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Abstract 

Coaching technology, wearables and exergames can provide quantitative feedback 

based on measured activity, but there is little evidence of qualitative feedback to aid 

technique improvement. To achieve personalised qualitative feedback, we 

demonstrated a proof-of-concept prototype combining kinesiology and 

computational intelligence that could help improving tennis swing technique utilising 

three-dimensional tennis motion data acquired from multi-camera video. Expert data 

labelling relied on virtual 3D stick figure replay. Diverse assessment criteria for 

novice to intermediate skill levels and configurable coaching scenarios matched with 

a variety of tennis swings (22 backhands and 21 forehands), included good technique 

and common errors. A set of selected coaching rules was transferred to adaptive 

assessment modules able to learn from data, evolve their internal structures and 

produce autonomous personalised feedback including verbal cues over virtual 

camera 3D replay and an end-of-session progress report. The prototype demonstrated 

autonomous assessment on future data based on learning from prior examples, 

aligned with skill level, flexible coaching scenarios and coaching rules. The 

generated intuitive diagnostic feedback consisted of elements of safety and 

performance for tennis swing technique, where each swing sample was compared 

with the expert. For safety aspects of the relative swing width, the prototype showed 

improved assessment (from 81% to 91%) when taking into account occluded parts of 

the pelvis. The next-generation of augmented coaching, personalised rehabilitation 

and exergaming systems, based on the concepts presented, will be able to help 

improve end-user’s sport discipline-specific techniques by learning from small 

expert-labelled data sets, adapting and providing personalised intuitive autonomous 



assessment and diagnostic feedback aligned with a specified coaching programme 

and context requirements.  

 

Introduction 

The emerging area of wearable and ubiquitous computing devices is expanding into 

many applications, notably in domains of physical activity, sport, rehabilitation, 

exergames and healthcare such as Babolat (http://www.babolatplay.com), HOCOMA 

(http://knowledge.hocoma.com/research.html) and Zepp (http://www.zepp.com). 

Increasingly popular, such augmented coaching systems and technology (ACST) is 

becoming accessible to global consumer population and can produce, process and 

exchange large amount of motion data before providing feedback based on measured 

human activity (Boris Bačić, 2016c; Lightman, 2016). At present, it is common 

knowledge that ACST and exergames are not able to advise users how to improve 

their motor learning, swing technique or general motion technique in particular sport 

or rehabilitation domains (Boris Bačić, 2016c). To illustrate ACST operation 

exchanging and processing demands on increasingly larger motion data that are 

typically exchanged on-line and by using a cloud service provider, we may consider 

a hypothetical example of a recreational runner, who is using a small action camera, 

a mobile phone, smart watch and wearable sensors. In addition to keeping a record of 

past activities, such technology can fuse data from sensors and video to collectively 

augment video replay by overlaying information with telemetry data (speed, map 

location), pace, time lapse, number of steps (from start, per minute), heart rate, heel, 

toe or mid-shoe strike and average pronation angle (jogging, sprinting), comparisons 

with selected running communities (running speed and efficiency, shock absorption 



rate), running, walking and resting time. Although current technology is able to 

process raw data from sensors and video and provide visualisation and other 

reporting capabilities on measured quantitative information unfortunately, it is not 

able to help end-users to improve their running technique, or to help them to adapt 

their personal running style and footwork technique for soccer or tennis. However, 

by combining the quantitative diagnostic information produced, with expert’s help 

(e.g. athletic or soccer coach), an end-user may still be able to improve his/her 

running technique following recommendations from a coach - such as ‘hold your 

hips high!’ or ‘lift your knees’ and conclude the training session with ‘pronating is 

good but over pronation isn’t’. This coach-to-athlete feedback is known as verbal 

cues, which as a communication is: (1) immediate, short and informed by collected 

data, (2) personalised and directed to drive attention focus of the athlete, while other 

bystanders might not be familiar with the meaning of such attention cues and (3) 

such cues may also not be applicable to other athletes. What a coach can also 

recommend from diagnosis based on collected quantitative data, prior knowledge 

about the athlete, assessment criteria and observed video is a set of intervention 

exercises aimed to help the athlete to achieve his/her personalised goals (D. V. 

