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A Computational Interrogation of “Big-C” and “little-c” Creativity 

The distinction between “Big-C” and “little-c” creativity implies that the 

generative process of celebrated creators is of a special type or degree. 

Arguments for and against such hierarchy of creativity are found in the literature, 

primarily built on rhetorical argumentation. The aim of this work is to examine 

the rationale behind Big-C and little-c creativity using explicit and more 

systematic means of inquiry. We employ computational agent-based simulations 

to study these constructs, their premises and their logical implications. The 

results of this work indicate that hierarchies such as the Big-C and little-c of 

creativity fail to provide a consistent way to explain and distinguish the 

generative processes of individual creators. In these computational models of 

creative social systems, only about half of disruptive changes can be explained by 

the characteristics of individual agents. This shows how labels like Big-C that are 

dependent on evaluation outcomes can easily be misattributed by observers to 

individual creators. This work demonstrates how the use of computational 

simulations can be useful to examine fundamental ideas about creativity. It shows 

that the Big-C/little-c distinction is a false dichotomy that should be approached 

critically by scholars to avoid conflating generative and evaluative dimensions of 

creativity.  

Keywords: personal creativity; historic creativity; creative systems; creativity 

evaluation; creative systems; agent-based modelling  

Introduction 

A distinction between “genius-level vs garden-variety” levels of creativity is often 

construed in the academic literature (Merrotsy, 2013, p. 474). The terms “Big-C” and 

“little-c” have helped cement such dichotomy by distinguishing between two alleged 

types of creative processes: those displayed by eminent creators and those found in 

everyday creators (Runco, 2014). This demarcation is used by scholars to articulate 

“ways that creativity has and should be conceptualized” (Kaufman & Beghetto, 2009, p. 

2). A second and more formal definition hinges on an idea’s probability, its utility, and 
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its obviousness as estimated by an individual (little-c) or as agreed by a societal group 

(Big-C) (Simonton, 2017). This paper examines the former, more informal, and more 

prevailing use of the terms, since they remain largely unexamined and are used to think 

about creativity in ways that can carry important entailments.  

The Big-C/little-c distinction has received considerable attention as evidenced 

by more than 2,000 citations to what was initially framed as a “preliminary, conceptual” 

model to “more clearly articulate the nature of creativity” (Kaufman & Beghetto, 2009, 

p. 1). Such hierarchy was formulated rhetorically and illustrated anecdotally (Kaufman 

& Beghetto, 2009) with Big-C described as the “remarkable and lasting contributions 

made by mavericks” (p. 2), and little-c portrayed as the “more incremental contributions 

made by everyday people” (p. 2). Thus, the core criterion to label a contribution as 

either Big-C or little-c does not refer to its creation, but depends on how it is judged in a 

social system (Csikszentmihalyi, 2014). 

Extending this dichotomy of creative processes, a four-level hierarchy is further 

articulated by Kaufman and Beghetto (2009) to label the creativity displayed by young 

children rediscovering an art technique (first level: “mini-c”) to the amateur artist who 

uniquely adapts a technique (second level: “little-c”), to the “highly accomplished but 

not yet eminent” professional (third level: “Pro-c”) and, ultimately, to celebrities whose 

“works have lasted centuries” or who have won a prestigious award (fourth level: “Big-

C”) (Kaufman & Beghetto, 2009, p. 2). It can be useful to distinguish between two, 

four, or more levels of creative contributions “to separate personal from historical 

creativity” when it comes to the evaluation of ideas (Runco & Jaeger, 2012, p. 95). 

Others have further suggested that “even the four kinds of creativity need to be 

subdivided, because they are regions on a continuum, not four discrete kinds” 

(Sternberg, 2018, p. 4). Whether two or more, discrete or continuous, the distinction 

https://doi.org/10.1080/10400419.2021.1992195


Citation: Sosa, R. & van Dijck, M. (2021) A Computational Interrogation of “Big-C” and 

“Little-c” Creativity, Creativity Research Journal, DOI: 10.1080/10400419.2021.1992195  

 

between levels of creativity is pervasive in the literature despite being problematic since 

it is considered to lack “real substance or validation” (Runco, 2014, p. 131).  

A significant problem arises when the Big-C/little-c distinction is transferred 

from idea evaluation to idea generation. This is normally done by starting from the 

conclusion, namely: since Big-C ideas are deemed as “remarkable contributions” by a 

community (of experts, audiences, or consumers), it follows that there must be 

something special and unique about the creative process of celebrated creators (upper 

case Creativity) which is somehow necessarily distinct from the creative process of 

everyone else (lower case creativity). In the process of construing and contrasting these 

alleged levels of creativity, generative and evaluative factors are conflated whenever 

Big-C and little-c labels are applied based on events “that occur after the creative act” 

(Runco, 2014, p. 132). And since the Big-C and little-c labelling of an idea is only made 

after its social evaluation, it is problematic to use it to characterize the idea generation 

process much less the individual who generated the idea: “people who are very creative 

but not at the Big-C level are considered to be at the little-c level” (Kaufman & 

Beghetto, 2009, p. 3).  

