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Abstract

This thesis describes the development of a graphically interactive and online Virtual

Reality (VR) application. Based on keywords provided by users, it automatically

retrieves and display stereoscopic contents from the Internet. The system also includes

a state-of-the-art feature matching algorithm which can filter stereoscopic contents from

“normal” 2D contents.

With the main goal of delivering an affordable way of viewing 3D VR contents, the

application is designed to be specifically compatible with the low-cost smartphone VR

platforms such as Google Cardboard, Google Daydream, and Samsung Gear VR. The

experiment results show that the current application prototype is portable, easy-to-use,

and effective in retrieving and displaying stereoscopic contents. With this application,

users all over the world could easily experience millions of stereoscopic contents on the

Internet. It also has a huge potential of becoming a great tool for both VR testing and

learning purposes.
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Chapter 1

Introduction

Since the information revolution started in the 1990s, information technology has been

utilised in several different areas of human lives. With the advanced technologies,

especially the World Wide Web and computing hardware, people can achieve many

things that were only the dreams of their ancestors in the past such as: searching for

books without going to the library, experiencing through the rain forest while staying at

home, or checking in at the hotel with the bar-code scanning technique.

1.1 The power of smartphones

Besides the World Wide Web, mobile devices have also developed significantly in the

last two decades. They not only become smaller, but also contain many “smart” features

such as Wi-Fi, hidden cellular antenna, touchable screen, high-resolution display. Most

of the smartphones today can perform many advanced tasks like efficient localisation

data acquisition, outstanding visualisation, or object tracking. Because of this, they

have become “could not live without” devices for many people. There were almost

2 billion mobile device users worldwide compared to less than 1.8 billion of desktop

computer users in 2015 (Chaffey, 2016). Several different operating systems have

12



Chapter 1. Introduction 13

been designed for smartphones; such as Android, iOS, and Windows. Android, an

open-source Linux-based operating system(Nimodia & Deshmukh, 2012), is the most

popular one, claiming 81.5% of the global smartphone operating system market in

2014 (Hahn, 2015). There were 1.8 million applications available on Google Play

(Dogtiev, 2016) with millions of downloads. At the current time, thousands of new

applications are being published online every month.

1.2 The potential of Virtual Reality

In the recent decades, Virtual Reality (VR) technology has developed and reached to

a remarkably level in ICT industry. Today, there are many commodity VR systems.

They employ the depth perception and binocular vision of human to generate various

interesting applications. Underneath a general VR system, there is simply one flat LCD

screen (e.g. of a smartphone) that projects two stereo images to viewer’s left and right

eyes synchronously and simultaneously.

These devices allow people to visualise the 3D scenes without getting out of the

offices; for instance, people can safely and comfortably explore the tropical forests,

swim in the deep oceans, or fly in the sky. This technology is not only ideal for

entertainment, but also for education and training. While there are many VR applications

available on the market, most of them only focus on the entertainment aspect. Moreover,

their datasets are limited to just few pictures, videos, and virtual scenes in 2D. This is

due to the limitation of data acquisition, storages, and copyrights.

There are billions of images publicly available on the Internet (e.g., the Google

Image Search database). Just a tiny percentage of them are 3D visible by VR (e.g.,

images that contain left and right stereo parts); however, these small bits still count

millions. These publicly available datasets are significantly larger than any others

provided by existing tools.
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1.3 Research goal

With this background in mind, the main goal of this research is to create an application

that utilise both smartphones and VR to provide a quality 3D viewing experience. The

application is responsible for two main roles: (1) it can retrieve stereoscopic contents

from the Internet, and (2) it can display stereoscopic contents.

For the first role, the researcher will create an image classification algorithm that

filter stereoscopic contents from the “messy” data of the Internet. Then the filtered

contents will be converted into a VR viewable format. While the preferable approach is

to add these features into the local system of the application, it is still unclear if they

can work properly with the limited hardware of the smartphones.

The next role is to create a viewer that can display stereoscopic contents correctly.

The application is required to include an easy-to-use interface in a 3D virtual environ-

ment. By simply wearing the virtual reality headset, users can select and view the 3D

effects of all stereoscopic contents retrieved from the Internet.



Chapter 2

Project Approach

Since this is an application project, a suitable software development methodology is

used to ensure that the development could keep up with the project schedule. With

only one researcher working on the project, it is impossible to develop all features of

the application simultaneously. Moreover, there are close connections between these

features. One broken feature can cause the others fail to work properly. With this

context, a customised Waterfall Model is used for the development methodology, which

can be seen in Figure 2.1.

15
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Figure 2.1: A diagram that describes the project approach
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2.1 Define application features

In this initiation stage, all application features are highlighted. These features are

necessary for the project goal fulfillment. Each of them also has a small-scale function

analysis and previous work research. These previous works are related to the main

features of the application, which are 3D stereoscopy and Virtual Reality (VR).

The purpose of this analysis is to make sure that the application will be developed

through all of the optimised developing techniques that the previous work researchers

use. These techniques also help the application avoid common problems in 3D ste-

reoscopy and VR; such as virtual reality sickness, limited future contents. If a feature

deems difficult to be developed in the time frame, an alternative solution will be needed,

which can be either removing it or postponing it to be the last feature that is developed.

Although this application has been limited to be a mobile application, it is still

important to decide which mobile platform, graphic engine and Integrated development

environment (IDE) would be the most suitable for the development. Because of this,

popular engines and IDEs will be compared so that the best development solution can be

chosen. This is also the time when cost, resource, and development time are identified.

Based on the highlighted features, these three factors can be finalised to be used for the

next stage.

2.2 Define development plan

After the end of the previous stage, all gathered information such as previous works,

resource, development time are used for the creation of the project schedule. Because

all of the application features have been analysed, they can be sorted in the development

order of mandatory and difficulty.
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The chosen software development tool is also analysed in this stage. This is to

decide if this tool needs any add-on and which version will be used throughout the

development.

Moreover, the researcher also conducts a list of required hardware to be used for the

development and evaluation stage. Each hardware has its purpose explained and cost

highlighted to avoid the waste of resource and cost of the project.

2.3 Develop the application

In contrast with other stages, this is the most time and resource consuming stage. The

stage also has a different structure which is designed to make sure all features would be

developed successfully. Even though these features are not developed simultaneously,

the core structure of Agile Development Model is still the main design of this stage.

Based on the order of features to be developed in the project schedule, each of them

starts with the concept, planning, development, and evaluation stage. Figure 2.2 shows

how agile methodology works in this stage.

Figure 2.2: A diagram that describes the agile methodology usage in the development
stage

After the function objective is analysed, an optimised approach will be used to

develop the feature. When a feature development is finished, a small-scale evaluation
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will be conducted with the help of the researcher’s colleagues as test users. If there are

still some issues with the current feature, solving them will be prioritised. Only when

the users are satisfied with the current stage of the feature, the development will move

to the next feature with four agile methodology stages started again.

The development stage only completes when all feature developments are finished

with good satisfaction from the users. They will be combined into a whole project.

2.4 Evaluate the application

Although all features have satisfied the users in the previous stage, they may have issues

when implemented into a single application. The final stage of the application is needed

to go through a simple performance test. The test results will be used to help determine

if the application works properly.

In case there are issues found during the test, these issues will be analysed for their

criticality, and documented in the evaluation checklist.

2.5 Produce the report

When the application can run without any critical issue, a report is conducted to high-

light all research activities the researcher has performed. Any issue occurring during the

development stage is also documented with a solution. For the application evaluation,

the performance test methodology and feedback result are recorded. Feedbacks gathered

throughout the application evaluation are reviewed to identify problems that are not

resolved yet, as well as feature suggestions; this information is used for section 8.1 Fu-

ture work. Depend on the usefulness of the application in education and entertainment,

the application source code will be either submitted to the public or privately secured

for further development.



Chapter 3

Literature Review

3.1 What is Virtual Reality?

Virtual reality (VR) is a set of technology which is used to create a computer-generated

virtual environment where users can experience and interact just as if they would do in

real life (Emspak, 2016). It consists of four main components: Stereoscopic Displays,

Motion Tracking Hardware, Input Devices, and Software Platforms (Parisi, 2015).

The stereoscopic displays are generally designed as head-mounted displays for the

users. However, in some VR sets such as Cave Automatic Virtual Environment, these

displays are in combination with physical areas to create multi-displays environments

surrounding the users (Ng, Chan & Lau, 2016).

3.1.1 Background of Virtual Reality

VR has been around since the early 20th century, when a science fiction short story

Pygmalion’s Spectacles, written by Stanley G. Weinbaum, described a pair of goggles

which allowed users to interact with characters, objects in a movie (Sural, 2017). The

concept sparked many research and development to adapt VR into entertainment, flight

simulation, medical training, military training (Jerald, 2015).

20
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Figure 3.1: A typical VR Screen

While there were many successful applications for VR, the limitation of technology

prevented it from becoming widely available for consumers. It was not until the 2010s

that VR has become a system that people can set up in their home, which focuses on

the use of VR head-mounted displays.

Currently, there are two main types of VR headsets which are available on the

market: (1) the dedicated-hardware type and (2) the smartphone-based type. On the first

hand, the dedicated-hardware headset type, such as Oculus Rift, HTC Vive, delivers

superior VR experience with minimal compromise in image quality. This is thanks

to the customised hardware built into the head-mounted display, and controllers with

custom designs. However, the premium price-tag makes this type of VR only attract

VR enthusiasts.

On the other hand, the smartphone-based type has the advantage of making use of

most of the smartphone hardware on the market. The display, processor, and sensor in

the smartphone are used as components for the platform’s head-mounted display. With

this characteristic, smartphone-based VR minimises the price-tag to only a couple of
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dollars. One of the most popular examples is Google Cardboard introduced in 2014,

which has been shipped over 10 million units in March 2017 (Jonnalagadda, 2017). By

using a cardboard box as a head-mounted holder for the smartphone display, users can

experience VR through their smartphones.

3.2 Available smartphone-based Virtual Reality devices

Figure 3.2: A portable pocket stereoscope, a low-cost Google Cardboard, a Samsung
Gear VR, and a premium Google Day Dream

Acquired from (Bavor, 2016) (Samsung Electronics, n.d.) (Wee, 2016)

3.2.1 Google Cardboard

According to (Google, 2015a), Google Cardboard headset (Figure 3.2–top-right) con-

sists of three main parts. The first part is a pair of lenses which have a diameter of 34

mm. These lenses are designed to achieve 80-degrees field of view, which is narrower

than the lenses from dedicated hardware VR such as HTC Vive (110-degrees field
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of view) (Oscillada, 2015). Because of this, it is expected that users may experience

“goggle effect”, the effect that makes the Google Cardboard headset case still visible to

the users’ visual during the VR experience (Machkovech, 2016).

The second part is a mechanical body made of corrugated cardboard. This body is a

combination of three separated cardboards, namely “chassis”, “t-shirt”, and “button”.

To make the headset lighter and easy to handle, Google requires the thickness of the

cardboard material to be approximately 1.7mm.

Moving on to the final part, a button for Google Cardboard. Google has replaced the

“magnetic switch” button introduced in 2014 to a capacitive button, which consists of

two conductive parts named as “pillow” and “strip”; both parts are made from metalised

fabric (polyester Ni/Cu), a type of material that can trigger the capacitive sensing system

when it touches the smartphone screen. Moreover, Google also uses Velcro and rubber

band to assemble Google Cardboard headset securely.

One of the main limitation of Google Cardboard is its control mechanism; this

smartphone-based VR platform only has one single button to navigate through VR

contents. In the first generation of Google Cardboard, the button is designed as a

magnetic switch attached to the side of the cardboard. The newest second generation

of the platform still keeps the design of one single navigating button. However, the

magnetic switch is replaced with a capacitive button, which is more durable.

Wendy Powell (Wendy Powell, 2016) conducted a performance test to determine

if the Google Cardboard control is efficient to navigate smoothly through the 3D

environment. They created a virtual environment through Unity game engine and asked

the testers to perform some straightforward and complex navigation through it. There

were three control methods in this test, which were continuous motion, magnetic switch,

and Bluetooth controller. The continuous motion was the most disliked method, due to

the lack of control and the difficulty of turning while moving forward. The magnetic

switch had better feedbacks from the testers, but it did not respond accurately. The
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Bluetooth controller was the most favoured method, thanks to its direct control of

forwarding and backwards travel. However, this is not a part of Google Cardboard

and may have some compatibility issues with some smartphones. Since the headset

material is low-cost and widely available on the market, Google Cardboard is the most

affordable platform for consumers.

3.2.2 Google Daydream

In 2016, Google has introduced a successor of Google Cardboard named Google

Daydream (Figure 3.2–bottom-right). This new platform contains many improvements

from the predecessor such as a new controller, a better build material, and a new

requirement for the smartphone hardware (Faulkner & phones, 2017).

To be able to experience VR through Google Daydream, users are required to have

three main components: (1) A Daydream View headset, (2) a Daydream controller, and

(3) a Daydream-ready phone. The headset is made mainly of thermos-bonded cloth,

which is an improvement to Google Cardboard. With this new material, the headset

is lighter and more comfortable than other similar headsets on the market. Its phone

compartment contains six capacitive nubs which are used as directives for the phone

automatic image alignment system (Amadeo, 2016).

Google Daydream also addresses the lack of a controller present in Google Card-

board. In this new VR headset, the company also develops a small controller consisting

of a clickable touchpad, two physical buttons, a gyroscope, an accelerometer, and a

magnetometer (Novet, 2016).

Based on the review of (Orland, 2016), unlike Google Cardboard, the control system

of Google Daydream is versatile. Its functionality varies from a virtual laser pointer,

virtual steering wheels, to a motion detector. The device is very similar to Nintendo

Wii Remote, a controller from Wii game console. Google Daydream also requires
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smartphones to meet certain specifications to operate. With the addition of a new

controller and a requirement of certain smartphones with a powerful processor, Google

Daydream can deliver better VR experience when compared to Google Cardboard.

However, the platform still has several issues like the predecessor, which are narrow

field of views, glare on display due to light from the outside of the VR headset case.

Currently, there are only four compatible phones: (1) Google Pixel, (2) Motorola

Moto Z, (3) Huawei Mate 9 Pro, and (4) ZTE Axon 7. They are pricing from 400

USD to 869 USD. The headset itself also costs 79 USD (Google, 2017b). With this fee

barrier, it is tough for this device to be available as widely as Google Cardboard.

3.2.3 Samsung Gear VR

Samsung Gear VR (Figure 3.2–bottom-left) is a smartphone-based VR platform de-

signed exclusively for Samsung Galaxy S and Samsung Galaxy Note product lines from

2015 onward. The product is a collaboration between Samsung and Oculus VR; the

current generation, Gear VR 2017, is made mainly of plastic. Unlike Google VR plat-

form, the Gear VR headset is equipped with a gyroscope, an accelerometer, a proximity

sensor, and a head tracking system, which ensures that users can achieve virtual reality

with low latency (Samsung, 2017).

In the current generation, besides four physical buttons and a touchpad for naviga-

tion, Samsung also introduces a Bluetooth controller similar to the Google Daydream

controller. One advantage of Gear VR when compared with Google Daydream is that

the device has wider field of view, which is 101 degree. With this, the VR experience

can be more immersive and more natural. However, the headset still requires users to

adjust centre alignment and focus whenever they put their phone into the headset (Smith,

2017).
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While the compatible phone line-up is bigger than the Google Daydream one; the

cheapest one, Galaxy S6, is still priced at 299 USD. Moreover, the users still have to

spend around 45 USD for the Gear VR headset, and 39 USD for the controller (Amazon,

2016) (Peckham, 2017).

3.3 Virtual Reality application in Museum & Gallery

With the release of consumer VR headsets such as Oculus Rift and Google Cardboard,

many museum organisations have found this kind of technology as an effective way

for users to enjoy their museum without setting foot on the real location. While it is

impossible to identify the total number of museums supporting VR around the world,

they can be filtered into three main groups.

3.3.1 Experience through a first-party Virtual Reality application

One outstanding example is Renwick Gallery located in the USA. The museum has

created a smart-phone application that allows users to visit the “WONDER” exhib-

ition through their phone. The users can not only view several 360-degree photos

of art installations, but also listen to, or watch art description throughout the virtual

tour (Renwick Gallery, 2016).

Since the application is designed for only one museum, it can showcase all art

photos, videos as intended by the creator. However, this approach usually takes more

time and more cost than other approaches. It is also not popular due to the lengthy

download time and complex installation process.



Chapter 3. Literature Review 27

3.3.2 Experience through Web VR

Web VR is an open-source VR concept that allows the VR content to be displayed

through the web browser. One of the best advantages of this concept is that it is

compatible with most of VR platforms available for consumers, that includes Google

Cardboard, Samsung Gear VR, Oculus Rift. Instead of requiring a custom-made

smart-phone application, users can use any compatible web browser to enjoy the VR

content (WebVR, 2017).

Recognising this peak, the National Museum of Natural History and the British

Museum have implemented Web VR to their website to showcase the content of their

museum (Smithsonian National Museum of Natural History, 2016) (British Museum,

2017). Due to the open-platform nature, this approach may cause a different type of

issues when using through various web browsers or different smart-phones.

Indeed, the National Museum of Natural History virtual museum tour does not

provide an error-free experience. While there are several 360-degree photos on the

website, switching to VR mode does not display them in stereoscopic format, but

instead, show them in a monoscopic format that can only be viewed without the VR

headset.

3.3.3 Experience through third-party Virtual Reality application

Not all museums have a development team that is capable of developing a custom-made

VR experience. Instead, they offer a collaboration with other development companies

that are experts in this field. Some notable application examples are Jaunt VR, YouVisit,

and Samsung Milk VR (Korolov, 2016).

Some museums even have their virtual tour designed by Google (AMNH, 2015),

which can be experienced through a smartphone application called Google Arts &

Culture (Google, 2016a).
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While this approach is faster and easier for the museums, this type of virtual museum

tour either either requires payment (View-Master, 2017) or does not provide a good

museum experience (Vincent, 2016).