Knudson, 2013). 

Although the idea and notion of applying AI to analysis of sport performance is not 

new (B. Bacic, 2006; Lapham & Bartlett, 1995), current ACST can assess knowledge 

of results (KR) and provide quantitative information about the movement. In general, 

ACST is expected to promote physical activities and in some cases, biomechanical 

analysis above human cognitive abilities. To enable advancements towards the next 

generation of ACST that can help to improve sport-specific technique such as 

complex and personalised tennis swings, this study addressed the following 



questions:  

(1) Is it possible to design a system that is capable to assess human performance, 

translate derived quantitative information from raw motion data and provide 

personalised qualitative feedback similar to a coach, even if information of 

the movement outcome or KR is not available? 

(2) Given that expert labelling on a large dataset is not feasible, is it possible to 

design a system that can learn from small training data?  

 

Existing qualitative models (Dunham, 1994; Gangstead & Beveridge, 1984; 

Hay & Reid, 1984) share subjective/descriptive rules related to knowledge of 

performance (KP) that guide assessment of observed motion and general notion of 

temporal and spatial analysis. In agreement with Knudson and Morrison (2002, p. 

132), when the expert familiar with common errors is confident that “a critical 

feature related to body motion needs improvements, the research suggests that KP 

feedback is more effective”. Some of the rules and critical features of human 

movement can be quantified and communicated in biomechanical terms such as knee 

flexion angle with categories representing optimal and sub-optimal ranges that are 

common for a specific motion pattern (D. V. Knudson & Morrison, 2002, p. 81). 

However, for complex motion patterns it is also known that abstract and rather 

descriptive common-sense rules may not be easy to define, identify, validate and 

assess numerically as the optimal ranges and their if-then-else rules or as fuzzy rules 

(Kecman, 2001; Zadeh, 1965).  

Regarding abstract coaching rules and technique improvements using the 

attention cuing method during drill practise, a coach may say a few cue words to a 

player who has previously learned their meaning. In open-skill sports such is tennis, 



there are individual variations of complex movement patterns (Bollettieri, 2001; 

Hughes & Bartlett, 2002; Reid, Elliott, & Crespo, 2013). Given the winning 

objective, players often need to demonstrate versatility and adaptability to multiple 

goals of human movement (e.g. performance in imparting energy, efficiency, 

efficacy, consistency, movement robustness, recovery time for next response, 

balance, and safety) that are all directed at neutralising and responding to opponent’s 

actions, environment and other circumstantial constraints. For many sport 

disciplines, such as tennis, the game concepts have evolved in a way that the ‘old-

school wooden racquets’ coaching is not applicable to e.g. faster balls, shorter 

preparation times and on-going technological advancement of sport equipment 

(Bačić, 2018). Given the need for flexibility of assessment criteria of multiple goals 

of human movement that may also be mutually conflicting and subject to skill-level 

expectation, the next-generation of ACST should mimic and synthesise some of the 

coaches’ abilities to prioritise and personalise feedback. For the design and 

development of such ASCS systems, anticipated capabilities should include 

capturing initial coaches’ assessment decisions, learning from initially small decision 

and data sets, adapting and evolving its internal operation for future data even if 

motion data is captured beyond human cognitive abilities (e.g. in high frame rates or 

in sub-millimetre precisions).    

For sport and rehabilitation science, expressing motion patterns from human 

movement into the n-dimensional mathematical spaces allows development of 

classification or prediction models that can establish fit of observed motion patterns 

into descriptive categories or ranges similar to a coach who provides KP feedback to 

aid technique improvements.  



