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I 

Abstract 

In this thesis, we detect and track anomalies on the sidewalk using deep learning. The 

proposed network consists of two parts: The first part is an object detection network, 

namely, SSD(Single Shot MultiBox Detector) is employed to detect and classify objects, 

then we get the abnormal targets. The second one is to find data association of objects. 

The proposed model is based on the single-target tracking network SiamRPN, which 

assists multi-target tracking through a cyclic structure. We follow Hungarian algorithm 

for getting the final matching results. Both the networks are trained offline, their 

performance is well. 

    The contributions of this thesis are: (1) We implement the proposed model for 

object recognition, classification, and tracking for multiple types of anomalies. (2) We 

achieve multi-target tracking by combining our object detection algorithm and single-

target tracking algorithm. (3) The proposed model is a novel type of deep neural 

networks to achieve anomaly detection, which has not been found in previous work. 

Keywords: SSD, SiamRPN, SiamFC, ResNet50, AlexNet, LSTM, Hungarian 

algorithm 
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Chapter 1 

Introduction 

This chapter introduces the background of anomaly 

detection in video surveillance and explains the reason 

why we launch this thesis. We review the existing work 

about related issues and proposed our idea to solve this 

issue. In addition, the main contributions of this thesis are 

summarized. Moreover, the structure of this paper is also 

stated. 
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1.1 Background 

In intelligent monitoring systems, abnormal events are captured in real time. When 

abnormal events or potential threat events occur, the systems will automatically notify 

the security staff to respond quickly and take corresponding measures to reduce the loss 

caused by accidents or avoid the occurrence of accidents. This can greatly improve the 

level of public security, enhance the sense of security of citizens, reduce the labor 

intensity of security personnel, and alleviate public losses. Abnormal event detection is 

a key part of intelligent surveillance systems. Studying abnormal event detection 

technology to improve its performance and time efficiency has become an important 

research and practical issue. 

    The definition of anomaly depends on the content of the videos. Generally, small 

probability events in the video scene are regarded as abnormal ones. Anomalies can be 

grouped into global anomalies and local anomalies (Feng, Yuan, & Lu, 2016). Global 

anomalies mean that the group behavior of the entire scene is abnormal (Parekh, 

Thakore & Jaliya, 2014). This type of anomalies occur from the beginning of a frame 

of video sequence in terms of the entire frame of the scene, such as crowded panic 

running in UMN dataset (Raghavendra, et al. 2011) and the violent behavior scene in 

Hockey Fight dataset (Xu, et al. 2014). Local anomaly refers to that only the individual 

behavior in a certain area is different from the neighboring crowd or most behaviors in 

the entire scene, such as the behavior of cycling in the UCSD dataset (Chan, et al. 2008). 

    At present, anomalous event detection technology has been widely studied 

worldwide and primary applications in specific places. In 1997, the Defense Advanced 

Research Projects Agency (DARPA), Carnegie Mellon University (CMU), 

Massachusetts Institute of Technology (MIT), and other institutions of higher education 

started the cooperation (Djenouri, et al. 2019). Visual Surveillance and Monitoring 

(VSAM) applies computer vision and pattern recognition technology to 

comprehensively monitor abnormal on the battlefield (Collins, et al. 2000). 
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    Moreover, at the beginning of the 20th century, EU countries launched the Context 

Aware Vision using Image-Based Recognition (CAVIAR), which mainly analyzes the 

behavior of customers in shopping malls, and monitors anomalies such as robbery, theft, 

and crowd gathering in downtown areas (Murray and Basu, 1994). Besides, 

international conferences on computer vision such as CVRP (IEEE Conference on 

Vision and Pattern Recognition) have treated abnormal event detection as an important 

research topic. The well-known journals such as International Journal of Computer 

Vision (IJCV), have published many papers related to abnormal event detection (Sultani, 

Chen and Shah, 2018). 

   Surveillance video anomaly detection is based on machine learning in an early stage. 

Usually requires three steps (Abdel-Aziz, et al. 2013). The first step is foreground 

segmentation and moving targets detection. Traditional moving target detection 

methods include inter-frame difference, background subtraction, and optical flow 

(Aslani and Mahdavi-Nasab, 2015). The frame difference method is to determine the 

changes of the grayscale values of the corresponding pixels between adjacent frames to 

detect the moving object. The background subtraction method needs to model the 

background so as to get the background model and compare each frame image with the 

background model image. Optical flow method is the popular method in moving target 

detection. It is defined as the apparent motion of the image brightness mode in a video 

frame sequence (Denman, Fookes, & Sridharan, 2009), that is, the moving speed of the 

point on the surface of the space object is expressed on the imaging plane of the visual 

sensor.   

   The second step is feature extraction. Feature extraction is grouped into two 

categories: The first one is to extract artificial design features, the other is to directly 

learn the original video frames to obtain deep features, both feature extraction methods 

are based on biological neural theory. The difference is that the features extracted by 

the manual design methods are imitated by the human visual framework, and the feature 

extraction method of deep learning focuses on learning the distribution rules of the data 
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itself.  

   Image features include texture features, colors, motion-scale invariant feature 

transform (SIFT), optical flow characteristics, trajectory characteristics, etc. proposed 

Mixtures of Dynamic Textures (MDT) was proposed to model the behavior of normal 

people and employed it to distinguish abnormalities in the discriminant space from 

normal events (Mahadevan, 2010). Also, a spatiotemporal texture model was proposed 

with rich crowd pattern features (Wang, et al. 2015), the extracted surveillance texture 

was subjected to behavior template matching in the feature space based on redundant 

wavelet transform to achieve anomaly detection. On the other hand, the Grey-Level Co-

occurrence Matrix (GLCM) was passed from a statistical point of view which describes 

the spatial characteristics of abnormal events or objects such as contrast, correlation, 

uniformity, etc. to construct an abnormal frame that uses spatiotemporal coding to 

detect abnormal wandering behavior in the crowd (Rao, et al., 2015). 

   The rapid development of deep learning and convolutional neural networks has 

provided new ideas for various studies in the field of computer vision. A few methods 

based on deep representation are to extract high-level feature information with deep 

neural networks first, and traditional classification methods are offered for the 

classification. For example, an architecture called AMDN is split into three channels 

including appearance, motion, fused channel information (Xu, et.al, 2015). The sparse 

representation of video features was obtained by SDAE, abnormal events were detected 

by one-class Support Vector Machine (SVM). Moreover, a deep representation-based 

algorithm was proposed to extract features in an unsupervised fashion (Feng, 2016).  

    The third step is to implement the identification and location of abnormal events. 

The classification methods include supervised, semi-supervised, and unsupervised. The 

supervised classification methods include support vector machines (Hsu and Lin, 2002). 

A feature selection and support vector machine training hybrid optimization model was 

proposed by Miao, et al., in 2014. This model improved the accuracy of surveillance 

video anomaly detection by quickly obtaining the optimal features and SVM 
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parameters. 

    Semi-supervised learning makes use of normal samples for model construction 

because abnormal samples always deviate from the model composed of normal samples. 

Gaussian mixture model (Reynolds, 2009), Markov random field (Cross and Jain, 1983), 

a hidden Markov model (Beal, Ghahramani and Rasmussen, 2002) are typical models. 

crowd distribution information and crowd speed information were proposed to estimate 

the parameters of the Gaussian mixture model constructed by using normal behaviors 

and abnormal crowd behaviors (Gu, et al., 2015).  

   The unsupervised detection method is a typical clustering approach, relying solely 

on the connection between sample data to complete the clustering and modelling of 

normal events, the small probability or very low the event is regarded as an abnormal 

event. The non-negative matrix factorization learning method was proposed from the 

feature space to detect anomalies in the feature space (Lu, et al., 2013). 

   With the development of deep learning technology, in addition to deep features 

extraction, anomaly detection models based on deep learning algorithms, e.g., Long 

Short-Term Memory (LSTM), has become a hot research topic. For example, an LSTM-

based algorithm was proposed by Lotter in 2016 which can detect global anomalies in 

surveillance videos. They explore the prediction of future frames in a video sequence 

as an unsupervised learning rule for learning the structure of the visual world. Each 

layer in the network performs local predictions, and only forwards deviations from 

these predictions to subsequent network layers. 

1.2 Motivation

In this thesis, anomalous behavior is defined as the events associated with objects like 

bicycles, scooters, and motorcycles appeared on the sidewalk. As demonstrated in 

Figure 1.1, bikes, scooters and even motorcycles are being ridden on the sidewalk. 

Additionally, there are cars which are driven on the sidewalk to cut corners or avoid 
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traffic jams. 

Figure 1.1 The images of abnormal events on the sidewalk 

The motivation of this work is to propose a deep learning model of anomaly monitoring 

in video surveillance. 

    This experiment was inspired by the PreNet (Lotter, et al., 2015). It could detect 

the probability of an anomalous event occurring in a frame of video, however, it cannot 

locate and track anomalous objects. In this thesis, we focus on local anomaly and 

conduct a deep neural network for object detection and tracking. We did not treat 

anomaly detection as a binary classification problem. Instead, we tried to identify all 

objects in the video and group them into multiple categories, then tracked the abnormal 

objects. Accordingly, we break down this issue into two tasks: Objects detection and 

classification, abnormal target tracking. 

Regarding objects detection and classification, SSD is the state-of-the-art 

algorithm in the field of object recognition and can be applied to real-time monitoring 

(Yadav and Binay, 2017).  

On the other hand, for abnormal target tracking task, SiamRPN is a deep feature-

based tracker trained offline and has achieved better performance than the most 
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advanced correlation tracking algorithms (Liu, et al., 2019). However, as a single target 

tracking algorithm, SiamRPN cannot solve the problems of the disappearance of old 

targets and the appearance of new targets. We solve this problem by combining the 

results of SSD and SiamRPN. Overall, this thesis is dedicated to detect and track 

abnormal objects by combining the SSD for target recognition and the SimaRPN for 

target tracking. 

1.3 Research Questions 

The research questions of this thesis are listed as: 

• Can we classify and recognize anomaly and track them at the same time?

• Can deeper neural networks improve the performance of anomaly recognition

and tracking?

1.4 Contributions 

The main contributions of this thesis include: 

• In this thesis, we propose a novel model to realize the recognition, classification

and tracking of video surveillance anomalies at the same time. This model

consists of two parts, namely, detection network and tracking network.

Detection network is responsible for objects identification and classification.

The tracking network is responsible for tracking abnormal objects.

• Existing surveillance video anomaly tracking algorithms are grouped into two

categories. One category is to detect global anomalies. These algorithms treat

anomaly detection as a binary classification problem that detects the anomaly

and normal. The second category is to detect local anomalies, most of these

algorithms track different objects in the same category, no classification is

achieved. Our experiment achieved the classification of different objects.

• In recent years, single-target tracking algorithms based on deep learning have

made great progress. The application of deep learning in the field of multi-target
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tracking is limited, most algorithms are combined with deep features and 

machine learning, the application of deep learning algorithms in multi-target 

tracking problems is far away from being fully studied. Our work achieves 

multi-target tracking by combining single target tracking algorithm with an 

object detection algorithm together. 

1.5 Structure of This Thesis 

The thesis is structured as: 

   In Chapter 2, basic algorithms are introduced for object recognition, including R-

CNN, Fast R-CNN, Faster R-CNN, YOLO and SDD. The differences between these 

algorithms and the shortcomings of each of them are analyzed. The multi-objects 

tracking algorithms are briefed, in terms of Siamese model-based network, the 

minimum multi-cut graph model-based network, time-domain attention model-based 

network, and LSTM model-based network. 

    In Chapter 3, the method is detailed for implementation. This includes how the 

data is collected, data augmentation methods, data labelling methods, algorithm design, 

model implementation and operating environments, as well as model evaluation 

methods. 

    In Chapter 4, we show the result of the experiments. The detection performance 

of each class in the SSD algorithm is compared with that of the SSD algorithm. The 

tracking accuracy and precision of each class are calculated, the comparison of tracking 

networks with different backbone. 

    In Chapter 5, the differences between SSD300 and SSD512 networks in objects 

detection are justified, the feature maps that extracted from different layers of the two 

algorithms are compared. Additionally, we analyze the performance of tracking 

networks with different backbones.  
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    Finally, Chapter 6 sums up the process and the result of this experiment firstly, 

then summarizes the deficiencies of this work and visions possible future work. 
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Chapter 2 

Literature 

Review 

Chapter 2 introduces basic algorithms for object recognition, 

including R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and 

SDD. We analyze the differences between these algorithms and 

the shortcomings of each. We detail the multi-target tracking 

algorithms, in terms of Hungarian algorithm and Kalman filter, 

Siamese model-based network, the minimum multi-cut graph 

model-based network, time-domain attention model-based 

network and LSTM-based network. 
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2.1 Introduction 

In this chapter, we will introduce the related work from two fields: Object detection and 

multi-target tracking. Because the proposed algorithm consists of two parts, detection 

network and tracking network. The detection network is based on object detection and 

classification. The tracking network is based on multi-objects tracking. 

2.2 Object Detection and Classification 

Visual object detection algorithm based on deep learning is mainly grouped into two 

categories (Yanagisawa, Yamashita, & Watanabe, 2018). R-CNN series, in terms of R-

CNN, Fast R-CNN, and Faster R-CNN, have two-stage, these algorithms need region 

proposals, export bounding boxes and classes. They are all region-based algorithms, 

the distinction is how they utilize CNN feature and how they share the calculation of 

ROI. 

    On the other hand, YOLO and SSD are the one-shot solutions that the prediction 

of bounding boxes is completed in one step. R-CNN-based object detection algorithms 

rely to regions to locate the visual objects within the image. The networks do not look 

at the entire image. Instead, the parts of the image having high probabilities containing 

the object will be scanned. 

2.2.1 R-CNN 

In traditional machine learning-based object detection. An exhaustive method is 

adopted for area selection. Using a sliding window with different sizes and aspect ratios 

to traverse the image has high complexity. Then, the feature extraction is performed, 

which includes Scale Invariant Feature Transform (SIFT) (Hsu, Lu and Pei, 2012), 

Histogram of Oriented Gradients (HOG) (Mizuno, et al., 2012), and other features. The 

robustness relies on morphological diversity, light variation diversity, and background 

diversity. Finally, the classifiers are employed for classification. The popular classifiers 
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include Support Vector Machine (SVM) (Vishwanathan and Murty, 2002), AdaBoost 

(Hastie, et al., 2009), etc. 

