 1.398793

450 0.25 1.306556

450 0.3 1.250609

450 0.35 1.227805

450 0.4 1.224906

450 0.45 1.21414

450 0.5 1.201731

450 0.55 1.181248

Continued on next page
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Table A.1 – continued from previous page

SVRCost gamma (γ) RMSE

450 0.6 1.160545

450 0.65 1.129874

450 0.7 1.103122

450 0.75 1.080767

450 0.8 1.056625

450 0.85 1.0345

450 0.9 1.015517

450 0.95 0.995293

500 0.05 1.352195

500 0.1 1.222869

500 0.15 1.098058

500 0.2 1.03095

500 0.25 0.97668

500 0.3 0.944186

500 0.35 0.936754

500 0.4 0.937118

500 0.45 0.941975

500 0.5 0.93572

500 0.55 0.923687

500 0.6 0.912009

500 0.65 0.892681

500 0.7 0.877804

500 0.75 0.864118

500 0.8 0.847118

500 0.85 0.838921

500 0.9 0.822773

500 0.95 0.810938

550 0.05 1.105481

550 0.1 0.995947

550 0.15 0.906221

550 0.2 0.854153

Continued on next page
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Table A.1 – continued from previous page

SVRCost gamma (γ) RMSE

550 0.25 0.807167

550 0.3 0.790453

550 0.35 0.790408

550 0.4 0.792143

550 0.45 0.795618

550 0.5 0.792143

550 0.55 0.785088

550 0.6 0.772235

550 0.65 0.760269

550 0.7 0.75061

550 0.75 0.739332

550 0.8 0.728195

550 0.85 0.718893

550 0.9 0.710875

550 0.95 0.702208

600 0.05 0.956616

600 0.1 0.854081

600 0.15 0.788217

600 0.2 0.743332

600 0.25 0.70329

600 0.3 0.694138

600 0.35 0.697014

600 0.4 0.698788

600 0.45 0.702004

600 0.5 0.699129

600 0.55 0.693905

600 0.6 0.682666

600 0.65 0.673551

600 0.7 0.665763

600 0.75 0.655614

600 0.8 0.650605

Continued on next page
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Table A.1 – continued from previous page

SVRCost gamma (γ) RMSE

600 0.85 0.641103

600 0.9 0.633649

600 0.95 0.62885

650 0.05 0.857263

650 0.1 0.757525

650 0.15 0.708737

650 0.2 0.665604

650 0.25 0.633033

650 0.3 0.624846

650 0.35 0.632159

650 0.4 0.632542

650 0.45 0.634852

650 0.5 0.632408

650 0.55 0.625832

650 0.6 0.618099

650 0.65 0.611103

650 0.7 0.603832

650 0.75 0.595498

650 0.8 0.589585

650 0.85 0.584199

650 0.9 0.578295

650 0.95 0.574557
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Figure A.1: N-gram SVM Optimization using the Proposed Algorithm
for 512 Parameter Combinations (SVR-Cost=450, gamma (γ)=0.05 and
RMSE=1.890609), index: 0 ≤ Spam < 200 ≤ Reuters-21578 < 400 ≤ Network
Application Detection < 600 ≤ e-News Categorization < 800
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Figure A.2: N-gram SVM Optimization using the Proposed Algorithm
for 512 Parameter Combinations (SVR-Cost=500, gamma (γ)=0.05 and
RMSE=1.352195), index: 0 ≤ Spam < 200 ≤ Reuters-21578 < 400 ≤ Network
Application Detection < 600 ≤ e-News Categorization < 800



Appendix B

Prediction Behaviour of the

Proposed Algorithm for N-gram

SVM Optimization: Figures
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(a) Actual Parameter Behaviour: Spam (different colours
represent different substring lengths)
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(b) Predicted Parameter Behaviour: Spam (different
colours represent different substring lengths)

Figure B.1: Prediction Behaviour of the Proposed Algorithm for N-gram SVM
Optimization on Spam String Dataset (using SVR cost=500 and γ=0.95 in regres-
sion): (a) Actual parameter behaviour of n-gram SVM on Spam string dataset.
(b) Predicted parameter behaviour of n-gram SVM, by the proposed algorithm on
Spam string dataset.
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(a) Actual Parameter Behaviour: Reuters-21578 (different
colours represent different substring lengths)
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(b) Predicted Parameter Behaviour: Reuters-21578 (dif-
ferent colours represent different substring lengths)

Figure B.2: Prediction Behaviour of the Proposed Algorithm for N-gram SVM
Optimization on Reuters-21578 String Dataset (using SVR cost=500 and γ=0.95
in regression): (a) Actual parameter behaviour of n-gram SVM on Reuters-21578
string dataset. (b) Predicted parameter behaviour of n-gram SVM, by the pro-
posed algorithm on Reuters-21578 string dataset. (different substring lengths are
represented in different colours)



61

0

5

10

15

0

2

4

6

8
30

40

50

60

70

80

 

 

a
ct

u
a

l a
cc

u
ra

cy
(%

)

log2(cost)substring length

1
2
3
4
5
6
7
8

(a) Actual Parameter Behaviour: e-News Categorization
(different colours represent different substring lengths)
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(b) Predicted Parameter Behaviour: e-News Catego-
rization (different colours represent different substring
lengths)

Figure B.3: Prediction Behaviour of the Proposed Algorithm for N-gram SVM
Optimization on e-News Categorization String Dataset (using SVR cost=500 and
γ=0.95 in regression): (a) Actual parameter behaviour of n-gram SVM on e-News
Categorization string dataset. (b) Predicted parameter behaviour of n-gram SVM,
by the proposed algorithm on e-News Categorization string dataset. (different sub-
string lengths are represented in different colours)


