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Abstract 

Software forensics is here regarded as the particular field 
of inquiry that, by treating pieces of program source code 
as linguistically and stylistically analyzable entities, 
attempts to investigate various aspects of computer 
program authorship. These inquiries could be performed 
with any number of goals in mind, including those of 
identification, discrimination, and characterization of 
authors. In this paper we extract a set of 26 authorship-
related metrics from 351 source code programs, written 
by 7 different authors. The use of feed-forward neural 
network (FFNN), multiple discriminant analysis (MDA), 
and case-based reasoning (CBR) models for 
discriminating these programs are then investigated in 
terms of classification accuracy for the authors on both 
training and testing (holdout) samples. The first two 
techniques (FFNN and MDA) produce remarkably 
similar results, with the overall best results coming from 
the CBR models. All of the examined modeling techniques 
have prediction accuracy rates over 80%, supporting the 
claim that it is feasible to use such techniques for the task 
of discriminating program authors based on source-code 
measurements in a majority of cases. 
 
1. INTRODUCTION 

In a number of quite varied situations there is a desire, or 
even a requirement, to be able to investigate the nature of 
a computer program’s authorship. By this it is meant, that 
there is some question concerning the authorship of a 
series of programs or alternatively the characteristics of 
program authors [3]. While computer program source 
code is certainly much more formal and restrictive than 
spoken or written languages in terms of its grammar and 
expressiveness, computer programmers are still able to 
make use of quite large degrees of flexibility when 
writing a program to achieve a particular purpose. This 
flexibility includes such factors as:  

• the manner in which the task is achieved (the 
algorithm used to solve the problem),  

• the way that the source code is presented in terms 

of layout (spacing, indentation, bordering characters 
used to set off sections of code, standard headings, 
etc.), and  

• the stylistic manner in which the algorithm is 
implemented (the particular choice of program 
statements used where there is a choice, variable 
names, etc.).  

Other options that may also be available to the 
programmer include selecting the computer platform, 
programming language, compiler, and/or text editor to be 
used. These decisions may also allow the programmer 
some degree of personal freedom, and thus 
expressiveness. Many of the features of a computer 
program (algorithm, layout, style, and environment) can 
be quite specific to certain programmers or types of 
programmer. Ideally, such aspects in order to be useful 
for software authorship analysis have low within-
programmer variability, and high between-programmer 
variability. This is especially likely for particular 
combinations of features and unusual programming 
idioms that generally make up a programmer’s problem-
solving vocabulary. Therefore, it seems quite plausible to 
suggest that computer programs can contain some degree 
of information that provides evidence of the author’s 
identity and characteristics.  

The most widely known example of authorship analysis is 
plagiarism detection, usually in an academic setting, 
where students’ assignments can be compared to see if 
some are “suspiciously similar” [7]. The incidence of 
highly similar programs can provide suggestive evidence 
that one student’s code may have been derived from 
another student’s work. This particular area of research 
provided the origins of the ideas that now make up the 
field of software forensics—which is defined here as the 
study of program characteristics with the intention of 
identifying, examining, or discriminating between 
program authors [1].  

Software forensics also includes the areas of authorship 
characterization, as in psychological studies of the 
relationships between programmer attributes and their 
code and between programming conditions and code. The 



analysis of malicious code (such as computer viruses and 
Trojan horses) is another application area, although this 
generally involves much more subjective analysis [6].  

Other less common applications of software forensics 
include quality control (through coding standards for 
example, cyclomatic complexity or comment density), 
author tracking (for example, determining the author of 
code of unknown origin), change control (tracking the 
authorship of changes and quality control when making 
changes), and ownership disputes.  

While the idea of dissenting the structure and nature of 
programs to discern some information about the likely 
author or authors and/or their characteristics may appear 
somewhat esoteric, perhaps even unrealistic, it has been 
shown that such activities are feasible, at least under 
certain circumstances [2]. In fact many measurements 
may even be difficult for programmers to change [6]. An 
open question is how such models should be constructed 
to best represent the mappings between program features, 
authors, and the authors’ characteristics.  

