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Abstract: Type theory plays an important role in the foundations of 

mathematics as a framework for formalizing mathematics and a base for 

proof assistants providing semi-automatic proof checking and construction. 

Derivation of each theorem in type theory results in a formal term 

encapsulating the whole proof process. This study uses a variant of type 

theory, namely the Calculus of Constructions with Definitions, to formalize 

the standard theory of binary relations. This includes basic operations on 

relations, criteria for special properties of relations, invariance of these properties 

under the basic operations, equivalence relation, well-ordering, and transfinite 

induction. Definitions and proofs are presented as flag-style derivations. 
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1. Introduction 

Type theories were developed as alternatives to set 

theory for the foundation of mathematics. Important type 

theories were introduced by A. Church and P. Martin-Lof; 

they are typed λ-calculus (see, for example, Barendregt 

(2012)) and intuitionistic type theory (see, for example, 

Granstrom (2011)). There are several higher-order 

variants of typed λ-calculus, such as Calculus of 

Constructions (CoC) and Calculus of Inductive 

Constructions (CIC) (see Bertot and Casteran, 2010). 

These variants make formal bases of proof assistants, 

which are computer tools for formalizing and developing 

mathematics. In particular, the well-known proof assistant 

Coq (Coq Development Team, 2021) is based on the CIC. 

This study uses the variant λD of CoC developed by 

Nederpelt and Geuvers (2014); λD is called the Calculus 

of Constructions with Definitions. λD is chosen because 

of its following useful properties described in their book. 

 

− In λD, as in other variants of CoC, proofs are 

expressed as formal terms and thus are incorporated 

into the system. 

− In λD type checking is decidable and therefore proof 

checking is decidable. So the correctness of a proof 

can be checked by an algorithm. 

− λD is strongly normalizing, which implies the logical 

consistency of this theory, even with classical logic 

(when no extra axioms are added). 

 
The theory λD is weaker than CIC because λD does 

not have inductive types. This does not limit its capability 

for formalizing mathematics because in λD one can use an 

axiomatic approach and higher-order logic to express the 

objects that CIC defines with inductive types. 

In these formalizations, the author aims to keep the 

language and theorems as close as possible to the ones of 

standard mathematics. Definitions and proofs in this study 

use the flag-style derivation described in Nederpelt and 

Geuvers (2014). Long formal derivations are moved from 

the main text to Appendices for better readability. 

2. Type Theory λD 

Nederpelt and Geuvers (2014) developed a formal 

theory λD and formalized some parts of logic and 

mathematics in it. The main features of λD are briefly 

described below. 

2.1. Type Theory λD 

The language of λD described in Nederpelt and 

Geuvers (2014) has an infinite set of variables, V, and an 

infinite set of constants, C; these two sets are disjoint. 

There are also special symbols □ and ∗. 

Definition 2.1  

Expressions of the language are defined recursively 

as follows. 

 

(1) Each variable is an expression. 

(2) Each constant is an expression. 

(3) The constant * is an expression. 

(4) The constant □ is an expression. 

(5) (Application) If A and B are expressions, then AB is 

an expression. 
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(6) (Abstraction) If A and B are expressions and x is a 

variable, then λx: A.B is an expression. 

(7) (Dependent Product) If A and B are expressions and 

x is a variable, then Πx: A.B is an expression. 

(8) If A1, A2,..., An are expressions and c is a constant, 

then c(A1, A2,..., An) is an expression. 
 

An expression A → B is introduced as a particular type 

of Dependent Product from (7) when x is not a free 

variable in B. 

Definition 2.2 
 
(1) A statement is of the form M: N, where M and N are 

expressions. 

(2) A declaration is of form x: N, where x is a variable 

and N is an expression. 

(3) A descriptive definition is of the form: 
 

x̅ : A̅   c(x̅) : = M : N, 
 

where x̅ is a list  x1, x2,..., xn  of variables, A̅ is a list  

A1, A2, ..., An of expressions, c is a constant, and M 

and N are expressions. 

(4) A primitive definition is of the form: 

 

x̅ : A̅   c(x̅) := ╨ : N, 

 

where x̅, A̅  and c are described the same way as in (3), 

and N is an expression. The symbol ╨ denotes the non-

existing definiens. Primitive definitions are used for 

introducing axioms where no proof terms are needed. 