The challenge from increasingly growing human motion datasets, lack of 

personalised immediately available expertise (similar to a coach, 

medical/rehabilitation specialist), and the technology gap that artificial intelligence 

(AI) should address, is to emulate the human cognitive ability to translate and assess 

the data collected into actionable and meaningful advice for end-users that can be 

visualised and systematically organised into problem areas that are dependent on 

data availability and complexity (Fig.  1a). To illustrate design complexity involved 

in developing a system that can provide meaningful feedback using a tennis case 

study, such system would need to be incrementally developed from prior work. The 

prior work on tennis activity pattern recognition and diagnostic classification 

capabilities include: (1) swing recognition (‘forehand’ and ‘backhand’); (2) swing 

phasing analysis (‘preparation’, ‘action zone’ and ‘follow through’); (3) categorising 

ball hitting stance angle relative to intended target line (‘closed’, ’squared’, ‘semi-

open’ and ‘open’ stance); and (3) flexible skill-level assessments of ‘good’ or ‘bad’ 

swings. For current sensor-based systems ‘good’ and ‘bad’ swing classification could 

possibly be implemented in a simple fashion e.g. based on impact vibration pattern 

correlated to ball impact at the racquet’s sweet spot – however for exergame 

development there is no ball interaction and sometimes swings executed with good 

technique may still missed the sweet spot (or vice versa, where ‘bad’ swings can still 

hit the sweet spot). Furthermore, ‘good’ or ‘bad’ swing classification may also not be 

easily implemented relying on traditional algorithmic approaches such simple 

descriptions of biomechanical parameters such as anatomical joint angles movements 

in time, top-spin and impact velocity but should rather be inspired by human 

cognitive ability to develop ‘feel’ for the racquet movement, which can be 

implemented into an AI-based system. 



The underlying technological foundation for this study (Fig.  1 b), includes 

experimental developments of design science artefacts (Kampenes, Anda, & Dyba, 

2008; Mingers, 2001; Runeson & Höst, 2009). The produced artefacts include 

architecture, temporal and spatial automated analysis of forehands, a sliding-window 

approach with kinematic parameters processing (B. Bacic, 2004; Boris Bačić, 2016b; 

Boris Bacic, Kasabov, MacDonell, & Pang, 2008); classifications od groundstrokes 

and stances (Boris Bačić, 2016b), the use of traditional and evolving artificial neural 

networks (ANN) (B. Bacic, 2006; Boris Bačić, 2013); ‘good’ and ‘bad’ swing 

classification based on computed racquet’s sweet spot, vector flow feature extraction 

technique to emulate ‘feel’ and combined with a produced ANN-based system 

(Bačić, 2018). More complex solution similar to specialised brain regions working 

together inspired the recent application of the reservoir computing of ANN 

ensembles for swing detection, phasing analysis and identifying the intended ideal 

impact zone (> 90% accuracy) consisting of 2-3 frames captured at 50 Hz (Boris 

Bačić, 2016a, 2016d). Identifying the ideal impact zone of a swing is important for 

exergaming and rehabilitation contexts, where there is no statistical ground truth 

about ball impact, since the ball information is not recorded.  

 

 

 

 

 

 

 



 

Fig.  1. Big data and AI challenges for: (a) human motion modelling and analysis for sport 

performance and rehabilitation; and (b) incremental development of artefacts leading to a 

personalised tennis coach prototype that can generate human-intelligible and common sense 

instruction for tennis technique improvements. 

(a) 

 

 

(b) 

 



Based on prior work, the purpose of this multi-disciplinary study (Fig.  1b) 

was to demonstrate that it is possible to automate aspects of qualitative analysis of 

human motion including: (1) capturing expert’s subjective insights that govern 

assessment criteria of (2) complex movement patterns, and (3) providing simple 

intelligible, intuitive personalised diagnostic feedback could aid technique and motor 

learning. The prototype system should be flexible and adaptive to take into account 

personalised idiosyncrasies such as skill-level and coaching scenarios (e.g. coaching 

drills and tasks) that focus on specific technique aspects. The system should also 

exhibit flexibility in assessment aligned with multiple objectives of human motion 

such as safety and performance and provide feedback in natural language (e.g. as 

intentional verbal cueing by a coach) and via augmented replay. For system 

requirements where traditional algorithmic approaches and traditional neural 

networks may not be able to deliver the best solution, our experimental design relies 

