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OSCILLATION REVISITED

GERALD BEER AND JILING CAO

Dédié à Michel Théra pour son soixante-dixième anniversaire

Abstract. In previous work by Beer and Levi [8, 9], the authors studied the
oscillation Ω(f, A) of a function f between metric spaces 〈X, d〉 and 〈Y, ρ〉 at
a nonempty subset A of X, defined so that when A = {x}, we get Ω(f, {x}) =
ω(f, x), where ω(f, x) denotes the classical notion of oscillation of f at the
point x ∈ X. The main purpose of this article is to formulate a general joint
continuity result for (f, A) 7→ Ω(f, A) valid for continuous functions.

1. Introduction

Let 〈X, d〉 and 〈Y, ρ〉 be two metric spaces, each with at least two points, and
let Sd(x, ε) denote the open d-ball of radius ε about x ∈ X . Suppose that f is a
function from X to Y and x ∈ X is arbitrary. Put

ωn(f, x) := diamρ f

(
Sd

(
x,

1

n

))
(n ∈ N),

noting that the diameter of the image of the ball in the target space Y could be
infinite. In any case, for each positive integer n ∈ N,

ωn(f, x) ≥ ωn+1(f, x),

so that

limn→∞ ωn(f, x) = infn∈N ωn(f, x)

is an extended nonnegative real number that is called the oscillation of f at x and
is denoted by ω(f, x) (see, e.g., [20, p. 78]). Some basic well-known facts about
oscillation are the following:

(1.1) ω(f, x) = 0 if and only if f is continuous at x;
(1.2) x 7→ ω(f, x) is upper semicontinuous;
(1.3) f is globally uniformly continuous if and only if 〈ωn(f, ·)〉 converges uni-

formly to the zero function on X .
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An oscillation function ω(f, ·) is thus a nonnegative extended real-valued upper
semicontinuous function that must take on the value zero at each isolated point
of the space, as each function is automatically continuous at isolated points. Con-
versely, a function g with these properties can be shown to be an isolation function
for some Borel real-valued function defined on the space, as shown only fairly re-
cently by Ewert and Ponomarev [17, Theorem 4].

One way to define the oscillation of a function f from X to Y at a nonempty
subset A of X was proposed by Beer and Levi [8, 9]. Consistent with our notation
for open balls, put

Sd(A, ε) :=
⋃

a∈A

Sd(a, ε);

this union is often called the ε-enlargement of the set A, refer to [2]. Then for each
n ∈ N, we put

Ωn(f,A) := sup

{
ρ(f(x), f(w)) : x,w ∈ Sd

(
A,

1

n

)
and d(x,w) <

1

n

}
,

and call

Ω(f,A) := lim
n→∞

Ωn(f,A) = inf
n∈N

Ωn(f,A)

the oscillation of f at A. Easily, if A = {x}, then Ω(f, {x}) = ω(f, x).
Concerning the oscillation Ω(f,A), one may ask the following question: What are

the counterparts of properties (1.1) - (1.3)? First of all, note that neither continuity
of f on X nor uniform continuity of f restricted to A ensures that Ω(f,A) is zero
or even finite: consider f : [0,∞)× [0,∞) → R defined by f(x, y) = xy, where

A = {(x, y) : x = 0 or y = 0}.

However, if A is compact and f is globally continuous, then the standard proof
of the uniform continuity of f restricted to A shows that Ω(f,A) = 0. More
precisely, each nonempty subset A on which each globally continuous function on
X has oscillation zero at A has this characteristic property [8, Theorem 5.2]: each
sequence 〈an〉 in A along which limn→∞ d(an, X−{an}) = 0 must cluster. A subset
that exhibits this property is called a UC-subset ; trivially, each relatively compact
subset is a UC-subset. If X is a UC-subset of itself, then the metric space is called
a UC-space; their characteristic properties were first systematically described by
Atsuji [1] (see also [2, 22]).

The family of all nonempty UC-subsets, like the family of all nonempty relatively
compact subsets, form a bornology:

(1.4) they are an hereditary family;
(1.5) they are stable under finite unions;
(1.6) they form a cover of X .

The largest bornology on X is the family of all nonempty subsets P0(X) and the
smallest is the family of all nonempty finite subsets F0(X). Three other bornologies
of note are the family of all nonempty metrically bounded subsets, the family of
all nonempty totally bounded subsets, and the family of all nonempty Bourbaki
bounded subsets [5, 12, 18, 19, 28], also called the finitely chainable subsets [1].

