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Abstract

This thesis addresses the critical challenges at the intersection of the Internet of Things
(IoT) and healthcare, focusing primarily on innovative solutions for fall detection and
data privacy. The research begins by underscoring the urgent need for robust, secure
fall detection systems, which sets the tone and motivation for the ensuing chapters. A
comprehensive survey of the existing literature is provided, encompassing key tech-
nologies like Convolutional Neural Networks (CNNs) and Long Short-Term Memory
networks (LSTMs) that serve as the theoretical foundation for the research. The core
contribution is a novel Falls Management Framework (FMF) that employs a fusion of
wearable and non-wearable sensors for effective fall detection. The framework utilizes
various machine learning algorithms, with special emphasis on our proprietary Adaptive
Context-aware Fall Detection Algorithm (ACFDA), optimized for minimizing false
negatives and positives. In addition to FMF, the thesis explores innovative technologies
in existing systems like SmartFall and FallRisk, and presents an advanced fall detec-
tion system based on visual object recognition algorithms. This latter system offers
a comfortable, non-intrusive alternative to wearable sensors by using environmental
sensors and real-time video analysis. Furthermore, the thesis addresses the significant
issue of false detection rates and introduces privacy-preserving methods such as skeletal
pose imaging and visual encryption techniques. This multi-layered approach aims
to harmonize effective fall detection with individual privacy concerns. The findings
and contributions of this research not only advance the field of IoT-based healthcare
solutions but also promise to have immediate practical applications, especially for the
vulnerable elderly population.
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Chapter 1

Introduction

1.1 Motivation

In modern society, the number of older adults who either opt or are necessitated to live

independently is on the rise, posing a complex set of challenges for healthcare providers.

These challenges extend beyond the potential for medical emergencies, encompassing

concerns like social isolation, depression and anxiety, and inadequate nutrition.

Particularly salient among these risks is the elevated likelihood of falls, which are

not only frequent in the elderly population but also have severe implications. These

falls could lead to debilitating injuries, significantly affecting the quality of life and

sometimes necessitating long-term institutional care. In this context, it’s worth noting

that many falls go undocumented, even when the individual does not have noticeable

cognitive impairments (Ungar et al., 2013). Various factors contribute to the prevalence

of falls among older adults—these range from age-related physiological changes to

environmental hazards. Therefore, fall detection and risk assessment are critical for

formulating effective prevention strategies.

As shown in Figure 1.1, these falls can have dire consequences, particularly when

12
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Figure 1.1: Illustrations of Vulnerable Situations: Elderly Individuals Experiencing
Falls When Alone

(Elliott, Painter & Hudson, 2009)

they occur in the absence of immediate help. Comprehensive, multi-factorial assess-

ments are, therefore, indispensable in gauging the risks of falls effectively and devising

targeted prevention programs.

The changing demographics worldwide, characterized by an aging population (United

Nation, Department of Economic and Social Affairs, Population Division, 2015; Harper,

2006), further accentuate these challenges, leading to increased healthcare expenditures

and a surge in the prevalence of chronic conditions (Thom et al., 2006; Centers for Medi-

care & Medicaid Services, 2015). Health monitoring is becoming an integral component

of individual healthcare, especially for older adults and people with chronic illnesses,

as it aims to reduce hospital visits while enhancing the overall quality of life (Dierckx,

Pellicori, Cleland & Clark, 2015). Traditional models of health monitoring are becom-

ing increasingly untenable due to their time-consuming nature and inconvenience for

both healthcare providers and patients (Karthikeyan, Devi & Valarmathi, 2015). Hence,

there is a pressing need for efficient healthcare solutions that not only alleviate the

burden on existing systems but also contribute to better healthcare outcomes. If the

current healthcare practices persist, New Zealand’s government healthcare spending
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is projected to rise by 1.5 times from 2016 to 2060, accounting for approximately 11

percent of the GDP by 2060 (Ministry of Health, 2016).

IoT is promising for developing remote healthcare monitoring systems. IoT ap-

plications present a paradigm to connect physical and virtual things (Azimi, Rahmani,

Liljeberg & Tenhunen, 2016) and enables these things to communicate, share informa-

tion and coordinate decisions. In recent years, IoT-based applications in the medical

field have drawn substantial attention of researchers and technologists.

Technology has come a long way in recent years, especially in terms of real-time

monitoring of elderly individuals. Although there are no well-known applications

specifically designed for this purpose, there is no shortage of options available to help

improve the quality of life for older adults.

One of the main concerns with real-time monitoring is ensuring the security of

personal identity. This is a significant challenge as sensitive data must be protected to

prevent any misuse or exploitation. It’s important to use appropriate encryption and

security measures to keep personal data safe from any unauthorized access.

Another important feature of real-time monitoring is the ability to provide caregivers

with a real-time display of the elderly person’s activity. This allows caregivers to keep

an eye on the individual’s health and well-being, and respond promptly to any potential

issues.

However, there are challenges associated with storing large amounts of data, espe-

cially when videos are recorded 24/7. This can be expensive and may not be feasible

for all users. It’s important to balance the need for comprehensive monitoring with the

cost of maintaining and storing large amounts of data.

Overall, the goal of real-time monitoring is to help minimize the risk of severe injury

for elderly individuals who live alone. With the right technology and security measures

in place, it’s possible to provide elderly individuals with the support they need to live

independently and safely.
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The use of real-time monitoring technology can play a crucial role in helping to

minimize the risk of severe injury for elderly individuals who live alone. By providing

caregivers with a real-time display of the individual’s activity, any potential issues

can be identified and addressed promptly. Additionally, the use of sensors and other

monitoring devices can help to detect falls or other accidents and alert caregivers or

emergency services. With the right technology and support in place, it’s possible to

provide elderly individuals with the safety and security they need to live independently

and reduce the risk of severe injury.

1.2 Thesis Goals and Research Questions

The overarching aim of this research is to conceptualize, design, and validate a cost-

effective, yet robust, system for monitoring elderly individuals living alone, with an

emphasis on ensuring both their security and privacy. To achieve this objective, the

study scrutinizes a plethora of Internet of Things (IoT) technologies and determines the

most efficacious options for senior residences.

To fulfill these research aspirations, we pose the following key Research Questions

(RQs):

RQ 1: Which technologies offer a balanced blend of efficiency and privacy for

home-based elderly monitoring?

RQ 2: How reliable are wearable IoT devices for the precise categorization of

activities, particularly in detecting falls?

RQ 3: What alternative non-wearable IoT devices can be employed for precise

activity classification, specifically for fall detection?

RQ 4: How can we mitigate risks related to visual data breaches when employing

RGB/IR camera systems for monitoring?

RQ 5: What techniques based on deep learning can be developed to improve the
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precision of human activity detection?

RQ 6: What strategies can be applied to minimize cloud storage requirements for

real-time health monitoring data?

The research questions presented above are of significant importance, as they

address key challenges faced in the fields of computer vision, privacy, and healthcare

monitoring. The elderly population is growing rapidly, and there is an increasing need

for effective monitoring solutions that respect their privacy and provide accurate health

data. This thesis aims to fully or partly answer these research questions by exploring

suitable technologies for elderly care, evaluating the performance of wearable and non-

wearable IoT devices in activity classification, examining methods to minimize visual

data breaches, enhancing the accuracy of human detection using deep learning models,

and proposing strategies to reduce the cloud storage requirements for real-time health

monitoring data. The insights gained from addressing these questions will contribute to

the development of more effective and privacy-preserving monitoring solutions for the

elderly.

1.3 Contributions of Thesis

This thesis primarily revolves around the development of an innovative, robust, and

privacy-preserving system for fall detection in the context of IoT-enabled healthcare.

The architecture of our proposed system, as illustrated in Fig. 1.2, integrates wearable

and non-wearable sensor technologies, as well as cloud-based solutions, to effectively

monitor falls and ensure data privacy for the vulnerable elderly population.

In bringing this system to fruition, we make several novel contributions in both

the design and operational aspects, which span client-side, server-side, and system

architecture. The thesis is centered around the following major contributions:

1. Comprehensive Survey and Theoretical Framework: A thorough exploration
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Figure 1.2: Overall Architecture of the proposed system.

of existing technologies and methodologies in IoT healthcare and fall detection.

This includes discussions on Convolutional Neural Networks (CNNs) and Long

Short-Term Memory networks (LSTMs) to lay the groundwork for subsequent

chapters.

2. Novel Falls Management Framework (FMF): We introduce a new framework

that fuses wearable and non-wearable sensor technologies to develop a highly

effective fall detection system. FMF employs machine learning algorithms like

SVM, k-NN, and Naive Bayes classifiers, along with our Adaptive Context-aware

Fall Detection Algorithm (ACFDA) to accurately distinguish falls from Activities

of Daily Living (ADL).

3. Visual Object-based Fall Detection Algorithm: This system deploys environ-

mental sensors and video analytics for fall detection, surpassing the limitations of

wearable sensors. The algorithm consists of four key components: Video Capture

and Playback, Pose Landmark Detection, Fall Recognition, and User Interface
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Interactivity. It is extensively validated using the SysFall dataset.

4. Privacy-Preserving Approaches: Two innovative methods for manual verifica-

tion of fall incidents are introduced—skeletal pose imaging and visual encryption.

These measures provide a balance between fall detection effectiveness and indi-

vidual privacy concerns. The thesis also explores image encryption techniques

like steganography and reversible data hiding to bolster security and privacy.



Chapter 2

Literature Review

2.1 Introduction

The increasing trend of ageing populations all over the world in recent years (Harper,

2006) has led to complex health issues, including the increase in chronic diseases

and rise in hospital and clinical services expenditures (Thom et al., 2006). Health

monitoring is playing an important role in maintaining health for individuals, especially

for the elderly or people with chronic diseases because it can reduce hospitalization and

increase quality of life (Dierckx et al., 2015). Traditional health monitoring models are

time-consuming and inconvenient for all involved (Karthikeyan et al., 2015). These

models will be insufficient to meet the need of medical services in our ageing society.

There has been a demand for developing efficient healthcare solutions which help to

decrease the pressure on hospital systems and healthcare providers, improve the quality

of care as well as have a part in reducing healthcare costs by keeping patients out of

hospitals for routine care. It is expected that New Zealand’s government health spending

would increase 1.5 times in the period from 2016 to 2060, reaching about 11 percent of

GDP in 2060, if there was no change in funding and delivering healthcare services [8].

19
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Following are the healthcare challenges that motivate our research. Firstly, popula-

tions are ageing all over the world. According to the United Nations [1], the number of

people aged 60 and over in the world reached 901 million in 2015 and it is projected

to grow to 1.4 billion in 2030 and nearly 2.1 billion in 2050. It is forecasted that the

largest age group will be 65+, and the average age will be approximately 50 in many

countries in Asia and Europe in 2050 (Harper, 2006). Secondly, the increase in chronic

diseases. In Europe, the most common diseases that affect 15 million people with an

incidence of 3.6 million new cases every year are Chronic Heart Failure (CHF), Chronic

Obstructive Pulmonary Disease (COPD) and Diabetes. The same trend is also recorded

in U.S. (Thom et al., 2006). Thirdly, hospital and clinical services expenditures are

rising. The Centers for Medicare and Medicaids Services (CMS) reported that hospital

expenditures in U.S. grew from 3.5% in 2013 to 4.1% in 2014, reaching to $971.8

billion in this year [5]. Similarly, physician and clinical services expenditures increased

from 2.5% in 2013 to 4.6% in 2014, reaching to $603.7 billion in 2014 [5].

Present IoT applications and case studies in the medical field are often ad-hoc, focus-

ing on implementation and technologies at specific settings and scenarios. For example,

authors in (Gund et al., 2008) focused on the implementation of a telecare system. The

prototype of the system was evaluated in Sweden using a two step evaluation, including

a ten-patient survey and a field trial at home with two chronic heart failure patients. The

results show that the system is user friendly and easy to use, however it had limited

wider integration or ongoing usage. On the other hand, clinical support algorithms

exist, but are often underutilized. In (Baig & GholamHosseini, 2013), for instance, a

diagnostic module is proposed using fuzzy logic to perform early diagnosis and alert

for Hypertension and Hypotension however this is not widely adapted.

With the development and progress of science and technology, repetitive and time-

consuming work have been taken over by the computer. Computer vision, as an

inter-discipline based on image processing, machine learning and pattern recognition,
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is a rapidly developing research field in recent years. Object detection is a significant

task in computer vision and it is used in detecting an object from certain scenes via

some specific approach and algorithm (Z. Chen, Khemmar, Decoux, Atahouet &

Ertaud, 2019). Machine learning raised in 1980 as one of the sub-branch of artificial

intelligence. While artificial intelligence started since the 1950’s, one of its subbranch

machine learning become to flourish in the 1980s. Deep learning which emerged in

2010 as the hottest area in machine learning, starts to gain more and more attention

to solving public society problem(Dhande, 2017). One of the common application of

object detection is to detect human via deep learning model. Object detection can be

achieved by deep learning technique which is able to perform end-to-end detection

without specifically defining features and it is typically based on Convolutional Neural

Networks (CNN).

In this chapter, a summary of IoT technologies and Deep Learning techniques are

presented.

2.2 Internet of Thing

This section provides an overview of present technologies that support IoT-based

applications. An IoTTA for the design and development of solutions for transforming

sensor data into real-time clinical feedback in healthcare systems is proposed. The

IoTTA is an architecture to situate the IoT based ubiquitous applications that may

comprise multiple tiers of technology. Finally, suggest scenarios where IoTTA can be

applied.

2.2.1 IoT Wearable Devices

There are a large number of Consumer Health Wearable Devices, that are listed in

Fig. 2.1 (Piwek et al., 2016). They are headbands, sociometric badges, camera clips,
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Figure 2.1: The Rise of Consumer Health Wearable Devices
(Piwek, Ellis, Andrews & Joinson, 2016)

smart watches, and other sensors embedded in clothing. Those devices could help

estimate in real-time values such as:

• Accelerometer: An accelerometer is a device commonly used for fall detection

in elderly individuals. It measures acceleration forces and can detect changes in

velocity or direction of movement, which is critical in detecting falls. The device

is typically worn on the wrist, hip or ankle, and uses algorithms to determine

whether a sudden change in acceleration is indicative of a fall. If a fall is detected,

the device can trigger an alert to caregivers or emergency services, helping to

ensure that the individual receives prompt medical attention. Additionally, some
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accelerometers are designed to track other movements and can provide valuable

information on the individual’s overall activity level and mobility. As a non-

invasive and relatively affordable technology, accelerometers have the potential to

be a valuable tool in fall detection and prevention efforts for elderly individuals.

