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The Positivity Problem in Finance (and other fields)

Two simple ways to have positivity

x2 ex

Positivity is important in finance for:

• Volatility.
• Interest rates.
• Stock price.

and Noise is given by the Gaussian distribution, hence in R.
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Positivity in Econometrics

The GARCH:

rt = σtεt

σ2
t = α0 + α1σ

2
t−1 + β1ε

2
t−1

The EGARCH:

rt = σtεt

lnσ2
t = α0 + α1g(εt−1) + β1 lnσ2

t−1
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Positivity in Interest rates

Zero coupon bond

B(t, T ) = EQ
t

[
e−
∫ T
t rudu

]

Vasicek (Ornstein-Ulhenbeck):

drt = κ(θ − rt)dt+ σdwt

easy but Gaussian!

Dothan:

drt = κrtdt+ σrtdwt

positive but much more complicated.
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Equity Derivatives

For the stochastic volatility models:

dst = stσtdw
1
t (1)

and
dσt = aσtdt+ bσtdw

2
t (2)

d lnσt = a(b− lnσt)dt+ αdw2
t (3)

dσt = a(b− σt)dt+ αdw2
t (4)

• Hull & White (2): volatility non stationary but exponential so positive!

• Chesney & Scott (3): logarithm of volatility Ornstein-Ulhenbeck so Gaussian but volatility is
exponential so positive!

• Stein & Stein (4): volatility is Ornstein-Ulhenbeck so Gaussian, volatility is negative.

but

- Hull & White not good because volatility is a geometric Brownian motion.

- Chesney & Scott, we don’t know the stock density or its characteristic function. Cannot cali-
brate the model.

- Stein & Stein (4), we don’t know the stock characteristic function (option pricing by FFT) but
volatility is Gaussian!
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Equity Derivatives

dst = st
√
σtdw

1
t

and

dσt = a(b− σt)dt+ α
√
σtdw

2
t (5)

• The volatility is positive and we know the characteristic function of the stock.

• The Feller condition 2ab > α2 ensures that σt > 0.

Option contains integrated volatility

EQ
t

[(
ste
−1

2

∫ T

t
σudu+

∫ T

t
σudw1

u −K
)

+

]
Whether the volatility oscillates a lot (large a) or not (small a) option convey little

(no) information on that aspect.

5



Equity Derivatives

The Feller condition is not satisfied in practice:

1. The volatility can touch 0.

2. The volatility distribution is too close to 0.

In fact the square root process is positivity using the x2 function.

Positivity using ex doesn’t work but the exponentiation is appealing.
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The Hypergeometric Stochastic Volatility Model

The forward price dynamic:

dft = fte
vtdw1,t (6)

dvt = (a− beαvt)dt+ σdw2,t (7)

with dw1,t.dw2,t = ρdt (controls the leverage).

• Volatility vt looks like an OU process.
• Stock volatility evt is positive by construction.

For α = 1 we know how to compute the Mellin transform of the stock (so option
pricing is possible).
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The Hypergeometric Stochastic Volatility Model

E

[(
ft

f0

)λ]
= E

[
exp

(
−
λ

2

∫ t

0

e2vudu+ λ

∫ t

0

e2vudw1,u

)]
= e−

λρ

σ
ev0E

[
exp

(
α0e

vt + α1

∫ t

0

evsds−
α2

2

2

∫ t

0

e2vsds

)]
with

α0 =
λρ

σ
α1 = −

λρ

σ

(
a+

σ2

2

)
α2

2 = −λ2(1− ρ2)−
2bρλ

σ
+ λ.

and dvt = (a− bevt)dt+ σdw2,t.

Girsanov’s theorem to cancel the drift of the volatility

E

[(
ft

f0

)λ]
= e−

a

σ2 v0+( b

σ2−
λρ

σ
)ev0e−

a2t
2σ2EQ

[
exp

(
avt

σ2
+ β0e

vt + β1

∫ t

0

evsds−
β2

2

2

∫ t

0

e2vsds

)]
with

β0 =
λρσ − b
σ2

β1 = (b− λρσ)
(
a

σ2
+

1

2

)
β2

2 = −λ2(1− ρ2) + λ

(
1−

2bρ

σ

)
+

b2

σ2
.

and dvt = σdw̃2,t

8



The Hypergeometric Stochastic Volatility Model

F (t, v) = EQ
[

exp

(
avt

σ2
+ β0e

vt + β1

∫ t

0

evsds−
β2

2

2

∫ t

0

e2vsds

)]
(8)

and F (0, v) = exp
(
av
σ2 + β0ev

)
. F (t, v) solves the PDE:

∂tF =
σ2

2

d2F

dv2
−
β2

2

2
e2vF + β1e

vF,

= −HF

so F (t) = e−HtF (0) and in itegral form:

F (t, v0) =

∫ +∞

−∞
q(σ2t, v0, y)F (0, y)dy

• q is the heat kernel.

• −β2
2

2
e2v + β1ev is the potential (well known): Morse potential.
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The Hypergeometric Stochastic Volatility Model
The Laplace transform of the HK is known

G(v, y; s2/2) =

∫ +∞

0

e−
s2

2
tq(t, v, y)dt =

∫ +∞

0

e−
s2

2
te−Htdt.

=

(
s2

2
+H

)−1

G is the fundamental solution (the Green function, or the resolvant) of H + s2

2
= 0 that is to say G

solves:

−
σ2

2

d2G

dv2
+
β2

2

2
e2vG− β1e

vG+
s2

2
= δy (9)

G(v, y; η2/2) =
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ(1 + 2η)

e−(v+y)/2W ν1
ν2
,η (2ν2e

y>)M ν1
ν2
,η (2ν2e

y<)

with ν1, ν2 related to β1, β2, η to s and y> = max(v, y), y< = min(v, y), Wκ,η and Mκ,η are the Whittaker functions
(related to confluent hypergeometric functions):

Wκ,η(z) = zη+1

2e−z/2Ψ

(
η − κ+

1

2
,1 + 2η; z

)
Mκ,η(z) = zη+1

2e−z/2Φ

(
η − κ+

1

2
,1 + 2η; z

)
.
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The Hypergeometric Stochastic Volatility Model

1. G is know.

2. q is the inverse Laplace transform of G.

3. We integrate q over F (0, v) it gives the Mellin transform of the spot.

4. We compute the inverse Mellin transform of the spot to get the option price.
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Conclusions

• we develop a stochastic volatility model with positive volatility

• we provide the main results to perform option pricing
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Open Problems

• all the problems are open....
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