In this paper the focus will be on the area of developing 
models that are capable of discriminating between several 
authors using source-code based measurements. The 
measurements that are preferred here are those that can be 
automatically extracted from source code by pattern 
matching algorithms since the volumes of data needed for 
these applications will generally surpass convenient 
human measurement. In some cases however, expert 
intervention may be necessary where measures cannot be 
usefully extracted in an automated way, for example 
using fuzzy logic categories to express the 
correspondence between comments and code behavior. 

 
2. APPLICATIONS OF SOFTWARE 

FORENSICS 

In this section some additional information about each of 
the four main applications of software forensics are 
provided, namely: author identification, author 
discrimination, author characterization, and author intent 
determination. The models developed later in the paper 
are concerned only with the first of these four 
applications, but it is useful to keep the others in mind as 
the same techniques can also be applied to these 
problems.  
 
2.1 Author identification  

The goal here is to determine the likelihood of a particular 
author having written some piece(s) of code, usually 
based on other code samples from that programmer. This 
can also involve having samples of code for several 
programmers and determining the likelihood of a new 
piece of code having been written by each programmer. 
This application area is very similar to, for example, the 
attempts to determine the authorship of the Shakespearean 
plays or certain biblical passages. An example of this 
applied to source code would be ascribing authorship of a 
new piece of code, such as a computer virus, to an author 
where the code matches the profile of other pieces of code 
written by this author.  

2.2 Authorship discrimination  

This is the task of deciding whether some pieces of code 
were written by a single author or by (some number of) 
different authors. This can possibly also include an 
estimate of the number of distinct authors involved in 
writing a single piece or all pieces of code. It is obviously 
necessary to distinguish between identifying multiple 
authors for a series of programs and co-authorship on a 
single program. This task involves the calculation of 
similarity between the two or more pieces of code and 
possibly some estimate of between-and within-subject 
variability. An example of this would be showing that 
different authors, without actually identifying the authors 
in question, probably wrote the two or more pieces of 
code.  
 
2.3 Author characterization  

This is based on determining some characteristics of the 
programmer of a code fragment, such as personality and 
educational background, based on their programming 
style. An example of this would be determining that a 
piece of code was most likely to have been written by 
someone with a particular educational background due to 
the programming style and techniques used.  
 
2.4 Author intent determination  

It may be possible to determine, in some cases, whether 
code that has had an undesired effect was written with 
deliberate malice, or was the result of an accidental error. 
Since the software development process is never error 
free and some errors can have catastrophic consequences, 
such questions can arise reasonably frequently. This can 
also be extended to check for negligence, where 
erroneous code is perhaps suspected to be much less 
rigorous than a programmer’s usual code. This is a much-
neglected aspect of source code authorship analysis with 
no other literature found that mentions its use. While this 
could be seen as the most difficult, and certainly the most 
subjective, of the applications it may also be one of the 
most crucial in practice. 

 
3. SETTINGS FOR USING SOFTWARE 

FORENSICS 

In order to further provide a context for the application of 
the modeling techniques to authorship identification, here 
a number of application areas are discussed as potential 
situations motivating the need for such an exercise, as 
well as possible applications of the other software 
forensics problems. 

  
3.1 Educational  
The educational setting of software forensics is generally 
concerned with plagiarism detection. A significant 
amount of literature has been produced detailing various 
schemes for detecting cases where programming 
assignments have been plagiarised, with or without the 



original author’s consent. Generally plagiarism detection 
is a combination of author identification (who really 
wrote the code), and author discrimination (did the same 
person write both pieces of code). One significant 
problem that emerges when using plagiarism detection is 
the effect of discouraging collaboration between students. 
Other issues such as student’s adopting tutors, lecturers, 
and/or textbook author’s styles are also problematic.  

