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ABSTRACT Sound source localization is a critical problem in various fields, including communication,
security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient
sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for imple-
menting binaural sound source localization approaches. However, optimizing the topology and size of
SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-
time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN)
for localizing sound sources in the time domain by integrating an energy-based localization method. The
dataset used in this work is recorded by two different omnidirectional microphones from a real environment.
The dataset includes various sound events such as speech, music, and environmental sounds. The proposed
ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy
near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several
conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back
direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs
for improving sound source localization in practical applications

INDEX TERMS Sound Localization, Spiking Neural Network, Dynamic Structure, ITD, Energy-Based
Method, Adaptive Resonance Theory.

I. INTRODUCTION

IMAGINE we are blindfolded in a room, and we hear
someone asking for help while the receiving sound is

gradually diminishing or moving around. How is it that we
can quickly detect where the sound may be coming from
and how far away it is? Also, consider the environment is
noisy. How do we manage to filter out the noise to still
make a good guess as to the source of the sound? Sound
Source Localization (SSL) stands as a skill of utmost im-
portance in a varied range of applications, such as robotics,
human-computer interaction (HCI), and virtual reality (VR).
In the realm of robotics, SSL assumes a fundamental role
in identifying the location of a sound source, especially in
the presence of noise, which enables robots to identify and
comprehend control commands. Within HCI, SSL proves to
be an essential tool in isolating the speaker’s voice from
background noise, thus fostering clear communication in
settings dominated by noise. In the context of VR, SSL is
adopted to establish an immersive experience by localizing

sound sources in the virtual environment and allowing users
to perceive sound as if it were coming from a specific
location. The problem of SSL has been approached by means
of various techniques, which include traditional signal pro-
cessing methods, machine learning algorithms, and biolog-
ically inspired models. These techniques encompass sound
source localization modules, convolutional neural networks
(CNNs), and recurrent neural networks (RNNs). Addition-
ally, immune-based machine learning algorithms have been
shown to increase accuracy and reliability, particularly in
audio-visual approaches [1]. For sound classification, inno-
vative techniques leverage Spiking Neural Network (SNN)
encoding and spike pattern generation. [2] exploits the echo
state SNN capability synergized with CNN classification
methods, resulting in enhanced accuracy. Furthermore, [3]
employs Convolutional Recurrent Neural Network (CRNN)
methods incorporating Gammatone filtering and frequency-
based approaches, yielding promising results. These multi-
faceted methodologies showcase the evolution of SSL tech-
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niques, embracing diverse technologies and demonstrating
promising outcomes.

Traditional methods for a single SSL are based on time
delay estimation and phase difference estimation using mul-
tiple microphones. These methods have limitations in noisy
environments and require complex signal processing tech-
niques [4]. In contrast, machine learning-based approaches
for SSL, such as deep neural networks [5], support vector ma-
chines [6], and random forests [7], use large datasets to learn
the relationship between the input sound signals and their
corresponding source location. These approaches can handle
noisy environments and do not require complicated signal-
processing techniques. Instead, they solve the problem by
feeding many examples of sound localization for the machine
learning system to learn for itself how to localize the source.
These approaches have shown promising results in the single
SSL and have the potential to outperform traditional methods
in terms of accuracy and computational efficiency. While
these methods have shown promising results, they require a
large amount of training data and computational resources.

To overcome the limitations of both traditional methods
and machine learning-based approaches, researchers have
turned to biologically inspired models for SSL. These models
are inspired by the mammalian auditory system, which uses
binaural cues, such as interaural time difference (ITD) and
interaural intensity difference (IID), which together form the
duplex theory of sound localization [8], [10]. Mammalian
ears excel in sound localization, and researchers suggest that
the human hearing system still outperforms machines in vari-
ous auditory perception tasks [8]. One promising bio-inspired
approach is the use of spiking neural networks (SNNs) that
mimic the behavior of neurons in the human brain. SNNs
are highly parallel and energy-efficient models that can pro-
cess sensory information with high temporal precision and
adapt to changing environmental conditions. Notably, these
networks excel in energy reduction through event-triggering
methods, employing spike encoding strategies. In simple
terms, the spike-based coding in SNNs dictates that neurons
activate solely in response to continuous spiking trains, utiliz-
ing all-or-none pulses (spikes) for information transmission.
This coding strategy fosters sparseness in neuron activations,
further enhancing the efficiency of SNNs [9].

Two popular types of SNNs are recurrent SNNs and
reservoir SNNs. Recurrent SNNs have feedback connections
that enable them to maintain temporal information and per-
form complex computations [11]. Reservoir SNNs have fixed
random connections that create a dynamic system that can
process input signals in a nonlinear manner [12]. Both types
of SNNs have been used for SSL with promising results, but
they also face challenges in optimizing their networks and
achieving high accuracy [13], [14]. Numerous studies have
explored Spiking Neural Network (SNN)-based methods for
sound source localization, often leveraging interaural time
difference (ITD) and interaural intensity difference (IID)
cues and occasionally incorporating frequency features [15]–
[18]. Some investigations have focused on low-frequency

pure tone localization using delay lines [20], while others
extended their scope to wider frequency ranges, achieving
remarkable accuracy through medial superior olive (MSO)
neurons [21]. Furthermore, a multi-tone phase coding ITD
model demonstrated exceptional direction resolution [22],
although hardware constraints led to the development of
an energy-based method for enhanced practicality [23]. Ad-
ditionally, these studies have explored diverse bio-inspired
sound localization mechanisms, including spatiotemporal fil-
tering and spiking nonlinearity [21].

