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Experience with using counterexamples in an introductory calculus 
course 
 

The paper describes a personal experience with using counterexamples as a 
pedagogical strategy in the teaching and learning of an introductory calculus 
course at a university of technology.  
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Deciding on an assertion’s validity is important in the information age. A 

counterexample can quickly and easily show that a given statement is false. 

Counterexamples thus offer powerful and effective tools for mathematicians, 

scientists, and researchers. They can indicate that a hypothesis is wrong. Before 

attempting to find proof for an assertion, looking for counterexamples may save an 

investigator lots of time and effort. Examples from history of mathematics in a class 

can be both informative and entertaining for the students. Below are three famous 

examples that I normally use in my classes. 

Example 1. For a long time mathematicians tried to find a formula which generated 

only prime numbers. Numbers of the form 122 
n

, where n is a natural number were 

once believed to all be prime, until Euler found a counterexample. He showed that for 

n = 5 that number is composite: 670041764112
52  .  

Example 2. Another conjecture about prime numbers is still awaiting proof or 

disproof. The Goldbach-Euler conjecture, posed by Goldbach in a 1742 letter to 

Euler, looks deceptively simple: every even integer greater than 2 is the sum of two 

prime numbers.   For example, 12 = 5 + 7, 20 = 3 + 17, and so on. Powerful 

computers were used to search for possible counterexamples and they found none 

among 4, 6,…, 14104 [1].  In 2000 the book publishing company Faber & Faber 
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offered a US$1 million prize to anyone who could prove or disprove this conjecture 

within two years. The prize went unclaimed. 

Example 3. In the 19th century the great German mathematician Weierstrass 

constructed his famous counterexamples to this statement: If a function is continuous 

on (a,b), then it is differentiable at some points on (a,b). Many mathematicians at that 

time thought that such ‘monster-functions’ that were continuous but not differentiable 

at any point were absolutely useless for practical applications. About a hundred years 

later Norbert Wiener, the founder of cybernetics pointed out in [2] that such curves 

exist in nature – for example, they are trajectories of particles in Brownian motion. In 

recent decades such curves have been investigated in the theory of fractals – a fast 

growing area with many applications. 

Dealing with counterexamples for the first time can be challenging for students. 

When they hear they can disprove a wrong statement by providing one 

counterexample, many students think they can “prove” a correct statement by 

showing an example. Even if they know they cannot prove a theorem by providing 

only examples, it is hard for some students to accept the fact that a single 

counterexample disproves a statement. Some students believe that a particular 

counterexample is just an exception to the rule at hand, and that no other 

‘pathological’ cases exist. Selden & Selden have articulated these ideas in [3]: 

“Students quite often fail to see a single counterexample as disproving a conjecture. 

This can happen when a counterexample is perceived as ‘the only one that exists’, 

rather than being seen as generic. ” 

With experience students understand the role of counterexamples and become 

interested in creating them. Using counterexamples to disprove wrong statements can 

generate many questions for discussion. What changes will make the statement at 
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hand correct?  How can you change a counterexample and have it remain one? Can 

you think of other statements that your counterexample refutes?  Can you find another 

type of function altogether that will be a counterexample or construct a general class 

of counterexamples to the statement at hand?   

In developing counterexamples students are forced to pay attention to every 

detail in a statement – the word order, the symbols used, the shape of brackets 

defining intervals, whether the statement applies to a point or to an interval, and so 

on. Consider the following theorem. 

Theorem 1. If a function f(x) is differentiable on (a,b) and its derivative is positive for 

all x in (a,b), then the function is increasing on (a,b).  

The following two statements look quite similar to Theorem 1, but both are 

incorrect: 

Statement 1. If a function f(x) is differentiable on (a,b) and its derivative is positive at 

a point x = c in (a,b), then there is a neighbourhood of the point x = c where the 

function is increasing. 

Statement 2. If a function f(x) is differentiable on its domain and its derivative is 

positive for all x from its domain, then the function is increasing everywhere on its 

domain. 

Students who find counterexamples to the last two statements must grapple with their 

subtle differences.  

An example from my teaching practice of using counterexamples below shows 

how they can foster discussion. Consider the following incorrect statement.  

Statement 3. If a function y = f(x) is defined on [a,b] and continuous on (a,b), then for 

any N between f(a) and f(b) there is some point ),( bac  such that    f(c) = N.  
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The only difference a student can see between Statement 3 and the Intermediate Value 

Theorem is in the shape of the brackets of the interval where the function is 

continuous:  the function is continuous on an open interval (a,b), instead of a closed 

interval [a,b]. When students are asked to disprove the statement they usually come 

up with something like this:        

           

           

           

           

         

 

 

 

 

 

 Figure 1. A possible student’s counterexample to Statement 3. 
 