on methods from computational intelligence (CI), that a branch of AI includes 

modelling and development of adaptive and evolving systems (Włodzisław Duch & 

Mańdziuk, 2007; W. Duch, Setiono, & Zurada, 2004; N. Kasabov, 2007). Problem 

areas where evolving systems are expected to perform well include: incremental 

learning requirements; availability of small data sets; and where new data may 

include evolved patterns. Unlike evolving systems, traditional ANNs may suffer 

from performance degradation and with new data or even suffer from catastrophic 

forgetting – a phenomenon where “the system would forget a significant amount of 

old knowledge while leaning from new data” (N. Kasabov, 2007, p. 8).   

Materials and Methods 

For the purpose of prototype development, human motion data were captured to 



allow model design, and to present the developed constituent models and the user 

with a diversity of ‘good’ to ‘bad’ tennis strokes. The captured data set covered a 

variety of forehands and (single-hand) backhands that are typical at skill-levels from 

beginners to advanced-intermediate, including common errors (D. V. Knudson & 

Morrison, 2002, p. 219). The data set also contained a balanced distribution of 

forehands and backhands performed at diverse swing speeds, and from different 

hitting stances (Boris Bačić, 2016b). After multiple trial sessions, 43 swings were 

recorded in one session by a certified tennis coach (the first author) under guidance 

of another certified international tennis coach. Recorded swing samples were 

validated and independently assessed (100% agreement on ‘good’ ‘average’ and 

‘bad’ swings) by two other professional New Zealand tennis coaches using a 3D 

stick figure player allowing virtual vantage point and zoom with 360° interactive 

observing angles during the replay (Boris Bačić, 2013, 2015). The tennis motion data 

set was captured in an indoor laboratory setup, using nine fixed-location cameras at 

50 Hz using a SMART-e 900 eMotion/BTS motion capture system and exported into 

ASCII text data format for model design, prototyping, and 3D motion visualisation. 

The captured data contained multi-time series of 3D coordinates of a set of 22 retro-

reflective markers. As shown in Fig.  2, the markers were attached to a racquet, the 

shoes and anatomical landmarks of the human body.  
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     SqS:  average	
     SoS:  bad 

     SqS:  very good 
     SoS:  average 

       SqS:  average 
       SoS:  very good 

        SqS:  bad 
        SoS:  average 

 

Fig.  2. Visualisation of assessed stances. Two stance examples (SqS=’Square Stance’, and 

SoS=’Semi-open Stance’) show flexible coaching scenarios and subjective assessment categories 

(‘very good’, ‘average’, ‘bad’). Adapted by permission from Springer Customer Service Centre 

GmbH: Springer Nature, Springer eBook “Extracting Player’s Stance Information from 3D 

Motion Data: A Case Study in Tennis Groundstrokes”, B. Bačić, copyright 2016.  

 

The utilised minimalistic marker set layout (Fig.  2) was intended to have 

similar topology to Microsoft’s Kinect stick figure model (MathWorks, 2016), but 

with extra markers to provide additional information (e.g. forearm 

pronation/supination for incremental research and development purposes). 

For the objective of the study there were additional restrictions related to the 

captured data: (1) for the targeted skill-level, there were no open-stance single-hand 

backhands as encouraging single-hand backhand swings from open-stance was not 

considered a safe coaching practice (Boris Bačić, 2016b); (2) no synthetic, only 

human motion data were used in the study; and (3) regarding suppressing knowledge 

of results no ball or impact information were recorded.  