 
3.2 Legal  
The use of software forensics for tracking down the 
authors of malicious code has been the second most 
emphasized application after plagiarism detection. Other 
issues such as the intent analysis of malicious code also 
appear under this heading.  

 
3.3 Industrial  

Within an industrial context there are fewer applications 
of software forensics, but cases would include identifying 
authors of code that needs to be maintained where this 
information is not otherwise recorded or may be incorrect, 
and checking for negligent programming.  
 
3.4 Psychological  

While the above areas are mostly practical, there are also 
several uses for software authorship analysis from a 
theoretical perspective. It is possible to use such metrics 
to examine the developmental process of programming 
skills, and to correlate individual characteristics to 
programming ones. 

 

4. MEASUREMENTS FOR SOFTWARE 
FORENSICS  

Expert opinion can, potentially, be given on the degrees 
of similarity and difference between code fragments, 
although this is likely to be a time-consuming exercise in 
many cases. Psychological analysis of code can also be 
performed, even as a simple matter of opinion. However, 
a more scientific approach may also be taken (and should 
be taken) since both quantitative and qualitative 
measurements can be made on computer program source 
code and object code. These measurements can be either 
automatically extracted by analysis tools (such as 
IDENTIFIED, discussed later in the paper), calculated by 
an expert, or arrived at by using some combination of 
these two methods. Some metrics can obviously only be 
calculated by an expert, such as the degree to which the 
comments in code match the actual behavior of that code. 
Here these measurements are referred to as metrics for 
reasons of tradition and include some borrowed and 
adapted from conventional software metrics and 
linguistics. A vast number of different metrics can be 
extracted from source code, although some are obviously 
more likely to be effective than others. 

 

 

5. TECHNIQUES FOR AUTHORSHIP 
DISCRIMINATION  

 
5.1 Neural Networks  

There are a vast number of neural network architectures 
and training algorithms contained within the literature. 
The most commonly used architecture for applications is 
that of a feed-forward neural network (FFNN), which is 
still generally trained using some modified form of the 
gradient-descent algorithm.  

The main issues when using this approach concern 
selecting the optimal architecture for the network and in 
stopping the training (usually by using data set splitting 
and stopping training when a validation data set error is 
minimized). The use of data set splitting can be seen as a 
disadvantage, since this reduces the amount of data 
available for the network to learn the relationships.  

More sophisticated approached that do not require hold-
out samples are not investigated here as they are likely to 
be less accessible to researchers in applied fields.  
 
5.2 Discriminant Analysis  

Multiple discriminant analysis (MDA) is a statistical 
technique that separates observations into two or more 
groups based on several orthogonal linear functions of the 
independent variables. The technique assumes a 
reasonable degree of multivariate normality, with logistic 
regression an alternative where this is not the case.  

A significant advantage of discriminant analysis as a 
technique is the easy availability of stepwise procedures 
for controlling the entry and removal of variables. By 
working with only those necessary variables we increase 
the chance of the model being able to generalize to new 
sets of data. In addition, the data collection costs can be 
reduced, sometimes significantly, by working with a 
smaller set of variables.  

Another advantage of the technique is that it provides 
probability information for the predictions, both in terms 
of the conditional probability of an observation belonging 
to a particular class given its classification and the 
conditional probability that a particular observation will 
be classified as belonging to a particular class given its 
real class. In a legal setting such information would 
certainly be required if software forensic results were to 
be accepted as evidence.  
 
5.3 Case-Based Reasoning  

Case-based reasoning (CBR) is a method for modeling 
the relationship between a series of independent variables 
and one or more dependent variables by storing the cases 
(observations) in a database. When presented with a new 
observation, the cases that are similar in terms of the 
independent variables are retrieved and the dependent 
variables calculated from them using some form of 
“averaging” process.  

