
Full citation: MacDonell, S.G., & Gray, A.R. (2001) Software forensics applied to the task of
discriminating between program authors, Journal of Systems Research and Information Systems 10,
pp.113-127.

Software Forensics applied to the task of
Discriminating between Program Authors

Stephen G. MacDonell and Andrew R. Gray
Software Metrics Research Lab

Department of Information Science
University of Otago, PO Box 56, Dunedin, New Zealand

+64 3 4798135 (ph.) +64 3 4798311 (fax), stevemac@infoscience.otago.ac.nz

Abstract

Software forensics is here regarded as the particular field
of inquiry that, by treating pieces of program source code
as linguistically and stylistically analyzable entities,
attempts to investigate various aspects of computer
program authorship. These inquiries could be performed
with any number of goals in mind, including those of
identification, discrimination, and characterization of
authors. In this paper we extract a set of 26 authorship-
related metrics from 351 source code programs, written
by 7 different authors. The use of feed-forward neural
network (FFNN), multiple discriminant analysis (MDA),
and case-based reasoning (CBR) models for
discriminating these programs are then investigated in
terms of classification accuracy for the authors on both
training and testing (holdout) samples. The first two
techniques (FFNN and MDA) produce remarkably
similar results, with the overall best results coming from
the CBR models. All of the examined modeling techniques
have prediction accuracy rates over 80%, supporting the
claim that it is feasible to use such techniques for the task
of discriminating program authors based on source-code
measurements in a majority of cases.

1. INTRODUCTION

In a number of quite varied situations there is a desire, or
even a requirement, to be able to investigate the nature of
a computer program’s authorship. By this it is meant, that
there is some question concerning the authorship of a
series of programs or alternatively the characteristics of
program authors [3]. While computer program source
code is certainly much more formal and restrictive than
spoken or written languages in terms of its grammar and
expressiveness, computer programmers are still able to
make use of quite large degrees of flexibility when
writing a program to achieve a particular purpose. This
flexibility includes such factors as:

• the manner in which the task is achieved (the
algorithm used to solve the problem),

• the way that the source code is presented in terms

of layout (spacing, indentation, bordering characters
used to set off sections of code, standard headings,
etc.), and

• the stylistic manner in which the algorithm is
implemented (the particular choice of program
statements used where there is a choice, variable
names, etc.).

Other options that may also be available to the
programmer include selecting the computer platform,
programming language, compiler, and/or text editor to be
used. These decisions may also allow the programmer
some degree of personal freedom, and thus
expressiveness. Many of the features of a computer
program (algorithm, layout, style, and environment) can
be quite specific to certain programmers or types of
programmer. Ideally, such aspects in order to be useful
for software authorship analysis have low within-
programmer variability, and high between-programmer
variability. This is especially likely for particular
combinations of features and unusual programming
idioms that generally make up a programmer’s problem-
solving vocabulary. Therefore, it seems quite plausible to
suggest that computer programs can contain some degree
of information that provides evidence of the author’s
identity and characteristics.

The most widely known example of authorship analysis is
plagiarism detection, usually in an academic setting,
where students’ assignments can be compared to see if
some are “suspiciously similar” [7]. The incidence of
highly similar programs can provide suggestive evidence
that one student’s code may have been derived from
another student’s work. This particular area of research
provided the origins of the ideas that now make up the
field of software forensics—which is defined here as the
study of program characteristics with the intention of
identifying, examining, or discriminating between
program authors [1].

Software forensics also includes the areas of authorship
characterization, as in psychological studies of the
relationships between programmer attributes and their
code and between programming conditions and code. The

analysis of malicious code (such as computer viruses and
Trojan horses) is another application area, although this
generally involves much more subjective analysis [6].

Other less common applications of software forensics
include quality control (through coding standards for
example, cyclomatic complexity or comment density),
author tracking (for example, determining the author of
code of unknown origin), change control (tracking the
authorship of changes and quality control when making
changes), and ownership disputes.