To further improve SSL accuracy and reliability, recurrent
neural networks (RNNs) have been developed for both static
and dynamic scenes, capable of localizing events in full az-
imuth and elevation under matched and unmatched acoustic
conditions, regardless of microphone arrays [24]. Addition-
ally, a neuromorphic real-time sound tracking system was
proposed, consisting of a neuromorphic auditory system with
the aim of tracking high-frequency sounds in a biologically
inspired way [25].

However, there are certain issues that arise when using
SNNs for sound localization. Representing sound data inside
the network with precise timing and providing significant
information to allow the network to learn and analyze data
accurately is a key challenge. Obtaining sufficient training
data to teach the SNN how to localize sound accurately is also
a challenge, which can be addressed by generating realistic
simulations. However, creating an environment similar to the
real world in simulations is also a challenge. Another issue
is the computation time required by the SNN to process data,
which can render it useless for certain tasks [28]. Addition-
ally, SNNs are limited to single-tone frequency analyzing
or narrow-band applications, which is another challenge that
needs to be addressed.

Overall, there are still several key issues that need to be
addressed before SNNs can be effective in real-world sound
localization problems. These range from sensor calibration
and obtaining realistic training data to data signal processing
and computation time. However, with the right expertise,
these issues can be managed successfully, allowing sound
localization problems to be addressed faster, more accurately,
and at a lower energy cost. To reduce computation costs, an
important consideration for SNNs is the size of the network.
A larger SNN may provide greater accuracy and complexity
in its output, but it also requires higher amounts of memory
and computational power [29]. To maximize the efficiency
of the SNN, optimization techniques are used to determine
the smallest network size necessary to achieve a desired
performance level [30].
The optimization of an SNN initiates with the careful selec-
tion of an architecture tailored to the specific task. Various
architectures, including recurrent and convolutional SNNs,
present distinct strengths and weaknesses. Once the archi-
tecture is chosen, adjusting inter-neuronal weights becomes
pivotal for optimizing the network size [31]. This process,
often coupled with cost measures such as neuron count or
parameter size aims to determine the most efficient network
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size. Beyond weight adjustments, optimization extends to
fine-tuning each neuron’s threshold and learning rate. The
threshold regulates neuronal activity, while the learning rate
influences the formation of new connections, which is crucial
for achieving accurate performance with minimal size [31].
The selection of an appropriate cost function is a critical
step in sizing optimization. Cost functions dictate the trade-
off between accuracy, memory usage, and computation time
[32]. Studies such as like [33] emphasize the role of proper
cost functions in enhancing noise rejection and reducing
sensitivity, offering an effective approach to optimization.
Depending on the optimization goal, an SNN may prioritize
accuracy, leading to a larger size, or opt for low memory with
reduced accuracy.
Balancing the threshold, learning rate, network weights, and
cost function constitutes a complex but vital process. This
meticulous tuning ensures the creation of an SNN with the
most suitable size and performance for the given task [34].
Neuron models proposed in [34] expedite response speed by
dynamically regulating neuron membrane conductivity based
on spiking activity and external input. Other optimization
approaches, such as adjusting firing thresholds [35] and
[36], focus on reducing latency. While numerous studies
have achieved significant advancements, challenges persist
in mitigating computation costs, selecting optimal network
sizes, and refining application-based learning laws.
Addressing the mentioned issues, this paper proposes a new
recurrent SNN architecture to detect and localize a single
sound event. The main contribution of this study is devel-
oping a self-modified architecture of SNN to SSL, in broad-
band frequency ranges. This structure uses machine learning
methods to identify the event, and then track the sound source
in a dynamic indoor environment. The reservoir structure of
the proposed SNN as a kind of recurrent Neural network
architecture is efficiently able to jointly detect and track the
sound source [29] due to taking advantage of fast learning
at low training cost and amenability to hardware implemen-
tation [30]. In this regard, this study tailors a reservoir-SNN
(rSNN) structure in order to investigate the impact of several
interconnection parameters on the performance of sound
event localization. The superiority of the newly designed
rSNN architecture can be expressed as follows:

• Integration of Energy-based and ITD cues to increase
accuracy and determine distance as well as azimuth
angle

• Addressing possible false negative azimuth angle esti-
mation in the proposed algorithm

• Self-modification of the network size and the spatial
position of the neurons

• Fusing spatial and temporal features of the proposed
rSNN to localize the sound source

In addition to comparing the proposed strategy with three
conventional and well-established methodologies, namely
Energy-Based, GCC-PHAT, and Music Algorithms, this pa-
per also scrutinizes it alongside a recent conventional STDP-

based SNN method [21], and LS-SVM [37]. This paper in-
vestigates how modifying the network size and arrangement
can speed up the convergence of the proposed rSNN for
sound source localization. This is conducted by comparing
the proposed algorithm within two fixed and dynamic struc-
tures. The paper is organized as follows: Section 2 describes
the materials and methods, Section 3 presents the proposed
novel rSNN architecture and learning algorithm, and Section
4 represents simulation results. Section 5 evaluates the role
of dynamic structure, and finally, Section 6 concludes.