• Altimeter: An altimeter is a device that measures altitude, which can be useful

in fall detection for elderly individuals. When a fall occurs, the individual’s

altitude changes rapidly, which can be detected by the device. Altimeters are

typically incorporated into wearable devices, such as smartwatches or fitness

trackers, and use algorithms to determine whether a sudden change in altitude is

indicative of a fall. If a fall is detected, the device can trigger an alert to caregivers

or emergency services, enabling prompt medical attention. Additionally, some

altimeters can track changes in altitude over time, providing valuable information

on the individual’s overall mobility and activity level. While altimeters may not

be as widely used for fall detection as accelerometers, they can still be a valuable

tool for ensuring the safety and well-being of elderly individuals living alone.

• Oximeter: An oximeter is a device that measures oxygen saturation levels in the

blood, which can also be used for fall detection in elderly individuals. During a

fall, oxygen levels may drop due to physical exertion or stress, and an oximeter

can detect these changes. Oximeters are typically worn on the finger or earlobe

and use light absorption to determine oxygen saturation levels. If a fall occurs,

and oxygen levels drop below a certain threshold, the device can trigger an alert

to caregivers or emergency services, indicating that medical attention is needed.

Additionally, oximeters can be useful in tracking the individual’s overall health

and wellness, providing valuable information on changes in oxygen saturation

levels over time. While oximeters are not as commonly used for fall detection

as accelerometers, they can still be a valuable tool in ensuring the safety and
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well-being of elderly individuals living alone.

2.2.2 IoT Consumer Security Cameras

Figure 2.2: Some available IoT Consumer Security Cameras

IoT (Internet of Things) consumer security cameras have emerged as a popular

technology for fall detection in elderly individuals living alone. With the rise of smart

home devices and the increasing popularity of home security cameras, these devices

have become an accessible and affordable option for ensuring the safety and well-being

of older adults. In this article, we will explore the use of IoT consumer security cameras

for fall detection and the benefits and limitations of this technology.
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One of the main advantages of using IoT consumer security cameras for fall detec-

tion is that they provide a visual record of the individual’s activity. By using computer

vision and artificial intelligence, these cameras can detect changes in the individual’s

posture, gait, and movements, allowing for the detection of falls or other potential

accidents. The cameras can also track the individual’s activity levels, providing valuable

insights into their daily routines and habits.

Another benefit of using IoT consumer security cameras for fall detection is that

they can provide real-time alerts to caregivers or emergency services. When a fall is

detected, the camera can trigger an alarm, sending an alert to the individual’s designated

contacts, such as family members or healthcare providers. This can be especially helpful

in cases where the individual is unable to call for help themselves.

However, there are also limitations to using IoT consumer security cameras for fall

detection. One of the main challenges is ensuring the privacy and security of personal

data. With cameras constantly recording, there is a risk of sensitive information being

accessed or leaked, which can be a serious concern for older adults. It’s important to use

appropriate encryption and security measures to protect personal data from unauthorized

access.

Another limitation is the potential for false positives or false negatives. While the

technology used in these cameras has improved significantly in recent years, it is not

foolproof, and there is still a risk of false alarms or missed falls. This can be a particular

concern for individuals with chronic conditions or disabilities, whose movements may

be different from those of the general population.

Additionally, the cost of IoT consumer security cameras can be a barrier to access

for some individuals. While the cost of these devices has decreased in recent years, they

still require a significant upfront investment, and ongoing maintenance and monitoring

can add to the overall cost.

In conclusion, IoT consumer security cameras have emerged as a valuable tool
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in fall detection for elderly individuals living alone. They provide a visual record of

the individual’s activity and can provide real-time alerts to caregivers or emergency

services. However, there are also limitations to this technology, including concerns

around privacy and security, potential for false positives or negatives, and cost. As with

any technology, it’s important to carefully consider the benefits and limitations before

deciding whether to incorporate IoT consumer security cameras into a fall detection

strategy for an elderly loved one.

2.2.3 IoT architecture

IoT-based applications can be implemented by integrating various technologies such

as wireless communications, sensor networks, data processing, and cloud computing.

The combination of these technologies in an IoT system can be represented as shown

in IoTTA (Fig. 1) We present this architecture as five tiers named Sensing, Sending,

Processing, Storing and Mining and Learning. The following sections outline functions

and main elements of each layer.

Sensing layer

Sensing layer involves assembly of sensors or wearable devices for recording health

parameters of patients. Vital signs such as: body temperature, blood pressure, pulse rate,

and respiratory rate are most common parameters used (Ahmed, Banaee, Rafael-Palou

& Loutfi, 2015). However, depending on application purpose, other parameters are

included. For example, heart failure patients’ need monitoring for following parameters:

ECG, Oxygen Saturation (SpO2), heart rate, and weight [10 - 20]. Whereas blood

glucose needs to be measured for diabetic patients (Chang, Chiang, Wu & Chang, 2016).

In applications that support Ambient Assisted Living (AAL) for elderly people or

disabled, activity monitoring will be required (Ahmed, Björkman, Čaušević, Fotouhi &
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Figure 2.3: IoT Tiered Architecture (IoTTA)

Lindén, 2016). A combination of accelerometers and gyroscopes are used for gathering

data in many health monitoring systems for predicting risk of falls (Chuang et al., 2015).

Sensors are regarded invasive or non-invasive sensors. Invasive techniques are more

efficient than non-invasive techniques, but they may not be the right option for the elderly

unless the problem is severe (Sharma et al., 2016). In some systems, actuators are used

for triggering alerts (Chuang et al., 2015) or adjusting environment parameters (Basanta,

Huang & Lee, 2016). Presently there has been much development in many types of

intelligent sensors which can be used in IoT systems, with in turn extends the capability

of IoT applications (Li, Da Xu & Zhao, 2015). Designing sensing layer of an IoT

should take into consideration the following aspects: the cost, size, energy consumption

of sensing devices; how to deploy and organize sensors; communication capability of

sensors (Li et al., 2015).
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Sending layer

Sending layer in IoTTA provides a protocol for things to connect and share data. In

addition, sending layer enables data from existing IT infrastructure to be accessed (Li

et al., 2015). The data communication in IoT includes local and global communica-

tion (Ahmed et al., 2016). In monitoring systems, wireless technology is used for data

transmission. Wireless communication standards are helpful to ensure standardisation

and compatibility in IoT health monitoring systems.

Local communication between sensing layer and processing layer, is normally im-

plemented by Bluetooth (Suh et al., 2010, 2011; Lan et al., 2012; Bisio, Lavagetto,

Marchese & Sciarrone, 2015; Chuang et al., 2015; Jimenez & Torres, 2015) or Zig-

Bee (Zanjal & Talmale, 2016). Bluetooth is a low cost, low power consumption

technology to transmit data over short distances at the frequency of 2.4GHz (Fanucci

et al., 2013). ZigBee offers low power consumption, but it is not as prevalent com-

pared to Bluetooth. Some specific communication protocols are also used including:

Radio Frequency Identification (RFID) (Parida, Yang, Jheng & Kuo, 2012), Near Field

Communication (NFC) and ultra-wide bandwidth (UWB) (Al-Fuqaha, Guizani, Mo-

hammadi, Aledhari & Ayyash, 2015). RFID enables information to be exchanged

between two objects - RFID tag and an RFID reader able to identify, trace and track

objects within a range of 10cm to 200m (Want, 2006). NFC works at high frequency

band at 13.56 MHz that allows active readers and passive tags or two active readers to

communicate with data rate up to 424kbps and in the range up to 10cm (Want, 2011).

UWB supports low energy, high bandwidth but short distance communications between

objects (Kshetrimayum, 2009). Internet communication, is often the choice of connec-

tion between processing layer and storing layer, is established using WiFi technology or

cellular networks. WiFi uses radio waves to transmit data within 100m range (Yang et

al., 2015). Smart devices can communicate and exchange information via WiFi without
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a router (Al-Fuqaha et al., 2015). Standard wireless communications such as 3G, 4G,

Long-Term Evolution (LTE) are used in many health monitoring systems (Chuang et al.,

2015; Parida et al., 2012; Y. Cheng, Jiang & Shi, 2015) for data transferring between

mobile phones based on GSM/UMTS network technologies. Network management

technologies, network energy efficiency, quality of service, security and privacy are

some issues that should be addressed in sending layer (Li et al., 2015).

Processing layer

Processing layer performs the following: firstly, aggregate data from sensing layer,

secondly transfer data to storing layer, and finally process data. This layer consists

of processing units and software applications that apply computational part of the

application (Li et al., 2015). Processing units may be smart phones, microcontrollers,

microprocessors, hardware platforms, System On Chip (SOC), Field Programmable

Gate Array (FPGA). Hardware platforms such as Arduino, Phidgets, Intel Galileo,

Raspberry Pi, Gadgeteer, BeagleBone, Cubieboard as well as operating systems such as

Contiki, TinyOS, LiteOS, Android, and iOS have been developed recently for running

IoT applications (Al-Fuqaha et al., 2015). The collected data is processed for further

analysis, decision making, generating notifications and alerts.

Storing layer

IoT systems connect a large number of physical objects and generate a huge data

that needs efficient storage (Al-Fuqaha et al., 2015). In IoT-based healthcare systems,

the collected data from sensing layer are stored for further analysis. Many cloud

platforms are available for data storage from IoT such as ThingWorx, OpenIoT, Google

Cloud, Amazon, GENI (Al-Fuqaha et al., 2015). Cloud Servers and Physical Servers in

storing layer have three functions including storing data, computing data and analyzing

data. These functions are performed based on cloud computing technology to extract
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valuable knowledge and trends (Al-Fuqaha et al., 2015). With the emergence of cloud

computing technologies, the burden of managing and maintaining the massive and

complex medical data is shifted to the cloud, hence the efficiency and effectiveness

of the health data storage and management is improved remarkably. Simultaneously,

ubiquitous healthcare has been promoted by using cloud computing as a medium for

e-health service delivery (Yang et al., 2015). For example, medical professionals and

patients are allowed to review the health data remotely.

Mining and learning layer

Mining and learning layer involves tools that support data mining and machine learn-

ing processes. These tools are used by servers or processing units in storing layer or

processing layer, respectively, for converting information to knowledge and decision

support. Data mining involves discovering novel, interesting, and potentially useful

patterns from large data sets and applying algorithms to the extraction of hidden inform-

ation. Its functions include classification, clustering, association analysis, time series

analysis, and outlier analysis (F. Chen et al., 2015). Machine learning techniques are

very useful in healthcare applications as they enable managing huge databases, learn

from data and improve through experience (Fang, Pouyanfar, Yang, Chen & Iyengar,

2016). Supervised learning and unsupervised learning are two types of machine learn-

ing (Yoo et al., 2012). Supervised learning (also known as predictive learning) generates

prediction rules based on training data and uses these rules for predicting unseen data

labels. It includes algorithms such as classification and regression. Unsupervised

learning (or descriptive learning) searches the similarity between records to find the

structure of unknown input data.

In the report of PWC, mobile health revenue increases from $4.5 billion in 2013 to

$23 billion in 2017. In 2017, it is expected that monitoring services account for about

65% of the market, following are diagnosis services and treatment services with the
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percentages of the market are around 15% and 10%, respectively (Vishwanath et al.,

2012). Future development can utilize IoTTA for real-time clinical feedback rather

than monitoring. Furthermore, feedback should come from machine and learning layer

rather than from clinicians as in current IoT healthcare applications.

2.2.4 IoT-based applications in healthcare

IoT technology is often applied to developments in remote health monitoring solutions,

for those who require regular attention such as patients with chronic conditions, disabil-

ities, and elderly. Such systems provide remote monitoring and support early detection

and timely care for patients without compromising their convenience and preference of

living independently outside hospital. Following is a review of IoT applications dealing

with chronic patients, aged care, and emergency.

Chronic patients healthcare monitoring

Considerable research focused on developing in-home monitoring systems for patients

with chronic conditions. Continuous monitoring of vital signs of patients helps to reduce

re-hospitalizations by detecting anomaly early, allowing appropriate and timely interven-

tions (Fanucci et al., 2013). Some systems measured Electrocardiography (ECG) and

transmitting data to medical database via the Internet (Bai, Cheng, Lu & Huang, 2005)

or wireless communications (Pollonini, Rajan, Xu, Madala & Dacso, 2012), or the

collected data are used to diagnose and call emergency services if necessary (De Capua,

Meduri & Morello, 2010; Jeon, Lee & Choi, 2013). Some studies tracked parameters

such as blood pressure, respiration, SpO2, pulse rate, heart rate, and weight collected

sensors for triggering alarms if abnormal situations are detected (Fanucci et al., 2013),

or support early diagnosis of Hypertension and Hypotension (Baig & GholamHosseini,

2013).
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Along with measuring vital signs, a questionnaire method is used in systems (Gund

et al., 2008; Suh et al., 2011, 2010; Lan et al., 2012) to collect health status of patients.

The results of the field test in Care@Distance project (Gund et al., 2008) showed that

patients found the system useful, easy to use, but found the blood pressure monitor

uncomfortable. Authors in (Suh et al., 2010) proposed a system for monitoring the

weight, activity and blood pressure of heart failure patients, checking patients’ symptoms

by questionnaire and sending alerts to the healthcare provider when the collected data’s

values are out of the threshold range or patients develop critical symptoms. Suh et

al. (Suh et al., 2011) presented a health monitoring system for CHF patients which

consists of sensors, web servers, and back-end databases. Test results show that the

number of weight and blood pressure reading that fell out of an acceptable range was

reduced when patients were monitored by this system. The algorithms for predicting the

worsening of heart failure symptoms and the predictor of daily weight changes using

in health monitoring system in (Lan et al., 2012) enabled building prediction models

that are up to 74% accurate, which is more than 20% higher than using daily weight

change alone. Bisio et al. (Bisio et al., 2015) designed a tele monitoring platform based

on smartphone for detecting activities of heart failure patients. In this platform, the

smartphone is used as both a hub and a sensing, processing and transmitting device.

