

 © 2022 Farida Kachapova. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.

 Journal of Mathematics and Statistics

Original Research Paper

Formalizing Relations in Type Theory

Farida Kachapova

Department of Mathematical Sciences, Auckland University of Technology, New Zealand

Article history

Received: 02-03-2022

Revised: 02-03-2022

Accepted: 01-09-2022

Email: farida.kachapova@aut.ac.nz

Abstract: Type theory plays an important role in the foundations of

mathematics as a framework for formalizing mathematics and a base for

proof assistants providing semi-automatic proof checking and construction.

Derivation of each theorem in type theory results in a formal term

encapsulating the whole proof process. This study uses a variant of type

theory, namely the Calculus of Constructions with Definitions, to formalize

the standard theory of binary relations. This includes basic operations on

relations, criteria for special properties of relations, invariance of these properties

under the basic operations, equivalence relation, well-ordering, and transfinite

induction. Definitions and proofs are presented as flag-style derivations.

Keywords: Type Theory, Calculus of Constructions, Binary Relation,

Transfinite Induction, Flag-Style Derivation

1. Introduction

Type theories were developed as alternatives to set

theory for the foundation of mathematics. Important type

theories were introduced by A. Church and P. Martin-Lof;

they are typed λ-calculus (see, for example, Barendregt

(2012)) and intuitionistic type theory (see, for example,

Granstrom (2011)). There are several higher-order

variants of typed λ-calculus, such as Calculus of

Constructions (CoC) and Calculus of Inductive

Constructions (CIC) (see Bertot and Casteran, 2010).

These variants make formal bases of proof assistants,

which are computer tools for formalizing and developing

mathematics. In particular, the well-known proof assistant

Coq (Coq Development Team, 2021) is based on the CIC.

This study uses the variant λD of CoC developed by

Nederpelt and Geuvers (2014); λD is called the Calculus

of Constructions with Definitions. λD is chosen because

of its following useful properties described in their book.

− In λD, as in other variants of CoC, proofs are

expressed as formal terms and thus are incorporated

into the system.

− In λD type checking is decidable and therefore proof

checking is decidable. So the correctness of a proof

can be checked by an algorithm.

− λD is strongly normalizing, which implies the logical

consistency of this theory, even with classical logic

(when no extra axioms are added).

The theory λD is weaker than CIC because λD does

not have inductive types. This does not limit its capability

for formalizing mathematics because in λD one can use an

axiomatic approach and higher-order logic to express the

objects that CIC defines with inductive types.

In these formalizations, the author aims to keep the

language and theorems as close as possible to the ones of

standard mathematics. Definitions and proofs in this study

use the flag-style derivation described in Nederpelt and

Geuvers (2014). Long formal derivations are moved from

the main text to Appendices for better readability.

2. Type Theory λD

Nederpelt and Geuvers (2014) developed a formal

theory λD and formalized some parts of logic and

mathematics in it. The main features of λD are briefly

described below.

2.1. Type Theory λD

The language of λD described in Nederpelt and

Geuvers (2014) has an infinite set of variables, V, and an

infinite set of constants, C; these two sets are disjoint.

There are also special symbols □ and ∗.

Definition 2.1

Expressions of the language are defined recursively

as follows.

(1) Each variable is an expression.

(2) Each constant is an expression.

(3) The constant * is an expression.

(4) The constant □ is an expression.

(5) (Application) If A and B are expressions, then AB is

an expression.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

(6) (Abstraction) If A and B are expressions and x is a

variable, then λx: A.B is an expression.

(7) (Dependent Product) If A and B are expressions and

x is a variable, then Πx: A.B is an expression.

(8) If A1, A2,..., An are expressions and c is a constant,

then c(A1, A2,..., An) is an expression.

An expression A → B is introduced as a particular type

of Dependent Product from (7) when x is not a free

variable in B.

Definition 2.2

(1) A statement is of the form M: N, where M and N are

expressions.

(2) A declaration is of form x: N, where x is a variable

and N is an expression.

(3) A descriptive definition is of the form:

x̅ : A̅ c(x̅) : = M : N,

where x̅ is a list x1, x2,..., xn of variables, A̅ is a list

A1, A2, ..., An of expressions, c is a constant, and M

and N are expressions.

