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Abstract: 

Spectroscopy in the visible near-infrared spectral (Vis-NIRS) range combined with imaging techniques 

(hyperspectral imaging, HSI) allows assessment of chemical composition, texture, and meat structure. 

The use of HSI in the meat and food industry has observed a significant growth in the last decade, yet 

its use for assessment of meat it is not optimal yet. The application of HSI for assessment of meat is 

reviewed with focus on its ability to capture meat unique chemical and structural characteristics. 

While HSI is widely used for assessment of chemical composition, a limited number of evidences on its 

ability to handle the effect of different sources of variation on the assessment is found. The use of 

spatially resolved spectroscopy has been able to detect structural information related to animal 

background, muscle type, rigor process and ageing. Similarly the use of texture features seem to 

capture unique characteristics of meat. 

Keywords: Hyperspectral imaging; chemometrics; light scattering; meat; texture; spatially resolved 

spectroscopy 
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1. Introduction 

Factors including on farm practices, animal background and handling from farm to slaughter can all 

have significant impacts on meat product quality. Except perhaps in a well-established vertically 

integrated supply chain, meat processors have little influence over the animals they process. Despite 

target weight specifications and pricing incentives wide variation can be observed in carcass weight 

and fatness for example. Following slaughter, the rigor process commences leading to pH decline and 

along with several other biochemical changes including the rate and extension of pH decline, 

proteolysis and protein oxidation post slaughter that affect the release of water (Huff-Lonergan & 

Lonergan, 2005). As the rigor progress, space for water to be held in the myofibrils is reduced and fluid 

can be forced into the extramyofibrillar zone (Huff-Lonergan & Lonergan, 2005). At rigor, shortening of 

muscle fibres occurs negatively influencing meat quality (i.e., tenderness); however, proteolytic 

degradation of the meat proteins becomes favourable to the attributes such as meat tenderness 

(Tornberg et al., 2000). The relevant level of shortening and proteolytic breakdown of muscle proteins 

is dependent on chilling conditions and the level of stress ante-mortem as well as the course of pH 

decline prior to fully developed rigor (Tornberg et al., 2000). In summary, the rigor process involves a 

combination of biochemical and structural changes that are dependent on processing conditions (e.g. , 

chilling rate, electrical stimulation) and animal background (e.g., glycogen reserve at slaughter, muscle 

fiber distribution and composition).  Post rigor, a new series of biochemical and structural changes will 

take place in the meat due to ageing, storage temperature (e.g. freezing/thawing) and bacterial 

growth as well as the interactions among these factors. As a result of the rigor and ageing processes, 

meat owns unique chemical and structural characteristics that are uniquely and directly associated 

with its sources in the way it was processed, handled and transported to consumers. The detection of 

these unique chemical and structural characteristics offers an opportunity for the assessment of meat 

integrity at the stages of production, including assessment of quality, shelf-life and authenticity.  

Spectroscopy in the visible and near infrared spectral (Vis-NIRS) range is based on the interaction of 

electromagnetic radiation with matter. When a beam of light is directed onto the meat, a part of it will 

have little interaction with the sample being reflected on its surface while the other part will travel 

through the meat, interacting with it, being scattered and absorbed (Dahm & Dahm, 2001; Dahm & 

Dahm, 2013; Jacques, 2013; Mollazade et al., 2012; Saeys et al., 2010).  Four processes take place in 

this case (Mollazade et al., 2012), Figure 1: 1) Light absorption; 2) regular reflectance (specular) where 

the light incident angle with the meat surface is equal with the angle at which it is reflected, meaning 

little or no interaction with meat; 3) external diffuse reflectance, which capture information about the 

surface of the meat; and 4) light scattering, also due to interaction of light with the sample. The 
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outgoing light from the sample surface results from scattering inside of the sample. The detection of 

the outgoing photons allows the assessment of how much was lost by absorbing/scattering as well as 

the amount reflected (specular and external diffuse). The ratio between the amount of outgoing 

photons from the sample to the amount of incident photons is commonly used as a measure of how 

much was lost by absorption and scattering as well as the amount reflected. Both absorption and 

scattering are wavelength dependent, making the use of the entire Vis-NIR spectrum a rich source of 

information about the chemical and structural characteristics of meat, which offers an opportunity for 

the assessment of meat integrity based on non-invasive approaches.  

Figure 1 

The use of Vis-NIRS combined with imaging techniques (hyperspectral imaging HSI) allows a region of 

interest (ROI) to be scanned to collect a Vis-NIR spectrum per pixel in the scanned region. The use of 

diffuse illumination allows image heterogeneity on ROI to be captured without the possibility to 

separate the effects of scattering and absorption. With structure-based illumination, e.g., point 

source, these two effects can be estimated (Aernouts et al., 2011). 

