
 
 

  

Abstract—We present new results from Computational 
Neurogenetic Modeling to aid discoveries of complex gene 
interactions underlying oscillations in neural systems. 
Interactions of genes in neurons affect the dynamics of the 
whole neural network model through neuronal parameters, 
which change their values as a function of gene expression. 
Through optimization of the gene interaction network, initial 
gene/protein expression values and neuronal parameters, 
particular target states of the neural network operation can be 
achieved, and statistics about gene interaction matrix can be 
extracted. In such a way it is possible to model the role of genes 
and their interactions in different brain states and conditions. 
Experiments with human EEG data are presented as an 
illustration of this methodology and also, as a source for the 
discovery of unknown interactions between genes in relation to 
their impact on brain activity.   

I. INTRODUCTION 
enetic studies show that human EEG has a strong 
genetic basis [1-3]. That is, the EEG spectral 

characteristics are strongly preserved within families as well 
as in individuals. In other words, spectral characteristics of 
brain electrical oscillations are highly conserved in one 
individual but vary between individuals even when recorded 
under the same conditions. Moreover, genetically related 
individuals have similar features in electrical activity of their 
brains [1]. In the presented work, we want to use our new 
method of Computational Neurogenetic Modeling (CNGM) 
to model the dependency of neural electrical activity upon 
internal gene dynamics in order to account for the spectral 
differences in the EEG in different brain conditions and 
different individuals.  The goal of the paper is to present 
how to apply a hierarchical model of EEG generation all the 
way up from genes to local field potential generation to 
reveal genetic differences in normal and abnormal EEG. Our 
hierarchical model of EEG generation introduced in [4, 5] 
has the following components:  
• neuronal genes and their expression levels;  
• protein expression levels; 
• interactions between genes; 
• receptor and ion channels related functions; 
• generation of electric signals; 
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• generation of a local field potential (LFP). 
We will introduce step by step: (1) how to link parameters of 
a neural model to activities of genes/proteins, (2) which 
genes/proteins are to be included in the model, (3) how to 
model gene/protein dynamics, (4) how to validate the model 
on the real brain data, (5) what kind of new and useful 
information about neural gene interactions can be derived by 
means of CNGM. 

II. AN ABSTRACT CNGM  

A. An Abstract Gene Regulatory Network Model 
Let G={G1, G2, …, Gn} be the set of genes in a Gene 

Regulatory Network (GRN) (Fig. 1). We assume that the 
expression level of each gene gj(t+∆t) is a nonlinear function 
of expression levels of all the genes in G, so that 
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This nonlinear equation is inspired by discrete models from 
[6, 7], based on the fact that gene expression data are 
gathered in discrete time intervals [8].  

 

 
 
Fig. 1.  An abstract model of gene regulatory network.  Solid (dashed) 
lines denote positive (negative) interactions between genes, 
respectively. Level of grey reflects the level of gene expression at a 
given time instant. The lines mean a logical connection, rather than a 
chemical, a physical or physiological one.  

 
We work with normalized gene expression values, expressed 
by a nonlinear sigmoid σ(x) ∈ (0, 1). The coefficients wij ∈ 
(−5, 5) are elements of the square matrix W = {wij} of gene 
interaction weights. The latter borders have been chosen 
experimentally in order to lead to various types of nonlinear 
dynamics, i.e. constant as well as periodic, quasi-periodic 
and chaotic. It is important to identify what the sign of an 
interaction means, i.e. whether wij > 0 or wij < 0. The 
positive interaction means that upregulation 
(downregulation) of one gene supports the upregulation 
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(downregulation) of the other gene, respectively. The 
negative interaction means that upregulation 
(downregulation) of one gene leads to the downregulation 
(upregulation) of the other gene, respectively. Initial values 
of gene expressions are small random values, i.e. gj(0) ∈ (0, 
0.1). In the current model we assume a simple scenario 
where: (1) one protein is coded by one gene; (2) relationship 
between protein levels and gene expression levels are linear; 
(3) protein levels lie between the minimal and maximal 
values. Thus, the protein level pj(t+∆t) is expressed at an 
abstract level by: 
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The delay ∆t corresponds to the regular interval when 
both gene and protein expression values would be measured 
experimentally. It is a common practice to derive W based 
on all gene expression data being collected at the same time 
intervals ∆t [9].   

