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Abstract 

Crosstalk resistant adaptive noise cancellation (CTRANC) is a method of separat-
ing convolutively mixed sources where little a priori  information is known about 
the system. Possible areas of application for such an algorithm include speech sig-
nal processing, in telecommunications, and in the biomedical industry. In this pa-
per we propose a novel adaptation to the traditional CTRANC which increases 
computational efficiency when the number of sources fits the requirement of 

2nL   where n  and 1n  . Preliminary results also show a modest im-
provement in separation performance when comparing it to the multiple-input 
multiple-output method proposed by Mei and Yin (2004). 

1 Introduction 

The blind source separation problem is the problem of trying to identify the indi-
vidual sources with no a priori knowledge of the sources or the mixing system. 
Normally, all that can actually be acquired is different mixtures of the sources us-
ing multiple sensors. If only interested in the unmixed signals, this crosstalk has a 
detrimental effect on the usefulness of the acquired signal, and if significant 
enough, may render the raw signal totally unusable.  

A real-life example of blind source separation is what is known as the “cocktail 
party problem”. Consider the case where there is a room of people, all of whom 
are talking simultaneously; the human brain is able to adequately extract one per-
son’s speech from the rest. If an algorithm can be found to replicate these results, 
it would provide a very useful tool in the area of automatic speech recognition, 
which in turn could be used for speech control.  



2   Jonathan Harris, Tom Moir, and Fakhrul Alam 

The application of such an algorithm need not be restricted solely to audio ap-
plications. In the medical world it could be used to isolate signals for electrocardi-
ograms (ECGs) or electromyograms (EMGs) (Zhang and Cichocki 2000). It could 
also be used in telecommunications to reduce the crosstalk created by multiple 
transmitters (Pedersen et al. 2007). Another less obvious application for blind 
source separation is to separate images that have been mixed (Amari and Cichocki 
1998), though this does not apply to CTRANCs. 

One trivial way of solving this problem is to use a Widrow-Hoff least mean-
squares (LMS) filter and an approximation of the noise signal to remove the noise 
from the mixture. However, this has the fundamental flaw that the noise signal has 
to be relatively signal-free. While there may be situations in which acquiring such 
a noise approximation is the quite plausible (for example, in a jet cockpit, where 
the engine noise can be obtained with negligible speech crosstalk), in the majority 
of everyday situations this assumption cannot be justified. 

To overcome this problem, Zinser et al. (1985) proposed a cross-talk resistant 
adaptive noise canceller. The basic premise was that cross-coupling two LMS fil-
ters could result in an adaptive noise canceller that was not susceptible to crosstalk 
from the desired signal in the noise estimate. 

In this paper, we propose a novel adaptation to the cross-talk resistant noise 
canceller that utilizes vector-LMS to increase the computational efficiency of the 
algorithm when dealing with 2k  input signals, where 1k  . We then show that 
the proposed algorithm actually slightly outperforms the multiple-input multiple-
output (MIMO) cross-talk resistant adaptive noise canceller proposed by Mei and 
Yin (2004) in terms of input-output signal-to-noise ratios with while reducing 
computational complexity. 

This paper is organized as follows. In section 2, the background information of 
all of the components required for the development of a CTRANC based of vec-
tor-LMS are discussed. Section 3 shows the derivation of the novel algorithm, and 
compares its computational complexity to the CTRANC proposed by Mei and Yin 
(2004). The experimental set-up and results are discussed in section 4, and the pa-
per is then concluded in section 5. 

2 Background Information  

The Mixing System 

We will first consider the case of a two-input, two-output (TITO) system.  In ma-
trix form this is 

       T tt tx G S  (1) 

where       1 2
,

T
t x t x tx , the superscript T denotes the transpose operator,  
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Fig. 1. The simplified mixing system 
 
t  denotes the time index, 

       0 1 1 Tnt G t G t G t   G  

is the mixing matrix with n  taps (the superscript number indicates the tap index), 
and 
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However, because we are more interested in the separation of the signals rather 
than the deconvolution of them, we take the assumption that the channels between 
each source and the closest microphone are simply the Kronecker delta function. 
This simplifies the problem because it means that we only have to account for two 
unknown filters rather than four. Fig. 1 shows the simplified mixing system.  