 

(5) A definition is a descriptive definition or a primitive 

definition. 

(6) A judgment is of the form: 

 

Δ; Γ ⊢ M : N, 
 
where M and N are expressions of the language, ∆ is an 

environment (a properly constructed sequence of 

definitions) and Γ is a context (a properly constructed 

sequence of declarations). 
 

For brevity, most definitions use implicit variables by 

omitting the previously declared variables  x̅  in c(x̅) in (3) 

and (4). 

The following informally explains the meaning of 

expressions. 
 
(1) If an expression M appears in a derived statement of 

the form M: ∗, then M is interpreted as a type, which 

represents a set or a proposition. 
 

Note: There is only one type ∗ in λD. But informally 

∗p is often used for propositions and ∗s for sets to make 

proofs more readable. 

 

(2) If an expression M appears in a derived statement of 

the form M : N, where N is a type, then M is 

interpreted as an object at the lowest level. 

When N is interpreted as a set, then M is regarded as 

an element of this set.  

When N is interpreted as a proposition, then M is 

regarded as a proof (or a proof term) of this 

proposition. 

(3) The symbol □ represents the highest level. 

(4) Sort is ∗ or. Letters s, s1, s2,... are used as variables for 

sorts. 

(5) If an expression M appears in a statement of the form       

M : □, then M is called a kind.  

 

λD contains the derivation rule: 

 

𝜙; 𝜙 ⊢ ∗: □,  
 

It is an axiom (the only axiom) of in λD, because it has an 

empty environment and an empty context. 

 

Further details of the language and derivation rules of 

the theory λD can be found in Nederpelt and Geuvers 

(2014). Judgments are formally derived in λD using the 

derivation rules. 

 

2.2. Flag Format of Derivations 

The flag-style deduction was introduced by Jaskowski 

and Fitch; it is described in detail by Nederpelt and 

Kamareddine (2011), and Nederpelt and Geuvers (2014). 

In short, a derivation in the flag format is a linear 

deduction. Each ”flag” (a rectangular box) contains a 

declaration that introduces a variable or an assumption; a 

collection of already introduced variables and 

assumptions makes the current context. The scope of the 

variable or assumption is established by the ”flag pole". 

In the scope, one constructs definitions and proof terms 

for proving statements/theorems in λD. Each new flag 

extends the context and at the end of each flag pole, the 

context is reduced by the corresponding declaration. For 

brevity, several declarations can be combined in one flag. 

2.3. Logic in λD 

The rules of intuitionistic logic are derived from the 

theory λD as shown in Nederpelt and Geuvers (2014). 

These are briefly described below by showing the 

introduction and elimination rules for logical 

connectives and quantifiers. 
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Implication 

The logical implication A ⇒ B is identified with the 

arrow type A → B. The rules for implication follow the 

following general rules for the arrow type (here they are 

written in the flag format): 
 

 
 

Here x is not a free variable in B. 

In λD arrows are right-associative, that is A → B → C 

is a shorthand for A → (B → C). 

Falsity and Negation  

Falsity ⊥ is introduced in λD by:   ⊥ := ΠA : ∗p.A : ∗p. 

From this definition one gets a rule for falsity: 
 

 
The rule states that falsity implies any proposition. 

As usual, negation is defined by:  ¬A := A → ⊥. 

Other logical connectives and quantifiers are also 

defined using second-order encoding. Here only a list of 

their derived rules and names of the corresponding terms 

are provided, without details of their construction. The 

exact values of the terms can be found in Nederpelt and 

Geuvers (2014). 

Some of our flag derivations contain the proof terms 

that will be re-used in other proofs; such proof terms are 

written in bold font, e.g. ∧-in in the first derived rule for 

conjunction as follows. 

Conjunction 

These are derived rules for conjunction ∧: 
 

 

Disjunction 

These are derived rules for disjunction ∨: 

 
 

Bi-Implication  

Bi-implication ⇔ has the standard definition: 
 

(A ⇔ B) := (A ⇒ B) ∧ (B ⇒ A). 
 

Lemma 2.3.  

This lemma will be often used to prove bi-implication 

A ⇔ B. 
 