(4) A primitive definition is of the form:

x̅ : A̅ c(x̅) := ╨ : N,

where x̅, A̅ and c are described the same way as in (3),

and N is an expression. The symbol ╨ denotes the non-

existing definiens. Primitive definitions are used for

introducing axioms where no proof terms are needed.

(5) A definition is a descriptive definition or a primitive

definition.

(6) A judgment is of the form:

Δ; Γ ⊢ M : N,

where M and N are expressions of the language, ∆ is an

environment (a properly constructed sequence of

definitions) and Γ is a context (a properly constructed

sequence of declarations).

For brevity, most definitions use implicit variables by

omitting the previously declared variables x̅ in c(x̅) in (3)

and (4).

The following informally explains the meaning of

expressions.

(1) If an expression M appears in a derived statement of

the form M: ∗, then M is interpreted as a type, which

represents a set or a proposition.

Note: There is only one type ∗ in λD. But informally

∗p is often used for propositions and ∗s for sets to make

proofs more readable.

(2) If an expression M appears in a derived statement of

the form M : N, where N is a type, then M is

interpreted as an object at the lowest level.

When N is interpreted as a set, then M is regarded as

an element of this set.

When N is interpreted as a proposition, then M is

regarded as a proof (or a proof term) of this

proposition.

(3) The symbol □ represents the highest level.

(4) Sort is ∗ or. Letters s, s1, s2,... are used as variables for

sorts.

(5) If an expression M appears in a statement of the form

M : □, then M is called a kind.

λD contains the derivation rule:

𝜙; 𝜙 ⊢ ∗: □,

It is an axiom (the only axiom) of in λD, because it has an

empty environment and an empty context.

Further details of the language and derivation rules of

the theory λD can be found in Nederpelt and Geuvers

(2014). Judgments are formally derived in λD using the

derivation rules.

2.2. Flag Format of Derivations

The flag-style deduction was introduced by Jaskowski

and Fitch; it is described in detail by Nederpelt and

Kamareddine (2011), and Nederpelt and Geuvers (2014).

In short, a derivation in the flag format is a linear

deduction. Each ”flag” (a rectangular box) contains a

declaration that introduces a variable or an assumption; a

collection of already introduced variables and

assumptions makes the current context. The scope of the

variable or assumption is established by the ”flag pole".

In the scope, one constructs definitions and proof terms

for proving statements/theorems in λD. Each new flag

extends the context and at the end of each flag pole, the

context is reduced by the corresponding declaration. For

brevity, several declarations can be combined in one flag.

2.3. Logic in λD

The rules of intuitionistic logic are derived from the

theory λD as shown in Nederpelt and Geuvers (2014).

These are briefly described below by showing the

introduction and elimination rules for logical

connectives and quantifiers.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

Implication

The logical implication A ⇒ B is identified with the

arrow type A → B. The rules for implication follow the

following general rules for the arrow type (here they are

written in the flag format):

Here x is not a free variable in B.

In λD arrows are right-associative, that is A → B → C

is a shorthand for A → (B → C).

Falsity and Negation

Falsity ⊥ is introduced in λD by: ⊥ := ΠA : ∗p.A : ∗p.

From this definition one gets a rule for falsity:

The rule states that falsity implies any proposition.

As usual, negation is defined by: ¬A := A → ⊥.

Other logical connectives and quantifiers are also

defined using second-order encoding. Here only a list of

their derived rules and names of the corresponding terms

are provided, without details of their construction. The

exact values of the terms can be found in Nederpelt and

Geuvers (2014).

Some of our flag derivations contain the proof terms

that will be re-used in other proofs; such proof terms are

written in bold font, e.g. ∧-in in the first derived rule for

conjunction as follows.

Conjunction

These are derived rules for conjunction ∧:

Disjunction

These are derived rules for disjunction ∨:

Bi-Implication

Bi-implication ⇔ has the standard definition:

(A ⇔ B) := (A ⇒ B) ∧ (B ⇒ A).

Lemma 2.3.

This lemma will be often used to prove bi-implication

A ⇔ B.

Universal Quantifier

The universal quantifier ∀ is defined through the

dependent product:

Existential Quantifier

These are derived rules for the existential quantifier ∃:

Here x is not a free variable in C.

Classical Logic

This study uses mostly intuitionistic logic. But

sometimes classical logic is needed; in these cases, the

following Axiom of Excluded Third is added:

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

This axiom implies the Double Negation theorem:

3. Intensional Equality in λD

This section introduces intensional equality for

elements of any type; it is called just equality. The next

section will introduce extensional equality and the axiom

of extensionality relating to the two types of equality.