HSI has been used in several applications for meat assessment showing results in the quality attributes 

as well as safety and authenticity (Elmasry et al., 2012; Feng et al., 2018; Kamruzzaman et al., 2013; 

Kamruzzaman et al., 2015; Liu et al., 2017; Xiong et al., 2014). HSI-based techniques have also been 

used to assess scattering and applied for  predicting attributes which are associated with meat 

structure such as tenderness (Cluff et al., 2013; Peng et al., 2009; Ranasinghesagara et al., 2010; Wu et 

al., 2012; Wu et al., 2010).  The use of hyperspectral imagining in the meat and food industry has 

observed a significant growth in the last decade as revealed in recent literature reviews. Cheng et al. 

(2017) reviewed application of HSI based on use of multivariate analysis for prediction of tenderness, 

colour attributes, drip loss, water-holding capacity, firmness, springiness, pH as well as meat 

classification regarding grading, muscle discrimination ad differentiation between fresh and frozen 

meat products(Cheng et al., 2017). Similarly, Chen et al. (2017) described studies applying HSI 

combined with multivariate analysis for prediction of meat chemical composition. While Siche et al. 

(2017) reviewed HSI applied to assessment of quality attributes such as tenderness as well food and 

safety (Siche et al., 2016). These reviews describe well the application of the standard approach to HSI 

combined with classical multivariate analysis. However, less attention is given to the HSI underlying 

principles allowing development of new measuring techniques to detect aforementioned factors 

affecting the unique chemical and structural characteristics for assessment of meat integrity at the 

stages of production, including assessment of quality, shelf-life and authenticity. Thus in this paper the 

application of hyperspectral imaging for assessment of chemical, textural and structural characteristics 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

of meat is reviewed with focus on its ability to capture unique chemical and structural characteristics 

of meat. Our motivation is to identify gaps and formulate future research needed to achieve optimal 

use of hyperspectral imaging in assessment of meat with the development of new experimental 

techniques and modelling approaches.  

2. Hyperspectral imaging for assessment of chemical, textural and structural characteristics of meat  

2.1 Assessment of meat chemical composition and Chemometrics 

The most common approach used in HSI to assess chemical composition is based on reflectance 

measurements, where an exposed surface of the sample is illuminated and light emerging from the 

same surface is detected. The technique of choice is based on the ratio between the intensity of 

outgoing light and the intensity measured in a reference material considered as 100% of reflectance. 

This technique works under the assumption that the effect of specular reflectance, external diffuse 

reflectance and internal scattering (the part which is scattered internally and is not detected) in 

detected light intensity is similar among samples. In the cases, where this assumption does not fully 

apply, pre-processing of the spectra is performed to reduce the impact of these effects (Cheng et al., 

2017). Then, a Chemometric model is fitted to relate the detected spectra with the attributes of 

interest (Cheng et al., 2017).   

The most common methods for analysis of hyperspectral data in meat include (Cheng et al., 2017): 

Principal Component Analysis (PCA); Partial Least Squares Regression (PLSR); Multi Linear Regression 

(MLR); Support Vector Machine (SVM); and Artificial Neural Network (ANN). These methods are 

adaptable either for the development of predictive or classification models (Amigo et al., 2015; Geladi, 

2003; Juan et al., 2004). PCA is commonly used for exploratory analysis. Predictive models are used to 

estimate a value for an attribute(s) of interest, e.g. fat content, from the hyperspectral data. 

Classification models aim to assign a category, e.g. fresh, to sample using the hyperspectral data. 

While exploratory analysis is perform to identify patterns in the data. Prior the application of these 

methods the hyperspectral data undergoes several steps of processing in spectral and spatial domain 

(Amigo et al., 2015; Rinnan et al., 2009b). These pre-processing methods are dedicated to deal with 

effect of variability in the sample that affects the NIR spectra but are not easily modelled. The pre-

processing methods mostly used for the spectral domain include: Smoothing and derivatives(Savitzky 

& Golay, 1964), Standard Normal Variate (SNV)(Barnes et al., 1989; Feng & Sun, 2013), Multiplicative 

Scatter Correction (MSC) (Rinnan et al., 2009a), Orthogonal Signal Correction (OSC)(Sjöblom et al., 

1998). Smoothing the spectral data is important step to remove the noise. In general, the derivatives 

(1s t and 2nd) are used to emphasize the spectral information. The first derivative is used to remove the 
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additive baseline in signal and the second derivative is utilized to remove the linear baseline 

(multiplicative) from the signal(Martens & Naes, 1992). Reduction of the effect of regular reflectance 

and external diffuse reflectance on the spectral data is commonly performed with  MSC, SNV, baseline 

correction, and De-trending (Keresztes et al., 2016). Methods applied to spatial domain (x and y 

coordinates) includes,: Homogeneous smoothing (averaging); Gaussian smoothing; Median 

smoothing; Bilateral smoothing, and wiener filter, (Klette, 2014). These methods considers the local 

neighbors (4, 8, etc.) of each pixel at each band of the hyperspectral data.   