 
Universal Quantifier  

The universal quantifier ∀ is defined through the 

dependent product: 
 

 
Existential Quantifier 

These are derived rules for the existential quantifier ∃: 
 

 
 

Here x is not a free variable in C. 

Classical Logic 

This study uses mostly intuitionistic logic. But 

sometimes classical logic is needed; in these cases, the 

following Axiom of Excluded Third is added:  
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This axiom implies the Double Negation theorem: 
 

 
 

3. Intensional Equality in λD 

This section introduces intensional equality for 

elements of any type; it is called just equality. The next 

section will introduce extensional equality and the axiom 

of extensionality relating to the two types of equality. 
 

 
 

3.1. Properties of Equality 

Reflexivity 

The following diagram proves the reflexivity property 

of equality in λD: 
 

 
 

Proof terms are constructed similarly for the following 

properties of Substitutivity, Congruence, Symmetry, and 

Transitivity (see Nederpelt and Geuvers (2014)). 

Substitutivity 

Substitutivity means that equality is consistent with 

predicates of corresponding types. 
 

 
 

Congruence 

Congruence means that equality is consistent with 

functions of corresponding types. 
 

 
 

Symmetry 

The following diagram expresses the symmetry 

property of equality in λD. 
 

 
 
Transitivity 

The following diagram expresses the transitivity 

property of equality in λD. 

 

 
 

4. Relations in Type Theory 

      4.1. Sets in λD 

Below are some definitions from Nederpelt and Geuvers 

(2014) relating to sets, in particular, subsets of type S: 

 

 
 

Thus, a subset V of S is regarded as a predicate on S 

and xεV means x satisfies the predicate V. 

 

4.2. Defining Binary Relations in λD 

Binary relations are introduced in Nederpelt and 

Geuvers (2014), together with the properties of 

reflexivity, symmetry, antisymmetry, and transitivity, and 

definitions of equivalence relation and partial order. 

These are used here as a starting point for formalizing the 

theory of binary relations in λD. 

A relation on S is a binary predicate on S, which is 

regarded in λD as a composition of unary predicates. 

The type br(S) of all binary relations on S is introduced 

below, for brevity: 
 

 
 

In the rest of the article, binary relations are called 

just relations. The equality of relations and operations 
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on relations are defined similarly to the set equality and 

set operations. 

Next, the extensional equality of relations is defined vs 

the intentional equality introduced in the previous section. 

 

 
 

The following axiom of extensionality for relations is 

added to the theory λD. 

 

 
 

The axiom is introduced in the last line by a primitive 

definition with the symbol ╨ replacing a non-existing 

proof term. The Extensionality Axiom states that the two 

types of equality are the same for binary relations. So the 

symbol = will be used for both without elaborating on 

details of applying the axiom of extensionality, when 

converting one type of equality to the other. 

4.3. Operations on Binary Relations 

The flag format is used to introduce the identity 

relation idS on type S and converse R−1 of a relation R: 
 

 
 

Next, the operations of union ∪, intersection ∩, and 

composition ◦ of relations are introduced: 
 

 
 

4.4. Properties of Operations 

The following two technical lemmas will be used in 

some future proofs. 

Lemma 4.1.  
This lemma gives a shortcut for constructing an 

element of a composite relation. 

 
 

Lemma 4.2.  

This lemma gives a shortcut for proving the equality 

of two relations: 
 

 
 

Theorem 4.3. 

For relations R, P, and Q on type S the following hold: 
 

1)(𝑅−1)−1 = 𝑅 
2)(𝑅 ∘ 𝑄)−1 = 𝑄−1 ∘ 𝑅−1 
3)(𝑅 ∩ 𝑄)−1 = 𝑅−1 ∩ 𝑄−1 
4)(𝑅 ∪ 𝑄)−1 = 𝑅−1 ∪ 𝑄−1 
5)𝑅 ∘ (𝑃 ∪ 𝑄) = 𝑅 ∘ 𝑃 ∪ 𝑅 ∘ 𝑄 
6)(𝑃 ∪ 𝑄) ∘ 𝑅 = 𝑃 ∘ 𝑅 ∪ 𝑄 ∘ 𝑅 
7)𝑅 ∘ (𝑃 ∩ 𝑄) ⊆ 𝑅 ∘ 𝑃 ∩ 𝑅 ∘ 𝑄 
8)(𝑃 ∩ 𝑄) ∘ 𝑅 ⊆ 𝑃 ∘ 𝑅 ∩ 𝑄 ∘ 𝑅 