Beyond the discursive argumentation for or against Big-C/little-c distinctions 

and their usage, the aim of the work presented here is to more systematically and 

explicitly examine the rationale behind Big-C and little-c creativity. This examination is 

carried out by building and studying computational agent-based models to examine 

these constructs, their bases and their logical implications.  

Agent-based models use computational simulation as a tool for empirical 

research to complement deductive and inductive approaches to social inquiry. A core 

idea of this “generative social science” (Epstein, 1999, p. 41) is that the phenomena of 

interest are grown (p. 43) in models that are exhaustively defined through algorithmic 
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descriptions and act as testbeds for ideas and explanations (Calder et al., 2018, p. 2). As 

a modelling approach, these “artificial societies” are suitable for the study of 

heterogeneous agents with bounded rationality and whose autonomous behavior at the 

local level produce aggregate emergent structures that can shape back individual 

behavior. This modelling work consists of explicitly defining the rules for every agent, 

running the system over simulated time, and closely assessing the emergent aggregate 

patterns. An iterative process of construction and testing allows for (and demands) the 

type of conceptual clarity necessary to reason systematically about core premises such 

as the relationship between generation and evaluation of ideas in the definition of Big-

C/little-c creativity. Through direct access to the source computer code of such models, 

issues of replicability and reliability are addressed.  

Computational social simulations have a variety of applications including 

prediction, explanation, visualization, and theorization (Calder et al., 2018, p. 4). The 

present study has this last purpose and is thus used as an aide to formalize intuitions and 

thought experiments with the advantage that it offers a strict inferential process for 

rigorous reasoning and increased realism compared to mathematical models (Rangoni, 

2014). We thus define, implement, analyze, and share an agent-based system here with 

the goal to test and check the Big-C/little-c creativity hypothesis.  

In a typology of social simulation models (Gilbert & Ahrweiler, 2006), our 

current approach is closer to nomothetic science as our concern is to rigorously test a 

hypothesis, and further from idiographic science which uses data from the real world 

and is concerned with empirical validation (Gilbert & Ahrweiler, 2006, p. 22). In 

nomothetic agent simulations the intention is to formulate and test mechanisms or first-

principles, whilst complementary idiographic modelling deals with specific instances 

and case studies (Salvatore & Valsiner, 2010, p. 829).  
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The main dimensions of concern in nomothetic agent-based modelling are 

related to their inbuilt biases and their usefulness to capture phenomena of interest 

(Carley, 2019, p. 743). In this work, we build and study a small-scale agent system (Sun 

et al., 2016) to bridge a priori and a posteriori modes of reasoning (Boghossian & 

Peacocke, 2000). This offers explicit and verifiable means to examine first-principles 

about Big-C and little-c creativity which are easier to describe and analyze than large-

scale agent systems with multiple layers of causality and emergence.   

Paraphrasing (Kitcher, 2000, p. 66), nomothetical agent simulations are 

employed for the inquiry of propositions p supported by the following account of a 

priori knowledge:  

X knows a priori that p iff X knows that p and X’s knowledge that p was produced 

by process α which is an a priori warrant for p. α is an a priori warrant for p just in 

case α is a process such that for any sequence of experiences sufficiently rich for X 

for p, some process of the same type could produce in X a belief that p (Kitcher, 

2000, p. 66). 

In this work, p stands for the Big-C/little-c distinction, the computational agent-

based model provides the “sequence of experiences sufficiently rich”, and “the same 

type” refers to the value of the model to aid researchers think about the structure, 

variables, and processes of p (Davis & O'Mahony, 2019, p. 29). This strategy allows to 

examine the dichotomy of little-c vs Big-C creativity beyond rhetorical arguments and 

in an artificial social system where we can grow and closely study the creation and 

evaluation of creative designs by social agents (Epstein, 1999). We thus use agent 

simulation as an “intuition pump” (Dennett, 2013)  for exploratory analysis where “the 

purpose is not to predict what will happen, but to understand what may happen, and to 

estimate the circumstances under which various behaviors are most likely” (Davis & 

O'Mahony, 2019, p. 30).  
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An Agent-Based Model of Creative Design 

The advantages of agent simulation as an intuition pump, or a testbed for ideas, include 

overcoming human decision biases, thinking through a large number of alternative 

situations, breaking down causality, and reasoning over periods of time that are too 

complex for the human unaided by the computation to grasp (Carley, 2019, p. 741).  