3.4 Challenges for smartphone-based Virtual Reality

3.4.1 Virtual reality sickness

When exposed to VR content, users may experience some negative side effects called

virtual reality sickness. Similar to motion sickness, virtual reality sickness symptoms

are seen as discomfort, headache, nausea, pallor, disorientation, stomach awareness,

and apathy (Kolasinski, 2014).

Since the early 1990s, negative side effect in VR has been examined by researchers

such as Cobb (Cobb, 1998), Sharples (Sharples, 2008). Based on the work of other

researchers, Stanney (Stanney, 2009) states that after viewing virtual environment

through a head-mounted display, 80-95% of the testers experienced some negative side

effects. Another research from Sharples (Sharples, 2008) concludes that 60-70% of the

testers experienced sickness symptoms after experiencing various presentations of the

virtual environment.

While they have similar symptoms, the cause of virtual reality sickness is different

from motion sickness. It is because of the disruption in the vestibular system. When the

head moves, this system sends the motion signals to the brain, which helps it identify

where the body is in the space. When viewing a fast-moving VR content, the eyes send

fake motion signals to the brain. On the contrary, the vestibular system still tells the

brain that the body is not moving. The mismatch between these two systems is the

reason for virtual reality sickness (Pappas, 2016).

In the 2014 Google I/O developer conference, Alex Faaborg, a designer of Google
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VR technology, stated that it was essential for the VR system to have a connection with

the user body. For more detail, a VR mobile application needs to have a stable camera

system with responsive head tracking sensor, which helps users navigate smoothly; the

transition between scenes in VR content is also required to be seamless without any

flashing image or sudden moving object. These characteristics will help avoid nausea

problem in the users (O’Connor, 2015).

3.4.2 Limited Virtual Reality contents

Currently, VR contents for smartphone-based VR are limited by the capability of

smartphone hardware. Most VR applications have a very simple graphic and a short

playtime, making the platform only a gimmick. Moreover, current smartphone hardware

has a very high latency when compared with the dedicated-hardware VR type (Petrovan,

2016) (Google, 2017a), which causes discomfort and nausea to users after a period

of usage. While Google has addressed this issue with the introduction of a new VR

platform named Google Daydream, there are only 4 compatible phones available on the

market (Google, 2017b).

Another reason for the lack of VR applications is that most consumers are not

familiar with the VR technology like Google Cardboard; content creators do not find

the market large enough to develop a quality experience (Simonite, 2015).
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3.5 3D contents in Virtual Reality

3.5.1 How does 3D effect work?

Colour and depth signals deliver visual information of the World to human. The human

brain continuously receives visual cues (from the two eyes) to rebuild a spatial 3D

structure of the surrounding effortlessly. In other words, it is natural for people to see

things in 3D. This enables humans to discover the appearance, shape, and distance of

distinct objects on their surroundings.

In recent years, the increasing popularity of 3D cinemas and 3D TVs have attracted

attention from the public to the science of this two-eyed depth perception. There has

been a dramatic expansion in the number of 3D display devices, movies, and games

with 3D content in the consumer market. In principle, they attempt to deliver two

different views, one to each eye; and force the brain to recover the desired 3D scene.

For instance, 3D movies are simply made by two side-by-side video cameras. They are

placed mimicking the arrangement of human eyes when observing scenes through two

perspectives, which are horizontally separated by a small distance.

The stereo vision system of animals including humans has been evolving for mil-

lions of years and is evidenced to be an essential factor for survival. There are many

advantages to the human vision; the ability to perceive distance is considered as an

important factor. Even the human depth estimation can be made from analysing the

perspectives of objects and their shadows. From the researcher experience, the best and

fastest way is to solve the correspondence problem of stereo vision. It determines the

patterns viewed from the left eye corresponding to which viewed from the right eye, to

allocate the same points or regions (Churchland & Sejnowski, 1994). For instance, the

separation between two correspondences of the same point from the two views defines

how close or how far from us that point is in space.
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3.5.2 Common stereoscopic 3D techniques

(a) An anaglyphic image (b) A stereogram image

Figure 3.3: Examples of anaglyphic and stereogram images

Anaglyph

In 1852, W. Rollmann first introduced a stereoscopy technique called “Farbenstereo-

scope”, which manipulated the colour of the drawing to produce 3D effect (Rollmann,

1853). The technique requires the use of glasses colour coded with red/blue, red/green

or more frequently red/cyan channels. These colours are merged with the same colour

type in an image to create 3D effect.

For an example, when viewing with red/cyan filtering glasses, most of the left (red)

and right (cyan) features in images are filtered to be perceived by the corresponding

eye. After the golden age of 3D in the 1950s, anaglyph 3D has become popular once

again in the 2000s thanks to the increasing trend of low-cost 3D movies in cinema and

home video.
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Stereogram

Another special type of stereoscopic image is the single-image stereogram or autostereo-

gram, which creates depth illusions by using image patterns consisting of many random

dots or repeating images. Stereogram has been experimented since the early 1990s.

In 1970, Japanese graphic designer Masayuki Ito introduced a random-dot stereogram

method based on the work of Bela Julesz (Howard & Rogers, 2012). The method was

used again when Christopher Tyler combined it with single-image stereogram method

to create the first autostereogram, which allowed human brain to see 3D effect without

the need of glasses (McAllister, 2006). It is not until 1990 that autostereogram has

gained huge interest from the public (Weibel, 2005).

The entire image is achieved by encoding three-dimensional images into distortions

of symmetrical patterns which can then be decoded by misleading the eye convergences.

To see the depth illusion, viewers must focus on one point in front of or behind the

image surface. While doing that, the repeating patterns are moved sideways, and the

brain attempts to fuse them together by focusing on certain pairs at different parallax

angles, causing these patterns to appear floating at different depths correspondingly.

Side by side parallel-eyed and cross-eyed views

These are two popular methods for viewing 3D scenes with the naked eyes. Correspond-

ingly, parallel-eyed and cross-eyed side-by-side stereo pairs are made for each method.

They are single images stored in general image formats (JPEG, PNG, BMP, GIF, etc.).

The two images have simple internal arrangements: they can be placed horizontally

side-by-side. Depend on these image positions, which are either left/right or right/left,

viewers either perform cross-eyed technique or parallel-eyed technique to see the depth

illusion of the images.
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In the parallel-eyed technique case, their left eye must look at the left image and

their right eye looks at the right image. The viewers can also perform an alternative

technique by looking “through” the photo as if they focus on a far point behind the

image surface for the same effect. For the cross-eyed images, viewers must converge

their views in a way that the left eye looks at the right image and the right eye looks at

the left image.

When using a VR headset, each eye can only see the image that the computer create

specifically for it. Because of this, the viewers can easily see the 3D effect of parallel-

and cross-eyed image without actively converging their eyes to focus on the correct

image. This is the reason that the researcher chooses this type of stereoscopy as an

approach to create 3D effect for the project.

3.5.3 3D visualisation with Virtual Reality devices

Before the time of digital photography, 3D cinemas, and 3DTVs; stereoscopy had

been noticed and investigated by C. Wheatstone since the 1840s (Wheatstone, 1838),

who had produced some early explanations of binocular vision. Motivated by his

research, O. Holmes invented a stereoscope (Holmes, 1859) a few years later (as shown

in Figure 3.2–top-left). Back in those days, this was a relatively popular kit which had

a lens for each eye to make the image appear larger. It also horizontally translated

the images to obtain a similar real-life stereoscopic view. The same idea still applies

in today’s state-of-the-art VR devices such as the low-cost Google Cardboard (Bavor,

2016), Samsung Gear VR (Samsung Electronics, n.d.), and the premium Google Day

Dream (Wee, 2016) (shown in Figure 3.2). In short, the LCD screen on each device

displays a side by side image similar to what is seen in Fig. 3.1.1; here, each of the

human eyes sees a different view, and the human brain does the hard work to merge

these views and reconstruct a corresponding 3D scene.
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Figure 3.4: Principle of perceiving 3D from a VR screen

Figure 3.4 demonstrates the background theory of stereo vision that makes VR works.

Shown in the figure are two points: B is a point virtually lying on the background, and

P is a point lying in front of the background (they may look different in shape or colour).

Human eyes have a base distance beyes. These two points are projected on to the screen

at different points: pBL and pBR for B, and pPL and pPR for P . Many 3D points will

appear in human brain when the eyes see a set of two projected correspondence points.

Theoretically, the distance dP = pPR − pPL between two correspondence points pL, pR

will determine how close/far the point is, in space:

ZPA

ZPE

=
dP
beyes

=> dP =
ZPA × beyes

ZPE

(3.1)

If dP issettobeequaltobeyes, the point P will appear at infinity. When dP gets smaller,

the point P gets closer to us. This establishes the optical principle of today’s VR.
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3.5.4 Binocular problems with traditional Virtual Reality kits

While traditional stereoscopic kits and VR devices have the same principal in binocular

vision, the recent VR technology still has two advantages over the former. The first

advantage is the constant distance and angle between stereoscopic images and human

eyes. Even though 3D cinemas and 3DTVs also have digital processing computers to

display multiple stereoscopic images and videos to users, their binocular vision can be

affected by the binocular disparity.

On the first hand, with 3D cinemas and 3DTVs, The closer viewers to the stereo-

scopic images, the greater the binocular disparity is (Leroy, 2016). The overly wide

binocular disparity can cause double vision and strain human eyes. The same issue can

also happen if the viewers are on the far left or the far right of the stereoscopic images.

To reduce this binocular disparity, the viewers can sit further from the stereoscopic

images. However, sitting too far from the display is prone to create a conflict between

accommodation (a process which the eyes are keeping the sharpness picture a particular

object while focusing on it) and vergence (the movement of two eyes toward the same

point of vision) (Patterson, 2015). To allow the viewers perceive the depth of image,

3D cinemas and 3DTVs trick the eyes to converge to a virtual object on the display

while still maintain the accommodation on the picture background. When the distance

between the viewers and the display is large, the object will appear very small; thus

makes it difficult for the eyes to focus. Moreover, other objects that either move around

the screen or have high luminance are prone to distract the viewers. They can create

accommodation-vergence conflicts which can cause significant eye fatigue and visual

discomfort (David M. Hoffman, Ahna R. Girshick, Kurt Akeley & Martin S. Banks,

2008).

On the other hand, VR devices allow the viewers to adjust the distance and angle of

the image suitable for their preferences. Since there is no other object in the viewers’
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vision besides the stereoscopic image when using the devices, accommodation-vergence

conflict is avoidable.

It is true that the old stereoscopic kit created by O. Holmes can get rid of these

issues as well. However, the lack of digital processing power makes it impossible for the

viewers to enjoy different stereoscopic images seamlessly. On the contrary, VR devices

are capable of displaying not only static stereoscopic images but also stereoscopic

videos, which is its second advantage.
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Project Objective

4.1 Research rationale

Currently there are many Virtual Reality (VR) applications that are compatible with

smartphones. However, most of them only focus on the entertainment aspect. Moreover,

their contents are very limited, making these applications become unproductive just

after a few minutes of usage. Because of these issues, VR has not become an effective

tool for education in general. Besides VR, stereoscopy is also a popular topic that

attracts the public today. There are many creators around the world who are sharing

their stereoscopic contents on the Internet every day. If used correctly, these contents

can be great assets that help students become more interested in school sessions.

The purpose of this research is to combine these two trending topics into a new and

exciting application that not only provides a new way to experience 3D effect, but also

allows teachers to deliver their lectures more effectively. The application allows users to

view 3D content without the need of 3D glasses, and improves the immersion by putting

them in a virtual room covered with 3D contents. Besides some custom-made contents,

most of the stereoscopic contents will be retrieved from the Internet. Moreover, the

application is required to be low-cost and usable at any time and at any location.

37
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4.2 Research ethic

Most contents will be retrieved from the Internet based on the topic that users choose.

There are also some custom-made contents, but they are related to educational subjects

such as animal, landmark, and museum. Therefore, it is unnecessary to apply for ethical

approval for the research.

4.3 Application features

In order to meet this project objective, a list of core features for the application have

been identified.

4.3.1 Low-cost and easy-to-use

Because the application is designed to be ubiquitous, it cannot be either costly nor

complicated. The hardware required for the application operation are also required to

be minimal.

4.3.2 VR menu

In contrast with traditional menu, it is very difficult to navigate VR menu through

common hand controls such as keyboard typing, mouse clicking, or touch gesture.

This is because users’ vision and sense of direction are already used to navigate their

“virtual-self” in the virtual world. Instead of requiring the users to “press” or “touch”,

VR menu should allow them to navigate through their “virtual-self”. To be more precise,

the menu should appear as a 3D object in the virtual world and can be navigated by

head-movement camera or voice command.
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4.3.3 Stereoscopic content classification

Since most of the stereoscopic contents will be retrieved from the Internet source, it is

important to have a data retriever tool that can distinguish between stereoscopic and

other types of content on the Internet. Based on the keyword chosen by users, the tool

will perform a search for stereoscopic content related to it.

4.3.4 Stereoscopic content display

Instead of creating specific 3D contents, the application makes use of the huge library of

stereoscopic contents available on the Internet. However, the problem of this approach

is that these contents are not designed to be viewed in VR environment. Therefore,

a special display mechanism is created to convert these contents into virtual reality

objects.

4.3.5 Stereoscopic content storage

Application size is also an important factor that determines whether the application can

be ubiquitous or not. Adding too many 3D contents can increase the size dramatically.

Moreover, the 3D contents conversion process can also enlarge a kilobyte-size content

into a megabyte-size content if the conversion algorithm is not optimised. At the current

stage, an online content storage for the application is preferable.

4.3.6 Virtual gallery room

The virtual environment should have a friendly design that mimic the design of a real-

life gallery room. This is to help users feel comfortable when using the application.

Besides, the users should be able to navigate in the environment easily since they already

had experience in moving around small rooms in real life.
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Development Plan

5.1 Smartphone-based Virtual Reality development en-

vironment

The main goal is to deliver an ubiquitous approach to 3D vision through Virtual Reality

(VR). Thanks to the very low-cost headset and the vast list of compatible smartphones

on the market, Google Cardboard is the most potential VR platform in the current time.

Even though Google Cardboard supports both Android and iOS, the project will

just focus on Android development. This is because iOS is available exclusively on

iPhone, a line of smartphones developed solely by Apple Inc (Apple Inc., 2017).

According to Google, an Android Google Cardboard application can be developed

through three development environments: (1) Android IDE, (2) Unity Engine, (3) and

Unreal Engine (Navarro, Pradilla & Rios, 2012).

40
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5.1.1 Android IDE

With Android IDE, developers can choose either Android SDK or Android NDK to

develop the application; each option has its pros and cons. The main benefit of Android

SDK is its use of Java, one of the most popular programming language (Stack Overflow,

2017).

While using Android SDK may cause the application demand more powerful

hardware power than it truly needs, the development time is shorter when compared

with developing an application using native code (Horton & Portales, 2016).

The second option, Android NDK, is a toolset that helps developers access directly

to smartphone hardware and native functions. It also allows the application to utilise

the hardware power as well as achieving low latency in smartphone sensors. However,

to use this set of tools, developers are required to have sound knowledge of C or C++

programming languages. They also need to understand how to find or create a suitable

native code library of necessary functions for their application development (Google,

2017c).

There is no doubt that both options provide excellent development environments

for Android applications. However, developing a VR application through these op-

tions requires more knowledge in API and a new set of function codes designed for

VR (Google, 2016b) (Mullis, 2016).

5.1.2 Unity Engine

Unity is a game engine developed by Unity Technologies. The engine is utilised to

work in over 20 popular platforms, such as iOS, Android, Windows; but its focus is the

mobile platform. 34% of top 1000 free mobile games are based on the engine (Unity

Technologies, 2016a).
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There are several features that make Unity as a top choice for the game engine.

Firstly, it supports many modern game development tools, including multi-threaded job

system, State Machine hierarchies and transitions, NVIDIA® PhysX®, and Real-time

Global Illumination. These tools not only help create games that are suitable for current

users but also dramatically reduce development time.

Secondly, there are four versions of Unity: (1) Personal (Free), (2) Plus ($35

monthly), (3) Pro ($125 monthly), and (4) Enterprise (custom-made for enterprise);

which are suitable for all types of game developers. The free Personal version is good

enough for students and beginners to develop their games as well as releasing them on

the market.

Finally, Unity has a huge community that includes a library of tutorial suitable for

all types of developers. It also has an asset store that houses over 1700 free & paid

extension tools. In addition, there is an online forum where developers across the world

discuss and help each other in game development (Unity Technologies, 2017a).

5.1.3 Unreal Engine

Unreal Engine is a game engine created by Epic Games, one of the leading gaming

technology company. In 2006, Unreal Engine 3 was released; from there, it became one

of the most popular engines that was used for developing blockbuster games such as

Gears of War, XCOM: Enemy Unknown. Moreover, it was also used for a low-cost but

high-quality development platform for students and independent developers (Busby,

Parrish & Wilson, 2009) (Tavakkoli, 2015).

When Unity, a game engine competitor, announced a free model for independent

developers, Epic Games also decided that it was the time for its game engine to become

ubiquitous. In 2015, all of the features from the latest version, Unreal Engine 4, has

become free of charge for personal usage. The commercial developers only have to pay
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5% of their profit when their games are on sale on the market. The company also states

that they expect VR will be the highlight of the gaming industry; therefore, it is a vital

part of the future of Unreal Engine (Crecente, 2016).

Unreal Engine 4 has many advanced features that are suitable for developing high

budget games, including DirectX 12 Rendering, Cascade Visual Effects, Artificial

Intelligence, and Post-Process Effects. Moreover, Unreal Engine 4 has introduced

Blueprints Visual Scripting, a tool that simplifies the game scripting process (Epic

Games, 2017).