Table 1 presents the application of chemometric methods for the prediction of intramuscular fat 

content (IMF%) using HSI with samples (n= 2454) of lamb loin (m. longissimus lumborum) collected in 

three consecutive years at different meat processing plants. Details of experimental methods used for 

data collection has been discussed elsewhere (Craigie et al., 2017). Ten different methods were 

evaluated including: Partial least squares regression (PLSR) with latent variables selection based on the 

adjusted wold’s R criterion with thresholds on unity (AW) and 0.99 (AW0.99)(Li et al., 2002), Gaussian 

process regression (GPR)(Chen, Morris, et al., 2007; Gibson et al., 2012; Verrelst et al., 2013), Support 

Vector Machine (SVM)(Borin et al., 2006; Chen, Zhao, et al., 2007; Zhang et al., 2008), PLSR with 

wavelength selection according to competitive reweighted adaptive sampling (CARS)(Li et al., 2009) 

and variable importance in projection (VIP)(Chong & Jun, 2005), Multiple Linear Regression (MLR), 

Stepwise Multiple Linear Regression (SMLR)(Hastie et al., 2008), lasso regularization for linear 

regression (LASSO)(Hastie et al., 2008) and Robust Multiple Linear Regression (RMLR)(Hastie et al., 

2008). SNV was used as pre-processing method.  Overall similar performance was obtained 

independently of the method used.  

Table 1 The performance of different calibration models. The calibration is based on 66% data with 

validation carried out on the remaining of the data. PLSR with latent variable selection is based on the 

Adjusted Wold’s R criterion with thresholds on unity & 0.99, GPR, SVM, PLSR with wavelength 

selection according to CARS and VIP, MLR, SMLR, LASSO and RMLR. The IMF range on the dataset (n= 

2454) is from 0.86% to 9.48%, with standard deviation of 0.82 and mean 2.67%.  

HSI, IMF% R2 calibration  

( N = 1628) 

RMSE calibration R2 validation  

(N = 826) 

RMSE validation 

PLSR (AW) 0.74 0.41 0.71 0.46 

PLSR (AW0.99) 0.71 0.44 0.70 0.46 

GPR 0.79 0.37 0.72 0.45 

SVM 0.74 0.41 0.68 0.47 

PLSR (CARS) 0.74 0.41 0.70 0.46 
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PLSR (VIP) 0.66 0.48 0.67 0.48 

MLR 0.77 0.42 0.70 0.46 

SMLR  0.73 0.43 0.71 0.45 

LASSO 0.72 0.43 0.71 0.45 

RMLR 0.75 0.41 0.69 0.47 

 

Chen et al. (2016) recently reviewed the use of hyperspectral imaging for assessment of chemical 

information in meat(Chen, Sun, et al., 2016). Moisture, fat content and composition, protein and 

pigments are the most common attributes evaluated, where the performance reported on the basis of 

R2 is in general above 0.8 (Chen, Sun, et al., 2016). While these feasibility studies have been showing 

the ability of HSI to predict chemical composition of meat (Chen, Sun, et al., 2016) there is a lack of 

studies demonstrating the robustness of the system for use at meat processing plants. The 

performance based on R2 for prediction of fat content in beef and lamb, reported in other studies, 

varying between 0.84 and 0.93 (Chen, Sun, et al., 2016) was higher than observed in our study (Table 

1). Kamruzzaman et al. (2012) used HSI to predict fat content in lamb using 126 samples (42 animals × 

3 muscles,  semimembranosis, semitendinosus and longissimus dorsi) and obtained a very good 

performance (R2cv = 0.91, R2p = 0.88 and SEP = 0.40%)(Kamruzzaman et al., 2012). Pu et al. (2014) 

evaluated the same data set as Kamruzzaman et al. (2012), but with alternative modelling approach 

and observed and a slight increase on prediction performance (R2cv = 0.95, R2p = 0.98)(Pu, Sun, Ma, 

Liu, & Kamruzzaman, 2014). However, the SEP in our study (n=2454 samples) is relatively similar to 

that obtained by Kamruzzaman et al. (2012) (n=126 samples). The study by Kamruzzaman et al. (2012) 

was performed with similar range of fat concentration (0.74 to 7.62%, mean: 2.42% and sandard 

devition 1.33) as reported in Table 1, and the difference in performance between studies might have 

results from effects of other sources of variation (e.g different processing plants, seasonality) not 

included in the study of Kamruzzaman et al. (2012).   