While the idea of dissenting the structure and nature of
programs to discern some information about the likely
author or authors and/or their characteristics may appear
somewhat esoteric, perhaps even unrealistic, it has been
shown that such activities are feasible, at least under
certain circumstances [2]. In fact many measurements
may even be difficult for programmers to change [6]. An
open question is how such models should be constructed
to best represent the mappings between program features,
authors, and the authors’ characteristics.

In this paper the focus will be on the area of developing
models that are capable of discriminating between several
authors using source-code based measurements. The
measurements that are preferred here are those that can be
automatically extracted from source code by pattern
matching algorithms since the volumes of data needed for
these applications will generally surpass convenient
human measurement. In some cases however, expert
intervention may be necessary where measures cannot be
usefully extracted in an automated way, for example
using fuzzy logic categories to express the
correspondence between comments and code behavior.

2. APPLICATIONS OF SOFTWARE

FORENSICS

In this section some additional information about each of
the four main applications of software forensics are
provided, namely: author identification, author
discrimination, author characterization, and author intent
determination. The models developed later in the paper
are concerned only with the first of these four
applications, but it is useful to keep the others in mind as
the same techniques can also be applied to these
problems.

2.1 Author identification

The goal here is to determine the likelihood of a particular
author having written some piece(s) of code, usually
based on other code samples from that programmer. This
can also involve having samples of code for several
programmers and determining the likelihood of a new
piece of code having been written by each programmer.
This application area is very similar to, for example, the
attempts to determine the authorship of the Shakespearean
plays or certain biblical passages. An example of this
applied to source code would be ascribing authorship of a
new piece of code, such as a computer virus, to an author
where the code matches the profile of other pieces of code
written by this author.

2.2 Authorship discrimination

This is the task of deciding whether some pieces of code
were written by a single author or by (some number of)
different authors. This can possibly also include an
estimate of the number of distinct authors involved in
writing a single piece or all pieces of code. It is obviously
necessary to distinguish between identifying multiple
authors for a series of programs and co-authorship on a
single program. This task involves the calculation of
similarity between the two or more pieces of code and
possibly some estimate of between-and within-subject
variability. An example of this would be showing that
different authors, without actually identifying the authors
in question, probably wrote the two or more pieces of
code.

2.3 Author characterization

This is based on determining some characteristics of the
programmer of a code fragment, such as personality and
educational background, based on their programming
style. An example of this would be determining that a
piece of code was most likely to have been written by
someone with a particular educational background due to
the programming style and techniques used.

2.4 Author intent determination

It may be possible to determine, in some cases, whether
code that has had an undesired effect was written with
deliberate malice, or was the result of an accidental error.
Since the software development process is never error
free and some errors can have catastrophic consequences,
such questions can arise reasonably frequently. This can
also be extended to check for negligence, where
erroneous code is perhaps suspected to be much less
rigorous than a programmer’s usual code. This is a much-
neglected aspect of source code authorship analysis with
no other literature found that mentions its use. While this
could be seen as the most difficult, and certainly the most
subjective, of the applications it may also be one of the
most crucial in practice.

3. SETTINGS FOR USING SOFTWARE

FORENSICS

In order to further provide a context for the application of
the modeling techniques to authorship identification, here
a number of application areas are discussed as potential
situations motivating the need for such an exercise, as
well as possible applications of the other software
forensics problems.

3.1 Educational
The educational setting of software forensics is generally
concerned with plagiarism detection. A significant
amount of literature has been produced detailing various
schemes for detecting cases where programming
assignments have been plagiarised, with or without the

original author’s consent. Generally plagiarism detection
is a combination of author identification (who really
wrote the code), and author discrimination (did the same
person write both pieces of code). One significant
problem that emerges when using plagiarism detection is
the effect of discouraging collaboration between students.
Other issues such as student’s adopting tutors, lecturers,
and/or textbook author’s styles are also problematic.

3.2 Legal
The use of software forensics for tracking down the
authors of malicious code has been the second most
emphasized application after plagiarism detection. Other
issues such as the intent analysis of malicious code also
appear under this heading.