In this study, we model a social system of creative designers where new 

solutions are introduced by individual design agents and evaluated by a social group or 

a diverse community of design agents. To do this, our model captures a design task that 

goes beyond a search process in a solution space. It captures the significant invariants of 

design-task environments, namely: incomplete availability of information; negotiable 

constraints; interconnectivity of parts; no single right or wrong answers, only better and 

worse ones; and indirect and delayed feedback (Goel & Pirolli, 1992, p. 401).  

The inspiration for the task captured in this agent simulation comes from two 

online communities where humans generate, share, and evaluate color palettes over 

many years: Adobe Color1 and ColorLovers2. For a detailed description of those 

creative communities, refer to (O'Donovan, 2015, p. 19). In a nomothetic approach, we 

build this model using these communities as a reference, rather than as input data which 

would be a requirement for ideographic models. Prior studies systematically tested and 

validated theories of color compatibility and quantitative models for the aesthetic 

evaluation of color palettes in such design communities (O'Donovan, 2015; O'Donovan 

et al., 2011). Figure 1 shows top palettes from these online communities, with millions 

of user-created entries.  

 

1 https://color.adobe.com/explore  

2 https://colorlovers.com/palettes/ 
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[Insert Figure 1 here] 

The design task used in our model consists of individual agents who repeatedly 

attempt to create color palettes defined as the ordered arrangement of five adjacent color 

squares. Principles of color combination are used to structure this task based on a “color 

wheel”, i.e., a circular ordering of color values organized by hue and brightness 

(Parkhurst & Feller, 1982). By means of linear regression, the most relevant features for 

predicting aesthetic evaluations of color palettes were previously identified as: hue 

probability, hue templates, hue entropy, and palette layout (O'Donovan, 2015). Thus, in 

this model we incorporate hue templates, hue entropy, and palette layout to inform the 

evaluation and synthesis of palettes generated and evaluated by design agents.  

Hue templates are defined as fixed sets of rotations around the color wheel 

(O'Donovan, 2015, p. 27). Aesthetic preferences for one or two hues (monochromatic 

and dyadic combinations) are higher than more complex hue templates in such systems. 

Hue entropy is defined as a measure of the simplicity of a theme based on the 

distribution of its hue values so that entropy is lowest when all values are identical and 

highest when they are uniformly spread about the circle (O'Donovan, 2015, p. 30). 

Aesthetic preference is higher for mid-range entropy values in this type of systems. 

Lastly, palette layout (color ordering) shows an effect in aesthetic ratings in these 

systems and can be a straightforward way to improve the score of a palette by 

permutation of its colors (O'Donovan et al., 2011, p. 8).  

We argue that this empirically-based multi-criteria approach provides a valid 

source for our agent-based model to be used for the exploratory analysis (Davis & 

O'Mahony, 2019) of a creative system (Csikszentmihalyi, 2014). Other arguably 

important features of the system are modelled stochastically or are treated as 

externalities. In a personal interview with the founder of one of these sites, we learned 
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that factors that shape the creation and evaluation of palettes are likely to include the 

name of a palette and external events (current affairs, news, celebrities), as well as the 

social reputation of the creators (Monsef, 2019).  

The current model integrates the invariants of design-task environments (Goel & 

Pirolli, 1992) as follows: design agents have incomplete access to the evaluation 

criteria; some constraints are enforced such as mid-range entropy and simpler hue 

templates, but how agents apply these constraints is individually determined and 

influenced by what other agents produce; evaluation includes conflicting criteria and 

some small changes can yield large evaluation effects such as by changing the contrast 

criterion by modifying a single color in the palette; high scores can be achieved in many 

possible ways; feedback is indirect and delayed in that agents only know the score of 

their own palettes after they create them and only know the score of other palettes if and 

when they use them to change their designs. This provides thus a simple yet sufficiently 

rich model that allows us to formulate and closely examine the core question of this 

study: How can systems like this (Kitcher, 2000, p. 66) help examine the premises 

underlying Big-C/little-c thinking?   

The Color Palette agent model 

The agent-based system is presented here in pseudocode and graphically illustrated -the 

source code is publicly available online and by request from the first author. At setup 

time, the model defines a population of N agents as arrays of six variables: An integer 

value (iD) for identification, an integer value (skill) to define the individual skill 

level of each agent, an array (colors) of five color values in HSB space representing 

the five-color palette created by the agent, a coordinate variable (xy) to position the 

agent on the screen, an integer value (score) of the score calculated for the agent’s 

https://doi.org/10.1080/10400419.2021.1992195


Citation: Sosa, R. & van Dijck, M. (2021) A Computational Interrogation of “Big-C” and 

“Little-c” Creativity, Creativity Research Journal, DOI: 10.1080/10400419.2021.1992195  

 

palette, and an integer value (frust) representing the frustration level of each agent.  