5.1.4 Unity Engine & Unreal Engine comparison

Since Android IDE demands much more knowledge and development time to achieve

the project goal, only Unity Engine and Unreal Engine have a potential to deliver the

project in the time frame.

Each of the engines has their advantages and disadvantages; the researcher compares

features of both the engines to find the most suitable development platform. The

researcher groups them into three aspects: (1) Development feature, (2) Development

fee, and (3) Community. The comparison is displayed in Table 5.1.

In the comparison table, it is noticeable that Unity Engine provides better perform-

ance for smartphone applications. It also has a much bigger asset and tutorial library for

novice developers. Moreover, the engine ability to export the project to a wide range of

platforms, including Android, iOS, and Web application, can help make the application

ubiquitous.
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Unity 5 Unreal Engine 4
Development feature

Mainly based on C# & JavaScript Mainly based on C++ & UnrealScript
Requires knowledge of programming (at
least C# or JavaScript) for project develop-
ment

Include Blueprint feature, which allows
developing a project with minimum know-
ledge of Coding

Provides wider tweak & settings for the
environment and object

Environment & object settings in Blue-
print are limited. Requires custom-made
model & platform for more settings

Graphic is good enough for mobile users,
but limited compared with Unreal Engine

Graphic is generally better, including bet-
ter shadow, physic, terrain

Better performance for mobile use Better performance for PC & Console
Supports a wide range of platforms, in-
cluding mobile & web

Supports mainly PC and Console

Development fee

• Free for personal use or commer-
cial use with annual venue less than
$100k.

• The Free edition lacks of Profiler
feature, which is used for perform-
ance benchmark for the project

• Free for personal use. Includes all
features, it is no difference between
Free edition & Premium edition.

• Requires 5% profit for commercial
use

Community
Huge user base Moderate user base
Extensive asset library, including objects,
scripts, animation, tools required for a
complete game with low fee

Small asset library. High fee of use

Huge database of the tutorial, including
videos, demo & scripts. Requires less time
for training

Limited database of tutorial

Community & Tutorials suitable for all
types of developers, including beginners
and hobbyist

Tutorials largely are designed for design-
ers rather than programmers

Table 5.1: VR IDE comparison table
Acquired from (VR Status, 2016) (Pluralsight, 2014) (Eisenberg, 2016) (Unity

Technologies, 2017a) (Epic Games, 2017)



Chapter 5. Development Plan 45

5.2 Hardware resource for development

1. Xiaomi Mi 4C

Released in late 2015, the smartphone from Xiaomi has a powerful processor

with an IPS display. The resolution of the smartphone is 1920x1080, which is

considered to be very clear for a 5-inches display. While the smartphone is not

officially available in New Zealand, it can be bought from China with a price tag

of 175 NZD.

2. Windows Personal Computer

According to the system requirements from Unity Technologies, Unity develop-

ment tool needs a GPU that supports at least DirectX 9 with shader model 3.0.

The CPU is also required to be capable of executing SSE2 instruction set. For the

required operating system, Windows and MacOS X version that are older than

Windows 7 SP1 and Mac OS X 10.9 respectively are not supported. Since the

researcher’s computer contains a 2015 Skylake CPU and a 2016 AMD GPU, the

development tool is expected to operate with great performance.

3. Google Cardboard VR Headset

Of all smartphone VR headsets that are available on the market, Google Cardboard

VR headset is the cheapest and the most popular one. By simply following the

cardboard design guide provided by Google, users can modify any cardboard box

to use with their smartphone. Moreover, this type of headset is also available for

sale in many gadget stores.

4. Xiaomi VR Play Headset

Xiaomi released one of their first VR headset in 2016 with the name as Mi VR

Play. The headset follows the Cardboard design pattern provided by Google.
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Therefore, it has a very similar structure, and can be considered as a Google

Cardboard headset. While the material is changed from cardboard to more

premium feel lycra, the headset still has a capacitive touch at the top.

5. RITECH VMAX VR Headset

Instead of following Google Cardboard design template loosely, RITECH has

introduced several new features for their headset. The most important one is an

ability to alter headset lenses in axis position and dioptre. With this, the headset

is suitable for users with different facial structure as well as the ones who have

myopia or hypermetropia. Moreover, there are some improvements in the lenses

and the capacitive button.

For the lenses, they are clearer with wider field-of-view when compared with Mi

VR Play. For the capacitive button, even though it is more tactile and easier to

press, the button does not always work with Xiaomi Mi4C. The only disadvantage

is the material of the headset, which is made of cheap plastic.

RITECH VMAX can be bought from China for 15 USD. However, it is not

officially available in New Zealand currently.

5.3 Software resource for development

1. Unity 5.6

Unity is one of the most popular 3D engine in the market. The tool has a user-

friendly graphical interface and a huge library of coding data for inexperience

developers. Based on the comparison between Unity and another user-friend

engine named Unreal Engine, which shows in section 5.1 Smartphone-based

Virtual Reality development environment, application created with Unity usu-

ally has better performance in the smartphone environment.
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The development tool also utilises C# programming language and possesses a

library of built-in 3D models. These two factors can help reduce the amount of

resource and time required for the development. Unlike the previous versions,

version 5.6 of Unity introduces a native integration for Google VR. This can

minimise the amount of conflicts occurs when implement Google VR SDK to

this development tool.

2. Unity VR package

Besides Goole VR, Unity also supports other VR platforms such as Oculus Rift

and Samsung Gear VR. This support allows Unity Technologies company to

create a VR package for these platforms, which contains a lot of built-in assets

and C# scripts. While this project focuses on Google Cardboard VR platform,

this package still has benefits to the development. By analysing the package

content, the researcher can create custom C# scripts and assets based on it.

3. Google VR SDK for Unity

While developers can create their own script to help their applications run properly

in Google VR platform, the process could take a lot of time and resource. Google

has introduced a software development kit (SDK) that converts any Unity applic-

ation to be operational in Google VR platform. The SDK is not only easy-to-use,

but also frequently maintained by Google development team.

4. AUT University Webserver

Most 3D contents are hosted outside of the application to avoid the massive

increase of the application size. Since an online storage is currently the best

option, the researcher has contacted the supervisor to reserve a small space of

AUT University Webserver for the 3D contents.
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5. GIMP 2.8

GIMP is a free and open-source graphical editor that contains a lot of robust tools

for image editing. This software helps fix any image issue of the 3D contents

retrieved from the Internet. Moreover, it also allows the researcher to create

notification panels and 2D background for the application.

5.4 Project schedule

Figure 5.1: Schedule estimation of the research

Figure 5.1 shows the schedule estimation of the research. After all of the necessary

resource, including development tools and related documents, have been collected,

the official development begins in June 2017. While six the main features have been

organised clearly, their development durations are not completely accurate. There

are certain factors, such as unexpected bugs and delayed evaluation process, that can

make the development stage unable to meet the time frame. However, it is important

to conclude the development stage in November 2017. This is to make sure that the

research can complete at the deadline (February 2018).
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5.5 System design

5.5.1 System architecture

The system combines human-computer interaction with local and global system collab-

oration to deliver stereoscopic contents to users. There are three main modules in this

system: (1)Client Side, (2)Data Acquisition, and (3)Preprocessing. Each module has

various functions that not only depend on each other, but also connect with functions in

other modules. More detail can be seen in the Figure 5.2

Figure 5.2: A diagram that describes the system architecture

Starting with the Client Side module, when users input a keyword, the application

will retrieve the data and use it for the content searching process in the Data Acquisition

module. If there are suitable contents in the local storage, they will be prioritised.

Otherwise, the application will use an online search engine to find the content related

to the keyword. After that, the search results will be transferred to the Preprocessing

module so that they can go through a stereoscopic content classification process. This
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is to ensure that when the classified contents go back to the Client Side module, they

will be in correct format.

5.5.2 Application flowchart

Before the development stage begins, it is important to create an operation flowchart

describing what requests the Client Side module send when being interacted by users.

When the application starts, the users are asked to whether input a keyword or view the

local gallery, which is stored in the application data. After that, depend on the initial

choice, the application will load the correct stereoscopic content gallery for viewing. If

the users want to change the content topic, they can input a new keyword at any time.
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Figure 5.3: Work flow of the Client Side module
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Development Stage

6.1 Getting familiar with Unity Engine

6.1.1 Roll-a-ball tutorial

This is the most basic video-tutorial that Unity provides for developers who are not

familiar with Unity development tool. By creating a simple rolling ball game, the

tutorial demonstrates how the engine works with the core features such as Objects,

Physics, Prefabs, and Scripting (Unity Technologies, 2015b).

One of the main advantage of Unity engine is the ability of managing and controlling

3D objects and environments with just few simple steps. An example can be seen in

Figure 6.1, the researcher could easily add a 3D sphere object into the environment.

52
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Figure 6.1: Steps to add a 3D sphere object into Unity environment

While Unity simplifies many of the initialisations of game development, developers

are still required to manually program objects for more detail and complex behaviour,

which is the characteristic of Scripting. This feature allows developers to input program-

ming scripts to the objects through C# or Javascript. Even though the researcher was

unfamiliar with these two programming languages, the past-experience with C++ helped

him follow the tutorial with no difficulty, thus succeed in programming several object

behaviours, which are player object tracking camera, physic collider, score system.

6.1.2 Survival Shooter tutorial

This is the tutorial for developers who are familiar with the UI and scripting feature

of Unity Engine. In this tutorial, there are 10 video clips which were recorded during

Unite 2014, a training event created for Unity developers. By following the instruction

from these video clips, the developers are able to utilise the built-in AI feature as well

as more advanced scripting technique and UI design. Figure 6.2 shows a part of the

Unity AI system.
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Figure 6.2: An image of the Unity AI system control layout

Although Unity supports both C# and JavaScript, the tutorial only focuses on one

single programming language, which is C#. Throughout the video clips, the instructors

also create several scripts to support the gameplay of this project. Each 3D object

(a player, enemies) is required to be attached with scripts in order to perform basic

actions such as moving, shooting. These scripts are also responsible for triggering Unity

animation system. For an example, if the player health drops to zero, the script will

trigger the player’s dying animation, which is attached in Unity animator system.

Since this project is much more advanced than Roll-a-ball tutorial, it took quite a

significant amount of time for the researcher to familiarise and finish all 10 video clips.

This tutorial led to the conclusion of the first part of the training stage.
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Figure 6.3: Animator system and some of the scripts attached to Player game object

6.1.3 Google VR SDK

Google VR SDK is a Unity project package developed by Google. It serves as a

guideline for developers to implement Google Virtual Reality (VR) feature in their

Unity projects (Google, 2017d). package includes several integrations, which are

head tracking, user interaction system, side-by-side stereo rendering, VR distortion

correction, automatic gyro drift correction, a centre alignment marker for assisting users

to install the phone into the VR headset.
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Figure 6.4: Google implements custom game objects with Unity VR native system for
Google VR.

While the package can dramatically reduce the VR implementation time, there are

two issues with it. Firstly, scripts control most of the VR integrations, including stereo

rendering and head tracking. In order to customise any of these integrations, developers

are required to be familiar with all of the scripts included in the package.

Secondly, the package is designed as a Google VR template for developing multiplat-

form in Unity. Because of this, there are many assets and scripts that deem unnecessary

for the current project.

Figure 6.5: A demo scene from Google VR SDK
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Since this was in the training stage, the researcher kept the whole package intact.

All of the scripts and assets related to Android were to be identified at the end of the

training stage.

6.1.4 Unity VR package

By version 5.6, Unity has included a native integration for Google VR (Unity Tech-

nologies, 2017e). Before that, only Oculus Rift and Samsung Gear VR were natively

supported. Therefore, the VR package designed by Unity Technologies contains super-

ior assets and more detail scripts when compared with Google’s package.

Figure 6.6: A demo scene and asset from Unity VR package

Because the package is only fully compatible with Oculus Rift and Samsung Gear

VR, even if the package can be exported to an Android smartphone, it is impossible

to either control or experience the application due to the lack of required hardware.

Despite this issue, the assets and scripts still serve as templates for the researcher’s

project.
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6.2 Application prototype development

6.2.1 First demo – July 2nd, 2017

The purpose of this demo is to demonstrate the ability of Google Cardboard platform

in displaying stereoscopic photos and assisting users to experience 3D effect while

looking at these photos. The content of this demo is short and simple. users are put

into a virtual area where there are multiple stereoscopic photos surrounding them. By

simply use head movement to put the camera pointer on one photo and press the trigger

button, the triggered stereoscopic photo will be enlarged to cover all display area.

VR Menu

Cardboard VR control is different than traditional control. Instead of using a traditional

control method such as a finger tap, a computer mouse, or a gamepad; users have to

move their head to control the camera. A simple pointer on the centre of VR camera

display acts as a virtual cursor for the users to point it at desired objects.

Because of this, VR menu needs to be simple, big, and easy to be navigated. The

menu of this demo follows the Flat Menus Mapped on Geometry style, which is similar

to the menu in Oculus Rift or Gear VR.

While Google VR SDK package includes a pointer and a VR camera template, Its

3D object is very limited. Even the 3D object library in Unity does not contain a 3D

flat panel object that can be used as a VR menu. This gave the researcher two options:

either (1) creating a custom 3D object or (2) borrowing some from other 3D library.

The former option requires knowledge in 3D design, of which the researcher lacked,

therefore it was not recommended.

Fortunately, Unity VR package has a demo of VR menu in Flat Menus Mapped on

Geometry style, which includes a 3D flat panel object. Thanks to the templates from
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Google VR SDK and Unity VR package, the VR menu of this demo was completed in

couple of hours.

Figure 6.7: The 3D menu is based on the 3D asset from Unity VR package.

Import stereoscopic photos

While there are many stereoscopic photos available on the Internet that can be easily

found through Google, not all of them have the same quality and resolution. Moreover,

copyright is also a concern when using Internet resource for the official application.

Since the purpose of this demo is to test the 3D photo demonstration ability of

Google Cardboard platform, the researcher borrowed five photos from Nick Mann

library (stereoscopiclibrary.tumblr.com) for the demo.

Importing image files to Unity is an easy process, users can follow the menu as

“Assets/Import New Asset. . . ” or just simply drag the image files to Unity asset hierarchy.

However, depends on whether the Unity object is 3D or 2D, image files are required to

be converted to suitable formats.

stereoscopiclibrary.tumblr.com
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(a) Image files as Unity sprite files

(b) Image files as Unity material files

Figure 6.8: A comparison image between Unity sprite and Unity material files

In order to have the imported photos displayed by the 3D flat panel objects, they are

converted to Unity material files. Moreover, based on the Survival Shooter tutorial in

the training stage, the photos have to be in the Unity UI component to fully cover the

display area, thus being converted to 2D sprite texture are required.
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Stereoscopic photo display mechanism

In this demo, there is a pointer that is used to target stereoscopic photos that users want

to view. Developing this function requires two main parts. The first part is developing

the pointer system. Google VR SDK package already has this feature. This pointer

system also has a simple animation: whenever users hover the pointer on the menu, it

will transform from a dot to a button. Therefore, the researcher easily completed this

part.

The second part was creating a trigger mechanism. This was done by adding a

Pointer Physic Raycaster script to the Unity camera, and an Event Trigger script to each

menu. The purpose of the Pointer Physic Raycaster script was creating an invisible line

from the camera (can be understood as “eyes” of the user) to the object. This script

helped Unity understand which target the users were aiming.

For the Event Trigger script, in the Unity default settings, pressing Fire1 button or a

finger tap on the touchscreen will serve as a pointer click (Unity Technologies, 2016b).

Therefore, by setting up the Event Trigger script, the researcher could make Unity call

a custom script or object behaviour whenever the object attached with the script had a

pointer click triggered.

• First try

According to the Survival Shooter tutorial, one of the easy way to set an image

cover the whole display screen is using Unity UI Canvas. Because of this, the

researcher tried to put all stereoscopic photos on the canvas object and set them to

cover all display screen. Each photo was set inactive at default, and could only be

activated when there was a pointer click trigger on the relevant menu. A custom

script was also attached to each photo, which served as a trigger to deactivate

the photo again if there was another pointer click trigger. While this approach

worked well in Unity preview mode, the stereoscopic photos did not appear when
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the researcher tried the demo on an Android environment. More research was to

be conducted on Google VR SDK and Unity UI Canvas to resolve this issue.

Figure 6.9: Using Unity UI Canvas feature for the stereoscopic photos display in the
first approach

• Second try

Upon researching on Google VR SDK, the researcher realised that the VR camera

display was controlled by GvrViewerMain object. Without it, the camera would

go back to standard with only a single display screen. With its characteristic,

another approach was proposed: by creating a custom script to automatically

deactivate GvrViewerMain object, Unity UI Canvas as well as the stereoscopic

photos would appear on the display screen.

Once again, in Unity preview mode, the demo worked perfectly. But when

the demo was tested in Android environment, the stereoscopic photos still not

appeared on the display screen. Moreover, when GvrViewerMain object was

deactivated, head-movement tracking stopped working, and display screen was

still in VR mode with two separate cameras. While the issue was not solved, this
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approach helped the researcher understand that GvrViewerMain object contained

a script that created two separate cameras at the start of the application. When

the object was deactivated, these two cameras were still activated therefore it was

impossible for the demo to switch to a single display with this approach.

• The solution

With the introduction of VR native support, Unity has a toggle to switch the

application from standard single camera view to VR camera view. This helps

simplify the development of VR application through Unity. While developers can

access this toggle with few simple steps, users are blocked from it.

