
 1

The Computation of the Mean First Passage Times for Markov Chains

Jeffrey J. Hunter1

Department Mathematical Sciences
School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology,

Private Bag 92006, Auckland 1142, New Zealand

ArXiv.com version 30 December 2016

Abstract

A survey of a variety of computational procedures for finding the mean first passage
times in Markov chains is presented. The author recently developed a new accurate
computational technique, an Extended GTH Procedure, Hunter (Special Matrices,
2016) similar to that developed by Kohlas (Zeit. fur Oper. Res., 1986). In addition,
the author has recently developed a variety of new perturbation techniques for finding
key properties of Markov chains including finding the mean first passage times, Hunter
(Linear Algebra and its Applications, 2016). These recently developed procedures are
compared with other procedures including the standard matrix inversion technique
using the fundamental matrix (Kemeny and Snell, 1960), some simple generalized
matrix inverse techniques developed by Hunter (Asia Pacific J. Oper. Res., 2007),
and the FUND technique (with some modifications) of Heyman (SIAM J Matrix Anal.
and Appl., 1995). MatLab is used to compute errors when the techniques are used on
some test problems that have been used in the literature. A preference for the accurate
procedure of the author is exhibited.

AMS classification: 15A09; 15B51; 60J10

Keywords: Markov chain; stochastic matrix, moments of first passage times, generalized matrix inverses

1. Introduction

In Markov chain (MC) theory mean first passage times (MFPTs) provide significant
information regarding the short term behaviour of the MC. A review of MFPTs, together
with details regarding stationary distributions and the group inverse of the Markovian
kernel, is given in [18].
We refer the reader to this aforementioned article as it provides the relevant background
to this paper and enables us to avoid repetition of the material. In Hunter [18], which

1 E-mail address: jeffrey.hunter@aut.ac.nz

 2

focuses on computational techniques for the key properties of irreducible MCs using
perturbation techniques, we commented that in a sequel paper we would consider a
variety of other techniques to get a better impression as to whether perturbation
procedures may in fact prove to be suitable alternatives. We address these issues in this
paper.

We firstly however set the scene by reintroducing the notation that was used in [18].

Let {Xn, n ≥ 0} be a finite MC with state space S = {1, 2, …, m} and transition matrix P =
[pij], where pij = P{Xn = j | Xn-1 = i} for all i, j ∈ S.

The stationary distribution {πj}, (1 ≤ j ≤ m), exists and is unique for all irreducible MCs,
that πj > 0 for all j, and satisfies the equations (the stationary equations)
 π j = π ii=1

m∑ pij with π ji=1

m∑ = 1. (1.1)
If πT ≡ (π1, π2,…, πm), the stationary probability vector, and e is a column vector of 1’s,
the stationary equations (1.1) can be expressed as

 π
T (I − P) = 0T , with π

T e = 1 . (1.2)
Let []0min 1, |ij nT n X j X i= ≥ = = be the first passage time from state i to state j (first

return when i = j) and define 0|ij ijm E T X i⎡ ⎤= =⎣ ⎦ as the MFPT from state i to state j (or
mean recurrence time of state i when i = j). For finite irreducible MCs all the mij are well
defined and finite. Let M = [mij] be the MFPT matrix. Letδ ij = 1,when i = j and 0, when

i ≠ j. Let Md = δ ijmij⎡⎣ ⎤⎦ be the diagonal matrix formed from the diagonal elements of M,
and E = [1] (i.e. all the elements are unity).

It is well known ([19]) that, for 1 ≤ i, j ≤ m,
 mij = 1+ pikk≠ j∑ mkj . (1.3)

In particular, for all j ∈ S, the mean recurrence time of state j is given by
 mjj = 1 π j . (1.4)
From (1.3) and (1.4) it follows that M satisfies the matrix equation

 (I – P)M = E – PMd , with Md = Πd()−1 . (1.5)

Note that the expression (1.5) typically involves knowledge of Πd, i.e. the stationary
probabilities. In this paper we are not focussing on the computation of stationary
distributions but when we require such terms when they are not explicitly derived in
carrying out the computations for M, we typically use the GTH algorithm of Grassman,
Taksar and Heyman [3], (or equivalently the State Reduction procedure of Sheskin [23]),
as these are known to give accurate results with no subtractions being involved. There are
however other alternative procedures that could be used, for example the eig procedure of
MatLab.

 3

In this paper we provide twelve procedures for solving, in effect, equations (1.3) or (1.5),
for the MFPTs. In Section 2 we give some direct procedures (Procedures 1 and 2) based
upon utilising matrix inverses. In Section 3 we summarise the six perturbation procedures
(Procedures 3 to 8), given by Hunter in [18]. In Section 4 we outline the extended GTH
procedure (EGTH) of Hunter [17] based upon Kohlas [20] (Procedure 9), while in
Section 5 we outline the FUND procedure of Heyman [7] which we modify to simpler
procedures that enables us to find the MFPTs without directly computing the fundamental
matrix, to yield Procedures 10, 11 and 12.

In the final section, utilising the test problems used initially by Harrod and Plemmons
([5]) in comparing different techniques for computing the stationary probabilities, we use
MatLab computations to compare errors, typically the maximum absolute errors, the
overall residual errors in our computations, in both single and double precision, and the
number additional accurate digits achieved with double precision over single precision.
This leads to the conclusion that the Hunter EGTH Procedure ([17]) generally gives us
the most accurate results. Such a procedure is much more accurate than any of the
perturbation procedures.

Section 2: Computation of MFPTs using matrix inverses

If A is an m × m matrix of real elements and X is any m × m matrix that satisfies the
condition AXA = A, then X is said to be a one-condition generalised matrix inverse, a g-
inverse, of A, and is often written as A− . If A is non-singular then A− = A−1 .

All g-inverses of I – P can be expressed in terms utilising matrix inverses, as pioneered
by Hunter [11]. The general result is as follows:

Theorem 2.1: Let P be the transition matrix of a finite irreducible Markov chain with m
states and stationary probability vector π

T = (π1, π2, …, πm). Let eΤ = (1, 1, …, 1) and t
and u be any vectors.
(a) I − P + tuT is non-singular if and only if π

T t ≠ 0 and u
T e ≠ 0.

(b) If π
T t ≠ 0 and u

T e ≠ 0 then [I − P + tuT]−1 is a one-condition g-inverse of I – P.
(c) All one-condition g-inverses of I – P can be expressed as
 A

− = [I − P + tuT]−1 + ef T + gπ T for arbitrary vectors f and g.
!