For system and model developments, the chosen descriptive common-sense 

coaching rules associated with subjective and flexible assessment criteria were: 

stance, ‘low-to-high’ and swing width. From a tennis coaching perspective, the 

chosen coaching rules that are guiding subjective assessment criteria are also 

emphasised differently at each skill level or during drill practice in given coaching 

scenario. For example, a coach may prefer to introduce the ‘square’ (or ‘side-on’) 

stance as basic stance from the beginning, while discouraging other stances until a 

player progresses and improve their balance (Fig.  2). Some coaches prefer to 

introduce only three stance categories (‘open’, ‘neutral’ and ‘closed’) instead of four 

(‘closed’, ’square’, ’semi-open’ and ‘open’). As the player progresses through the 

skill-levels, the semi-open and open stances are likely to be encouraged to improve 

response times. The stance selection may differ depending on additional factors such 

as ball bounce height and court coverage circumstances (Salzenstain, 2013). At the 

intermediate level, players may be expected to perform groundstrokes from all 

stances including optimal positions and positions while on the run, and hiding the 

intended target line. Regarding the ‘low-to-high’ rule, it is a cue used 

interchangeably with ‘brush the ball’, which a coach may typically say to a beginner 

to help improving their contact with the ball and to generate topspin (D. Knudson & 

Bahamonde, 2001). The coaching rule ‘swing width’ is typically not coached in 

isolation; given that players often extend their arm in the response situations such as 

during the full-reach return of serve. As the optimal contact zone depends on swing 

type, stance, grip, style, player’s kinanthropometric profile and preferences, it is 

considered that ‘swing width’ assessment (as e.g. ‘your swing is too wide’) is also 

subjective. In addition, there is coaching rationale that a player should ‘reach the ball 

with the feet’, and ‘swing width’ feedback to be used occasionally only as a safety 



warning or with objectives to help player to improve swing control, consistency, 

response times or backswing motion  (Bollettieri, 2001, pp. 54-56).  

After identifying static and dynamic critical features of swing performance or 

safety for descriptive coaching rules, the next stages involved further data analysis, 

visualisation and biomechanical parameters transformations. Produced algorithms 

were able to transform critical features of swings as input data for classifier 

modelling and validation. Regarding the adaptive classifier model design, the chosen 

evolving classifier model was based on Evolving Clustering Method ECM (Nikola 

Kasabov, 2002, p. 41) and used as a neuro-fuzzy classifier known as Evolving 

Clustering Function ECF (Song et al., 2008). The benefit of the chosen ECF 

classification model was that it allowed incremental learning starting from the 

relatively small and unevenly balanced data set. In addition, it allowed generated 

machine knowledge extraction that could be used to initialise model operation as 

generated machine knowledge as a snapshot in time, therefore allowing adaptation to 

future extension of the original data set used for this study. Temporal and spatial 

problem analysis was expressed in finding frames in the region of interest (ROI) 

within the swing and transforming biomechanical values into a mathematical space 

that could be separated into distinct assessment categories by a classifier model. 

After motion data transformation and analysis, the produced critical features were 

used as machine learning features for classifier model developments. In general, for 

data sets containing variety of good, average and bad swing samples, obtaining 

relatively high OA would indicate that the adaptive system could utilise prior expert 

assessment data for automated assessment function that would also likely generalise 

well on future data.  For model validation on the small data set, leave-one-out cross-

validation method was considered as appropriate in order to avoid the possibility that 



a minority of data (of similar swing patterns) could be randomly selected into a 

training or a testing portion of the data set so in that case the produced system could 

not guarantee good generalisation performance on future data. Comparing to expert 

assessment, the overall accuracy (OA) was calculated (1) as:  

  !" = $%
&% ×100[%] (1) 

Where CS	is the number of swing samples correctly categorised and AS is the number 

of all swing samples. 

Regarding the expert assessment, all swing samples were visually assessed 

and categorised by the expert relying on 3D stick figure replays. In addition to the 

functional prerequisite of accurate 3D replay for expert validation and augmented 

feedback, the prototype – named as Personalised Tennis Coaching System (PTCS) – 

conveyed the following concepts: (1) training and validation of descriptive common-

sense-based assessment modules; (2) flexible assessment criteria and (3) expert 

assessment and end-user feedback combining natural language qualitative feedback 

with smooth interactive and accurate replay of motion data. The user interface 

allowed choosing skill level, coaching scenario prioritised assessment and feedback 

visualisation. Minimalistic feedback in natural language for every swing was 

presented as a user-configurable list of weighted assessments to show verbal cues. 