Agent(int iD, int skill, colors(size 5), coord xy, int score, int frust) 

A simulation can start by initializing palettes and agents’ characteristics at 

random, or they can be hand-picked for example by having all agents start with the 

same palette or specific proportions of low and high-skilled agents. To account for the 

stochastic nature of these models, each experimental condition is run thousands of times 

to obtain representative outcomes.  

The agent variable skill defines a level of proficiency in the design of color 

palettes and it can be randomly initialized individually or uniformly assigned to the 

population at setup time. The skill of an agent can remain constant, or it can vary in 

response to its behavior -i.e., learning. In the current version, agents are individually 

assigned a skill value from 1 to n where n is the number of colors in the palette. An 

agent’s skill defines how many entries in colors it can modify in its palette in 

every turn (simulation step). The individual variable frust is initialized at setup time 

for all agents as zero, and gradually increased every time that the agent sees no 

improvement in its palette’s score after modifying its colors. When frust reaches a 

threshold, an agent is allowed to replace one value of its palette colors to a random 

hue and saturation values thus enabling a type of creative mutation to avoid 

convergence and escape local maxima (Boden, 1994, p. 528; Hofstadter, 1995). frust 

can increase at an individualized or a group rate depending on the question driving the 

modelling process. In the current version, frust increases uniformly and when an 

agent reaches a frustT threshold constant, it replaces one of its colors with a 

random color and its frust resets to 0.  Weights can be assigned to the evaluation 
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criteria, which can vary over a simulation to reflect externalities such as fashion trends, 

or, as in this model, remain constant during a simulation.  

There are three instances in the model where randomness is used to account for 

externalities: at setup time in the initialization of the agent population and their initial 

color palettes; at every step to pair two agents to interact with each other; and 

occasionally, when an agent reaches a frustT threshold which enables it to introduce 

a random color on its palette. At every step of the simulation, two agents are selected 

at random to interact: one is labelled agA and the other agB. agA chooses at random 

one of its palette’s colors to manipulate at this turn. If agB’s palette has a higher 

score, then agA modifies its own palette to try and create a better (higher scoring) 

design as described below. First, we define how palettes are evaluated. 

The evaluation function of color palettes in this system applies multiple criteria 

to account for the invariants of design-task environments (Goel & Pirolli, 1992). In this 

version of the model, three criteria are implemented: hueTemplate, hueEntropy, and 

layout following (O'Donovan et al., 2011). Hue templates are defined as 

monochromatic, dyadic, or triadic. Here, the hueTemplateScore is defined as 

inversely proportional to the angle covered by at least 4/5 of the hue values in the color 

wheel (360°) with a maximum score of 180 points for hue ranges ≤15°. This criterion as 

shown in Figure 2 rewards designs that combine a range of hues in a narrow segment of 

the chromatic space, and penalizes palettes that are more ‘disperse’. Namely, 

Array hueValues = (5 ordered color hues) 

Do this four times with arc inversely proportional to the scoring of palettes  

           (monoScore, dyadScore, and triadScore)  

           1st: arc = 90, monoScore = 45, dyadScore = 40, triadScore = 15 

           2nd: arc = 45, monoScore = 90, dyadScore = 80, triadScore = 20 

           3rd: arc = 30, monoScore = 130, dyadScore = 120, triadScore = 25 
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           4th: arc = 15, monoScore = 180, dyadScore = 170, triadScore = 35 

if (hueValues[0] - hueValues[3] <= arc) || (hueValues[1] - hueValues[4] <= arc) 

         hueTemplateScore = monoScore;  

if (hueValues[0] - hueValues[2] <= arc) && (hueValues[3] - hueValues[4] <= arc) 

         hueTemplateScore = dyadScore;  

if (hueValues[0] - hueValues[1] <= arc) && (hueValues[2] - hueValues[4] <= arc)  

         hueTemplateScore = dyadScore;  

if (hueValues[0] - hueValues[1] <= arc) && (hueValues[3] - hueValues[4] <= arc)  

         hueTemplateScore = triadScore;  

[Insert Figure 2 here] 

We implement hue entropy via hueEntropyScore, proportional to a measure 

of variance of the hue values in the color palette. This criterion rewards designs that 

include more than one hue pair in different regions of the chromatic space as shown in 

Figure 3. Namely, 

For (float num : hueValues) 

      stDev += Math.pow(num - mean, 2); 

      hueEntropyScore = Math.sqrt(stDev/ng); 

[Insert Figure 3 here] 