Well-known special g-inverses of I – P are Kemeny and Snell’s fundamental matrix
Z = [I − P +Π]−1 where Π = eπT, introduced in [19], (and initially shown to be a g-
inverse of I – P by Hunter ([10])) and Meyer’s group inverse of I – P given by A# = Z –
Π , ([21]). (A#, is more restrictive than a simple g-inverse in that it is the unique g-inverse
that satisfies, (I – P)A# = A#(I – P) = I – eπT, A#e = 0 and πTA# = 0T where A = I – P.

The reason we introduce g-inverses is that one condition g-inverses of I – P are typically
used to solve systems of linear equations involving I – P (as in (1.2) and (1.5)), and are
hence called “equation solving” g-inverses.

 4

Specialising to the equations of the form (1.5) to be solved for MFPTs, we have the
following general result, (see [11],[12]):

Theorem 2.2: Let A and B be given m × m matrices, and X is an unknown m × m
matrix.
A necessary and sufficient condition for AX = B to have a solution is that
AA-B = B. If this consistency condition is satisfied the general solution is given by
 X = A-B + W - A-AW, where W is an arbitrary matrix. (2.1)

!

Solving the equations given by (1.5), using Theorems 2.1 and 2.2, yield the following
general results for finding the MFPTs of MCs (see [11], [12] for (a) and [16] for (b) and
(c)):

Theorem 2.3:
(a) If G is any g-inverse of I – P, then the MFPT matrix M, is given as
 M = [GΠ – E(GΠ)d + I – G + EGd]D, (2.2)
where D = (Πd)

−1 = (eπ T)d⎡⎣ ⎤⎦
−1
.

(b) If H ≡ G(I –Π) then H is a g-inverse of I – P with He = 0 and
 M = [I – H + EHd]D. (2.3)
(c) Ge = ge for some g if and only if
 M = [I – G + EGd]D. (2.4)

!
Special cases of (2.4) for M are G = Z and G = A#.

Note that the implementation of Theorem 2.3 typically requires prior calculation of the
stationary probability vector π T . It is well known that the most accurate procedure for
finding the stationary probabilities is the GTH algorithm, ([3]). See Section 4 for the
details.

Theorem 2.3 above leads to the following two procedures.

Procedure 1: (Standard method)
Given an irreducible P
(i) Compute the stationary probability vector πT.
(ii) Compute the fundamental matrix Z = [I − P + eπ T]−1 .
(iii) Compute M = [I – Z + EZd][(eπ)d]-1 .

This is the original procedure developed by Kemeny and Snell ([19]) and has been
universally used in the past. It, of course, suffers from the requirement to compute a
matrix inverse that can lead to significant inaccuracy, (see (8], [18]). As identified above,

 5

prior to computing Z, the stationary probability vector πT is required. We use the GTH
algorithm to compute πT.

Hunter ([15]) established a number of results regarding expressions for the MFPTs using
a range of simple matrix inverses of the form given in Theorem 2.1, (typically with f and
g taken as zero vectors.) The simplest result is given as follows.

Procedure 2: (Simple method)
Given an irreducible P
(i) Compute the g-inverse G = I − P + eeb

T⎡⎣ ⎤⎦
−1

 where eb
T

 is a vector with 1 in the b-th
position and 0 elsewhere.
(ii) Compute, π T = Geb

T so that if G = [gij] then π j = gbj , j = 1,2, ...,m.
(iii) Compute M = [I – G + EGd][(eπΤ)d]-1 .

Thus following one matrix inversion (actually only the b-th row, typically the first row,
for the stationary distribution), one can find the stationary probabilities and the mean first
passage times. The choice of b is arbitrary. We take b = 1 in our test examples (in
Section 6).

As the above two procedures both require the evaluation of matrix inverses we do not
expect them to perform well in examples where we have either a large number of states
or ill-conditioned matrices. One way to expedite the calculations is to consider using a
perturbation technique that in effect carries out the required computations sequentially,
row by row. We consider that in the next section.

Section 3: Computation of MFPTs using perturbation procedures

The general idea behind the perturbation procedures, which are considered in detail in
Hunter [18], is the following. Start with a simple transition matrix P0 with known or
easily computed stationary probability vector π 0

T , mean first passage time matrix M0 and
a simple g-inverse G0 or easily computed fundamental matrix Z0 or group inverse A0

.
Then sequentially change the transition matrix P0 by replacing the i-th row of P0 with the
i-th row of the given transition matrix P (i.e. pi

T = ei
T P) (i = 1, 2, …, m) to obtain Pi

ending up with Pm = P. Thus, as in [18], letP0 = eii=1

m∑ p(0)i
T so that if P = eii=1

m∑ pi
T then

Pi = Pi−1 + eibi
T with bi

T = pi
T − p(0)i

T , for i = 1, 2, …, m. Thus we update π i−1
T , Mi−1, and

Gi−1 (or Zi−1, Ai−1
) to π i

T , Mi , and Gi (or Zi , Ai
) finishing with π T = π m

T , M = Mm and
G = Gm , (or Z = Zm, A# = Am

).
The simplest structure to start with is the irreducible transition matrix P0 = ee

T m . This
also ensures that each subsequent updated transition matrix is also irreducible. Thus
p0(i)
T = eT m, π 0

T = eT m, Z0 = I , A0
= I − eeT m, and M 0 = mee

T .

 6

The successive updates effectively make use of the Sherman- Morrison (1949) formula,
([22]), for computing matrix inverses:

If A is invertible, then (A + uvT)−1 = A−1 − 1
1+ vT A−1u

A−1uvT A−1 .

In particular, [I − ahT]−1 = I + (1 1− hTa)ahT , when hTa ≠ 1.

We do not give the details as the results are derived in [18].

The first perturbation procedure was an extension to the procedure of Hunter (1991)
([14]) updating a one-condition generalized inverse to find successive stationary
probability vectors, leading to computation of the MFPT matrix. Let Gi = [I − Pi + tiui

T]−1 .
We update the g-inverse Gi-1 to Gi successively with t0 = e , u0

T = eT m with G0 =
[I − P0 + t0u0

T]−1 = I . We use Theorem 2.3(b) above as this eliminates the requirement to
find the group inverse but utilises the structure of H, a particular g-inverse of I – P. This
is Algorithm 1 in [18].

Procedure 3: (G-inverse update – Pert AL1)

(i) Let G0 = I , u0
T = eT m .