When different sources of variation are present (e.g. different processing plants, seasons, animal 

background) for large number of samples the prediction performance is reduced. There is a 

knowledge-gap on understanding how the effect of these sources of variation impact the performance 

of HSI for prediction of chemical composition and approaches are needed to improve performance. As 

discussed in the section 2.2 and 2.3 meat has a defined structure affecting the spatial domain of the 

data which has also effect on spectral domain. But, the majority of approaches described for 

development of model for HSI either as predictive or for classification of meat are based on 

methodologies developed for NIRS and that do not take into consideration the interactions between 

spectral and spatial domain.   
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Recently, deep learning models have been introduced to HSI field and other fields like image, 

languages, and speech processing(Lecun et al., 2015; Schmidhuber, 2015). Deep learning model ‘learn’ 

deep features in a hierarchical way and produce features have with a high level of abstraction, 

complexity, and invariance to the local change in the input data(Bengio et al., 2013). In general, there 

are many deep neural network architectures proposed in the field of hyperspectral imaging such as 

deep belief networks (DBNs), deep Boltzmann machines (DBMs), stacked autoencoder (SAEs), and 

convolutional neural networks (CNNs).  A deep learning approach to capture spectral and spatial 

features was proposed for the first time in hyperspectral imaging by (Chen et al., 2014) and has been 

attracting attention in the last few years(Li et al., 2017; Makantasis et al., 2015). SAE network is used 

to extract deep features followed by logistic regression for doing the classification part, where the 

considered features were spectral (1D vector), spatial (flatted nxn regions in PCA space), and joint 

spectral-spatial by stacking the feature vectors as a one feature vector (Chen et al., 2014). Similar 

methodology was implemented for extracting the features using DBN with using of restricted 

Boltzmann machine for building the network and estimating the weights and parameters(Li et al., 

2017). In fact, these methods (SAE, and DBN) achieve a high performance compared with a shallow 

machine learning methods like SVM, KNN, ANN, etc., but still don’t consider the spatial information in 

2D structure, since converting the 𝑛𝑥𝑛 regions into 1𝐷 vector destroy the meaning of spatial 

information. CNN comes to solve the problem of spatial information, where it consider the sample as 

2D coordinates. The CNN implementation for classifying hyperspectral images using the only spectral 

information, a 1D vector (spectrum) as input layer similar, was one of the first application of CNN (Hu 

et al., 2015). CNN implemented for investigating the different  types of features (spectral, spatial, and 

joint of them) using a 3D CNN has been reported (Chen, Jiang, et al., 2016).  The motivation of using 

deep learning in hyperspectral imaging analysis applied to meat is that deep learning allows modelling 

of several levels of interaction such as spectral-spatial, variation in light scattering, spectral variation 

and sample presentation such as sample moving and rotation. Moreover, it can handle the raw input 

data as input and extract the features by itself, where a pre-processing and features extraction are not 

needed. Therefore new modelling approaches based 3D CNN is expected allow to maximize the 

capabilities of HSI on assessment of meat. Recently, the use of 3D-CNN combined with spectral 

features has been described showing the possibility to model hyperspectral data from meat in 

combination with several streams of information allowing complex interaction within the dataset to 

be modelled(Al-Sarayreh et al., 2018). Further research should be dedicated to investigate how this 

type of approach would allow to combine spectral information, texture and scattering based 

measurement into a single model.   
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2.2 Assessment of meat structural characteristics 

The structure of the muscle (converted to meat) presents several levels of complexity (Figure 2), that 

dependent on animal background and growth and that will be significantly affected by the process of 

conversion of the muscle into meat and ageing.    

Figure 2 

As light travels through these different structures of the meat (Figure 2)  it goes from areas of given 

refractive index (e.g. mitochondria) to another area of a different refractive index (e.g. collagen fibrils, 

Figure 2d),  as result it changes its path and refraction of light takes place and leading to optical 

scattering (Mollazade et al., 2012). Optical scattering can be described either as scattering by particles 

that have a refractive index different from the surrounding medium, or as scattering by a medium with 

continuous but fluctuating refractive index(Jacques, 2013). The heterogeneous structure of tissue 

(Figure 2), that makes it a strong scatter, results in a complex light propagation problem very difficult 

or practically impossible to be solved theoretically(Mollazade et al., 2012). Thus behaviour of light 

propagation in a biological tissue, has been approached based on diffusion theory model and Monte 

Carlo simulation(Mollazade et al., 2012).   