Color layout (layoutScore) is calculated to maximize harmonious sequences 

of hue and saturation values in a palette (O'Donovan et al., 2011). It is directly 

proportional to the number of hue values that are arranged in either a decreasing or an 

increasing sequence, plus the number of saturation values that are arranged also in a 

decreasing or increasing sequence. This ‘sorting’ criterion rewards designs where the 

colors form an ordered sequence in the chromatic space, as shown in Figure 4. Namely,  

layoutScore += (hue1 > ... > hue5 ) || (hue1 < ... < hue5 ); 

layoutScore += (sat1 > ... > sat5 ) || (sat1 < ... < sat5 ); 

[Insert Figure 4 here] 
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These three evaluation criteria reward different qualities of a color palette and 

can be in contradiction since some designs (but not all) that receive high 

hueTemplateScore can score low on hueEntropyScore, etc. This allows for 

palette designs to score high in a variety of ways such as by maximizing one criterion 

over the rest or by balancing multiple criteria. This evaluation setup will also enable in 

future versions of the model to account for individual preferences, group formation, and 

temporal trends at the population level.  

When two agents (agA-agB) are paired to interact, agA starts by choosing at 

random one of its palette’s colors to manipulate, defined as colorPos. The first 

step that agA takes is to inspect the color layout of other agents in the group and modify 

its own color layout if its score is lower, as this can be considered the easiest move to 

try and improve the palette’s score. Future work in this project will include ideation 

sessions where a group of (human) participants are asked to create color palettes in 

order to base these operators in data. If agB’s palette has a higher layoutScore, then 

agA swaps two of its colors’ positions by selecting a random color to swap with the 

color in colorPos. Figure 5 illustrates how an agent modifies its palette’s layout 

seeking to increase layoutScore by swapping two of its colors. Namely,  

if (agB.layoutScore >= agA.layoutScore ) 

       color swapA = agA.colorPos; 

 color swapB = agA.colorPos + 1; 

       agA.colorPos = swapB;  

       agA.color(swapB) = swapA; 

       scoreUpdate(palette); 

[Insert Figure 5 here] 
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The second step that agA takes is to modify the hue value of colorPos if it 

detects that agB’s hueTemplateScore is higher. In such case, agA modifies its 

palette’s hue values by marginally approaching the hue value in agB’s corresponding 

colorPos. The rate in which agA makes this change is defined by parameter dh 

which we keep here constant as a value of 1 to guarantee that agents traverse the design 

space in small increments. Figure 6 illustrates how agent agA modifies the hue value of 

colorPos approaching agB’s palette. Namely,  

if (agB.hueTemplateScore >= agA.hueTemplateScore )  

    if (hue(agB.color1) > hue(agA.color1)) agA.color1 = color( min(360, 

hue(agA.color1) + dH), saturation(agB.color1), brightness(agB.color1)); 

        scoreUpdate(palette); 

[Insert Figure 6 here] 

The third and last step that agA takes in this model is to modify the hue value of 

colorPos if it detects that agB’s hueEntropyScore is higher. In such case, agA 

translates the hue value agA steps in colorPos in the direction of the hue value in a 

neighbor of colorPos of its own palette. Figure 7 illustrates this process. Namely, 

if (agB.hueEntropyScore >= agA.hueEntropyScore )   

     if (colorPosition == 0) ( 

          if (hue(agA.color2) > hue(agA.color1)) agA.color1 = color( min(360, 

hue(agA.color1) + dH), saturation(agA.color1), brightness(agA.color1)); 

                scoreUpdate(palette); 

[Insert Figure 7 here] 

Table 1 summarizes all the model variables described earlier, for clarity: 

Variable name Variable Type Description 

ID Integer Identifies every agent 
skill Integer Defines the number of colors an agent can 

change in their palette  
colors Array of color values The color palette designed by every agent 
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xy Two-dimensional coordinate Defines agent’s position in a display grid 

score Integer Score (fitness) of a color palette 

frust Integer Probability of a random change (mutation) 
in a palette 

agA and agB Agents Designer agents that make up a population 

hueTemplateScore Evaluation criterion Criterion applied in the evaluation of 
palettes based on hue templates 

hueEntropyScore Evaluation criterion Criterion applied in the evaluation of 
palettes based on hue entropy 

layoutScore Evaluation criterion Criterion applied in the evaluation of 
palettes based on palette’s layout 

colorPos Index The position of a color in a palette 

simLimit Index Number of steps that simulations run 
skill_1 Low-skill agent Agent with lowest skill value of 1/5 
skill_5 High-skill agent Agent with highest skill value of 5/5 
Hybrid Agent population Group with minority of skill_5 agents 

and majority of skill_1 agents 

 

Baseline conditions 

To establish a baseline for the model, it is run with all agents having low skills 

(condition skill_1), namely when all agents can only change a single color of the 

palette each time they work on their design, and with all agents having high skills 

(condition skill_5), namely when all agents can change all the colors of their palette 

in their turn. Every other parameter of the simulation is kept constant across cases 

including random number seeds, rates and threshold of frustration, and scoring and tools 

to modify palettes. The aim is to define the outcomes with these two “extreme” 

conditions to establish a baseline to compare a version of the model with only a small 

minority of “genius-level” agents and a majority of “garden-variety” agents, as Big-

C/little-c thinking assumes.  