Aged care monitoring

Telecare applications empower individuals, especially the old aged to live more safely

and more independently in their own homes (Fanucci et al., 2013). The daily needs

of the elderly can be supported by technology interventions such as smart home or

telemedicine (Sharma et al., 2016). Chuang et al. (Chuang et al., 2015) proposed a

system called SilverLink which uses object and human sensors for indicating user activ-

ities or health status. Data collected from sensors are processed to detect abnormalities

in the movement patterns. When a shift in pattern is detected, the system stimulates
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notifications/alerts to the emergency response team. Internal tests of the prototype

conducted in Taiwan and showed that the pass rate of sensors was 70%-80%, while pass

rate of human sensors was less than 60% (pass rate is defined by the number of times

the system recorded the event divided by the actual number of events).

Authors in (Basanta et al., 2016) developed a Help to You (H2U) healthcare system

to enhance the quality of healthcare services for the elderly. This system makes use of

various technologies including wearable devices, biosensors, wireless sensor networks

to support real-time activity and monitor the health status for seniors. Applications

of the proposed system include emergency calls, medication reminders and symptom

checks. An IoT-aware healthcare monitoring system was designed and implemented

in (Jimenez & Torres, 2015) to send alerts to patient’s caregivers or doctors in real time

when an elderly person needs medical attention or hospitalization. Alerts’ rules were

configurable during runtime and the solution supported adding new sensors without

interrupting the system.

Medical adherence is a challenge amongst aged patients, some studies focused on

reminding patients of their scheduled medications and updating new medicine data of

patients (Zanjal & Talmale, 2016). Parida et al. (Parida et al., 2012) proposed a drug

management system based on RFID technology which uses RFID reader and camera to

track patients’ medicine usage. Intelligent pill box was presented in (Huang, Chang,

Jhu & Chen, 2014) to remind patients to take medication on time. These solutions are

useful for elderly people who have high risk of suffering from dementia.

Emergency applications

Emergency applications involving IoT detect abnormalities at the right time so that

emergency services can be alerted (Darshan & Anandakumar, 2015). A model to

do this involves monitoring patient health by medical devices, thereafter personal

mobile devices analyze the collected data to identify emergency cases and transfer
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data to medical information systems. When a definite emergency case is detected,

the ambulatory team can reach out the patient, consequently the hospital prepares for

the clinical treatment, and the medical personnel send situation-aware instructions for

providing first aid.

Authors in (Namahoot, Brückner & Nuntawong, 2015) presented a healthcare sys-

tem consisting telemedicine diagnosis and emergency telecare. Telemedicine diagnosis

provides the user with information on diseases, medical information, and treatments;

while emergency telecare shows user location, emergency information, and instructions

to help the users. Korzun et al. (Korzun, Borodin, Timofeev, Paramonov & Balandin,

2015) introduced reference scenarios of digital assistance services for emergency situ-

ations.

Fall prevention and fall detection are emergency applications because falls are

serious health problems with older adults. Fall detection can be classified into three

types: wearable device based, ambient sensor based, and vision based (Liu & Lockhart,

2014). Cheng et al. (Y. Cheng et al., 2015) proposed a real-time fall detection system

based on wearable sensors to detect the motion and location of the body. The proposed

system was tested with 15 activities including 10 intentional falls and 5 activities of

daily lives. Each activity was performed 30 times. Test results showed that the proposed

fall detection algorithm achieves an overall accuracy of 96.4%. Another solution uses

the Microsoft Kinect depth sensor (Gasparrini, Cippitelli, Spinsante & Gambi, 2014)

for tracking the movement of the human objects in the depth frames, and detects if a

fall occurs.

2.2.5 Opportunities of IoT in healthcare

Based on our review on recent IoT applications in health applications, we can categorize

the growth of IoT applications for healthcare is in areas of 1) Self Care and 2) Data
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Mining and Machine Learning.

Self-care

Effective self-care among individuals seems to be one of the most difficult tasks that

clinicians are facing today (Moser et al., 2012). For instance, heart failure patients

can be traced to failed self-care because of the two most common reasons including

nonadherence to medications and diet as well as failure to seek timely medical care

for escalating symptoms (Moser et al., 2012). Authors in (Dickson & Riegel, 2009)

suggested that promoting self-care abilities should go beyond the knowledge about their

disease but also the skills needed for monitoring along with their signs and symptoms.

Future healthcare systems with real-time clinical feedback using IoTTA can potentially

deliver step-by-step instructions to patients about how to measure their vital signs,

how to use their medicine, as well as giving recommendations about how to keep their

parameters in normal ranges. These will be promising and cost-effective solutions for

improving self-care for the elderly. In addition, personalization of health solutions by

adapting to the individual’s characteristic plays an important role in improving quality

of care (Heijden, Velikova & Lucas, 2015).

Data mining and machine learning

Clinical support applications are usually based on comparing collected data with pa-

tients’ normal ranges and generating alerts if an abnormal situation is detected. Creating

notifications should be the last resort in clinical support applications because this mech-

anism may place a great burden on emergency systems in case of false alarms. Other

methods such as using questionnaires should be performed after detecting an abnormal

value in the monitored parameter for reducing false alerts. On the other hand, current

IoT healthcare applications can be further developed by using data mining tools and

machine learning tools to provide clinical decision support that can assist patients
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effectively. Predicting changes along with decision support will lessen involvement

of clinicians. Feedback such as recommendations about medicine, healthy eating and

exercising can be given to personal patients without clinician’s intervention.

2.3 Deep Learning

Deep learning has emerged as a pivotal area of research in recent years, attracting con-

siderable attention from scholars across various domains. This paradigm shift has given

rise to an array of sophisticated algorithms aimed at target detection. Unlike traditional

methodologies, deep learning algorithms demand vast datasets for training but offer the

advantage of auto-encoding variances in data, thereby enhancing their representational

fidelity. Intriguingly, the layered feature extraction process in Convolutional Neural

Networks (CNNs) bears resemblance to the human visual mechanism—translating

basic edges to intricate parts and eventually to a holistic understanding of the visual

input (LeCun, Bengio & Hinton, 2015).

Figure 2.4: Multi-layered Architecture of a Deep Neural Network
(Parmar, 2018)

As illustrated in Figure 2.4, a deep neural network is composed of multiple layers
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designed for intricate feature extraction and data representation. This architectural

complexity has enabled deep learning-based target detection algorithms to outperform

traditional techniques, especially in real-time applications. These advancements have

been further propelled by the continuous expansion of accessible data and rapid hard-

ware innovations. Consequently, deep learning technologies are receiving burgeoning

recognition and adoption across various industries worldwide.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have emerged as a specialized subset of deep

learning models, demonstrating unparalleled efficacy in visual tasks such as image and

video processing (Krizhevsky, Sutskever & Hinton, 2012). These networks utilize a

sequence of convolutional layers to autonomously identify and encode spatial feature

hierarchies, which makes them exceptionally proficient at human detection and activity

recognition tasks.

As seen in Figure 2.5, a typical CNN comprises multiple layers, including convolu-

tional layers, hidden layers, and others, that work in tandem to perform complex feature

extraction and representation. These layers collaborate to form a hierarchical under-

standing of input data, thereby making CNNs a pivotal technology for tasks requiring

nuanced spatial understanding.

When it comes to tackling research question 5 (RQ 5), a multitude of CNN architec-

tures can be investigated to enhance the accuracy of human detection mechanisms within

systems designed for monitoring the elderly. Notable architectures worth exploring

include VGG (Simonyan & Zisserman, 2015), ResNet (He, Zhang, Ren & Sun, 2016),

and EfficientNet (Tan & Le, 2019), each offering unique advantages in improving the

robustness and accuracy of elderly care monitoring systems.
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Figure 2.5: Detailed View of a Convolutional Neural Network with Dual Hidden Layers
(Sewak, Karim & Pujari, 2018)

2.3.2 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network

(RNN) specifically designed to model temporal dependencies in data (Hochreiter &

Schmidhuber, 1997). They are particularly useful for analyzing time-series data, such

as the sensor readings from wearable IoT devices (RQ 2) or the video frames captured

by cameras (RQ 3). LSTMs can be employed to improve the activity classification and

fall detection performance of the monitoring system, as they can effectively capture the

temporal dynamics of human movements.

2.3.3 Data Augmentation

Data augmentation techniques can help improve the performance of deep learning

models by artificially increasing the amount and diversity of training data (Shorten &

Khoshgoftaar, 2019). This can be particularly beneficial for addressing RQ 5, as a

larger and more diverse dataset can enable the model to better generalize to new and

unseen data. Common data augmentation techniques for image data include rotation,

flipping, scaling, and color jittering, while for time-series data, techniques such as time

warping, time slicing, and random sampling can be employed.
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2.3.4 Model Compression and Optimization

To minimize the required cloud storage for storing real-time health monitoring data (RQ

6), model compression and optimization techniques can be explored. These techniques

aim to reduce the size and computational complexity of deep learning models without

significantly affecting their performance (Y. Cheng, Wang & Zhou, 2017). Some

popular approaches include weight quantization, pruning, knowledge distillation, and

network architecture search. Implementing these methods can help reduce the storage

and computational requirements of the monitoring system, making it more efficient and

cost-effective.

2.4 Chapter Summary

This chapter has illuminated the increasing healthcare demands driven by an ageing

global population, coupled with the rise in chronic diseases. The financial and human

cost implications for healthcare providers are substantial and necessitate innovative,

efficient, and cost-effective solutions.

We explored how the realm of Internet of Things (IoT) offers transformative potential

for healthcare. Notably, its integration with deep learning has gained significant traction,

particularly in public health issue resolution. Technologies such as Convolutional

Neural Networks (CNNs) and IoT-driven architectures like IoTTA have been proposed

for real-time clinical feedback systems, leveraging sensor data for fall detection, health

monitoring, and disease prediction.

There is also an emergent trend of integrating technologies such as wireless commu-

nications, sensor networks, data processing, and cloud computing to develop effective

IoT-based health applications. The ability of these technologies to provide automated,

real-time feedback and diagnostics serves to alleviate some of the strain on healthcare
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providers.

These IoT applications also offer an unprecedented ability for self-care, delivering

step-by-step instructions to patients, and providing crucial real-time data to healthcare

providers for immediate response. Furthermore, the rise of machine learning and

data mining technologies present possibilities for enhanced decision-making support,

offering the potential to augment current healthcare practices significantly.

However, while these technologies show promise, it is crucial to acknowledge the

associated challenges. These include issues of cost, maintenance, potential false alarms,

missed falls, and the overall effectiveness and reliability of the technology.

As we move forward, it’s essential to further explore various deep learning architec-

tures and data augmentation techniques, to increase the accuracy and reliability of these

systems. This could help push the envelope of IoT applications in healthcare, fostering

a future where chronic disease management, patient monitoring, and preventive care

are seamlessly integrated into our daily lives, fundamentally reshaping our healthcare

systems for the better.



Chapter 3

Methodology

3.1 Research Methodology

The research methodology employed in this study is adapted from the multi-methodological

approach for information systems research (Nunamaker Jr, Chen & Purdin, 1990). This

approach is visually represented in Figure 3.1, which delineates the four key research

strategies used: observation, theory building, systems development, and experimenta-

tion.

The Theory Building strategy involves the formulation of new concepts, ideas, and

frameworks, as well as the development of novel methods or models. Outputs generated

from this strategy can facilitate hypothesis generation, guide experimental design, and

aid in the conduct of observations. Experimentation encompasses a range of invest-

igative approaches, such as laboratory experiments, field experiments, and computer

simulations. The outcomes of these experiments serve to validate or refine theories,

while also contributing to system enhancements. Observation employs methodologies

like case studies, field studies, and sample surveys to guide the crafting of specific

hypotheses for experimental validation. Finally, Systems Development involves stages

like concept design, architecture planning, prototype creation, product development,

41
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Figure 3.1: Schematic Overview of the Adapted Multi-Methodological Approach Used
in This Study

and technology transfer.

As indicated in Figure 3.1, this study is structured around eight principal research

activities, executed in a sequence represented by the numbered arrows. The investigation

commences with a Literature Review, focusing on existing healthcare monitoring solu-

tions based on the Internet of Things (IoT). The review also narrows down to the specific

domain of fall management, examining sensing techniques, fall detection algorithms,

and management strategies. Subsequent activities will include the development and

validation of fall detection algorithms based on motion and visual object monitoring.

Both public datasets and real-world data will be used for algorithm validation. Iterative
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phases of Data Collection, Data Analysis, Developing Fall Detection Algorithms, Test-

ing Algorithms, and Refining Algorithms will be carried out to optimize the effectiveness

of the developed algorithms.

3.2 Proposed Falls Management Framework

3.2.1 Overview of the Falls Management Framework (FMF)

Arising from an exhaustive review of existing fall detection studies, we introduce a

comprehensive Falls Management Framework (FMF) tailored for in-home care of

the elderly, as visualized in Figure 4.1. The FMF comprises key activities such as

Initial Assessment (or Re-assessment), Real-time Monitoring, Fall Risk Detection,

Fall Detection, On-going Support, and Response Strategy. This section elucidates the

functionalities and core components of these activities.

Figure 3.2: Schematic Representation of the Falls Management Framework (FMF)
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Initial Assessment and Re-assessment

The initial point of engagement in the FMF is the Initial Assessment, conducted by

healthcare professionals, as depicted in Figure 4.1. It involves a personalized evaluation

encompassing the individual’s fall history, mobility issues, medication, and overall

physical and mental health. This information guides the selection of appropriate sensing

technology. Periodic Re-assessments are conducted to adapt to any changes in the user’s

condition.

Real-time Monitoring

As the subsequent activity in FMF, Real-time Monitoring employs multiple sensor types

for continuous observation of both the patient’s vitals and environmental conditions.

Sensor classifications include motion-based and environment-based, each with its own

advantages and limitations.

Fall Risk Detection

Fall Risk Detection functions alongside Real-time Monitoring to identify potential

fall hazards. Risks are categorized as intrinsic or extrinsic, with the former being

physiological changes due to aging, and the latter being environmental factors like poor

lighting or wet floors (Hamm, Money, Atwal & Paraskevopoulos, 2016).