CBR has the advantages of not requiring any 



distributional assumptions per se but does require the 
specification of a distance metric (for finding the closest 
exemplars to the presented case and calculating their 
similarity). Scaling (if any is used) when measuring 
similarity can be based on ranges or standardized values if 
some distributional assumptions are made.  

The other aspect that requires some thought is the 
selection of a method for combining the cases. Again, a 
simple weighted average approach can be used once the 
distance metric has been decided on, with perhaps some 
power of distance used to increase the influence of closer 
observations and reduce the influence of outliers. In most 
implementations a threshold of similarity or a limit of 
“related” cases is used to prevent all stored cases 
influencing all predictions.  

One particular case-based reasoning system that has been 
previously used for software metric research is the 
ANGEL system [5]. ANGEL has also been implemented 
as part of the IDENTIFIED system that was used in this 
paper for the measurement extraction, and CBR and 
FFNN models [1, 4]. The ANGEL system also allows for 
the automatic selection of relevant variables (at some 
considerable computational cost), although here no 
attempt will be made to select any optimal subset of 
variables when using this technique. 

 

6. AUTHORSHIP DATA SET  

The data that we have chosen to illustrate the author 
discrimination problem exhibits many of the 
characteristics that present some of the most perplexing 
difficulties found when undertaking such analyses. These 
difficulties include small amounts of data, unequal 
amounts of data from different authors, and code from 
some authors varying over time and application domain.  

The data set used here contains programs from seven 
authors with widely varying amounts of data and from 
three basic source types. 26 measures were extracted for 
each program using the IDENTIFIED tool (Table 1).  

All programs were written in standard C++. The source 
code for authors one, two, and three are from 
programming books; authors four, five, and six are 
experienced commercial programmers; and author 
seven’s code is from examples provided with a popular 
C++ compiler. The choice of program sources may appear 
unusual, but it was felt that the usual source of student 
programs was no more realistic.  

For the purposes of testing the various models to be 
developed in sections 7.1, 7.2, and7.3, the available data 
was split (as shown in Table 2) with stratification (as 
equally as possible) across authors. The split was 
approximately 25% in the Training 1 set, 25% in the 
Training 2 set, and 50% in the Testing set.  

In some cases, especially for authors 4 and 5, very little 
data is available, but this can be seen as a useful test of a 
situation certain to arise in practice. The only concern 
here is that the prior probabilities from the Training set 
match the posterior probabilities in the Testing set.  

In a simulation-based study the use of resampling would 
appear a better choice to assess the techniques. However 
since this study involves only one split of the data set, the 
use of stratification seems preferable to the increased 
effects of chance bought on by resampling. 

 

Table 1: The 26 variables used  

 

Table 2: Data set splits  

 
7. RESULTS  

The results for each of the three modeling techniques are 
now discussed in turn. In each case confusion matrices 
are provided to emphasize that different techniques may 
give the same or similar overall performance in very 
different ways.  
 
7.1 Neural Network  

The ultimately selected FFNN was a 26-9-7 network, with 
the logistic transfer for both hidden and output layers. The 



best network found was trained for 250 epochs using the 
back-propagation algorithm (learning rate 0.2, momentum 
0.9). All 26 variables provided were used. Half of the 
training data (Training 1) was used for the actual training, 
while the remainder (Training 2) was used to stop training 
and select the best architecture.  

 
Table 3: Confusion matrix for testing data predictions 

from FFNN model using all training data 

Table 3 shows the confusion matrix for the network’s 
predictions on the testing set. Those programs that were 
correctly classified are shown as boxed entries on the 
main diagonal. As can be seen the network has a high 
classification rate of 81.1%. Authors two and three are 
obviously distinct from all others, while the small amount 
of data available for author five seems likely to be 
responsible for all of those programs being misclassified.  