Since neuronal parameters like excitation and inhibition 
are mediated by the action of neurotransmitters through the 
corresponding receptor proteins in the postsynaptic 
membrane, we will link the values of these parameters to the 
levels of proteins that mediate them. Thus in our model, 
some protein levels will be directly related to neuronal 
parameters Pj such that 

)()0()( tpPtP jjj =                             (3) 
Where Pj(0) is the initial value of the neuronal parameter at 
time t = 0 taken from the value range listed in Table II and 
pj(t) is the level of the corresponding protein at time t. In 
such a way the gene/protein dynamics is linked to the 
dynamics of ANN. The abstract CNGM model from 
formulas (1)−(3) is a general one and can be integrated with 
any other neural network model, depending on what kind of 
neural activity one wants to model. In the presented model 
we have made several simplifying assumptions: 

• Each neuron has the same gene regulatory network 
(GRN), i.e. the same genes and the same interaction 
gene matrix W. 

• Each GRN starts from the same initial values of gene 
expressions. 

• There is no feedback from neuronal activity or any 
other external factors to gene expression levels or 
protein levels. 

All neuronal parameters and their correspondence to 
particular proteins in the model presented in this paper are 
summarized in Table I. They are selected based on their 
relevance to the spiking activity of a neuron [10-12].   
Several parameters like the amplitude and time constants of 
one postsynaptic potential (PSP) are linked to one protein 
level however their initial values for Eq. (3) are different. 
Values of firing threshold parameters Pϑ depend equally on 
the levels of three ion channels, such that  
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   Moreover, besides the genes coding for the proteins listed 
in Table I, we include in our GRN nine more genes that are 
not directly linked to neuronal information-processing 
parameters, but are reported to be related to some neuronal 
activities [8, 13-18]. These genes are: c-jun, mGLuR3, 
Jerky, BDNF, FGF-2, IGF-I, GALR1, NOS, S100beta. We 
have included them for future studies. For now, they only 
represent the generality of our approach.  

B. Spiking Neural Networks (SNN) for CNGM 
   The spiking neural network (SNN) used in our CNGM has 
been first described in [4, 5]. The model neural network has 
two layers (Fig. 2a).  
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Fig. 2.  (a) SNN is comprised of two layers, representing the thalamus 
(input layer) and cerebral cortex (output SNN). About 10-20 % of n = 
120 neurons are inhibitory neurons that are randomly positioned on the 
grid (filled circles). (b) Spiking neuron model. When the membrane 
potential ui(t)  of the ith spiking neuron reaches the firing threshold 
ϑi(t) at time tk

i, the neuron fires an output spike. ϑi(t) rises after each 
output spike and decays back to the resting value ϑ0. 
 
The input layer represents the thalamus (the main 

subcortical sensory input relay to cortex) and the output 
layer represents cerebral cortex. We simulate the awake 
resting state of this system. Individual model neuron is based 

TABLE I 
NEURONAL PARAMETERS AND THEIR RELATED PROTEINS 

Neuronal parameter 
AMPLITUDE AND TIME CONSTANTS OF Protein* 

Fast excitation PSP AMPAR 
Slow excitation PSP NMDAR 

Fast inhibition PSP GABRA 
Slow inhibition PSP GABRB 
Firing threshold SCN, KCN, CLC 