(ii) For i = 1, 2, ...,m, let pi
T = ei

T P, ui
T = ui−1

T + pi
T − eT m ,

 Gi = Gi−1 +Gi−1(ei−1 − ei)(ui−1
T Gi−1 ui−1

T Gi−1ei).

(iii) At i = m, let Gm = G and π T = π m
T = um

TGm

um
TGme

.

(iv) Compute H = G(I − eπ T).

(vi) Compute M = [I − H + E(diag(H))]D where

 E = [1] and D = inv[diag(eπ T)].

For the next procedure we consider an extension to Procedure 3 through updating using
matrix procedures that yield, in tandem at each step, the stationary probability vectors
and the group inverses. This is Algorithm 2 in [18].

Procedure 4: (Group inverse update – Pert AL2)
Start with P.
(i) Set R0 = I − ee

T m .
(ii) For i = 1, 2, …, m, let pi

T = ei
T P, bi

T = pi
T − eT m ,

Ri = Ri−1 +

1
1− bi

T Ri−1ei

Ri−1eibi
T Ri−1.

(iii) Compute π
T = e1

T − e1
T (I − P)Rm .

(iv) Compute M = [I − Rm + E(diag(Rm))]D, where E = [1] and D = inv[diag(eπ T)].

 7

Some simplifications to this algorithm are
possible, as not all the calculations are required. In (ii) note that Ri = Ri−1 I +Ci(),where
Ci = 1 ki()eibiT Ri−1 and ki = 1− bi

T Ri−1ei implying that Ci has all terms zero except terms in
the ith row. So that at the ith recursion the only terms that are updated are in the first i
rows with the rows numbered i+1, i+2, …, m remaining unchanged.

Rather than carry out the updating by stationary probability vectors we can use a
procedure based on updating the limiting matrix Π = eπ T and the group inverse A# by
matrix operations rather than by row operations.

Under a perturbation Ε when π
T leads to π

T = (π T (I − Ε A#)−1) , if Π = eπ T and

 Π = eπ
T

 then Π =Π (I − Ε A#)−1.

Now under the perturbation Ε = eibi
Tto the i-th row with bi

T e = 0, yields,

Π =Π I + 1

1− bi
T A#ei

eib
T A#⎡

⎣
⎢

⎤

⎦
⎥

and

A

#
= (I −Π)A# I + 1

1− bi
T A#ei

eibi
T A#⎛

⎝⎜
⎞

⎠⎟
.

This leads to the following procedure. (For more details see Algorithm 3 in [18]).

Procedure 5: (Group inverse by matrix updating – Pert AL3)

 (i) Let P0 = ee
T m , implying Π0 = ee

T m , A0
= I − eeT m .

(ii) For i = 1, 2, ...,m, let pi
T = ei

T P, bi
T = pi

T − eT m ,

 Si = I +
1

1− bi
T Ai−1

ei
eibi

T Ai−1
, Πi =Πi−1Si , Ai

= (I − Πi)A
#
i−1Si .

(iii) At i = m, let S = Sm then Π =Πm−1S, A# = (I −Π)Am−1
S.

(iv) Compute M = [I − A# + EAd
]D, where E = [1] and D = (Πd)−1.

We now give three interrelated procedures, each with different starting conditions, based
on updating simple generalised inverses of I – P0 that lead to simple computations for the
stationary probabilities, the group inverse and the mean first passage time matrix.

From Theorem 2.3(c)), if we choose a g-inverse G of I – P with the property that Ge =
ge, by taking G of the form G = [I − P + eβ T]−1 , then we have expressions for π T that are
given as π

T = β T [I − P + eβ T]−1 . Further we have a simple form of the MFPT matrix M
given by eqn. (2.3). While it is easy to find an expression for the group inverse of I – P
as A# = (I − eπ T)G we don’t actually require that step to find expressions for M.

In Hunter [15] we explored the properties of some generalized inverses of this form. For
the three procedures to follow we use, successively, the special forms,

 8

Ge ≡ I − P + ee
T

m
⎡

⎣
⎢

⎤

⎦
⎥

−1

, Ge1 ≡ [I − P + ee1
T]−1 and Gee ≡ [I − P + eeT]−1 , and the Sherman-

Morrison matrix inversion formula ([22]). The starting conditions for each procedure are
different and, although we carry out similar recursions, we have different expressions for
the stationary probability vector πT but identical calculation procedures for the MFPT
matrices. Once again the reader is referred to [18] for full details.

This leads to three further algorithms – Algorithms 4A, 4B, and 4C in [18]. They are all
variants of the generic recursion given by (ii) with identical steps (iv) and (v) as in
Procedure 6.

Procedure 6: (Update using Ge - Pert AL4A)
(i) Start with K0 = I .

(ii) For i = 1, 2, ...,m, let pi
T = ei

T P, bi
T = pi

T − eT m ,

 Ki = Ki−1 I +Ci(),where ki = 1− bi
T Ki−1ei and Ci =

1
ki
eibi

T Ki−1.

(iii) At i = m, let K = Km and then compute π T = 1
m
eTK

Procedure 7: (Update using Ge1 - Pert AL4B)

(i) Start with K0 = I + e
eT

m
− e1

T⎛
⎝⎜

⎞
⎠⎟

.

(ii) Carry out Step (ii) of Procedure 6.
(iii) At i = m, let K = Km and then compute π T = e1

TK .

(iv) Carry out Step (iv) of Procedure 6, to compute M.

Procedure 8: (Update using Gee – Pert AL4C)

(i) Start with K0 = I −
m −1
m2

⎛
⎝⎜

⎞
⎠⎟ ee

T .

(ii) Carry out Step (ii) of Procedure 6.
(iii) At i = m, let K = Km and then compute π T = eTK .

(iv) Carry out step (iv) of Procedure 6, to compute M.

Section 4: Computation of MFPTs using Hunter Extended GTH (EGTH) procedure

The details of this EGTH procedure are given in Hunter [17] to which the reader is
referred. We make use of the GTH procedure of Grassman, Taksar and Heyman ([3]) (or
the equivalent state reduction procedure by Sheskin ([23]) for finding the stationary
probability vector π . Let us provide some details that serves to introduce some additional
notation.

(iv) Compute M = [I − K + EKd]D, where E = [1] and D = (Πd)−1.

 9

We start with the given transition matrix P (= P(m)) of the irreducible MC {Xk

(m),k ≥ 0}
with state space S = {1,2,…, m} = Sm. The general idea is to reduce the state space, one
state at a time successively removing states m – 1, m- 2, … until we are left with a single
state 1. Once state 1 is reached the state space is expanded one state at a time i.e. insert
states 2, …, to finally insert state m.