The verbal cues as attention cues were colour-coded (for very good, average, and 

bad) and the list was sorted from worst towards the best critique (or praise).  

 

Results 

The results included the evidence of automated data transformation, analysis 



visualisation and processing integration in graphical user interface (GUI) to provide 

qualitative feedback of assessed tennis swings. For the PTCS prototype design, it 

was beneficial to combine two programming languages achieving additional GUI 

functionality and two-way communication between Delphi and the Matlab codebase. 

To improve interactive and graphic performance needed for validity and expert’s 

swing assessment relying on the animated 3D stick figure replays, the original 

Matlab algorithms were manually transcoded in Delphi (Boris Bačić, 2015).  

Regarding feature extraction for computer model development, it was not 

necessary to adhere strictly to three commonly used stages (preparation, action, 

follow-thorough) for temporal phasing and analysis (Gangstead & Beveridge, 1984). 

For relatively low sampling frequency (50 Hz), the motion data transformation 

algorithms were based on the coach’s insight into what happens before and around 

the estimated action/impact zone. In case of ‘low-to-high’ and ‘swing width’ 

visualisation (Fig.  3), the region of interest (as temporal and spatial focus) was 

around the time when the hand with the racquet passed the pelvis region, influencing 

the rest of the swing movement.  

 

 (a)  Tennis Swing in Sagittal Plane  (b)  Zoom-in Region of Interest 

 

 



 

Fig.  3. Visualisation of performance (a), (b) and safety (c) parameters extraction from tennis 

swing data. Temporal and spatial analysis of: (a) low-to-high swing segment in sagittal view (b) 

finding local swing minimum as region of interest before the impact zone and (c) comparisons of 

algorithms alternative as knowledge discovery from machine to human. 

 

Fig.  3 shows: (a) sagittal view of wrist low-to-high angle approximation for 

low sampling frequency and (b) transverse view of swing width between the wrist 

(‘PSHD’) and hip markers: great trochanter (‘PSGT’ and ‘SSGT’) and derived 

body/hip centre. The stance angle extraction method (Boris Bačić, 2016b) operated 

on estimating the average angle of the tip of the shoes relative to the intended target 

line. After motion data transformation for each coaching rule (CR) classification 

module, the extracted values (low-to-high angle, relative swing distance and relative 

stance angles) and the swing type (forehand and backhand) were linearly normalised 

for the classification model into a range of values between [0,…,1]. 

Classification results (Table 1) showed 81% accuracy compared to the human 

expert for ‘low-to-high’ CR which was due to the low sampling frequency. This 

(c) 

  



made it difficult to determine the curve properties of the racquet and wrist or their 

lowest point relative to the body and stance. To improve classification of ‘low-to-

high’ CR, the PTCS or exergaming capture systems operating on lower frequencies 

would require higher sampling frequency than stance computing. Regarding the 

‘swing-width’ CR, playing hand–near hip relative distance algorithm was inferior 

compared to the algorithm variations taking into account the body (computed virtual 

body centre or the opposite part of the pelvis compared to playing hand that for 

sometimes may be occluded to the observer). Given better machine learning 

classification performance, this may indicate that swing width should be explained to 

coaches and players as more holistic assessment rather than just wrist–near hip 

distance based assessment.  

 

 

Table 1. Leave-one-out cross-validation results using Evolving Clustering Function (ECF) for 

coaching rules classifier models. 

Coaching rule Variation Classification results ECF epochs 

Stance		
Square	 91%	OA;	(39/43	correct)	

4	
Semi-open	 91%	OA;	(39/43	correct)	

‘Low-to-high’	 	 81%	OA;	(35/43	correct)	 2	

Swing	width	

hand	–	leading	hip	 81%	OA;	(35/43	correct)	

2	hand	–	body	centre	 91%	OA;	(39/43	correct)	

hand	–	rear	hip	 91%	OA;	(39/43	correct)	

OA = Overall accuracy; ECF membership functions = 3, 2 and 1 did not change OA. 