On-going Support

Once a fall risk is identified, On-going Support provides preventive measures. Inter-

ventions may include educational programs, physical activities designed to improve

mobility, or automated warnings based on sensor data (Kannus, Sievänen, Palvanen,

Järvinen & Parkkari, 2005; Horta, Lopes & Rodrigues, 2015; De Backere et al., 2015).
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Fall Detection

Fall Detection utilizes sensor data to discern high-risk events. Algorithms for fall

detection are primarily either threshold-based or machine learning-based, each with its

own sets of advantages and trade-offs (Horta et al., 2015; De Luca, Carnuccio, Garcia

& Barillaro, 2016; Majumder, Saxena & Ahamed, 2016; Y. Wang, Wu & Ni, 2016).

Response Strategy

Following a detected fall, the Response Strategy activates, typically notifying caregivers

or family members (A. L. Cheng, Georgoulas & Bock, 2016; Kau & Chen, 2015;

X. Wang & Qin, 2016; Qu, Lin & Xu, 2016).

3.2.2 Insights and Future Directions

The Falls Management Framework (FMF), detailed in Figure 4.1, encompasses a

comprehensive range of activities typically incorporated in current fall detection and

management systems. Upon close examination, it is evident that a majority of these

systems are more oriented towards post-fall interventions. This reveals a significant

gap in the existing research and technology, as not enough focus is given to pre-fall

preventive measures.

Strengths and Weaknesses

One of the major strengths of existing approaches is the increasing accuracy in fall

detection, especially with the integration of machine learning algorithms. However,

the weakness lies in the limited attention paid to preventive mechanisms and the

user’s quality of life. Systems often ignore the psychological and social aspects that

accompany the risk and occurrence of falls. Furthermore, the sustainability and long-

term effectiveness of these systems are seldom studied.
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The Role of User-Centered Design

A potential avenue for improvement lies in user-centered design. Future research could

benefit from a design approach that takes into account not only the technical aspects but

also the user’s comfort, acceptance, and psychological well-being. This would likely

increase the effectiveness and user adoption rates for fall management systems.

Technological Advancements

As technology evolves, the introduction of more non-intrusive sensors and IoT devices

will likely make real-time monitoring more efficient and less cumbersome for the

elderly. Innovations such as smart flooring and ambient sensors could offer non-intrusive

methods for both monitoring and prevention.

Prevention-Oriented Solutions

Given the current research gap in pre-fall interventions, it would be worthwhile to focus

on technologies that actively engage the user in fall prevention. This could include

systems that offer real-time feedback or gamified experiences that encourage the elderly

to engage in balance-improving exercises and activities.

Policy and Standardization

Finally, with the growing prevalence of fall management systems, there is an urgent

need for standardization to ensure that they meet minimum safety and effectiveness

criteria. Policy guidelines and standardized testing methods could provide a structured

approach for evaluating and implementing these technologies.

In the sections that follow, we will delve into a detailed discussion of the strengths

and weaknesses of the studies reviewed, and propose a multi-faceted strategy to bolster

both pre-fall and post-fall interventions.
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3.2.3 Roadmap of Falls Management

Table 3.1 summarizes strengths and weaknesses of the two groups: pre-fall applications

and post-fall applications. From table 1, it is clearly seen that both pre-fall and post-fall

applications are not developed effectively. Some systems provide fall risk detection,

however no intervention is given after a fall risk is detected (Majumder et al., 2016;

Shen, Yang, Shen & Chen, 2016). Simultaneously, current post-fall intervention is

sending alarm to the user’s caregivers or medical team. This strategy may place a

burden on healthcare services in case of false alarms. In addition, it may take long time

to reach the patients if they live in rural or remote area.

The result of the review conducted by the paper indicates that the following strategies

should be applied in order to achieve a sustainable falls management, avoid fall risks,

and eliminate consequences in case of detecting falls.

Pre-fall strategies

Pre-fall strategies relates to interventions that help to prevent users from falling. Concept

of pre-fall strategies will involve fusion of sensors, technologies and systems along

with clinical assessments to create an environment where real-time data are analyzed.

Applying IoTTA approach (Nguyen et al. 2017) in designing falls management systems

will help to explore a range of aspects including sensing, sending, processing, storing,

and mining and learning techniques for transforming sensor data into real-time clinical

feedback that can assist patients to avoid falls effectively, hence lessen involvement of

clinicians.

Falls can be prevented based on detecting fall risk with precision and providing

appropriate and timely interventions. Few studies focus on fall risk detecting based on

patient’s health monitoring, except in the research conducted by (Horta et al., 2015). In

this research, the monitored ECG waves are used to identify anomalies in the patient’s
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Table 3.1: Strengths and weaknesses of the reviewed studies

Application
Type Strengths Weaknesses

Pre-fall

- Accurate fall risk assess-
ment (De Backere et al.,
2015).
- Timely notifica-
tions (De Backere et al.,
2015).
- High classification accuracy
for gait patterns (Majumder et
al., 2016).
- Successful predictions,
body-independent (Shen et al.,
2016).
- Risk reduction instruc-
tions (Horta et al., 2015).
- Robust data pro-
cessing (Horta et al., 2015).

- No risk reduction
guidance (De Backere
et al., 2015).
- No post-fall interven-
tions (Majumder et al.,
2016).
- Cannot detect all
falls (Horta et al.,
2015).

Post-fall

- High accuracy and sensitiv-
ity (Pierleoni et al., 2015).
- Energy efficiency (Gia et al.,
2016).
- Low complexity detection
algorithms (Qu et al., 2016).
- User-friendly inter-
face (Yildirim, Ucar, Keskin
& Kavak, 2016).

- Limited post-fall ac-
tions; mainly notifica-
tions.

rhythm. The system sends an alert to the user’s caregiver if both a fall and an anomaly are

detected. Integrating vital signs monitoring into falls management systems empowers

these systems to achieve a considerable advantage in fall risk identification, detection

and classification (Baig, Gholamhosseini & Connolly, 2016). For instance, a reduction

of blood pressure may cause a fall (Naschitz & Rosner, 2007). Therefore, vital signs

monitoring based on sensors should be further utilized in falls management systems.

In order to identify intrinsic fall risk factors more efficiently, information about the
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patient’s fall history and medication conditions need to be effectively analyzed (Baig et

al., 2016).

Falls prevention strategies including post-fall review, education for both patients

and staff, footwear advice, and toileting is introduced by (Oliver, 2008), however, his

research only mentions about using these strategies in hospital environments. Applying

these interventions in home environments may have significant contribution in sup-

porting falls prevention. For example, falls prevention education sessions which are

activity checklists including clutter reduction, furniture organization, rug, flooring and

spills position, lighting, and staircase and bathroom safety are suggested in the research

conducted by (Bell et al., 2011). Additionally, solutions that engage effective self-care

among the elderly need to be considered, such as activities to increase adherence rates

of exercise programmes (Chao, Scherer, Wu, Lucke & Montgomery, 2013) or a balance

training game (Pisan, Marin & Navarro, 2013).

Post-fall strategies

Post-fall strategies relate to interventions provided after a fall is detected. Providing

appropriate and timely interventions after detecting falls is extremely important, because

these interventions at the earlier stages may help to mitigate the consequences after

falling. The most popular response strategy used in current falls detection systems is

alerting users’ caregivers or clinicians for medical assistance. However, this action is

costly, and it may place a great burden on emergency systems, especially in case of not

injured falls or false positives. In addition, if the patient lives in rural or remote area, it

may take long time to reach the patient’s location. Therefore, other methods need to be

utilized before using the last resort which is calling medical emergency service.

Concept of post-fall strategies should integrate neighbors in the medical emergency

team because neighbors are closest to the patients, hence they would be the quickest

responder if a fall is detected. This proposed strategy is described as follow: In case of
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detecting a fall, based on the collected data via monitoring, the system assesses how

serious the fall is. If it is extremely emergency, the system send alarm directly to medical

emergency service. Otherwise, notification is sent to their neighbors. When receiving

notification, their neighbors reach and assist the patient. If the system receives neighbors’

response indicated that the emergency situation has been resolved, it terminates the

supporting activity. Otherwise, the system sends alert to medical emergency service and

provides first aid instructions for neighbors to support the patient until the emergency

service comes. This neighbors-assist strategy may help to reduce both response time

and service costs. Moreover, it might make the patients feel more confident and mitigate

the long lie situation after falling.

3.3 Breakdown of the Proposed Fall Detection Process

To cater to the needs of the elderly living alone, we propose the integration of two

categories of sensors: wearable and non-wearable.

3.3.1 Wearable Sensors

Wearable sensors, such as smartwatches or adhesive body devices, primarily utilize

vibrations to detect falls. However, several limitations accompany their use. First,

continuous wear might lead to discomfort for the user. Moreover, the battery life

and connectivity restrictions mean that users might occasionally neglect to wear these

devices, thus compromising the reliability of this method. Despite these challenges,

wearable sensors offer a distinct advantage in terms of user privacy, as they inherently

preserve the anonymity of the data. This makes the transmission and storage of such

data over the internet more secure. A detailed discussion on fall detection using these

devices can be found in Chapter 4.
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3.3.2 Non-wearable Sensors

Non-wearable sensors predominantly encompass cameras strategically positioned

throughout the living quarters of the elderly, thereby offering continuous monitor-

ing. These video feeds are processed online, employing advanced computer vision

and artificial intelligence techniques to identify potential falls. The intricacies of this

implementation are explored in Chapter 5, which focuses on Visual Object-based Fall

Detection.

The primary concern with this approach lies in the risk of data breaches, potentially

leading to the unauthorized dissemination of video footage. To mitigate this, we

introduce two strategies for Visual Content Hiding, ensuring that the users’ images

remain confidential:

1. Transforming human images into skeletal or pose representations before upload-

ing, thus anonymizing the visual content.

2. Employing a public-private key mechanism to visually encrypt the images prior

to online transmission. Only authorized entities possessing the requisite keys can

revert these images to their original form.

To further enhance security, these methods can be amalgamated, offering a robust

system against potential leaks. This multifaceted approach to content protection is

elaborated upon in Chapter 6.

Lastly, it is pertinent to note that our fall detection process is semi-automated, thus

ensuring reliable identification of falls among the elderly living alone.

3.4 Chapter Summary

This chapter presented an exhaustive exploration of a multi-methodological research

approach targeted at IoT-based fall management solutions within the healthcare sector.
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Our approach encompassed a variety of research strategies: observation, theory-building,

system development, and experimentation.

A significant portion of this chapter delineated the intricate facets of the proposed

Falls Management Framework (FMF). This comprehensive framework encapsulates a

series of activities: Initial Assessment, Real-Time Monitoring using both wearable and

non-wearable sensors, Fall Risk Detection, Fall Detection using computer vision and

artificial intelligence, On-going Support, and a comprehensive Response Strategy. Our

holistic FMF not only addresses the post-fall response but also aims to preemptively

mitigate fall risks.

In addition to elucidating our framework, we provided an in-depth review of existing

IoT-based fall management literature. This review aimed to discern strengths, weak-

nesses, and noticeable gaps in current methodologies. A significant observation was the

undue emphasis on post-fall interventions in many applications, often overshadowing

crucial pre-fall strategies.

We have meticulously unpacked two paramount intervention categories: pre-fall

and post-fall strategies. The former leans into preempting falls by synergizing sensors,

advanced technologies, and clinical insights for real-time data analytics. The latter,

conversely, centers on dispensing an immediate and apt response post a detected fall, also

emphasizing the importance of data protection and privacy when using non-wearable

sensors.

Future endeavors in this domain should concentrate on addressing the identified

gaps, particularly accentuating the pre-fall phase. A more holistic approach might

integrate both intrinsic and extrinsic risk factors, encompass vital signs monitoring, and

incorporate a patient’s historical fall data and medication profile for more nuanced fall

risk assessments. Additionally, involving nearby residents or neighbors in emergency

response mechanisms might offer a novel avenue for swift post-fall interventions.

In summation, the methodologies and frameworks delineated in this chapter bear
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immense promise for sculpting improved fall management systems in healthcare. They

beckon a future where the elderly can reside in safer, more secure environments with

the confidence that timely interventions are always within reach.



Chapter 4

Wearable Sensor-based Fall Detection

4.1 Introduction

In this chapter, we delve into fall detection systems that are based on wearable sensors.

These systems leverage diverse data types—including acceleration signals, images,

and pressure signals—captured by sensors for analysis. Employing machine learning

algorithms and pattern recognition techniques, these systems aim to accurately distin-

guish between falls and normal activities of daily living (ADLs), thus minimizing false

alarms. Such advancements hold the promise of significantly improving the safety and

independence of individuals at high risk of falling, including the elderly and those with

mobility challenges.

The process of data analysis and algorithm development for these systems necessit-

ates a nuanced approach that takes multiple factors into account. Critical to the system’s

efficacy is the selection of appropriate features and thresholds for the fall detection

algorithms, ensuring both high sensitivity and specificity. Moreover, rigorous per-

formance testing in real-world scenarios is indispensable for validating the algorithm’s

reliability and effectiveness.

As depicted in Figure 4.1, flexible electronics have started to play an increasingly

54
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Figure 4.1: Schematic of Flexible Electronics in Personal Healthcare Applications
(Butt, Kazanskiy & Khonina, 2022)

important role in personal healthcare (Butt et al., 2022), including in the design of

wearable sensors for fall detection.

This chapter is organized as follows: First, we will survey existing literature to

provide a comprehensive view of the state-of-the-art in wearable sensor-based fall

detection. Following this, we introduce our proposed Acceleration Change-based Fall

Detection Algorithm (ACFDA). A series of experiments designed to evaluate ACFDA’s

performance, featuring simulations involving both falls and ADLs, will be discussed.

Data from these experiments serve to assess ACFDA’s effectiveness in real-world

conditions.

Lastly, we will outline future directions in this field, particularly the integration
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of fall detection systems with other technologies for a more holistic approach to fall

prevention and intervention. We will conclude with a synthesis of the key findings of

this research and their implications for the broader field of wearable sensor-based fall

detection.

