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Abstract—An increasing number of utilities participating in
the energy market require short term (i.e. up to 48 hours)
power forecasts for renewable generation in order to optimize
technical and financial performances. As a result, a large number
of forecast providers now operate in the marketplace, each using
different methods and offering a wide range of services. This
paper assesses five different day-ahead wind power forecasts
generated by various service providers currently operating in
the market, and compares their performance against the state-
of-the-art of short-term wind power forecasting. The work focuses
on how power curve estimations can introduce systematic errors
that affect overall forecast performance. The results of the study
highlight the importance of: accurately modelling the wind speed-
to-power output relationships at higher wind speeds; taking
account of power curve trends when training models; and the
need to incorporate long-term (months to years) power curve
variability into the forecast updating process.

I. INTRODUCTION

Numerous wind power forecast providers currently operate
in the European marketplace, each of them offering different
forecast products. However, there is relatively little literature
reporting the extent to which these accurately predict power
output, where error arises in the forecasting process and to
what extent industry best practice reflects the research state-of-
the-art. This study evaluates the performance of five different
day-ahead wind power forecasts generated by various service
providers.

The main error in a short-term forecasting model generally
stems from the Numerical Weather Prediction (NWP) com-
ponent of the forecasting process and, consequently, recent
research has concentrated on improving the accuracy of these
models. However, the conversion of meteorological data to
power can also significantly influence overall forecast perfor-
mance. This study focuses on how the estimation of the power
curve by commercial forecasters can affect the uncertainty
already present in the wind speed forecast.

The remainder of the paper is presented as follows. Sec-
tion II reviews the state-of-the-art of short-term wind power
forecasting and the methods used for modelling wind farm
power production. Section III describes the data and the

case studies investigated. The methodology is described in
Section IV. Results are presented in Section V and discussed
in Section VI. Conclusions are finally presented in Section VII.

II. LITERATURE REVIEW

In the recent years, a number of studies have assessed
the performances of short-term wind power forecasts that are
representative of the state-of-the-art. In [1], several models
were tested on a number of test cases having different ter-
rain complexity; the paper presents guidelines on assessing
model performance and gives an overview on what power
forecast performances can be expected as a function of site
characteristics. For example, results for wind farms located
in complex terrain show a stable behaviour of the normalised
mean absolute error (NMAE, later defined in Section IV-A),
with little increase of the errors with forecast horizon; NMAE
values are lower for wind farms located in flat terrain and there
is very low dispersion of the values for different prediction
models.

A comprehensive picture of the state-of-the-art of short-term
wind power forecasting is presented in [2]. The article presents
the results of a benchmarking exercise: a range of modelling
approaches was evaluated using two different test cases over
a time horizon ranging from 0 to 72 hours and 0 to 48 hours.
The results provide recent reference values that can be used to
compare the performance of current wind power forecasts. For
the 0-72 hour ahead forecast, the values of the NMAE over the
whole forecast ranged between 9.0% and 20.8%. For the 0-48
hour ahead forecast, the NMAE values range between 9.5%
and 22.8%.

The prediction horizons for day-ahead wind power forecasts
are driven by electricity market and system needs and usually
vary from 12 to 36 hours. Within this time horizon the
best performances are usually obtained by prediction models
involving the use of NWP forecasts [3]. Typically in these
cases, the generation of a wind power forecast for a wind
farm consists of (at least) the following two steps:



• wind speed and direction forecast data are generated
using a NWP model; and

• these are converted to electric power forecasts using
either a deterministic or probabilistic power curve func-
tion [4], or power model.

Different types of power models can be employed to convert
wind speed to power for a wind farm [5]. The basic model
is based on the turbine manufacturer's power curve multiplied
by the number of turbines. Advanced models may involve a
number of approaches including: the correction of air density
using temperature and pressure data from the NWP forecast;
the use of software for site specific flow/wake modelling
(in the absence of historical measured data); or the use of
historical measured data to derive an empirical power model
(the preferred option).