*Abbreviations: PSP = postsynaptic potential, AMPAR = (amino- 
methylisoxazole- propionic acid) AMPA receptor, NMDAR = (N-
methyl-D-aspartate acid) NMDA receptor, GABRA = (gamma-
aminobutyric acid) GABAA receptor, GABRB = GABAB receptor, 
SCN = Sodium voltage-gated channel, KCN = kalium (potassium) 
voltage-gated channel, CLC = chloride channel. 
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upon a classical Spike Response Model (SRM) [19].   In 
SRM, the state of a neuron i is described by the state 
variable ui(t) that can be interpreted as a total somatic PSP. 
When ui(t) reaches the firing threshold ϑi(t) from below, 
neuron i fires, i.e. emits a spike (see Fig. 2b). The moment of 
ϑi(t) crossing defines the firing time ti of an output spike. 
The value of the state variable ui(t) is the weighted sum of 
all PSPs = εij : 
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Where Γi is the pool of neurons presynaptic to neuron i, and 
Fi is the set of times tj < t when presynaptic spikes occurred. 
∆ax is an axonal delay between neurons i and j which 
increases with Euclidean distance between neurons.  The 
weight of synaptic connection from neuron j to neuron i is 
denoted by Jij. It takes positive (negative) values for 
excitatory (inhibitory) connections, respectively. Lateral and 
input connections have weights that decrease in value with 
distance from neuron i according to a Gaussian formula 
while the connections themselves can be established at 
random (with probability p = 0.5).  The positive kernel εij 
expresses a particular type of PSP evoked on neuron i when 
a presynaptic neuron j from the pool Γi fires at time tj, such 
that 
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where τdecay and τrise are time constants of the decay and rise 
of the double exponential, respectively,  A is the amplitude, 
and type denotes one of the following: fast_excitation, 
fast_inhibition, slow_excitation, and slow_inhibition. These 
types of PSPs are based on neurobiological data [11]. Thus, 
in each excitatory and inhibitory synapse, there is a fast and 
slow component of PSP, based on particular types of 
postsynaptic receptors listed in Table I. Immediately after 
firing the output spike at ti, neuron's firing threshold ϑi(t) 
increases k-times and then returns to its initial value ϑ0 in an 
exponential fashion:  
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Where τdecay is the time constant of the threshold decay.  In 
such a way, absolute and relative refractory periods are 
modelled. Firing threshold parameters that are threshold 
resting value, decay time constant and magnitude of its rise 
after spike generation, k, depend on levels of three ion 
channels for sodium, kalium and chloride (Table I) [20, 21]. 
External inputs have only fast excitatory components 
weighted by input weights, such that 
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External inputs from the input layer are added to the right 
hand side of Eq. 4 at each time step. We employed series of 
random input spikes generated in the input layer neurons 
with an average frequency between 10−20 Hz, thus 
simulating the asynchronous thalamic activity in the awake 

resting state of the brain.  

III. SIMULATION AND ANALYSIS OF SNN OUTPUT 
EEG is the sum of many LFPs mainly from the cerebral 

cortex [22].  In our SNN, we define LFP as an average of all 
instantaneous membrane potentials of neurons in the SNN 
output layer, i.e. Φ(t)= (1/N) Σ ui(t).  In order to perform a 
fair comparison we evaluated both the LFP of the SNN and 
the EEG signal by means of the fast Fourier method (FFT) 
[23]. However, should a better description of time and 
frequency be needed, wavelet transformation can be used 
instead. We base this comparison of SNN LFP and EEG on 
evidence that brain LFPs have the same spectral 
characteristics as EEG [24]. Our target signal is the resting 
human EEG. Spectral characteristics of the resting awake 
EEG are the same during the day. Thus any point of daily 
gene dynamics should lead to the electrical signal with the 
same spectral characteristics. Therefore we will compress 
the daily gene dynamics into a time scale of the EEG 
measurement interval that is T = 1 min in order to find the 
desired gene interaction matrix W. As a result of the 
compression of gene dynamics into the time interval of EEG 
measurement, we set up the interval of gene and protein 
changes ∆t in Eq. (1) and (2) to 1 s.  The time step of 
updating of neural network dynamics will be 1 ms.  The FFT 
of the LFP/EEG signal is done for clinically relevant 
frequency bands. These bands are: delta (0.5-3.5 Hz), theta 
(3.5-7.5 Hz), alpha (7.5-12.5 Hz), beta 1 (12.5-18 Hz), beta 
2 (18-30 Hz), gamma (> 30 Hz). Based on FFT we calculate 
the relative intensity ratios (RIR) for the above frequency 
bands. RIR for the kth frequency band is defined as 

I
I
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k =                           (9) 

Where Ik is the power of the kth frequency band in the signal 
and I is the total power of the signal. RIRs change over time 
and we calculate the vector of average values to obtain our 
objective function for W optimization (see Fig. 3).  
 