This led to the third approach of solving the issue of this demo: by creating

a custom script to automatically switch between standard mode camera and

VR mode camera, the stereoscopic photos could appear properly in Android

environment as well as in Unity preview mode. Since there was a Unity library

designed specifically for VR, the coding process was quite simple. The script

was attached to every stereoscopic photo so that whenever these photos were

activated, the script would trigger as well. Moreover, inside this script, there was

also a function to recognise a touch input. This would help the script to switch

back to both VR mode and the main menu whenever there was a single touch

input from users.
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Figure 6.10: Each menu has an event trigger script which is automatically activated
when the menu is clicked.

us ing System . C o l l e c t i o n s ;

us ing System . C o l l e c t i o n s . G e n e r i c ;

us ing Uni tyEng ine ;

us ing Uni tyEng ine .VR;

us ing Uni tyEng ine . UI ;

p u b l i c c l a s s ImageDisp l ay : MonoBehaviour

{

p u b l i c GameObject VRCam;

void Update ( )

{

i f ( gameObject . a c t i v e I n H i e r a r c h y == t rue )
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{

V R S e t t i n g s . e n a b l e d = f a l s e ;

}

i f ( ( I n p u t . Ge tBu t ton ( " F i r e 1 " ) | | I n p u t . t ouchCoun t

↪ > 0) && gameObject . a c t i v e I n H i e r a r c h y ==

↪ t rue )

{

gameObject . S e t A c t i v e ( f a l s e ) ;

V R S e t t i n g s . e n a b l e d = t rue ;

VRCam . GetComponent < G v r P o i n t e r P h y s i c s R a y c a s t e r

↪ > ( ) . e n a b l e d = t rue ;

}

}

}

Listing 6.1: content of the custom script that is triggered when the menu is clicked

With this approach, the demo finally works in Android environment, which con-

cludes the development of the first demo of this project.

Performance test of the first demo

• Test methodology

Since this is the first demo of this project, the performance test was conducted in

private with a small number of testers. The content of the test was also very simple.

It was only about moving the camera to look at the stereoscopic photos, which

lasted around 5 minutes. The testers consisted of the researcher, the supervisor

and two other master students in AUT.
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When the test ended, each tester was required to answer only one question: “Are

you be able to see the 3D effect on those stereoscopic photos?”

• Test result

After the test, four out of four testers confirmed that they could see the 3D effect.

However, the supervisor and one master student pointed out an issue in this demo.

Before this test, these two testers had experienced 3D effect on stereoscopic

photos by tricking their eyes without the use of VR headset. They realised that

the position of two images in each stereoscopic photo were placed in reserve,

which resulted as “depth” 3D effect instead of the correct “pop-out” 3D effect.

Because of this, the next demo has to address this issue before moving on to any

new content of the project.

6.2.2 Second Demo – August 6th, 2017

The purpose of the second demo is to address an issue that is still present in the first

demo, which is incorrect 3D effect on stereoscopic photos. Moreover, there is also a

new feature introduced in this one, which serves as a solution for a new issue occurred

during the development.

Display different image on two cameras

In the previous demo, the full-screen display of stereoscopic photos is set by switching

from standard mode to VR mode through a custom script. With this approach, the first

demo can make use of any stereoscopic photos available on the Internet. However, these

online materials are not designed exclusively for VR headset. Therefore, it is possible

that the two images on these stereoscopic photos are placed incorrectly: right image

on the left side, left image on the right side. Due to this characteristic, a new display

mechanism was introduced.
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Instead of switching to a single camera, each camera of the VR mode represents each

side of the stereoscopic photos. Because of this, each stereoscopic photo is required to

be split into two photos acting as left side and right side of the original photo. According

to the project goal, this process should be done automatically. However, due to the focus

of fixing address the stereoscopic photo display problem in this demo, the researcher

manually performed this process.

• First try

The researcher used a simple method. Two new culling mask profiles were created

with the name as LeftEye, and RightEye. Each culling mask profile was added

to its related camera culling mask. After that, left image and right image of the

stereoscopic photos were matched with the relevant culling mask, and placed in

the same position in the application environment. Thanks to different culling

mask profile, while each camera displayed the same image of the menu and the

surrounding environment, they received different side of image of the stereoscopic

photos.

However, there was a problem. With the release of version 0.8, Google has

added several changes to their VR SDK, including removing two cameras as

standalone game objects. These cameras are incorporated in Unity native VR

camera. Therefore, they only appear after the application starts. This update

prevents these cameras culling mask from being altered in Unity standard UI.

In order to change these values, steffkelsey (xdf103, 2016) has proposed an idea

of creating a custom script to automatically do this process.

us ing System . C o l l e c t i o n s ;

us ing Uni tyEng ine ;

p u b l i c c l a s s EyeLaye rCu l l : MonoBehaviour



Chapter 6. Development Stage 68

{

p u b l i c LayerMask LeftEyeMask ;

p u b l i c LayerMask RightEyeMask ;

void S t a r t ( )

{

S t a r t C o r o u t i n e ( L a t e S t a r t ( ) ) ;

}

p r o t e c t e d I E n u m e r a t o r L a t e S t a r t ( )

{

y i e l d re turn new WaitWhile ( ( ) => GvrViewer .

↪ C o n t r o l l e r == n u l l ) ;

y i e l d re turn new WaitWhile ( ( ) => GvrViewer .

↪ C o n t r o l l e r . Eyes . Length < 2) ;

foreach ( GvrEye gvrEye in GvrViewer .

↪ C o n t r o l l e r . Eyes )

{

sw i t ch ( gvrEye . eye )

{

case GvrViewer . Eye . L e f t :

gvrEye . t o g g l e C u l l i n g M a s k =

↪ LeftEyeMask ;

break ;

case GvrViewer . Eye . R i g h t :
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gvrEye . t o g g l e C u l l i n g M a s k =

↪ RightEyeMask ;

break ;

}

}

GvrViewer . C o n t r o l l e r . U p d a t e S t e r e o V a l u e s ( ) ;

}

}

Listing 6.2: Content of the custom script for changing culling mask value of the cameras

With the script attached to one game object that appeared when the demo started,

the researcher could change the culling mask profile in each camera. The preview

mode showed that each camera received a different side of the photos. Unfortu-

nately, this custom script was created in September 2016. There has been several

updates of Unity library, including a removal of UpdateStereoValues() function

usage. Due to this change, while Unity preview mode accepted this function,

exporting the demo to Android environment deemed the function as incorrect.

• The solution

Since both left and right cameras from Google VR SDK are generated automatic-

ally by the start of the demo, it is impossible to change any value of them. Instead

of doing that, a decision of adapting Unity native VR feature to the demo was

made. This Unity feature allows developers to specify which user eye the camera

is targeting when developing a VR application (Unity Technologies, 2017d).
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Figure 6.11: Two camera objects were added to the demo in this approach.

Based on this feature, two camera objects with the same characteristics were

added to the demo. Each camera had different target eye setting and different

culling mask profile, which matched with each image side of the stereoscopic

photos. To be more precise, both cameras could receive the same image of all

objects in the demo except the one from the stereoscopic photos. While the

creation of these cameras caused the auto-generated cameras unusable, all of the

Google custom scripts attached to the demo were still needed. This was because

these scripts also gave users the control ability of the application such as camera

movement, object interaction. With this approach, each camera can finally show

different image based on the culling mask profile. The feature also works in

Android environment.
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Stereoscopic photos on dual camera

Due to the change of the camera system, the researcher realised that the old stereoscopic

photos display mechanism approach in section First demo – July 2nd, 2017 was not

effective anymore. For Unity UI Canvas to display in VR mode, the canvas has to have

render mode switched to World Space. In this mode, any object belongs to the canvas

become a game object with its own position, rotation, and scaling setting. Because

of this characteristic, the researcher had to attach the the canvas to the cameras. This

canvas also needed to have a specific position, rotation, and scaling setting that could

fully cover all display area of the cameras.

Figure 6.12: The camera display area in Unity preview mode(top) has different
characteristics from the one in Android environment (below).
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There was an issue in this process. The camera display area in Unity preview mode

and in Android environment did not have the same characteristics. Therefore, a canvas

that fully covered the camera display area in Unity preview mode would be out of place

in Android environment and vice versa. This required the researcher to fix this issue

through trial & error.

Performance test of the second demo

• Test methodology

When compared with the first demo, there is no new feature or content added to

this demo. The only difference is the back-end. Because of this, the performance

test was the same as the previous one. The participants of this test were downsized

to only 2 persons (the researcher and the supervisor) to ensure that the process

could be completed as soon as possible.

Besides the current resource of Mi VR Play and Xiaomi Mi4C, there was one

addition equipment to this test: a VR headset named RITECH VMAX

• Test result

When the test was performed in Xiaomi Mi VR Play headset, the 3D effect

displayed correctly. However, switching the headset to RITECH VMAX caused

both left, and right images appeared out of the camera display area. This was due

to the mismatch of lens display area between Mi VR Play, and VMAX. While

Google Cardboard design give several layouts for capacitive button location,

shape of the outer-case, and material; It does not specific that the headset creators

must follow closely on the template (Google, 2015c). This is why each headset

has its own lens distance, field-of-view, which leads to the need of a viewer profile

system (Google, 2015d).
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This system allows the headset creators to create their own headset specification

profile so that any Cardboard-compatible application can optimise its camera

display area to match with the profile. Since the researcher optimised position,

rotation, scaling settings of the stereoscopic photos for Mi VR Play headset, the

images appeared out of place when the demo was tested when using VMAX

headset. In addition, the change of stereoscopic photos mechanism caused the

camera pointer (white dot) appeared during the test, which was distracting for the

viewers.

6.2.3 Third Demo – September 3rd, 2017

With the image misplacement issue from the second demo in mind, the main goal of

this demo is to fix it as well as to implement new feature if no new issue occur and halt

the development.

New stereoscopic photos on dual camera approach

In the old approach, when a stereoscopic photo menu is clicked, left image and right

image of that photo will appear and attach to the related camera object. Because the old

display method required different position and rotation settings of these two images for

different headset to cover whole camera display area, another effective approach was

needed.

In the new approach, the researcher moved both cameras to a dimly closed 3D

gallery room, where a size-enhanced version of the clicked stereoscopic photo were

virtually hanged in front of the cameras. Users could freely move their head to explore

the 3D photo as well as the area as if they were in a real museum.
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Thanks to the simplicity of this approach, this feature was completed with just a

simple script of automatically performing two steps: (1) move both cameras to the 3D

gallery room, and (2) move the UI image object to the same room also.

Automatic camera rotation

While the side images could finally cover whole camera display area, a new issue

happened. Since the rotation settings of the 3D gallery room and two side images

were fixed, users had to frequently rotate their head to view the images. Moreover,

when getting back to the menu screen, their head rotation settings were not changed,

which required them to move their head again to see the menu centre. This issue not

only annoyed the users, but also had a high chance of causing disorientation problem.

Therefore, both cameras rotation settings were required to be constantly changed so

that they were always in front of both the clicked menu and the side images hanged on

the wall of the 3D gallery room.

• First try: Camera rotation adjust

Since both cameras had their own rotation settings, creating a custom script to

adjust them was the first thing to try. This script automatically changed the camera

rotation settings to default settings if either any menu was clicked or the users got

back to the menu screen.

Unfortunately, Google VR SDK does not allow developers to change user camera

rotation settings during runtime. According to Google, the reason is that it

was essential for users to actively control their virtual head all time to enhance

experience, and avoid discomforting (Google, 2015b).
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• The solution: Game objects rotation adjust

With the inability of changing the camera rotation settings, the researcher decided

to use a more time-consuming approach. Instead of rotating the users’ camera, all

other game objects in the demo were rotated to match with the rotation settings

of both cameras. This process was performed through a custom script, which

divided into two parts:

In the first part, when the menu was clicked; the rotation settings of the left

camera would be copied, and pasted to the rotation settings of the side images as

well as the 3D gallery room. Then the cameras and side images would be moved

to this 3D gallery room.

In the second part, when users got back to the menu screen, the difference

between the centre menu rotation settings and the clicked menu rotation settings

was calculated into a specific value. This specific rotation value was used to rotate

whole menu screen so that the users’ cameras would be in front the menu that

was clicked recently.

Since the menu and the UI had different rotation settings, performing these two

parts would require many unnecessary steps and resource. A new menu structure

that could fuse with the side images was required.

Not only supporting 3D game development, Unity also allows developers to create

two-dimension games. Therefore, the engine has many features and programming

library for this development style. One of the most essential feature is an ability

to import an image file to the project as a sprite game object (Unity Technologies,

2015a).

Based on this technique, all of the old menu using 3D model from Unity VR

package and the UI were replaced with the sprites of the left-sided image of all of

the available stereoscopic photos. These new game objects also included their
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own custom-made Box Collider so that the cardboard VR pointer could interact

with them. The sprite of the right-sided image was attached to the correspond

left-sided image object as a child game object.

After this new menu object structure was assembled, a new custom script was

attached to each menu. This script not only had the stereoscopic photo display

mechanism in section 6.2.1 First demo – July 2nd, 2017, but also included a

new camera rotation function explained in section “Camera rotation mechanism”.

Moreover, the script was also optimised to improve the demo performance. To be

more detail, in the first and second demo, the photo display mechanism function

was called at the start the demo, and remained constantly until the demo was

closed. The new approach separated this function into two trigger part: image

activation part and image deactivation part. The activation part only acted as a

trigger when the script was enabled (a menu was clicked). The deactivation part

only begun when the script was disabled (users got back to the menu screen).

With this approach, the camera was always in front of both the images hanged on

the wall in the 3D gallery room and the clicked menu in the menu screen. There

was also a new feature presented thanks to the new menu structure. All of the

menu also displayed 3D effect for the users to enjoy. Moreover, the size of the

demo was also reduced noticeably thanks to the removal of 3D model of the old

menu.

us ing System . C o l l e c t i o n s ;

us ing System . C o l l e c t i o n s . G e n e r i c ;

us ing Uni tyEng ine ;

p u b l i c c l a s s Demo3_ImageDisplay : MonoBehaviour

{
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GameObject VRCam, VRRoom, VRMenu , RightCam ,

↪ P o i n t e r ;

p r i v a t e void Awake ( )

{

VRCam = GameObject . F ind ( " P l a y e r " ) ;

VRRoom = GameObject . F ind ( " Cube " ) ;

VRMenu = GameObject . F ind ( " P l a n e " ) ;

RightCam = GameObject . F ind ( " Main Camera " ) ;

P o i n t e r = GameObject . F ind ( " G v r R e t i c l e P o i n t e r "

↪ ) ;

}

p r i v a t e void OnEnable ( )

{

P o i n t e r . S e t A c t i v e ( f a l s e ) ;

VRCam . t r a n s f o r m . p o s i t i o n = new Vec to r3 (VRCam .

↪ t r a n s f o r m . p o s i t i o n . x , −7 , VRCam .

↪ t r a n s f o r m . p o s i t i o n . z ) ;

VRRoom . t r a n s f o r m . r o t a t i o n = Q u a t e r n i o n . E u l e r

↪ ( 0 , gameObject . t r a n s f o r m . r o t a t i o n .

↪ e u l e r A n g l e s . y , 0 ) ;

gameObject . t r a n s f o r m . l o c a l P o s i t i o n = new

↪ Vec to r3 ( gameObject . t r a n s f o r m .

↪ l o c a l P o s i t i o n . x , −8 , gameObject .

↪ t r a n s f o r m . l o c a l P o s i t i o n . z ) ;
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gameObject . t r a n s f o r m . l o c a l S c a l e = gameObject .

↪ t r a n s f o r m . l o c a l S c a l e * 4 ;

}

void Update ( )

{

i f ( ( I n p u t . Ge tBu t ton ( " F i r e 1 " ) | | I n p u t .

↪ t ouchCoun t > 0) && gameObject . t r a n s f o r m .

↪ l o c a l P o s i t i o n . y != 0 )

{

gameObject . GetComponent <

↪ Demo3_ImageDisplay > ( ) . e n a b l e d =

↪ f a l s e ;

}

}

p r i v a t e void OnDisab le ( )

{

gameObject . t r a n s f o r m . l o c a l P o s i t i o n = new

↪ Vec to r3 ( gameObject . t r a n s f o r m .

↪ l o c a l P o s i t i o n . x , 0 , gameObject . t r a n s f o r m

↪ . l o c a l P o s i t i o n . z ) ;

gameObject . t r a n s f o r m . l o c a l S c a l e = gameObject .

↪ t r a n s f o r m . l o c a l S c a l e / 4 ;



Chapter 6. Development Stage 79

VRMenu . t r a n s f o r m . r o t a t i o n = Q u a t e r n i o n . E u l e r

↪ ( 0 , RightCam . t r a n s f o r m . r o t a t i o n .

↪ e u l e r A n g l e s . y − gameObject . t r a n s f o r m .

↪ l o c a l R o t a t i o n . e u l e r A n g l e s . y , 0 ) ;

VRCam . t r a n s f o r m . p o s i t i o n = new Vec to r3 (VRCam .

↪ t r a n s f o r m . p o s i t i o n . x , 1 . 4 f , VRCam .

↪ t r a n s f o r m . p o s i t i o n . z ) ;

P o i n t e r . S e t A c t i v e ( t rue ) ;

}

}

Listing 6.3: Content of the optimised script attached to each new menu object

Performance test of the third demo

While this demo only fixed the issue from the previous one, there was a whole new

menu structure and custom script used to accomplish this goal. Because of this, the

content of this test was the same as the second demo test. There was also no new headset

device as well as no addition tester.

• Test result

The first impression was that each menu could display 3D effect correctly, which

improved the user immersion. When clicked on one menu, the users could see

the enhanced-size stereoscopic photo right away without adjusting their head

rotation. In order to get back to the menu screen, a simple capacitive button

trigger would put the users’ view right back to be in front of the menu they had

clicked previously.
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Yet again, the introduction to a new script and a new menu structure led to an

occurrence of a new issue. While all image files could be imported to Unity, it

was impossible for developers to input exact value for their resolution. The only

option available in Unity front end UI was scaling, which had the value based on

the image real resolution. Because of this, if the imported images had different

resolution or aspect ratio, the menu objects in the demo would appear uneven. An

image scaling mechanism was required for the next demo.

There was also a small issue with the 3D gallery room. The room was unable to

contain the whole display area of the magnified images. During this performance

test, the culprit was unknown to the researcher. Therefore, more research was

planned to be performed in the next demo.