II. MATERIALS AND METHODS
A. ART-RSNN ARCHITECTURE
The overall structure of the presented Art-rSNN architec-
ture consists of three modules, the input, rSNN, and the
output. Figure 1 indicates the overarching steps in the Art-
rSNN method. It reveals that the proposed sound localization
strategy is composed of five main stages, data acquisition,
encoding, input to the observed neuron, mapping received
information to the size-growing hidden network, and finding
the maximum potential neuron place as the estimation of the
sound source.

Due to the linearity of the sound physical laws, the re-
ceived sound is a linearly filtered version of the audio,
corresponding to the location of the sensors and sources, as
well as the acoustical environment. In the proposed structure,
inspired by binaural hearing, there should be considered at
least two sensors in the environment to specify the synchrony
patterns, by means of a pair of location-specific filters related
to the sensors.

Figure 1 depicts that sound is first encoded based on a
desired spike detection algorithm, here is BSA, and then both
the audio signal and the spike sequence code are input to
the proposed structure which is composed of two groups of
observed and hidden neurons. The observed neurons directly
receive data from the environment, and the hidden neurons
do not receive direct outside input and train based on the
observed neurons’ activities. In this structure, the location
of the maximum-energy hidden neuron estimates the sound
source location. As shown in Fig. 2, the first network size is
directly relevant to the number of sensors in the under-study
environment, and here we have considered that the minimum
possible sensor quantity is two. In the proposed recurrent
network, each neuron position in the initial arrangement is
matched to the locations of the sensors. Clarifying the issue,
the given figure indicates how the network grows and the new
neurons are generated. Figure 2 indicates that at the initial
state, architecture embarks on its work by the number of ob-
served neurons as same as the number of sound sensors. The
number of hidden neurons can be considered as the minimum
possible number, for example, zero. Then, in each estimation
epoch by the rSNN, a new hidden neuron will be generated
according to the estimated location of the sound source.
Then by considering the small-world technique, the role of
newly generated neurons improves the learning quality of
the proposed structure. In the new configuration, a threshold
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FIGURE 1. Main Stages and ingredients of the proposed Method

FIGURE 2. Changing the network size approach

of a minimum required energy is considered to eliminate
the neurons that receive low-power signals. This threshold
limits the networks’ connectivity. The active neighborhood
area is detected based on the neurons’ interaction criterion.
In this regard, this paper proposes a new dynamical structure
inspired by the resonance theory in neural networks. The
pipeline of the proposed methodology is illustrated in Fig. 3.
According to the given pipeline in Fig. 3, the incoming sound
signal is normalized and temporally encoded. The membrane
potential of the observed neuron is also normalized and
the weights of the rSNN are updated so that normalized
membrane potential outputs track the normalized measured
data in order to reduce energy estimation error. The ITD and
IID cues are intended between two high-potential neurons to
estimate the new position of the generated hidden neuron by
the time that the error estimation is reduced to a desired value.
At last, the location of the highest potential hidden neuron
is the final estimation of the sound source. The architecture

FIGURE 3. Art-rSNN sound localization process pipeline

of the proposed method is demonstrated in the following
figure. To extend the proposed idea in a mathematical model,
this paper uses the concept of Adaptive Resonance Theory
(ART) as a biologically plausible theory of how a brain
learns to consciously attend, learn, and recognize patterns in a
constantly changing environment. The next section develops
Art-rSNN.

B. ADAPTIVE RESONANCE THEORY
The theory states that resonance regulates learning in neural
networks with feedback (recurrence). Thus, it is more than a
neural network architecture or even a family of architectures.
Through the dynamic creation of recognition categories for
encoding distinct input samples, an ART module is capable
of self-adjusting the scale of its recognition field, in terms of
the number of committed nodes, with respect to the complex-
ity of the problem domain. Its fast commitment mechanism
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and capability of learning at a moderate speed guarantee
high efficiency. However, given a dataset, the scale of the
ART recognition field (i.e., the number of output clusters)
depends on a global threshold parameter called vigilance.
While in principle, one could control ART’s recognition rep-
resentation by fine-tuning the vigilance parameter, in prac-
tice, suggesting an appropriate vigilance value requires prior
knowledge of the scale and the distribution of the problem
data set, which is unlikely to be available [23].