 
Fig. 3. RIRs for clinically relevant EEG frequency bands change over 
time. Average values over the measurement interval (dashed lines) 
constitute desired values to be achieved by the simulated evolution of 
the gene interaction matrices, W. Sampling rate was 256 Hz, Min/Max 
frequency = 0.1 / 50 Hz, respectively. 
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IV. OPTIMIZATION OF GRN       
We want to achieve the desired SNN output through 

optimization of the model 294 parameters. We are 
optimizing the interaction matrix W between 16 genes of 
GRN (Fig. 1), initial values of neural parameters and gene 
expressions, architectural parameters of SNN (except the 
total number of neurons, spike delays and probability of 
establishing a synaptic connection) and input frequency to 
the SNN.  All model parameters and the value ranges for 
initial values Pj(0) in Eq. (3) to choose from are listed in 
Table II. The value ranges were selected based on 
neurobiological studies and models [10-12] and were further 
adjusted by experimentation so that the resulting SNN 
activity was neither too low (no spikes) or too high (too 
many spikes).   In order to find an optimal GRN so that the 
frequency characteristics of the LFP of the associated SNN 
are similar to the brain EEG characteristics, we use the 
following simple optimization procedure:  
1. Generate a new CNGM with randomly generated values 

of coefficients for the GRN matrix W, initial gene 
expression values g(0), initial values of  parameters 
P(0), and other model parameters; 

2. Run CNGM over a period of time T = 1 min and record 
the LFP for the associated SNN;  

3. Calculate the average spectral characteristics, i.e. the 
average RIR vector of the LFP using FFT; 

4. Compare the RIR vector of LFP to the average RIR 
vector of the target EEG signal. Evaluate the closeness 
of the LFP signal to the target EEG signal characteristics 
by means of Euclidean distance between the actual and 
desired RIR vector.  

5. Store the CNGM model if it matches the EEG spectral 
characteristics, let us say, if the Euclidean distance 
between the RIR vectors is smaller than 0.1. 

6. Repeat the procedure until a sufficient number of 
solutions is found for statistical analysis. 

7. Analyse the GRN interaction matrices W for 
statistically significant gene interactions that lead to the 
desired behavior.    

Our objective function in this optimization procedure is 
based on the average vector of relative intensity ratios 
(RIRs) for the defined clinically relevant frequency bands. 
We calculate the average RIRs over the relevant period of 
measurement (i.e., T = 1 min in this case) and use this vector 
of values find optimal parameters of our model.  Thus, any 
EEG or LFP signal can be characterized by vector of five 
numbers expressing the average RIRs of particular 
frequency bands over some time interval. During our 
optimization we try to find such gene networks that will lead 
to the SNN LFP with average RIR vector as closest as 
possible to the average RIR vector of the target human EEG 
in terms of Euclidean distance.  We have expected as was 
really the case, that in the end of optimization several 
CNGMs fit the target EEG data. This is not surprising as in 
the brain the EEG consists of numerous summated sources.  
Thus, there may be many possible source mixing schemes of 

underlying LFPs. This would also produce a similar result 
for the FFT. In our model however, each LFP is related to a 
different GRN, therefore we need to find those gene 
interactions which are crucial for the reproduction of LFP 
with desired spectral characteristics. We will analyse 
resulting gene interaction matrices Ws for statistically 
significant gene interactions as it is described on actual 
results in the next section.  