4.2 Related Work

In recent years, there has been a significant surge in research and development of fall

detection systems, capturing the attention of scientists and engineers alike. These

systems are designed to distinguish between falls and Activities of Daily Living (ADL)

by processing and classifying various types of data, such as acceleration signals, images,

and pressure signals, collected by sensors (Igual, Medrano & Plaza, 2013).

Fall detection systems can be grouped into three categories based on the devices

used: ambient device-based systems, camera-based systems, and wearable device-based

systems. Ambient devices like pressure sensors, PIR sensors, Doppler radars, and

microphones are employed in the first category, offering cost-effective and non-invasive

solutions. However, their accuracy may be affected by environmental factors (Vallabh,

Malekian, Ye & Bogatinoska, 2016). The second category relies on cameras to track

user movements and detect falls by identifying extended periods of inactivity. While

less invasive, privacy and spatial coverage remain key challenges for this approach.

The third category, wearable device-based systems, often utilize accelerometers

and/or gyroscopes to monitor user motion and differentiate falls from normal activities.

These portable, affordable, and user-friendly devices can be smartphones or other

gadgets like watches, belts, or waist-mounted devices, equipped with motion sensors

for detecting body posture and movement. Accelerometers are the most common type

of sensor used, but some systems also incorporate gyroscopes or magnetometers. By

analyzing gait, balance, and user position, wearable devices can accurately identify falls,
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making them a preferred solution due to their high accuracy and mobility (Özdemir,

2016).

Falls detection systems based on wearable devices use data from sensors that are

worn by the users or integrated in the clothes. Most of the wearable sensors used are

in the form of accelerometer devices (Igual et al., 2013). The accuracy of the systems

depends on the sensors used and the type of classifications (Vallabh et al., 2016). This

section explores current work on wearable devices - based falls detection systems.

4.2.1 Sensing Techniques for Fall Detection

Fall detection applications predominantly rely on wearable sensors, which can broadly

be categorized into two types: those integrated within smartphones and those using

external accelerometers.

Smartphone-Based Systems

Smartphones serve as a cost-effective and readily available platform for fall detection.

They come equipped with an array of inexpensive MEMS sensors like accelerometers,

gyroscopes, and magnetometers, providing a versatile foundation for computational

analysis (Vallabh et al., 2016). For instance, the study by (Basili et al., 2016) used both

a smartphone and an external accelerometer to assess a person’s posture and identified

potential falls based on threshold values of acceleration magnitudes.

Another notable approach (Kau & Chen, 2015) leverages a smartphone’s tri-axial

accelerometer and e-compass to determine the user’s posture and motion. The system is

particularly focused on older adults and features a warning sound and an emergency

communication protocol using a 3G network. A variety of features are used to discern

falls from other activities, and the system has demonstrated up to 92% sensitivity and

99.75% specificity in tests involving nine different types of activities.
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However, there are limitations to smartphone-based systems. The performance is

often tied to the quality of the embedded sensors, which varies between models and

manufacturers (Casilari, Luque & Morón, 2015). Additionally, the sensitivity range of

smartphone accelerometers is generally lower than that of specialized external sensors,

posing limitations in certain scenarios.

Accelerometer-Based Systems

Accelerometers remain the most popular choice for fall detection outside the realm

of smartphones (Nizam, Mohd & Jamil, 2016). These devices offer greater flexibility

in terms of sensor placement on the body and often deliver higher sensitivity and

specificity (Igual et al., 2013).

For example, a study by (Kangas et al., 2009) proposed three algorithms that use

single-accelerometer data to detect various phases of a fall, such as the start, impact,

and aftermath. These algorithms primarily focus on post-fall orientation to ascertain a

fall event but do face limitations when rapid movements or tremors interfere with the

sensor data (Pierleoni et al., 2015).

Another research effort (Özdemir, 2016) collected a comprehensive dataset from

multiple body-worn sensors and applied machine learning techniques to evaluate the

most effective sensor placements. The study found that waist-based sensors provide the

highest sensitivity, especially when using k-NN classifiers.

In summary, while accelerometer-based systems generally offer higher performance,

they do require more elaborate setup and calibration than their smartphone-based

counterparts. Each approach comes with its own set of advantages and limitations, and

the choice between them would depend on the specific requirements of a fall detection

system.
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4.2.2 Fall detection techniques

Falls detection systems operate based on the principle of distinguishing falls from

other conventional movements which are called ADLs. Falls detection techniques can

be classified into two categories: threshold-based approaches and pattern recognition

methods (Habib et al., 2014). Threshold-based algorithms compare one or several

magnitudes captured by the motion sensors with certain thresholds to make decision

about activities detection. Pattern recognition methods base on diverse classification

techniques such as SVM (Kau & Chen, 2015); (Özdemir, 2016); (Vallabh et al., 2016),

k-NN (Özdemir, 2016); (Vallabh et al., 2016), ANNs (Özdemir, 2016); (Vallabh et

al., 2016), Naive Bayes classifier (Vallabh et al., 2016), decision trees (Yuan, Tan,

Lee & Koh, 2015), Hidden Markov Models (HMM), fuzzy logic. These methods

comprise Artificial Intelligence, rule-based algorithms and machine learning-based

algorithms (Casilari et al., 2015). Some of the threshold-based algorithms and machine

learning-based algorithms that are applied widely in existing wearable devices-based

falls detection systems are considered below.

Threshold-based algorithms

Threshold-based algorithms are applied in many existing falls detection application

using wearable sensors such as smartphones (Basili et al., 2016); (Yildirim et al.,

2016), or external accelerometers and other sensors (Kangas, Konttila, Winblad &

Jamsa, 2007); (Kangas et al., 2009); (Ryu & Moon, 2016). In (Kangas et al., 2007),

authors determined thresholds for total sum vector, dynamic sum vector, fast changes in

acceleration signal, and vertical acceleration for falls detection algorithms using data

gathered by a single accelerometer. A fall is detected by comparing one of the above

four parameters with their defined thresholds and checking lying posture after falling.

Results show that the algorithms can achieve high sensitivity and specificity up to 100%.
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However, the algorithms use both threshold comparison and posture detection.

Threshold-based algorithms are simple to implement and have minimal computa-

tional work (Igual et al., 2013). Falls detection systems using smartphones are mainly

limited by computing and storage capabilities. Hence, threshold-based algorithms are

preferred in these systems. A simple application run in smartphones can implement

threshold comparison straightforwardly and in real-time (Casilari et al., 2015). How-

ever, fall detection focusing only on large acceleration can result in many false positives.

For example, the average value of SMV during running (2.3-2.8g) overlaps with this

value during falling (2.4-5.4g) (Huynh, Nguyen, Irazabal, Ghassemian & Tran, 2015).

To reduce false alarms, many works rely on detection of body orientation after falling.

However these systems may be affected by activities with similar postures such as

sleeping, reclining (Huynh et al., 2015).

Machine learning-based algorithms

In a study conducted by (Vallabh et al., 2016), five different classification algorithms

including Naives Bayes, k-NN, LSM, ANN, and SVM were implemented and evaluated.

Results show that with an accuracy of 87.5%, sensitivity of 90.70% and specificity of

83.78%, k-NN is the best classifier. Compare to LSM and Naive Bayes, the k-NN,

ANN, and SVM had the better accuracy and are viable options for implementation.

In (Yuan et al., 2015), ADL classification algorithm is developed based on decision

tree learning. Three picking up and putting down objects are identified as false positives.

The proposed algorithms are more power-efficient than conventional algorithms due to

allowing to process accelerometer data completely locally. However, these algorithms

need to be developed for eliminating false negatives.

Compare to threshold-based algorithms, machine learning based algorithms are more

sophisticated, however if they lead to better detection is questionable. Nevertheless, the

machine learning algorithms demand high mathematical skills and are computationally
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intensive (Igual et al., 2013) that may not respond in real-time (Huynh et al., 2015).

Results from (Aziz, Musngi, Park, Mori & Robinovitch, 2017) show that all the five

machine learning algorithms in their research (Logistic Regression, Naive Bayes, k-NN,

Decision tree, and SVM) provided sensitivity and specificity of at least 90%, while

the studied threshold-based algorithms (Kangas2Phase, Kangas3Phase, BourkeUFT,

BourkeLFT, and Bourke4Phase) have sensitivity and specificity from 0 to 100%.

The effectiveness of machine learning algorithms versus threshold based is not

the focus of this paper, but based on the literature review above we decided to apply

threshold based approach as it offers more accuracy and simplicity. We also found the

algorithms in the studies reviewed are not clearly documented, therefore we not only

present the experimentation data, but a clear articulation of the algorithm is accompanied

in the following sections.

4.3 Proposed Fall Detection Algorithm

The scope of this section is to determine the parameters and thresholds for falls detection,

using motion data measured by an accelerometer.

4.3.1 Data collection

In many falls detection algorithms based on threshold approach, falls are identified by

comparing SMV with upper and/or lower thresholds (Basili et al., 2016); (Huynh et al.,

2015); (Kangas et al., 2007); (Sprute, Pörtner, Weinitschke & König, 2015), and the

thresholds are determined by experimentation in many studies (Huynh et al., 2015).

Similarly, this study gathered motion data using a single tri-axial accelerometer and

analyzed the collected data to investigate the difference between accelerations in falling

and ADL. The results were used to develop our algorithm.
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The device used to collect motion data in this work is the accelerometer model

X8M-3 (Concepts, 2012). With the attached position of the accelerometer, the measured

data Ax, Ay, Az correspond to accelerations in the three following axes: X (lateral: left -

right), Y (vertical: up - down), and Z (direction: front - back).

Intentional falls including forward, backward, left-side and right-side falls and

ADLs including walking, sitting, standing and lying were performed by one subject

(female, aged 36 years). Accelerations during these activities were measured with the

accelerometer attached on the chest of the person which is the same place as in (Huynh

et al., 2015); (Kau & Chen, 2015). The position of the accelerometer was identical all

the times when data were collected.

Sample patterns (Table 4.1) was collected to identify the difference in acceleration

between falling and ADL. Test patterns (Table 4.2) was collected including 32 datasets,

each dataset consists of a mixed set of activities (walking, sitting, standing, falling,

lying, standing up). These patterns are used for validation to determine the sensitivity,

specificity, and accuracy of ACFDA.

Table 4.1: Number of activities in sample patterns

Activities Number

Walking 20
Standing 20
Sitting 20
Lying 20
Falling 20

Table 4.2: Number of activities in test patterns

Activities Falling Idle Standing up Walking

Number 44 126 56 48
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4.3.2 Data Analysis

Data analysis was performed using MATLAB program to find the maximum, minimum,

and average values of accelerations in each axes and in the SMV for each of the

following activities: falling, walking, standing, sitting, and lying.

Algorithm 1 summarizes the data analysis process. Raw acceleration data collected

in sample patterns are loaded from accelerometer to a computer (line 1) and are con-

verted to gravity unit (line 2). SMV is calculated for each sample point (line 3). The

maximum, minimum, and average values of accelerations in each axis (x, y, z) and in

the SMV are identified (line 4).

Algorithm 1 Pseudocode code for Data Analysis
Input: Raw data (t, Ax, Ay, Az) from Accelerometer.
Output: max, min, average of x, y, z, SMV .
Method:

1: Receive raw data (t, Ax, Ay, Az) from Accelerometer.
2: Convert raw accelerations (Ax, Ay, Az) into normalized accelerations (x, y, z).
3: Calculate SMV .
4: Find max, min, average of x, y, z, SMV .
5: When End of data⇒ Exit.

Data analysis results shows that SMV of acceleration in standing, sitting and lying

patterns are nearly the same at around 1g. These activities are grouped into one state

called Idle.

The rapid change of acceleration in vertical axis (y_diff ) in falling, walking, and

Idle states was calculated using the difference between the maximum and minimum

values in the period of time that activities occurred. These changes of falls and ADLs

are shown in Figure 4.2. As being illustrated in this Figure, acceleration in vertical axis

in falling activity has the most fluctuation which is usually larger than 2g. While this

value in walking activity and Idle state are around 1g and 0g, respectively. There is no

overlapping in this Figure 4.2, which helps us propose a fall detection algorithm based

on acceleration change.
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Figure 4.2: Difference between maximum and minimum values of acceleration in
vertical

4.3.3 Acceleration Change-based Falls Detection Algorithm (ACFDA)

Algorithm 2 Pseudocode code for ACFDA
Input: Raw data (t, Ax, Ay, Az) from Accelerometer.
Output: Falls detection results.
Parameters: window length (w); detection interval (d); threshold for y_diff (thy);
threshold for SMV _average (thS).
Method:

1: Initialize parameters:
w = 2s; d = 1; thy = th; thS = 1.1g.

2: Receive raw data (t, Ax, Ay, Az) from Accelerometer.
3: Convert raw accelerations (Ax, Ay, Az) into normalized accelerations (x, y, z).
4: Analyze the normalized data in each 2s window to find:
y_max; y_min; y_average; y_diff ; SMV ; SMV _average.

5: If (y_diff >= thy) and ( SMV _average >= thS) then Falling.
6: Else Normal activities.
7: When End of data⇒ Exit.

We proposed our algorithm (Algorithm 2) based on defining thresholds for the

rapid change of acceleration in vertical axis (y_diff ) and the average value of SMV

(SMV_average) which is summarized in the pseudo-code below. This algorithm allows

to identify falls from normal daily activities including walking, standing, sitting, lying
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and standing up after falling. The algorithm was computed in MATLAB program.

4.4 Evaluation the Proposed Fall Detection Algorithm

4.4.1 Performance Evaluation

In general most falls detecting algorithms can produce the following four possible

outcomes:

- True Positive (TP): a fall is detected properly.

- False Positive (FP): a fall is detected when no fall has occurred. This outcome also

is known as false alarm.

- True Negative (TN): no fall is detected when no fall has occurred.

- False Negative (FN): no fall is detected when a fall has occurred. This case is also

called missed fall.