III. CASE STUDIES

Detailed data were obtained for two onshore wind farms in
norther Europe with nominal installed capacities of 30 MW
(Wind Farm 1) and 5 MW (Wind Farm 2). Both are located in
complex terrain and are subject to similar climatic conditions.

Models were trained by commercial forecast providers using
up to four years of output data which were then tested over a
period of four months in 2015. Each forecast (A, B, C, D, and
E) comprised a one day-ahead deterministic forecast of power
output for each wind farm at half-hourly time intervals. The
performances of the wind and power forecasts were assessed
against wind speeds and power outputs measured at each of
the sites over the test period, as described in Section IV.

IV. METHODOLOGY

A. Error Measures

In this study, forecast error is defined as: ei = ŷi−yi, where
ŷi is the forecast quantity, and yi is the measured quantity.

The performances of the power forecasts were assessed by
employing the widely-used verification framework described
in [6]. The numerical descriptive measures employed are:

• Bias: Bias = 1
N

N∑
i=1

ei.

• Mean Absolute Error: MAE = 1
N

N∑
i=1

|ei|.

• Root Mean Square Error: RMSE =

√
1
N

N∑
i=1

e2i .

They were computed over the whole evaluation period, and
were normalised by wind farm installed capacity, Pn.

The same error measures were also characterised by wind
speed, e.g. the bias of power forecast at wind speed vk is:

Bias(vk) =

N∑
i=1

P̂ (vi)− P (vi)

N
| vi ∈ [vk, vk+1[ (1)

B. Power Modelling

We assume that forecasters used historical (i.e. from the
training data set) measured power production data to derive
a site-specific power model which they used to convert their
wind speed forecast into power. To visualise the relationship
between wind speed and power output (either measured or
forecast), we grouped power values into 1 m/s wind speed
bins, so that {P (vi) ∈ Ak | vk−0.5 ≤ vi < vk+0.5}; we then
plotted each set Ak against the wind speed vk using a box-and-
whisker plot. An example of such a graph is shown in Fig. 1:
here, the boxplots of actual generation are plotted together
with the measured values and the manufacturer's power curve.
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Fig. 1. Box-and-whisker plots (blue) of actual generation during the test
period for Wind Farm 1

The resulting graph can then be interpreted as an empirical
probabilistic power curve for the site. In fact, one can analyse
how a forecaster converted the predicted wind speed into
power - i.e. estimate the forecaster's power curve model - by
building the same type of graph with forecast values. This also
allows us to compare the forecaster's model with the actual
distribution of power. Results of this analysis is discussed in
Section V.

V. RESULTS

A. Forecast Assessment

Both wind farms showed a high variability of possible
power outputs for a single wind speed value, while actual
power outputs often differed from those predicted by the
manufacturer's power curve, as Fig. 1 clearly shows. The same
figure interestingly shows that Wind Farm 1 never achieves
nominal power output; this was also consistently observed
during the training period.

Scatter plots of the five forecasts against measured values
for Wind Farm 1 are presented in Fig. 2, which show the
degree of correlation between forecast and measured power
values. It can be observed that the forecasts never predicted
power outputs higher than 95% of Pn. Since the providers
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Fig. 2. Scatter plots of power forecasts against measured values for Wind
Farm 1

were not updated with real data during the trial period, this
means that they did use historical measured data to train
their power models, in accordance with the assumption in
Section IV-B.

The statistical parameters presented in Section IV-A were
computed for each forecaster over the test period. Results for
both wind farms are presented in Table I.

TABLE I
ERROR MEASURES NORMALISED AS PERCENTAGE OF WIND FARM

NAMEPLATE CAPACITY (Pn).