To generate discussion and create other counterexamples one can suggest the students 

the following exercise: 

Exercise 1. On the graph shown in Figure 1 the statement’s conclusion is not true for 

any value of N between f(a) and f(b). Modify the graph in such a way that the 

statement’s conclusion is true for:  

a) exactly one value of N between f(a) and f(b);   

b) infinitely many but not all values of N between f(a) and f(b). 

One can then expect students to sketch graphs like these: 

 

 
 
         
f(b) 
 
      
f(a) 

   a                            b 
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a)          

    

 

 

 

 

 

 

 

Figure 2. A possible student’s answer to Exercise 1(a). 
 

b) 

 

 

 

 

 

 

 

  
Figure 3. A possible student’s answer to Exercise 1(b). 

 

Another exercise can be suggested to the students: 

Exercise 2. Give as a counterexample a graph that doesn’t have ‘white circles’. 

The students may come up with something like this: 

      
f(b) 
        
 
f(a) 

 a                                 b 

   a                            b 

   
f(a) 

f(b) 
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Figure 4. A possible student’s answer to Exercise 2. 
 

Below are some more examples of incorrect statements that I discuss with the 

students: 

Statement 4. The tangent to a curve at a point is the line which touches the curve at 

that point but does not cross it there. 

Statement 5. A function y = f(x) is bounded on R if for any Rx there is M > 0 

such that .)( Mxf   

Statement 6. If f(x) < g(x) for all x > 0 and both )(lim xf
x 

and )(lim xg
x 

 exist then 

)(lim)(lim xgxf
xx 

 . 

Statement 7. Every continuous and bounded function on ),(   takes on its extreme 

values. 

           

 a                               b 

        
f(a) 

f(b) 
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Statement 8. If a function is continuous on the interval (a,b) and its graph is a smooth 

curve (no sharp corners) on that interval then the function is differentiable at every 

point on (a,b). 

Statement 9. If a function y = f(x) is differentiable at the point x = a then its derivative 

is continuous at x = a. 

Statement 10. A plane figure of an infinite area rotated about an axis always produces 

a solid of revolution of infinite volume.   

With experience students learn that in creating counterexamples it is useful to 

have at their disposal a large assortment of graphs and functions with interesting 

properties building their ‘example space’ [4]. Understanding the anomalies and 

distinguishing features of these functions will provide them a natural starting point for 

developing their own counterexamples. To construct counterexamples most of the 

students try to use familiar graphs of polynomial functions, basic trigonometric 

functions and their inverses, piecewise functions (like step functions), and graphs with 

sharp corners (like that of the absolute value function x )  or cusps ( 3 2x ).  Search 

for possible counterexamples to harder examples can add to the student’s arsenal 

graphs of more exotic functions like oscillations with and without damping factors 

(like 
x

1
sin  , 

x
x

1
sin  , and 

x
x


cos2  ),  and even more exotic functions like Dirichlet 

and Weierstrass functions, which are notable in the history of mathematics.   

I mention here a few of the other ways I have used counterexamples in 

teaching. On different occasions, I have given students mixtures of correct and 

incorrect statements,  asked students to create their own wrong statements and 

associated counterexamples,  made deliberate errors in my lecture and moved on with 

the  hope that students would detect them,  asked  students to spot errors in their 
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textbook, given students extra credit for providing counterexamples to challenging 

statements I posed in class, and included on assignments and tests questions that 

require students to construct counterexamples.   

Teaching experience has shown that using counterexamples fosters discovery 

and makes learning more active. In an international study involving more than 600 

students from 10 universities in different countries [5] 92% of the participating 

students found the use of counterexamples to be very effective. The students reported 

it helped them to understand concepts better, prevent mistakes, develop logical and 

critical thinking, and made learning mathematics more challenging, interesting and 

creative. Another (case) study [6] showed that the use of counterexamples in teaching 

could improve students’ performance on test questions that required conceptual 

understanding. Apart from that study there was another indication from the same 

university that the usage of counterexamples was beneficial to the students. On a 

routine calculus course evaluation by the students in the end of the course the 

following statement was added to the form (the statement was formulated in the same 

style as other statements in the evaluation form): The usage of counterexamples in 

class helped me to learn. There were 54 students on that day in class who filled the 

evaluation form and 52 of them (96%) ticked either ‘Agree’ or ‘Strongly Agree’ box 

for the above statement.   

From my experience, working with counterexamples reduces some common 

misconceptions that can arise in calculus courses that avoid special cases and expose 

students only to ‘nice’ functions and ‘good’ simple examples, misconceptions 

explained by Tall’s generic extension principle: “If an individual works in a restricted 

context in which all the examples considered have a certain property, then, in the 
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absence of counterexamples, the mind assumes the known properties to be implicit in 

other contexts.” [7].   

A collection of 80+ incorrect statements from a first-year introductory 

calculus course and suggested counterexamples to them illustrated by graphs can be 

found in [8]. The book by Gelbaum & Olmsted [9] is a classical resource for using 

counterexamples in advanced calculus and mathematical analysis courses.  
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