9) (𝑅 ∘ 𝑃) ∘ 𝑄 = 𝑅 ∘ (𝑃 ∘ 𝑄) 
 

The formal proof is in Appendix A. The proof of part 

2) has the form: 
 

 
 

Its proof term conv-prod (S, R, Q) will be re-used later 

in the paper. 

5. Properties of Binary Relations 

The properties of reflexivity, symmetry, 

antisymmetry, transitivity and the relations of equivalence 

and partial order are defined in Nederpelt and Geuvers 

(2014) as follows. 
 

 
 

Theorem 5.1.  

Suppose R is a relation on type S. Then the 

following hold. 
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1) Criterion of reflexivity. R is reflexive ⇔ idS ⊆ R. 

2) First criterion of symmetry. R is symmetric ⇔ 

R−1 ⊆ R. 

3) Second criterion of symmetry. R is symmetric ⇔ 

R−1 = R. 

4) Criterion of antisymmetry. R is antisymmetric ⇔ 

R−1 ∩ R ⊆ idS . 

5) Criterion of transitivity. R is transitive ⇔ R◦R ⊆ R. 

 

The formal proof is in Appendix B. The proof of part 

3) has the form: 
 

 
 

Its proof term sym-criterion(S, R) will be re-used later 

in the paper. 

Theorem 5.2.  

Relation R on S is reflexive, symmetric, and 

antisymmetric ⇒ R = idS. 

Proof. The formal proof is in the following flag 

diagram. 

 

□ 

 

Theorem 5.3. Invariance under converse operation. 

Suppose R is a relation on type S. Then the following 

hold. 

1) R is reflexive ⇒ R−1 is reflexive 

2) R is symmetric ⇒ R−1 is symmetric 

3) R is antisymmetric ⇒ R−1 is antisymmetric 

4) R is transitive ⇒ R−1 is transitive 

 

Proof. 1) 

 
 
2) 

 
 

3) 

 
 

4) 

 
□ 

Theorem 5.4. Invariance under intersection. 

Suppose R and Q are relations on type S. Then the 

following hold. 
 

1) R and Q are reflexive ⇒ R ∩ Q is reflexive. 

2) R and Q are symmetric ⇒ R ∩ Q is symmetric. 

3) R or Q is antisymmetric ⇒ R ∩ Q is antisymmetric. 

4) R and Q are transitive ⇒ R ∩ Q is transitive. 
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Proof. 1) 
 

 
2) 

 
 

3) 

 

4) 

 
□ 

Theorem 5.5. Invariance under union. 

Suppose R and Q are relations on type S. Then the 

following hold. 

1) R or Q is reflexive ⇒ R ∪ Q is reflexive. 

2) R and Q are symmetric ⇒ R ∪ Q is symmetric. 
 

Proof. 1)  
 

 
 

2) 
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□ 

Theorem 5.6. Invariance under composition. 

Suppose R and Q are relations on type S. Then the 

following hold. 

 

1) R ◦ R−1 is always symmetric. 

2) R and Q are reflexive ⇒ R ◦ Q is reflexive. 

3) Suppose R and Q are symmetric. Then 

R ◦ Q is symmetric ⇔ R ◦ Q = Q ◦ R. 

 

Proof. 1)  

 

 

 

 

 

 

 

 

 

 

 

2) 

 
 

3) The derivation below uses the proof term sym-

criterion (S, R) from Theorem 5.1.3) for the second 

criterion of symmetry and the proof term conv-prod from 

Theorem 4.3.2). 

 

 

 
□ 

6. Special Binary Relations 

6.1. Equivalence Relation and Partition 

Theorem 6.1. Invariance of equivalence relation under 

converse operation and intersection. 

Suppose R and Q are equivalence relations on type S. 

Then the following hold. 
 

1) R−1 is an equivalence relation on S. 

2) R ∩ Q is an equivalence relation on S. 