One approach to estimate the optical properties of the meat is based on spatially resolved 

spectroscopy (Aernouts et al., 2011), where a beam of light is focused on a spot; and outgoing light on 

the surroundings of this spot is scanned using HSI, Figure 3 (Mollazade et al., 2012). The variation on 

detected light intensity as the distance to the illumination spot is used to assess absorption/scattering 

in the sample (Aernouts et al., 2011). These approaches have been used for the assessment of 

structural characteristics of meat and quality attributes such as tenderness (Cluff et al., 2008; Cluff et 

al., 2013; Ranasinghesagara et al., 2010; Ranasinghesagara & Yao, 2007; Xia et al., 2007).  

Figure 3 

The optical properties of a tissue can be described in terms of the absorption and scattering 

coefficients. Absorption coefficient is a measure of the rate of decrease in the light intensity as it 

passes through a given substance(Mollazade et al., 2012). While scattering coefficient is the fraction of 

light scattered per unit distance in a participating medium(Mollazade et al., 2012). Anisotropy of 

scatter, characterizes tissue scattering in terms of the relative forward versus backward travel in 

thicker tissues where multiple scattering occurs in the direction of scatter. The anisotropy factor (g) is 

calculated as function of angle existing between the direction of the photon before a scattering event 

and the direction after the scattering event (in the interval [0, π])(Mollazade et al., 2012).  During the 
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diffusion process, photons have a random movement through the medium in a sequence of strides of 

lengths and directions (Mollazade et al., 2012). Every stride being with a scattering event is equally 

likely to be taken in any direction(Mollazade et al., 2012). Reduced scattering coefficient is a 

description of the combined effect of scattering coefficient and average scattering angle as follows  

Reduced scattering coefficient= (1-g) x Scattering coefficient, (Mollazade et al., 2012).  

Spatially resolved spectroscopy has been used to estimate absorption and reduced scattering 

coefficient spectra of different beef samples based on light diffusion model(Mollazade et al., 2012; 

Van Beers et al., 2018), and other approaches to estimate these coefficients are reported by (Jacques, 

2013). 

 

Figure 4 presents the results of spatially resolved spectroscopy applied to two muscle types originated 

from bull and steers, where setup for data acquisition is described in (Van Beers, Aernouts, Reis, et al., 

2017). A logarithmic (base 10) function was fitted to the reflectance as a function of the distance from 

the illumination spot. From this fitted function, two parameters characterizing the profiles were 

tuned: slope and intercept. These parameters were estimated for each wavelength (550 nm to 1700 

nm) resulting in profiles of slope and intercept per sample as shown in Figure 4. Reduced scattering 

coefficient shows an exponential decay with increase in the wavelength while absorption is 

characterized by peaks around specific wavelengths, see Figure 1 for example in (Van Beers et al., 

2018). Thus the decrease in slope values and increase of intercept values as function of wavelength 

could be indication of changes in the scattering properties of the meat while the peaks are associated 

to changes in absorption. Steers show, in general, higher values of slope and lower values for intercept 

in Figure 4, and therefore lower relative reflectance and slower decay compared to bulls. Due to the 

overall higher bulk scattering, more photons exited close to the point of illumination as they cannot 

travel as deeper inside the tissue before being scattered and absorbed. This effect seems to be more 

evident in bulls. Similarly, the difference between muscles is observed for both steers and bulls, but is 

more significant for bulls. Samples from brachialis in bulls also show differences in the slope profiles, 

especially in the peak around 1100nm, which is much narrower than the others as well as the 

presence of a peak around 900 nm. For intercepts, these peaks are observed at 800 and 1000 nm. 

These spectral regions are related to overtones of CH molecular bond, but it is not clear how they are 

related to separation between muscles types for bulls. Overall, this application illustrates the ability to 

capture information about animal background and muscle type. 