Beer and Levi called f strongly uniformly continuous on A provided Ω(f,A) = 0
as this property obviously implies that f restricted to A is uniformly continuous.
They characterized strong uniform continuity in various ways, most notably, in
terms of the preservation of nearness to subsets of A [8, Theorem 3.1], and in
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terms of the continuity of the induced direct image map from P0(X) to P0(Y ) at
points of P0(A), where subsets of the domain and codomain are equipped with the
the Hausdorff pseudometric topologies as determined by d and ρ, respectively [8,
Theorem 3.3]. Strong uniform continuity of f at A is a variational alternative to
the uniform continuity of the restriction of f to A: for every ε > 0, there exists
δ > 0 such that for each a ∈ A and x ∈ X, d(a, x) < δ implies ρ(f(a), f(x)) < ε [8,
Theorem 4.3]. Furthermore, f is strongly uniformly continuous on A if and only
if 〈ωn(f, ·)〉 converges uniformly to the zero function on A [8, Theorem 3.1], which
presents rather convincing evidence that strong uniform continuity on a subset is
the correct generalization of global uniform continuity.

With respect to the Hausdorff extended pseudometric topology τHd
determined

by the Hausdorff distance Hd on P0(X) [23, Definition 4.1.5], the map A 7→ Ω(f,A)
is upper semicontinuous for an arbitrary function f from X to Y [8, Theorem 4.3]
which yields the known upper semicontinuity of x 7→ ω(f, x) as a corollary, since
x 7→ {x} is an isometric embedding ofX into the hyperspace. Obviously, one cannot
expect continuity of A 7→ Ω(f,A) for an arbitrary function f with respect to any
topology on P0(X) with respect to which x 7→ {x} is a topological embedding. It is
not even true that A 7→ Ω(f,A) need be τHd

-continuous on P0(X) for a continuous
function f .

Example 1.1. For each n ∈ N, let An =
{(

1
n
, k
n

)
: k ∈ N

}
, let A = {0}× [0,∞) and

let X = A ∪
⋃

n∈N
An equipped with the Euclidean metric d for the plane. Define

f : X → R by

f(x) =

{
1, if x =

(
1
n
, k
n

)
with k ≥ n2;

0, otherwise.

As f is zero on a neighborhood of each point of A and all other points of X are
isolated, f is continuous on X . Clearly,

lim
n→∞

Hd(A,An) = 0, Ω(f,An) = 0,

because each An is a UC-subset, while Ω(f,A) = 1. Thus, Ω(f, ·) fails to be
continuous at A with respect to the Hd-pseudometric topology on P0(X).

The last example notwithstanding, given a metrizable space X and a continuous

real-valued function f on it, we can always find a compatible metric d̂ for which
A 7→ Ω(f,A) is H

d̂
-continuous on P0(X), in fact, identically equal to zero: let d be

any compatible metric and put

d̂(x,w) = d(x,w) + |f(x)− f(w)|,

so that f is globally uniformly continuous (in fact Lipschitz) with respect to d̂. Still,
one might look for stronger topologies on P0(X) for a metrizable space X for which
A 7→ Ω(f,A) is continuous for all compatible metrics on X and for all continuous
f with values in an arbitrary metric target space. We display such a topology here
and use it to give a bona fide joint continuity of oscillation result. Finally, we show
that a subset of X is a UC-subset with respect to a particular compatible metric
on X as soon as Ω(f,A) is finite for all continuous real-valued functions f on X .

2. Preliminaries

All topological spaces will be assumed to contain at least two points. If X and Y

are topological spaces, we write Y X for the set of all functions from X to Y , and we
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denote the continuous functions fromX to Y by C(X,Y ). We call an extended real-
valued function defined on a topological space X upper semicontinuous (resp. lower
semicontinuous) at x ∈ X provided whenever 〈xλ〉λ∈Λ is a net in X convergent
to x ∈ X , we have lim supλ∈Λ f(xλ) ≤ f(x) (resp. lim infλ∈Λ f(xλ) ≥ f(x)).
Global upper semicontinuity means ∀α ∈ R, f−1([−∞, α)) is open, whereas global
lower semicontinuity means ∀α ∈ R, f−1((α,∞]) is open. An extended real-valued
function on a topological space X is continuous with respect to the usual topology
on the target space [−∞,∞] if and only if it is both lower semicontinuous and
upper semicontinuous.

Let 〈X, d〉 be a metric space. For A ∈ P0(X) and x ∈ X , we write d(x,A) for
inf{d(x, a) : a ∈ A}, and diamd(A) for

sup{d(a1, a2) : a1 ∈ A and a2 ∈ A}.