 

Proof 
1) Can easily be derived from Theorem 5.3.1), 2), 4) 

using intuitionistic logic. 

2) Can easily be derived from Theorem 5.4. 1), 2), 4)  

using intuitionistic logic. 
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The formal proofs are skipped.   □ 

 

Next is a formalization of the fact that there is a 

correspondence between equivalence relations on S and 

partitions of S. Equivalence classes are introduced in 

Nederpelt and Geuvers (2014) as follows. 

 

 
 

Next, a partition of type S is defined: 
 

 
 

As usual, one can regard a partition R as a collection Rx 

(x ∈ S) of subsets of S. From this point of view, the above 

diagram expresses the standard two facts for a partition: 

 

(1) any element of S belongs to one of the subsets from 

the collection (namely Rx); 

(2) if intersection of two subsets Rx and Ry is non-empty, 

then they coincide. 
 

(1) implies that each subset from the collection is non-

empty and that the union of all subsets from the collection is S. 

Theorem 6.2.  

Any equivalence relation R on type S is a partition of 

S and vice versa. 

Proof. The type of partitions of S is S → ps(S), which 

is S → S → ∗p, and it is the same as the type br(S) of 

relations on S. The proof consists of two steps. 
 

Step 1. Any equivalence relation is a partition. 
 

 
 

This proves the first part of the definition of partition 

(S, R), and the second part was proven in Nederpelt and 

Geuvers (2014), pg. 291. 

 

Step 2. Any partition is an equivalence relation. 
 

 

 

□ 

6.2. Partial Order 

Theorem 6.3. Invariance of partial order under 

converse operation and intersection. 

Suppose R and Q are partial orders on type S. Then the 

following hold. 

 

1) R−1 is a partial order on S. 
 

2) R ∩ Q is a partial order on S. 

 

Proof.  
1) can easily be derived from Theorem 5.3.1), 3), 4) 

using intuitionistic logic. 

2) can easily be derived from Theorem 5.4. 1), 3), 4) 

using intuitionistic logic.  

The formal proofs are skipped.  □ 
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Example 6.4 

⊆ is a partial order on the power set ps(S) of type S. 

Proof. 

This is the formal proof. 

 

 
□ 

6.3. Well-Ordering and Transfinite Induction 

Notation ≤ will be used for a partial order. The following 

diagram defines the strict order <, the least element of a 

partially ordered set, and the well-ordering of type S. 

 

 
 

Theorem 6.5. Transfinite Induction. 

Suppose ≤ is a well-ordering of type S. Then for any 

predicate P on S: 

∀x: S.[(∀y : S.(y < x ⇒ Py) ⇒ Px] ⇒ ∀x : S.Px. 

 

Proof 

Here is the formal proof. 
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Here the Double Negation theorem is used (twice) with 

the proof term doub-neg. This is the only place in this 

study where classical (not intuitionistic) logic is used.   □ 

7. Conclusion 

Starting with the definitions from Nederpelt and 

Geuvers (2014) of binary relations and properties of 

reflexivity, symmetry, antisymmetry, and transitivity, this 

study formalizes in the theory λD (the Calculus of 

Constructions with Definitions) criteria for these 

properties and proves their invariance under operations of 

union, intersection, composition, and taking converse. 

The author provides a formal definition of partition and 

formally proves correspondence between equivalence 

relations and partitions. The author derives formal proof 

that ⊆ is a partial order on the power set. Finally, the 

author formally proves the principle of transfinite 

induction for a type with well-ordering. 

The results can be transferred to the proof assistants 

that are based on the Calculus of Constructions. Since 

binary relation is an abstract concept used in many areas 

of mathematics, the results can be useful for further 

formalizations of mathematics in λD. Next direction of 

research is formalization of parts of probability theory in 

λD that was outlined in Kachapova (2018). 
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3) 

 

4) 

 
5) 
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6) is proven similarly to 5). 
 

7)   

 
 

8) is proven similarly to 7). 
 

9) 
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□ 

Appendix B. Proof of Theorem 5.1 

Proof. Each statement here is a bi-implication, so 

the proof term bi-impl from Lemma 2.3 is used. 
 

1) 
 

 
 

 
 

2) and 3) are proven together as follows. 
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4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5)  

 