6.2.4 Fourth Demo - October 1st, 2017

Besides fixing any issue from the previous demo, this demo aims to implement two new

features: image object scaling, and online image import. There are also some small

tweaks to the 3D gallery room and the custom scripts that were developed in section

6.2.3 Third Demo – September 3rd, 2017.

Image object scaling

When an image is imported to Unity as a sprite, its resolution can be changed based on

the image compression technique and image size threshold that developers input. After

that, resolution and aspect ratio of the sprite are converted to object scale value and

object scale ratio respectively (Unity Technologies, 2015a). A uniform scale value of 1

always represent as the default resolution and aspect ratio of the sprite. Due too this, if

both sprites have the same scale value, the difference in either resolution or aspect ratio

will make them appear uneven in Unity (Unity Technologies, 2017b).
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• First try: Create multiple Unity UI

In this approach, the researcher utilised the stereoscopic photo display mechanism

shown in section 6.2.1 First demo – July 2nd, 2017. Any image object attached

to a new Unity UI object had an option to stretch its resolution to fit with the UI

resolution. By attaching and stretching each image object to a UI object with a

fixed resolution, all image objects could appear evenly even if they had different

resolution or aspect ratio.

Although this technique could fulfill the objective, the researcher still considered

it to be not an effective one. The first issue was the unnecessary use of too many

UI objects. For an example, if there were 10 image objects appeared in the

demo, 10 UI objects were required to be added and have an image attached to

them. Moreover, since each stereoscopic photo had two side images attached

to each other (as shown in section 6.2.3 Third Demo – September 3rd, 2017),

the addition of UI objects would require them to be also attached to these side

images. This made the object structure complicated. The second issue was the

unknown of specific resolution value. All UI objects had a relative scale value

with a uniform default value of 1. Because of this, the size of these objects could

only be changed based on the researcher observation, not calculation.

• The solution: Scaling images by using bounding boxes

In Unity engine, each 3D object has its own axis-aligned bounding box that is

used for object collision detection. This bounding box always matches with the

object size and vice versa. In addition, instead of having relative object scale

settings like the object, the axis-aligned bounding box has a specific scale value

hidden from Unity development tool UI. Thanks to this feature, the bounding

box can be used as a scaling value be retrieved and set by developers (Unity

Technologies, 2017c).
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The first step of this approach was to pick a standard Unity image object and

ensured that all image objects related to this resizing feature had the same scale

value. Since this image object type was also used as a menu object, the default

scale was set to 0.25 : 0.25 : 0.25 in x : y : z axis. After that, an image object

would be used as a standard image object with standard resolution and aspect

ratio. All other image objects, including menu and stereoscopic photos, would

be resized to be at the exact size as the standard image. While it was possible

to pick any image object already available in the demo as a standard image, it

could cause a scaling issue later when online image import feature was added.

Therefore, a new image object was added as a standard image object. This object

had the renderer component disabled so that only developers could only see it in

Unity developer mode.

The second step was to get the bounding size value from both the standard image

object and the image object which is needed resizing. These values were used to

calculate a ratio that converted the image object’s size to match with the standard

image object’s size. Due to the characteristic of axis-aligned bounding box of

having its size dependent on the rotation, all image objects were required to be at

default rotation value (0 : 0 : 0 in x : y : z axis) before the calculation began.

After the size conversion completed, all image objects had their rotation settings

reverted to their original value. Both these steps were performed by a custom

script attached to every image object that was used as a menu and a side image of

the stereoscopic photos.

With the use of this technique, not only was there no addition game object

required, but also could any specific resolution and aspect ratio be converted into

the same size as the standard image object.
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us ing System . C o l l e c t i o n s ;

us ing System . C o l l e c t i o n s . G e n e r i c ;

us ing Uni tyEng ine ;

p u b l i c c l a s s Demo4_ImageScale : MonoBehaviour {

Vec to r3 S i z e R a t i o , StandardBound , Cur ren tBound ;

GameObject S t a n d a r d P h o t o ;

p r i v a t e void OnEnable ( )

{

Vec to r3 p l a c e h o l d e r = gameObject . t r a n s f o r m .

↪ r o t a t i o n . e u l e r A n g l e s ;

gameObject . t r a n s f o r m . r o t a t i o n = Q u a t e r n i o n .

↪ E u l e r ( 0 , 0 , 0 ) ;

S t a n d a r d P h o t o = GameObject . F ind ( " image−

↪ t e m p l a t e " ) ;

S tandardBound = S t a n d a r d P h o t o . GetComponent <

↪ Rendere r > ( ) . bounds . s i z e ;

Cur ren tBound = gameObject . GetComponent <

↪ Rendere r > ( ) . bounds . s i z e ;
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S i z e R a t i o = new Vec to r3 ( S tandardBound . x /

↪ Curren tBound . x , S tandardBound . y /

↪ Curren tBound . y , S tandardBound . z /

↪ Curren tBound . z ) ;

gameObject . t r a n s f o r m . l o c a l S c a l e = new Vec to r3

↪ ( gameObject . t r a n s f o r m . l o c a l S c a l e . x *

↪ S i z e R a t i o . x , gameObject . t r a n s f o r m .

↪ l o c a l S c a l e . y * S i z e R a t i o . y , gameObject .

↪ t r a n s f o r m . l o c a l S c a l e . z * S i z e R a t i o . z ) ;

gameObject . GetComponent < B o x C o l l i d e r > ( ) . s i z e =

↪ new Vec to r3 ( S t a n d a r d P h o t o . GetComponent <

↪ B o x C o l l i d e r > ( ) . s i z e . x / S i z e R a t i o . x ,

↪ S t a n d a r d P h o t o . GetComponent < B o x C o l l i d e r

↪ > ( ) . s i z e . y / S i z e R a t i o . y , 0 . 1 f ) ;

gameObject . t r a n s f o r m . r o t a t i o n = Q u a t e r n i o n .

↪ E u l e r ( p l a c e h o l d e r . x , p l a c e h o l d e r . y ,

↪ p l a c e h o l d e r . z ) ;

}

}

Listing 6.4: Content of the attached script that automatically scaled the image object

size to match with the standard image object size
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Online image import process

Before this demo, all of the image objects had been manually added. These objects had

been served as placeholders for the researcher to implement several features such as 3D

image display, image scaling. These placeholders also met a requirement to appear as

any stereoscopic photo for users to view. Therefore, it was possible for the researcher

to add more image objects with the same characteristic of these placeholders to fulfill

the project goal. However, frequent addition of these objects required the researcher to

painstakingly searched the image source, checked if the object included the necessary

components and scripts. Furthermore, the stereoscopic photo library had to be big

enough for the users to enjoy viewing them in several times, thus could cause a dramatic

increase of the application size if the image object was added manually.

One solution for this problem was to create a connection between the application

and the online database. With the help of the supervisor in setting up an online database,

the researcher only needed to create the online connection through a custom Unity

script. This script contained two processing parts: download image from the online

database and convert the downloaded image to a Unity game object.

The first part began with the importation of an index file from the online database.

This file contained all the name of image files in the database that matched the charac-

teristic of a stereoscopic photo. The content of this file would then be converted into

an array of text serving as a guideline for the script to download the requested image

files. Since Unity allows parallel runtime of functions, it was important that all other

functions were halted until the download of this index file completed.

In the second part, the script created image objects using Instantiate, a Unity function

that creates a game object based on a prefab. The prefab was based on the placeholder

object structure so new game objects did not need any addition of custom scripts or

components. After the new game objects were created, their texture was replaced
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with the texture of the corresponding downloaded image. Finally, the position settings

and rotation settings of these objects were set to match with the intended position,

and rotation. All attached custom scripts were also enabled to perform their intended

functionality. Only one placeholder object was to be kept for this script operation, the

others was removed out of the demo.

While the script could be attached to any game object available in the demo envir-

onment for it to work, the best location was an empty game object that have all other

image objects as its child objects. This would help the Camera rotation mechanism

to work correctly without further action.

us ing System . C o l l e c t i o n s ;

us ing System . C o l l e c t i o n s . G e n e r i c ;

us ing Uni tyEng ine ;

p u b l i c c l a s s Demo4_ImageImport : MonoBehaviour {

p u b l i c L i s t < s t r i n g > l i n e s ;

p u b l i c GameObject image ;

p r i v a t e s t r i n g u r l l , u r l r ;

p r i v a t e Vec to r3 [ ] imagepos =

{

new Vec to r3 ( −4 .8 f , 0 , −4 . 7 f ) ,

new Vec to r3 ( −3 .5 f , 0 , −1 . 3 f ) ,

new Vec to r3 ( 0 , 0 , 0 ) ,

new Vec to r3 ( 3 . 5 f , 0 , −1 . 3 f ) ,

new Vec to r3 ( 4 . 8 f , 0 , −4 . 7 f )

} ;



Chapter 6. Development Stage 87

I E n u m e r a t o r S t a r t ( )

{

y i e l d re turn S t a r t C o r o u t i n e ( Ge t Index ( " h t t p : / / www.

↪ i v s . a u c k l a n d . ac . nz / s t e r e o g a l l e r y / w3 / l i s t . t x t

↪ " ) ) ;

i n t x = 0 ;

GameObject pho to ;

f o r ( i n t i = 0 ; i <=4; i ++)

{

u r l l = new System . Ur i ( " h t t p : / / www. i v s .

↪ a u c k l a n d . ac . nz / s t e r e o g a l l e r y / w3 / " +

↪ l i n e s [ x ] ) . A b s o l u t e U r i ;

u r l r = new System . Ur i ( " h t t p : / / www. i v s .

↪ a u c k l a n d . ac . nz / s t e r e o g a l l e r y / w3 / " +

↪ l i n e s [ x + 1 ] ) . A b s o l u t e U r i ;

pho to = Crea t e Image ( i ) ;

y i e l d re turn S t a r t C o r o u t i n e ( GetImage ( u r l l ,

↪ u r l r , pho to ) ) ;

x = x + 2 ;

}
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}

I E n u m e r a t o r Ge t Index ( s t r i n g u r l )

{

WWW p a t h = new WWW( u r l ) ;

y i e l d re turn p a t h ;

l i n e s = new L i s t < s t r i n g >( p a t h . t e x t . S p l i t ( new

↪ s t r i n g [ ] { " \ n " } , System . S t r i n g S p l i t O p t i o n s

↪ . RemoveEmptyEntr ies ) ) ;

}

GameObject Crea t e Image ( i n t i )

{

v a r temp = I n s t a n t i a t e ( image , t r a n s f o r m .

↪ l o c a l P o s i t i o n + imagepos [ i ] , Q u a t e r n i o n .

↪ E u l e r ( 0 , −90 f +45* i , 0 ) , t r a n s f o r m ) ;

temp . name = " Image "+ i +"− l " ;

temp . t r a n s f o r m . G e t C h i l d ( 0 ) . name = " Image " + i + "

↪ − r " ;

re turn temp ;

}

I E n u m e r a t o r GetImage ( s t r i n g u r l l , s t r i n g u r l r ,

↪ GameObject pho to )

{

/ / S t a r t a download o f t h e g i v e n URL
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v a r l e f t = new WWW( u r l l ) ;

/ / w a i t u n t i l t h e download i s done

y i e l d re turn l e f t ;

/ / Cr ea t e a t e x t u r e i n DXT1 f o r m a t

Texture2D t e x t u r e = new Texture2D ( l e f t . t e x t u r e .

↪ width , l e f t . t e x t u r e . h e i g h t , T e x t u r e F o r m a t .

↪ DXT1, f a l s e ) ;

/ / a s s i g n t h e downloaded image t o s p r i t e

l e f t . L o a d I m a g e I n t o T e x t u r e ( t e x t u r e ) ;

Rec t r e c = new Rect ( 0 , 0 , l e f t . t e x t u r e . width ,

↪ l e f t . t e x t u r e . h e i g h t ) ;

S p r i t e s p r i t e T o U s e = S p r i t e . C r e a t e ( t e x t u r e , rec ,

↪ new Vec to r2 ( 0 . 5 f , 0 . 5 f ) , 100) ;

pho to . GetComponent < S p r i t e R e n d e r e r > ( ) . s p r i t e =

↪ s p r i t e T o U s e ;

v a r r i g h t = new WWW( u r l r ) ;

y i e l d re turn r i g h t ;

Texture2D t e x t u r e 2 = new Texture2D ( r i g h t . t e x t u r e .

↪ width , r i g h t . t e x t u r e . h e i g h t , T e x t u r e F o r m a t .

↪ DXT1, f a l s e ) ;

r i g h t . L o a d I m a g e I n t o T e x t u r e ( t e x t u r e 2 ) ;

r e c = new Rect ( 0 , 0 , r i g h t . t e x t u r e . width , r i g h t .

↪ t e x t u r e . h e i g h t ) ;
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s p r i t e T o U s e = S p r i t e . C r e a t e ( t e x t u r e 2 , rec , new

↪ Vec to r2 ( 0 . 5 f , 0 . 5 f ) , 100) ;

pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent <

↪ S p r i t e R e n d e r e r > ( ) . s p r i t e = s p r i t e T o U s e ;

pho to . GetComponent <Demo4_ImageScale > ( ) . e n a b l e d =

↪ t rue ;

l e f t . D i spose ( ) ;

l e f t = n u l l ;

r i g h t . D i spose ( ) ;

r i g h t = n u l l ;

}

}

Listing 6.5: Content of the script used to import image files from the online database

New 3D gallery room structure

In the previous demo, the 3D gallery room was created by importing a 3D room model

from Google VR SDK. Since this model was not designed for a photo viewing purpose,

there were some textures that blocked some parts of the stereoscopic photo objects.

Moreover, the researcher did not prefer to borrow any model or texture from third-party

provider. Thanks to the native 3D model library of Unity, the transition to a new 3D

room structure was simple and fast.
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Figure 6.13: The new 3D room was created with the composition of multiple 3D
Unity-default objects.

There were 3 steps in this creation. Firstly, six 3D cube objects were imported from

Unity library. Secondly, these objects received a specific scale settings that transformed

them into 3D flat panel objects. After that, they were used to assemble a virtual 3D

room. The vital advantage of this new room structure was that there was no obstacle

inside the room that could block users’ view.

Performance test of the fourth demo

With the introduction of a new feature related to Internet connectivity, there was an

addition content for this test. Besides using the same format as the previous test, this test

required the participants to use the demo in two scenarios: (1) with Internet connected

and (2) without Internet.

The test also used the same resource and participants as in the previous test.
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• Test result

Thanks to the image scaling script, even if the imported image objects had

different original resolution or aspect ratio, all of them appeared equally to the

testers. In the environment that had Internet connected, the demo was freeze

in around 2 seconds at the beginning. This was due to the image downloading

process of the application. However, it was still unclear if other smartphones

would have the same symptom when using this demo. In the environment that

had no Internet, there was no image or 3D object appeared in the demo except a

white surface. This was normal due to the absent of an error panel.

There were also two small issues occurred during this test. In the 3D gallery

room, the images were not fully inside the room, a small part of them was left

outside. This was because of the way the automatic camera rotation function

handled. The camera pointer was also not in the centre of the display area.

With these issues, the next demo would focus on resolving them and adding more

features if possible.

6.2.5 Fifth Demo - October 22nd, 2017

New 3D images placement algorithm

Upon investigation of the misplacement issue, the culprit was identified inside the

current images placement script. At the time, when users clicked on an image, only

the rotation settings of the image and the 3D gallery room were changed to match

with the camera rotation value. The problem with this approach was that by changing

the rotation settings, the position value of the object was required to be changed also

in order to maintain the object correct position. While it was possible to change the

position value of every object through the script, completing this task would take a lot
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of time since every image on the demo had different rotation settings, thus different

position value.

The best solution for this problem was creating one single image placeholder object

for all of the available images on the demo. When the users clicked on an image object,

this image’s position and rotation settings would be matched with the placeholder

object’s settings. After that, the rotation and position settings of the image object would

be changed again to match with the 3D room and camera settings. When the users

got back to the menu screen, the clicked image’s position and rotation value would be

reverted to its original value. With this approach, the script was only needed to change

the position and rotation settings of a single image object to match with the 3D room

and camera settings. Therefore, only a small addition content was needed for the current

script.

us ing Uni tyEng ine ;

p u b l i c c l a s s Demo5_ImageDisplay : MonoBehaviour

{

GameObject VRCam, VRRoom, VRMenu , RightCam , P o i n t e r ;

Vec to r3 O b j e c t P o s ;

Q u a t e r n i o n O b j e c t R o t ;

p r i v a t e void Awake ( )

{

. . .

O b j e c t P o s = gameObject . t r a n s f o r m . l o c a l P o s i t i o n ;

O b j e c t R o t = gameObject . t r a n s f o r m . l o c a l R o t a t i o n ;

}
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p r i v a t e void OnEnable ( )

{

GameObject ImageTempla te = GameObject . F ind ( " image

↪ − t e m p l a t e " ) ;

gameObject . t r a n s f o r m . p o s i t i o n = ImageTempla te .

↪ t r a n s f o r m . p o s i t i o n ;

gameObject . t r a n s f o r m . r o t a t i o n = ImageTempla te .

↪ t r a n s f o r m . r o t a t i o n ;

. . .

}

void Update ( )

{

. . .

}

p r i v a t e void OnDisab le ( )

{

gameObject . t r a n s f o r m . l o c a l P o s i t i o n = O b j e c t P o s ;

gameObject . t r a n s f o r m . l o c a l R o t a t i o n = O b j e c t R o t ;

. . .

}

}

Listing 6.6: Addition content that was added to ImageDisplay script, fixing the

misplacement issue of the images in the 3D room
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New menu screen – category selection script

Since there were multiple different image categories, the current menu screen was

required to be changed. The new menu screen only showed categories for users to

choose. Each category would be demonstrated by showing an image related to it. For

examples, an image of ring-tailed lemurs represented the “Animal” category, while an

image of an elephant statue represented the “Statue” category. The researcher added a

new script to each category so that by clicking on these categories, the system would

automatically download five images belonging to these categories. Moreover, the script

also hid all of the category images and brought up images related to the clicked category.