On the other hand, this means that at best, we will separate the signals only up 
to filtered versions of the original. In order to find the original unfiltered versions 
of the sources, blind dereverberation is needed. This is a very difficult problem 
when only given one instance of the filtered speech; temporal whitening is not 
recommended since pure speech is naturally temporally correlated (Douglas 
2003), and temporal whitening would make the speech sound unnatural. On the 
other hand, temporal decorrelation may have its uses in applications where listen-
ing to the signal is not needed - e.g. automatic speech recognition. 
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Fig. 2. The separating system 

The Cross-talk Resistant Adaptive Noise Canceller  

Zinser et al. proposes an adaptation to the LMS filter in order to make it more resi-
lient to cross-talk. Rather than feeding the noise estimate directly into the LMS fil-
ter as a reference, he describes how a second LMS filter can be used to remove 
any of the crosstalk from the noise estimate, resulting in a better noise approxima-
tion (Zinser et al. 1985). Fig. 2 shows a block diagram of the backward-separation 
system. It can be seen that as 

12
Ĥ  and 

21
Ĥ  converge to 

12
H  and 

21
H  respectively, 

1
y  and 

2
y  will converge to 

1
s  and 

2
s  respectively. Note that permutation of the 

order of inputs to outputs cannot occur. This permutation occurs where there is no 
guarantee that any specific source will be mapped to a specific output. The inabili-
ty to permute differentiates the CTRANC from other methods of blind separation 
(such as independent component analysis (Comon 1995)), which is based purely 
on the independence of the outputs. However, this is based on the assumption that 
each microphone is the closest microphone to a unique source. 

Mei and Yin expand on this idea to derive the following simplified equation 

updates for the filters 12Ĥ  and 21Ĥ  (Mei and Yin 2004). 
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where 1  and 2  are the positive learning rates,  1y t  and  2y t  are the esti-

mates of the separated signals at time t , and 
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Vector-LMS 

While ordinary LMS will find the transversal filter weights when given both the 
input and output of a filter, vector-LMS will find the mixing system given the in-
puts and outputs of the mixing system. For example, if we applied vector-LMS to 
two-input two-output system shown in equation (1), the matrix-polynomial of the 
filter would converge to G . Batra and Barry show the derivation of the vector 
LMS algorithm 

          1
T

t t t t  G G S e  

where   tG  is the estimate at time t  of the mixing polynomial matrix G ,   is 

the step size,        , 1 , ,
TT T Tt t t t n     S s s s  is a vector of 

length 2n  of the inputs where n is the filter order, and  te is a length-2 vector 

of the errors between the desired filter output x  and its actual output x  where 
 Tx G S   (Batra and Barry 1995). 

In this paper, we develop a crosstalk resistant adaptive noise canceller that uti-
lizes vector-LMS to obtain a multibranched-recursive structure, creating a more 
modular algorithm with increased computational efficiency. 

3 The Cross-coupled Vector-LMS 

In order to show the working of the CTRANC based on vector-LMS, we will con-
sider the situation of four inputs and four outputs. In Fig. 3 we have a matrix poly-
nomial representation of the mixing system, where  1 1 2

,
T

s ss    and 

 2 3 4
,

T
s ss    are the four inputs multiplexed into two vectors,  1 1 2

,
T

x xx  

and  2 3 4
,

T
x xx  are the four outputs multiplexed into two vectors, and 11G , 

12G , 21G , and 22G  are all mixing polynomial matrices representing the entire 

mixing system. Note that these should not be confused with their scalar counter-
parts. Using the same reasoning as with the ordinary CTRANC, we derive the fol-

lowing update equations for the separating polynomial matrices 12H  and  21H . 
         
         
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1

21

1 1

1 1
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where 1  and 2  are convergence weights, 1y  and 2y  are the length-2 output  
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Fig. 3. The four input mixing system 
 
  
vectors  1 2,y y  and  3 4,y y  respectively, and the length- 2n  vectors 1Y  

and 2Y  are defined by 
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Essentially what this algorithm will do is separate a system of four mixed 
sources into two systems of two mixed sources. One can then apply the algorithm 
from an ordinary CTRANC to separate each of the sources into approximations of 
the original individual signals. 
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Table 1. Multiplication operations required. 
 

Table 2. Addition/subtraction operations required. 