    The region selection strategy based on sliding windows is not applied, thus, the 

time complexity is high, the windows are redundant. On the other hand, the features 

designed are not very robust to the changes.  

    A method called region proposal was proposed, which finds out in advance where 

the objects may appear in the image. The information such as textures, edges, and colors 

in the image is employed to ensure that fewer windows (thousands or even hundreds) 

are selected. Therefore, the problem turns to find the regions that may contain objects. 

These frames can overlap each other and contain each other, we avoid violent 

enumeration all the boxes. The methods for selecting the Region Proposal include 

Selective Search and Edge Boxes. We thus classify these candidate regions.  

    For image classification, a convolutional neural network was proposed to reduce 

the error of the ILSVRC classification task to 15.3% at the 2012 ImageNet Large-scale 

Visual Recognition Challenge (ILSVRC). The top-5 error of the traditional method is 

26.2%. Since then, CNNs have dominated the image classification task. 

R-CNN algorithm makes use of selective search to extract 2,000 regions from the

image and these regions are called region proposals (Girshick, et al., 2014). Then, there 

are 2,000 candidate region proposals which are warped into a square and fed into a 

convolutional neural network (CNN). The CNN acts as a feature extractor and the 

output dense layer consists of the features extracted from the image. After that, the 

extracted features are fed into an SVM to classify the presence of the object within that 

candidate region proposal.  

There are two options for network architecture: The first choice is AlexNet (Yuan 

and Zhang, 2016); the second one is VGG16. After the test, the accuracy of Alexnet is 

58.5%, and the accuracy of VGG16 is 66%. The characteristic of VGG model is to 

choose a relatively small convolution kernel. The accuracy of this network is high, but 

the calculation amount is seven times of AlexNet. The architecture of R-CNN is 

displayed in Figure 2.1.  

https://arxiv.org/pdf/1311.2524.pdf
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
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Figure 2.1 The structure of R-CNN structure 

    Although R-CNN is no longer as exhaustive as the traditional method, in the first 

step of the R-CNN process, as many as 2,000 candidate region proposals are extracted 

from the original picture through selective search, each of these 2,000 candidate 

bounding boxes needs to extract CNN feature maps and conducts SVM classification. 

The amount of calculation is very large, which leads to that the R-CNN detection speed 

is very slow, around 47 seconds for each image. 

2.2.2 Fast R-CNN 

Girshick et al. (2015) proposed Fast R-CNN to overcome the drawbacks of R-CNN. 

Firstly, the training process of R-CNN is split into multiple steps. R-CNN fine-tunes a 

pre-trained network first, then trains an SVM classifier for each category, and finally 

utilizes regressions to regression on the bounding-box. In addition, time and memory 

consumption are relatively large. By training SVM and regression, it is necessary to 

exploit the features trained by the network as input, the time consumption for saving 

the features and re-reading them is relatively large. 

   Although SPPnet (Spatial Pyramid Pooling net) algorithm (Purkait, Zhao, & Zach, 

2017) has been proposed before Fast R-CNN solves the problem of repeated 

https://arxiv.org/pdf/1311.2524.pdf
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convolution in R-CNN, SPPnet still has shortcomings, e.g., too many training steps, 

needs to train SVM classifier, needs of additional regressors saved on disk (Wang, 

Shrivastava & Gupta, 2017). Therefore, Fast R-CNN is equivalent to comprehensively 

improve the original two algorithms by not only reducing the training steps but also 

saving extracted features. The Fast R-CNN algorithm based on VGG16 is nearly nine 

times faster than R-CNN in training speed, and three times faster than SPPnet. 

    The approach of Fast R-CNN is similar to the R-CNN algorithm. Instead of 

feeding the region proposals to the CNN, it feeds the input image to the CNN to 

generate a convolutional feature map. From the convolutional feature map, it identifies 

the region of proposals and warps them into squares, then reshapes them into a fixed 

size by using a ROI pooling layer so that it can be fed into a fully connected layer. Then 

the class of the proposed region and the bounding box is predicted by using a softmax 

layer. 

The purpose of Region of Interest (ROI) pooling is to extract feature maps with 

fixed sizes from the last convolution layer with different size of region proposals. It is 

a simplified version of SPPnet, since the input of the fully connected layer needs to be 

designed with the same size, it cannot directly map region proposals of different sizes 

to the feature map as output, thus the size conversion is required. For example, a region 

proposal with the size w  h is divided into a grid of size H  H , this region proposal 

is mapped to the feature map output by using the last convolution layer. Finally, the 

maxima in each grid are calculated as the output of the grid, regardless of the size of 

the feature map before ROI pooling, the size of the feature map, obtained after ROI 

pooling, is W  H. The structure of Fast R-CNN is presented in Figure 2.2. 

Fast R-CNN mainly has three improvements: (1) Convolution is no longer 

performed on each region proposal, but directly on the entire image, which reduces a 

lot of repeated calculations. It turns out that R-CNN algorithm filters each region 
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proposal separately. Since there are about 2,000 region proposals in an image, the 

overlap rate between them must be very high, so duplicate calculations are generated. 

(2) ROI pooling is utilized to perform the size transformation of feature maps.

Considering the input of the fully connected layer requires the same size, we cannot 

directly take advantage of the region proposal as an input. (3) The regressor is input 

into the network and has been trained together. Each class corresponds to a regressor. 

At the same time, the original SVM classifier is replaced by using softmax. However, 

region proposals become the bottlenecks in the Fast R-CNN algorithm which affects its 

performance. 

Figure 2.2 The structure of Fast R-CNN 

2.2.3 Faster R-CNN 

Both R-CNN and Fast R-CNN employ selective search to find out the region proposals. 
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Selective search is a slow and time-consuming process. Therefore,  a new Faster 

RCNN was proposed (Girshick, et al., 2016). Faster R-CNN integrated feature 

extraction, proposal extraction, bounding box regression, and classification into one 

network. Region Proposal Network (RPN) replaces selective search for selecting 

candidate regions. At the same time, an anchor box is introduced to deal with the change 

of the target shape. The anchor is a box with a fixed position and size.  

    Similar to Fast R-CNN, the image is provided as an input to a convolutional 

network which provides a convolutional feature map. Instead of using a selective search 

algorithm on the feature map to identify the region proposals, a separate network is 

employed to predict the region proposals. The predicted region proposals are then 

reshaped by using a ROI pooling layer which is offered to classify the image within the 

proposed region and predict the bounding boxes. 

 

 

Figure 2.3 The structure of Faster R-CNN 

    Faster R-CNN discards the traditional sliding windows and selective search 

https://arxiv.org/pdf/1311.2524.pdf
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methods exploit RPN to generate the detection frame. This is also a huge advantage of 

Faster R-CNN, which greatly increases the speed of detection frame generation. 

 

Figure 2.4 The Structure of RPN 

    Figure 2.4 displays the structure of the RPN network (Chen and Gupta, 2017). We 

think that the RPN network has two branches. The upper one obtains the foreground 

and background through the softmax classification anchors. The lower one is applied 

to calculate the regression offset of the bounding box for anchors to obtain an accurate 

proposal. The final proposal layer is responsible for synthesizing foreground anchors 

and regression offsets of the bounding box to obtain proposals, remove proposals that 

are too small and out of bounds. The entire network reaches the proposal layer and 

completes the function of target positioning. 

    In RPN, by using anchors to solve the problem of the indefinite length of the 

bounding box that is to place a fixed-size reference bounding box on the original image, 

rather than directly detect the position of objects. RPN selects which anchor to detect 

objects by determining whether each anchor contains related objects, and then adjusts 

the anchor to better fit the related objects. 

    R-CNN family of object detection methods based on region proposal, from SPP-

NET and Fast R-CNN to Faster R-CNN, the process of object detection based on deep 

learning has become more accurate and faster. 

2.2.4 YOLO  

You Only Look Once (YOLO), (Redmon, et al., 2016) is a visual object detection 

algorithm that is different from the region-based algorithms, a single convolutional 

network is employed to predict the bounding boxes and the class probabilities for these 

boxes.  
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    YOLO segments the input image into a S S grid, each cell is responsible for 

detecting those objects whose center points fall within the grid. Each cell predicts 

bounding boxes and the confidence score of the bounding box. The confidence includes 

two aspects, one is the probability that the bounding box contains the object, the other 

is the accuracy of the bounding box. The first one is defined as 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡). If the 

bounding box is the background, then P𝑟 (𝑂𝑏𝑗𝑒𝑐𝑡) = 0, otherwise 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) = 1 .  

    The accuracy of the bounding box is characterized by using IOU (Jana and Biswas, 

2018) of the predicted box and the ground truth. Therefore, confidence is defined as 

𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡)• 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ . The confidence of YOLO is the product of two factors, 

𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ reflects the accuracy of the prediction reflected. The size and position of the 

bounding box are described by four parameters x, y, w, h, where x and y are the centroid 

coordinates of the bounding box, w and h are the width and height of the bounding box, 

respectively. The predicted value of the center coordinate (𝑥, 𝑦)  is the offset value 

from the upper left coordinate point of each cell, the unit is related to the cell size. The 

parameters w and h are applied to predict values of the bounding box which are relative 

to the width and height of the entire picture, hence the size of the four elements should 

be within the interval [0,1] . In this way, the predicted value of each bounding box 

contains five parameters (x, y, w, h, c) , where the first four represent the size and 

position of the bounding box, the last one stands for the confidence. 

    In additionally, regarding classification, it gives the predicted C class probability 

for each cell, which represents the probability of the bounding box predicted by this 

cell belonging to each class. These probability values are conditional probabilities 

under the confidence of each bounding box 𝑃𝑟(𝑐𝑙𝑎𝑠𝑠𝑖|object) . However, no matter 

how many bounding boxes are predicted by a cell, it only predicts a set of class 

probabilities. This is a disadvantage of the YOLO algorithm. In the later improved 

version, YOLO9000 combines the class probability as a prediction value of the 

bounding boxes. At the same time, class-specific confidence scores of each bounding 

box can be calculated:  
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𝑃𝑟(𝑐𝑙𝑎𝑠𝑠𝑖|object) •𝑃𝑟(object)•𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟(𝑐𝑙𝑎𝑠𝑠𝑖)•𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ       (2.1)

The structure of YOLO is similar to GoogleNet (Putra et al., 2018). The difference 

is that YOLO utilizes a 11 convolution layer and a 33 convolution layer instead of 

the inception module.  

Figure 2.5 The Structure of YOLO 

The entire detection network includes 24 convolutional layers and 2 fully 

connected layers. Features are extracted by convolution layer, the fully connected layer 

is utilized to predict image position and class probability values. The Leaky ReLU 

activation function is max (𝑥, 0.1𝑥) , xR for the convolutional layer and the fully 

connected layer. The mean square error is employed as the loss function. It consists of 

three parts: coordinate error, IOU error, and classification error. 

Loss =  ∑ 𝑐𝑜𝑜𝑟𝑑𝐸𝑟𝑟 +𝑠2

𝑖=0  𝑖𝑜𝑢𝐸𝑟𝑟 + 𝑐𝑙𝑎𝑠𝑠𝐸𝑟𝑟 (2.2) 

YOLO is faster than R-CNN-based algorithms, which achieves the speed of 45fps. 

In 2017, Redmon, et al. proposed YOLO9000, which improved the resolution of the 

training image and introduced anchor box to betterment the structure of the network. 

The output layer includes a convolutional operation instead of fully connected layer. 

Shafiee, et al. takes advantage of COCO dataset and ImageNet dataset to train the model. 

Compared with YOLO, YOLO9000 has greatly improved on the recognition type, 

accuracy, speed, and positioning accuracy. 
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2.2.5 SSD 

In 2016, the algorithm SSD (Single Shot MultiBox Detector) was proposed to improve 

the precision of object detection and achieve over 74% mAP (mean Average Precision) 

at 59 fps based on standard datasets PascalVOC and COCO. Compared with YOLO, 

SSD takes CNN into account to perform detection directly, instead of performing 

detection after fully connected layers. On the other hand, there are two important 

changes. The first is that SSD extracts feature maps of different scales for object 

detection. The large-scale feature maps (the higher-level ones) are exploited to detect 

small objects, while small-scale feature maps are applied to detect large objects. The 

second is that the SSD adopts the prior boxes, the default boxes of different scales and 

aspect ratios. The disadvantages of the YOLO algorithm are that it is difficult to detect 

small targets and the positioning is not accurate (Womg, et al., 2018). However, these 

important improvements have assisted SSD to overcome these shortcomings. 

    YOLO predicts multiple bounding boxes for each grid. YOLO needs to adapt to 

the shape of the target during the training process due to the shape of the real target is 

variable. While SSD is inspired by the anchor of Faster R-CNN, SSD sets a priority 

boxes with different scales or aspect ratios for each gird. The predicted bounding boxes 

are based on these priori boxes. SSD outputs a set of independent detection values for 

each grid which corresponds to the bounding box.  

Independent detection has two parts. The first is the confidence of each category. 

SSD treats the background as a special category. If the detection target has c classes, 

the SSD needs to predict 𝑐 + 1 confidence values. Confidence is a score that has no 

goals or belongs to a background. In the prediction process, the category with the 

highest confidence is the category to which the bounding box belongs. The second part 

is the location of the bounding box, which contains four parameters (𝐶𝑥, 𝐶𝑦, W, H) , 

which represent the coordinates and width and height of the bounding box respectively. 

SSD takes advantage of VGG16 as the basic model, and then adds a convolution layer. 

The network structure of SSD is demonstrated in Figure 2.6. 

SSD utilizes multi-scale feature maps for object detection. The input image size 

of the model is 300300. Firstly, VGG16 is pretrained based on the ILSVRC CLS-

http://host.robots.ox.ac.uk/pascal/VOC/
http://cocodataset.org/#home
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LOC dataset. Then, we convert the fully connected layers FC6 and FC7 of VGG16 to 

33 convolution layer Conv6 and 11 convolution layer Conv7, the pooling layer 

Pool5 was changed from the original stride = 2 to stride = 1. 

 

Figure 2.6 The structure of SSD 

    To cope with this change, Atrous algorithm is employed to exponentially expand 

the field of convolution without increasing the parameters and model complexity. Lastly, 

we remove the dropout layer and the FC8 layer and add a series of convolutional layers. 