Based on these possible outcomes, the performance of the algorithm is represented

including sensitivity, specificity, and accuracy which are given by (Aguiar, Rocha, Silva

& Sousa, 2014):

Sensitivity = TP

TP + FN ∗ 100 (4.1)

Specificity = TN

FP + TN ∗ 100 (4.2)

Accuracy = TP + TN
TP + TN + FP + FN ∗ 100 (4.3)

Sensitivity is the ratio between truly identified falls and all falls which defines how

successfully the algorithm detects falls. Specificity is the proportion of the algorithm to

correctly identify ADLs and indicates how successfully the algorithm detects ADLs.
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Figure 4.3: An example of testing pattern

Accuracy indicates how well the algorithms identify both falls and ADLs. It is derived

from the rate between truly give decisions and all decisions.

4.4.2 Testing ACFDA on accelerometer data

To test our algorithm, test patterns were applied as inputs for falls detecting program. A

total of 32 test patterns were tested. The number of each activities in the test patterns

was summarized in Table 4.2.

An example of testing pattern is illustrated in Figure 4.3. In this pattern, data were

collected when user performed the following activities: walking (10s), standing (5s),

sitting (10s), walking (10s), left-side falling and lying (10s), standing up and standing

(10s), walking (10s), right-side falling and lying (10s), standing up and standing (10s),

walking (10s), and standing (5s). Data are represented in this Figure are normalized

accelerations in three axes. The result of applying our proposed algorithm with thy =

2.0g and thS = 1.1g on this testing pattern is illustrated in Figure 4.4. In this pattern,

two falls are detected correctly, and all other activities are identified as ADLs.

Table 4.3 shows the performance of the ACFDA with different chosen thresholds
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Figure 4.4: Falls detection result

for the fast change in y-acceleration.

Table 4.3: Performance of the ACFDA

th [g] TP TN FP FN Sensitivity Specificity Accuracy

2.0 41 226 4 3 93.18% 98.26% 97.45%
1.6 43 225 5 1 97.73% 97.83% 97.81%
1.3 44 220 10 0 100% 95.65% 96.35%

When the threshold (thy) is set to 2g, ACFDA can detect 41 out of 44 falls, it cannot

detect 3 falls, 4 standing up states after falling are detected as falls. In this case, the

algorithm achieves 93,18% of sensitivity, 98.26% of specificity and 97.45% of accuracy.

However, false negative need to be eliminated because it may be dangerous for users if

a fall occurs but the system cannot detect it. A simplest way to improve sensitivity of

the algorithm is to decrease thy.

When thy is decreased, the number of falls which are detected increases. It results

in the increase in sensitivity. This is because when a high threshold is set, some weaker

falls may be classified as safe activities. However, when a low threshold is set, fall

positives may increase because strong daily activities may be classified as falls. As
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we can see from Table 4.3, when thy is selected as 1.6g, the number of false negative

decreases from 3 to 1 comparing to thy = 2.0g, while the number of false positive

increases from 4 to 5. The sensitivity and accuracy of the algorithm are improved,

although the specificity reduces slightly. When thy is chosen as 1.3g, all falls in the

test patterns are detected correctly, however the number of false positive increase to

10, resulting to the reduction in both specificity and accuracy of the algorithm. In this

experimentation, all the false positive cases are the result of the standing up states after

falling.

An algorithm having high scores for all sensitivity, specificity and accuracy is

desirable. However, in term of the key purpose of falls detection, it can be pointed out

that the success of the algorithm mostly depends on the frequency of false negative

because it is the most dangerous and unwanted case (Özdemir, 2016). False negative

is a serious mistake for the algorithm and for a reliability of the system, hence it is

expected to be 0. Falls detection systems must achieve very high score in sensitivity and

accept the trade-off between sensitivity and specificity. False positive is a lesser concern,

however it needs to be avoided as well to prevent confusion and unnecessary escalation

(Özdemir, 2016).Compared to previous works ( (Yildirim et al., 2016), (Yuan et al.,

2015)) , our ACFDA has all the three performance ratio including sensitivity, specificity

and accuracy above 90% for three chosen thresholds for y_diff.

4.4.3 Testing ACFDA on smartphone built-in accelerometer data

Motion data was collected using two smartphones Nexus 4 (Nexus, 2012) and Nubia

NX511j (Nubia, 2015). Acceleration data was collected by the application named

Physics Toolbox Accelerometer (Google, 2017) installed on the smartphones.

The number of each activities in sample data and test data is summarized in Table

4.4.
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Table 4.4: Number of activities in sample data and test data

Activities Sample data Test data Total Number
Walking 10 62 72
Bending 10 63 73

Lying 10 71 81
Sitting 10 64 74

Standing 10 * 10
Backward falling 10 10 20
Forward falling 10 10 20
Left side falling 10 10 20

Right side falling 10 10 20

* Standing activity was not counted in test data since it is the idle
activity performed between other activities.

Figures 4.5 and 4.6 illustrate sample and test data segments. The former contains a

falling event, while the latter comprises a variety of activities including walking, lying,

falling, and sitting.

Figure 4.5: Example of sample data showing a fall

Table 4.5 presents the performance of ACFDA under varying thresholds using data

collected by smartphone 1 (Nexus 4). These thresholds were derived from our initial

data analysis, which indicated that the majority of falls result in y_diff values exceeding

2.0g. As a result, three separate thy values were used for evaluation. Simultaneously,
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Figure 4.6: Example of test data

the average SMV value for all falls approximated 1.0g, warranting its selection as the

thS value.

Table 4.6 shows the evaluation result of performance of the ACFDA with different

thresholds of y_diff and SMV_average using data collected by smartphone 2 (Nubia

NX511j). The thresholds for y_diff and SMV_average were chosen as in the experiment

with smartphone 1.

Table 4.7 summaries the evaluation result of performance of the ACFDA with

different thresholds of y_diff and SMV_average when tested on data collected by accel-

erometer (Concepts, 2012), smartphone 1 (Nexus 4) and smartphone 2 (Nubia NX511j).

The first and second columns are chosen thresholds for y_diff and SMV_average. The

third column shows sensitivity (Se) and specificity (Sp) when ACFDA is tested with

data collected by accelerometer (acc). The forth column shows Se and Sp when ACFDA

is tested with data collected by smartphone 1- Nexus 4 (sp1). And the fifth column

shows Se and Sp when ACFDA is tested with data collected by smartphone 2 - Nubia

NX511j (sp2).

This research focused on differentiate falls from slow motion activities. However,

daily living activities consist of various activities which have slow or fast changes in
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Table 4.5: Performance of the ACFDA test on smartphone 1 (Nexus 4)

thy thS True Positive False Positive True Negative False Negative
2.0 1.0 40 4 256 0
2.0 1.1 27 0 260 13
2.4 1.0 38 3 257 2
2.4 1.1 27 0 260 13
2.6 1.0 38 1 259 2
2.6 1.1 27 0 260 13

thy,thS : [g]
Table 4.6: Performance of the ACFDA test on smartphone 2 (Nubia NX511j)

thy thS True Positive False Positive True Negative False Negative
2.0 1.0 19 0 15 1
2.0 1.1 11 0 15 9
2.4 1.0 18 0 15 2
2.4 1.1 9 0 15 11
2.6 1.0 16 0 15 4
2.6 1.1 8 0 15 12

thy,thS : [g]

accelerations. Falls may not be differentiated from fast motion activities such as running

or jumping based on determining lower thresholds for fast change of acceleration in

vertical axis and the average value of SMV. In order to identify falls from these strong

activities, ACFDA need to be improved. Furthermore, the changes of accelerations in X,

Y, and Z axes could be analyzed to identify the orientation of falling activity including

frontward fall, backward fall, left-side fall, and right-side fall. This analysis may be

useful for distinguishing lying between other idle states as well.

4.5 Chapter Summary

This chapter has presented an in-depth analysis of wearable sensor-based fall detection,

underlining the critical role of machine learning techniques, acceleration signal analysis,

and threshold-based detection. The findings from numerous studies and our own

experiments revealed that these mechanisms play a significant role in distinguishing
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Table 4.7: Performance of the ACFDA

thy thS X8M-3 Nexus 4 Nubia NX511j
Se Sp Acc Se Sp Acc Se Sp Acc

2.0 1.0 93.18 97.39 95.99 100 98.46 98.66 95 100 97.14
2.0 1.1 93.18 98.26 97.45 67.5 100 95.67 55 100 74.29
2.4 1.0 75 98.7 94.89 95 98.85 98.33 90 100 94.29
2.4 1.1 75 99.57 95.62 67.5 100 95.67 45 100 68.57
2.6 1.0 72.72 100 95.62 95 99.6 99 80 100 88.57
2.6 1.1 72.72 100 95.62 67.5 100 95.67 40 100 65.71

thy,thS : [g]
Se, Sp, Acc: [%]

between Activities of Daily Living (ADLs) and fall events, even though the task is

inherently challenging due to the overlap in acceleration patterns.

Our algorithm, Acceleration Change-based Fall Detection Algorithm (ACFDA),

uses thresholds for rapid changes in acceleration in the vertical axis and the average

value of the Scalar Magnitude Vector (SMV). It showed promising results in preliminary

tests, especially when the optimal thresholds are carefully selected to minimize false

negatives.

However, the problem of false positives remains an area for future work, especially in

scenarios where high-intensity activities like running or jumping might be misclassified

as falls. The results also emphasized the need to consider device-specific thresholds to

achieve the highest sensitivity and specificity, thus highlighting the intricate interplay

between hardware and algorithm design in fall detection.

Lastly, this study highlighted the possibility of identifying the orientation of falling

activity, which could be a valuable contribution to the development of more soph-

isticated fall detection and response systems. Future research may expand on this

concept and investigate more nuanced aspects of fall detection, such as differentiating

between various types of falls and using additional sensor data for even more accurate

classification.
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In conclusion, the complexity of fall detection algorithms reflects the complexity

of human movement itself. Despite this challenge, progress in sensor technology and

machine learning promises to continue improving the safety and quality of life for

at-risk individuals.



Chapter 5

Visual Object-based Fall Detection

5.1 Introduction

As seen in the previous Chapter 4, wearable sensors can be used to detect some activities

of people who are wearing them. Fall detection could be achievable. In fact, there are

many research articles related to that. For instance, SmartFall (Mauldin, Canby, Metsis,

Ngu & Rivera, 2018) is a framework fall detection framework using smartwatches for

fall detection system using deep learning. Or a combination of smartphone and smart

watch can be used to detect falls, in (Vilarinho et al., 2015).

However, wearable devices are noticeably uncomfortable to have them one all

the time. A survey on "Consumers’ perceived attitudes to wearable devices in health

monitoring in China" (Wen, Zhang & Lei, 2017) has indicated that half of the people

who asked, defined the main issues for not using wearable devices:

• Short battery time

• Ease of being damaged

• Uncomfortable to wear

• Technical immaturity

74
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• Inaccurate data recording

• Unattractive features

Environmental sensor based or context-aware fall detection systems can eliminate

the above issues. These systems detect falls by utilizing visual sensors, laser diodes,

radars, infrared sensors and pressure sensors that are attached on the environment.

The main advantages of context-aware systems over wearable sensors systems are

eliminating the need for wearing sensors all the time and avoiding the anxiety for

forgetting to carry sensors. However, there are limitations such as spatial coverage of

installed environment sensors and user privacy which makes them feel being watched

all the time.

5.2 Related Work

Depth sensor such as Microsoft Kinect is used in some systems for differentiating

human falls from other activities based calculating motion related features such as

velocity, acceleration and position (Jagtap, Angal, Student & BSIOTR, 2016; Nizam,

Mohd, Tomari & Jamil, 2016). If unusual activity is detected, systems send alerts to

users’ caregivers using GSM. A robot with camera vision at home is designed by (Juang

& Wu, 2015) for identifying fall-down movements of elderly people in real-time using

triangle pattern rule. The system achieves 90% of accuracy under a single character

posture and up to 100% under a continuous-time sampling criterion with using Support

Vector Machine (SVM) classifier.

In a research conducted by (De Backere et al., 2015), authors presented a system

called FallRisk which is a social and context-aware multi-sensor falls detection and risk

assessment platform consists of sensors, a local gateway, a controller and OCarePlatform

in the Cloud. Contextual information and fall estimation and detection is sent back to
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the Controller for notifying the caregivers or the emergency response center. Majumder

et al. (Majumder et al., 2016) designed and implemented a smart-shoe which can warn

the user about their abnormal gait and possibly save them from a forthcoming injuries.

The system uses the piezoresistive sensor attached in the shoe to collect the raw insole

pressure data while the user is walking. This data is then compared with the gait event

parameter of the biomechanical model. The resulting outputs are processed inside the

mobile phone to identify the user’s gait pattern. If the gait pattern reaches a certain

threshold where the user might face a potential fall, the system triggers a warning to the

user with a message and vibration.

5.3 Visual Object-based Fall Detection Algorithm

5.3.1 Proposed Fall Detection Algorithm

The proposed fall detection algorithm serves as an integrated system incorporating four

principal components: Video Capture and Playback, Pose Landmark Detection, Fall

Recognition, and User Interface Interactivity. These integral modules collaborate to

process video streams, capture human pose landmarks, recognize fall incidents, and

finally, update the user interface in real-time. Below are the brief explanations for each

component:

• Video Capture and Playback: This is the initial stage where the algorithm

captures video data, either in real-time or from a pre-recorded source. The video

is processed frame by frame, and certain frames are selectively blurred to focus

on the subject.

• Pose Landmark Detection: In this stage, the MediaPipe library is utilized to

detect and plot human pose landmarks on the processed video frames. These



Chapter 5. Visual Object-based Fall Detection 77

landmarks are key points on the human body, like the nose, hips, and other joints,

which are essential for detecting a fall.

• Fall Recognition: This component leverages the pose landmarks to detect a fall

incident. Specifically, it monitors the vertical distance between the nose and

hip landmarks. If this distance falls below a specified threshold, the system

recognizes it as a fall event, updates the skeleton color, and overlays a ‘FALL

DETECTED’ text on the frame.

• User Interface Interactivity: The algorithm is encapsulated in a user-friendly

GUI developed using Tkinter. This interface features a video display panel

and a dropdown menu for video file selection, thereby offering a seamless user

experience.

By synergizing these components, the system effectively performs real-time fall de-

tection and can promptly alert caregivers or medical professionals, proving its potential

utility in healthcare and surveillance applications.