A total of 20 cases are run, each with a unique random seed and a constant 

simLimit, the number of total interactions between agents before the simulation ends. 

These were established by running cases for up to 1,000,000 steps with N = 10, 30, and 

100 to confirm the findings reported. The results discussed here are with a group of 30 
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agents, simLimit = 50,000. Groups with all skill_1 agents create an average of 

132 top palettes, with an average score across cases of 393.82 and average maximum 

score of 431.59. In skill_5 groups, agents tend to create around 10% more top 

palettes (143) with nearly 70% increase in number of times that top scores are reached. 

Figure 8 shows average top scores for 20 cases with skill_1 (solid orange) and 

average top scores for 20 cases with skill_5 (solid blue), as well as the highest top 

score across cases for skill_1 (dash orange) and skill_5 (dash blue).  

Figure 9 shows the number of “hits” for each agent in the group: the instances 

across 20 cases that agents create a color palette of high value. To define the set of “best 

designs” we discard all initial palettes generated at model setup and only count high-

scoring palettes produced after timestep 1. In skill_1 conditions, (orange bars) 

agents generate a mean of 4.4 hits -standard deviation 2.08, while skill_5 groups 

(blue bars) increase to 4.8 hits per agent and a higher variance (2.3). As expected, 

groups with lower skills produce fewer palettes and of lower quality compared to 

groups with higher skills where more palettes of higher quality are generated by a more 

select subgroup of agents.  

[Insert Figure 8 here] 

[Insert Figure 9 here] 

Next, the Big-C/little-c distinction is examined with this model by creating 

groups that include a few “genius-level” agents with very high skills (skill_5, a 

creative elite) and a majority with very low skills (skill_1, the rest of the agents). 

According to Big-C/little-c thinking, in a system of this type only exceptionally skilled 

agents would design exceptionally good color palettes, and the rest of them with lower 

capacities would only (or mostly) generate incremental designs. For the little-c and Big-
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C distinction to exist, a qualitative difference should be observable between the outputs 

generated by agents based on their individual capacities.  

Results 

These results report 20 cases in N=30 groups, simLimit = 50,000 where only five 

agents have high design skills skill_5 (agents #13 to #17) while the rest have low 

skills skill_1 (agents #1 to #12 and #18 to #30). In this hybrid condition, we use 

the tag Big-C to refer to the elite skill_5 agents and little-c to refer to the majority of 

skill_1 agents in the group. An average total of 155 top palettes are created by these 

groups, an increase from both all skill_1 (132) and all skill_5 (143) conditions. 

The average hits per agent increases to 5.5, with a clear advantage of 17.2 top palettes 

for Big-C agents, and a significantly lower 2.76 for little-c agents as shown in Figure 

11. As expected, these results show a concentration of top results in a few hands (the 

creative elite seeded in these groups), but arguably less expected is that hybrid groups 

are more likely to produce a higher number of top palettes than groups with all 

skill_5 agents. To reiterate, hybrid groups perform better than uniform groups, 

even when their aggregate skills are markedly lower -a result that suggests the 

advantage of skill diversity in teams and calls for a separate analysis in the future.  

The elite Big-C agents in hybrid groups generate 14 out of the 16 

“Historically Best Designs” (HBD, defined as entries that reach 480 points or more in 

these conditions). In the top quartile of the 155 best palettes, Big-C agents show a clear 

dominance with 32 of the 40 entries -the remaining eight agents (all little-c) labelled 

OTW for “one-time wonders”. Of the 155 best designs, Big-C agents generate a total of 

86 entries (55%), and four of the little-c agents fail to generate a single top entry across 

all 20 cases. Therefore, the results in this scenario could be considered to confirm the 
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Big-C/little-c distinction to some extent: Big-C agents are nearly always behind the 

highest-scoring entries, and more often than not behind a top design. But not always. A 

closer look offers details worth examining. As noted, two of the 16 HBD entries are 

created by little-c agents, and 8 designs in the top quartile are also created by little-c 

agents. In addition, a rather unexpectedly large 45% of all 155 best palettes across cases 

are the work of these little-c agents too, a proportion that decreases to 28% of above-

average top palettes and increases to 61% of below-average top palettes. Hybrid 

groups seem to owe their efficiencies to the designs contributed by both the highly 

productive minority as well as by low-ability individuals. 