In addition, while sound travels through the air, acoustic
energy is emitted omnidirectionally from the sound source.
The strength of a sound source diminishes at a rate inversely
proportional to the square of the distance. The tradition of
this algorithm is given as follows [16]:

yi(t) = ζi
S(t)

|ri − r(t)|α
+ εi(t) (1)

Equation (1) describes the relation of measured signal yi(t)
on the ith sensor with S(t) as the actual sound energy,
recorded from a 1-meter distance from the sound source.
ζi is the gain factor of the ith acoustic sensor. ri (sensor
location) and r(t) (unknown location) indicate the coordinate
of the ith sensor node and sound source at time t. Each
variable is a vector with two additional variables (when in
a two-dimensional (2-D) plane). ϵi is the measurement noise,
modeled by zero-mean Gaussian Noise. When there are m
sensor nodes, the value of α is the path loss exponent which
is considered α = 2. Regarding both deterministic and
metaheuristic algorithms, all observations from the multiple
sensors are aggregated as an estimator of r(t), where the
solution of the localization problem is the argument (pair of
coordinates) that minimizes the expression.

r̂(t) = argmin
r

m∑
i=1

1

σ2
ξi

(
yi − ζi

S(t)

|ri − r(t)|α
)2

(2)

where 1
σ2
ξi

is the variance of acoustic gain factor. The es-
timator in (2) is highly nonconvex, with singularities in
each sensor’s coordinates, several suboptimal solutions, and
saddle regions. All the enumerated features make the prob-
lem very challenging in the field of numerical optimization,
making it a good candidate in the context of regression
and ANNs. Recurrent spiking neural networks have shown
promise in addressing optimization problems due to their
ability to process spatial and temporal data effectively. The
rSNN architecture, as a type of Recurrent SNNs, leverages
SNNs and embodies a Liquid State Machine architecture,
which is instrumental in tackling complex problems [26]. In
the design and architecture of rSNNs, leaky integrate-and-
fire (LIF) neurons are often chosen as the spiking neuron
models due to their capacity to generate diverse spike patterns
with a logical time cost [27]. The membrane potential V in
the LIF neurons evolves according to a specified equation,
contributing to the adaptability and efficiency of the proposed
neural network model [27].

Incorporating the LIF model enhances the computational
capabilities of rSNNs, allowing for the representation of
intricate temporal and spatial patterns in the context of the
optimization problem under consideration [27]. The mem-
brane potential V evolves according to the equation [25]:

dVi(t)

dt
=

1

τm
(−Vi(t) + Ii(t)) (3)

Where τm denotes the membrane decaying time constant.
Ii(t) is the synaptic current.

III. PROPOSED ART-RSNN METHOD
This paper introduces a novel structure of a Liquid State
Machine (LSM), which is a type of reservoir spiking neural
network capable of generating new hidden neurons. The pro-
posed structure leverages a small-world connection strategy
to achieve its functionality. The architecture and construction
details of the LSM are inspired by the principles of reservoir
computing and spiking neural networks. The LSM consists
of randomly connected liquid layers and readout layers,
allowing for the modification of weights. This design enables
the generation of complex dynamics akin to the brain and
facilitates real-time task processing. Figure 4 indicates the
proposed architecture.

In the initial states, only m observable neurons that receive
input signals, measured signals of microphones/sensors, are
regarded. The main goal is estimating the real energy of the
signal by approximating y as the neuron output value. The
algorithm of the proposed strategy is given below and the
proof of updating weights in(5) is presented in Appendix A.

Art-rSNN Algorithm
1: Initialization:

Wij , ϕi ,τ ,A , ϵ , and τm to be the Non-Zero arbitrary
values.
Set β to a value between 0 and 1 Set Vj to random values.
Set Ij to zero value.
Set Constant Parameter, c=342

Art-rSNN Algorithm: Continue
2: update Synaptic currents:

Ii(t) = WijVj exp (−c∆ts/τ) (4)

3: Update Observed Neurons’ Weights:

∆Wij = 0.5 (tanh (yo)− tanh (Vi))
(
1− tanh (Vi)

2
)

× V j exp

(
−c

ti − tj
τ

)
(5)

4: Update Hidden Neurons’ Weights:

Wij =

{
AV je

∆tsij
τ ∆t ≥ 0, i, j ∈ Ni

0 ∆t < 0, or i, j /∈ Ni
(6)

5: Estimate Hidden neuron position:

κ =
Vi

Vj + sgn (Vj) ε
(7)
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FIGURE 4. Architecture of the proposed Art-rSNN sound localization strategy

6: Generate a New Hidden Neuron i, and Determine Its
Voltage Potential equal to the Maximum Voltage of all
Neurons:

Vi = max(V ) and Vi ≥ Vj > Vk, ε > 0 k ̸= i, j (8)

7: Calculate the distance of the new neuron From the Max-
imum Voltage Neuron:

d=

{
cκ∆tsij
1−κ if Vi ̸= Vj dij = ∥ Pos i − Posj ∥2
dij

2 else
(9)

8: Determine the location of the new neuron position:

PosVnew = PosVi +

[
d cos(θ)
d sin(θ)