• First try: setting unique number for each category

It was important that each category had a unique code so that the system could

identify which category users picked. Initially, the researcher tried to set a unique

number for each category. A new public variable was created that served as a

code storage for these categories. The system would base on this variable to

download suitable images from the database.

While there was no performance issue with this approach, it was not suitable for

the future development. The reason for this was that each unique number had to

be assigned to a category manually; thus, a category code database was needed

for the system to look up. If there was a change of the category name in the

image database, the unique number was required to be changed to match with

the new update. Moreover, it was not optimised for the script to have too many

public variables; therefore, an approach that did not need any new variable was

preferred.
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• The solution: identify a category through an image name

When an image is downloaded to the application, its properties (name, size,

resolution) is stored in the system temporary. It is possible to change the name of

the downloaded image object to match with the original name. This characteristic

helped the researcher achieve the most optimal approach for this function: identify

categories through the image object name.

In the event of starting the demo, the system checked the database index file and

downloaded the category images automatically. These images contained category

names that they were related to. When users clicked on any category image

object, the system would look up to the object name to identify the category that

the users were interested in. With this approach, any new update of the image

database would not require any change of the script. It was because as long

as these category images have the name matching with the category name, the

system always found the correct category that the users chose.

us ing Uni tyEng ine ;

p u b l i c c l a s s Demo5_MenuScript : MonoBehaviour {

Demo5_ImageImport I m a g e I m p o r t S c r i p t ;

void Awake ( )

{

I m a g e I m p o r t S c r i p t = GameObject . F ind ( " Image " ) .

↪ GetComponent <Demo5_ImageImport > ( ) ;

}

p r i v a t e void OnEnable ( )
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{

GameObject . F ind ( " Image " ) . GetComponent <

↪ Demo5_ImageImport > ( ) . MenuNum = " h t t p s : / /

↪ c e r v . a u t . ac . nz / v r / " + gameObject .

↪ GetComponent < S p r i t e R e n d e r e r > ( ) . s p r i t e .

↪ name + " / " ;

GameObject . F ind ( " Image " ) . t r a n s f o r m . l o c a l S c a l e

↪ = new Vec to r3 ( 0 . 7 f , 1 , 0 . 7 f ) ;

GameObject . F ind ( "Menu" ) . t r a n s f o r m . l o c a l S c a l e

↪ = new Vec to r3 ( 0 , 0 , 0 ) ;

I m a g e I m p o r t S c r i p t . InMenu = t rue ;

I m a g e I m p o r t S c r i p t . e n a b l e d = t rue ;

gameObject . GetComponent <Demo5_MenuScript > ( ) .

↪ e n a b l e d = f a l s e ;

}

}

Listing 6.7: Content of the script attached to each category image, helping the system

to identify the clicked category

New control panel

In the previous demo, users could only see five images that were set by the developers.

Thus, the content was not large enough for a good 3D experience. Since every image had

to go through many processes in order to appear on the screen, adding too many images
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on the same screen would be not suitable, especially for the smartphone environment.

Instead a control panel was added for the users to browse multiple images. By clicking

a simple button, the users could move to the next five images or move back to the

previous ones. The control panel was divided into three buttons: (1) Backward, (2)

Forward, and (3) Return.

The Return button contained a very simple script, which automatically got the users

back to the menu screen when being clicked. This was done by bringing up all category

images while hiding the previous five images.

To allow the Backward and Forward button to browse the image database, a new

public variable named “ImageNum” was created. This variable contained the ordinal

number of the first image that was downloaded to the demo. If the users clicked on the

Forward button, the value of “ImageNum” would be added to the ordinal number of

the last downloaded image + 1. For an example, when the first five stereoscopic photos

were downloaded, the value would be “10”; when the next five photos were downloaded,

the value would be “20”. Similarly, a click on the Backward button would subtract the

“ImageNum” value to the ordinal number of the last downloaded image + 1.

Figure 6.14: The control panel is located at the bottom of the screen, providing users an
ability to browse images.
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us ing Uni tyEng ine ;

us ing Uni tyEng ine . UI ;

p u b l i c c l a s s Demo5_But tonScr ip t : MonoBehaviour {

Bu t ton BackwardBtn , ForwardBtn , Re tu rnBtn ;

Demo5_ImageImport I m a g e I m p o r t S c r i p t ;

p r i v a t e void Awake ( )

{

BackwardBtn = GameObject . F ind ( " Backward " ) .

↪ GetComponent < But ton > ( ) ;

Re tu rnBtn = GameObject . F ind ( " R e t u rn " ) .

↪ GetComponent < But ton > ( ) ;

ForwardBtn = GameObject . F ind ( " Forward " ) .

↪ GetComponent < But ton > ( ) ;

I m a g e I m p o r t S c r i p t = GameObject . F ind ( " Image " ) .

↪ GetComponent <Demo5_ImageImport > ( ) ;

}

void Update ( ) {

ForwardBtn . o n C l i c k . R e m o v e A l l L i s t e n e r s ( ) ;

ForwardBtn . o n C l i c k . A d d L i s t e n e r ( ( ) =>

{

i f ( I m a g e I m p o r t S c r i p t . ImageNum <= 400 &&

↪ I m a g e I m p o r t S c r i p t . InMenu == t rue )

{

I m a g e I m p o r t S c r i p t . ImageNum += 1 0 ;
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I m a g e I m p o r t S c r i p t . e n a b l e d = f a l s e ;

I m a g e I m p o r t S c r i p t . e n a b l e d = t rue ;

}

} ) ;

BackwardBtn . o n C l i c k . R e m o v e A l l L i s t e n e r s ( ) ;

BackwardBtn . o n C l i c k . A d d L i s t e n e r ( ( ) =>

{

i f ( I m a g e I m p o r t S c r i p t . ImageNum >= 10 &&

↪ I m a g e I m p o r t S c r i p t . InMenu == t rue )

{

I m a g e I m p o r t S c r i p t . ImageNum −= 1 0 ;

I m a g e I m p o r t S c r i p t . e n a b l e d = f a l s e ;

I m a g e I m p o r t S c r i p t . e n a b l e d = t rue ;

}

} ) ;

Re tu rnBtn . o n C l i c k . R e m o v e A l l L i s t e n e r s ( ) ;

Re tu rnBtn . o n C l i c k . A d d L i s t e n e r ( ( ) =>

{

i f ( I m a g e I m p o r t S c r i p t . InMenu == t rue )

{

I m a g e I m p o r t S c r i p t . InMenu = f a l s e ;
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GameObject . F ind ( " Image " ) . t r a n s f o r m .

↪ l o c a l S c a l e = new Vec to r3 ( 0 , 0 ,

↪ 0) ;

GameObject . F ind ( "Menu" ) . t r a n s f o r m .

↪ l o c a l S c a l e = new Vec to r3 ( 0 . 7 f , 1 f

↪ , 0 . 7 f ) ;

I m a g e I m p o r t S c r i p t . ImageNum = 0 ;

I m a g e I m p o r t S c r i p t . e n a b l e d = f a l s e ;

}

} ) ;

}

}

Listing 6.8: Content of the script attached to the control panel object, allowing users to

navigate the image gallery

New images import mechanism

With the addition of a control panel and a new change of the menu, the researcher

needed to alter the images import script so that it could function correctly when either

the Backward, Forward button, or a menu object was clicked. Firstly, the updated script

created three new public variables named “ImageNum”, “MenuNum”, and “InMenu”.

These three had a variable type in order of string, integer, and boolean. As described

in the previous section, the “ImageNum” variable was used to allow users move to the

next five images or move back to the previous ones. The “MenuNum” variable was

utilised in a new category selection script, which contained the category name that the
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users had picked. The final variable, “InMenu”, served as a trigger for the system to

identify if the users were currently in the menu screen or in the image selection screen.

In the old version of the script, the code structure only allowed the script to process

once time, which was by the start of the demo. If any button in the control panel was

clicked, the system could not process the image import feature again. In order to solve

this problem, the content of the script was moved to the Unity “OnEnable” function; this

function triggered the feature whenever this script was enabled even if it was enabled

many times before. To be more detail, if the users clicked on any menu, the script was

enabled; if the users got back to the menu screen from the gallery screen, the script was

set to disabled waiting for the next enablement.

Besides this alteration, the image import script at this time could also check if

there was any issue in the downloading process. In case of the downloaded image was

corrupted, an error image would appear in the gallery screen.

us ing System . C o l l e c t i o n s ;

us ing System . C o l l e c t i o n s . G e n e r i c ;

us ing Uni tyEng ine ;

p u b l i c c l a s s Demo5_ImageImport : MonoBehaviour {

. . .

p u b l i c s t r i n g MenuNum ;

p u b l i c i n t ImageNum = 0 ;

p u b l i c bool InMenu = f a l s e ;

p r i v a t e void OnEnable ( )

{

InMenu = t rue ;
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S t a r t C o r o u t i n e ( R u n S c r i p t ( ) ) ;

}

I E n u m e r a t o r R u n S c r i p t ( )

{

Debug . Log (MenuNum) ;

y i e l d re turn S t a r t C o r o u t i n e ( Ge t Index (MenuNum + "

↪ l i s t . t x t " ) ) ;

i n t x = ImageNum ;

GameObject pho to ;

f o r ( i n t i = 0 ; i <= 4 ; i ++)

{

u r l l = new System . Ur i (MenuNum + l i n e s [ x ] ) .

↪ A b s o l u t e U r i ;

u r l r = new System . Ur i (MenuNum + l i n e s [ x + 1 ] )

↪ . A b s o l u t e U r i ;

pho to = GameObject . F ind ( " Image " + ( i ) + "− l " )

↪ ;

i f ( pho to == n u l l )

pho to = Crea t e Image ( i ) ;
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y i e l d re turn S t a r t C o r o u t i n e ( GetImage ( u r l l ,

↪ u r l r , pho to ) ) ;

pho to . GetComponent < S p r i t e R e n d e r e r > ( ) . s p r i t e .

↪ name = l i n e s [ x ] ;

pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent <

↪ S p r i t e R e n d e r e r > ( ) . s p r i t e . name = l i n e s [ x

↪ + 1 ] ;

x = x + 2 ;

}

}

I E n u m e r a t o r Ge t Index ( s t r i n g u r l )

{

. . .

}

GameObject Crea t e Image ( i n t i )

{

. . .

}

I E n u m e r a t o r GetImage ( s t r i n g u r l l , s t r i n g u r l r ,

↪ GameObject pho to )

{

v a r l e f t = new WWW( u r l l ) ;
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v a r r i g h t = new WWW( u r l r ) ;

y i e l d re turn l e f t ;

y i e l d re turn r i g h t ;

Texture2D t e x t u r e = new Texture2D ( 7 3 6 , 547 ,

↪ T e x t u r e F o r m a t . DXT1 , f a l s e ) ;

Rec t r e c = new Rect ( 0 , 0 , 3648 , 2736) ;

S p r i t e s p r i t e T o U s e ;

i f ( l e f t . e r r o r == n u l l )

{

s p r i t e T o U s e = S p r i t e . C r e a t e ( l e f t .

↪ t e x t u r e N o n R e a d a b l e , rec , new Vec to r2 ( 0 . 5

↪ f , 0 . 5 f ) , 100) ;

pho to . GetComponent < S p r i t e R e n d e r e r > ( ) . s p r i t e =

↪ s p r i t e T o U s e ;

}

e l s e pho to . GetComponent < S p r i t e R e n d e r e r > ( ) . s p r i t e

↪ = GameObject . F ind ( " e r r o r −p a n e l " ) .

↪ GetComponent < S p r i t e R e n d e r e r > ( ) . s p r i t e ;

i f ( r i g h t . e r r o r == n u l l )

{
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s p r i t e T o U s e = S p r i t e . C r e a t e ( r i g h t .

↪ t e x t u r e N o n R e a d a b l e , rec , new Vec to r2 ( 0 . 5

↪ f , 0 . 5 f ) , 100) ;

pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent <

↪ S p r i t e R e n d e r e r > ( ) . s p r i t e = s p r i t e T o U s e ;

}

e l s e pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent <

↪ S p r i t e R e n d e r e r > ( ) . s p r i t e = GameObject . F ind ( "

↪ e r r o r −p a n e l " ) . GetComponent < S p r i t e R e n d e r e r > ( )

↪ . s p r i t e ;

pho to . GetComponent <Demo4_ImageScale > ( ) . e n a b l e d =

↪ t rue ;

l e f t . D i spose ( ) ;

l e f t = n u l l ;

r i g h t . D i spose ( ) ;

r i g h t = n u l l ;

}

}

Listing 6.9: Content of the updated image import script, adding an ability of navigating

the image gallery and error detection for the downloading process
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Performance test of the fifth demo

While there were one new feature and multiple tweaks for the current scripts, the

researcher was still unable to fix the performance hiccup stated in the previous demo.

This performance test not only evaluated the reliability of the new feature, but also

helped the researcher identify the culprit of the performance issue.

This test used the same resource and participants as the previous one.

• Test result

For the control panel, the feature worked as intended. The testers could easily

browse through several images just by pointing the pointer on the button and

pressing the capacitive button of the VR headset. In the 3D gallery room, all

images displayed correctly in front of the users’ camera.

For the performance hiccup issue, the culprit was identified through the trial &

error method. Whenever a new sprite texture was added to the image object on the

demo, all other tasks was halted; thus caused the frame freeze. Since the current

version of Unity does not support parallel work for any function and class in its

code library, it was impossible to fix the issue. Moreover, there was a memory

leak issue with the current image import script. This issue did not occur when

the demo was tested on a PC with high capacity memory. When being tested on

the smartphone, an environment with limited memory, the demo crashed. A new

approach would be researched for the next demo to address these issues. Besides

fixing the memory leak issue, the frame freeze duration could be either removed

or reduced with this new approach.
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6.2.6 Final Demo – November 11th, 2017

New photo object – switching sprite object type to 3D object type

After several tasks of trial and error, an issue related to the performance issue in the

last demo was identified. When a photo was retrieved from the server, its texture was

stored and used in a sprite conversion process. This process required the smartphone

to temporarily halted other task and focus on it, which caused the application frame to

be freeze until the process completed. This process was impossible to be simplified

because it was mandatory to the sprite object system in Unity3D. Because of this, the

researcher decided to switch the photo object type to a more flexible 3D object.

The advantage of 3D object type in this scenario was that it did not need the sprite

conversion process. Moreover, it automatically resized the photo to match with the

developer’s size settings without the use of the scaling image script stated in section

6.2.4 Fourth Demo – October 1st, 2017. There were two steps of switching to the 3D

object type.

Firstly, the prefab was changed from a sprite object to a Quad 3D object in Unity3D

library. This new prefab was also attached with the image display script, the even trigger

script, and box collider just as the previous prefab. Only the image scaling script was

excluded.

Secondly, all of the code related to the sprite conversion process was removed from

the online image import that was used in the previous demos (first stated in section 6.2.4

Fourth Demo – October 1st, 2017). This code was replaced with a simple function

that replaced the current texture of the photo object with the new texture retrieved from

the online server.

The memory leak issue was also fixed by simply adding a built-in unused memory

cleaning from Unity3D engine, which is “Resources.UnloadUnusedAssets()”.
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New loading notification

With the switch to the 3D object type, the freeze duration of the application decreased.

However, it was still possible for users to misunderstand that the application was

broken during the freeze frames. Since it was impossible to completely get rid of the

freeze issue at the time, an approach of showing a loading notification to cover the

freezing frames was used. Whenever a process of retrieving photos from the server was

performed, a notification would appear to help the users understand that the application

was loading. In addition, a loading bar also appeared to indicate when the process

completed.

The notification had the same display mechanism as the Stereoscopic photos on dual

camera mechanism stated in section 6.2.2 Second Demo – August 6th, 2017. It was

simply an image UI object that was activated when the photo retrieve process began,

and deactivated when the process completed.

For the loading bar, it was also a part of the UI system from Unity3D engine. The

visual part of the bar depended on an attached variable named “Value”. By changing the

value of this variable when the process completed, the loading bar would automatically

fill up to indicate that the process had completed.

To allow the loading notification gradually display and cover the freeze frames,

the loading notification function had to be running throughout the application runtime,

which was unnecessary. Instead of that, the researcher put this function into a closed

loop that only ended when the loading notification was displayed completely to the

users.

. . .

p u b l i c c l a s s Demo6_ImageImport : MonoBehaviour {

. . .

p r i v a t e void OnEnable ( )
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{

. . .

}

I E n u m e r a t o r R u n S c r i p t ( )

{

f l o a t s t a r t t i m e = Time . t ime ;

whi le ( Time . t ime < s t a r t t i m e + 1)

{

y i e l d re turn LoadingBg . c o l o r = Colo r . Lerp (

↪ LoadingBg . c o l o r , new Colo r ( 2 5 5 , 255 ,

↪ 255) , ( Time . t ime − s t a r t t i m e ) / 1 ) ;

}

. . .

f o r ( i n t i = 0 ; i <= 4 ; i ++)

{

. . .

LoadingBar . v a l u e += 0 . 2 f ;

}

LoadingBar . gameObject . S e t A c t i v e ( f a l s e ) ;

s t a r t t i m e = Time . t ime ;

whi le ( Time . t ime < s t a r t t i m e + 1)
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{

y i e l d re turn LoadingBg . c o l o r = Colo r . Lerp (

↪ LoadingBg . c o l o r , Co lo r . c l e a r , ( Time . t ime

↪ − s t a r t t i m e ) / 1 ) ;

P o i n t e r . S e t A c t i v e ( t rue ) ;

}

}

I E n u m e r a t o r Ge t Index ( s t r i n g u r l )

{

. . .

}

GameObject Crea t e Image ( i n t i )

{

. . .