3.1. Properties of Equality

Reflexivity

The following diagram proves the reflexivity property

of equality in λD:

Proof terms are constructed similarly for the following

properties of Substitutivity, Congruence, Symmetry, and

Transitivity (see Nederpelt and Geuvers (2014)).

Substitutivity

Substitutivity means that equality is consistent with

predicates of corresponding types.

Congruence

Congruence means that equality is consistent with

functions of corresponding types.

Symmetry

The following diagram expresses the symmetry

property of equality in λD.

Transitivity

The following diagram expresses the transitivity

property of equality in λD.

4. Relations in Type Theory

 4.1. Sets in λD

Below are some definitions from Nederpelt and Geuvers

(2014) relating to sets, in particular, subsets of type S:

Thus, a subset V of S is regarded as a predicate on S

and xεV means x satisfies the predicate V.

4.2. Defining Binary Relations in λD

Binary relations are introduced in Nederpelt and

Geuvers (2014), together with the properties of

reflexivity, symmetry, antisymmetry, and transitivity, and

definitions of equivalence relation and partial order.

These are used here as a starting point for formalizing the

theory of binary relations in λD.

A relation on S is a binary predicate on S, which is

regarded in λD as a composition of unary predicates.

The type br(S) of all binary relations on S is introduced

below, for brevity:

In the rest of the article, binary relations are called

just relations. The equality of relations and operations

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

on relations are defined similarly to the set equality and

set operations.

Next, the extensional equality of relations is defined vs

the intentional equality introduced in the previous section.

The following axiom of extensionality for relations is

added to the theory λD.

The axiom is introduced in the last line by a primitive

definition with the symbol ╨ replacing a non-existing

proof term. The Extensionality Axiom states that the two

types of equality are the same for binary relations. So the

symbol = will be used for both without elaborating on

details of applying the axiom of extensionality, when

converting one type of equality to the other.

4.3. Operations on Binary Relations

The flag format is used to introduce the identity

relation idS on type S and converse R−1 of a relation R:

Next, the operations of union ∪, intersection ∩, and

composition ◦ of relations are introduced:

4.4. Properties of Operations

The following two technical lemmas will be used in

some future proofs.

Lemma 4.1.
This lemma gives a shortcut for constructing an

element of a composite relation.

Lemma 4.2.

This lemma gives a shortcut for proving the equality

of two relations:

Theorem 4.3.

For relations R, P, and Q on type S the following hold:

1)(𝑅−1)−1 = 𝑅
2)(𝑅 ∘ 𝑄)−1 = 𝑄−1 ∘ 𝑅−1
3)(𝑅 ∩ 𝑄)−1 = 𝑅−1 ∩ 𝑄−1
4)(𝑅 ∪ 𝑄)−1 = 𝑅−1 ∪ 𝑄−1
5)𝑅 ∘ (𝑃 ∪ 𝑄) = 𝑅 ∘ 𝑃 ∪ 𝑅 ∘ 𝑄
6)(𝑃 ∪ 𝑄) ∘ 𝑅 = 𝑃 ∘ 𝑅 ∪ 𝑄 ∘ 𝑅
7)𝑅 ∘ (𝑃 ∩ 𝑄) ⊆ 𝑅 ∘ 𝑃 ∩ 𝑅 ∘ 𝑄
8)(𝑃 ∩ 𝑄) ∘ 𝑅 ⊆ 𝑃 ∘ 𝑅 ∩ 𝑄 ∘ 𝑅

9) (𝑅 ∘ 𝑃) ∘ 𝑄 = 𝑅 ∘ (𝑃 ∘ 𝑄)

The formal proof is in Appendix A. The proof of part

2) has the form:

Its proof term conv-prod (S, R, Q) will be re-used later

in the paper.

5. Properties of Binary Relations

The properties of reflexivity, symmetry,

antisymmetry, transitivity and the relations of equivalence

and partial order are defined in Nederpelt and Geuvers

(2014) as follows.

Theorem 5.1.

Suppose R is a relation on type S. Then the

following hold.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

1) Criterion of reflexivity. R is reflexive ⇔ idS ⊆ R.

2) First criterion of symmetry. R is symmetric ⇔

R−1 ⊆ R.