Suppose we reach the stage where we have n states Sn = {1, 2, …n} with MC
{Xk

(n),k ≥ 0} and transition matrix P(n), then it is easily shown during the state reduction
process that the elements of P(n−1) = pij

(n−1)⎡⎣ ⎤⎦ are related as

pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
, 1≤ i ≤ n −1, 1≤ j ≤ n −1, (4.1)

where S(n) = 1− pnn
(n) = pnj

(n)
j−1

n−1∑ . Note that the transition probabilities of the reduced MC

can all be obtained without carrying out any subtraction. The MC {Xk
(n−1),k ≥ 0} on the

reduced state space, Sn-1 is the “censored” MC (see [2]), i.e. the MC restricted to the states
of Sn-1. Further the irreducibility of the reduced state MC is retained. One can derive
relationships between the stationary distributions of the respective MCs, {π i

(n),i ∈Sn} for
{Xk

(N),k ≥ 0}. In particular, it can be shown

 π i
(n−1) = π i

(n)

1−π n
(n) =

π i
(n)

π k
(n)

k=1

n−1∑
, 1≤ i ≤ n −1.

Similarly when we expand the state space we can show that

 π (n) ≡ π1
(n),....,π n

(n)() = cn−1 π1
(n−1),...,π n−1

(n−1),
π i
(n−1)pin

(n)
i=1

n−1∑
S(n)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

where cn–1 is determined from the fact that π i
(n)

i=1

n∑ = 1.
From these results we have the following algorithm.

GTH Procedure for computing the stationary probabilities of a MC:
Let MC {Xk

(m),k ≥ 0} be finite irreducible MC with state space Sm = {1, 2, …, m} and
transition matrix P = P(m) = pij

(m)⎡⎣ ⎤⎦.

Let {π i

(m)}

be its stationary probabilities.

Step 1. Compute, successively for n = m, m – 1, …, , 3,

pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
, 1≤ i ≤ n −1, 1≤ j ≤ n −1 where S(n) = pnj

(n)
j=1

n−1∑ .

Step 2. Set r1=1 and compute successively for n = 2, …, m, rn = ri pin
(n)

i=1

n−1∑ S(n).

Step 3. Compute, for i = 1, 2, …, m, π i
(m) = ri rjj=1

m∑ . �

 10

In extending this algorithm to find the MFPTs, Kohlas showed ([20]) that it is more
natural to consider the process as a Markov renewal process (MRP), {(Xk

(n),Tk
(n)),k ≥ 0} ,

where {Xk
(n),k ≥ 0} is the embedded MC when the state space is Sn = {1, .., n} andTk

(n) is
time that the process stays in the state before making the next transition. Let
µi
(n) = E[Tk

(n+1) −Tk
(n) | Xk

(n) = i] be the expected holding time in state i when the state space
is Sn. When the process is censored by eliminating state n the mean holding time vector
eliminates that state and reduces to a smaller (n-1)-dimension vector as

 µ (n−1)T = (µ1
(n−1),...,µn−1

(n−1)) where µi
(n−1) = µi

(n) + pin
(n)µn

(n)

S(n)
, 1≤ i ≤ n −1.

Under the MC setting, which we assume in this paper, initially µi
(m) = 1 for all i ∈Sm . In

[17] it is shown how this influences the MFPTs showing, in particular, that

 mij =
µi

(i) + pik
(i)mkjk=1,k≠ j

i−1∑
S(i)

, 3≤ i ≤ m,1≤ j ≤ i −1, with m21 =
µ2
(2)

S(2)
, and

 mii = µi
(i) + pik

(i)mkik=1,

i−1∑ , 2 ≤ i ≤ m, with m11 = µ1
(1).

The expressions for mij , for 1≤ i ≤ m −1, i +1≤ j ≤ m are much more complicated; (see
[17]). However, by focussing primarily on the terms mi1 for 1≤ i ≤ m , i.e. the first
column of the matrix of MFPTs, we can produce a simple algorithmic procedure.

Procedure 9: (EGTH – Hunter Extended GTH Procedure)
Let {Xk

(m),k ≥ 0} be a finite irreducible MC with state space Sm = {1, 2, …, m} and
transition matrix P ≡ P(m) ≡ pij

(m)⎡⎣ ⎤⎦ .
Step 1(i): Carry out step 1 of the GTH Procedure, i.e.
Compute, successively for n = m, m–1, …, 3,

pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
, 1≤ i ≤ n −1, 1≤ j ≤ n −1 where S(n) = pnj

(n)
j=1

n−1∑ .

Step 1(ii): Compute, successively for n = m, m–1, …, , 3, 2,

µi
(n−1) = µi

(n) + µn
(n)pin

(n)

S(n)
, 1≤ i ≤ n −1, where µ (m)T = (µ1

(m),....,µm
(m)) = (1,...,1).

Step 1(iii): Compute the m ×1 column vector

wherem11 = µ1
(1), m21 =

µ2
(2)

S(2)
, and for i = 3, ,,,, m, mi1 =

µi
(i) + pik

(i)mk1k=2

i−1∑
S(i)

.

Thus, starting with P(m) ≡ P(m)(1), we can obtain the entries of the first column of M =
[mij] = mm

(1)(m),mm
(2)(m),...,mm

(m)(m)().
The procedure that follows to find the other MFPTs is to permute the state space to
Sm
(2) = {2, 3, …, m,1} and do this successively finishing up with Sm

(m) = {m, 1, 2, …m -1}.
This can be effected by permuting the elements of the transition matrix. For example, for
Sm
(2) we can do this by moving the elements of first column of P(m) to after the m-th

mm
(1)(m) = (mi1),

 11

column, followed by moving the first row to the last row, to obtain a new transition
matrix P(m)(2) . One of the easier ways to do this in MatLab is to note that
P(m)(2) (mod(row + m – 2, m) + 1, mod(col + m – 2, m) + 1) = P(m)(1) (row, col).

Step 2: For k = 2, 3, 4,…, m – 1, m.
(i) Repeat Step 1(i) with P(m) = P(m)(k).
(ii) Repeat Step 1(ii) with µ (k)(m) = µ (m) = (1,,1,..,1).
(iii) Repeat Step 1(iii) to calculate the m ×1 column vector mm

(k)(m)T =
mkk ,mk+1,k ,..mm,k ,m1,k ,...,mk+1,k().