]
(10)

9: Determine the sign of Azimuth angle:

f(φ) = αl(φ+ sin(φ))− αl(sgn(φ)π − 2φ)|β sin(φ)|,

αl =
dij
2c

, 0 < β < 1

(11)

θ =


cos−1

(
c∆tsij
d·dij

)
if |∆tsij − f(φ)| < |∆tsij − f(−φ)| ,

φ = cos−1
(

c∆tsij
d·dij

)
− cos−1

(
c∆tsij
d·dij

)
else

(12)
∆tij is the difference of spike time in neuron i and neuron

j, and ϵ is a constant parameter. β is 0.001. Equations (7) to
(11) describe how a new neuron is generated. κ is the ratio of
neuron potential i and j. Wij is the synaptic weight between
neurons i and j. This parameter indicates that the received
energy by neuron i how much is stronger than jth neuron. d
denotes the sound source distance from the reference neuron.
Equation (14) calculates the new position of the neuron.
f(φ) in (10) indicates if the source is located at the front or
back. Equation (11) describes the azimuth angle calculation
formula. Figure 5 indicates the graphical abstract of the

FIGURE 5. Sinusoidal relation between parameters based on time delay

proposed method. The power of the signals is considered
directly relevant to the membrane potentials of the neurons
in the proposed structure. To evaluate the performance of
the proposed method, we implement the proposed strategy
on a real database, including two omnidirectional sensor
data. The data utilized for assessing the suggested approach
was captured by the researchers within their laboratory and
subjected to pre-processing prior to being inputted into their
proposed architecture alongside other comparable method-
ologies, fairly. Then, we compare the results with several
well-known methods.

The proposed algorithm’s practicality is highlighted by its
innovative use of Spiking Neural Networks (SNNs) for event
triggering, offering an energy-efficient solution. Integrated
into a 2D spatiotemporal SNN framework, it processes sig-
nals’ magnitudes, reducing preprocessing time compared to
other techniques. While time-domain methods alone might
sacrifice accuracy, the algorithm’s swift localization strategy
excels in tracking moving sound sources, surpassing current
deep learning methods in speed. Notably, the algorithm’s re-
liance on online learning laws eliminates the need for exten-
sive datasets or pre-training. These enhancements distinctly
showcase the algorithm’s practicality and detail effectiveness
in sound source localization
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FIGURE 6. The Sound Source and Microphones arrangements and movement path of the sound source in 2D x- y axes

IV. SIMULATION RESULTS
In this section, we analyze and compare several methods of
DOA, TDOA, and IMID to localize sound sources. Python
3.10 is used to analyze the data in this study. The utilized
dataset is described in the following section.

A. DATASET

We evaluated the proposed approach on two datasets: our
recorded data and the L3DAS22 multi-channel speech en-
hancement challenge dataset. The first dataset comprises
four couples of recorded signals, including periodic noisy
clapping sounds at positions (0,0), (0,1.5), (1,1.5), and (1,2).
Two sensors are located on the ground at positions (0,0) and
(2,3). The mean of the background noise is 0.42 (W) with
a standard deviation of 5 (kW), and the signal-to-noise ratio
ranges between 5 to 8 dB. Two omnidirectional microphones
were used to record the audio. The noises are mainly gener-
ated by vehicle movements, approximately lower than 30 dB.
The area under study is 2*3 m, located in a larger 12 m² area
equipped with furniture and negligible reverberation. The
microphone’s Z-axis is zero. A sound source is considered
in this record, which moves linearly along a 2D environment.
The environment arrangement and the sound source’s x and
y movement paths are indicated in Fig.6. The second dataset
is provided by the L3DAS22 Task 2. It is split into three
subsets, consisting of 600, 150, and 150 30-second-long
audio recordings for the train, validation, and test splits,
respectively. There are 14 types of sound events selected from
the FSD50K dataset. The maximum number of overlapping
sound events is three, but here we utilized one overlapping
and 4 classes of the sound events, ‘writing, knock, Drawer
open and close, cupboard open and close’. The room impulse
response (RIR) is sampled in an office room with dimensions
around 6 m (length) by 5 m (width) by 3 m (height). FOA
microphone arrays are placed in the center of the room, with

the position of the FOA microphone arrays set to be the origin
of the coordinates. The signals recorded in a real environment
are depicted in Fig. 8. Real datasets are typically favored over
synthetic datasets due to their broader range of inputs and
improved representation of real-world scenarios. Despite the
benefits of artificial datasets, including the ability to generate
large training datasets without manual data labeling and the
alleviation of privacy concerns, the techniques employed to
train with synthesized datasets may not be equipped to handle
the uncertainties inherent in real environments. Additionally,
synthetic data is difficult to validate for its accuracy, and
it does not copy the original content exactly [38], [39] As
shown in Fig. 7, Signal Noise Ratio (SNR) is low, and there
is background noise in both recorded signals; So, filtering
is necessary to clean the data. The first 10 seconds of the
recorded signals include only a single clap hand audio signal
in position (0,1). We use a band-pass filter to remove the
background noise of the recorded audio. The utilized filter
is Butterworth, 5 degrees with bandpass 400 Hz – 1000 Hz.
Figure 8 reveals 1-second filtered signals, recorded by two
sensors 1 and 2.