We now discuss some basic topologies on P0(X) for a metrizable topological
space X . In the literature, these topologies, called hyperspace topologies, are often
restricted to the nonempty closed subsets of X . We restrict our attention to certain
admissible hyperspace topologies, i.e., those for which x 7→ {x} is a topological
embedding [2, p. 1]. First, if A and B are nonempty subsets of X , the Hausdorff

distance between them as determined by a compatible metric d is defined by

Hd(A,B) := inf {ε > 0 : A ⊆ Sd(B, ε) and B ⊆ Sd(A, ε)}.

Clearly,
Hd(A,B) = Hd(cl(A), cl(B)),

and if d is unbounded, then we can find nonempty subsets A and B withHd(A,B) =
∞. Hausdorff distance so defined gives an extended pseudometric on P0(X). A
countable local base for the topology τHd

that it determines at A ∈ P0(X) consists
of all sets of the form {

B ∈ P0(X) : Hd(A,B) <
1

n

}
,

where n runs over the positive integers. It can be shown that Hd(A,B) is the
uniform distance between the associated distance functionals d(·, A) and d(·, B) [2,
Theorem 1.5.1], and that two compatible metrics determined the same hyperspace
topologies if and only if they are uniformly equivalent [2, Theorem 3.3.2].

We next introduce two “hit-and-miss” topologies on P0(X), for which we need
some additional (now standard) notation. For E ∈ P0(X), we put

E+ := {A ∈ P0(X) : A ⊆ E},

and for E ⊆ P0(X), we put

E
− := {A ∈ P0(X) : ∀E ∈ E, E ∩A 6= ∅}.

The finite topology τfin on P0(X), often called the Vietoris topology, is generated by
all sets of the form V + where V is an open subset of X plus all sets of the form V−

where V is a finite family of open subsets ofX (see, e.g., [2, 23, 27]). Replacing finite
families of open sets by the larger collection of locally finite families of open sets,
we obtain the finer locally finite topology τlocfin [2, 6, 10, 25]. For nets of nonempty
closed subsets, we cite the following classical results: 〈Aλ〉 converges in the finite
(resp. locally finite) topology to A if and only if 〈d(·, Aλ)〉 converges pointwise
(resp. uniformly) to d(·, A) for each metric d compatible with the topology of X
[2, 6, 7]. As noted above, uniform convergence of distance functionals with respect
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to a particular metric d means Hd-convergence of the underlying net of subsets;
pointwise converge of distance functionals with respect to d is called d-Wijsman

convergence for the underlying net of subsets (see, e.g., [3, 13, 16, 24, 29]).

3. Continuity of Oscillation with respect to τlocfin

We first give an alternate presentation of the oscillation of a function f between
metric spaces at a nonempty subset that we will use in the sequel.

Proposition 3.1. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces and let f ∈ Y X . Then

for each A ∈ P0(X), we have

Ω(f,A) = inf
n∈N

sup
a∈A

ωn(f, a).

Proof. Put

Ω∗

n(f,A) := sup
a∈A

ωn(f, a)

and then put

Ω∗(f,A) := inf
n∈N

Ω∗

n(f,A).

We must show that

(3.1) Ω(f,A) ≤ Ω∗(f,A); and
(3.2) Ω∗(f,A) ≤ Ω(f,A).

In (3.1) we may assume that Ω∗(f,A) is finite, and in (3.2), we may assume that
Ω(f,A) is finite. For (3.1), suppose Ω∗(f,A) < α < ∞ and choose n ∈ N such that
Ω∗

n(f,A) < α. We claim that Ω2n(f,A) < α. Let x and w be arbitrary members
of Sd

(
A, 1

2n

)
with d(x,w) < 1

2n . Choosing a ∈ A with d(x, a) < 1
2n , we have

{x,w} ⊆ Sd

(
a, 1

n

)
, and so

ρ(f(x), f(w)) ≤ diamρ f

(
Sd

(
a,

1

n

))
≤ Ω∗

n(f,A),

so that

Ω2n(f,A) ≤ Ω∗

n(f,A) < α,

which establishes the claim. This yields that Ω(f,A) ≤ Ω∗(f,A).
For (3.2), let α satisfy Ω(f,A) < α < ∞ and then choose n ∈ N such that

Ωn(f,A) < α. Let a ∈ A be arbitrary and choose x,w in Sd

(
a, 1

2n

)
. The triangle

inequality gives

d(x,w) < 2 ·
1

2n
=

1

n
,

and since {x,w} ⊆ Sd

(
A, 1

n

)
, we have ρ(f(x), f(w)) ≤ Ωn(f,A). This yields

ω2n(f, a) ≤ Ωn(f,A) and so

Ω∗(f,A) ≤ Ω∗

2n(f,A) ≤ Ωn(f,A) < α,

from which Ω∗(f,A) ≤ Ω(f,A) follows. �

As an application of our last result, we now provide a counterpart of (1.3) of
Section 1 for the sequence 〈Ωn(f, ·)〉.