V. KNOWLEDGE EXTRACTION FROM CNGM 
During optimization we have generated N = 770 CNGM 

solutions with random gene interaction matrices Ws, random 
initial gene expressions and other values of parameters 
randomly generated from allowed intervals of values (see 
e.g. Table II). Since more than one optimal solution of 
CNGM leads to the SNN LFP similar to the desired target 
EEG signal, we are interested in distribution or statistics of 
gene interactions between genes in the GRN interaction 
matrix W. In particular, we would like to discover whether 
interactions between pairs of genes are positive or negative, 
that is whether upregulation of one gene expression leads to 
the upregulation of the other gene expression or to the 
downregulation of its expression, respectively. We visualize 
the frequency of positive and negative gene interactions in 
all relevant solutions of CNGM as levels of grey in each 
element of a summary matrix W of gene interactions. When 
the frequency of positive interactions between two genes 
equals the frequency of negative interactions in all 
interaction matrices, the cell is filled with grey. The more 
often we have a positive (negative) interaction among all the 
solutions the darker (lighter) the cell will be, respectively. 
Distribution of positive versus negative gene interactions 
between pairs of genes for all N = 770 randomly generated 
solution is depicted in Fig. 4a. We can see that the 
distribution of positive and negative gene interactions in all 

TABLE II 
MODEL PARAMETERS AND THEIR VALUE RANGES 

Model parameter Value range 

Fast excitation: Amplitude 
Rise / decay time constant (ms) 

0.5 – 3.0 
1 –  5 / 5 –  10  

Slow excitation: Amplitude 
rise / decay time constants (ms) 

0.5 – 4.0 
10 –  20 / 30  – 50 

Fast inhibition: Amplitude 
rise / decay time constants (ms) 

4 – 8 
5 – 10 / 20 –  30 

Slow inhibition: Amplitude 
rise / decay time constants (ms) 

5 – 10 
20  –  80  /  50 – 150 

Resting firing threshold, 
decay time constant  (ms) / rise k-times 

19 – 25 
5 – 50 / 2 –  5 

Proportion of inhibitory neurons 0.15 – 0.2 
Probability of external input firing 0.011 – 0.019 
Peak/sigma of external input weight 5  – 10 / 0.1 – 2 
Peak/sigma of lateral exc weights 5 – 14 / 2 – 8 
Peak/sigma of lateral inh weights 10 – 60 / 4 – 10 
Unit delay in e/i spike propagation 1 ms / 2 ms 
Probability of connection 0.5 
Number of neurons 120 
Interaction weights between genes (− 5 , +5) 
Initial expression of any gene (0.0, 0.1) 
Normalized expression of any gene (0.0, 1.0) 

. 
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770 random solutions is almost uniform therefore all cells 
are uniformly grey.  

 

 

(a) 

(b) 

(c )  

 
Fig. 4. Levels of grey in each element of a summary matrix W of gene 
interactions reflect the frequency of positive and negative gene 
interactions, respectively, in all relevant solutions leading to the LFP 
with spectral characteristics similar to the target EEG. Numbers denote 
the genes in GRN.  The bigger is the frequency of positive (negative) 
interactions, the darker (lighter) is the cell, respectively. (a) 
Frequencies of positive and negative interactions in 770 randomly 
generated interaction matrices W are almost equal. (b) Summary W of 
LFPs similar to the normal resting EEG. (c) Summary W of LFPs 
similar to 2-3 Hz large wave EEG in CAE seizure.  Legend: 1 = c-jun, 
2 = mGluR3, 3 = GABRA, 4 = GABRB, 5 = AMPAR, 6  = NMDAR, 
7 = SCN, 8 = KCN, 9 = CLC, 10 = jerky,  11 =  BDNF, 12 = FGF-2, 
13 = IGF-1, 14 = GALR1, 15 = NOS, 16 = S100beta. 

 
We have performed the optimization procedure of CNGM 
for two kinds of EEG signal. The first target EEG was the 
resting EEG from a normal healthy adult kindly supplied by 
Dr. Ian Kirk from University of Auckland, New Zealand. 
The target vector of average RIR values for objective 