}

I E n u m e r a t o r GetImage ( s t r i n g u r l l , s t r i n g u r l r ,

↪ GameObject pho to )

{

pho to . GetComponent < Rendere r > ( ) . m a t e r i a l . name =

↪ u r l l ;

u r l l = new System . Ur i (MenuNum + u r l l ) . A b s o l u t e U r i

↪ ;
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v a r l e f t = new WWW( u r l l ) ;

y i e l d re turn l e f t ;

pho to . GetComponent < Rendere r > ( ) . m a t e r i a l .

↪ mainTex tu re = n u l l ;

i f ( l e f t . e r r o r == n u l l )

{

pho to . GetComponent < Rendere r > ( ) . m a t e r i a l .

↪ mainTex tu re = l e f t . t e x t u r e N o n R e a d a b l e ;

}

e l s e pho to . GetComponent < Rendere r > ( ) . m a t e r i a l .

↪ mainTex tu re = GameObject . F ind ( " e r r o r −p a n e l " )

↪ . GetComponent < Renderer > ( ) . m a t e r i a l .

↪ mainTex tu re ;

l e f t . D i spose ( ) ;

l e f t = n u l l ;

pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent < Rendere r

↪ > ( ) . m a t e r i a l . name = u r l r ;

u r l r = new System . Ur i (MenuNum + u r l r ) . A b s o l u t e U r i

↪ ;

l e f t = new WWW( u r l r ) ;

y i e l d re turn l e f t ;
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pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent < Rendere r

↪ > ( ) . m a t e r i a l . ma inTex tu re = n u l l ;

i f ( l e f t . e r r o r == n u l l )

{

pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent <

↪ Rendere r > ( ) . m a t e r i a l . ma inTex tu re = l e f t .

↪ t e x t u r e N o n R e a d a b l e ;

}

e l s e pho to . t r a n s f o r m . G e t C h i l d ( 0 ) . GetComponent <

↪ Rendere r > ( ) . m a t e r i a l . ma inTex tu r e =

↪ GameObject . F ind ( " e r r o r −p a n e l " ) . GetComponent <

↪ Rendere r > ( ) . m a t e r i a l . ma inTex tu r e ;

l e f t . D i spose ( ) ;

l e f t = n u l l ;

R e s o u r c e s . UnloadUnusedAsse t s ( ) ;

}

}

Listing 6.10: Addition code to the ImageImport script file: (1) displaying the loading

notification to indicate when the image import process completed; (2) replace sprite

object with 3D object which had its texture replaced with the photo texture retrieved

from the online server.
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Performance test of the final demo

This concluded the development stage of the research, the final demo was used for the

whole application evaluation. This was to ensure that all of the components would work

properly when implemented together.
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6.3 Content searching process

This process is used to identify any stereoscopic content that is available on the internet.

Since there have been multiple searching engines with robust algorithm on the market,

it was not necessary to develop a custom searching engine for the process.

Instead the researcher chose to utilise Google Image Search to perform the searching

process. When compared with other engines such as Bing, Baidu, and Google Search

is the most popular search engine. It not only provides more accurate results, but also

includes many tools and addon for developers.

After users provide their searching keywords, the application will start loading

Google Image Search API, an addon that has already been developed by Google.

<script type="text/javascript" src="www.google.com/jsapi">

</script>

The user inputs will be used to replace SEARCHING_TEXT to perform the image

search:

<script type="text/javascript">

google.load("search", "SEARCHING_TEXT");

</script>

In order to filter non-stereoscopic contents, these user’s searching keywords are

attached with multiple tags that define stereoscopic format.

SEARCHING_TEXT = ("side by side stereo 3D" OR "cross eye 3D" OR

"parallel eye 3D" OR “anaglyph 3D” OR “stereogram 3D”)

SEARCHING_TEXT = SEARCHING_TEXT + AND + "EXTRA_KEYWORDS"

After the Google Image Searching server receives the requests, search results will be

transferred to the application storage. While these results are related to the stereoscopic
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tags, it is still possible that some non-stereoscopic or incompatible contents have

been mistakenly retrieved. Therefore, these downloaded contents will go through a

classification process.

6.4 Content classification process

The classification process is the cooperation between the researcher and the supervisor.

The first step of this process is to remove non-stereoscopic contents from the content

storage. All retrieved contents are classified into four types (3 stereoscopic types and 1

normal type)

• side-by-side photos (type SBS)

• anaglyphs (type ANAG)

• stereograms (type STE)

• “normal” (type NOR)

Each stereoscopic type has a distinguished method to make them viewable in the

application. For the SBS type content, the process cut it into two parts: left stereo and

right stereo image. These images are then send to the corresponding screen of the VR

headset so that the 3D effect can be viewed properly. If the content format is in ANAG,

all three colours are separated from the input content. Only Red and Green channels

of the image are transferred to the left and right screen of the VR headset. Lastly is

the STE type content. 90% of the left side and 90% right side of the content image are

sent to the corresponding screen side of the VR headset. This will make the STE type

content viewable. While these methods are straight-forward, the classification of these

three stereoscopic types are complicated, requiring several utilisation and comparison

of image processing algorithm.
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(a) Matches are not horizontally aligned on “normal"
image

(b) Matches are horizontally aligned on side by side
image

Figure 6.15: Feature Matching between two halves could determine the types of 3D
images

The content classification was designed based on the characteristic of stereopsis,

the system that allows human to see depth effect. All three stereoscopic types (SBS,

ANAG, and STE) also make use of this system. Therefore, it was possible to classify

these types by analysing the stereopsis feature in them (demonstrated in Figure 6.15).

Identifying the stereopsis feature required the use of Feature Matching, a technique

related to Computer Vision. This technique selects informative pixels from two halves

of an image, then compare them together and determine if they are the corresponding

pairs. There had been many matching algorithms from other research that could be used
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for this process. Because of this, the only necessary task was to find the most suitable

algorithm which could be used to achieve the best result in the fastest time.

6.4.1 KLT, SIFT, and SURF Feature Extraction for Correspond-

ence Matching

Feature Matching is a computer vision technique that is usually used for object recogni-

tion (Bicego, Lagorio, Grosso & Tistarelli, 2006), tracking (Tomasi & Kanade, 1991),

as well as stereo matching (Hoff & Ahuja, 1989). It finds a notable set of pixels from a

reference image, then compares them with a set of pixels of another image to determine

if their similarity.

Currently there are three popular algorithms that are used for this process. The

earliest one is Kanade-Lucas-Tomasi (KLT), which is designed based on Lucas-Kanade

optical flow in a pyramid (Lucas & Kanade, 1981) of Lucas et al and Tomasi’s good

feature to track (GFT) (Shi & Tomasi, 1993). While this algorithm provides relatively

accurate result in a short period of time, it can have a problem of returning too many

outliers under certain circumstances.

To get rid of this problem and provide a more accurate result, more recent methods

have been designed, which are Scale-Invariant Feature transform (SIFT) by Lowe et

al. (Lowe, 1999) and the Speeded Up Robust Features (SURF) by Bay et al. (Bay, Ess,

Tuytelaars & Gool, 2008). These two algorithms utilise the modern computing hardware

to bring a good result even when there are large scale changes and affine transformation

of features between the two images. Thus, they are widely used in various feature

trackers (Tuytelaars & Mikolajczyk, 2008) nowadays. However, when implemented

with low performance hardware, SIFT and SURF can be time consuming (Juan & Gwun,

2009).
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Since the application is designed for smartphone environment, which is known to

have limited processing power, it was unclear if the modern methods like SIFT and

SURF was the better choices than the classic KLT algorithm. A comparison between

these three was needed.

6.4.2 Evaluation of KLT, SIFT, and SURF trackers on 2005 and

2006 Middlebury Stereo Datasets

All algorithms were used to detect correspondences in a large library of image pairs.

After the process, the result accuracy and total processing time were collected and

compared to determine their overall performance. There were two image libraries that

were used in this evaluation:

1. Middlebury 2005 and 2006 dataset. (Figure 6.16) the correspondences between

images are known (Section 6.4.2).

2. Real-life near stereo images (Figure 6.17) with ground truth correspondences are

not known (Section 6.4.3).

There were 30 pairs of indoor images in the Middlebury datasets. All of them had a

resolution of 430 by 370 pixels. These images were captured by the Middlebury Vision

Lab, using Structured Light techniques (Scharstein & Szeliski, 2003). In theory, all

image pairs were aligned horizontally in a relative manner. Each of the three matching

methods was applied on these datasets to acquire 30 sets of correspondences. The first

result shows that all methods collected up to 1000 correspondence points, with the best

500 pairs were selected. For the average result: • KLT acquired 811 correspondences in

1.15 seconds • SIFT collected 714 correspondences in the longest time – 2.04 seconds.

• SURF resulted with 810 correspondences in 1.72 seconds The overall measurements

are shown in Table 6.1.
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Figure 6.16: 30 image pairs from Middlebury 2005 and 2006 datasets (only left images
are shown)

Method AVG matches STD matches AVG time (seconds) STD time (seconds)
KLT 811 60 0.95 0.29

SURF 810 167 1.72 0.36
SIFT 714 235 2.04 0.67

Table 6.1: Statistic details of correspondence matching using KLT, SURF and SIFT on
2005 and 2006 Middlebury stereo datasets.

Since the images was aligned, the matched points oughted to be aligned. By

identifying the misalignment in y-direction ε = ∣yL − yR∣, the researcher could analyse

the accuracy of each matching method. The average values and standard deviation for

each set of correspondences (displayed in Table 6.2) were calculated. With all ε being

taken into account, the averages contain huge values (21 to 31 pixel misalignment).

Therefore, it is determined that all three matching algorithms result with a large number

of outliers.

However, In the situation where outliers are discarded by three thresholds ε < 0.5,

ε < 1.0, and ε < 2.0, the average misalignments are relatively close to zero. While SIFT
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has the best result of having the smallest average values, the standard deviation values

from KLT and SURF are usually better.

With the 2005 and 2006 Middlebury datasets, the evaluation shows that all three

matching algorithms are efficient. The mismatches from the correspondence sets are

not significantly different in the correspondences’ vertical misalignment. Overall,

SIFT and SURF take longer processing time (see Table 6.1) but do not return better

correspondence sets than KLT. However, the Middlebury datasets are used as “extreme”

cases. These images are sharp and horizontally aligned, with no noticeable changes and

affine transformation of features between images.

ε < 0.5 ε < 1.0 ε < 2.0 ε < 1000
Method AVG STD AVG STD AVG STD AVG STD

KLT 0.16 0.12 0.27 0.24 0.47 0.50 24 46
SURF 0.16 0.12 0.26 0.23 0.43 0.47 31 53
SIFT 0.13 0.11 0.17 0.18 0.21 0.29 27 60

Table 6.2: Statistic details of vertical misalignment ε = ∣yL − yR∣ in pixels between
correspondences found by KLT, SURF and SIFT on 2005 and 2006 Middlebury stereo
datasets

6.4.3 Evaluation of KLT, SIFT, and SURF on Real-life Images

The second evaluation was to determine the method efficiency in a real-life scenario.

All three matching algorithms were tested on 200 real-life images, which were captured

by the researcher and the supervisor. They were hosted on the shared image database1.

These images were resized to resolution of 1024× 768 pixels, which was larger than the

images tested in the Section 6.4.2). Rather than having only indoor photos, this dataset

contained images captured under four different conditions:

1. Outdoor under a bright daylight condition.

2. Outdoor under an overcast light condition.
1http://www.ivs.auckland.ac.nz/web/scene_gallery.php
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3. Indoor under a daylight condition.

4. Indoor under a fluorescent light condition.

Figure 6.17: A portion of 200 pairs of real-life images are randomly selected from
different categories for image feature point matching (only left images are shown).

KLT, SURF, and SIFT method were applied on these images to track for correspond-

ences. Similarly, the matched points and processing times from each matching algorithm

were also collected. On average, to obtain up to 500 strongest correspondences: • KLT

ran in 2.1±0.7 seconds. • SURF ran in 5.7±2.9 seconds. • SIFT took 7.5±2.0 seconds.

With the standard deviation of 0.70 seconds, KLT is found to be significantly faster than

both SURF (∼ 2 times) and SIFT (∼ 3 times). In conclusion, the evaluation shows that

KLT is sufficient enough for the image type classification.

6.4.4 KLT Features for Content Classification

KLT feature matching returned two sets of corresponding points P1(x, y) on the first

image and P2(x, y) on the second picture. To match these two sets together, the

researcher used brute-force method. To be more detail, there were N pairs of points:
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P1(xi, yi) was corresponding to P2(xi, yi), each of them was a sub-pixel coordinate

(x, y) on the pair of images.

The absolute horizontal differences h = ∣xL − xR∣, and vertical differences v =

∣yL − yR∣ between corresponding points were also calculated. These values were used to

identify the number of matched points which horizontally aligned and vertically aligned.

¶h was the number of pairs that have h < T and ¶v was the number of pairs that have

v < T . T was a threshold, which was set to be 5.0 pixels; ¶h ≤ N and ¶h ≤ N . The

percentage of horizontally and vertically aligned matches were calculated as:

Ph =
¶h
N

and Pv =
¶v
N

(6.1)

Initially, different types of images returned different values of Ph and Pv when being

tracked on regions or colour channels of images. There were three types of comparison

that were applied with the feature matching (Io is the original image):

1. left/right half: Io was vertically cut into two and features were searched between

those.

2. 1st/2nd quarters: Io was vertically cut into four, and first two quarters were

chosen.

3. red/green channels: Red, Green, Blue channels were separated from Io, Red

and Green ones were selected for feature matching.

For the classification purpose, the images were resized to the same resolution of

1024 × 1024 pixels. Then the distance of correspondences between different types of

images was calculated and categorised in two classes:

1. Small: Average distance is less than 50 pixels

2. Large: Average distance is more than 200 pixels
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Image Types Matched between Ph Pv

“Normal” & Anaglyphic left/right half Small Small
Stereogram & Side by Side left/right half Large Small

“Normal” red/green channels Large Large
Anaglyphic red/green channels Large Small
Stereogram 1st/2nd quarters Large Small
Side by Side 1st/2nd quarters Small Small

Table 6.3: Ranges of mean µh/v and standard deviation σh/v found on four image types

The ranges of µh/v and σh/v collected from the four different image types are shown

in Table 6.3. The table shows a significant difference in µv between “Normal” &

Anaglyphic and Stereogram & Side by Side images. Therefore, µv can be used to

separate these two classes.

In the case of side by side pictures, the two halves of the pictures have a good

correlation. Despite this, there are not many matched points between the two-quarters of

the picture. In contrast, two quarters of the stereogram images have a strong correlation

with a good number of matched points between them. Making use of this characteristic

can help distinguish Stereogram and Side by Side images.

Finally, µh can be used to separate between “Normal” and Anaglyphic images.

By analysing red and green channels of an image, Anaglyphic images can be easily

detected. With these classification methods, a process is created to help identify all

image types on the Internet based on thresholding the values of µh/v and σh/v. The

process is simplified in Flowchart displayed in Figure 6.18.
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Figure 6.18: Flow chart of the classification base on KLT matched features

6.4.5 Final Results

For the final evaluation, the described Content Classification was tested in a custom

content dataset hosted by University of Auckland (http://www.ivs.auckland

.ac.nz/web/scene_gallery.php). The database contained all highlighted

stereoscopic types (SBS, ANAG, STE, and “normal” left or right image). Since the

dataset had been used in a previous stereoscopic related project, all contents were

verified with correct format. Due to time constraint, instead of using the whole dataset,

only 50 contents in each stereoscopic format went through the classification process.

http://www.ivs.auckland.ac.nz/web/scene_gallery.php
http://www.ivs.auckland.ac.nz/web/scene_gallery.php
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Image Type Correct Detection Incorrect Detection Percentage
“normal” images (type NOR) 48 2 96%

anaglyphs (type ANAG) 50 0 100%
side-by-side photos (type SBS) 50 0 100%

stereograms (type STE) 50 0 100%

Table 6.4: Detection rate of the classification

Table 6.4 shows the number of correct detection and the percentage of accuracy of

the Content Classification process. On the first hand, the process identifies 2 “normal”

images incorrectly, making the type NOR detection accuracy being only 96%. On the

otherhand, with other stereoscopic types, the process achieves 100% in detecting these

types correctly.



Chapter 7

Project Evaluation

7.1 Evaluation scope

Even though every application feature has gone through a small performance test during

the development stage, it is still unclear if the whole application can provide a satisfied

experience. Therefore, it is important to conduct an application evaluation to identify

persistent issues as well as features that meet the objective.

In order to meet the time frame of the project, the application test was simplified

with only three users participating in a few tasks. While the amount of test users were

limited, all of them had good knowledge in technical field and were trusted to provide

critical feedback to the researcher.

127
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7.2 Test Users

7.2.1 Entertainment Purpose - User A

User A is a university student, he finds Virtual Reality (VR) fascinating and would love

to have one kind of system for entertainment purpose. He also loves to use his Galaxy

S6 everyday thanks to the power the phone has.

While there are lots of VR devices available on the market, the high prices have

prevented him from getting one. That is the reason why Google Cardboard catches his

attention.

• Young university student.

• Easily adapt to the new technology.

• A smartphone guru, especially Android.

• Has good eye vision.

• Has experience with VR, which can benefit from giving the feedback on naviga-

tion feature of application.

7.2.2 Education Purpose - User B

User B is a professional specialised on education. During his teaching, he finds that

most students are not interested in the class due to the high amount of words and the

lack of field trips. He thinks virtual reality is a great idea for students to enjoy a virtual

field trip to the museum, or even virtually live in the past.

The portability of smartphones VR, especially Google Cardboard, could help him

easily carries the system to the class without any difficulty. It also sparks the student’s

enthusiasm when they understand that the smartphones they have can achieve such a

wonderful experience.
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• Lecturing professional.

• Want to enhance the study in classes.

• A smartphone casual user.

• Has myopia.

• Has experience with viewing 3D contents in many types, which can benefit from

giving the 3D content’s quality.