Step 3: Combine the results of the Steps 1(iii) and 2(iii) to find M as follows.
LetM = (mm

(1)(m),mm
(2)(m),....,mm

(m)(m)) and reorder the elements of to obtain
M = (mm

(1)(m),mm
(2)(m),....,mm

(m)(m)) . This can be carried out in MatLab by noting that for each
row and column entry, M (mod(row + col − 2,m)+1,col) = M (row,col).

A key observation is that the EGTH algorithm retains calculation accuracy as no
subtractions are involved.

Further, the stationary probabilities do not need to be computed in advance and can be
found directly as inverses of the mean recurrence times. Once again, no subtraction
operation need be performed.

Section 5: Computation of MFPTs using the Heyman FUND algorithm and its
modifications
In carrying out Step 1 of the EGTH algorithm observe that the elements for pij

(n−1) in the

block upper left hand (n −1)× (n −1) corner of the transition matrix are based only on the

elements pij
(n), pin

(n), pnj
(n), 1≤ i ≤ n −1, 1≤ j ≤ n −1 . This means that we can in effect

overwrite the elements of the transition matrix that are not required in the future. At the

conclusion of the reduction process we are this left with a matrix of elements P = pij⎡⎣ ⎤⎦,

where pij =

pij
(j) = uij , 1≤ i < j ≤ m,

pii
(i) = dii , 1≤ i = j ≤ m,

pij
(i) = lij , 1≤ j < i ≤ m;

⎧

⎨
⎪⎪

⎩
⎪
⎪

so that P =U + D + L where U is strictly upper triangular, L is strictly lower triangular
and D is a diagonal matrix.

M

 12

Observe from (4.1) that pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
, 1≤ i ≤ n −1, 1≤ j ≤ n −1, so that

pij
(n−2) = pij

(n−1) +
pi,n−1

(n−1)pn−1, j
(n−1)

S(n −1)
= pij

(n) +
pin

(n)pnj
(n)

S(n)
+
pi,n−1

(n−1)pn−1, j
(n−1)

S(n −1)
, 1≤ i ≤ n − 2, 1≤ j ≤ n − 2.

It is easy to establish, by considering t = n - 3, …., t = n - k, that

pij
(t) = pij

(n) +
pik

(k)pkj
(k)

S(k)k=t+1

n∑ , 1≤ i ≤ t ≤ n −1, 1≤ j ≤ t ≤ n −1.

Since pij
(m) = pij it is easy to see that if, for k = 2, …., m, we define qkk =1/S(k),

pij
(t) = pij + uikk=t+1

m∑ qkklkj for 1≤ i ≤ t ≤ m -1, 1≤ j ≤ t ≤ m -1 with pij
(t) = pij for i = m or j = m.

 Thus P = P +U
!"
QL where Q ≡ diag(q11,q22,...,qmm). Note that at this stage q11 can be

arbitrarily defined. The first column and last row of U are empty and the first row and

column of L are also empty. Further, since S k() = pkj
(k)

j=1

k−1∑ = 1− pkk
(k),

D = diag(p11
(1), p22

(2),,..., pmm
(m)) = diag(1,1− S(2),...,1− S(m)) implying I -D = diag(0,S(2),..,S(m)).

Let S = diag(1,S(2),...,S(m)) = E11 + I − D so that D = E11 + I − S. We define q11 = 1 so

that S−1
=Q . From these results we establish the following theorem.

Theorem 5.1: For an irreducible transition matrix P, the Markovian kernel I – P can be
factored into a UL form where L is a lower triangular matrix and U is an upper triangular
matrix, i.e. I – P = UL.
In particular, if P =U + D + L is the matrix of overwritten elements of P from the GTH
algorithm, U =US −1 − I and L = L − (I − D)where S = E11 + (I − D).

Proof: From the results above
I − P = I − P +UQL = I −U − D − L +US

−1
L = I − D −U + (US

−1
− I)L

i.e. I − P = S − E11 −U + (US
−1
− I)L since S − E11 = I − D.

Now (US
−1
− I)(E11 − S) = US

−1
E11 −U − E11 + S = S − E11 −U

since (US
−1
E11 =Udiag(q11,q22,...,qmm)E11 =UE11 = 0 (since u11 = 0).

Thus I − P = US
−1
− I() L − S + E11() =UL, where

U ≡US
−1
− I is upper triangular and L ≡ L − S + E11 = L − (I − D) is lower triangular.

!
Grassman [4] first explored an UL factorisation of I – P based upon the GTH algorithm.
A version of this UL factorisation was used by Heyman [7] to produce his FUND
algorithm to compute Z, the fundamental matrix of irreducible Markov chains. The proof

 13

given above is modified, due to some arbitrariness in the choice of the Q matrix, through
a possible choice of q11.

Our choice for Q and hence forS leads to U having all the elements of its diagonal as -1
and the other elements strictly upper triangular. This leads to U having determinant (-1)m
and consequently implying the non-singularity of U. L has all the elements of its first
row as 0.

Heyman [7] uses the UL factorisation to find an expression for Z. For completeness we
incorporate the results of his Theorem 1within our Theorem 5.2 below but extend his
results and give a non-constructive proof.

Theorem 5.2: Let P be the transition matrix of an irreducible finite MC, πT its stationary
probability vector and Π = eπT.
(i) If X is any solution of

(I – P)X = I – Π, (5.1)
then X is a one-condition generalised inverse of I – P and satisfies the property that

 Xe = xe, where x is a constant. (5.2)
(ii) If X is a solution of (5.1) then A#, the group inverse of I – P, is given by

A# = (I – Π)X, (5.3)
and Z, the fundamental inverse of I – P, is given by

 Z = Π + (Ι – Π)X. (5.4)
Proof:
(i) Observe that from (5.1) and (1.2), (I – P)X(I – P) = (I – eπT)(I – P) = I – P , implying
that X is a one-condition generalised inverse of I – P. Further, from (5.1) and (1.2),
(I – P)Xe = e – eπTe = 0, implying that Xe is a right eigenvector of I – P and hence
must be a multiple of e.
(ii) From Theorem 6.3 of [11] or Corollary 4.6 of [13], if G is any g-inverse of I – P,
when P is irreducible, then (I – Π)G(I – Π) = A#. Taking G = X observe that
(I – Π)X(I – Π) = (I – Π)X – (I – Π)XeπT =(I – Π)X –xeπT + xeπTeπT = (I – Π)X leading
to (5.3). Z, the fundamental inverse of I – P, is given by Z = [I – P + Π]−1

= A# + Π = Π + (Ι – Π)X, leading to (5.4).
!