V. EVALUATION OF THE ROLE OF DYNAMIC
STRUCTURE IN RSNNS

In this section, the performance of an RSNN is evaluated
with two different real sample data in an environment. Sound
sources are respectively recorded at (0,1.5) and (1,1.5), con-
sidering the location of Mic2, namely (0,0) as the reference
node. Figure 9 (a,b,c) depicts the proposed architecture how
localizes a sound source, located at (1,1.5). In the fixed
structure, hidden neurons are randomly arranged, and the
location of the neuron with the higher membrane potential
is considered as the best estimation of sound sources. With
the aim of integrating spatial data, instead of a mere time
difference cue, the STDP updating law is modified according
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FIGURE 7. Recorded Raw signals by microphones 1 and 2 which are
respectively located at (2,3) and (0,0). The upper figure is the recorded signal
by microphone 1 and the lower figure indicates the recorded signal by
microphone 2

FIGURE 8. Filtered signals, in the upper figure, signal1 is recorded at
position(2,3) and the lower figure indicates the signals which are recorded at
(0,0). The signals are filtered by a Butterworth band pass filter. 1 second of the
recorded signal is depicted

to the following equation.

wij(t) = AVj e
−
(

dij
c0

)
, c0 > 0, A > 0 (13)

VI. EVALUATION OF THE ROLE OF DYNAMIC
STRUCTURE IN RSNNS
In this section, we analyze the performance of an RSNN
with a fixed and dynamic structure. The tuning law is chosen
based on the acoustic velocity in the environment. A sample
arrangement of the fixed structure RSNN is indicated in Fig.
11.

As shown in Fig. 11 hidden neurons are considered as
well as two I/O neurons. Received energy is predicted by

TABLE 1. Network Parameters

ParameterValue
τ 0.01
A 100
Train 70%
Test 30%
c0 342

the observed neurons, which the relevant Mean Square Error
(MSE) is illustrated in Fig. 12. Figures 12, and 13 illustrate
that the calculated MSE converges to a specific value which
denotes that the proposed estimator is biased; therefore,
we should have normalized the input, properly to have an
unbiased estimation. Although MSE quickly converges to its
steady-state value, this question still arises what happens if
the number of hidden neurons increases? To respond to this
question, we raise the number of hidden neurons to 100.

Figure 13 indicates the MSE of sound energy prediction
by the 100 hidden neurons. Higher convergence speed is
clearly detectable in Fig.13; however, utilizing the time-
process function of the time library in Python 3.10 indicates
a logarithmical increase of computational time cost from
approximately 0.024 to 0.079 seconds at each iteration in
the same processor. Calculating the processing time of the
first fixed structure and the second larger structure indicates
that although the iteration numbers of the smaller network are
higher, the incremental time process of the smaller network
is not significantly much more than the larger one, while
their accuracy is almost the same. Therefore, knowing how
much we can increase the network size can reduce computa-
tional costs. So comparing the computational time cost and
convergence speed of fixed and dynamic structures, figures
11, 12, and 13 indicate that although the computational cost
of the proposed strategy is not much lower than the fixed
one with 10 hidden neurons, possibly due to integrating the
ART section computation costs to the ART-SNN method, the
precision of sound localization has increased. The simulated
network parameters are given in Table 1.

We compare some well- and conventional SSL algo-
rithms, namely known energy-based, MUSIC, GCC-PHAT,
LS-SVM, and conventional SNN, to better understand their
performance in at least 5 sample examples. Table 2 compares
the proposed method with two conventional sound localizing
methods for sound source steady-state error averages and
the standard deviations for the four mentioned recorded
data. The given Table 2 indicates the superiority of the
proposed method in localizing the sound source with only
two sensors in comparison to both SNN-based and non-SNN-
based approaches. Furthermore, it seems that sensitivity to
the sensors’ arrangements in both MUSIC and GCC-PHAT
algorithms should have triggered the higher error in sound
localizing.

To assess our proposed method on the L3DAS22 dataset,
we employed two key metrics: Accuracy and Mean Error
at 20 degrees (ER20). The results are visually presented in
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FIGURE 9. a) Tracking high potential neuron position progress in the environment, b) x-time sample data of the neuron position, created by the proposed dynamic
architecture, c) y-time sample data of the neuron position, created by the proposed dynamic architecture- Sound Source (green square) is located at (1,1.5)

TABLE 2. Comparison of SSL algorithms on the recorded data

Item MAE(deg) MDE(m) SD RT
Energy-Based - (0.7 to 4) 1.2 (m) Yes

MUSIC 33 - 15(deg) No
GCC-PHAT 27 - 12.02(deg) No

LS-SVM 15 - 10 (deg) No
Conventional SNN 15 - 15(deg) Yes

Fixed-rSNN 7.28 0.42 0.5(m) Yes
ART-rSNN 3.4 0.38 0.322(m) Yes

MAE: Mean of Direction Angle Error of Estimation
MDE: Mean of Distance Error of Estimation

SD: Standard Deviation of Error of Estimation
RT: Real-Time Applicability of the methods.