Figure 4 
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Van Beers et al. (2017)  investigated the effects of fiber orientation on Vis-NIR light propagation in 

biceps brachii, brachialis, soleus and proposed that the 3D fiber orientation has a large influence on 

the diffuse reflection measurements acquired from muscle samples (Van Beers, Aernouts, Reis, et al., 

2017).  They suggested that this effect should result from the scattering of photons on aligned 

cylindrical microstructures (muscle fibers)(Van Beers, Aernouts, Reis, et al., 2017).  Muscle fibers have 

large regular structures (e.g., mitochondria (300-900 nm), t-tubules, sarcoplasmic reticulum, A-band 

(region of overlap with both thin and thick myofilaments), I-band (region of thin myofilaments)) that 

repeats both radially and longitudinally along the fibre with a characteristic length of ~500-1500 nm 

that are dependent on fiber type (Figure 8 from (Shorten & Sneyd, 2009); Figure 17 from (Ogata & 

Yamasaki, 1997)).  The two muscles in Figure 4, brachialis and soleus, have very distinct distributions of 

fiber types with soleus having more than 90% of Type I fiber; meanwhile, brachialis has around 60% of 

Type I fiber. Thus, it is thicker than that of soleus. Differences in scattering properties among muscles 

types involving more similar distributions of fiber types have been reported (Van Beers et al., 2018; Xia 

et al., 2007). Hence, it can be proposed that fiber type distribution play a key role on the light 

scattering of the muscle, alongside other factors such as collagen fibers and myofibrils. 

Xia et al. (2006) proposed that optical scattering properties in the muscle are dependent on the 

collagen content of the muscle since the sizes of collagen fibers and myofibrils in meat are all closer to 

or larger than the used optical wavelengths (visible and short-wave near infrared light). Xia et al. have 

also shown that optical scattering properties measured in whole muscle are related to changes in 

sarcomere structure (Xia et al., 2006). Xia et al. (2006) applied spatially resolved optical reflectance on 

whole muscle and observed that reduced scattering coefficients of post rigor psoas major samples 

increased with sarcomere length. Their results also suggest that the optical scattering measurements 

can characterize structure changes during rigor mortis development, where scattering coefficients 

decreased with time and the decay rate became slower after a certain period. It was proposed that 

permanent formation of cross-bridges is the dominant effect in altering scattering coefficients(Xia et 

al., 2006). 

Overall these independent studies shows that the use of spatially resolved experiments base on 

hyperspectral imaging does provide a direct link to structural components of meat and is able to 

capture structural changes taking place from pre-rigor to post ageing. While most of studies described 

in the literature are based on laboratory type instruments, the introduction of a portable device has 

been described(Van Beers, Aernouts, Deserranno, et al., 2017) showing feasibility of using spatially 

resolved measurements at meat processing plants. Furthermore new hyperspectral devices, such as 

snapshot cameras(Geelen et al., 2013) that are portable, don’t require sample translation and will 

allow the development of new portable devices for spatially resolved spectroscopy to be used at 
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processing plants. Thus further investigation should be dedicated on developing measuring systems 

able to assess light scattering with other features capture by hyperspectral imaging.  

 

2.3 Assessment of meat textural characteristics 

 

The texture of meat is formed by repeating units at different macro and microscopic scales, as 

illustrated in Figure 2 (Astruc, 2014), which are dependent on muscle type and species being affected 

by processing of the meat. Thus, the texture brings important information about the meat. Texture 

within the context of this review is defined as non-random arrangement of entities with given 

distribution of intensities and shapes, see Figure 2b,c for example, (Di Cataldo & Ficarra, 2017). 

A common model for extracting texture features in image is based on spatial relationships of adjacent 

pixels by calculating how often a pair of pixels with the same intensity values occur in an image (Klette, 

2014). This is estimated by using the gray-level co-occurrence matrix (GLCM)(Klette, 2014). Statistical 

texture features can be extracted from GLCM matrix including (Haralick, 1979): homogeneity, 

contrast, inverse difference moment,  entropy, energy and correlation.  Contrast provides a measure 

of intensity or gray level variations between the reference pixel and its neighbour, where large 

contrast reflects large intensity differences in GLCM(Klette, 2014; Zayed & Elnemr, 2015). 

Homogeneity measures how close the distribution of elements in the GLCM is to the diagonal of 

GLCM. As homogeneity increases, the contrast, typically, decreases(Klette, 2014; Zayed & Elnemr, 

2015). Entropy is the randomness or the degree of disorder present in the image. The value of entropy 

is the largest when all elements of the co-occurrence matrix are the same and small when elements 

are unequal(Klette, 2014; Zayed & Elnemr, 2015). Energy is derived from the Angular Second Moment 

(ASM). The ASM measures the local uniformity of the gray levels(Klette, 2014; Zayed & Elnemr, 2015). 

When pixels are very similar, the ASM value will be large. The Correlation feature characterizes the 

linear dependency of gray level values in the co-occurrence matrix(Klette, 2014; Zayed & Elnemr, 

2015). 