Pose Landmark Detection and Processing

The initial and crucial step in our algorithm revolves around detecting human pose land-

marks in the video frames being analyzed. This is achieved using the MediaPipe Pose

model, a solution specifically designed for real-time pose estimation. An illustrative

example of pose detection carried out using this model is depicted in Figure 5.1.

Going into more detail, MediaPipe Pose operates in real-time and is capable of

detecting 33 pose landmarks on the human body, such as the nose, hips, and other joints.

These landmarks are essential for the subsequent stages of the algorithm, especially fall

detection. Due to its efficient architecture, MediaPipe Pose offers a compelling balance

between computational load and accuracy, making it suitable for real-time applications.
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Figure 5.1: Pose detection leveraging the MediaPipe Pose model
(Kim, Choi, Ha & Choi, 2023)

Transitioning from pose landmark detection to fall detection, the algorithm calcu-

lates the distance between specific landmarks—specifically, the nose and the hips. By

monitoring this distance and applying a threshold value, the algorithm is capable of

reliably identifying fall incidents. The algorithm employs conditional logic to change

visual cues on the video frame, such as the color of the skeleton and overlay text, when

a fall is detected.

Fall Detection and Post-Processing

The third stage in our algorithm focuses on the recognition of fall actions, which is

directly accomplished using the previously detected pose landmarks. In contrast to

using more complex models like Spatial-Temporal Graph Convolutional Networks

(STGCN), our approach leverages a more straightforward method to detect falls in

real-time.

By monitoring the Y-axis positions of specific pose landmarks such as the nose
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and both hips, the algorithm assesses the vertical distance between these points. If the

distance falls below a certain threshold, it triggers the fall detection mechanism. Spe-

cifically, the algorithm checks if the absolute difference between the Y-axis coordinate

of the nose and those of the left and right hips are below 0.125. If either condition is

met, a fall is considered to have occurred.

Figure 5.2: Illustration of a detected fall within real-time video footage using the
proposed algorithm.

For the final step, post-processing is employed to reduce the chances of false

positives. The algorithm dynamically alters the sampling rate of the video frames to

more closely scrutinize potential fall incidents. This is achieved by incrementing a

‘step‘ variable which adjusts the rate at which video frames are analyzed. When a fall

is detected, the skeleton in the video is colored red and a ’FALL DETECTED’ label

appears on the screen, providing immediate visual feedback.

In summary, our fall detection algorithm, with its streamlined methodology, prom-

ises real-time processing combined with high accuracy, thereby enabling quick alerts

and timely interventions.
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5.3.2 Dataset

In the pursuit of validating the efficacy of our fall detection algorithm, we leveraged

the SysFall dataset, an extensive and publicly available collection of data pertaining to

fall and movement detection. Created by Angela Sucerquia, José David López, and

Jesús Francisco Vargas-Bonilla, this dataset provides a well-documented collection of

both Activities of Daily Living (ADLs) and fall events. Recorded with a self-developed

device featuring dual accelerometers and a gyroscope, the SysFall dataset comprises

a wide range of movements performed by two distinct age groups—23 young adults

aged between 19 to 30, and 15 elderly participants aged between 60 to 75. It uniquely

includes 19 types of ADLs and 15 types of falls, making it an invaluable resource for

benchmarking fall detection algorithms.

5.3.3 Data Analysis

Our primary focus during the data analysis was to extract relevant features and patterns

that could efficiently distinguish between a fall and other everyday activities. We partic-

ularly analyzed the 15 different types of falls categorized in the SysFall dataset, which

range from ’Fall forward while walking caused by a slip’ to ’Lateral fall while sitting,

caused by fainting or falling asleep.’ The dataset’s richness in capturing both accelera-

tion and rotation across multiple trials provided a nuanced view of the characteristics

that typify a fall.

5.3.4 Evaluation

To assess the robustness and accuracy of our algorithm, we conducted extensive tests

using the 15 fall types specified in the SysFall dataset. Remarkably, our algorithm

successfully identified falls in every single one of the 15 test videos from the dataset,

substantiating its reliability and efficiency. This comprehensive evaluation underscores
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the capability of our fall detection model to not only learn from but also correctly

classify complex human activities. With a flawless detection rate on the SysFall dataset,

we are confident that our algorithm holds significant promise for real-world applications,

particularly for the vulnerable elderly population, thereby enabling prompt medical

intervention.

5.3.5 Fall Detection GUI Implementation

To offer a more intuitive understanding, we developed a Graphical User Interface (GUI)

that encapsulates the entire fall detection process. Our system leans on a variety of

Python libraries, namely OpenCV (cv2), MediaPipe (mp), Tkinter (tk), NumPy (np), and

PIL (Image, ImageTk). Pose landmarks are at the heart of our fall detection logic. The

GUI can be downloaded at https://psivt2023.aut.ac.nz/fallGUI.zip.

Initialization of Libraries and Global Variables

At the outset, we initialize MediaPipe’s drawing and pose solutions, along with setting

up the global variables. These variables, such as ‘after_id‘ and ‘cap‘, serve the purpose

of managing video playback. Furthermore, we instantiate a pose object from MediaPipe

and initialize a ‘step‘ variable to control frame rates during video streaming.

Halting Video Playback

The ‘stop_video‘ function is designed to cease video streaming effectively. It cancels

any queued Tkinter ‘after‘ events and releases the VideoCapture object from OpenCV.

Fall Detection Mechanism

The core function, ‘detect_fall‘, computes the occurrence of a fall based on specified

pose landmarks: the nose, left hip, and right hip. If the vertical distance between the

https://psivt2023.aut.ac.nz/fallGUI.zip
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nose and either hip falls below a preset threshold (0.125), the system recognizes it as a

fall event.

Visualizing Pose Landmarks

For better visualization, our ‘draw_connections‘ function overlays a skeleton onto the

video frames, connected via pose landmarks. The color schema for these connecting

lines can be customized through a color tuple parameter.

Video Processing and Playback

The function ‘play_video‘ is the cornerstone of the application, encompassing the

following functionalities:

• Frame-by-frame video reading

• Application of Gaussian blur on video background

• Pose landmarks detection and rendering

• Fall detection, with visual alterations on the skeleton and a text overlay indicating

‘FALL DETECTED‘.

Moreover, the function updates the GUI with each new frame while maintaining a

regulated frame count to optimize processing.

Video File Selection

The GUI features a dropdown menu that allows users to select a video for analysis from

the ’dataset’ directory. Upon selecting a video, the function ‘on_select‘ initializes the

video stream and triggers the ‘play_video‘ function to start playback.
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Figure 5.3: Fall Detection Application
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Layout and Design of GUI

The GUI, designed using Tkinter, splits into two frames: the left frame hosts the

dropdown menu for video selection, and the right one displays the video feed (See

Figure 5.3). The Tkinter ‘mainloop‘ function sustains the application.

5.4 Chapter Summary

Our system adroitly integrates elements of computer vision, machine learning, and GUI

design to form a comprehensive solution for fall detection. By efficiently analyzing real-

time pose landmarks, it demonstrates significant potential for healthcare applications,

especially in identifying fall events.



Chapter 6

Preserving Privacy through Visual

Content Hiding

6.1 Introduction

The growing reliance on automated fall detection systems brings forth questions about

their accuracy and reliability. Although these systems have advanced significantly, their

predictions are not always infallible. Incorrect detections can have serious ramifications,

necessitating verification from a third-party individual such as a caregiver or medical

professional. However, transmitting visual footage of the individual experiencing the

fall over the internet poses serious privacy concerns. This chapter proposes two privacy-

preserving methods for manual verification of fall incidents: skeletal pose imaging

(covered in Section 6.2) and visual encryption (covered in Section 6.3).

6.2 Skeletal Pose Imaging

This section introduces a privacy-preserving methodology for fall detection that trans-

mits only the skeletal or pose data of the individual. The skeleton data sufficiently

85
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captures fall events while preserving an individual’s privacy by not showing their full

visual appearance.

6.2.1 Human Skeleton Extraction

To extract the human skeleton data, we utilize the MediaPipe framework. MediaPipe

offers impressive performance in human pose estimation by providing a set of key points

that represent various joints on the human body. These points encode vital information

about joint movements and trajectories, which are essential for our algorithm focused

on fall detection.

Key Joint Points and Their Significance

The key points identified by the MediaPipe framework are crucial for action recognition,

particularly for detecting falls. This subsection explores the anatomy of these points

and their importance in our algorithm.

Exclusion of Facial Points

Facially descriptive points are intentionally excluded to maintain a focus on fall detection

and to preserve privacy. This subsection elaborates on the rationale behind this decision.

6.2.2 Rationale for Employing Skeleton-Only Transmission

Transmitting only skeletal or pose data provides multiple advantages, including:

1. Identity Protection: This method abstracts away from identifiable facial and

bodily features, ensuring anonymity.

2. Data Minimization: Only essential skeletal data is transmitted, reducing data

volume and enabling faster real-time processing.
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(a) Detected Fall Event (b) Skeleton During Fall

Figure 6.1: Skeleton detected using MediaPipe framework.

3. Regulatory Compliance: This approach is in line with global privacy regula-

tions, such as the GDPR in Europe.

4. Public Acceptance: The privacy-preserving nature of this method is likely to

receive better public and stakeholder acceptance.

5. Flexibility and Scalability: The extracted skeletal data can be easily integrated

into various systems and scales well.

6. Focused Analytics: The algorithm focuses only on essential skeletal data, en-

abling more accurate and efficient fall detection.

6.2.3 Securing Trust and Ensuring Robustness

The choice to transmit only skeletal data isn’t solely a technical decision but also

embodies a commitment to user privacy. In the context of growing concerns about

digital surveillance and data breaches, our approach aims to strike a balance between

efficacy in fall detection and respect for individual privacy. We aim to build user trust
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by demonstrating that advancements in this field can be both effective and ethical.

6.3 Visual Encryption

The second method aims to address privacy concerns by encrypting the visual footage

before transmission. Only authorized parties possessing a unique private key can decrypt

the footage to verify the fall. This ensures that the individual’s privacy is maintained

while still allowing for manual verification of the detected fall.

Here, we introduce a rapid and secure method for concealing visual content, as

illustrated in Fig. 6.3. Our system effectively preserves visual content even after lossy

compression, manipulation, and transmission of images and video streams over the

Internet. The resulting images and videos appear as random patterns, making them

unrecognizable to general viewers. This approach allows for the transfer of visual

content through public domains such as Dropbox, Pixabay, YouTube, Dailymotion,

Vimeo, or other public sharing servers.

While most providers offer free storage space, their focus tends to be on managing

large amounts of data rather than maintaining high quality. For example, YouTube

processes over 300 hours of video uploads every minute, requiring a delicate balance

between compression speed and quality. As a result, YouTube automatically compresses

high-definition videos into lower-resolution versions. However, YouTube allows users

to upload various types of content, as long as they do not violate content guidelines.

Our proposed method capitalizes on this fact by disguising visual content as seemingly

meaningless data, which typically goes undetected by content filters.

6.3.1 Related Works and Compression Techniques

Steganography and reversible data hiding in encrypted images are established techniques

for secure content transmission (Shih, 2017; Qin & Zhang, 2015; Zhang, 2011; He,
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Figure 6.2: Diagram displays our proposed system

Chen, Luo, Tang & Huang, 2018). These methods work well with different types of

image and video compressions such as JPEG and H.264/MPEG-4, albeit with limitations

like lossy compression affecting the hidden data. For example, high-compression JPEG

retains only about 5% of the original bits (Lin & Chang, 2001).

Compression methods like JPEG, H.264, and MPEG4 are prevalent in today’s

multimedia content (Wallace, 1992; Wiegand, Sullivan, Bjontegaard & Luthra, 2003;

Perkins & Hodson, 2003). JPEG is commonly used for images due to its balance

between quality and compression. H.264 and MPEG4 offer higher video compression

rates by eliminating redundant information.

In our evaluation, we focus on JPEG compression to assess the efficacy of our

encoding and decoding techniques.
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6.3.2 Problems - the facing issues

Why is it not straight-forward to do such image hiding scheme? An image contains a

large number of pixels I(i, j) with i ∈ (1,2,3, ...,W ) and j ∈ (1,2,3, ...,H); W,H are

the width and the height the image I . Assume it is a monochrome image, e.g. I(i, j) is

one integer. If the image is colour, each I(i, j) is an array of three colour: red, green,

and blue. The most obvious way to encrypt a monochrome image is to multiply every

pixel of the image with one reversible function F (x,Key):

I ′(i, j) = I(i, j) × F (x,Key) (6.1)

And in order to get back the original image, we only need to multiply the encrypted

image with the inverse function of F (x,Key):

I(i, j) = I ′(i, j) × (F (x,Key))−1 (6.2)

Here, there are some issues that we have to face. First, the function F (x,Key)
must not be linear, and it must be complex enough to make the original visual content

of the image not visible. Two pixels with similar colour/intensity should not appear to

be similar in the encrypted image, e.g. the mapping of intensity 1 ←→ 175, 2 ←→ 25,

and 3 ←→ 167, for instance. We must have a complex enough reversible function

F (x,Key) where a Key can be combined to prevent the leakage of the original data.

On the other hand, the function F (x,Key) must also be simple so that the complexity

of the process is not considerable; we have to multiply every single pixel with such

function, we need a fast running process. A lookup table can be implemented to serve

this purpose. Alternatively, one easy way to do that is to Exclusive Or (XOR) the

original image with one generated random-dot image with the same size; the random

dot image will be the key to unlock the content. The encrypted image will appear mostly
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Table 6.1: Number of inaccurately pixels on .PNG and .JPG random dot images after
compression

Intensity Difference PNG JPG100 JPG95 JPG90 JPG80
1 value 0% 9.3% 79% 89% 95%
5 values 0% 0% 2.2% 24% 54%

10 values 0% 0% 0% 1.6% 21%

random.

The random-dot way of encryption has a serious issue with lossy compression. The

property of random dot image is that, adjacent pixels are very likely to be different from

each other. Image compression such as JPEG will not be able to retain the values of all

the pixels after a compression, even with Quality Factor of 100.

In fact, we have tested the quality of random dot JPEG images versus lossless PNG

images. We evaluated the performance of four levels of compression: 100, 95, 90, and

80. The results are shown in Table 6.1.

On average, 9.3% of the pixels (at one level of intensity) are altered after a JPEG

compression with a Quality Factor of 100. As the Quality Factor of the compression

decreases to lower levels, such as 80, over 95% of the image will be changed at the

pixel level.