The loss function is defined as the weighted sum of the location loss and the confidence 

loss 

L(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + α𝐿𝑙𝑜𝑐(x, l, g)),             (2.3)  

where N is the number of positive samples in the prior box, 𝑥𝑖𝑗
𝑝  ∈ {1,0}. If x𝑖𝑗

𝑝 = 1, 

it indicates that the i-th box matches the j-th ground truth, the class of ground truth is 

P, c is the confidence of category, l is the position prediction value of the 

corresponding bounding box of the prior frame, g is the position parameter of ground 

truth. For position error, Smooth L1 loss is adopted, which is defined as 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2           𝑖𝑓|𝑥| < 1.0
|𝑋| − 0.5      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (2.4)  

where 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 is the absolute value of X minus 0.5 𝑖𝑓|𝑥| < 1.0. If | X | is less 

than 1.0, it is 0.5𝑥2  . 
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2.3 Multi-Object Tracking 

Multi-Object Tracking (MOT), as the name implies, is to track multiple targets 

simultaneously in a video. In multi-target tracking, there is a problem that new target 

entering and old target disappearing, which is the biggest difference from the single-

target tracking algorithm (Ess, et al., 2010). As a result, the tracking strategy is different. 

In single-target tracking, a given initial box was utilized to predict the position of 

objects in the initial box in subsequent video frames. However, most of the multi-target 

tracking algorithms do not consider the initial box. Instead, a popular tracking strategy 

in the multi-target tracking is TBD (tracking-by-detection), or DBT (detection-based 

tracking). That is, object detection is carried out on each frame, and the result of target 

detection is employed to track the target. This step is generally called data association.  

    According to the sequence of trajectory generation, the multi-target tracking 

algorithm can be categorized into offline multi-target tracking algorithm and online 

multi-target tracking algorithm. The offline multi-target tracking algorithm is usually 

constructed as the graph model of object detection, in which the similarity or distance 

measurement between design and calculation is the key to determine the correctness of 

graph model construction. According to the current detection and observation, the 

online multi-target tracking algorithm calculates the matching relation with the existing 

trajectory, an appropriate matching measure determines the correctness of the matching. 

Therefore, learning the characteristics of detection results and calculating matching 

similarity or distance measurement are the key steps of the multi-target tracking 

algorithm, both offline and online. 

The main task of deep learning-based multi-target tracking algorithm is to 

optimize the design of similarity or distance measurement between detection. 

According to the learning features, deep learning multi-target tracking includes deep 

learning based on apparent features, deep learning based on similarity measures, deep 

learning based on higher-order matching features, as shown in Figure 2.7. 

The deep neural network could improve the multi-target tracking algorithm. For 
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example, the depth features obtained in image recognition or pedestrian recognition 

tasks can be directly replaced with the apparent features in the existing multi-target 

tracking algorithm framework, optical flow motion features can be learned by the deep 

neural network to calculate the motion correlation (Ryan, et al., 2011). A more direct 

way to improve the multi-target tracking algorithm is to learn the feature similarity 

between the detection. For example, depth network is designed to calculate the distance 

function of different detection. The detection distance of the same target is small while 

that of different target is large. The cost function for binary classification can be 

employed so that the detection feature matching type of the same target is 1, while the 

feature matching of different targets is 0. If the matching between existing trajectories 

is considered, the deep learning method can be applied to design and calculate the 

matching similarity between trajectories, which is thought as a high-order feature 

matching method. By using deep learning to calculate high-order feature matching, we 

can learn the matching similarity of multi-frame epigenetic features, we can also study 

the matching relevancy of motion features. 

Figure 2.7 Deep-learning-based multi-object tracking 
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2.3.1 Hungarian Algorithm and Kalman Filter Based Tracking 

Algorithm  

Multi-target tracking using the Hungarian algorithm and Kalman filtering is proposed 

by Bewley and others (2016) in their Simple Online and Realtime Tracking (SORT) 

algorithm. Kalman filter copes with the correlation of frame-by-frame data through the 

motion characteristics such as the long aspect ratio of the object, the position of the 

center point and speed utilizes the Hungarian algorithm for correlation measurement to 

obtain the correlation result. This simple algorithm achieves good performance at high 

frame rates.  

In 2017, Wojke, et al. improved SORT algorithm by adding speed and trajectory 

features of the object. This algorithm DeepSort can alleviate the occlusion problem and 

reduce the number of id switches. 

 

Figure 2.8 The structure of DeepSort 

The structure of the DeepSort is presented in Figure 2.8. The tracking process 

includes the following steps:  

(1) Input the first frame, initialize, and create a new tracker with the detected target 

and mark the ID. 

(2) Input the next frame, the state prediction and covariance prediction are 

generated according to the previous frame box by using Kalman filter, find all 

target state predictions of the tracker and the IOU of the box detected in this 

frame. The best match is obtained by using the Hungarian algorithm, the 



25 
 

matching pairs whose matching value is less than the IOU threshold are 

removed. 

(3) Utilize the detection box of the matched target in this frame to update the 

Kalman tracker, calculate the Kalman gain, state update and covariance update, 

output the state update value as the tracking box for this frame. Re-initialize 

the tracker for targets that are not matched in this frame.  

Kalman filtering takes an 8D feature vector (u, v, r, h, 𝑥∗, 𝑦∗, 𝑟∗, ℎ∗) to present 

the state of the trajectory. These 8D vector variables represent the position, aspect ratio, 

height of the center of the bounding box, the corresponding speed information in the 

image coordinates. A Kalman filter is applied to predict the updated trajectory. The 

Kalman filter takes advantage of a uniform velocity model and a linear observation 

model. 

In addition, Kalman filtering also handles with the problem of new target generation 

and the disappearance of old targets, there is a threshold a for each trajectory to record 

the time from the last successful match of the trajectory to the current time. If the value 

is greater than the threshold, the track is considered to be terminated. On the other hand, 

the track is considered to a new trajectory. However, a new trajectory may be generated 

for object detection that does not match successfully. The newly generated trajectory in 

this case is marked with the status ‘tentative’, and it is observed whether the consecutive 

matches are successful in the next consecutive frames. If matched, it is considered to 

be a new trajectory, marked as “confirmed”, otherwise, it is considered as a false 

trajectory, the status is marked as ‘deleted’. 

Hungarian algorithm combines target motion and surface feature information for 

object matching, which applies Mahalanobis distances to evaluate the predicted 

Kalman state and the new state is 

𝑑(1)(i, j) = (𝑑𝑗 − 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖)                (2.5) 

where 𝑑(𝑖, 𝑗) represents the degree of motion matching between the j-th detection and 

the i-th trajectory, 𝑆𝑖
−1 is the covariance matrix of the observation space at the current 

time predicted by the Kalman filter, 𝑦𝑖 is the prediction of the trajectory at the current 
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time Observation, 𝑑𝑗 denotes the state of the j-th detection (𝑢, 𝑣, 𝑟, ℎ).  

If the target motion uncertainty is low, Mahalanobis distances is a good correlation 

metric. In practice, if the camera moves, it will cause a large number of Mahalanobis 

distances that cannot be matched, which will invalidate this metric. Therefore, for each 

𝑑𝑗 of the detected bounding box, we calculate a feature descriptor 𝑟𝑗 , |𝑟𝑗| = 1, create a 

gallery to store the latest 𝐿𝑘 = 100  trajectory descriptor, 𝑅𝑘 =  {𝑟𝑘
(𝑖)

}
𝑘=1

𝐿𝑘

 , the 

minimum cosine of the i-th trajectory and the j-th trajectory is the second measure.  

𝑑(2)(i, j) = min{1 − 𝑟𝑗
𝑇𝑟𝑘

(𝑖)
| 𝑟𝑘

(𝑖)
∈  𝑅𝑖}             (2.6) 

Then, we merge these two distances 

𝑐𝑖,𝑗 = γ𝑑(1)(i, j) + (1 − γ)𝑑(2)(i, j)               (2.7) 

where 𝛾 is a hyperparameter to adjust the weight of different distances. The selection 

of γ depends on the specific data set. For example, for a data set with a large motion 

range, the weight of the Mahalanobis distance need to be small. 

 

2.3.2 Siamese Network-Based Multi-Target Tracking Algorithm  

This algorithm is based on Siamese symmetric convolution network, which takes two 

image blocks of the same size as the input, the output is the discrimination of whether 

the two image blocks belong to the same target (Guo, et al., 2017).  

    The Siamese symmetric network was proposed to learn the similarity of the 

epigenetic features (Lealtaixe, 2016), the similarity between the fusion motion and the 

epigenetic features was obtained by fusing the motion features of the classifier based 

on the gradient descent algorithm. After using the Siamese network, a fully connected 

network was connected as the output of apparent features and 6D motion context 

features in terms of relative change in size, changes in position and speed. Through the 

classical gradient descent algorithm, the multi-target tracking results are obtained by 

linear programming optimization. 

Siamese-RPN was proposed in 2018. The algorithm is split into two parts: the 
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Siamese feature extraction network and region proposal network. During the training, 

the algorithm can be trained through densely labelled and sparsely labelled datasets. 

Compared with the existing methods, the sparsely labelled dataset greatly increases the 

source of training data, so that the deep neural network can be trained more fully, the 

coordinate regression in the region proposal network can make the tracking box more 

accurate and eliminate multi-scale time. The training structure of Siamese-RPN is 

displayed in Figure 2.9. 

 

Figure 2.9 Training structure of SiameseRPN 

   The left part in Figure 2.9 is a Siamese network. The network structure and 

parameters of the upper and lower branches are the same. The search area of the frame 

to be detected is larger than the area of the template frame. The right part is RPN, which 

is divided into two branches. The upper branch is the classification branch. The features 

of the template frame and the detection frame after passing through the Siamese 

network are passed through a convolution layer. K is the number of anchor boxes since 

it is grouped into two categories, so it is 2k. The bottom part in Figure 2.9 shows the 

bounding box regression branch, as there are four quantities [x, y, w, h], it is 4k. 

   The tracking part is different from the training structure. The two branches of the 

network were dismantled during the test. The template branch only propagated forward 

in the template frame, only the detection branch was performed in each frame. The 
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template frame calculates and retains the two feature maps, the detection branch only 

needs to retain these two features, no further forward propagation of the template frame 

is required. The structure is demonstrated in Figure 2.10. 

 

Figure 2.10 Tracking structure of SiameseRPN 

To ensure the accuracy of the template, the first frame is handled as the template 

during the test to prevent the error from being continuously accumulated. In the case 

that only the first frame is needed as a template, the network is split into two small 

subnetworks according to the input image during tracking. The template branch extracts 

two features based on the template image in the first frame, only does the detection 

branch. 

As presented in Figure 2.10, the template branch only inputs the template frame in 

the first frame to obtain two feature vectors. According to the description in the training 

framework, the tracker converts these two feature vectors into two convolutional layers 

without Bias, that is, the two features connected by thick lines and double arrows in 

Figure 2.9. After the transformation, the detection branch becomes a simple detection 

network. After passing through the feature extraction network, it goes through two 

convolutional layers to obtain the final classification results and regression results. 

    According to the output of the network, all the boxes predicted by the network and 

the corresponding scores can be obtained. After the suppression of the Gaussian 

window and the suppression of the shape, a weighted score can be acquired, from which 



29 
 

the corresponding box with the highest score is selected, which is employed as the target 

position for the final network prediction. 

2.3.3 Minimum Multi-Cut Graph Model-Based Multi-Target 

Tracking Algorithm  

Tang et al. (2016) claimed that the detection match between two frames is not the best 

model representation. Due to the existence of any inaccuracies in detection, the 

detection and matching relationships between images and within images are considered 

at the same time, the corresponding graph model has a wider representation capability 

than the graph model that only checks the detection and matching between frames. Tang, 

et al. took advantage of deep matching as matching feature. They proposed the least 

cost poly cut graph model based on the lifted edge.  

   The basic idea is to extend the constraint conditions of the original multi-cut 

formula to group the connections of nodes in the graph into the regular edge and 

promoted edge. The regular edge records the short-term matching state, the promoted 

edge records, and the matching relationship between long-term similarity detection.  

    Similar to the minimum cost flow model for multi-target tracking algorithms, this 

model takes into account intra-frame matching that is modelled as a minimal multi-cut 

problem for graphs, 

 min
𝑥∈{0.1}𝐸

∑ 𝑐𝑒𝑒∈𝐸 𝑥𝑒                 (2.8) 

where 𝑐𝑒 represents the cost of each edge, it is calculated using the similarity between 

the detections, x = 0 means nodes belong to the same object, vice versa. The constraints 

of this binary linear programming problem indicate that for any existing loop, if there 

is a connection x = 0, then all other paths on this loop are x = 0. That is, for the zero 

loops in the optimization result, they are all in the same object. Hence, x = 1 represents 

the segmentation of different object, so this problem is transformed into the minimum 

multi-cutting problem of graphs. KLJ algorithm is utilized to solve the problem of the 

minimum cost multi-cut. 
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Deep matching features, calculated by the deep learning algorithm framework, are 

employed as the matching feature. There are give-dimensional features based on the 

deep matching feature. 

𝑓1
(𝑒)

= MI/MU                   (2.9a) 

𝑓2
(𝑒)

= min {𝛿𝑣, 𝛿𝑤}               (2.9b) 

 𝑓3
(𝑒)

= 𝑓1
(𝑒)

𝑓2
(𝑒)

                    (2.9c) 

  𝑓4
(𝑒)

= (𝑓1
(𝑒)

)2                    (2.9d) 

 𝑓5
(𝑒)

= (𝑓2
(𝑒)

)2                    (2.9e) 

where MI and MU represent the intersection size and union size of matching points in 

the rectangular frame, 𝛿𝑣 and 𝛿𝑤 represent the degree of detection trust. Using these 

five-dimensional features, we learn a logistic regression classifier and get the 

probability pe that is the same goal. 

    In order to connect long-distance matches and enhance the occlusion processing 

ability, while avoiding apparently similar but connected between different object 

detections, a lifted-edge multi-cut graph model with minimum cost is proposed. The 

basic idea is to extend the constraints of the original multi-cut and split the connection 

of nodes in the graph into regular edges and lifted edges. The short-term matching status, 

the lifted edges record the matching relationship between long-term similarity detection. 