3) Second criterion of symmetry. R is symmetric ⇔

R−1 = R.

4) Criterion of antisymmetry. R is antisymmetric ⇔

R−1 ∩ R ⊆ idS .

5) Criterion of transitivity. R is transitive ⇔ R◦R ⊆ R.

The formal proof is in Appendix B. The proof of part

3) has the form:

Its proof term sym-criterion(S, R) will be re-used later

in the paper.

Theorem 5.2.

Relation R on S is reflexive, symmetric, and

antisymmetric ⇒ R = idS.

Proof. The formal proof is in the following flag

diagram.

□

Theorem 5.3. Invariance under converse operation.

Suppose R is a relation on type S. Then the following

hold.

1) R is reflexive ⇒ R−1 is reflexive

2) R is symmetric ⇒ R−1 is symmetric

3) R is antisymmetric ⇒ R−1 is antisymmetric

4) R is transitive ⇒ R−1 is transitive

Proof. 1)

2)

3)

4)

□

Theorem 5.4. Invariance under intersection.

Suppose R and Q are relations on type S. Then the

following hold.

1) R and Q are reflexive ⇒ R ∩ Q is reflexive.

2) R and Q are symmetric ⇒ R ∩ Q is symmetric.

3) R or Q is antisymmetric ⇒ R ∩ Q is antisymmetric.

4) R and Q are transitive ⇒ R ∩ Q is transitive.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

Proof. 1)

2)

3)

4)

□

Theorem 5.5. Invariance under union.

Suppose R and Q are relations on type S. Then the

following hold.

1) R or Q is reflexive ⇒ R ∪ Q is reflexive.

2) R and Q are symmetric ⇒ R ∪ Q is symmetric.

Proof. 1)

2)

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

□

Theorem 5.6. Invariance under composition.

Suppose R and Q are relations on type S. Then the

following hold.

1) R ◦ R−1 is always symmetric.

2) R and Q are reflexive ⇒ R ◦ Q is reflexive.

3) Suppose R and Q are symmetric. Then

R ◦ Q is symmetric ⇔ R ◦ Q = Q ◦ R.

Proof. 1)

2)

3) The derivation below uses the proof term sym-

criterion (S, R) from Theorem 5.1.3) for the second

criterion of symmetry and the proof term conv-prod from

Theorem 4.3.2).

□

6. Special Binary Relations

6.1. Equivalence Relation and Partition

Theorem 6.1. Invariance of equivalence relation under

converse operation and intersection.

Suppose R and Q are equivalence relations on type S.

Then the following hold.

1) R−1 is an equivalence relation on S.

2) R ∩ Q is an equivalence relation on S.

Proof
1) Can easily be derived from Theorem 5.3.1), 2), 4)

using intuitionistic logic.

2) Can easily be derived from Theorem 5.4. 1), 2), 4)

using intuitionistic logic.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

The formal proofs are skipped. □

Next is a formalization of the fact that there is a

correspondence between equivalence relations on S and

partitions of S. Equivalence classes are introduced in

Nederpelt and Geuvers (2014) as follows.

Next, a partition of type S is defined:

As usual, one can regard a partition R as a collection Rx

(x ∈ S) of subsets of S. From this point of view, the above

diagram expresses the standard two facts for a partition:

(1) any element of S belongs to one of the subsets from

the collection (namely Rx);

(2) if intersection of two subsets Rx and Ry is non-empty,

then they coincide.

(1) implies that each subset from the collection is non-

empty and that the union of all subsets from the collection is S.

Theorem 6.2.

Any equivalence relation R on type S is a partition of

S and vice versa.

Proof. The type of partitions of S is S → ps(S), which

is S → S → ∗p, and it is the same as the type br(S) of

relations on S. The proof consists of two steps.

Step 1. Any equivalence relation is a partition.

This proves the first part of the definition of partition

(S, R), and the second part was proven in Nederpelt and

Geuvers (2014), pg. 291.

Step 2. Any partition is an equivalence relation.

□

6.2. Partial Order

Theorem 6.3. Invariance of partial order under

converse operation and intersection.

Suppose R and Q are partial orders on type S. Then the

following hold.

1) R−1 is a partial order on S.

2) R ∩ Q is a partial order on S.

Proof.
1) can easily be derived from Theorem 5.3.1), 3), 4)

using intuitionistic logic.