3.3 Industrial

Within an industrial context there are fewer applications
of software forensics, but cases would include identifying
authors of code that needs to be maintained where this
information is not otherwise recorded or may be incorrect,
and checking for negligent programming.

3.4 Psychological

While the above areas are mostly practical, there are also
several uses for software authorship analysis from a
theoretical perspective. It is possible to use such metrics
to examine the developmental process of programming
skills, and to correlate individual characteristics to
programming ones.

4. MEASUREMENTS FOR SOFTWARE
FORENSICS

Expert opinion can, potentially, be given on the degrees
of similarity and difference between code fragments,
although this is likely to be a time-consuming exercise in
many cases. Psychological analysis of code can also be
performed, even as a simple matter of opinion. However,
a more scientific approach may also be taken (and should
be taken) since both quantitative and qualitative
measurements can be made on computer program source
code and object code. These measurements can be either
automatically extracted by analysis tools (such as
IDENTIFIED, discussed later in the paper), calculated by
an expert, or arrived at by using some combination of
these two methods. Some metrics can obviously only be
calculated by an expert, such as the degree to which the
comments in code match the actual behavior of that code.
Here these measurements are referred to as metrics for
reasons of tradition and include some borrowed and
adapted from conventional software metrics and
linguistics. A vast number of different metrics can be
extracted from source code, although some are obviously
more likely to be effective than others.

5. TECHNIQUES FOR AUTHORSHIP
DISCRIMINATION

5.1 Neural Networks

There are a vast number of neural network architectures
and training algorithms contained within the literature.
The most commonly used architecture for applications is
that of a feed-forward neural network (FFNN), which is
still generally trained using some modified form of the
gradient-descent algorithm.

The main issues when using this approach concern
selecting the optimal architecture for the network and in
stopping the training (usually by using data set splitting
and stopping training when a validation data set error is
minimized). The use of data set splitting can be seen as a
disadvantage, since this reduces the amount of data
available for the network to learn the relationships.

More sophisticated approached that do not require hold-
out samples are not investigated here as they are likely to
be less accessible to researchers in applied fields.

5.2 Discriminant Analysis

Multiple discriminant analysis (MDA) is a statistical
technique that separates observations into two or more
groups based on several orthogonal linear functions of the
independent variables. The technique assumes a
reasonable degree of multivariate normality, with logistic
regression an alternative where this is not the case.

A significant advantage of discriminant analysis as a
technique is the easy availability of stepwise procedures
for controlling the entry and removal of variables. By
working with only those necessary variables we increase
the chance of the model being able to generalize to new
sets of data. In addition, the data collection costs can be
reduced, sometimes significantly, by working with a
smaller set of variables.

Another advantage of the technique is that it provides
probability information for the predictions, both in terms
of the conditional probability of an observation belonging
to a particular class given its classification and the
conditional probability that a particular observation will
be classified as belonging to a particular class given its
real class. In a legal setting such information would
certainly be required if software forensic results were to
be accepted as evidence.

5.3 Case-Based Reasoning

Case-based reasoning (CBR) is a method for modeling
the relationship between a series of independent variables
and one or more dependent variables by storing the cases
(observations) in a database. When presented with a new
observation, the cases that are similar in terms of the
independent variables are retrieved and the dependent
variables calculated from them using some form of
“averaging” process.

CBR has the advantages of not requiring any

distributional assumptions per se but does require the
specification of a distance metric (for finding the closest
exemplars to the presented case and calculating their
similarity). Scaling (if any is used) when measuring
similarity can be based on ranges or standardized values if
some distributional assumptions are made.

The other aspect that requires some thought is the
selection of a method for combining the cases. Again, a
simple weighted average approach can be used once the
distance metric has been decided on, with perhaps some
power of distance used to increase the influence of closer
observations and reduce the influence of outliers. In most
implementations a threshold of similarity or a limit of
“related” cases is used to prevent all stored cases
influencing all predictions.

One particular case-based reasoning system that has been
previously used for software metric research is the
ANGEL system [5]. ANGEL has also been implemented
as part of the IDENTIFIED system that was used in this
paper for the measurement extraction, and CBR and
FFNN models [1, 4]. The ANGEL system also allows for
the automatic selection of relevant variables (at some
considerable computational cost), although here no
attempt will be made to select any optimal subset of
variables when using this technique.