Fig. 14. Accuracy, calculated as the percentage of correct
predictions among the total, serves as a comprehensive indi-
cator of the system’s overall performance. A higher accuracy
percentage signifies better alignment between predicted and
true sound source locations. The accompanying chart also
illustrates the Mean Error at 20 degrees, providing insights
into the average angular deviation between predicted and true
angles. This metric offers a nuanced evaluation, emphasizing
the system’s accuracy specifically at the critical angle of 20
degrees. The bar chart collectively provides a comprehen-
sive view of our sound localization system’s effectiveness,
facilitating interpretation and comparison under various con-
ditions.
In Fig. 14, we present a comparative analysis of sound
localization results achieved by the CRNN, ART-rSNN,
ResNet-Conformer, and SRP-PHAT methods. The plot show-
cases the mean error at 20 degrees for each method and

their corresponding accuracy values. Notably, our proposed
method, ART-rSNN, exhibits a lower mean error at 20 de-
grees compared to the other methods, indicating superior
performance in terms of localization precision. The accuracy
of our method stands out, showing results nearly identical
to CRNN, with only a marginal 0.01 decrease in accuracy
compared to CRNN. Furthermore, our method outperforms
ResNet-Conformer and SRP-PHAT in accuracy.

These outcomes affirm the efficacy of incorporating Mag
features in the L3DASS dataset for sound localization.
Specifically, our method achieves an accuracy of 69.8%,
slightly below the 70.3% accuracy achieved by CRNN, while
maintaining a notable advantage in computational efficiency.
The proposed ART-rSNN method demonstrates a calculation
time, approximately one-tenth that of deep learning methods
like CRNN and ResNet-Conformer. This significant reduc-
tion in computation time not only attests to the computational
efficiency of our approach but also positions it as a promising
solution for real-time applications where speed is crucial.
In summary, the results presented in Fig. 9 underscore the
favorable trade-off between accuracy and computational effi-
ciency offered by our ART-rSNN method when compared to
existing state-of-the-art techniques in sound localization.

VII. CONCLUSION
This paper proposes a new rSNN architecture with a dy-
namic network arrangement that can modify network size to
increase the performance of compromise between accuracy
and network structure. The proposed network initializes by
the possible smallest size and grows gradually based on the
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FIGURE 10. a) Tracking high potential neuron position progress in the environment, b) x-time sample data of the neuron position, created by the proposed dynamic
architecture, c) y-time sample data of the neuron position, created by the proposed dynamic architecture- Sound Source (green square) is located at (0,1.5)

FIGURE 11. Fixed Neuron arrangement with 10 hidden and 2 I/O neurons
(located at (0,0) and (2,3))

error of estimation. The proposed system works based on the
encoding procedure’s threshold to provide an event trigger-
based approach. These features can enhance the ability of
the new architecture to be utilized in event-trigger sound
source localization so that the neurons in different positions
are activated based on the target path trajectory. The pro-
posed method is investigated by a fixed structure network
and four other conventional algorithms: Energy–Based by
Normal and random search distribution strategy and GCC-
PHAT, MUSIC algorithms, and a conventional STDP-based

FIGURE 12. Sound Energy Prediction MSE, calculated by the fixed structure
RSNN. The Y-axis indicates MSE amplitude and the X-axis represents the
iteration number

SNN and LS-SVM. Results indicate that the proposed ART-
rSNN method is able to converge to the target location in
a few iteration numbers with a higher estimation accuracy
rather than the fixed structure SNNs and the other classic
methods. Furthermore, in our comprehensive evaluation of
the L3DAS22 dataset for 2D sound source localization, a
comparative analysis with CRNN, ResNet-Conformer, and
SRP-PHAT reveals the superior performance of the proposed
ART-rSNN method. Despite the higher speed of our approach
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FIGURE 13. MSE of Sound Energy prediction Fixed Structure RSNN method
with 100 hidden neurons. The Y-axis indicates MSE amplitude and the X-axis
represents the iteration number

FIGURE 14. Mean Error and Accuracy Comparison on L3DAS22 in 2D Sound
Source Localization Task

compared to state-of-the-art deep learning methods, our sys-
tem exhibits lower mean error and nearly identical accuracy.
These results underscore the efficiency of our system in
achieving precise sound source localization with reduced
computational demands.

While these findings demonstrate the efficacy of the pro-
posed method, it is essential to address challenges asso-
ciated with high-speed moving sound sources in real-time
implementations. Future research endeavors could focus on
refining the architecture to effectively handle multiple sound
sources, broadening the applicability of the proposed neu-
ral network beyond single-source localization scenarios. In
conclusion, the proposed ART-rSNN architecture exhibits
promising capabilities, marking a significant advancement
in sound source localization techniques, particularly in the
context of 2D localization on the L3DAS22 dataset, where
it outshines deep learning counterparts in both speed and

accuracy.