With I – P = UL, equation (5.1) can be solved in steps.
First let
 LX = Y, (5.5)
implying that
 UY = I – Π. (5.6)
We first solve, from equation (5.6), Y, uniquely, by backward substitution. In Matlab we
use the procedure Y = U\(I – Π). Note that for all j = 1, …, m, y j

(r)Te = yiji=1

m∑ = 0.

Further, from equation (5.5), since e1
T L = 0T , we have that e1

TY = 0T , and we conclude
that the first row of Y, y1

(r)T = (y11,..., y1m), consists of zero elements.

 14

Since we may take any one-condition g-inverse of I – P, we may take the first row of X as
the zero vector. Thus we may partition L, X and Y in block form as

LX =
0 0T

l1
(c) L1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0T

x1
(c) X1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0 0T

y1
(c) Y1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Y ,

implying that

L1x1

(c) = y1
(c) and L1X1 = Y1,

or equivalently L1(x1

(c),X1) = (y1
(c),Y1).

Thus if X̂ = (x1
(c),X1), Ŷ = (y1

(c),Y1), then we need to solve L1X̂ = Ŷ .

Procedure 10: (Heyman FUND Algorithm for M using Z).
1. Start with P and use the GTH algorithm to compute πT.
2. Use the decomposition of Theorem 5.1 finding P and hence U and L.
3. Solve UY = I – Π , where Π = eπT, by back substitution.
4. Solve L1X̂ = Ŷ , by forward substitution.

5. Let X = 0T

X̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

6. Compute Z = Π + (Ι – Π)X.
7. Compute M = [I – Z + EZd]D where D = Πd()−1 .

Heyman’s FUND algorithm for finding the MFPT’s can be modified by noting that
instead of computing Z one can compute the group inverse, reducing the number of
calculations required in Step 6 of Procedure 10 as follows.

Procedure 11: (Modified Heyman FUND Algorithm for M using A#).
1. Carry out steps 1 to 5 of Procedure 10.
2. Compute A# = (I – Π)X.
3. Compute M = [I – A# + EAd

]D where D = Πd()−1 .

Actually one doesn’t need to compute either Z or A# since X is a one-condition inverse
with the property that Xe = 0, (x = 0 in Theorem 5.2 (i), since X is chosen to have the first
row the zero vector) and thus from Theorem 2.3 (c) the following procedure is justified.
Note that Heyman also observed this computational benefit for finding M in the final
section of his paper, [7].

Procedure 12: (Modified Heyman FUND Algorithm for M using X).
1. Carry out steps 1 to 5 of Procedure 10.
2. Compute M = [I – X + EXd]D where D = Πd()−1 .

 15

Section 6: Computational comparisons

For our numerical computations and comparisons we coded each algorithm using MatLab
(64-bit version R2015b on a MacBook Air computer) and used various test problems,
which have previously been considered in the literature. MatLab was run in both single
and double precision to enable us to compute and compare the matrices M(S) = [mij(S)]
and M(D) = [mij(D)] for each procedure and test problem.

We use the following test problems which were introduced by Harrod & Plemmons ([5])
They were initially introduced as poorly conditioned examples for computing the
stationary distribution of the underlying irreducible MC but have been used as examples
for testing various different algorithms for computing M, the matrix of MFPTs, ([8], [9]).
While the dimensions of the state space are relatively small, the test problems lead to
some computational difficulties.

TP1: (As modified by Heyman and Reeves ([9]). The original version of TP1, given in
[5] related to a 10-state MC however it was shown, by Heyman [6], that four of the states
were in fact transient and the irreducible sub chain was identified as

TP2: A typo for the original problem for element (1, 5) was identified and corrected in
[9]. The test problem is also known as the 8 X 8 Courtois matrix and was also considered
in a paper by Benzi, [1].

.1 .6 0 .3 0 0

.5 .5 0 0 0 0

.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .0009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

 16

TP3:

TP4 and variants:

We compute, with the specified transition matrix for each test problem, the following
errors for the MFPT matrix, , under both double and single precision:

Minimum absolute residual error, MINRE =

Maximum absolute residual error, MAXRE =

and the overall residual error, ORE =

The accuracy of each algorithm was also evaluated in terms of the minimum error, the
maximum error and the relative errors between the double and single precision
computations as
MINE(S, D) = min

1≤i≤m, 1≤ j≤m
mij (S)−mij (D) ,

MAXE(S, D) = max
1≤i≤m, 1≤ j≤m

mij (S)−mij (D) ,

and REL(S, D) = mij (S)−mij (D)j=1

m∑i=1

m∑ .

Following Heyman and Reeves ([9]) and Heyman and O’Leary ([8]), if one regards the
double precision result as the “true” result and the single precision result as the
“computed” result, then the number of (extra) accurate digits can be defined as the

0.999999 1.0 E − 07 2.0 E − 07 3.0 E − 07 4.0 E − 07
0.4 0.3 0 0 0.3

5.0 E − 07 0 0.999999 0 5.0 E − 07
5.0 E − 07 0 0 0.999999 5.0 E − 07
2.0 E − 07 3.0 E − 07 1.0 E − 07 4.0 E − 07 0.999999

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

TP41 :ε = 1.0E − 01; TP42 :ε = 1.0E − 03;TP43 :ε = 1.0E − 05; TP44 :ε = 1.0E − 07

.1− ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1− ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

M = mij⎡⎣ ⎤⎦

min
1≤i≤m,1≤ j≤m

mij − pikmkj −1k≠ j∑ ,

max
1≤i≤m,1≤ j≤m

mij − pikmkj −1k≠ j∑ ,

mij − pikmkj −1k≠ j∑
j=1

m

∑
i=1

m

∑ .

 17

overall average of
.
 We compute this statistic for each of

our procedures and test problems.

We identify the following procedures in the tables and charts to follow.

Procedure 1: (Standard method)
Procedure 2: (Simple method)
Procedure 3: (G-inverse update – Pert AL1)
Procedure 4: (Group inverse update – Pert AL2)
Procedure 5: (Group inverse by matrix updating – Pert AL3)
Procedure 6: (Update using Ge – Pert AL4A)
Procedure 7: (Update using Ge1 – Pert AL4B)
Procedure 8: (Update using Gee – Pert AL4C)
Procedure 9: (EGTH – Hunter Extended GTH Procedure)
Procedure 10: (Heyman FUND Algorithm for M using Z).
Procedure 11: (Modified Heyman FUND Algorithm for M using A#).
Procedure 12: (Modified Heyman FUND Algorithm for M using X).