7.2.3 Marketing Purpose - User C

User C is a university student with a major in marketing. Even though he has no

experience with VR, its popularity has caught his attention. In his opinion, VR could be

a great tool for product promotion. Instead of viewing the catalogue in classic ways like

brochure reading or web browsing, customers could view a great variety of products

like they are in a brick-and-mortar store.

• Young university student.

• Interested in VR usage for marketing, viewing 3D contents.

• Has a good knowledge of smartphones.

• Has myopia.

• Has a bit of experience in viewing 3D movies. Never try VR before.
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7.3 Evaluation methodology

7.3.1 Test prerequisite

This test was mainly based on the user’s experience when wearing the VR headset.

Therefore, the pressure could be eliminated if the test was performed in tradition method.

However, the employment of co-operative inquiry method in full form could help the

users express their feedbacks more openly.

Typically, a performance test consists of three persons: a logger, a facilitator, and

the user (Heron, 1996). However, due to the small scale of this test, the researcher was

responsible for both a logger and a facilitator role. Before it started, the testing location

was decided based on the nature of the test. Thanks to the portability of smartphone

VR, this test could be conducted at anywhere that users may seem fit. Since all of the

users participating in this project were either students or lecturer from AUT, a small

room located inside the AUT campus was the best choice for the testing location.

For the test result to be accurate, each user had to be comfortable during the test.

Good relationship between the user and the facilitator was also an important factor.

In this case, both of the AUT students were friends of the researcher; the university

lecturer was actually the supervisor for the researcher’s master program. Therefore, the

test generally went well with a friendly and relaxing atmosphere.

In the core nature of co-operative inquiry, the facilitator & the user share the device.

The facilitator needs to see how the users perform the test directly so that he can identify

which issue the application is having (Kuniavsky, Goodman & Moed, 2012). However,

each headset could only be used by only one person. With this scenario, besides the

demo that was used for the test, there were some software additions used to assist the

facilitator monitor the user’s performance.
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To monitor the smartphone screen during the test, the researcher used the Android

Cast Screen feature, which was created a mirror image of the smartphone screen on

a computer monitor or TV display; the smartphone was “cast” to a Windows 10 PC

through a private Wi-fi network.

Next is the test session recording, the researcher used GameDVR, a built-in Windows

10 display recorder tool, to capture all images of the smartphone screen into a video file;

while another smartphone was used to record all of the users’ behaviours during the

test. These two recoding videos would be used for more detail analysis after the test.

7.3.2 Preliminary questionnaire

Instead of starting the test right away, each user had to take part in a preliminary

questionnaire. This small survey was used to identify user characteristics such as age,

health condition. These characteristics were important because they could help the

researcher determine whether the issues occurring during the test truly related to the

application, or due to the users’ characteristic.

One notable example is motion sickness. According to the observation study from

(Solimini, 2013), after watching 3D contents, 54.8% of users had Simulator Sickness

Questionnaire Scoring of over 15, which is considered to moderate-to-severe grade of

motion sickness. Solimini recognised that all of the testers who had history for car

sickness, vertigo disturbances also experienced the motion sickness issue.
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1. What is your gender?

Male Female

2. What is your range of age?

<18 18-25 26-40 >40

3. Do you have myopia or hyperopia?

Yes No Not sure

4. Do you experience motion sickness while traveling by car for a long period of
time?

Yes No Not sure

5. How often do you play any 3D games?

Never Sometimes A lot

6. How often do you watch 3D movies?

Never Sometimes A lot

7. What functionality you use in your phone?

Web browsing Communication Video Gaming

Social network Literature reading (e-magazine, e-book)

8. What is the budget that you are willing to spend for your phone?

100-299$ 300-599$ >600$

9. Do you know what virtual reality is about?

Figure 7.1: The content of the preliminary questionnaire

7.3.3 Test content

At the beginning of the test, the facilitator and the users had a friendly conversation,

sharing their hobby and the reason why they love to try VR. Moreover, during the test,

the users received a brief description of the tasks they had to, the feedback of which

was used to analyse the demo controllability and performance.
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Based on the preliminary questionnaire result, each user was assigned to a different

task. These tasks were used to evaluate three aspects of the application: (1) application

navigation, (2) 3D effect, and (3) virtual reality sickness. While the tasks were different,

the length of the tests for all users were similar, lasting around 5 minutes.

After the test completed, the users were required to fill-out a feedback form, which

consisted of several simple Yes-No questions. The answers for these questions would

be used for three purposes: (1) determine if the demo was suitable for all types of

user, (2) identify the current issues the demo was having, and (3) identify the potential

improvements that could be added in the fast time frame.

Due to the fully immersive experience, any issue related to the smartphone display

could invoke some significant emotions such confusion, horror on the users; this could

affect the validity of users’ feedback. Therefore, if these emotions happened, the test

would be halted until the users’ emotion state became stable again.

7.4 User activity log

7.4.1 User A

Adaptive task

Since this user was very familiar VR, the task was mostly on how to navigate the

application.

1. Point the camera to any category image.

2. Use the headset button to choose the category.

3. After the loading completes, point the camera to the “forward button” and use the

headset button to select it.
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4. After the loading completes, point the camera to the “backward button” and use

the headset button to select it.

5. Point the camera to the “return button” and use the headset button to select it.

Testing log

• The user used the camera to look around.

• The user chose category “animal” with the image of 5 lemurs.

• A loading screen showed up, the user complained that the loading time is a bit

long.

• The user tried to look behind to see if there was any other change besides the five

new images.

Technical issue

Initially the VR screen was a bit blurry. Adjusting the headset lens fixed the issue.

7.4.2 User B

Adaptive task

With this characteristic, the test focused on viewing multiple stereoscopic contents.

1. Point the camera to any category image.

2. Use the headset button to choose the category.

3. After the loading completes, point the camera to the centre image and use the

headset button to select it.

4. In the 3D gallery room, view the image express whether the 3D quality is better,

the same, or worse than viewing with 3D glasses.
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5. Use the headset button again to get back to the menu screen.

6. Follow the first five steps again but on the image on the right side.

7. Follow the first five steps again but on the image on the left side.

Testing log

• The user used the camera to look around.

• The user chose category “statue” with the image of a blue statue of an elephant.

• When viewing the first stereoscopic image, the user expressed that the sudden

enlargement of the image causes a bit dizziness.

• The user tried to look around in the 3D gallery room.

Technical issue

There was no technical issue in this test.

7.4.3 User C

Adaptive task

While the user’s main interest was in viewing the 3D content, he had no experience

in VR. Therefore, his test focused on viewing 3D contents in only one category.

1. Point the camera to centre image.

2. Use the headset button to select it.

3. After viewing the image in 10 seconds, use the headset button again to get back

to the menu screen.

4. Follow the first three steps again but on the image on the right side.
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5. Follow the first three steps again but on the image on the left side.

Testing log

• The user observed the environment around. He expressed that he felt a bit strange.

• When viewing the first stereoscopic image, the user expressed joyful since it was

so easy to see the 3D effect.

• The user looked around the 3D gallery room and noticed there were two notifica-

tions on the left and right side of the room.

• The user continued with the next two images with no new noteworthy activity.

Technical issue

The headset button was not sensitive, the user frequently pressed two or three times

for it to register the action.

7.5 Test result

Based on the activity log of three users, positive and negative feedback on the application

are identified.

7.5.1 Positive feedback

User A

Each category did not have any text but instead an image describing what it was

about. This made the category selection screen was straightforward. Users (especially

children) could easily pick any topic they were interested in even if they did not know

English.
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The control panel was also very easy-to-use. With three simple buttons displayed

at the floor of the virtual room, User A could navigate through any 3D contents of the

application.

User B

User B complimented that the 3D effects was very good. Compared with traditional

methods such as 3D glasses and eyes crossing, viewing with this application was easier.

The darkness of the 3D gallery room also made the 3D content stand out, improving its

depth. Moreover, it was also easy to get in and get out of the 3D gallery room.

User C

When viewing the first content, User C was surprised that he could see the 3D effect

right away with no adjustment of his glasses. With three buttons located at the virtual

floor, browsing the 3D contents was simple and quick. The user was also impressed

with the impressiveness of the 3D gallery room. When being put in a completely dark

room, the user could easily focus on the 3D content appeared in front of him.

7.5.2 Negative feedback

About the application navigation, User C had an issue with the button of the headset

being not accurate. There were multiple times that he had to press two or three times

for the action to be registered.

For the 3D gallery room and 3D quality, while the 3D effect was generally good.

The sudden transition from the bright menu screen to the dark virtual room caused eye

strain, especially with User C.

All three users agreed that the loading time was still a bit long, especially when the

application only loaded five 3D images. Moreover, the menu screen also appeared “too

basic”, with only contained some images and three buttons.
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7.5.3 Evaluation checklist

Criteria Result Priority
Does the application use low-cost equipment? Yes
Is it easy to navigate through the application Yes
Is the language of the application understand-
able?

Yes

Is the user interface easy to use? Yes
Does the 3D effect display correctly? Yes
Is the application responsive? No

Slow loading time
Headset button not register ac-
curately

High

Is the virtual environment attractive and well-
designed?

No
Basic 3D models
Only contain few 3D objects

Normal

Does the 3D content satisfy the users? No
Limited category and content

Low

Does the application suitable for education
use?

Yes

Table 7.1: Evaluation checklist based on the test results

In Chapter 4. Project Objective, there are multiple features which are set to be

the main objectives for this project. The criteria in the evaluation checklist are created

based on them. The test feedback from the three users are used to find the results for

this checklist. A criterion receives a result as yes when there is no negative feedback

related to it. If a criterion has any issue identified in the test result, it will fail to pass

the checklist. Depend on the criticalness of the issue, the criterion will receive a work

priority of whether “High”, “Normal”, or “Low”.

7.6 Current challenges

Currently, the biggest issue that this application is facing is the long loading time.

The culprit is the conversion process from 2D images to 3D objects, which is too

demanding on the smartphone hardware. On the development computer, this conversion
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process can finish in just about 5 seconds. On the contrary, when testing the process on

the development smartphone, there are multiple frame freezing which slow down the

process dramatically. Since this issue is very noticeable, the researcher will focus on

fixing it before moving to other improvement tasks.

The insensitive of the headset button do not actually related to the application.

However, there is a workaround that can improve the navigation experience. Besides

using the physical button press, the gaze-contingent feature will be added. With this

feature, users can simply point the camera to the object and wait for around 2 seconds

to have it selected.

Due to the limited time and resource, the application is still in a basic form of

content as well as functionality. After fixing the issues recorded in this evaluation report,

more functions will be added to improve the application experience. More detail is

shown in section 8.1 Future work.
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Conclusion

8.1 Future work

8.1.1 Online stereoscopic 3D encyclopedia

Background

Currently, there are many Augmented Reality (AR) Book products available on the

market; some notable examples are The Dragon Defenders (Ford, 2017), The Mardles

Storybook (Parsons, 2017), Wonderbook: Book of Spells (Sony Interactive Entertain-

ment, 2012).

Pictorial markers are often required to allow the computer system to identify correct

information on these AR Books. While these markers can contain hidden information

as well as having a meaningful look to viewers, the system can only identify secret

information if the marker image patterns are registered in its database. The more hidden

information a book contains, the more demand on the system database and processing

power. Moreover, when these markers have similar image patterns, the recognition

process will become inaccurate (Tikanmäki & Röning, 2011). To resolve these issues,

developers can use the bar-code marker type instead. This marker type is designed with

140
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black and white data cells that contain a set of binary number, which can be decoded into

meaningful data accurately by any modern computer system (Hamming, 1950) (Reed &

Solomon, 1960). However, this marker type has a disadvantage of having a meaningless

appearance to the viewers.

To solve these problems, Minh Nguyen has introduced a new type of QR marker

that can keep the vivid appearance of the picture (Nguyen, Tran, Le & Yan, 2017). By

combining both Virtual Reality (VR) and AR technology, the application can utilise this

new QR marker to create a new experience to explore the vast 3D stereoscopic datasets

on the internet. The procedural steps of the application are listed below:

1. The users first use their mobile devices such as smartphones or tablets as display

apparatus.

2. The system uses the devices’ camera to find the target marker in the real world

such as tags in encyclopedia books or magazines.

3. The system then processes and decodes the hidden information (searching keywords)

from the detected tile-based marker and switches entirely to VR for visualisation.

4. The system automatically extracts and displays left/right stereo images and related

text to VR devices from the Internet search using the extracted keyword.

5. The users then can easily switch back to the AR environment to detect different

target.
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Figure 8.1: Design of the proposed AR marker

Application design

The marker detection feature is a core layer that is responsible for identifying secret

data from the custom markers. For the detection process to operate efficiently, a

high-resolution camera is required, which is usually the back-camera of most of the

smartphones. Due to this requirement, this layer is not active throughout the application

usage, but is only called when the users request instead.

Besides the other three buttons (“Backward”, “Forward”, and “Return”), a new

button named “Marker Detection” is added. The button is a trigger for the marker

detection layer, which switches the application to camera mode. In this mode, users

can see all image that the smartphone back camera is capturing. If the users point the

camera to any of the custom markers, the system will receive the secret data from it.



Chapter 8. Conclusion 143

Figure 8.2: Steps of detection and decryption process

All information related to the data will then be displayed to the users.

In Figure 8.3, the camera captures a marker that has a picture of a peacock (previ-

ously shown in Figure 8.1), which contain a tag named “peacock”. The application then

automatically displays text and images related to this tag. All of the displayed images

are in stereoscopic format, which are retrieved using the same 3D contents classification

approach of this project. The related text is retrieved from the first paragraph of the

Wikipedia page that has the tag as the article name.

The “Backward” and “Forward” serve as a basic navigation function, which helps

the users to browse related stereoscopic pictures that the system has found.



Chapter 8. Conclusion 144

(a) Marker detection mode

(b) Presentation mode

Figure 8.3: Screenshot from the system client demo

8.1.2 Personalised stereoscopic 3D gallery

This feature has been published in Int. Conf. Image Vision Computing New Zealand

(IVCNZ) 2017 by the researcher (Tran, Nguyen, Le & Yan, 2017).

Background

With the rapid development of mobile hardware in the last ten years, most of the

current smartphones are equipped with many modern features such as Wi-Fi, 3G, GPS,
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high-resolution screens, and multiple cameras. The addition of the camera has made

smartphones become a popular way of capturing pictures. While 2D pictures can be

taken easily, acquiring 3D photos requires two side-by-side cameras, a camera setup

which is uncommon on the market. Moreover, viewing these 3D photos also needs the

use of specialised gadgets, which is either 3D glasses or parallax barriers attached with

the phone display.

The purpose of this feature is to create an interactive public system that allows the

users to view and share their 3D gallery. These 3D contents can be captured with any

smart-phone on the market, as long as they are equipped with a camera. The description

of this feature can be highlighted in four bullet points:

• It is an online system which the pictures from phones can be uploaded to.

• The system contains stereo image rectification (horizontal alignment) that utilises

uncalibrated methods.

• To convert the captured pictures to visualised VR image pairs. The system uses

the stereoscopic content classification algorithm.

• Viewing these captured 3D contents are the same as viewing the stereoscopic

contents retrieved by the application

Application design

This feature make use of both the local system and the online storage system of

the application. The interaction between these two main modules are described in

Figure 8.4.
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Figure 8.4: Basic processing steps: users upload smart-phone images to a remote server
and receive a 3D description of the depicted scene.

When the application is installed on the smartphone, a unique private key is gener-

ated. This key is used as way to distinguish users’ 3D gallery.

In order to capture 3D photos with the application, a new functionality called 3D

photo capturing is added. This function requires the users to take two angle photo

shots of the same object. After that, these two images are converted into a side-by-side

stereoscopic photo that can be viewed through the application. These photos will be

then tagged with the private key and uploaded to the online storage.

Viewing these captured 3D photos is similar to the stereoscopic content viewing fea-

ture of the application. The users can use the same navigation buttons to browse through

their photos. For gallery sharing, inputting the private key from other smartphones will

redirect the users to the 3D gallery that these smartphones contain.
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Figure 8.5: Possible processes of the uncalibrated stereo image rectification

8.1.3 Virtual rollercoaster and environment decoration

Initially the project aimed to create a virtual rollercoaster that allow users to travel

through variety of virtual environments. For example, the users could go to the jungle

to see more photos about animals. However, upon discussing with the supervisor, the

constraint of resource does not allow this feature to complete in the timeframe.
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After all of the critical issues are fixed, free 3D models from Unity3D library will

be used to create multiple placeholder environments for the application. These areas

will also be used as testing grounds for the virtual rollercoaster feature.

Depend on the resource and developers, these two features will be developed

continually or stopped as proof of concepts.

8.1.4 Porting to iOS

One of the main reason that the application development started with Android environ-

ment is the high cost of iOS development. In order to run the demo on the iPhone and

iPad systems, the researcher has to either pay a developer fee or try to get a jailbroken

model. Moreover, Google VR platform is also optimised for the Android, which allows

the compatibility issue to be minimised.

After the application is finalised and published to Google Play Store or AUT

University server, the researcher will gather more feedbacks from the public users. If

there are great interest in the application, it can be ported to the iOS and published to

Apple App Store.

8.2 Conclusion

This thesis describes an online VR application that automatically retrieve stereoscopic

contents on the Internet based on user requests. The front-end side of the application

is developed with a combination of Unity3D engine and Google VR SDK. In order

to retrieve the correct stereoscopic format, multiple feature matching algorithms are

utilised to create a state-of-the-art content classification process for the application.

Based on the small-scale evaluation performed at the end of the project, the final

prototype of the application proves to be successful in delivering a quality stereoscopic

content viewing experience. However, besides some graphical and performance issues,
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the content classification process is still not implemented properly. This is due to the

time and resource limitation of the project. After fixing these problems, the application

will have a huge potential of becoming a great VR tool for both entertainment and

education. With it, users around the world could easily enjoy millions of stereoscopic

contents that are available on the Internet.
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