Wind Farm 1 A B C D E

NBIAS 0.5 0.4 − 0.2 0.6 7.3
MAE 10.4 10.6 13.7 12.5 16.3
RMSE 14.6 15.4 20.0 18.1 23.3

Wind Farm 2 A B C D E

NBIAS − 2.7 4.3 4.3 − 9.5 − 9.4
MAE 14.5 11.8 13.2 17.7 18.5
RMSE 20.7 17.1 19.4 25.8 27.0

B. Power Modelling

In Fig. 3, the power curve model adopted by provider B at
Wind Farm 1 is compared to the actual distribution of power
during the test period. The boxplots are constructed according
to the procedure described in Section IV-B.
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Fig. 3. Box-and-whisker plots of forecast B and of measured generation for
Wind Farm 1

From the figure, it can be observed that forecaster B:

• achieved good power conversion accuracies at low wind
speeds (v ≤ 8 m/s);

• slightly underestimated power in the range 9 m/s ≤
v ≤ 11m/s ; and

• overestimated power at high wind speeds (v ≥ 15m/s).

Fig. 4 shows the bias of the wind speed and power fore-
casts generated by B, grouped into wind speed bins (see
Section IV-A). While the wind speed forecast is, in general,
negatively biased, the power forecast bias shows a different
pattern, going from negative to positive at v = 14 m/s and
remaining positive at higher wind speeds. The reason for this
behaviour must be a significant positive bias introduced by B
in the conversion of high wind speed into power.
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Fig. 4. Bias of wind speed (top) and power forecasts (bottom) generated by
provider B for Wind Farm 1

Similar results are observable in the other forecasts, as
shown in Fig. 5. Forecast E is, however, an exception in
that it overestimates power generation at almost every wind
speed. Nonetheless, the pattern of results is similar to the other
forecasts, with the bias decreasing in the central region and
sharply increasing at v = 14 m/s.
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Fig. 5. Bias of power forecasts for Wind Farm 1

Results for Wind Farm 2 exhibited similar patterns to those
of Wind Farm 1 described above, with systematic errors in the
power curve model notably affecting power forecasting error.

VI. DISCUSSION

From the results in Section V-A, one can see that it is
not always the same forecast that performs best across the
two sites. Also the rankings of the models change, with
some forecasts showing a significant variation in performance
depending on the wind farm. The results obtained by the best
forecasters across the two wind farms are generally in line with

the state-of-the-art described in Section II. In [1], the NMAE
values of the two wind farms located in complex terrain ranged
from approximately 10% to 16% for a 24 hours horizon. In
the current study, where the time horizon varies approximately
from 12 to 36 hours, NMAE ranges from 10.4% to 18.5%.

Forecasters used the historical measured data to train their
power curve models; nevertheless, their estimation of the
power curve was systematically wrong at high wind speeds.
In fact, the power output at high wind speeds showed a grad-
ual reduction over the four-year training period. Forecasters
however did not capture this variation of the power curve
performance over time.

The lack of feedback from the wind farm owners during the
trial period was another factor that prevented the forecasters
from identifying the observed systematic error at high wind
speeds and, thus, from re-training and updating their models.

VII. CONCLUSIONS

This analysis shows that inaccurate power curve estimation
can have a significant effect on wind farm power forecasting
error, most notably in higher wind speed ranges. In the
case studies considered, we observed that the forecasters did
generate empirical site-specific power curves using the training
data set provided by the wind farm owners. However, their
estimation showed noticeable systematic errors, in particular
in the rated power region (vrated ≤ v ≤ vcut−off ).

Long-term data (four years) for the case studies indicates
that power curve performances vary over time. However,
wind power forecast providers did not appear to capture the
observed time-dependent negative power conversion trends
which were apparent from the training data set, with a resulting
systematic overestimation of power output at higher wind
speeds.

The results of this paper indicate that industry best practice
can be improved with regard to the 1) modelling site-specific
power conversion for higher wind speeds; and 2) extracting
wind power conversion trends from training data. Moreover,
it highlights the critical importance of continuous updating of
wind farm power output curves.
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