function was: RIR1(δ,θ,α,β1,β2,γ) = (0.6, 0.14, 0.09, 0.07, 
0.08, 0.02) (see e.g. Fig. 3). Among 770 random solutions, 
20 Ws matrices led to an SNN LFP with spectral 
characteristics very close to the target EEG signal in terms 
of Euclidean distance between the RIR vectors being smaller 
than 0.1.  The distribution of positive versus negative gene 
interactions is illustrated in Fig. 4b. The second target EEG  
was an artificial 2−3 Hz large wave signal resembling the 
Slow Wave Discharge (SWD) EEG observed in the 
Childhood Absence Epilepsy (CAE) [25, 26].  There were 
22 CNGM solutions of W that led to such an LFP signal. 
Statistics of positive versus negative gene interactions from 
these 22 solutions is illustrated in Fig. 4c.   
   To discover the knowledge, e.g. to find out what these 
optimized solutions for a particular condition have in 
common, we have calculated how many times the 
interactions between genes become positive and how many 
times the gene interactions become negative in 20 Ws 
leading to LFP similar to normal EEG, and in 22 Ws leading 
to LFP similar to 2−3 Hz large-amplitude EEG in CAE.  We 
have used the basic frequency statistical analysis, namely the 
X2-statistic, to estimate which gene interactions were 
statistically significantly positive and negative. Table III 
summarizes statistically significant gene interactions of a 
particular sign for those genes, which are directly related to 
information-processing neural parameters. 

VI. VALIDATION OF CNGM RESULTS 
How we can prove that the knowledge extracted from 

CNGM is correct? Direct test would be to gather 
gene/protein data and extract the underlying GRN 
interactions by means of reverse engineering methods. In our 
particular case study of human EEG, this would not be 
possible due to ethical reasons. However, we could perform 
the same study on animal data and compare the predictions 
from CNGM with the gene interactions discovered by other 
methods, like for instance reverse engineering. In this 
section we will present an indirect partial validation of 
predicted gene interactions by means of neurobiological 
knowledge. In Ws leading to LFP resembling the normal 
EEG, there are several statistically significant negative gene 
interactions. First of all, the interaction between GABRA 
towards CLC is significantly negative in Ws producing LFP 

TABLE III 
STATISTICALLY SIGNIFICANT GENE INTERACTIONS 

LFP similar 
to the target 

EEG for 

Significantly 
POSITIVE gene 

interactions 
w (j → k) 

Significantly 
NEGATIVE gene 

interactions 
w (j → k)  

Level 
of X2 
stat. 

signific
ance α 

Normal 
resting 
EEG 

 
none 

SCN → NMDAR 
SCN → KCN 

GABRA → CLC 
NMDAR → KCN 

0.05 
0.05 
0.05 
0.05 

2−3 Hz 
large-wave 
EEG as in 
seizure 

 
          
        none 

 
 

GABRA → SCN 

 
 

0.025 
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similar to normal EEG. GABRA is the inhibitory receptor 
associated with ion channel for chloride. CLC is the ion 
channel for chloride that participates in maintaining the ionic 
and voltage balance by letting Cl− ions into the cell. To 
function properly, a neuron must establish a dynamic 
balance between excitation and inhibition so that it can 
respond to its inputs by firing action potentials at appropriate 
rates. Thus, when the level of GABRA increases it is 
reasonable to expect that the level of CLC will be lower in 
order to prevent electrical activity to become inhibited too 
much. And this is what a negative interaction from GABRA 
to CLC means. Another negative gene interaction relevant 
for the excitatory-inhibitory balance is the interaction 
between the gene for SCN and the NMDAR gene. Voltage-
gated sodium channels (SCN) increase excitability of 
neurons, thus it would make sense when they are elevated in 
expression, that the expression level of the major excitatory 
receptor NMDAR is downregulated. Therefore the latter two 
predicted interactions for the normal EEG make sense from 
the neurobiological point of view. The other two negative 
interactions make less sense from the excitatory-inhibitory 
balance point of view. The analysis has shown that genes of 
both SCN and NMDAR have a negative influence upon the 
gene coding for potassium (kalium) channel (KCN), thus 
leading to its downregulation when they are upregulated. 
KCN lets positive kalium ions out of the cell, thus making 
the cell interior more negative, and in such a way it 
counterbalances the action of excitation. Thus, it should be 
expected that upregulation of SCN and NMDAR leads to 
upregulation and not downregulation of KCN to 
counterbalance excitation.  