Proposition 3.2. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces, and f be a function from

X to Y . Then f is globally uniformly continuous on X if and only if 〈Ωn(f, ·)〉
converges uniformly to the zero function on P0(X).
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Proof. Suppose that f is globally uniformly continuous on X . Let ε > 0 be ar-
bitrary. Then there exists δ > 0 such that for any x, y ∈ X with d(x, y) < δ,
ρ(f(x), f(y)) < ε. If we choose n0 ∈ N such that 2

n0
< δ, then we have ωn(f, x) ≤ ε

for all x ∈ X whenever n ≥ n0. It follows from Proposition 3.1 that for any
A ∈ P0(X),

Ω2n(f,A) ≤ Ω∗

n(f,A) ≤ ε

whenever n ≥ n0. This means that 〈Ωn(f, ·)〉 converges uniformly to the zero
function on P0(X).

To see the converse, assume that 〈Ωn(f, ·)〉 converges uniformly to the zero func-
tion on P0(X). Let ε > 0 be arbitrary. Then, by Proposition 3.1, one can find some
n0 ∈ N such that for any A ∈ P0(X),

Ω∗

2n(f,A) ≤ Ωn(f,A) < ε

whenever n ≥ n0. Thus, for any x ∈ X , we have

ω2n(f, x) = Ω∗

2n(f, {x}) < ε,

whenever n ≥ n0. It follows that for any x, y ∈ X with d(x, y) < 1
2n0

, we have

ρ(f(x), f(y)) < ε. This confirms the global uniform continuity of f on X . �

In [3], it is shown that if 〈X, d〉 and 〈Y, ρ〉 are metric spaces and f ∈ Y X , then
A 7→ Ω(f,A) is upper semicontinuous on P0(X) if it is equipped with τHd

. But the
argument provided shows that something else is true, namely:

Proposition 3.3. Let X be a metrizable space and let 〈Y, ρ〉 be a metric space.

Then for each metric d on X that is compatible with the topology and for each f ∈
Y X , the assignment A 7→ Ω(f,A) computed using d and ρ is upper semicontinuous

on P0(X) equipped with τfin.

Proof. Suppose A ∈ P0(X). There is nothing to prove if Ω(f,A) = ∞. Otherwise,
take α ∈ R with Ω(f,A) < α as computed with respect to the compatible metric d.

Choose n ∈ N with Ωn(f,A) < α. Let B ∈ Sd

(
A, 1

2n

)+
be arbitrary; by definition,

B ⊆ Sd

(
A, 1

2n

)
, so we have

Ω(f,B) ≤ Ω2n(f,B) ≤ Ωn(f,A) < α.

The result now follows because Sd

(
A, 1

2n

)+
is a τfin-neighborhood of A. �

Unfortunately, continuity of oscillation need not hold with respect to the finite
topology for each compatible metric on the domain, even if the function f is real-
valued and globally continuous. We provide a general construction in our next
example.

Example 3.4. Suppose that we have a metric space 〈X, d〉 that contains a nonempty
subset A that fails to be a UC subset but that is nevertheless a countable union
of nonempty UC-subsets (for example, any unbounded dense-in-itself subset of R
equipped with the usual metric does the job). Since the nonempty UC-subsets
form a bornology, we can assume that there is an increasing sequence of nonempty
UC-subsets 〈An〉 with union A. Clearly, 〈An〉 is τfin-convergent to A, but taking
f ∈ C(X,R), say, that fails to be strongly uniformly continuous at A (see [8,
Corollary 5.3]), we have Ω(f,An) = 0 for each n while Ω(f,A) > 0.
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Theorem 3.5. Let X be a metrizable space and let 〈Y, ρ〉 be a metric space. Then

for each f ∈ C(X,Y ) and for each compatible metric d for X, A 7→ Ω(f,A) com-

puted with respect to d and ρ is continuous on P0(X) equipped with the locally finite

topology.