[Insert Figure 10 here] 

 

The considerable contributions of little-c agents to the top scores indicate that if 

the Big-C label is applied solely based on outcomes, then in many instances skill_5 

agents would not be recognized as Big-C agents, and many skill_1 agents would be 

inferred to be Big-C agents. In other words, solely based on the scoring of palettes, it is 

unfeasible to distinguish between skill_1 and skill_5 agents. This emphatically 

shows the conceptual weakness of labelling a creator based on their output alone 

without directly accounting for generative processes. To reiterate, in systems of this 

type a number of agents with significantly lower skills are able to generate top designs 

including some reaching the top historical achievements.  

These results indicate that the computational examination of the Big-C/little-c 

categories shows that it is a conceptually weak construct because it cannot consistently 

explain the characteristics of the generative processes of creators. In these models, only 

55% of the time the performance of high achievers is explained by individual factors, 

while in 45% of cases there is no intrinsic individual causation. This study thus 
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confirms how Big-C can be a quality that is attributed by observers of the outcomes 

which hides key attributes of how individuals create. The main conclusion from this 

work is that higher capacities are neither necessary, much less sufficient, to explain 

exceptional outcomes in systems of this type (Kitcher, 2000, p. 66).  

Discussion 

This study set to conduct a formal examination of a distinction about levels of creativity 

that has been highly cited despite its vague rhetorical framing. An in-depth inquiry of 

the Big-C and little-c hierarchy of creativity is conducted via a nomothetic agent-based 

simulation that forces researchers to be explicit about the premises, variables, and 

parameters in ways that enable building theory that is “decidedly falsifiable” (Jackson et 

al., 2017). Simulation has been defined as a third way of building theory: starting with a 

deductive approach to grow data that is analyzed inductively (Axelrod, 2013) to 

generate or grow the phenomena of interest (Epstein, 1999). The patterns emerge from 

clearly specified rules rather than from real-world evidence making simulation valuable 

to aid intuition and perform computational thought experiments (Axelrod, 2013). The 

validity of this model to support exploratory analysis about the Big-C/little-c distinction 

depends therefore on several factors: first, the extent to which it reflects the key 

qualities of the target system including the behavior of the agents, the type of outputs 

designed, and the mechanisms used to evaluate and synthesize designs. Second, the 

appropriate use of pseudo-random parameters to account for externalities. Thirdly, the 

causation mechanisms that give rise to the different types of outcomes given the 

parameters in the baseline and the experimental conditions. Lastly, the adherence 

between the description of the model and its implementation in computer code, which is 

shared publicly for other researchers to verify and recreate the data presented in this 
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paper.  

Whilst the agent model does include stochastic decision-making, we argue that 

the level of randomness employed accounts for the type of externalities that can shape 

the behavior of such systems. To the extent that this agent model captures some of the 

processes that characterize creative behavior in fields such as the design of color 

palettes, these results can help to better understand how the Big-C/little-c distinction is a 

“false dichotomy” (Runco, 2014). By showing that not all achievements are created by 

agents who possess advanced skills or superior traits, these results demonstrate the 

conceptual weakness of dividing creators in categories such as “mavericks” and 

“everyday people” (Kaufman & Beghetto, 2009). These labels have their origins in 

societal dynamics and therefore it can be problematic to use them to characterize 

inherent qualities of individual processes or people.  

Hierarchies of creativity have been argued rhetorically based on whether 

creations are evaluated by others as amateur, accomplished-but-not-yet-eminent, or 

genius-level (Kaufman & Beghetto, 2009; Merrotsy, 2013). Our study shows that in 

social systems like the creative communities modelled here, although high-skilled 

individuals are likely to concentrate high-quality creations, the boundary between high 

and low achievers is not as clear as the Big-C/little-c distinction would require. Some 

agents with high skills do not perform as well as others, and some agents with much 

lower skills can match and surpass the outcomes of agents with clear advantages. At the 

heart of this work lies the concept of “creative situations” (Gero & Sosa, 2002). 

Namely, some situations can favor certain creators over others regardless of their 

individual merits, such as accessing information or their creations being recognized 

first, or pure chance (Simonton, 2004). In complex social systems, causation transcends 

the individual sphere and includes group and social factors over time, thus supporting 
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the call for creativity to expand individualistic approaches to address situational 

causation (Mumford, 1995; Runco, 2008).   

In systems like this, agents can build upon the solutions of others. A similar 

mechanism of co-creation has been documented in the collaboration of designers in 

creative teams where some specialize in giving ideas and others in taking and improving 

on them, without implying that one type is more creative than the other (Elsbach & 

Flynn, 2013). Thus, the underlying principles captured in this study may be applicable 

to real-world design systems inasmuch as designers form their ideas informed by the 

ideas of others. More work needs to be done to test this in more veridical agent-based 

models of creativity, including those where the design task captures the dynamics of a 

complex real-world design domain.  