In the set of Ws leading to the 2−3 Hz large-amplitude 
LFP resembling the electrical activity in the SWD in CAE 
EEG, we have found only one significant gene interaction. 
Our results show that there is a statistically significant 
negative interaction between the genes coding for GABRA 
and SCN. The negative interaction from GABRA towards 
SCN discovered by our analysis means, that actually 
excitatory sodium channels will be elevated in their levels, 
which enhances excitability of neurons, when GABRA 
levels are lowered. Our results do not predict that the genes 
for GABRA and/or SCN are mutated, but instead they 
predict that if GABRA is lowered in expression, this leads to 
an increased excitability of neurons via elevated expression 
of SCN channels, which is not a “healthy” gene interaction 
counterbalancing decreased neuronal inhibition. Our results 
show that even when none of the genes coding for excitatory 
and inhibitory receptors/ion channels is mutated, 
inappropriate interaction that violates the excitation-
inhibition balance can lead to an abnormal EEG. This 
prediction however, remains to be tested by genetic research.  

VII. CONCLUSION 
In biological neural networks neuronal parameters that 

define the functioning of a neural network depend on genes 
and proteins in a complex way. Gene expression values 

change due to internal dynamics of the gene/protein 
regulatory network, initial conditions of the genes and 
external conditions. All this may affect gradually or quickly 
the functioning of the neural network as a whole. In our 
computer experiments, we have observed for example that 
different initial gene values can lead to the same outcome in 
terms of neuronal activity. Moreover, different types of gene 
interaction dynamics i.e. be it constant, periodic, quasi-
periodic or even chaotic, can lead to a similar LFP of an 
associated SNN model, provided some crucial gene 
interactions are maintained. On the other hand, in the 
diseased brain, either altered initial conditions expressed in 
values of neural parameters, mutated genes and/or altered 
interactions within GRN lead to abnormalities in network 
activity.  Realistic models of gene networks within neural 
networks should account for these processes. 

In order to investigate these phenomena, we have set up a 
hierarchical model of EEG generation based on the idea of 
CNGM that is simple and biologically plausible. Although 
we have used a very simple model of spiking neuron, the 
SRM, the results can be generalized to more complex 
models since balancing excitation and inhibition is a general 
issue. Moreover, the model is robust with respect to model 
parameter values, which can be any values from the 
biologically realistic value ranges listed in Table II.  

Presented case study on two kinds of EEG illustrates what 
kind of predictions can be obtained with the CNGM 
approach. In future, it may be worthy to identify the function 
and identity of other genes in the GRN to be able to draw 
predictions about their indirect influence upon neuronal 
dynamics. Furthermore, the GRN can be expanded to 
include genes for subunits of relevant proteins, thus enabling 
us to relax the one gene-one protein oversimplification, in 
which we treat groups of genes as one gene. And last but not 
least, finer analysis of the LFP/EEG signal by means of the 
wavelet transformation may be needed to lead to more 
precise quantitative comparisons.  

Future research will concentrate around the following 
issues: 

1) „What-if analysis“. What happens if one or few 
particular genes are erased or mutated? What happens 
if interactions within the GRN change due to some 
factors? What happens if external factors are 
included? In such a way our approach can serve as a 
noninvasive test. 

2) Introduction of learning rule(s) into an ANN model 
and corresponding genes into the GRN. 

3) Introduction of genes, which play role in synaptic 
connectivity and development of neural system. 

4) Exploration of possibilities of modelling genetically 
caused brain disorders such as some epilepsies, 
Parkinson’s disease, etc. 

These goals may mean that instead of an SNN, another 
neural network model will be employed, since the general 
methodological principles of a CNGM introduced in this 
paper are of a general relevance. Our goal is to make useful 
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predictions to aid the experimental testing. 
Future analysis will be conducted when the same abstract 

GRN will be used for both states (normal and epileptic) and 
some genes/proteins will be altered thus simulating gene 
mutations, drug influences, etc.  

APPENDIX 
In this Appendix, we would like to show examples of 

SNN LFPs obtained in our computer simulations of CNGM.  
 

 
Fig. 5. Example of the SNN output LFP simulating normal EEG. 

 

 
Fig. 6. Example of the SNN output LFP simulating seizure-like EEG. 
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