Proof. Fix a metric d compatible with the topology of X and let f ∈ C(X,Y ). We
have already seen in our last result that A 7→ Ω(f,A) is upper semicontinuous when
P0(X) is equipped with the weaker finite topology, so it remains to show the lower
semicontinuity with respect to the locally finite topology.

Suppose Ω(f,A) > α ∈ R. If Ω(f,A) = 0, then P0(X) is a neighborhood of A on
which Ω(f, ·) exceeds α. Otherwise, without loss of generality, we may assume that
0 < α < Ω(f,A). We intend to produce a locally finite family V of open subsets of
X such that A ∈ V−, and whenever B ∈ V−, we have Ω(f,B) > α.

Select β ∈ (α,Ω(f,A)) and set n1 = 2. By Proposition 3.1, we can find a1 ∈ A

with

diamρ f

(
Sd

(
a1,

1

n1

))
> β.

By continuity of f at a1, we can find an even integer n2 > n1 such that

diamρ f

(
Sd

(
a1,

1

n2

))
< β.

Again by Proposition 3.1, choose a2 ∈ A with

diamρ f

(
Sd

(
a2,

1

n2

))
> β.

Clearly, a2 6= a1, and if x ∈ Sd

(
a1,

1
n1

)
then Sd

(
x, 2

n1

)
⊇ Sd

(
a1,

1
n1

)
, for when-

ever w ∈ Sd

(
a1,

1
n1

)
, we have

d(w, x) ≤ d(w, a1) + d(a1, x) <
1

n1
+

1

n2
<

2

n1
.

Suppose we have chosen 2 = n1 < n2 < · · · < nk all even and distinct points
a1, a2, . . . , ak in A such that

(3.3) diamρ f
(
Sd

(
aj,

1
nj

))
> β for j = 1, 2, . . . , k;

(3.4) diamρ f
(
Sd

(
aj,

1
nj+1

))
< β for j = 1, 2, . . . , k − 1;

(3.5) for each x ∈ Sd

(
aj,

1
nj+1

)
, Sd

(
x, 2

nj

)
⊇ Sd

(
aj,

1
nj

)
for j = 1, 2, . . . , k− 1.

By continuity of f at ak, we can choose an even integer nk+1 > nk satisfying

diamρ f

(
Sd

(
ak,

1

nk+1

))
< β.

By Proposition 3.1, choose ak+1 ∈ A such that

diamρ f(Sd(ak+1,
1

nk+1
)) > β.

By condition (3.4), a1, a2, . . . , ak, ak+1 are all distinct, and an easy calculation

shows that for each x ∈ Sd

(
ak,

1
nk+1

)
, we have Sd

(
x, 2

nk

)
⊇ Sd

(
ak,

1
nk

)
.
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Continuing to produce a strictly increasing sequence of even integers 〈nk〉 and a
sequence of distinct points 〈ak〉 in A, we conclude that the family of balls

{
Sd

(
ak,

1

nk

)
: k ∈ N

}

is locally finite, else 〈ak〉 would have a cluster point at which continuity of f must

fail by condition (3.3). Thus, {Sd

(
ak,

1
nk+1

)
: k ∈ N}, being a family of smaller

balls, is also locally finite and A ∈ {Sd

(
ak,

1
nk+1

)
: k ∈ N}−. We intend to show

that if B ∈ P0(X) hits each ball Sd

(
ak,

1
nk+1

)
, then Ω(f,B) > α. To see this, it

suffices by Proposition 3.1 to produce for each m ∈ N some b ∈ B with

diamρf

(
Sd

(
b,

1

m

))
> β.

Choose nj with 2
nj

< 1
m

and then b ∈ B ∩ Sd

(
aj ,

1
nj+1

)
. Using condition (3.3)

and condition (3.5),

f

(
Sd

(
b,

1

m

))
⊇ f

(
Sd

(
b,

2

nj

))
⊇ f

(
Sd

(
aj,

1

nj

))

so that by condition (3.3) and Proposition 3.1, Ω(f,B) ≥ β > α. �

4. Joint Continuity of Oscillation

In [8], Beer and Levi introduced the variational notion of strong uniform con-
vergence of a net of functions 〈fλ〉λ∈Λ from 〈X, d〉 to 〈Y, ρ〉 to a function f on a
nonempty subset A of X : for each ε > 0 there exists λ0 ∈ Λ such that for each
λ � λ0, there exists δ > 0 such that for all x ∈ Sd(A, δ), ρ(fλ(x), f(x)) < ε (notice
that δ can depend on λ!). The family of nonempty subsets on which strong uni-
form convergence occurs is stable under finite unions and is hereditary, and strong
uniform convergence on (each member of) a bornology is compatible with a uni-
formizable topology on Y X . If each fλ ∈ C(X,Y ) and f ∈ C(X,Y ) and 〈fλ〉λ∈Λ