The Exclusive Or (XOR or ⊕) function is not robust enough for use in lossy

compression either. Although XOR has the commutative property, which is widely used

in Computer Science:

Data⊕Key = Locked (6.3)

and

Locked⊕Key =Data (6.4)

if the locked data is slightly changed, it is not guaranteed that the decoded data will

only be slightly changed. There are cases where A⊕K = B but (A+ 1) ⊕K ≠ (B + 1).
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For example, if the original data is 213 and the key is 170, we have:

213⊕ 170 = 127

The encrypted data is 170, which can be transferred over the network. However, if the

data is manipulated, such as increased to 128 when decrypted, we get:

128⊕ 170 = 42

There is a significant difference between 42 and 170. Therefore, XOR is not completely

suitable for image encryption and decryption, and we need to find a more robust

approach.

6.3.3 Design and Implementation

We need to build a reversible function F (x,Key) that is capable to encode an image

I and a secured key Key, and it can generate a random-looking pattern I ′ which is

robust for lossy compression. On other words, it needs a property: Ix × F (x,Key) = A
but (Ix + 1) × F (x,Key) ≠ A + 1; with Ix is an arbitrary intensity. However, two

adjacent pixels Ix and Ix+1, which have the same intensity/colour (Ix = Ix+1) should

appear differently in the encrypted image, e.g. I ′x ≠ I ′x+1 so that the hidden content is

not visible. After encryption, the intensity distance k between the two adjacent pixels

(same intensity originally) is calculated as:

∣I ′(x) − I ′(x + 1)∣ = k;k ≠ 0

This value of k should not be zero, but it should not be too large either, at least in one

direction (x or y) so that the lossy compression does not significantly affect the changes
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in intensity.

(a) Equation of a circle (b) Water waves with circular ripples from the
rain

(c) Our proposed random circular patterns

Figure 6.3: Motivation and our proposed random patterns

Motivated by the water waves with circular ripples from the rain as seen in Fig. ??.

The patterns of them look half random, the intensities of the circles with the same centre

are the same. From the standard form of a circle equation, we have:

(x − a)2 + (y − b)2 = r2 (6.5)

There are a number of parameters: a, b, r, which can be used to modify the shape of the

circle. These could be used as keys to unlock the image encryption of our system.
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Encoding of the Circular Pattern with Keys

Based on the formula 6.5, we propose a encoding process to build a circular pattern

from any image. For each pixel, we calculate its encoded form as:

I ′(i, j) = k1 × ((k2 × i − k3)2 + (k4 × j − k5)2) − I(i, j) (6.6)

Here, I(i, j) is a pixel of original image, I ′(i, j) is the encrypted image, and the set of

keys k1..5 are the keys to lock and unlock the image. If each key is a three digits number,

to unlock it correctly, we need a set of 3 × 5 = 15 correct digits. The chance of brute

forcing it will be 1/1015, which is almost zero.

Figure 6.4: Encode image of an elephant picture

Fig. 6.4 displays an example of our encoding result using the equation in formula 6.6.

This image is simple, but it is, in fact, a hard image to hide because it has a very high

contrast boundary and uniform colours. If we mask this image with another arbitrary

image, the boundary of the elephant is straightforward to distinguish by human eyes.

With our proposed method, it is not possible for anyone to say that the elephant is

hidden underneath.



Chapter 6. Preserving Privacy through Visual Content Hiding 95

Decoding of the Circular Pattern with Keys

We have made so that the decoding the circular pattern is simple and straight forward.

Each pixel is decoded by:

I(i, j) = k1 × ((k2 × i − k3)2 + (k4 × j − k5)2) − I ′(i, j) (6.7)

Notice that, instead of using XOR, we just use simple subtraction function (minus)

with unsigned 8-bit integer. The unsigned integer has the property: K − A = B and

K −B = A. The results will always be positive due to Binary Overflow (Brown, 1999).

This property ensures that the encoded image output is always valid to display.

Contrast Compression of Original Image to Prevent Invalid Overflow after Com-

pression

The formula 6.6 and 6.7 above will help create and return the correct input and output;

if and only if the image is going through a lossless compression. However, this is not a

valid assumption; lossy compression (e.g. JPEG) will be applied. As seen in Fig. 6.5,

it is likely that many pixels will be manipulated for achieving good compression. The

amount of manipulation is unknown, and it could be 10 to 20 values of intensity

changed.

This unavoidable manipulation could affect badly on the decoded results, especially

on the maximum and minimum spectrum of the intensity. E.g. I ′(x, y) = 5, is decoded

to I(x, y) = 252; but after compression, I ′(x, y) = 5 is changed to I ′(x, y) = 5+10 = 15

and get decoded to I(x, y) = 252 + 10 = 7 after overflow. Thus, the pixel turns from

white to black; and vice-versa. Overflow of binary will create a large number of black

dots on white backgrounds, and white dots on black backgrounds.

To minimise this overflow of intensity; we have to stretch the two upper and lower

spectrum of the image intensity. The stretch should be less than 10% of the 256 levels
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Figure 6.5: Visual lossy JPEG vs. lossless PNG comparison

of intensity range, the formula is below:

J(i, j) = (α − β) × I(i, j)
255.0

+ β (6.8)

This stretch makes the minimum intensity value of pixels to be β > 0, and the maximum

value is α < 255. Stretching before encoding will significantly reduce the intensity

overflow effect discussed above.

After decoding with the key, we have to de-stretch the intensity to get the original

form of image, using the below formula:

I(i, j) = 255.0 × (J(i, j) − β)
α − β (6.9)
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Fast Implementation

Originally with the formula 6.6 and 6.7, each pixel of the encoded image is created by

multiplying itself with function F (x,Key). To do that, it will take the complexity of at

least O(n) × T where n is the number of pixels. Tested in our system, each frame take

up-to three seconds to process due to the individual pixel-based manipulation. To make

it faster, and reduce the complexity to O(1) × T , we proposed that the lock image is

created first, and it is created once only:

Ilocked = k1 × ((k2 × i − k3)2 + (k4 × j − k5)2) (6.10)

Then, the encode and decode of the image can be done by direct image subtraction:

I ′ = Ilocked − I and I = Ilocked − I ′, respectively. The processing time is reduced

dramatically, and actual quantitative figures will be shown and discussed in the next

section.

6.3.4 Results and Evaluations

Fig. 6.6 show some examples of our encoded image and three decode images after the

encoded image is saved to different levels of JPEG compression. We applied the same

stretch level of 10%. It shows that with the JPEG compression quality 75 or more,

the decoded image looks almost the same as the original. The quality reduces when

the compression quality is at 60, and at level 30, there are many noisy dots presented.

However, the majority of pixels are maintained to depict the monkey in the picture.

Even with the Quality of 01, the majority of the image is still visible to naked human

eyes.
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(a) Encoded pattern (b) Decoded from JPEG image with Quality 90

(c) Decoded from JPEG image with Quality 75 (d) Decoded from JPEG image with Quality 60

Figure 6.6: Encoded pattern and three decoded results with stretch level 10%

Quality of Images after Decoding

To evaluate the results quantitatively, we carry out a number of experiments. We select

images with different contents and sizes. We encode them with a set of secured keys.

We save the encoded image using JPEG compression with various quality level: 100, 90,

80, ... 10. We reload the images, and start decoding with the same set of keys. We then

compare the decoded images with the original images. Pixels within 1, 5, 10 levels of

intensity are collected to find out the accuracy of the encode decode at different levels.

The results are collected and displayed in Tab. 6.3.

As seen, our encode/decode approach could not maintain the image accurately at one

value different. It is evident because JPEG compression will most likely to change the

value of the individual pixels anyway. However, our approach is very robust at 5 and 10

different intensity level. At JPEG90, more than 99% of the image are decoded correctly
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(a) Decoded from JPEG image with Quality 45 (b) Decoded from JPEG image with Quality 30

(c) Decoded from JPEG image with Quality 15

Figure 6.7: Other decoded results with stretch level 10%

Table 6.2: Number of inaccurately decrypted pixels on PNG and lossy JPG images

Difference JPG100 JPG90 JPG80 JPG60 JPG40 JPG20
1 values 20.7% 73.8% 85.6% 91.9% 94.4% 96.3%
5 values 0% 5.08% 29.6% 56.4% 68.4% 78.9%

10 values 0% 0.10% 4.12% 25.7% 42.2% 59.6%

within ten values of intensity difference. Within 5 values, our approach achieves 95%

accuracy. One other word, our encode/decode approach, is capable of maintaining the

majority of the image quality and should be suitable for further image processing.

Processing Speed of Encoding and Decoding

As stated above, we have built a fast implementation of the proposed method. We test

the performance by running encoding and decoding on a general machine with a general

specification. It is a no-dedicated GPU system - a Desktop machine with Intel Core
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i5-6500 processor @ 3.2 GHz and 16.00 GB of RAM, running Windows 10 operating

system and Python 3.4.

Table 6.3: Speed of Encoding

Size (500x500) (1000x1000) (1500x1500) (2000x2000)
Speed 73.8 fps 48.7 fps 22.8 fps 11.2 fps

We resize images into four sizes: (500 × 500), (1000 × 1000), (1500 × 1500),
(2000×2000). We run each with the encode and decode process ten times. The average

time is then calculated to how many frames per second. The final results are shown in

Tab. 6.3 and Tab. 6.4.

Table 6.4: Speed of Decoding

Size (500x500) (1000x1000) (1500x1500) (2000x2000)
Speed 266 fps 61.6 fps 26.3 fps 15.2 fps

Both the tables show that our encode and decode process could run at relatively

high speed. At the size of (1500 × 1500) or less, it is capable to run in real-time, e.g.

approx. 24 FPS.

6.4 Chapter Summary

Manual verification by a third party is crucial for ensuring the accuracy of fall detection

systems. However, it also introduces the challenge of preserving the privacy of the

individual concerned. This chapter addresses this dilemma by proposing two methods:

skeletal pose imaging and visual encryption. Both approaches aim to strike a balance

between the need for manual verification and the imperative of maintaining privacy.



Chapter 7

Conclusion

7.1 Thesis Summary and Contributions

This thesis journeys through the intricate challenges at the crossroads of healthcare

and the Internet of Things (IoT), focusing primarily on pioneering approaches to fall

detection and data privacy. The inaugural chapter establishes the compelling need for

secure, efficient fall detection mechanisms within the scope of healthcare IoT, serving

as the research impetus for the ensuing chapters.

Chapter 2 serves as a literature review, offering a panoramic view of the existing

scholarship in IoT healthcare. It delves into foundational technologies and theories,

including Convolutional Neural Networks (CNNs) and Long Short-Term Memory

networks (LSTMs), thereby setting the stage for the methodologies and algorithms

developed in subsequent chapters.

Chapter 3 elucidates the research design and methods implemented. It introduces

the novel Falls Management Framework (FMF), a system integrating both wearable

and ambient sensors to deliver a synergistic fall detection solution. Leveraging machine

learning techniques like SVM, k-NN, and Naive Bayes, FMF can differentiate falls

from everyday activities with high accuracy. Data from accelerometers is processed

101
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in real-time using pattern recognition algorithms. The Adaptive Context-aware Fall

Detection Algorithm (ACFDA) undergoes rigorous evaluation, employing datasets from

various devices such as Nexus 4 and Nubia NX511j smartphones, to ensure minimal

false positives and negatives.

Chapter 4 explores cutting-edge features from extant systems like SmartFall and

FallRisk. It leverages depth sensors like Microsoft Kinect to add another layer of

precision. This chapter validates the model’s proficiency in classifying a multitude of

human activities across diverse age groups by evaluating it against the comprehensive

SysFall dataset.

In Chapter 5, we shift focus to a more advanced, Visual Object-based Fall Detection

Algorithm that relies on environmental sensors and video footage, circumventing the

limitations of wearable sensors. The algorithm operates on four core modules: Video

Capture and Playback, Pose Landmark Detection, Fall Recognition, and User Interface

Interactivity. The system utilizes the MediaPipe library and emphasizes the vertical

distance between the nose and hip landmarks to ascertain falls. Rigorously tested on

the SysFall dataset, it claims high accuracy rates and is especially suited for monitoring

vulnerable populations like the elderly. A user-friendly Graphical User Interface (GUI)

enhances accessibility and ease of use.

Finally, Chapter 6 underscores the criticality of minimizing false detections and

introduces two privacy-conscious methods for manual fall verification: skeletal pose

imaging and visual encryption. These techniques strike a balance between robust

fall detection and individual privacy, incorporating image encryption methods like

steganography and reversible data hiding for added security layers.
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7.2 Future Work

As promising as the contributions of this thesis are, there exist several avenues for future

research and development. First, while the Falls Management Framework (FMF) and

the Adaptive Context-aware Fall Detection Algorithm (ACFDA) have shown impressive

results, further tuning of their machine learning models could improve accuracy and

reduce computational overhead. Exploration into ensemble methods or deep learning

architectures may offer avenues for even more robust fall detection algorithms.

Second, the Visual Object-based Fall Detection Algorithm warrants further study.

In particular, real-world validation through extended field tests would be invaluable for

confirming its practical utility. Additional algorithms could be incorporated to handle a

broader range of scenarios, including low-light conditions and occlusions, which are

typical challenges in practical deployments.

Third, the aspect of data privacy, although addressed, requires a more comprehens-

ive approach. Future work could involve the development of end-to-end encryption

protocols that seamlessly integrate with the existing systems without compromising

user experience. Special attention should be given to the practical implementation of

the privacy-preserving methods like skeletal pose imaging and visual encryption.

Fourth, our solutions are particularly geared towards the elderly; however, fall

detection is a concern for other vulnerable populations as well. Future iterations could

adapt the framework for use among children, athletes, or industrial workers, who also

stand to benefit from reliable fall detection mechanisms.

Fifth, while we have extensively tested our algorithms on the SysFall dataset, other

publicly available datasets or even proprietary datasets could be used to further validate

the generalizability of our methods.

In sum, future work should strive for a seamless, secure, and inclusive ecosystem

that further refines the balance between high-accuracy fall detection and preservation of
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user privacy.
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