Appendix 1 gives a table of all the MatLab results for the error calculations for all test
problems and procedures.

An arXiv.com version of this paper gives an additional appendix with a set of Excel
charts for the errors for all procedures and test problems.

We make some general comments regarding the computations and the results.

Firstly, if the computation of the minimum absolute residual error (MINRE) yields a zero
(either under single or double precision) indicates that at least one MFPT is computed
exactly. Under single precision only Procedures 2, 9 and 12 yield MINRE zero for all test
problems whilst under double precision for all procedures and test problems this error is
always zero. Thus single precision is not generally recommended as a suitable
computation procedure unless one is using the restricted set of Procedures 2, 9, and 12.

For those procedures with minimal MAXRE errors all absolute residual errors are kept
under control. No one single procedure does that to achieve the smallest MAXRE for any
given test problem. Procedures 1, 3, 5, 6, 8, 9 under single precision and Procedures 1, 2,
3, 6, 7, 9, 10, 11, 12 under double precision each generate a minimum value for at least
one test problem.

The overall residual error, ORE, is perhaps a better indicator of accuracy as a small ORE
indicates that the sum of all the absolute residual errors are minimized. Minimum values
of ORE are achieved by the following procedures for specific test problems.
 Under single precision: Procedure 12 (TP1), Procedure 9 (TP2, TP3, TP41, TP42,
TP43), Procedure 3 (TP44).

− log10
resulttrue − resultcomputed

resulttrue

 18

Under double precision: Procedure 11 (TP1), Procedure 9 (TP2, TP3, TP41,TP42, TP43),
Procedure 3 (TP 44).
This does suggest that Procedure 9 (Hunter’s Extended GTH Procedure) appears to
generally give the most accurate results. When the other procedures give a smaller error,
Procedure 9 is the second most accurate procedure (except for TP1 under single precision
when it doesn’t give a very accurate result at all). Chart 6.1 gives the overall residual
errors, as given in Table A.6 for all procedures and test problems, under double precision.

Chart 6.1: Overall Residual Errors, under double precision, all procedures and test
problems

 See Chart B.6: ORE under Double Precision

Heyman and Reeves ([9]) and Heyman and O’Leary ([8]) computed the accurate digits
statistic for the above set of test problems when computing the MFPT matrix. In both of
these papers their results were displayed in figures and no actual numerical results were
tabulated. We computed this statistic for each the seven test problems and the twelve
procedures, achieving the results given in Appendix 1: Table A.10

We comment on TP1. This test problem has some unique features in that it is possible to
deduce exact results for three MFPT’s. In particular, it can be shown that m21 = 2, m43 =
160.5 and m53 = 26.3. If one computes the MFPT matrices we find that, under double
precision, all the twelve procedures obtain these exact three results. However, under
single precision, only Procedure 1 and Procedure 12 yield all three exact results, while
Procedure 2 gives the exact results for m21 and m43, and Procedures 9, 10 and 11 yield the
exact result for m21. Thus when calculating the average number of accurate digits we must
omit the results when the MFPTs under single and double precision are the same, as the
logarithm of zero is negative infinity. In Table A.10, under TP1, we indicate with ***
when the average is taken over the 33 finite terms, ** with an average over 34 terms and
* over 35 terms. Plotting leads to Chart 6.2.

Chart 6.2: Average extra digits between single and double precision for all
procedures and test problems

(See Chart B.10: Average extra digits between Single and Double Precision
calculations)

Observe from Table A1.10 that Procedure 9 gives the largest average number of extra
digits provided by the double precision over the single precision calculations for all the
test problems.

Heyman and O’Leary [8] used two algorithms for computing M, without previously
computing Z or A# – an algorithm MH, which is based on the two stage UL factorisation,
using U-1 and L factors as in Heyman’s method (similar to our Procedure 12), and an
algorithm M, using the UL factors and normalisation. They obtained values, for the
number of extra accurate digits, between 6 and 7 for all TPs for their algorithm M but

 19

displayed widely varying values for different TPs for the algorithm M. They also showed
that if Z or A# were known in advance then the M matrix could only be computed
accurately from Z or from A# (as special cases of our (2.4)) for TP1, TP3, and TP41.

Heyman and Reeves [9] presented four algorithms - LINPACK, SR, KSGTH, and
KSGAUSS for computing M with the same test problems used in this paper. They
explored different software packages deciding that LINPACK “worked the best”. The
KSGTH is the same as our Procedure 1 using the GTH algorithm to compute the steady
state probabilities while KSGAUSS used Gaussian elimination to solve the stationary
equations. Their favoured algorithm, is the SR, “State reduction”, procedure of Kohlas
on which Procedure 9 is based. The Hunter EGTH Procedure consistently produces
results in the range 7.30 to 7.43, similar to that achieved by Heyman & Reeves [9] (as
extrapolated from their graphical output), which was not exceeded by any other
procedure, either in [9] or this paper.

The solution computed by LINPACK did not run for TP44 as the matrix inverse could
not be computed. In our calculations the only test problem and procedure that could not
be computed accurately was for TP44 under Procedure 4 (updating the Group inverse
under Pert AL2 using single precision). MATLAB enabled us to carry out all of the other
calculations. An interesting observation for this particular ill-conditioned test problem is
that Procedure 3 (updating a G-inverse under Pert AL1) gives the most accurate overall
residual errors.

There is a range of other comparisons that we can make, using the results given in
Appendix 1, but we generally end up pointing to Hunter’s extended GTH Procedure as
giving the most accurate results. Our general recommendation is to use this procedure
where possible.

When paper [18] was written it was hoped that the perturbation procedures were going to
generally yield accurate results, comparable with other procedures. Apart from isolated
situations, Procedures 3 – 8 do not perform as well as we had hoped. The EGTH
procedure, involving no subtractions generally overshadows the perturbation procedures.
Procedure 12, while not in the same class as Procedure 9, reliably produces the second
most accurate results.