Additionally, two additional constraints for lifting edges have been added, the lifting 

edges are correctly matched, there should have support for regular matching on regular 

edges. In edge cutting, there should also be supported for continuous cut edges on 

regular edges. 

2.3.4 Time-domain Attention Model for Multi-target Tracking 

Algorithm  

If the movements of the two objects interact, the occluded object cannot be 

distinguished correctly, this results in tracking drift. A statistical analysis of the drift of 
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the tracking algorithm is conducted in the pedestrian multi-target tracking problem and 

found that when different pedestrians interact, mutual occlusion is an important reason 

for the drift of the tracking algorithm (Chu, 2017). To solve this problem, a spatial-

temporal concern model (STAM) was proposed for learning occlusion and identifying 

possible interference targets as shown in Figure 2.11. 

 

Figure 2.11 The STAM model framework for occlusion discrimination 

    The spatial attention model is employed to generate feature weights when 

occlusions occur. After the candidate detection features are weighted, they are selected 

by the classifier to obtain the estimated target tracking results. The time attention model 

(Zhu, et al., 2018) weights historical samples and current samples to obtain a weighted 

loss function. Update the target model online. 

    In this model, each target manages and updates its spatial-temporal concern model 

and feature model independently. We select candidate detection for tracking. Therefore, 

this method is an extension of single-target tracking algorithm in multi-target tracking. 

To distinguish between different targets, the key steps are how to model the occlusion 

state and distinguish between different targets that are close. The spatial attention model 

is utilized to analyze the occlusion state at each moment. The spatial attention model 

mainly split into three parts. The first step is to learn the visibility map of features 

V(𝑥𝑡
𝑗
) = 𝑓𝑣𝑖𝑠(∅𝑟𝑜𝑖(𝑥𝑡

𝑗
); 𝑤𝑣𝑖𝑠

𝑖 ), V(𝑥𝑡
𝑗
) ∈ 𝑅𝑤∗ℎ              (2.10)  

where 𝑓𝑣𝑖𝑠 is a network operation of a convolutional layer and a fully connected layer, 

𝑤𝑣𝑖𝑠
𝑖  is the parameter to be learned. 
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    The second step is to calculate the spatial attention map based on the feature visible 

map 

φ(𝑥𝑡,𝑗
𝑖 ) = 𝑓𝑎𝑡𝑡(𝑉(𝑥𝑡,𝑗

𝑖 ); 𝑤𝑎𝑡𝑡
𝑖 ), 𝜑(𝑥𝑡,𝑗

𝑖 ) ∈ 𝑅𝑤ℎ              (2.11) 

where 𝑓𝑎𝑡𝑡   is a locally connected convolution and scoring operation, 𝑤𝑎𝑡𝑡
𝑖   is the 

learned parameter.  

    The third step weights the original feature map according to the spatial attention 

map: 

∅𝑎𝑡𝑡(𝑥𝑡,𝑗
𝑖 ) = ∅𝑟𝑜𝑖(𝑥𝑡,𝑗

𝑖 )𝜑(𝑥𝑡,𝑗
𝑖 ), ∅𝑎𝑡𝑡(𝑥𝑡,𝑗

𝑖 ), ∅𝑟𝑜𝑖(𝑥𝑡,𝑗
𝑖 ) ∈ 𝑅𝑤ℎ𝑐, 𝜑(𝑥𝑡,𝑗

𝑖 ) ∈ 𝑅𝑤ℎ  (2.12) 

Next, the generated weighted feature map is fed into convolution and fully connected 

network to generate a binary classifier to determine whether it is the target itself. Finally, 

the obtained classification score matrix is utilized to select the best tracking result. 

2.3.5 Long Short-term Memory Network-Based Multi-target 

Tracking Algorithm 

The historical trajectory information is important to judge the target state in multi-target 

tracking. It is feasible to design a network structure that can remember the historical 

information and learn to match the similarity measure based on historical information 

(Zhang, et al., 2018). A feature fusion algorithm is proposed based on the long short-

term memory network (LSTM) to learn the matching similarity between trajectory 

history information and current detection (Sadeghian, 2017). LSTM is handled as the 

historical information model of the apparent model, the motion model and the 

interaction model in the multi-target tracking algorithm of the loop network distinguish 

the fusion apparent motion interaction. Figure 2.12 shows the structure of this model. 

Three aspects of feature calculation match the trajectory of historical information 

with detection: Apparent features, motion features, and interaction mode features. The 

fusion of these three features is calculated hierarchically (Xingjian, et al., 2015). 

In the underlying feature matching calculations, all three features utilize the LSTM 

model. For the apparent features, we borrow the idea from Zhao and other’s work (2017) 
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using the VGG-16 convolutional network to generate a 500-dimensional feature and 

input this feature to the LSTM. The output features of the network, for the current 

detection, we calculate the features of the same dimension, connect these two features 

and calculate the 500D features through the fully linked network layer, learn the 

classifier according to the matches, and pre-train the network. 

Figure 2.12 The LSTM-based tracking model 

    Pertaining to motion features, we take the relative displacement as the basic input 

feature, input the LSTM model to calculate the output and the relative displacement at 

the next moment. The feature is calculated through the fully connected network, similar 

to the 500-dimensional feature calculated from the apparent feature and train the 

network using a binary matching classifier. 

    For interactive features, we take the relative position map occupied by other 

objects in the rectangular area around the center position of the target as the input 

feature of the LSTM model, calculate the output feature. We detect an object at time t 

+ 1, calculate a similar relative position map as the feature through a fully connected

network. Similar to the motion model, we calculate 500-dimensional feature through a 

fully connected network and conduct the same classification training.  

   When all three features are calculated, we splice them into complete features, feed 

them into the upper layer of the LSTM network, the output vectors are fully connected. 

The correct match is 1, otherwise, it is 0. For the final network structure, fine-tuning is 
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required to optimize overall network performance. The final classification score is 

regarded as the similarity to detect the matching calculation with the trajectory target. 

The final tracking framework is calculated using online detection and trajectory 

matching methods. 

    Just using the basic LSTM model is not the best solution for apparent 

characteristics. After analyzing the design of various gate functions in LSTM, Kim et 

al. proposed an epigenetic learning network model based on bilinear LSTM. The hidden 

layer feature and the input of LSTM are employed as a feature to learn the matching 

classifier. In the results, the apparent properties of bilinear LSTM were the best, the 

optimum historical correlation length was 40. 
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Chapter 3 

Methodology 

 

Chapter 3 elaborates the method of implementation 

including data collection, our algorithms for data 

augmentation, data labelling as well as deep learning 

algorithms, models and operating environments, and 

model evaluations. 
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3.1 Data Collecting  

In this thesis, our focus is on detecting and tracking the abnormal events happened in 

the sidewalk. We define the objects of abnormal events as scooters, bicycles, or cars 

riding on the sidewalk. Therefore, our dataset needs to contain five or more object 

classes in terms of scooters, bicycles, cars, buses and pedestrians.  

Our dataset for object detection was taken on Queen Street, Auckland, New 

Zealand by using our iPhones. We took a total of one-hour video footages, picked up 

3,000 photos from the video, approximately 600 photos for each class. Figure 3.1 

demonstrates samples of our dataset. 

 

Figure 3.1 The selected frames from our dataset 
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For object tracking, we utilize our dataset and MOT16 dataset to train the model. 

Our dataset comprises of 15 short image sequences showing various objects in 

challenging backgrounds. The MOT16 data set is employed to measure the multi-target 

detection and tracking method standards of the multi-target tracking MOT Challenge 

series proposed in 2016. The dataset consists of 14 videos, these videos automatically 

were selected to feature objects in natural settings without editing or post-processing, 

with a recording quality often akin to that of a hand-held cell phone camera. Some of 

the frames of our training data are displayed in Figure 3.2. 

Figure 3.2 The selected frames from the MOT16 dataset 
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3.2 Data Labeling 

All images are labelled according to the format of VOC 2007. The PASCAL Visual 

Object Challenge (The PASCAL VOC) is a world-class computer vision challenge. 

VOC standard dataset is widely utilized in computer vision models such as 

classification, location, detection, segmentation, and motion recognition, especially the 

object detection models, such as the famous R-CNN series, followed by YOLO, SSD, 

etc. 

    In this project, we adopt three important folders of VOC2007 dataset: Annotations, 

ImageSets, and JPEGImages. Annotations folder is employed to store files in .xml 

format, which is the label corresponding to the image. Each .xml file corresponds to a 

picture in the JPEGImages folder. The structure of the data folder is presented in Figure 

3.3. 

 

                     Figure 3.3 The structure of COV2007 dataset 

    All images are labelled by using LableIMG tool manually and saved to .xml file. 

The label file is showed in Figure 3.4. 
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Figure 3.4 The labeled file 

3.3 Data Augmentation 

Usually, we need to input enough data to avoid overfitting. But we can’t collect 

sufficient data in practice. Data augmentation is to generate more data sets from our 

existing limited data to improve the accuracy and generalization ability of the network 

(Lemley, Bazrafkan and Corcoran, 2017). There are two categories of image data 

enhancement technical in deep learning, Data augmentation method based on artificial 

experience and data enhancement method based on machine learning (Perez and Wang, 

2017).  

    The experience-based data augmentation includes geometric transformation, 

Affine transformation, noise injection and random erasing, so on. Geometric 

transformation carries out geometric transformation based on the original image data, 

changes the position of the image pixel and ensure that the features remain unchanged 

(Wu, et al., 2018).  

    Affine transformation is a linear transformation from two-dimensional coordinates 
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to two-dimensional coordinates. We implement the transformations using the 2 3 

matrix, a linear transformation of two-dimensional coordinates using a matrix is 

expressed as 

[
𝑢
𝑣

] = [
𝑎1 𝑏1

𝑎2 𝑏2
] [

𝑥
𝑦] + [

𝑐1

𝑐2
].                      (3.1)  

If we define 𝐑 = [
𝑎1 𝑏1

𝑎2 𝑏2
], t = [

𝑐1

𝑐2
], T = [𝑅 𝑡] , R is a linear transformation matrix. 

Therefore, the transformation is a linear transformation plus translation. The 

transformation contains image processing methods, including translation, rotation, 

scaling, and flipping. They correspond to different transformation matrices. In this 

thesis, we randomly rotate the image by a given angle and change the orientation of the 

image as shown in Figure 3.5.  

Noise injection is other data augmentation technical, which randomly perturbs the 

RGB of each pixel of the image. The popularly noise modes are salt and pepper noises 

and Gaussian noises. 

 

Figure 3.5 The affine transformation 

In this thesis, we take advantage of the Box-Muller algorithm to generate Gaussian 

noises. The Box-Muller method is based on two sets of independent random numbers 

U and V, which are uniformly distributed on (0,1]. U and V are applied to generate two 

sets of independent standard normal distribution random variables X and Y, 

                         X =  √−2ln 𝑈 cos 2𝜋𝑉                    (3.2a) 

Y =  √−2 ln 𝑈  sin 2𝜋𝑉                    (3.2b) 

    Equations (3.2a) and (3.2b) were proposed because the Chi-square distribution of 

two degrees of freedom can be easily generated by an exponential random variable. 

Therefore, the random variable V is employed to select an angle that surrounds the circle 

uniformly, the exponential distribution is applied to select the radius and then 

transformed into (normally distributed) x and y coordinates. 
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Figure 3.6 Gaussian noises 

Random erasing is a data enhancement technique developed (Zhong, et al., 2017). 

Inspired by the dropout mechanism, they randomly selected a part of the image and 

deleted this part. This technology can improve the performance of the model when an 

object is partially occluded. Besides, it can also ensure that the network pays attention 

to the entire image without Just part of it. The procedure of random erasing algorithm 

is 

 

Figure 3.7 The random erasing algorithm 

   In this algorithm, the input image is I, the probability of erasing is p, the erasing 

region with a ratio ranging from 𝑆𝑙 to 𝑆ℎ, the aspect ratio ranges from 𝑟1 to 𝑟2. The 

first step is to determine whether an image needs to be erased according to the 

probability p,  𝑝1= Rand (0,1). If 𝑝1 > 𝑝 , the image is not processed, otherwise it 

needs to be erased. 

    According to the input image I, the length H and width W of the input image can 

be obtained, and the area S can be acquired. Obtained the area 𝑆𝑒  according to 
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Rand(𝑆𝑙, 𝑆ℎ) S , the length and width of the erased region are obtained by using 

eq.(3.3). 

𝑟𝑒 = 𝑅𝑎𝑛𝑑(𝑟1, 𝑟2), 𝐻𝑒 =  √𝑆𝑒 ∗ 𝑟𝑒 , 𝑊𝑒 =  √
𝑆𝑒

𝑟𝑒
               (3.3) 

   Following Rand (0, w) and Rand (0, H), the coordinates of the erased 𝑥𝑒 𝑎𝑛𝑑 𝑦𝑒 

in the original image are obtained. If 𝑥𝑒 + 𝑊𝑒 > 𝑊 or 𝑦𝑒 + 𝐻𝑒 > 𝐻 , the algorithm 

is repeated until 𝑥𝑒 + 𝑊𝑒 ≤ 𝑊  or 𝑦𝑒 +  𝐻𝑒  ≤ 𝐻  is satisfied. In this work, we set 

𝑃 = 0.5 , 𝑆𝑙 = 0.02, 𝑆ℎ = 0.4, 𝑟1 =  
1

𝑟2
= 0.3. The frame is deonstrated in Figure 3.8. 

 

Figure 3.8 Region random erasing 

These data augmentation techniques are related to all offline data augmentation, 

the generated images need to be re-marked due to the position of the object in some 

samples has been shifted. It is necessary to remove those low-quality samples, such as 

the frames whose objects are randomly erased to ensure the quality of the training data 

set. 

3.4 Algorithm Design  

This thesis aimed to propose an object detection, classification, and tracking framework 

to detect and tracking anomaly. We consider anomaly detection as two tasks of object 

recognition and tracking thus the network consists of a convolutional neural network 

(SSD) to detect the anomaly and a tracking network for anomaly tracking.  