 



Given the subjective nature of stance assessment decision boundaries and the 

need for skill-level and coaching scenarios, the design decision was to develop two 

separate classification modules (Fig.  4 a) – one for ‘Square Stance’ (SqS) and 

another for ‘Semi-open Stance’ (SoS).  

 

 

 

Fig.  4. User interface, and weighted orchestration of assessment modules Wi to produce swing 

evaluation as overall assessment Z, and feedback as sorted list of colour-coded attention cues 

(from worst to best). 

 

(a) 
 (b) 

 

 
 

 
 

 
 

(c) 

 



Adaptive weighted orchestration of assessment modules in PTCS (Fig.  4) 

allowed incremental development and integration of new CR modules (depicted in 

grey) without changing the existing software infrastructures. Fig.  4 shows the user-

specified weighted assessment concept that leverages an independent and 

incremental modular design is implemented via weighted assessment criteria for 

coaching rules. Swing evaluation as weighted assessment could correspond to the CS 

for global, group or personal idiosyncrasies such as skill level. The formula (Fig.  4 

c) also supported the orchestration concept that enabled the scalable, incremental and 

collective assessment operation Z of CR modules that could be used for in-between-

session(s) performance/technique evaluation purposes. For an end-user, the weights 

vector W could be supplied within [0,…,1] values or assigned as a percentage or as 

any grading preference. The output of CR modules xi (indexed as i = 1,…,n) were 

multiplied by the weights vector W matching skill level and coaching scenario for the 

individual player. The weighted assessment was displayed in the 3D stick figure 

player as colour-coded CRs that are equivalent to verbal cues and displayed 

immediately after the swing has been assessed. The end-user may configure to show 

only the worst stylistic execution aspect or multiple aspects as attention cue list (e.g. 

the top three sorted from worst to best). 

 

Discussion 

Although we were unable to generate rules that govern expert’s tacit knowledge from 

our synthetic expert coaching system, at present, we are able to provide both holistic-

global evaluation and weighted combination of assessed motion based on common-

sense rules that guide qualitative assessment of human motion (Fig.  2). Furthermore, 



weighted combination of assessed motion also represents an adaptive mechanism for 

new assessment modules to be added or replaced in the future, while the coach will 

still be able to modify the weighted combination for given skill-level, specific drill-

based training objectives or coaching scenarios. The adaptive ECF algorithm 

implemented in Neucom (Goh, Song, & Kasabov, 2004; Song et al., 2008) that was 

originally used in high-dimensional gene research worked well with relatively small 

tennis data set containing a balanced number of good and bad tennis groundstrokes 

that are typical for beginners to intermediate skill levels. The leave-one-out cross 

validation method used in the experiments was considered appropriate to address the 

scientific rigour involving modelling and analysis of relatively small data sets. Future 

work with large datasets will also investigate other supervised learning techniques 

applicable to big data such as Vapnik’s transductive reasoning and experts’ review of 

subset of data combined with validation scores (M M Patching et al., 2015).  

Based on this study, technological innovations in near-future ACST, 

exergames and rehabilitation devices are also expected to utilise diverse data sources 

such as video, computer vision processing (e.g. utilising deep learning ANNs), 

various inertial sensors that are currently used for movement patterns, swing 

detection, pattern classification and various motion analysis (Cao, 2017; Manghisi et 

al., 2017; Whiteside, Cant, Connolly, & Reid, 2017). Given the general trend of 

wearable technology manufacturers not allowing access to raw data or integration 

libraries to end users but rather claiming the ownership of data, such end-user 

agreements should raise questions regarding ethical and legal challenges particularly 

in terms of privacy and intellectual ownerships (Bačić, 2018; Socolow, 2016, 2017).  