Computational Efficiency 

 
Mei and Yin (2004) proposed an adaptation to the TITO CTRANC that extended 
it for use with more than two input signals. This was simply an extension of the 
two-channel case. For example, with three sources each input needed two LMS 
filters removing the crosstalk from the other two channels. Thus the computational 
complexity of their algorithm was equivalent to  1L L   LMS algorithms. The 

multibranched recursive approach that we propose is more efficient under certain 
conditions as will now be shown. 

We will now consider the computational requirements for the proposed algo-
rithm. With 2kL   inputs, it requires two 12k -vector LMS algorithms, four 

22k -vector LMS algorithms, etc. The number of multiplication and addi-
tion/subtraction operations for each vector LMS algorithm is given by the follow-
ing equations. 

 
 
 

2

2

2 1 multiplications

1 additions/subtractions

n M M

n M M

 
 

 

where n  is the filter size and M is the size of the input/output vectors. These eq-
uations also work for scalar LMS, when 1M  . 

Another advantage in the proposed method is that its modular structure allows 
the removal of portions that may be unnecessary. For example, in an eight-input 
system, if only one source needs to be extracted, and it is known which output 
channel that source maps to, then six scalar LMS and two 2-vector LMS algo-
rithms can be discarded. This allows for further computational savings.  

Tables 1 and 2 show the multiplication and addition/subtraction requirements 
for 4, 8, and 16 input systems for the cases where all sources need to be extracted, 

Number of Inputs Proposed Method Mei and Yin Method 
 Separate all Extract one  
4 24 32n   20 26n   24 36n   
8 112 136n   84 98n   112 168n   
16 480 544n   340 370n   480 720n   

Number of Inputs Proposed Method Mei and Yin Method 
 To separate all To extract one  
4 12 20n   10 16n   12 24n   
8 56 80n   42 56n   56 112n   
16 240 304n   170 200n   240 480n   
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and when only one needs to be extracted. These results show that the current me-
thod is more computationally efficient than that proposed by Mei and Yin for all 
given cases. 

4 Separation Performance 

We conducted a simple experiment to discover the relative separation of the 
proposed method to the method in (Mei and Yin 2004). 

Experimental Procedure  

The experiment was set up as follows: four microphones were placed as four 
corners of a 0.2m0.2m square near the middle of a 4m7m room furnished with 
a lounge suite, a piano and a dining room suite. There were three noise sources, all 
samples of a car assembly line from the file labeled ‘factory floor noise 2’ from 
the NOISEX database. The speech was created by using a loudspeaker playing the 
speech sample in the package ‘Lunatick-20080326–cc.tgz’ from the VoxForge 
speech corpus. The algorithm was implemented using NI LabVIEW. 
 

Using the described set-up, we used the proposed algorithm to reduce the noise 
level. Each filter had 1000 tap-weights. We chose this number because increasing 
the number of tap weights beyond 1000 increased computational complexity with 
a negligible increase in SNR, while decreasing the number of tap-weights adverse-
ly affected the results. Because we do not have the power of the desired signal by 
itself, to calculate the SNR, we net to use the following formula  

 1010 log SN N

N

P P
SNR

P

 
  

 
 (2) 

where SNP  is the combined power of the speech with the noise and NP  is the 

power of the noise. This is based on the assumption that the noise and the speech 
are statistically independent. 

Results 

Using the formula for calculating signal-to-noise ratios given in equation (2), we 
obtained the results as shown in Table 3. In an informal listening test, we also 
found that the speech was more comprehensible in the separated signals than in 
the mixed signals. 
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 Input SNR Output SNR 
Proposed Method 7.7 dB 14.2 dB 
Mei and Yin Method 7.7 dB 13.9 dB 

Table 3. Increases in SNR 
 
There is a modest gain in the SNR for the proposed method when comparing it 

to the method described by Mei and Yin. This indicates that the proposed method 
can perform separation at least as well as the method proposed by Mei and Yin, 
while saving in computational complexity. 

5 Conclusion 

One solution to the blind source problem is to use a cross-talk resistant noise can-
celler to separate the signals. This paper describes an adaptation to the CTRANC 
algorithm to increase its computational efficiency. Experimental data shows that 
there is a modest increase in performance due to these adaptations. It also has the 
advantage that it is potentially even more computationally efficient if there is only 
one desired source, and it is known which channel it will be separated to. In future 
studies we propose to incorporate this method with an automatic speech recogni-
tion system, and evaluate its performance in that capacity. 
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