Further work is also needed to include learning mechanisms for agents to 

account for the evidence from studies of creativity and expertise. For example, three 

distinct agent mechanisms can be defined in future modelling to represent divergent 

thinking, intelligence, and expertise and their effects on ideation (Vincent et al., 2002). 

The need for conceptual clarity in how such constructs are implemented in artificial 

creators will require a close examination of how they have been defined and assessed in 

such studies.  

Even in conditions where individuals may seem to create in isolation, when 

designs become available in the marketplace, they can and do influence other creators. 

Thus, we argue that the modelling of creativity needs to account for the link between 

individual and group-level factors since for any act of creation, individuals rely on the 

ideas and means produced by others including their peers, competitors, collaborators, 

and “the shoulders of giants” who came before (Sosa & Gero, 2016). A flaw behind the 

Big-C/little-c distinction is that it conflates levels of creativity by attributing a label 
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based on evaluation to stereotypes of individual creators (Mumford et al., 2008; Sosa & 

Gero, 2016).  

In design studies it has been speculated that “it is entirely possible that creativity 

is rather common in everyday design projects and is not just the province of the activity 

of exceptional designers” (Wiltschnig et al., 2013). The study presented here supports 

this way of seeing creativity, and further provides support to avoid classifying designers 

into “everyday” and “exceptional” categories in the first place.  

The refutation of the Big-C/little-c distinction presented here could easily be 

misconstrued as an argument for the fallacy that “everyone can be Mozart”. Universal 

and plural views of creative capacities (Arendt, 2013) allow for a wide range of abilities 

including domain-specific talents, and a wide range of environmental advantages. 

Nature and nurture interplay to make certain creators better equipped, privileged, and 

positioned to generate exceptional outcomes in all sorts of fields, professions, and 

occupations. Rather, the refutation of Big-C/little-c creativity offered in this paper 

shows that explanations of exceptional creators require both individual and situational 

factors. An infrastructure was in place for Mozart’s talents to be informed, developed, 

applied, and valued. Musical genres and notation, instruments and performers, patrons, 

a public, all of these and other essential elements need to be accounted for when 

referring to the “Mozart” appellative, and not only the individual creator.  

The evaluation of a creative outcome cannot be reduced to the process and 

person who produced it, as Big-C/little-c thinking requires. Not only it is conceptually 

incorrect to characterize a generative process or a person based on a social evaluation of 

the outcome, it is also contrary to the principle of parsimony and is based on circular 

reasoning that assumes that generative processes of creation are of a different type 

(Dietrich, 2007; Weisberg, 1993). An entailment of this refutation is that acclaimed 
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designs need not be created equally to other acclaimed designs, and they need not be 

created differently than unacclaimed designs. This allows for scenarios where designs 

of equal or higher value go unnoticed for long periods, some of them forever lost in 

history or re-discovered at a later stage (Simonton, 2004).  

Future work with agent-based simulations of creativity will address the 

increased productivity of hybrid groups reported in our findings. We are also working 

on adding roles and mechanisms to these models to address other research questions for 

the study of creativity including the role of influential designs and the changing nature 

of taste which can affect the evaluation criteria of color palettes in this model. The 

source computer code is publicly available online and upon request.  
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Figure 1. Most loved entries in ColorLovers and most popular entries in Adobe Color as 

of July 2019 

 

Figure 2. Sample hue templates that score lower (left) and higher (right) as most of its 

hues range from wider (left) or narrower (right) angles of the color wheel (Parkhurst & 

Feller, 1982). 
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Figure 3. sample hue entropy scores from lower (left) to medium (centre) to higher 

(right) showing how the pairing of hue values improves the hueEntropyScore when hue 

pairs are spread across the color wheel. 

 

Figure 4. Sample layout scores from lower (left) to higher (right) as defined by the 

ordering of the palette colors, hue and saturation values are the same but positioned in a 

different ordered sequence.   

 

Figure 5. Agent agA swaps two of its colors seeking to increase layoutScore  
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Figure 6. Agent agA modifies the hue of one of its colors seeking to increase 

hueTemplateScore 

 

Figure 7. Agent agA modifies the hue value of colorPos to approach the hue value in a 

neighbour of colorPos of its own palette. 

 

Figure 8. Mean scores and maximum scores in skill_1 and skill_5 
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Figure 9. Hits by agents in skill_1 and skill_5 

 

Figure 10. Hits by agents in skill_1 (blue bars), skill_5 (orange bars), and in scenarios 

with a minority of Big-C agents (#13 to #17) and a majority of little-c agents (the rest) 

 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N30 Baseline: Hits by agents skill_1 and skill_5

HITS by Agents: all skill 1 HITS by Agents: all skill 5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N30: Hits by agents skill_1, skill_5 and Big-C

HITS by Agents: all skill 1 HITS by Agents: all skill 5 HITS by Agents: BigC

https://doi.org/10.1080/10400419.2021.1992195