In the authors’ view, in the future we may expect: (1) open source hardware initiative 

for wearable and sport technology similar to open source software licensing 



initiatives to promote ACST research and improve engagement from broad academic 

community; (2) web services, exergaming and ACST development involving both 

small start-up companies and international corporations such as Google’s translate 

services to process video and raw data inputs to detect human activity and produce 

cues, augmented visualisations, feedback with references and recommend 

intervention; (3) advancement of privacy-preserving technologies (B. Bačić, Meng, 

& Chan, 2017; Chan & Bačić, 2018) for online coaching, healthcare, smart homes 

and elderly care; (4) advancements in surveillance systems based on movement 

signature person identification operating and accessing large data sets; and (5) 

coach’s assessments on captured data and assessment model design to be treated as 

intellectual property. The next-generation of exergames and ACST should be able to: 

(1) capture motion data from various sources (Cao, Simon, Wei, & Sheikh, 2017; 

Lightman, 2016; MathWorks, 2016); (2) process complex motion pattern in on-line 

and off-line fashion; (3) provide automated analysis of human motion performance 

for given tasks and associated objectives (e.g. efficiency, efficacy, safety, 

consistency, error and accuracy rates); (4) provide feedback; and (5) suggest 

intervention for improvements. ACST application in coaching and rehabilitation 

include: automating coaching practices; off-loading cognitive tasks performed by a 

coach (e.g. common errors, safety monitoring, and progress management support); 

reduction of bias, disagreements, inconsistencies and fear of reinjures; and support 

for semi-supervised and self-coaching. 

 

Conclusions 

The presented system demonstrated that it was possible to generate feedback 



consisting of elements of safety and performance to help motor learning or 

improving complex sport-specific technique such as tennis swing. As multi- and 

inter-disciplinary scientific contribution, the demonstrated proof-of-concept system 

was able to capture expert insights into a computer model that and reproduce 

qualitative diagnostics on previously unseen motion data similar to human reasoning 

(above 80%). Demonstrated automated diagnostic feedback was associated with: (1) 

subjective expert’s assessment and feedback containing abstract and descriptive 

common-sense rules associated with performance and safety; (2) critical features of 

sport-specific human movement sequence that can also operate with AI-based 

systems; and (3) common errors and attention cues. For the safety aspect of the 

relative width of a tennis swing, the prototype demonstrated improved assessment 

(from 81% to 91%) when taking into account occluded parts of the pelvis on the 

same data, which as evidence is also considered as knowledge discovery from data 

that can inform coaching practice. To address the need for life-long adaptive learning 

(for sports such is tennis), the system and classifier models have properties that 

computational intelligence consider as adaptive, evolving, and life-long learning 

from initially small training data. 

We demonstrated that capability of qualitative intuitive feedback in natural 

language (e.g. as verbal attention cueing) and visual augmented elements (e.g. 3D 

replay) with assessed relative performance over time, were aligned with coaching 

practice. This has potential to improve the end user’s technique more than using 

existing coaching communication of only quantitative outcomes of observed 

movements. Machine-generated qualitative analysis for coaching feedback of 

complex motion patterns to improve motor function, control and technique is 

commonly applicable to a range of sport disciplines and rehabilitation scenarios. The 



underlying technology foundation covers existing and future motion capture devices 

capable of generating increasingly large data set such as: wearables, sport/action 

cameras, mobile phones, sensors attached to sport equipment, game and exergame 

controllers, EEG, EMG, functional rehabilitation devices, intelligent prosthetics and 

exoskeleton control design.  

Combining augmented coaching systems and technology (ACST) with near-

future advancements of exergaming and immersive reality offer new prospective for 

aging population, rehabilitation patients, sport participants, and those who aspire to 

healthier and more active lifestyle. As such, developments of autonomous augmented 

coaching systems and technology (ACST) represent the opportunity to strengthen the 

links between exercise and health. Future work will extend to: (1) incremental 

modelling of other coaching rules for tennis; (2) technology transfer to other areas; 

(3) data fusion from diverse motion data sources; (4) distributed multi-platform data 

processing; and (5) active monitoring devices associated with rehabilitation, 

coaching, ergonomics and general well-being. 
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