6. AUTHORSHIP DATA SET

The data that we have chosen to illustrate the author
discrimination problem exhibits many of the
characteristics that present some of the most perplexing
difficulties found when undertaking such analyses. These
difficulties include small amounts of data, unequal
amounts of data from different authors, and code from
some authors varying over time and application domain.

The data set used here contains programs from seven
authors with widely varying amounts of data and from
three basic source types. 26 measures were extracted for
each program using the IDENTIFIED tool (Table 1).

All programs were written in standard C++. The source
code for authors one, two, and three are from
programming books; authors four, five, and six are
experienced commercial programmers; and author
seven’s code is from examples provided with a popular
C++ compiler. The choice of program sources may appear
unusual, but it was felt that the usual source of student
programs was no more realistic.

For the purposes of testing the various models to be
developed in sections 7.1, 7.2, and7.3, the available data
was split (as shown in Table 2) with stratification (as
equally as possible) across authors. The split was
approximately 25% in the Training 1 set, 25% in the
Training 2 set, and 50% in the Testing set.

In some cases, especially for authors 4 and 5, very little
data is available, but this can be seen as a useful test of a
situation certain to arise in practice. The only concern
here is that the prior probabilities from the Training set
match the posterior probabilities in the Testing set.

In a simulation-based study the use of resampling would
appear a better choice to assess the techniques. However
since this study involves only one split of the data set, the
use of stratification seems preferable to the increased
effects of chance bought on by resampling.

Table 1: The 26 variables used

Table 2: Data set splits

7. RESULTS

The results for each of the three modeling techniques are
now discussed in turn. In each case confusion matrices
are provided to emphasize that different techniques may
give the same or similar overall performance in very
different ways.

7.1 Neural Network

The ultimately selected FFNN was a 26-9-7 network, with
the logistic transfer for both hidden and output layers. The

best network found was trained for 250 epochs using the
back-propagation algorithm (learning rate 0.2, momentum
0.9). All 26 variables provided were used. Half of the
training data (Training 1) was used for the actual training,
while the remainder (Training 2) was used to stop training
and select the best architecture.

Table 3: Confusion matrix for testing data predictions

from FFNN model using all training data

Table 3 shows the confusion matrix for the network’s
predictions on the testing set. Those programs that were
correctly classified are shown as boxed entries on the
main diagonal. As can be seen the network has a high
classification rate of 81.1%. Authors two and three are
obviously distinct from all others, while the small amount
of data available for author five seems likely to be
responsible for all of those programs being misclassified.

Since this technique was the only one that required
splitting the training data, all other techniques were
developed using both training data sets (Training 1 and 2)
and just the first 50% (Training 1). The other modeling
techniques when tuned using both training data sets could
be expected to enjoy an advantage over the neural
network model in terms of the greater number, and thus
richness, of cases available. While in the second case the
neural network models should have an advantage since
they are tuned on the same data set whilst having their
generalizability encouraged by the use of the validation
set. Section 7.4 shows the performance of all models on
all (sub)sets of data.

7.2 Multiple Discriminant Analysis

The MDA was a stepwise MDA (Wilk’s lambda was used
for entry and exit of variables). Prior probabilities were
obtained from the data and within group covariance
matrices were used. As discussed in section 7.1 both sets
of training data were used as part of the model parameter
tuning since no model selection process was used.
Another model was developed using only the Training 1
data set (50% of the training data). See section 7.4 for
these results.

Table 4 shows the confusion matrix for the predictions
made on the with-held testing data. As with the neural
network model the performance accuracy is 81.1% when

using all training data. The patterns of confusion are
similar for authors four, six, and seven but rather different
for the other authors.

Table 4: Confusion matrix for testing data predictions

from MDA model using all training data

Table 5: Confusion matrix for testing data predictions

from CBR model using all training data

7.3 Case-Based Reasoning

The case-based reasoning model was developed using the
ANGEL algorithm, with 5 analogies and weighted means
for case aggregation. Tie resolution was also used. All
variables were normalized in order to maintain a
comparable scale.