 

Transform-based texture analysis (Di Cataldo & Ficarra, 2017) has also being used in hyperspectral 

imaging. This type of approach transforms the image into a different space aimed to enhance texture 

properties and maximize the geometrical separability of different types of textures(Di Cataldo & 

Ficarra, 2017). Among these approaches there are: Spatial domain filters, based on edge detection 

operators allowing to distinguish coarse from fine patterns; frequency domain filters, used to extract 

spatial-frequency components of the images detecting global texture properties such as coarseness, 

graininess, or repeating patterns; Gabor and wavelet transforms, are based on a similar principle to 

frequency domain filters but, wavelets uses different types of basis functions than the sinusoidal basis 
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and is scale dependent; the Gabor transform is characterized by a Gaussian-shaped window function, 

which makes it better suited to represent spotted and concentric textures(Di Cataldo & Ficarra, 2017).  

 

GLCM is typically applied to a single channel of an image and its use in hyperspectral data involves the 

estimation of features for each image in the hyperspectral cube or for selected images. It is also 

possible to use data-reduction methods such as PCA to reduce the spectral dimension and concentrate 

the information within few images. For example, Naganathan et al. (2015) investigated the use of 

hyperspectral image features for classification of beef samples according tenderness(Naganathan et 

al., 2015). They used descriptive statistical features including: Wavelet features; GLCM; Gabor 

features, Laws' texture features, and local binary pattern features. The features were extracted after 

reducing the dimension of hyperspectral images using PCA. The features extracted from the 2-day 

images were used to develop tenderness classification models for forecasting the 14-day beef 

tenderness. GLCM outperformed the other models and achieved a tenderness certification accuracy of 

87.6%, overall accuracy of 59.2%, and an accuracy index of 62.9% . 

 

The combination of spectral and texture features, has been reported in applications related to 

authenticity, such as differentiation between free-range and broiler chicken meat (Xiong et al., 2015) 

and the differentiation between fresh and frozen-thawed pork meat (Ma et al., 2015; Pu et al., 2015; 

Pu, Sun, Ma, Liu, & Cheng, 2014).  Cheng et al. used GLCM features (contrast, correlation, energy, and 

homogeneity) in combination with spectral information for the assessment of freshness based on K 

values (Cheng et al., 2016). The performance (R2, validation) of predictions models were improved 

from 0.87 to 0.92 and shown an increase of at least 17.5% in predictive performance, when compared 

to models-based either on spectral or textural data alone(Cheng et al., 2016). Garrido-Novell et al. 

applied textural information from hyperspectral data to discriminate between pork, poultry and fish in 

processed animal protein meat. Garrido-Novell et al. (2018) expressed texture based on contrast, 

homogeneity, energy and correlation estimated from GLCM, but applied to all 212 wavelengths 

scanned in the hyperspectral image (Garrido-Novell et al., 2018). The integration of spectral and 

textural information into a single model also resulted in a higher rate of correct classification 

compared to the spectral model (92% versus 83%) (Garrido-Novell et al., 2018). 

Recently Guo et al. (2018) proposed the use of bi-dimensional PCA for extraction of structural 

information and multi-features from hyperspectral data (Guo et al., 2018). Guo et al. observed that 

entropy values decrease with the increasing time of pork meat storage, where higher value of entropy 

indicates a more uniform meat surface (Guo et al., 2018). It was proposed that changes in the surfaces 

indicated by changes in entropy could result from protein degradation that causes damage in the 
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integrity of the structure of muscle cells (Guo et al., 2018). In this case, the texture features of the 

hyperspectral image based on Gabor filters showed variations due to the storage time mainly in the 

visible spectral range associated with myoglobin (Guo et al., 2018). 

The texture of meat is formed by features at several spatial scales. Texture features in two different 

spatial scales can also be extracted with combined techniques, for example, combing  superpixel 

segmentation (Achanta et al., 2012) with GLCM. The pixels in each superpixel share “similar'' local 

spectral features, reflecting local spatial features (e.g., similar texture) in the image. The simple linear 

iterative clustering (SLIC)-superpixel (Achanta et al., 2012) segments are calculated by setting the 

segment region into given number of pixels ‘n’, which means that the size of each superpixel is around 

n pixels. SLIC-superpixel was originally proposed for colour images; with the similarity (using the 

Euclidean distance) among pixels assessed in RGB or CIE-LAB space, combined with the closeness of 

spatial coordinates. SLIC can be applied in the PCA space to capture spatial and spectral similarities 

combined. The scores from the first and most relevant principal components are used to produce 

images with channels as the input for SLIC. Euclidean distance is used as the similarity measure in the 

PCA space.  Once superpixels are calculated, spectral and texture features estimated using GLCM are 

extracted for each superpixel(Al-Sarayreh et al., 2017). The spectral features correspond to spectra of 

representative pixels selected using Kennard-Stone algorithm applied to each superpixel(Al-Sarayreh 

et al., 2017). Figure 5 illustrates the methodology for extracting the texture features from those HSI 

images.  