    The model consists of SSD and modified SiamRPN neural networks. The raw 

frames were input in SSD to detect the objects, the detected objects were cropped from 

the original images and feed into a Siamese-RPN to feature extraction and calculate the 

similarity between objects. The obtained similarity between the template target and the 

detected target is fed to the Hungarian algorithm to obtain the best match. When the 

similarity score is higher than the threshold, the tracking is successful, otherwise, it is 
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not successful. The structure of the model is displayed in Figure 3.9. 

Figure 3.9 The structure of SSD + SiamRPN + Hungarian algorithm 

   The design of this network structure is inspired by the MBMD network (Zhang, et 

al. 2018) which took the first place in 2018. The MBMD framework is mainly 

composed of a regression network based on offline training and a verification network 

based on classification updated online, as shown in Figure 3.10. 

Figure 3.10 The structure of MBMD model 

   The regression network has two inputs, namely, the local search region and the 

target image block. The target position of the previous frame in the local search area is 

the center, and the four times size region is cropped in the current frame. In each frame, 

the regression network proposes the candidate frames similar to the target in the search 

area, and each candidate frame has a score describing the similarity.  

The verification network learns a classifier online. It first checks whether the 
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candidate frame that most resembles the object is the target. If so, the target frame is 

the current frame tracking result. If the most similar candidate frame is divided into 

backgrounds by using the verification network, the verification network will select one 

of the candidate frames as the current frame tracking result. If neither network can find 

a candidate box that is similar to the target or is classified as the foreground, then the 

tracker will search the whole image, that is, starting from the upper left corner of the 

picture, a local search area is cut out, and the full image is searched. The step size is 

half of the target length, the vertical step size is half of the target width. 

   The matching network can locate similar objects in the area through offline training. 

SSD and MobileNets are utilized as the feature extraction algorithm. The input of the 

upper branch is a local search area, and output feature maps of two sizes (19 19, 

1010). The two scales feature maps are employed to deal with dramatic changes in 

target size. The lower branch inputs the target which will be tracked in the first frame 

and outputs a feature vector. The feature maps obtained by the fusion of the feature 

maps are input to the subsequent candidate RPN, the RPN module outputs the feature 

maps encoding the candidate frame information, which is sent to the non-maximum 

suppression to get the final candidate box. 

Our model also take advantage of two algorithms to solve the problems of 

classification and data association. Both the detection network and the tracking network 

are offline pre-trained model. The detection network is SSD, the raw images are fed in 

SSD to detect and classify objects first, then, we get the coordinate of the targets in six 

classes, as well as the bounding box. After that, the results are fed into a tracking 

network for objects tracking. 

   The proposed tracking network is modified by using SiamRPN subnetwork. Multi-

target tracking is different from single-object tracking. Single-object tracking gives the 

initial object and its bounding box first and tracks the objects in subsequent frames 

(Huang et al., 2019). Meanwhile, multi-target tracking performs object detection in 

each frame firstly. The second step is called data association, the proposed model 

utilizes the deep learning-based algorithm for feature extraction and calculates the 
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similarity score of the features of the tracked object. While in multi-objects tracking, 

there is a problem that the template object has multiple targets with similar features in 

the tracked image, therefore, the similarity scores are fed to the Hungarian algorithm to 

obtain the final matching result. 

Tracking objects are regarded as learning problems. The most typical algorithm 

for similarity learning in deep convolutional networks is the Siamese algorithm. 

Therefore, we choose the Siamese region proposal network (SiamRPN) as the tracking 

network. However, SiamRPN is an algorithm for single-object tracking, which consists 

of a Siamese subnetwork for feature extraction and RPN network for region propose 

and classification (Cui, Tian and Yin, 2019).  

   A region proposal subnetwork includes the classification branch and regression 

branch for prediction. In the inference phase, SiamRPN can pre-compute the template 

branch of the Siamese subnetwork and formulate the correlation layers as trivial 

convolution layers to perform online tracking (Melekhov, Kannala and Rahtu, 2016).  

   The key structure of the proposed tracking network is RPN. RPN was proposed 

(Ren, 2015) as a part of Faster R-CNN, RPN generates the proposal for object detection. 

RPN has a specialized and unique architecture as presented in Figure 3.11. 

 

Figure 3.11 The region proposal network 

   RPN has a classifier and a regressor. An anchor is the central point of the sliding 

window. The classifier determines the probability of a proposal having the target object. 
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Suppose there are a total of k anchors, each anchor needs to be divided into foreground 

and background, thus class = 2k. Each anchor is given by four parameters x, y, w, and 

h, correspondingly, reg = 4k.  

Regression is applied to find the coordinates of the region proposals. For any 

images, the scale is the size of the image, the aspect ratio is the width and height of this 

image. The developers chose three scales and three aspect-ratio. Therefore, nine 

proposals are possible for each pixel, this is how the value of k is decided, k is the 

number of anchors. For the whole image, the number of anchors is WHK. The 

anchors are the highest intersection-over-union overlap with a ground truth box.  

We got the objects and their coordinate from SSD, we cropped the template objects 

from the original template frame. The detected objects were cut out from the detected 

frame. The template objects and detected objects are fed into a classification network. 

The classification network of RPN in this thesis is demonstrated in Figure 3.12. 

 

Figure 3.12 The classification network of RPN 

We assume that the i-th frame has j objects, the (i+1)-th frame has l objects. F[i][j] 

is the j-th object of i-th frame which corresponds the template frame in original RPN.  

F[i + 1][l] is the l-th object of (i+1)-th frame that corresponds to the detection frame 

in original RPN. The detail of the classification branch of RPN works is shown in Figure 

3.13. 
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Figure 3.13 The process of RPN classification 

The RPN classification is based on binary classification. Firstly, we divide the 

image into KHW regions, namely, anchors, K = 9, H is the height of the feature map, 

W is the width on the feature map. We need to determine whether the anchor is 

foreground or background by comparing the overlap between these anchors and ground 

truth, then label each anchor with the foreground or background. After that, RPN can 

be trained to have the ability to recognize foreground and background for any input. 

An image with the size MN is fed into the Faster RCNN network, the resolution 

of this image becomes (M / 16)  (N / 16) before fed in the RPN network. We define W 

= M / 16 and H = N / 16. The image size WH is fed into a 11 convolution first. Then, 

a reshape layer is followed by using 11 convolution, we see that the output is 9  

HW2, which corresponds the possibilities of 9HW anchors being classified as 

foreground and background. The outputs are the annotations of each anchor label, we 

compare it with the binary classification probability to get the classified loss. A feature 

map has 9HW anchors, each point corresponds to nine anchors. These nice anchors 

have three aspect ratios of 1: 1, 1: 2, and 2: 1, and each aspect ratio has three sizes.  

   However, in actual application, HW9 anchors are too much to label labels. There 

are rules to remove anchors with poor performance: 

• Anchors covering the boundary of the feature map do not participate in training. 

The anchor at the border between foreground and background does not 

participate in training.  

• These junctions serve as neither foreground nor background, in case of 

misclassification. IOU is the ratio of the overlapping area of anchor and ground 

truth to the total coverage area of the two (Bochinski, et al. 2018) as displayed 

in Figure 3.14. 
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• The number of samples in a batch during training is 256, corresponding to 256 

anchors of the same image, the number of foregrounds cannot exceed half. If it 

exceeds, the number 128 is randomly selected as the foreground, and the 

background has similar filtering rules. 

 

 

Figure 3.14 The definition of IOU 

RPN is an algorithm that needs to be trained (Dong and Shen, 2018), the loss 

function is defined as  

L({𝑝𝑖}, {𝑡𝑖}) = (
1

𝑁𝑐𝑙𝑠
) · ∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗) + (
λ

𝑁𝑟𝑒𝑔
) · ∑ 𝑝𝑖 · 𝐿𝑟𝑒𝑔(𝑡𝑖 · 𝑡𝑖

∗)  (3.4) 

where i is the index of anchor, p is the probability of being an object or not, t is the 

vector of 4 parameterized coordinates of the predicted bounding box, * represents 

ground truth box, L for cls represents logarithmic loss over two classes, p* with 

regression term in the loss function ensures that if and only if the object is identified as 

yes, only regression will count, otherwise p* will be zero, so the regression term will 

become zero in the loss function. 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 are the normalizations. Λ = 10 by 

default is assigned to scale classifier and regressor on the same level.    

The goal of RPN is to improve the computing speed and ensure the acquisition of 

the object position. However, during the experiment, we found that the bounding boxes 

predicted by RPN are not as accurate as the bounding boxes predicted by SSD. Figure 

3.13 shows the bounding box for a bicycle and pedestrian predicted by using RPN and 
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SSD300. The blue bounding box is the result of the SSD prediction.  

 

Figure 3.15 The comparisons of the bounding boxes of bicycle and pedestrian 

predicted by using SSD300 and RPN 

As presented in Figure 3.15, when SiamRPN predicts the bounding box of the 

object, it depends on the initial coordinate of the object in the first frame. Although the 

size of the bounding box was adjusted while tracking objects are in subsequent frames, 

it was not accurate enough. The following factors may lead to this result, firstly, the 

bicycle characteristics given in the first frame are not obvious enough. Secondly, the 

speed of bicycle movements is fast. Therefore, we selected pedestrians in the same 

frames as a tracking object for comparison. 

 

Figure 3.16 Video frames for object tracking 

The blue bounding box is output by using SSD300, the orange bounding box is 

predicted by RPN. The results predicted by the two algorithms are similar. It is learned 

that if the object characteristics of the first frame are not obvious, or if the object moves 
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quickly resulting in a large change in position, the prediction of RPN is not as accurate 

as SSD. In this experiment, we applied SSD to predict the position of the object, then 

take advantages of SiamRPN to determine the similarity of the object in different 

frames. The video frames are presented in Figure 3.16. 

    Overall, we see in our dataset that SSD has better object positioning capabilities. 

Therefore, we employ the bounding box predicted by using SSD instead of the 

coordinate got by regression branch. At the same time, multi-target tracking is achieved 

using a loop design architecture.  

3.5 Model Implementation 

3.5.1 Detection Network 

In order to save our time on manually labelling samples for network training, we apply 

transfer learning in the network to object detection. The focus of transfer learning is on 

storing knowledge while solving one problem and applying it to a different application. 

Transfer learning can be grouped into the sample-based transfer, feature-based transfer, 

model-based transfer, and relationship-based transfer.  

Sample-based transfer learning completes knowledge transfer by using the 

calibrated samples in the source domain. Feature-based transfer fulfils the transfer by 

mapping the source and target domains to the same space and minimizing the distance 

between the source and target domains (Bengio, 2012). Model-based transfer combines 

the source and target domain models with samples to adjust the model’s parameters. 

Relation-based transfer carried out the transfer of knowledge by learning the 

relationship between concepts in the source domain and then analogizing it to the target 

domain.  

In this experiment, we transfer the learned model parameters to a new model in to 

help the new model training. We share the learned parameters or the knowledge learned 

by using the model to the new model to speed up and optimize the learning efficiency. 
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In most of the cases, models having been pre-trained can more or less improve 

generalization capabilities than the train-from-scratch model (Mishkin and Matas, 

2015). Moreover, Yosinski explained the details on how transferable features are 

applied in deep neural networks. Deep Neural Network (DNN) is a hierarchical feature 

representation of data obtained through pretraining and takes advantage of high-level 

semantic classification. The bottom layer of the model is low-level semantic features 

such as edge information, color information, etc. The characteristics are constant in 

most of the classification tasks, while the difference is the high-level features, which 

also explains that the new datasets are usually exploited to update the last few layers of 

AlexNet and GoogLeNet weights to achieve a simple transfer. Figure 3.18 shows the 

example of transfer learning with CNN. 

 

Figure 3.17 Transfer learning for CNN 

In this experiment, we need to identify and classify six targets, motorcycles, 

scooters, bicycles, buses, cars and pedestrians. The MS COCO dataset has these visual 

objects, we download a fully trained original SSD model that has been trained based on 

MS COCO dataset first. Then fine-tuning is applied to the model based on our dataset.  

SSD was trained based on MS COCO which can predict 80 different classes, but 

the dataset only includes six classes. The weight tensors of the classification layers of 
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the MS COCO model have not the right shape for this model, that is supposed to learn 

only six classes. It is the first time that we simply map the six classes in our dataset to 

six out of 80 that the MS COCO model predicts. The class IDs in our dataset show that 

only 6 out of every 80 neurons predict the class for a given box, the other 74 are not 

trained due to the gradient for them always is zero. After all, these labels will not appear 

in our dataset.  

MS COCO dataset contains the six classes that we interest. When we sample the 

weight tensors of the classification layers, we pick exactly those elements from the 

tensor that is responsible for the classification of the same classes. We pick other 

elements randomly for the classes that are not contained in MS COCO. All the 

classification layers and the source weights perform the following steps: 

• Get the kernel and bias tensors from the source weights file.

• Compute the sub-sampling indices for the last component.

• Overwrite the corresponding kernel and bias tensors in the destination weights

file with our newly created sub-sampled kernel and bias tensors.

3.5.2 The Network for Object Tracking 

The network is based on SimaRPN, which is a deep feature-based offline trained 

network. Compared with the filtering-based algorithm, the performance of SiamRPN 

can be improved by using the larger-scale data set, e.g., MOT16 dataset. Therefore, we 

employ MOT16 dataset to train the model. If IOU is greater than 0.6, it is the foreground; 

if it is less than 0.3, it is the background. 

In inference phase, we modified the matching logic of template frames and 

detection frames due to the  SimaRPN is a single target tracking network, in 

multitarget tracking task, the network needs to solve the problems of automatic 

initialization problem when new targets appear and automatic deletion problem when 

old targets disappear.  
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ALGORITHM : Tracking Algorithm 

Initialization : templist = extend2dimension(ssdResults) 

For  each file in image file list, do 

 If file is the first frame, do 

             Init each bounding box with box ID and count 

 Else do 

for each object in object list of pre-frame, do  

             feature(object) = GetFeature(object) 

             score(object) = GetScore(feature(object)) 

             if score(object) < threshold 

                    templist.append(object) 

                  end 

             for each template object in templist, do 

                  feature(object) = GetFeature(object) 

score(object) = GetScore(feature(object)) 

scorelist.append(score(object)) 

if score(object) < threshold 

      template object count + 1 

                  end 

             for each template object in templist, do 

                  if template object count > threshold 

                        remove object from template list 

                  end 

                  trackers = MatchID(scoreMatrix) 

                  for each tracker in trackers, do 

                         tracker.updateID() 

                         tracker.updatePos() 

                   end 

end 

 

In the pseudocode, we get the classification result and bounding box from SSD, 

we need to convert SSD output into SimaRPN input. Then, we initialize the first frame 

of the video and save the objects that appeared in the first frame as a template list. Next, 

we obtain the targets appeared in f-th frame, and match each object with f-1 frame, 

respectively. If the target does not match in f-1 frame, it is considered a new object. We 

assign it a new ID and save it to the template list. After that, each target in the template 

list is matched in the current frame. If it is matched, the matched target is assigned as 

the same ID. If it is not matched, the number of disappearance times increases by 1. 
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The fourth step is to remove the objects in the template list that do not appear for three 

consecutive frames. 