is pointwise convergent to f , then strong uniform convergence must occur on each
singleton subset of X . Conversely, strong uniform convergence of a net of contin-
uous functions on each singleton to f ∈ Y X ensures that f is continuous [8, 11].
One cannot overstate how well strong uniform convergence on a bornology B com-
ports with strong uniform continuity of functions on B. A number of subsequent
papers on this convergence notion/topology have been written [9, 14, 15, 21]; in
particular, nontransparent necessary and sufficient conditions on a bornology B for
the topology of strong uniform convergence to collapse to the classical topology of
B-uniform convergence on C(X,Y ) [26] are known [9].

But one result that we would hope for is not be had: joint upper semicontinuity
of (f,A) 7→ Ω(f,A) need not hold even if we restrict our functions to those that
are strongly uniformly continuous on a bornology B and restrict our sets to mem-
bers of B, where our functions are topologized by the topology of strong uniform
convergence on the bornology and B is topologized by Hausdorff distance [8, Ex-
ample 6.13]. What is needed is a somewhat stronger convergence notion for our
functions that is obtained by flipping quantifiers in the definition of strong uniform
convergence.
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Definition 4.1. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces, and let A be a nonempty
subset of X . A net of functions 〈fλ〉λ∈Λ from X to Y is declared very strongly

uniformly convergent to f : X → Y on A if for each ε > 0 there exists λ0 ∈ Λ and
δ > 0 such that for all λ � λ0 and all x ∈ Sd(A, δ), ρ(fλ(x), f(x)) < ε.

To see the difference between strong uniform convergence and very strong uni-
form convergence for continuous functions, let fn be the piecewise linear function
on [0, 1] whose graph joins (0, 0) to ( 1

2n , 1) to ( 1
n
, 0) to (1, 0), let f be the zero

function on [0, 1], and let A = {0}. Then, it is readily checked that 〈fn〉 is strongly
uniformly convergent to f on A, but 〈fn〉 is not very strongly uniformly convergent
to f on A.

While strong uniform convergence on each singleton of a pointwise convergent net
of continuous functions, being equivalent to continuity of the limit, cannot ensure
uniform convergence on compact subsets, we have the following result whose easy
proof is left to the reader.

Proposition 4.2. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces and let 〈fλ〉λ∈Λ be a net

in Y X very strongly uniformly convergent to f : X → Y on each singleton subset

of X. Then very strong uniform convergence on compact subsets to f occurs.

Theorem 4.3. Let 〈X, d〉 and 〈Y, ρ〉 be two metric spaces. Let 〈fλ〉λ∈Λ be a net

in Y X and 〈Aλ〉λ∈Λ be a net of nonempty subsets of X, where Λ is a directed set.

Suppose that A ∈ P0(X) and f : X → Y satisfy

(i) for all n ∈ N, Aλ ⊆ Sd

(
A, 1

n

)
eventually; and

(ii) 〈fλ〉λ∈Λ is very strongly uniformly convergent to f ∈ Y X on A.

Then

Ω(f,A) ≥ lim sup
λ∈Λ

Ω(fλ, Aλ).

Proof. We may assume that Ω(f,A) is finite. Let β > Ω(f,A) be arbitrary and
choose ε > 0 such that β > Ω(f,A) + 3ε. Choose n ∈ N and λ0 ∈ Λ so large that

Ωn(f,A) < Ω(f,A) + ε

and such that whenever λ � λ0 we have both

(4.1) sup
{
ρ(f(x), fλ(x)) : x ∈ Sd

(
A, 1

n

)}
< ε;

(4.2) Aλ ⊆ Sd

(
A, 1

2n

)
.

For λ � λ0, by (4.2) we have Sd

(
Aλ,

1
2n

)
⊆ Sd

(
A, 1

n

)
, and so whenever {x,w} ⊆

Sd

(
Aλ,

1
2n

)
and d(x,w) < 1

2n , we get

ρ(fλ(x), fλ(w)) ≤ ρ(fλ(x), f(x)) + ρ(f(x), f(w)) + ρ(f(w), fλ(w))

< ε+Ωn(f,A) + ε < Ω(f,A) + 3ε.