VIII. APPENDIX
To prove an updating law for a supervised learning strategy
for LIF neurons, we start with a cost function based on the
error of energy estimation from normalized recorded sound
signal power inputs and normalized membrane voltage of
LIF neurons. The weights are then updated based on this
cost function. The proof will involve demonstrating that the
updating law leads to a decrease in the cost function over
time, indicating that the network is learning to estimate the
energy of the sound signal more accurately. Let’s consider
the cost function as follows:

J =
1

2
ETE

E =
(
tanh

(
ysN×1

)
− tanh

(
VoN×1

))
N×1

Vo: Observed Neuron

(14)

Equation (13) describes the square error on normalized en-
ergy estimation, and the concept of energy-based methods
is integrated into ITD via the formula provided in the text.
However, the search results do not provide any additional
information on ITD or how it is related to the cost function
and energy estimation :

V = exp (−c∆ts/τ) I → (15)

I =
1− c

τ
exp (−c∆ts/τ)V → I = Wij exp (−c∆ts/τ)V

(16)
c: sound speed

∆ts = input spike time - neuron spike time (17)

where Wij is the synaptic weight between neurons i and j
and updated based on Spike Time Dependent Plasticity (ST
DP) laws for hidden neurons: ST DP:

Wij =

{
AVje

∆tsij
τ ∆t ≥ 0, i, j ∈ Ni

0 ∆t < 0, or i, j /∈ Ni
(18)

,

∆ts = ti − tj

Where ti and tj are spike times of the ith and jth neurons,
respectively. Ni is the Neighbourhood of the neurons in the
small word connections, A is the maximum synaptic weight,
∆t = ti − tj is the spike time difference, and τ is the time
constant. τ is the time constant of synaptic plasticity law.
Our proposed methodology is rooted in an energy-based
framework, with a central focus on the manipulation of
Leaky Integrate-and-Fire (LIF) neuron voltages, which play a
pivotal role in our approach. To facilitate comprehension, we
draw an analogy between the behavior of observed neurons
and input-output (I/O) entities, akin to the functionality of
loudspeakers. This analogy is substantiated by the inherent
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resemblance between the LIF neuron model and the dual
loudspeaker lumped model.

In the context of our algorithm, the behavior of the LIF
neuron aligns seamlessly with the dual circuit of a loud-
speaker’s lumped element model. Specifically, the equation
representing the lumped model of a loudspeaker captures
the dynamics of the electrical circuit, reflecting the LIF
neuron’s ability to adjust its voltage in response to incoming
signals. This logical connection between the LIF model and
the dual loudspeaker lumped model forms the foundation
of our energy-based framework. Neuron Voltage adjustment,
akin to tuning a loudspeaker, facilitates dynamic adaptation
to signals. Our energy-based law systematically enhances
simulation by tuning LIF neuron parameters, crucial for
optimizing the algorithm’s performance.

To calculate the error boundary on the evaluated dataset,
we integrate principles from the loudspeaker lumped model.
This serves as a reference for analyzing spatial characteristics
and quantifying the maximum error in distance estimation,
providing insights into the algorithm’s spatial accuracy.

Lc
di

dt
+Ri+Bl · dx

dt
= E(t) (19)

,

V +
R

C

dV

dt
+Bl · dx

dt
= E(t) (20)

R
C

dV
dt = −Bl · dx

dt
+ E(t)︸ ︷︷ ︸

I

= −V + I → LIF Model

and I ∝ Sound Energy

I = τ
dV

dt
+V → V = k ·e∆t

τ ·I → I = W ·V ·e−∆t
τ (21)

ysound_Energy =
S

|d− ds|2
+ ε ≈ S

|d|2
= W · V · e−∆t

τ

Taylor Expansion:{
e−

∆t
τ = 1/ exp

(
∆t
τ

)}
≈ 1

1+∆t
τ + 1

2 (
∆t
τ )

2 ≈ 1
d2

if 1
τ = sound wave speed = c → we expect that c∆t ≈ d

in the best ∆t calculation, (TDOA) Under this assumption,
the Error boundary is calculated as follows:

|Er| :
∣∣∣∣d2 − 1

2

(
d2 + 2d+ 2

)∣∣∣∣ = ∣∣∣∣12 (
d2 − 2d− 2

)∣∣∣∣ (22)

= 1
2

∣∣(d− 1)2 − 3
∣∣

According to our dataset, the maximum of d is 3, So:

|Er| ≤ 0.5 (23)

After calculating the error boundary, which was found to
be 0.5 meters in our evaluation, we gained valuable in-
sights into the spatial accuracy of our proposed algorithm on

the L3DAS22 dataset. This measure signifies the maximum
allowable deviation between the estimated and actual dis-
tances, providing a critical metric for assessing the reliability
of our method. The demonstrated accuracy reinforces the
robustness of our algorithm and its potential applicability in
real-world scenarios where precise sound source localization
is essential.
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