3.6 Evaluation Methods 

3.6.1 Object Detection and Classification 

When we consider applying deep learning to practical problems, we hope that the 

models are fast and accurate, take up less memory. For most common problems solved 

by using deep learning, there are usually multiple models available. Each model has its 

benefits and behaviors. Each model evaluates performance on the “verification / test” 

dataset, the performance is measured by various statistical metrics such as accuracy, 

precision, and recall.  

   Accuracy describes how accurate the model is, that is, how many the true examples 

are among the predictions that are positive examples. The accuracy is calculated as 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑁𝑃+𝑇𝑁+𝐹𝑁
=

𝑇𝑃+𝑇𝑁

𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
          (3.5) 

where true positives (TP) is the number of positive examples that are correctly classified, 

the number of instances (samples) that are positive and classified by using the classifier 

as positive examples. True negative (TN) is the number of negative samples correctly 

predicted. False negatives (FN) is the number of negative cases that were incorrectly 

classified into negative class, that is, the number of instances is positive but grouped 

into negative class by the classifier. 

   Precision is the proportion of positive examples that are classified as positive, we 

precision as  

Precision =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
=  

𝑇𝑃

𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
                (3.6) 

where false positives (FP) is the number of cases that were incorrectly classified into 



55 

positive class, that is, the number of instances is negative but is classified as a positive 

class by the classifier.  

Recall describes how complete the model is, namely, how many the true samples 

are predicted by using our model as a positive example. We describe the recall as  

Recall =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
=

𝑇𝑃

𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
     (3.7) 

In computer vision, mAP is often utilized to evaluate the performance of an object 

detection system. For example, in the PASCAL VOC competition and MS COCO 

competition, MAP can be defined as equation 3.8. 

𝑚𝐴𝑃 =  
∑ 𝐴𝑣𝑒𝑃(𝑞)

𝑄
𝑞=1

𝑄
(3.8) 

where Q is the number of class, AP is the area covered by the Precision-Recall Curve 

(PRC), which is adopted to measure the quality of the model on each specific category. 

mAP reflects both the accuracy of the classification and the accuracy of the predicted 

location of the bounding box. 

   The number of bounding boxes predicted in object detection is often not fixed, but 

ground truth bounding boxes are fixed. We denote all the predicted boxes as Detection 

Targets (DT). Each DT contains its position coordinates and classification score. We 

sort the DTs according to the classification score from large to small. On the other hand, 

we denote all Ground Truth as GTs. Intersection Over Union (IOU) is handled as the 

threshold to mark whether the prediction box is correct or not, due to detection model 

outputs multiple prediction boxes that usually far exceeds the number of real boxes. 

For each DT in the DTs, IOU and GTs are calculated. If the maximum IOU value 

is greater than the threshold, then the detection is considered successful. As TP and GT 

with the maximum IOU value are considered to be a successful match, they are removed 

from the GTs. If the maximum IOU is less than the threshold value, it means that the 

DT fails to match all GTs, which is an error Inspection, naturally counted as FP. There 
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will be multiple detection results DT matching with GT, the highest score (not the 

highest IOU value, but the classification score of the DT) is considered, the remaining 

detection results are considered FP, after traversing all the DTs, we get TP and FP, at 

this time, if there are remaining in the GTs due to all the matches are removed, it is 

considered FN. 

   In addition, PRC is utilized to evaluate the performance of the detection network. 

The PRC curve is obtained by using recall and precision. Precision describes the ability 

of a model to predict positive categories, meanwhile, recall depicts the ability of a 

model to correctly predict positive categories. 

PRC employs recall as the abscissa and precision as the ordinate. Both precision 

and recall take advantage of the true positive as the numerator, precision is utilized of 

the true positive and false positive predicted by the classifier as the denominator. 

Meanwhile, recall takes use of the true positive and false negative as the denominator. 

The area under PRC curve is average precision (AP). 

3.6.2 Object Tracking 

For target tracking, the goal of this model is to find all targets in time (Bashir and Porikli, 

2006). The target position should be consistent with the real target position as possible. 

Each target should be assigned a unique ID, this ID remains the same throughout the 

video sequence or the scene. 

Multiple object tracking accuracies (MOTA) and multiple objects tracking 

precision (MOTP) jointly measure the algorithmic ability to continuously track objects 

(Chandan, Jain & Jain, 2018), a number of objects are accurately judged in consecutive 

frames, the positions are accurately determined to achieve uninterrupted continuously 

tracking.  

   MOTA is reflected in the accuracy of determining the number of targets and the 

relevant attributes of the object. It is employed to count the erratic accumulation in 
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tracking, including FP, FN, etc.   

MOTA = 1 −
∑ (𝑚𝑡+𝑓𝑝𝑡+𝑚𝑚𝑒𝑡)𝑡

∑ 𝑔𝑡𝑡
                    (3.9) 

where 𝑚𝑡 is the number of missing objects, object 𝑂𝑗 should be matched, 𝑓𝑝𝑡 is the 

number of false positives (FN), FN refers to that there is no matching objects in the 

position ℎ𝑗  of t-th frame. 𝑚𝑚𝑒𝑡 is the number of times that ID switching occurs in 

the tracking target in the t-th frame. 

   MOTP is reflected in the accuracy of determining the target position, which measure 

the accuracy of determining the target position 

MOTP =
∑ 𝑑𝑡

𝑖
𝑖,𝑡

∑ 𝑐𝑡𝑡
𝑚                    (3.10) 

where c𝑡 indicates the number of matches between the object 𝑜𝑖 and the hypothesis 

ℎ𝑗   in t-th frame, 𝑑𝑡
𝑖   indicates the distance between the object 𝑜𝑖  and its paired 

hypothetical position in t-th frame. 

   Suppose there are targets in the image for each frame.  The assumption of tracker 

output in this frame is {ℎ1, ℎ2  … … ℎ𝑛}. The nearest neighbor method is adopted to 

match the hypothesis with the smallest distance to the corresponding target between the 

target and the hypothesis. The distance is calculated using Euclidean distance, the 

threshold T was set as the distance between the centers of the hypothesis and the target 

when they overlap least. The matching in (t+2)-th frame is an invalid match and the 

object 𝑜𝑗 is a missing object. 

   We evaluate the consistency of object tracking as introduced (Manohar, et al. 2006). 

The optimal matching sequence is handled to count the entire video frames to construct 

a matching sequence between the hypothetical position and the target. 𝑀𝑡 = {(𝑜𝑖, 𝑗𝑖)}, 

𝑀𝑡 represents the matching sequence established up to frame t. At frame t + 1, if the 

matching object of 𝑜𝑖  is ℎ𝑗  , which is different from the matching record in 𝑀𝑡 , a 

mismatching is recorded, and (𝑜𝑖, ℎ𝑘)  is updated to 𝑀𝑡 . We continue to match the 
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subsequent frames.  

 

Figure 3.18 The example of the invalid match 

For the problem of disappearing old objects in continuous tracking and 

reappearing after a few frames. Firstly, at frame t + 1, if the old object disappears and 

the currently tracked object does not have a hypothetical position that can be matched, 

the target is missed. Secondly, at frame t + 2, a new object appears and there are two 

hypothetical positions, two valid matches (𝑜1, ℎ1) , (𝑜1, ℎ2)   and 𝑑11 > 𝑑12  , we 

choose (𝑜1, ℎ1)  that already exists to reduce the error rate and the number of 

corresponding transitions. 

   The analysis of the tracking algorithm is for video sequences, assuming that the 

detected video has a total of N frames. A tracking match sequence should be created 

from the first frame, count the three errors, and maintain the match sequence at the 

flowing frames. The pseudo-code in Figure 3.19 illustrates the process. 

 

Figure 3.19 The pseudocode for calculating MOTP and MOTA 



59 

MOTA and MOTP together measure the ability of an algorithm to continuously 

track a target. In continuous frames, the number of targets can be accurately tracked 

and their positions can be precisely defined, to achieve continuous tracking without 

interruption. 

3.7 Experimental Environments 

 In our experiment, the model is implemented by using Python. The software 

dependencies are shown in Table 3.1. 

Table 3.1 Software dependencies 

Dependencies Version 

Keras 2.4 

OpenCV 3.2 

TensorFlow-GPU 1.10 

Python 3.7 

Execution environment: 

Table 3.2 Execution environment 

Software/Hardware Version 

NVIDIA GeForce MX150 

Anaconda 3.2 

CUDA 10.0 

CUDNN 7.4 
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Chapter 4 

Results 

             Chapter 4 illustrates the results of our experiments, 

including detection accuracy, tracking accuracy, and 

tracking precision. We compare the accuracy of object 

detection by using SSD300 and SSD512. At the same 

time, the results of original SiamRPN and SSD for 

object tracking are also compared. The performance 

by using different backbone networks including 

AlexNet, ResNet50 and SiamFC based SiamRPN, 

SiamRPN++ and LSTM are evaluated.  

  



61 
 

4.1 The Results of SSD 

In this thesis, we utilize SSD300 and SSD512 networks as a detector to observe the 

results of using neural networks with different depths. We compare the classification 

performance from aspects of accuracy, precision, and recall. Meanwhile, the tracking 

performance is revealed through mAP. Additionally, the performance from both the 

training set and the validation set could measure whether the model is overfitting. 

Figure 4.1 shows the results of object classification and the bounding boxes 

detected by using SSD300. Almost all pedestrians and bicycle have been identified. 

Also, the cars that are far away from the camera, the bus occluded by another bus in 

front, were identified. 

 

Figure 4.1 The selected video frames with bounding boxes  

Table 4.1 demonstrates the classification accuracy, precision, and recall of the five 

classes after trained SSD300 network. We set the learning rate to 0.001, momentum to 

0.9, weight decay to 0.0005, and batch size to 4. We train the model based on the image 

resolution 10801920. 
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Table 4.1 The performance of SSD300 network as a classifier 

 

Classes Accuracy Precision Recall 

training validation training validation training validation 

Pedestrian 0.836 0.813 0.832 0.816 0.805 0.796 

Bus 0.807 0.802 0.797 0.785 0.793 0.781 

Bicycles  0.828 0.815 0.816 0.803 0.808 0.794 

Scooters 0.643 0.634 0.631 0.622 0.601 0.588 

Car 0.703 0.701 0.696 0.690 0.701 0.697 

Average 0.777 0.765 0.759 0.747 0.752 0.739 

 

In Table 4.1, the accuracy of pedestrian detection achieves the highest accuracy of 

the five classes (0.836), meanwhile, scooter detection has the lowest accuracy (0.643). 

All classes have achieved acceptable results that the average accuracy of the model 

based on our collected datasets is 0.777.  

   In the training process, the accuracy rate based on the training data set is close to 

the accuracy rate on the verification set. This indicates that the model has no overfitting.  

Figure 4.2 demonstrates the Precision and Recall Curve (PRC) of each class in the test 

dataset, the area under the PRC curve is Average Precision (AP). 

 

Figure 4.2 The PR curve of SSD300 as a classifier 

The detection network works well in pedestrian class. Both the classification and 
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the location of the bounding box are accurate. The AP of pedestrians is 0.886. 

Pedestrians occupy the highest proportion of training data due to a picture often 

contains multiple pedestrians, therefore the performance of classification is also the 

best. The AP of the bus detection is 0.84 which is slightly lower than that of pedestrian 

detection. Compared with pedestrian detection, the training data for bus detection is 

relatively small, but buses occupy a large region in an image and have obvious visual 

features, the recognition result is good. The AP of car detection is 0.68, compared with 

buses, visual characteristics of cars are not so obvious, especially in the case of 

occlusion because cars are more easily obscured. 

The Scooter samples have the lowest AP (0.655) amongst the five classes. The 

visual characteristics of the scooter are not obvious due to the region occupied by the 

scooter in the picture is relatively small, especially when a person riding the scooter 

appears with a frontal posture in the camera, it is easy to be misidentified as a pedestrian. 

We manage to compare the accuracy of object detection by using SSD512 and our 

dataset. Table 4.2 shows the classification accuracy, precision, and recall of the five 

classes after training SSD512. We set the learning rate to 0.001, momentum to 0.9, 

weight decay to 0.0005, and batch size to 4. The model is trained based on the image 

size of 1080 1920. 

Table 4.2 The performance of SSD512 network as a classifier 

Classes Accuracy Precision Recall 

training validation training validation training validation 

Pedestrian 0.857 0.844 0.844 0.831 0.835 0.817 

Bus 0.841 0.829 0.826 0.820 0.812 0.804 

Bicycles 0.831 0.812 0.811 0.791 0.819 0.811 

Scooters 0.655 0.639 0.601 0.599 0.606 0.591 

Car 0.757 0.742 0.761 0.753 0.754 0.736 

Average 0.796 0.775 0.768 0.758 0.765 0.751 

We compared the classification performance of SSD300 and SSD512 in object 

detection. The average accuracy of SSD512 is 0.796, that of SSD300 is 0.777. 

Pedestrian detection accuracy is still the highest one (0.857), scooter detection is still 
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the lowest one with the value 0.655. 

   There is no significant difference between the accuracy of the training dataset and 

the accuracy of the verification dataset, which indicates no overfitting occlusion during 

the model training process. Figure 4.3 demonstrates the PR curve of each class. 

Figure 4.3 The PR curve of SSD512 as a classifier 

   The accuracy of SSD300 network and SSD512 network are almost the same, 0.836 

and 0.857, respectively. The AP of pedestrian detection is the highest one among the 

five classes (0.892). The AP of the bus detection has been improved by 1.5% in SSD512, 

from 0.827 to 0.841. The AP of car detection is also improved from 0.68 to 0.78 by 

using SSD512. By contrast, the AP of bicycle detection has not been significantly 

improved. Similarly, the accuracy of bicycle detection in both networks is similar, 0.828 

and 0.831 respectively. The accuracy of scooter detection has been improved by 1% in 

SSD512 network from 0.643 to 0.655. 