From this, it follows that whenever λ � λ0,

Ω(fλ, Aλ) ≤ Ω2n(fλ, Aλ) ≤ Ω(f,A) + 3ε < β

so that

Ω(f,A) ≥ lim supλ∈Λ Ω(fλ, Aλ),

and the proof is complete. �



10 GERALD BEER AND JILING CAO

Theorem 4.4. Let X be a metrizable space and 〈Y, ρ〉 be a metric space. Let

(Λ,�) be a directed set and let 〈fλ〉λ∈Λ be a net in C(X,Y ) and let 〈Aλ〉λ∈Λ be

a net in P0(X). Suppose that 〈Aλ〉λ∈Λ is convergent in the locally finite topology

τlocfin to A ∈ P0(X), and suppose 〈fλ〉λ∈Λ is very strongly uniformly convergent

to f ∈ C(X,Y ) on A. Then for each metric d compatible with the topology of X,

Ω(f,A) = lim
λ∈Λ

Ω(fλ, Aλ),

where oscillations are computed with respect to d and ρ.

Proof. Since containment in Sd(A, δ) means membership to Sd(A, δ)
+ and Sd(A, δ)

+

belongs to the locally finite topology τlocfin, the last result gives

lim supλ∈Λ Ω(fλ, Aλ) ≤ Ω(f,A).

It remains to show that

Ω(f,A) ≤ lim infλ∈Λ Ω(fλ, Aλ).

We may assume that Ω(f,A) 6= 0. Let 0 < α < Ω(f,A) be arbitrary, and choose
ε > 0 with α + 3ε < Ω(f,A). The proof of Theorem 3.5 shows that there exists a
locally finite family V of nonempty open subsets of X (in fact open balls) such that
A ∈ V− and if B ∈ V−, then Ω(f,B) > α+3ε. By very strong uniform convergence
on A, choose δ > 0 and λ1 ∈ Λ such that whenever λ � λ1,

sup {ρ(f(x), fλ(x)) : x ∈ Sd(A, δ)} < ε.

There exists λ2 � λ1 such that

Aλ ∈ V
− ∩ Sd

(
A,

δ

2

)+

for all λ � λ2. Let n be any positive integer such that 1
n
< δ

2 . Whenever {x,w} ⊆

Sd

(
Aλ,

1
n

)
and d(x,w) < 1

n
, we have {x,w} ⊆ Sd(A, δ), and the triangle inequality

yields for all λ � λ2,

ρ(fλ(x), fλ(w)) > ρ(f(x), f(w)) − 2ε.

It follows that for all n sufficiently large, we get

Ωn(fλ, Aλ) ≥ Ωn(f,Aλ)− 2ε ≥ Ω(f,Aλ)− 2ε > α+ ε,

and so

Ω(fλ, Aλ) ≥ α+ ε > α

for all λ � λ2. We may now conclude that

Ω(f,A) ≤ lim inf
λ∈Λ

Ω(fλ, Aλ),

which completes the proof. �

Corollary 4.5. Let X be a metrizable space and 〈Y, ρ〉 be a metric space. Sup-

pose C(X,Y ) is equipped with the topology of ρ-uniform convergence, and P0(X) is
equipped with the locally finite topology. Then for each metric d compatible with the

topology of X, (f,A) → Ω(f,A) is continuous on C(X,Y ) × P0(X) equipped with

the product topology, where oscillations are computed with respect to d and ρ.
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If we have very strong uniform convergence of a net of functions on each member
of some family of nonempty subsets A of 〈X, d〉 then we evidently have very strong
uniform convergence on subsets of members of A and on finite unions of members
of A. Thus, if A forms a cover of X , there is no loss of generality in assuming that
A is a bornology.

Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces, and let B be a bornology on X . We say
that a net of functions 〈fλ〉λ∈Λ from X to Y is very strongly uniformly convergent

to f : X → Y on B if it is very strongly uniformly convergent to f on every member
B of B. This usage parallels the notion of strong uniform convergence in Y X on B

where the convergence is always compatible with a uniformizable topology [8]. It
came as a surprise to the authors that very strong uniform convergence need not
be topological even if we restrict our attention to C(X,R) and our bornology is
the bornology of nonempty finite subsets F0(X), which corresponds to very strong
uniform convergence on each singleton subset. We show that the iterated limit
condition [23, p. 30] which is necessary for the convergence to be topological can
fail for a sequence of sequences of real-valued continuous functions.

Example 4.6. Our base metric space 〈X, d〉 is the sequence space ℓ∞, in which for
each n ∈ N, en is the sequence whose nth term is one and whose other terms are
all zero. For our kth sequence in C(ℓ∞,R) we put

fk,n(x) =

{
1− 3kd(x, 1

k
en), if d(x, 1

k
en) <

1
3k
;

0, otherwise.