2) can easily be derived from Theorem 5.4. 1), 3), 4)

using intuitionistic logic.

The formal proofs are skipped. □

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

Example 6.4

⊆ is a partial order on the power set ps(S) of type S.

Proof.

This is the formal proof.

□

6.3. Well-Ordering and Transfinite Induction

Notation ≤ will be used for a partial order. The following

diagram defines the strict order <, the least element of a

partially ordered set, and the well-ordering of type S.

Theorem 6.5. Transfinite Induction.

Suppose ≤ is a well-ordering of type S. Then for any

predicate P on S:

∀x: S.[(∀y : S.(y < x ⇒ Py) ⇒ Px] ⇒ ∀x : S.Px.

Proof

Here is the formal proof.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

Here the Double Negation theorem is used (twice) with

the proof term doub-neg. This is the only place in this

study where classical (not intuitionistic) logic is used. □

7. Conclusion

Starting with the definitions from Nederpelt and

Geuvers (2014) of binary relations and properties of

reflexivity, symmetry, antisymmetry, and transitivity, this

study formalizes in the theory λD (the Calculus of

Constructions with Definitions) criteria for these

properties and proves their invariance under operations of

union, intersection, composition, and taking converse.

The author provides a formal definition of partition and

formally proves correspondence between equivalence

relations and partitions. The author derives formal proof

that ⊆ is a partial order on the power set. Finally, the

author formally proves the principle of transfinite

induction for a type with well-ordering.

The results can be transferred to the proof assistants

that are based on the Calculus of Constructions. Since

binary relation is an abstract concept used in many areas

of mathematics, the results can be useful for further

formalizations of mathematics in λD. Next direction of

research is formalization of parts of probability theory in

λD that was outlined in Kachapova (2018).

Acknowledgment

The author thanks the Editor in Chief and Reviewer.

Ethics

This is a mathematical article; no ethical issues can

arise after its publication.

References

Barendregt, H. (2012). The Lambda Calculus, its Syntax

and Semantics. vol 40 (Studies in Logic,

Mathematical Logic and Foundations).

https://www.collegepublications.co.uk/logic/mlf/?

00021

Bertot, Y., & Castéran, P. (2013). Interactive theorem proving

and program development: Coq’Art: the calculus of

inductive constructions. Springer Science & Business

Media. https://link.springer.com/book/10.1007/978-3-

662-07964-5

CDT (2021). The coq proof assistant, reference manual,

2021. Coq Development Team.

https://coq.inria.fr/distrib/current/refman/

Granström, J. G. (2011). Treatise on intuitionistic type

theory (Vol. 22). Springer Science & Business

Media. https://link.springer.com/book/10.1007/978-

94-007-1736-7

Kachapova, F. (2018). Formalizing Probability Concepts in

a Type Theory. Journal of Mathematics and Statistics.

https://thescipub.com/abstract/10.3844/jmssp.2018.2

09.218

Nederpelt, R. P., & Kamareddine, F. D. (2004). Logical

reasoning: a first course. ISBN: 9780954300678.

Nederpelt, R., & Geuvers, H. (2014). Type theory and

formal proof. Cambridge University Press. ISBN:

978-1-107-03650-5.

APPENDIX

Appendix A. Proof of Theorem 4.3

Proof. 1)

2)

https://www.collegepublications.co.uk/logic/mlf/?00021
https://www.collegepublications.co.uk/logic/mlf/?00021
https://link.springer.com/book/10.1007/978-3-662-07964-5
https://link.springer.com/book/10.1007/978-3-662-07964-5
https://coq.inria.fr/distrib/current/refman/
https://link.springer.com/book/10.1007/978-94-007-1736-7
https://link.springer.com/book/10.1007/978-94-007-1736-7
https://thescipub.com/abstract/10.3844/jmssp.2018.209.218
https://thescipub.com/abstract/10.3844/jmssp.2018.209.218

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

3)

4)

5)

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

6) is proven similarly to 5).

7)

8) is proven similarly to 7).

9)

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

□

Appendix B. Proof of Theorem 5.1

Proof. Each statement here is a bi-implication, so

the proof term bi-impl from Lemma 2.3 is used.

1)

2) and 3) are proven together as follows.

Farida Kachapova / Journal of Mathematics and Statistics 2022, ■ (■): ■■■.■■■

DOI: 10.3844/jmssp.2022.■■■.■■■

■■

4)

5)