Overall, in our experiment, the average accuracy of the detection network is 

improved by 2% in SSD512 network. In Table 4.3, we compare the average accuracy 

and speed of the two networks. The result shows that SSD512 has 2% higher accuracy, 

while the speed dropped 50%. 

Table 4.3 The comparisons of mAPs and speed of SSD300 and SSD512 networks 
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Methods mAPs FPS Batch sizes 

SSD300 0.777 43 4 

SSD512 0.796 20 4 

 

4.2 The Results of SSD + Siamese Network + Hungarian 

Algorithm 

Figure 4.4 illustrates the tracking results in our test video. During the tracking, we 

assign the same ID to the same object in different frames. The label on the top of the 

bounding box is the class of object, the label at the bottom of the bounding box is the 

object ID. The demo videos could be found on https://youtu.be/PHogpgKtDXY. 

 

Figure 4.4 The selected results of SSD + SiamRPN + Hungarian algorithm 
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4.2.1 AlexNet as Backbone Network 

We evaluate our model based on MOT16 challenging benchmark (Milan, et al. 2016). 

The MOT16 dataset was proposed in 2016 to measure the multi-target trackers. MOT16 

consists of a total of 14 video sequences, all of which are still or moving cameras in an 

unconstrained environment. The detection results are already given in the data. 

Therefore, the results only focus on tracking performance. The evaluation is carried out 

according to the following metrics:  

• Multi-Object Tracking Accuracy (MOTA): Summary of overall tracking 

accuracy in terms of false positives, false negatives, and identity switches. 

• Multi-Object Tracking Precision (MOTP): Summary of overall tracking 

precision in terms of bounding box overlap between ground-truth and reported 

location. 

• Mostly Tracked (MT): The percentage of ground-truth tracks that have the 

same label for at least 80% of their life span  

• Mostly Lost (ML): The percentage of ground-truth tracks that are tracked for 

at most 20% of their life span  

• Identity Switches (IDs): The number of times when the ID assigned by Ground 

Truth has changed 

• Fragmentation (FM): The number of times that a track is interrupted by a 

missing detection 

Table 4.4 presents the details of the tracker performance based on MOT16 dataset. 

The average accuracy of MOT dataset is 72.7%. Compared with the benchmark of 

MOT challenge, this result is acceptable. 
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Table 4.4 Tracking performance of AlexNet-Based SiamRPN 

 MOTA(%) MOTP(%) MT ML FP FN IDs FM 

MOT16-02 17.8 74.1 7 27 501 13059 2005 189 

MOT16-05 20.6 70.5 12 30 256 4092 965 154 

MOT16-09 26.5 71.2 11 7 252 2054 274 114 

MOT16-11 24.3 75.0 11 19 329 4687 559 174 

Because MOT16 already gives the coordinates of detected objects, the results only 

reflect the performance of trackers. To verify the performance of the model in practical 

applications, precision plot and success plot are employed to evaluate the model on our 

collected test dataset. The precision plot and success plot were introduced in 2015 (Wen, 

et al., 2015). The overlap score (OS) is the bounding box, obtained by the tracking 

algorithm and the box is given by ground-truth.  

For the single-target tracking algorithm, if the OS of a frame is greater than a given 

threshold (usually 0.5), the frame is considered successful. In this experiment, the 

successful object detection is defined as an object if the OS of this object is greater than 

the given threshold. The percentage of the total number of successful objects to the total 

number of objects is the successful rate. The value of OS ranges from 0 to 1, and a 

curve is drawn. 

  The precision plot reflects the deviation of object positioning. Location error is 

the distance between the center point of the bounding box estimated by the tracking 

algorithm and the center point of the ground-truth of objects. In the single-target 

tracking algorithm, the coordinates represent the percentage of video frames whose 

location error is less than a given threshold to the total video frames. In this experiment, 

the ordinate represents the ratio of the number of objects whose location error is less 

than a given threshold to the total objects. The success plot and precision plot for each 

class are displayed in Figure 4.5. 
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Figure 4.5 Success plot and precision plot of SSD300 + AlexNet-based SimaRPN  

Pedestrian tacking has the highest success rate among the five classes if the overlap 

threshold is 0.5. The success rate of other classes is acceptable. However, as the overlap 

is worth increasing, the success rate of these bus and car tracking drops dramatically. 

In contrast, the tracking success rate of bicycle tracking is relatively stable. The scooter 

has the lowest success rate (0.5).  

The location error of pedestrian tracking is the lowest one among the five classes 

that 70% pedestrian location error is around 15 pixels. Conversely, car detection has the 

highest location error. The location error of bus and bicycle is similar. Scooter detection 

has the lowest success rate, but the position deviation is acceptable. On the other hand, 

though the success rate of car and bus tracking is not much different, the deviation of 

car positions is much greater than that of buses.  

The success plot and precision plot have been redefined in this work by reason of 

these two curves were originally utilized to measure the performance of single object 

tracking. On the other hand, all objects in our own datasets are manually labelled. 

Compared with the standard dataset, the quality of these labels will be affected by 

various reasons, such as the bounding box of the ground truth is too large or not large 

enough. These issues also affect the final measurement results. 
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4.2.2 SimaFC as Backbone Network 

Compared with the AlexNet-based network, the performance of the pedestrian and bus 

tracking has been significantly improved. The performance of other trackers for car, 

scooter and bicycle tracking is similar to the Alexnet-based network. In general, the 

tracking performance does not benefit from the deeper neural networks. The 

performance of SimaFC-based tracking network is presented in Table 4.5.  

Table 4.5 Tracking performance of SimaFC 

 MOTA(%) MOTP(%) MT ML FP FN IDs FM 

MOT16-02 21.2 72.3 5 19 602 18306 2112 209 

MOT16-05 19.5 74.1 8 11 279 4431 1045 186 

MOT16-09 20.6 72.5 11 9 302 2025 398 214 

MOT16-11 17.3 73.6 9 12 365 4672 609 173 

   The results of SiamFC-based tracking network are similar to AlexNet-based 

tracking network. The average MOTA of SiamFC-based tracking network is 19.1% 

while 22.3% in AlexNet-based tracking. The average accuracy of the two networks are 

73.1% and 73.2%. Figure 4.6 shows the differences of success rate and location error 

between different classes.  

  

Figure 4.6 Success plot and precision plot of SiamFC 
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The tracking success rate of these five classes is not significantly different from that 

of the Alexnet-based network. Pedestrian tracking has the highest success rate 0.9 and 

the scooter has the lowest one 0.5 when the overlap threshold is 0.5. The success rate 

of the other three classes is between 0.55 and 0.8 which are close to that of Alexnet-

based and Resnet-based network. 

The location error of 70% of the pedestrians and bicycle is around 12 pixels which 

closer to the results in AlexNet-based network. While the average location error of 70% 

bus and bicycle are approximately 28 pixels. On the other hand, the category car has 

the largest position deviation. Compared with the class of bus, the position deviation of 

cars is large, though buses are larger than cars. This may due to the higher detection 

accuracy of buses in the detection network. 

4.2.3 ResNet as Backbone Network 

The backbone of the tracking network is AlexNet. In this experiment, we also compared 

the tracking network with other backbones in terms of ResNet50 and SiamFC to 

observe the impact of different CNNs on tracking accuracy.  

Original SiamRPN is improved based on SiamFC. RPN module in Faster R-CNN 

is introduced to allow the tracker to return to the position and shape. It saves testing 

time and further improves the performance, but the backbone network still retains the 

original AlexNet. The algorithms make use of ResNet as the backbone since it solves 

the problem of gradient vanishing. Table 4.5 illustrates the tracking performance of 

ResNet50-based based on MOT16 dataset. 

Table 4.6 Tracking performance of ResNet50-based SiamRPN 

MOTA(%) MOTP(%) MT ML FP FN IDs FM 

MOT16-02 23.9 72.5 9 21 552 12651 1985 154 

MOT16-05 21.1 74.7 12 28 237 3862 963 161 

MOT16-09 26.4 71.8 7 5 209 1988 379 120 

MOT16-11 19.3 73.9 15 19 281 4326 495 149 
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   The average accuracy based on MOTA dataset is 73.2% which is similar to 

AlexNet-based tracking network.   

Additionally, we also evaluated the success rate and position deviation based on our 

test data set. Figure 4.6 shows the success plot and precision plot of each class. 

If the overlapping threshold is set to 0.5, the success rate of pedestrian is 0.7. Similar 

to the results of AlexNet-based network, pedestrian has the highest accuracy. The 

success rates of bicycle, car and bus tracking are similar (83%), scooter has the lowest 

success rate (0.57). Compared with the AlexNet-based network, the success rate of 

these five classes have not been improved significantly. 

 

Figure 4.7 Success plot and precision plot of ResNet-based SiamRPN 

   The precisions of pedestrian and bus tracking are significantly improved, the 

location errors of 80% pedestrian and bus tracking are 10 pixels and 20 pixels which 

are better than previous networks. The location errors of 60% other three classes are 

around 30 pixels. 

In our experiments, the performance of the tracking networks of different 

backbone networks has not changed much. This is inconsistent with our hypothesis that 

the deeper the neural network, the better the tracking performance. 
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4.2.4 SiamRPN++ as Backbone Network 

SiamRPN has two branches: Classification branch and regression branch. The 

classification outputs the similarity between the template area and the detected area. 

The regression branch exports the location of the detected object. The classification is 

regarded for the match of the object as a dichotomy, if the feature of the detected region 

matches the feature of the template region, it is judged as the foreground. Otherwise, 

the judgment is the background. 

 

Figure 4.8 Correlation process 

    The correlation method is to treat the correlation layer as a convolutional layer, the 

features are extracted from the template branch as the convolution kernel, the features 

are extracted from the detection branch as the input of the convolution layer, so that the 

outputting channels became 2K by changing the shape of the convolution kernel. The 

specific method has two different convolutional layers. The convolutional layer of the 

template branch is responsible for dimensionality, the number of channels is increased 

to 2562k. The detection branch also adds a convolutional layer, but the number of 

channels is constant. Then correlation operation is performed to get the final 

classification result. 

   The correlation is obtained by calculating the similarity of each position in the form 

of a sliding window. The similarity is defined as 

𝑓(𝑧, 𝑥) =  ∅(z) ∗  ∅(𝑥) + 𝑏                 (4.1)  

where z is a template image, x is a detection image, b1 represents the value of each 
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position in the score chart. Equation (5.1) treats φ(z) as a convolution kernel and 

performs convolution on φ(x). During tracking, the response score map is calculated by 

the search image centered on the previous frame of the target position, the position with 

the largest score is collaborated with the step size to obtain the current target position. 

   Therefore, the network needs to satisfy strict translation invariance firstly. However, 

padding will destroy this nature. Secondly, the network needs to have symmetry, that 

is, if the images are searched, the output result should be unchanged. 

   For deeper networks, to ensure that the network has an appropriate resolution, 

almost all modern network backbones have a padding structure. ResNet does not have 

strict translation invariance (Bhat, et al., 2019), the introduction of padding makes the 

response of the network output having different perceptions for different positions. The 

training in this step makes that the network learns how to distinguish the regression 

objects, which limits the application of deep networks in the field of tracking. 

   Additionally, since SiamRPN supervises the regression offset and pre-background 

score, it no longer has symmetry. Therefore, in the improvement of SiamRPN, it is 

necessary to introduce asymmetric components.  

    An algorithm SiamRPN++ was proposed (Li, et al., 2019) which solves the 

problems by using optimized ResNet50. The stride of the last two blocks of ResNet50 

was removed, and dilated convolution was added. One was to increase the receptive 

field, the other was to train the parameters. Moreover, multilayer fusion is used. The 

output of the last three blocks of the network is selected for fusion. The fusion method 

adopts the method of directly doing linear weighting. 

Table 4.7 Tracking performance of SiamRPN++ 

MOTA(%) MOTP(%) MT ML FP FN IDs FM 

MOT16-02 29.1 74.1 12 30 482 12964 1287 146 

MOT16-05 25.8 73.6 11 2 236 3906 849 198 

MOT16-09 28.2 75.1 21 23 205 2004 557 66 

MOT16-11 21.5 72.9 15 29 327 4168 769 125 

In the experiments, the performance of SiamRPN ++ in VOT data set is 4% higher 
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than that of SiamRPN. We replaced the SiamRPN with the SiamRPN++, the results are 

shown in Table 4.7. 

Compared with SiamRPN, the MOTP of SiamRPN ++ is not significantly 

improved, while average MOTA is increased by 5%, which means that there are more 

matching objects. The success plot and precision of each class are displayed in Figure 

4.9. 

  

Figure 4.9 Success plot and precision plot of SiamRPN++ 

The average success rate of the five classes is improved significantly. The 

successful rate of the pedestrian is 0.9 if the overlapping threshold is set to 0.5. The 

successful rate of the car is close to the pedestrian, the area under the success rate is not 

significantly increase compared to SimaRPN algorithm. The successful rate of bus and 

scooter is similar, the results have been improved compared with the previous network. 

However, if the overlapping threshold becomes larger, the accuracy rate drops sharply. 

The location error of 80% pedestrian tracking is 10 pixels. The location error of 70% 

cars is 28 pixels, the location error has not been improved much yet. The location error 

of 80% buses is 28 pixels. Both the success rate and the location error are improved, 

compared with the result to SiamRPN algorithm, the location error of 78% objects is 

around 20 pixels. The location error of 65% objects between the prediction box and the 

ground truth box is 18 pixels. Overall, compared to the tracking result of SiamRPN, the 

average tracking accuracy and positioning error of SiamRPN ++ have been improved. 
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4.3 SSD + SiamRPN++ + LSTM 

SiamRPN ++ resolves the problem of loss of translation and symmetry in the SiamRPN 

network, improves the ability of correlation operations to calculate similarity. 

Considering that the positions of the objects in the front and back frames in the video 

sequence are related, Long Short Term Memory networks (LSTM) algorithm is utilized 

to predict the trajectory of the object to improve the accuracy of tracking. LSTM is a 

special RNN that can learn and store long-term dependencies (Hochreiter & 

Schmidhuber, 1997). The main purpose is to solve the problem of gradient 

disappearance and gradient explosion during long sequence training.  