 

Figure 5 

 

Recursive feature elimination (RFE) (Ambroise & McLachlan, 2002; Svetnik et al., 2004), for example, 

allows the selection of a set of most significant image for making a distinction between classes (Al-

Sarayreh et al., 2017). In the RFE procedure, a random forest (RF) algorithm is used to estimate the 

importance of each image from data cubes in the classification task. The images found with the 

highest importance (rank) resulting from the RF model are selected. After that, texture features are 

computed for each superpixel at selected images by using the mentioned methodology above (Al-

Sarayreh et al., 2017). Then, these sets of features are added to the selected spectral features of pixels 

inside the considered super-pixel, which significantly increases the performance of classifications 

models for species classification (Al-Sarayreh et al., 2017). In this case, it was possible to achieve an 

increase in precision from 71% to 82% on classification of lamb meat against others, and an increase 

from 87% to 92% on overall accuracy (Al-Sarayreh et al., 2017). The performance of the final model 
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was found to be independent of status of the scanned samples (fresh unpacked, fresh packed, frozen 

unpacked, frozen packed, and frozen-thawed unpacked) (Al-Sarayreh et al., 2017).  

 

These studies show the importance of using texture features calculated from hyperspectral images. 

However, the integration between spectral and texture features in modelling is still performed 

independently, i.e., the dependence between texture and spectral features is not expressed explicitly 

in a single model. The introduction of CNN, as reviewed in section 2.1, for image analysis creates an 

opportunity for this type of modelling. In this type of network, the data cube (height x width give the 

image dimensions and depth the number of channels, Figure 6-1-a) is first presented to the 

convolution step, where the filter with 3D size (covering all the channels, Figure 6-1-a) is passed over 

the image area to generate a feature map (Figure 6-1-b)(Fei-Fei et al., 2017; Lecun et al., 2015). The 

appropriate selection of this filter allows one to apply a function of channels (wavelengths in the 

hyperspectral data) and spatial distribution on the image space to estimate the interaction between 

effect of texture and spectral capture in the feature map. The full architecture of networks allows the 

connection of the features through pooling and connection among layers throughout the network. As 

results, it represents all levels of complexity of the hyperspectral data within a single model.  For 

example, Gatys et al. introduced the concept of a nonlinear filter bank using convolutional neural 

networks to describe texture in images (Gatys et al., 2015; Wallis et al., 2017). Figure 6-4 presents an 

image resulting model developed by Gatys et al. applied to image in Figure 6-2, and the Figure 6-3 

shows one of the features maps extracted from this model to illustrate the ability to capture features 

of HSI data.  

 

Figure 6 

4. Conclusions  

The application of HSI for assessment of chemical, textural and structural characteristics of meat was 

reviewed with focus on its ability to capture unique chemical and structural characteristics of meat. 

The assessment of chemical composition of meat allows the identification of factors associate to 

animal background, feeding regime, welfare i.e. unique characteristics before slaughter. But there is 

still an amount of evidences on its ability to handle the effect of different sources of variation on the 

assessment of chemical composition. The use of spatially resolved spectroscopy has been able to 

detect structural information related to animal background, muscle type, rigor process and ageing. 

Similarly the use of texture features seem to capture unique characteristics of meat.       
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Recently, hyperspectral systems based on snapshot imagining have become available, allowing for fast 

scan without the need of sample translation. This type of system promotes the development of 

portable devices for scanning samples with multiple illumination designs, allowing acquisition of data 

describing the absorption, scattering and texture features. The use of these abilities for the 

development of portable system to acquire data including absorption, scattering and texture features 

requires further research with the potential to provide more comprehensive description of meat. Thus 

further investigations should focus acquisition of this type of data (absorption, scattering and texture) 

to describe different levels of interaction of meat structure and its effect quality. Furthermore, data 

obtained with multiple illumination designs will describe much more complex interactions requiring 

new approaches to model hyperspectral data, such as convolutional neural networks.  
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Highlights 

- Assessment of  chemical information and new approaches to HSI modelling  

- Spatially resolved spectroscopy for assessment of meat structure  

- Texture and spectral information  of meat 
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