All 26 variables were used, with two models developed –
one using only 50% of the training data (Training 1) and
another using all training data (Training 1 and 2). See
section 7.4 for a discussion of the performance of this
reduced-data model.

Table 5 shows the confusion matrix for the testing data
set. There is a considerably higher level of accuracy
compared to the neural network and discriminant analysis
models, with 88.0% accuracy achieved when using all
training data.

7.4 Comparison

Table 6 shows the results for all five models developed.
Note that the “training set” errors for the CBR models are
leave-one-out since the case to be predicted should
obviously not be in the training set. As can be seen the
results for the FFNN and MDA models are quite
remarkably almost identical (the FFNN and full-data
MDA are in fact identical). However, each of these
models made rather different patterns of confusion on all
data sets.

The best performing technique in all cases is case-
based reasoning. In terms of predictive performance on

the test data set, its predictions were almost 7% better
which appears to be a useful increase in performance.
Even with the reduced training data set, the case-based
reasoning model outperformed the neural network model
by 5.2%.

This is suspected to be a result of the fact that
programmers have more than one style of programming
leading to several multi-dimensional “clouds” of points.
Some sets of programs for a given programmer are
apparently within other programmer’s “clouds” of
metrics, preventing simple explicit classification
boundaries from properly classifying the systems.

Table 6: Results for discriminating models

8. CONCLUSIONS

The use of the proposed set of metrics for discriminating
between seven authors shows promising results,
especially when using the case-based reasoning
technique. All techniques however provided accuracy
between 81.1% and 88.0% on a holdout testing set would
be certainly encouraging for the software forensics field
as a whole.

It is tentatively suggested here that the nature of class
boundaries for forensic applications is more amenable to
modeling using case-based reasoning than partitioning
approaches. The idea of multiple clusters suggests that
other neural network architectures such as variants of
LVQ could be fruitfully applied here.

We are now comparing the performance of different sets
of forensic metrics, both structural and stylistic to
determine which are the most useful in certain
circumstances. Since stylistic metrics are easier to fake
than structural, the ability of the latter to discriminate
authorship is more useful.

Another area of interest is how each technique performs
given certain quantities of data. Whilst the CBR models
were better here it would seem likely that their
performance would suffer more from losing data when
compared to models using actual classification
boundaries.

ACKNOWLEDGMENTS

The authors would like to thank Grant MacLennan and
Philip J. Sallis for their help with an earlier version of the
paper.

REFERENCES

[1] A. Gray, P. Sallis, and S. MacDonell. Identified
(integrated dictionary-based extraction of non-
language-dependent token information for forensic
identification, examination, and discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. In Proceedings of
SE:E&P’98 (Software Engineering: Education and
Practice Conference), pages 252–259. IEEE
Computer Society Press, 1998.

[2] I. Krsul and E. H. Spafford. Authorship analysis:
Identifying the author of a program. Computers &
Security, 16(3):233–256, 1997.

[3] P. Sallis, A. Aakjaer, and S. MacDonell. Software
forensics: Old methods for a new science. In
Proceedings of SE:E&P’96 (Software Engineering:
Education and Practice), pages 367–371. IEEE
Computer Society Press, 1996.

[4] P. Sallis, S. MacDonell, G. MacLennan, A. Gray, and
R. Kilgour. Identified: Software authorship analysis
with case-based reasoning. In Proceedings of the
Addendum Session of the 1997 International
Conference on Neural Information Processing and
Intelligent Information Systems, pages 53–56, 1998.

[5] M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering, 23(11):736–743, 1997.

[6] E. H. Spafford and S. A. Weeber. Software forensics:
Can we track code to its authors? Computers &
Security, 12:585–595, 1993.

[7] G. Whale. Software metrics and plagiarism detection.
Journal of Systems and Software, 13:131–138, 1990.

	1. Introduction
	2. Applications of Software Forensics
	3. Settings for Using Software Forensics