LSTM is employed for location prediction in objects tracking by learning the 

implicit motion model. An attention model is adopted to predict the bounding box of 

objects from the original image, which means that the LSTM learns both the features 

of objects and the position prediction (Kahou, 2017) (Zhou, Wan and Xiao, 2016). Ning 

et al. combined with the detection and tracking, fed the feature of objects and prediction 

results of detection into LSTM for further prediction, though the accuracy of tracking 

is improved, it can only track categories that have been trained in the detection model. 

Gordon proposed a model which takes advantage of two LSTM networks, the first 

LSTM learns the motion feature of the object, the second LSTM is responsible for 

regression, which is to output the diagonal coordinates of the target frame.  

In this experiment, we take advantage of LSTM to predict the trajectory of an 

object in the template branch. Associated with data, the object which is closest to the 

predicted position is fed into SiamRPN++ for feature extraction and measure the feature 

similarity. In this way, the matching performance is improved. Also, we combined the 

results of LSTM prediction to update the bounding box of the template branch object.  

Table 4.8 shows the tracking results on MOT16, we see a significant increase in 

the number of mostly tracked objects and a decrease of mostly lost objects. Then, we 

measure the performance of detection and tracking networks as a whole. The success 

plot and precision plot for each class are demonstrated in Figure 4.10. 
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Table 4.8 Tracking performance of SSD + SiamRPN++ and LSTM 

MOTA(%) MOTP(%) MT ML FP FN IDs FM 

MOT16-02 32.6 74.3 5 19 602 8306 705 309 

MOT16-05 27.5 70.1 8 11 279 4431 410 132 

MOT16-09 28.2 73.5 11 9 302 1036 323 185 

MOT16-11 31.3 72.6 9 12 365 2493 581 208 

Figure 4.10 Success plot and precision plot of SSD + SiamRPN++ + LSTM 

Pedestrian has the highest success rate. Meanwhile, the success rate of scooter is 

the lowest one of five classes, if the overlapping is 0.6. Overall, the success rates of the 

five classes are higher than 0.8. 

We see that the position deviation of 60% of tracked objects is less than 20 pixels. 

80% location error of pedestrians is around 12 pixels. The location error of car, bus and 

bicycle are similar, around 20 pixels when precision is 0.8. Meanwhile, the location 

error of scooter is slightly more than others that 25 pixels of the precision reaches to 

0.8. 

In general, the tracking performance of SSD + SiamRPN++ + LSTM model works 

well, the MOTA reaches 30.9% on the public data set MOT16. It also performs well on 

our own test dataset. If the ratio of the detection bounding box to the real bounding box 

is 0.6, 80%, the detected objects are successfully tracked. At the same time, LSTM 
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predicts the position of the detected object based on the timing characteristics to help 

improve the coordinates of the detected object, thereby reducing the location error of 

the tracked objects. 

Overall, the successful rate of object detection by using SSD that was trained based 

on our own dataset is up to 77.7%, which is close to the results of the original results. 

The result of the tracking network based on MOT16 is also acceptable. The tracking 

performance on our own data set has been greatly improved due to the merged results 

of detection and tracking network. 
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 Chapter 5 

Analysis and Discussions 

In this chapter, we discuss the results of the detection network 

by analyzing the differences from feature extraction between 

SSD300 and SSD512 networks. The tracking performance of 

the networks is also analyzed, we compared the tracking 

performance of network of the different backbones and the 

tracking results of five class of anomaly. Also, the results of the 

experiments are observed too. 
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5.1 Analysis and Discussions 

5.1.1 Detection Network 

In our experiments, we trained SSD on our own dataset, the average detection accuracy 

of the detection network on our dataset is 77.7%, which is closer to the result of Liu et 

al.’s work (81.6%) in their paper. The detection accuracy of SSD512 network is 1.5% 

higher than that of SSD300.   

   Compared with other single-stage detectors, the biggest bright spot of SSD is that 

it tends to utilize shallow layers to detect small targets and deep layers to detect large 

targets. This is the reason why shallow neural networks have more detailed information 

and are much effective for small targets, while deep neurons have larger receptive fields, 

abstract semantic information is much effective for large targets. The network structures 

of SSD300 and SSD512 networks are similar. SSD512 network has one more 

convolution block than that of SSD300. 

   SSD300 adopts a pyramid structure, which employs multiple feature maps to 

simultaneously perform classification and position regression, then merge these results. 

Meanwhile, SSD512 takes use of feature maps to classification and position regression, 

then combines the results. Figure 5.1 illustrates the feature maps of different layers of 

SSD300, we find the differences between these two algorithms in feature maps. 

Figure 5.1 Feature map of SSD300 network 
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   These feature maps come from pool1, pool2, pool3, conv4-3, cf6, cf7, conv6-2, 

conv7-2, conv8-2 and conv9-2 layers. As displayed in Figure 5.1, after the first 

convolutional network block, the network learns the features of the picture details such 

as points, lines, textures, etc. After the second convolutional block, the network learns 

larger-scale texture features. In the third and fourth convolutional network blocks, the 

network learns features in terms of position and color. We see from the feature maps, 

the resolution of the feature map is reduced layer by layer. As the SSD perception field 

becomes larger, the extracted features become more and more abstract. 

   The last layer of feature map becomes 11, it is too abstract to be interpreted. These 

multiple feature maps with different resolutions are employed for object detection. 

Low-level feature maps have learned fine surface features, and high-level feature maps 

have learned abstract features.  

   The input frame of SSD512 network is 512512 which is greater than SSD300 

(300300), SSD512 has one more feature map of conv10-2 layer. Figure 5.2 shows the 

feature maps from layer pool1, pool2, pool3, conv4-3, pool5, fc6, fc7, conv6-2, conv7-

2, conv8-2, conv9-2 and conv10-2. 

 

Figure 5.2 Feature map of SSD512 network 

    Compared with SSD300, the feature map of the first convolution block of SSD512 

contains more line and texture features. The feature map of the conv4-3 layer in 

SSD512 contains more details than the feature map of the conv4-3 layer of SSD300. 
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We see the outline of the pedestrian in front.  

    The feature map of the SSD512 intermediate layer has a higher resolution than the 

SSD300 intermediate layer. Feature map of conv6-2 shows the feature of pedestrian 

that bigger than other objects. 

Although SSD512 adopts one more layer feature map, compared with SSD300, 

the high-level feature map of SSD512 does not contain more information. Regarding 

the extra feature map that from conv10-2 layer of SSD512, it does not provide more 

information, meanwhile, the low-level feature map of SSD512 contains more 

information. This may result in the higher performance of SSD512. 

5.1.2 Tracking Network 

In the experiment, we make use of different deep networks as the backbone of 

SiamRPN as well as SimaRPN++ for feature extraction, Hungarian algorithm and 

LSTM to get the best matching objects. Table 5.1 compares the tracking performance 

on MOT16 dataset. 

Table 5.1 Comparisons of various trackers 

Algorithms MOTA(%) MOTP(%) IDs 

SiamRPN(Alexnet) + Hungarian algorithm 21.3 72.7 950 

SiamRPN(Resnet) + Hungarian algorithm 22.6 73.2 945 

SiamFC + Hungarian algorithm 21.1 73.9 1041 

SiamRPN++(Resnet) + Hungarian 

algorithm 

26.1 73.1 865 

SiamRPN++(Resnet) + LSTM 30.9 72.6 504 

     

The performance of SiamRPN has not significantly improved by using deeper 

neural network. While the SiamRPN++ and Hungarian algorithm improve the tracking 

performance by overcoming the barriers that the neural network loses translation 

equivalence in ResNet due to padding. If a neural network has padding and the objects 

are located in the center of the image for training, then when the neural network predicts 
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the target on the detection image, it will learn the prediction preference for the center 

of the image due to the distribution characteristics of the target in the training sample. 

No matter where the target moves to the image, the network will only predict the 

location of the central area. This is the reason why tracking performance does not 

increase but decreases after deepening the network with ResNet. 

SiamRPN ++ takes advantages of the data of positive samples uniformly 

distributed at various positions in the image, which allows the network to learn a 

preference for each position. Hence, the tracking performance of the network will not 

decrease as the network deepens. 

SiamRPN++ and LSTM algorithms have the highest MOTA, we see a significant 

decrease in ID switch. By combining the results of LSTM trajectory prediction and the 

results of SiamRPN feature similarity evaluation, the tracking accuracy is improved. 

Overall, the model works well on our test dataset. We see that pedestrian has the 

highest tracking accuracy and scooter has the lowest tracking accuracy. These two types 

of objects also have the highest and lowest detection accuracy in the detection network 

respectively. The performance of the same tracking network based on SSD512 is a bit 

higher than that of tracking network based on SSD300. However, compared with other 

classes, the tracking success rate and positioning have not improved much during the 

experiment, especially the location error is still large. Thus, we compared the results of 

the car and the results of the bus. 

As presented in Figure 5.3, in these two frames, a car is split into two parts by 

street traffic signs. If the network classifier finds that cars are blocked by street signs, 

the accuracy is low. The position of the car is different between the two frames, the 

predicted bounding boxes in these two frames are different from the ground truth 

bounding boxes. This leads to a large position error of the car. 

Compared with cars, though buses are also divided into two parts by street signs, 

the accuracy of recognition is not affected. 
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Figure 5.3 Tracking result of cars and buses 

The reason why the recognition algorithm is not accurate is that the data of car in 

the training model is not continuous video frames. It was selected from the videos which 

have not occlusion objects in order to ensure that the training is effective. Meanwhile, 

the test dataset is the video footage in the real world. It is inevitable that there are the 

images in which the car was blocked, these images have not been learned by the 

network. 

5.2 Limitations of Research  

In this experiment, we identify anomalies on the sidewalk and track them. We take a 

lot of videos and pick up frames as the dataset for detection network training. 

Additionally, we apply public datasets to train the tracking network. We train different 

neural networks as the backbone of the model. However, there are some limitations.  

(1) Due to time constraints, it is impossible to study all algorithms in the related 

fields. There may be better solutions for abnormal object detection and tracking, while 

we did not found them. 

(2) The quality of the training data is not high enough. Due to the frequency of 

bicycles and scooters appear on the sidewalk is low, there are not enough pictures taken. 

The characteristics of the target in some frames are not obvious caused by shooting 

angle.  
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(3) The data to measure the tracking network is manually annotated, which may 

lead to inaccurate performance evaluation. 

(4) The network can’t identify enough types of anomalies due to there is not 

enough data. For example, other categories such as motorcycles and tricycles are not 

recognized. 
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Chapter 6 

Conclusion and Future 

Work 

This chapter outlines the implementation and training 

methods of the proposed model, preparation of 

experimental data, and experimental results. In addition, 

the shortcomings of this experiment and future work are 

discussed. 
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6.1 Conclusion 

In this experiment, we detect anomalies on the sidewalk. We define anomaly as moving 

bicycles, scooters and motorcycles appeared on the sidewalk. We propose a network to 

identify and classify objects on the sidewalk. We track the anomaly objects in the video. 

Firstly, we develop SSD network as the detection network to detect the objects and 

classify them. Then, the detected objects and associated classes are fed into the 

modified SiamRPN network, the features of the tracked target in the template frame 

and the detection frame are extracted, respectively. Finally, we assess the similarity of 

these features to determine whether it is the same object.  

In the process of model training, transfer learning is employed to save the time of 

manually labelling samples, so that the model could migrate from the existing marked 

data to the unmarked data. The data set for network training was taken in Queen street, 

Auckland, New Zealand. Since there is not enough data in the abnormal category, we 

adopts the Affine transformation, Gaussian noise injection and random erasing for data 

augmentation to avoid overfitting.  

The model was developed by using Python 3.7. We compare the performance of 

SSD300 and SSD512 networks to recognize and classify objects. Our tracking network 

is based on SiamRPN, we assume that our model can track targets like our human 

beings, that is, extracting the key features after seeing the target and recognize them in 

the subsequent frames. Thus, we trained deep neural network to recognize similar 

objects.  

The results of object detection and classification in our dataset are close to other 

related work. The performance of SiamRPN-based tracking network is well. We have 

replaced neural networks with different depths for feature extraction and similarity 

discrimination. But we can’t see a big difference in performance. Thus, we employ 

SiamRPN++ instead of SiamRPN, the tracking performance is improved by 5%. 

However, in the experiment, we found that in the process of data association, there are 
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cases where the similarity scores of a template object and multiple tracked objects all 

exceed the threshold, which results in matching errors. The reason why we obtained 

this result is that in multiple target tracking, there are multiple targets with similar 

characteristics. As a single target tracking algorithm, SiamRPN cannot distinguish 

multiple objects with similar apparent characteristics in the same frame. Therefore, we 

offer the Hungarian algorithm after the SiamRPN to get the best match of objects. 

Additionally, considering that the positions of the objects in the video sequence are 

related, we take advantage of the LSTM to predict the trajectory of the object and 

improve the accuracy of tracking. The results show significantly decrease in ID switch 

and 4% improvement of tracking accuracy. Overall, the main contributions of this thesis 

are:  

• We implement the proposed model for object recognition, classification, and 

tracking for multiple types of anomalies.  

• We achieve multi-target tracking by combining object detection algorithms 

and single-target tracking algorithms.  

• The proposed model is a novel deep learning-based model to achieve anomaly 

detection and tracking, which has not been done in previous work. 
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6.2 Future Work 

Our future work may include: 

(1) The results of object detection and classification in this experiment are good, but 

the performance of object tracking is not ideal. Tracking objects by using data 

association may not be the best solution. In the future, LSTM can be employed to 

predict the trajectory of objects, thereby improves the accuracy of object tracking.  

(2) The types of anomalies monitored by the network are limited. In future, more data 

can be trained to implement the detection of more abnormal categories. 

(3) The network proposed in this experiment cannot tracking objects across cameras 

due to the similarity of the same target in different backgrounds predicted by 

SiamRPN is not accurate enough. Meanwhile, for the actual application of video 

surveillance, anomaly detection is usually multiple camera-based, for example, 

tracking the same suspicious target in different cameras. In the future, the algorithm 

can be optimized to achieve multi-target tracking by using these cameras. 
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