The sequence fk,1, fk,2, . . . , fk,n, . . . converges very strongly uniformly at each point
of ℓ∞ to the zero function as it is eventually zero in a fixed neighborhood of each
point that does not depend on n. However, if we direct N×N

N with the pointwise
order, the net (k, φ) 7→ fk,φ(k) evidently fails to converge very strongly uniformly
at the origin of ℓ∞ to the zero function.

5. A New Characteriation of UC Subsets

In the introduction, we described sequentially those nonempty subsets A of a
metric space 〈X, d〉 on which each continuous function on X has oscillation zero at
A; for a very different sequential description, the reader may consult [4, Theorem
3.5]. Such subsets, called UC-subsets, can also be described in terms of gaps, where
the gap between two nonempty subsets ofX is the infimum of the distances between
pairs of points one in each set, see [2]. We call two nonintersecting sets asymptotic

if the gap between them is zero.
For notational economy and following [8], we now write I(x) for d(x,X\{x});

the functional I(·) measures the isolation of points of X and I(x) = 0 means that
x is a limit point of X .

Theorem 5.1. Let A be a nonempty subset of 〈X, d〉. The following conditions are

equivalent:

(i) A is a UC-subset;

(ii) for each f ∈ C(X,R), Ω(f,A) is finite;

(iii) whenever C and E are nonempty closed subsets of X with C ⊆ A and

C ∩ E = ∅, then the gap between C and E is positive.
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Proof. (i) ⇒ (ii) trivially follows from [8, Theorem 5.2].
For (ii) ⇒ (iii), if (iii) fails for some C and E, by the Tietze extension theorem,

we can find f ∈ C(X,R) mapping each point of C to zero and such that for each
e ∈ E, f(e) = d(e, C)−1. Now for each n ∈ N, there exists cn ∈ C and en ∈ E with
d(cn, en) <

1
n
and of course {cn, en} ⊆ Sd

(
A, 1

n

)
. As a result Ωn(f,A) > n and so

Ω(f,A) = ∞.
Only (iii) ⇒ (i) remains. Suppose (i) fails; then we can find a sequence 〈an〉 in A

that fails to cluster but for which limn→∞ I(an) = 0. By passing to a subsequence,
we may assume all terms are distinct and either (a) all terms are limit points of X ,
or (b) all terms are isolated points of X . In case (a), choose a strictly increasing
sequence of positive integers 〈kn〉 such that for each n ∈ N,

1

kn
<

1

3
d(an, {aj : j 6= n});

then
{
Sd

(
an,

1
kn

)
: n ∈ N

}
is a pairwise disjoint family of balls. Choose en ∈

Sd

(
an,

1
kn

)
different from an, and put C := {an : n ∈ N} and E := {en : n ∈ N}.

Since 〈an〉 can’t cluster, neither can 〈en〉 as limn→∞ d(an, en) = 0. Thus, C and E

are disjoint asymptotic closed subsets of X with C ⊆ A, which violates (iii).
Case (b) is a little more delicate, involving an iterative procedure. Put n1 = 1

and choose xn1
∈ X so that

0 < d(an1
, xn1

) < I(an1
) +

1

n1
.

Having chosen n1 < n2 < · · · < nk and xn1
, xn2

, . . . , xnk
not necessarily distinct in

X such that {an1
, an2

, . . . , ank
} and {xn1

, xn2
, . . . , xnk

} form disjoint sets, put

δ = min {{I(anj
) : j ≤ k}, {I(xnj

) : xnj
is an isolated point of X, j ≤ k}}.

Since the measure of isolation functional goes to zero along the sequence 〈an〉, we
can find nk+1 > nk and then xnk+1

∈ X with

0 < d(ank+1
, xnk+1

) < I(ank+1
) +

1

nk+1
< δ.

Since I(xnk+1
) < δ as well, we obtain the disjointness of {an1

, an2
, . . . , ank+1

} and
{xn1

, xn2
, . . . , xnk+1

}.
In this way we produce sequences 〈anj

〉 and 〈xnj
〉 whose sets of terms do not

overlap and such that for each j ∈ N,

0 < d(anj
, xnj

) < I(anj
) +

1

nj

.

Since 〈anj
〉 can’t cluster, neither can 〈xnj

〉 as limj→∞ d(anj
, xnj

) = 0. Thus,
C = {anj

: j ∈ N} and E = {xnj
: j ∈ N} are disjoint asymptotic closed subsets of

X with C ⊆ A, once again violating condition (iii). �
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