Since this technique was the only one that required 
splitting the training data, all other techniques were 
developed using both training data sets (Training 1 and 2) 
and just the first 50% (Training 1). The other modeling 
techniques when tuned using both training data sets could 
be expected to enjoy an advantage over the neural 
network model in terms of the greater number, and thus 
richness, of cases available. While in the second case the 
neural network models should have an advantage since 
they are tuned on the same data set whilst having their 
generalizability encouraged by the use of the validation 
set. Section 7.4 shows the performance of all models on 
all (sub)sets of data. 

 
7.2 Multiple Discriminant Analysis  

The MDA was a stepwise MDA (Wilk’s lambda was used 
for entry and exit of variables). Prior probabilities were 
obtained from the data and within group covariance 
matrices were used. As discussed in section 7.1 both sets 
of training data were used as part of the model parameter 
tuning since no model selection process was used. 
Another model was developed using only the Training 1 
data set (50% of the training data). See section 7.4 for 
these results. 

Table 4 shows the confusion matrix for the predictions 
made on the with-held testing data. As with the neural 
network model the performance accuracy is 81.1% when 

using all training data. The patterns of confusion are 
similar for authors four, six, and seven but rather different 
for the other authors. 

 
Table 4: Confusion matrix for testing data predictions 

from MDA model using all training data 

 

 
Table 5: Confusion matrix for testing data predictions 

from CBR model using all training data 

 
7.3 Case-Based Reasoning  

The case-based reasoning model was developed using the 
ANGEL algorithm, with 5 analogies and weighted means 
for case aggregation. Tie resolution was also used. All 
variables were normalized in order to maintain a 
comparable scale.  

All 26 variables were used, with two models developed – 
one using only 50% of the training data (Training 1) and 
another using all training data (Training 1 and 2). See 
section 7.4 for a discussion of the performance of this 
reduced-data model.  

Table 5 shows the confusion matrix for the testing data 
set. There is a considerably higher level of accuracy 
compared to the neural network and discriminant analysis 
models, with 88.0% accuracy achieved when using all 
training data. 



7.4 Comparison  

Table 6 shows the results for all five models developed. 
Note that the “training set” errors for the CBR models are 
leave-one-out since the case to be predicted should 
obviously not be in the training set. As can be seen the 
results for the FFNN and MDA models are quite 
remarkably almost identical (the FFNN and full-data 
MDA are in fact identical). However, each of these 
models made rather different patterns of confusion on all 
data sets.  

The best performing technique in all cases is case-
based reasoning. In terms of predictive performance on 

the test data set, its predictions were almost 7% better 
which appears to be a useful increase in performance. 
Even with the reduced training data set, the case-based 
reasoning model outperformed the neural network model 
by 5.2%.  

This is suspected to be a result of the fact that 
programmers have more than one style of programming 
leading to several multi-dimensional “clouds” of points. 
Some sets of programs for a given programmer are 
apparently within other programmer’s “clouds” of 
metrics, preventing simple explicit classification 
boundaries from properly classifying the systems. 

 

 

Table 6: Results for discriminating models 

8. CONCLUSIONS  

The use of the proposed set of metrics for discriminating 
between seven authors shows promising results, 
especially when using the case-based reasoning 
technique. All techniques however provided accuracy 
between 81.1% and 88.0% on a holdout testing set would 
be certainly encouraging for the software forensics field 
as a whole.  

It is tentatively suggested here that the nature of class 
boundaries for forensic applications is more amenable to 
modeling using case-based reasoning than partitioning 
approaches. The idea of multiple clusters suggests that 
other neural network architectures such as variants of 
LVQ could be fruitfully applied here.  

We are now comparing the performance of different sets 
of forensic metrics, both structural and stylistic to 
determine which are the most useful in certain 
circumstances. Since stylistic metrics are easier to fake 
than structural, the ability of the latter to discriminate 
authorship is more useful.  

Another area of interest is how each technique performs 
given certain quantities of data. Whilst the CBR models 
were better here it would seem likely that their 
performance would suffer more from losing data when 
compared to models using actual classification 
boundaries.  
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