 20

Appendix A: Error calculations for all Procedures and all Test Problems

Table A.1: MINRE under Single Precision
MINRE(S) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0902E-02

Procedure 2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 3 0.0000E+00 2.8133E-05 1.5333E-02 1.1921E-07 3.3379E-06 1.9091E-04 1.9091E-04

Procedure 4 0.0000E+00 2.8014E-06 1.2846E-03 0.0000E+00 2.5034E-06 1.4853E-04 NaN

Procedure 5 0.0000E+00 9.9784E-06 1.2996E-03 0.0000E+00 1.1921E-06 1.8179E-04 4.9167E-02

Procedure 6 0.0000E+00 1.0908E-05 1.2996E-03 0.0000E+00 5.8413E-06 8.6933E-04 1.0224E-01

Procedure 7 0.0000E+00 5.7817E-06 1.2996E-03 0.0000E+00 1.5497E-06 3.1388E-04 4.2600E-02

Procedure 8 0.0000E+00 1.7941E-05 1.2996E-03 0.0000E+00 4.4107E-06 2.2805E-04 7.9652E-02

Procedure 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.6164E-03

Procedure 11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.6164E-03

Procedure 12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Table A.2: MINRE under Double Precision
MINRE(D) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 5 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 8 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Procedure 12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

21

Table A.3: MAXRE under Single Precision

MAXRE(S) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 1.5259E-05 2.3131E-03 1.0000E+00 7.6294E-06 7.3242E-04 9.3750E-02 1.9313E+01

Procedure 2 3.0518E-05 1.9531E-03 1.0000E+00 1.5259E-05 9.7656E-04 6.2500E-02 7.7565E+00

Procedure 3 5.8830E-05 1.9503E-03 7.4928E-01 9.0599E-06 8.2135E-04 5.8108E-02 5.8108E-02

Procedure 4 3.0518E-05 1.3188E-03 7.6065E-01 6.4373E-06 7.2205E-04 4.4751E-02 NaN

Procedure 5 5.7161E-05 1.1806E-03 1.4523E+00 5.8413E-06 3.8600E-04 5.0105E-02 2.7472E+01

Procedure 6 2.2531E-05 1.5189E-03 1.4884E+00 5.7220E-06 3.3975E-04 4.0965E-02 1.1226E+01

Procedure 7 8.1241E-05 1.9780E-03 1.4482E+00 5.0068E-06 3.8671E-04 4.6234E-02 2.5369E+01

Procedure 8 2.4557E-05 1.5258E-03 1.4909E+00 4.8876E-06 3.6669E-04 4.6220E-02 1.1133E+01

Procedure 9 6.1035E-05 1.9531E-03 5.3333E-01 7.6294E-06 4.9897E-04 8.5969E-02 5.0000E+00

Procedure 10 6.1035E-05 1.9531E-03 1.6523E+04 1.5259E-05 9.7656E-04 7.5120E-02 7.0000E+00

Procedure 11 6.1035E-05 1.9531E-03 1.6522E+04 7.6294E-06 9.7656E-04 7.5120E-02 7.0000E+00

Procedure 12 1.5259E-05 1.9531E-03 1.6522E+04 7.6294E-06 4.8828E-04 7.1746E-02 9.0000E+00

Table A.4: MAXRE under Double Precision

MAXRE(D) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 1.1369E-13 2.4714E-12 1.8626E-09 1.4211E-14 1.8190E-12 1.1642E-10 1.4901E-08

Procedure 2 5.6843E-14 3.6380E-12 1.4461E-09 1.4211E-14 9.0949E-13 1.7462E-10 7.4506E-09

Procedure 3 2.2737E-13 5.4570E-12 2.5251E-09 6.1950E-14 6.3665E-12 3.4925E-10 3.4925E-10

Procedure 4 1.1369E-13 2.3647E-11 4.2285E-05 2.1316E-14 2.3099E-12 1.7462E-10 2.2352E-08

Procedure 5 2.8422E-13 4.7893E-12 1.9447E-09 1.5987E-14 2.3055E-12 2.3283E-10 2.9802E-08

Procedure 6 1.1369E-13 3.6380E-12 1.8626E-09 1.4211E-14 9.0949E-13 1.1642E-10 7.5181E-09

Procedure 7 1.1369E-13 3.6380E-12 1.8626E-09 1.4211E-14 1.8190E-12 1.7462E-10 1.4901E-08

Procedure 8 1.1369E-13 4.2912E-12 1.8626E-09 2.8422E-14 3.6380E-12 3.4925E-10 2.0740E-08

Procedure 9 1.1369E-13 3.6380E-12 1.4461E-09 1.4211E-14 1.8190E-12 1.1642E-10 7.4506E-09

Procedure 10 5.6843E-14 3.7313E-12 2.0940E-05 1.4211E-14 1.8190E-12 1.7462E-10 2.2352E-08

Procedure 11 5.6843E-14 3.7313E-12 2.0941E-05 1.4211E-14 1.8190E-12 1.7462E-10 2.2352E-08

Procedure 12 1.1369E-13 3.7313E-12 2.0941E-05 1.4211E-14 1.8190E-12 1.1642E-10 1.4901E-08

22

Table A.5: ORE under Single Precision

ORE(S) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 7.9721E-05 2.8165E-02 3.7670E+00 2.1267E-04 1.7017E-02 1.8252E+00 5.2130E+02

Procedure 2 8.4311E-05 1.9942E-02 5.1353E+00 3.4666E-04 1.4591E-02 1.4978E+00 1.4851E+02

Procedure 3 2.6092E-04 3.5845E-02 5.4519E+00 2.6882E-04 2.8050E-02 1.6858E+00 1.6858E+00

Procedure 4 1.3366E-04 1.8962E-02 3.6441E+00 1.7709E-04 1.5828E-02 1.4867E+00 NaN

Procedure 5 1.7825E-04 1.8865E-02 5.8119E+00 1.4186E-04 9.3399E-03 1.1775E+00 3.3758E+02

Procedure 6 1.2526E-04 1.9844E-02 6.0251E+00 1.2279E-04 9.7828E-03 8.9603E-01 1.9242E+02

Procedure 7 2.4018E-04 1.9384E-02 5.7981E+00 1.3071E-04 1.0204E-02 9.7736E-01 2.3153E+02

Procedure 8 1.2872E-04 1.6985E-02 6.0274E+00 1.2934E-04 9.7471E-03 9.3048E-01 1.9473E+02

Procedure 9 2.0275E-04 1.6383E-02 3.5601E+00 1.1259E-04 5.3112E-03 7.8108E-01 8.5883E+01

Procedure 10 1.8367E-04 2.7213E-02 3.3883E+04 2.2340E-04 1.7498E-02 2.1203E+00 1.7003E+02

Procedure 11 1.7092E-04 2.7842E-02 3.3883E+04 2.4676E-04 1.7498E-02 2.1203E+00 1.7203E+02

Procedure 12 7.1913E-05 2.6956E-02 3.3883E+04 1.9002E-04 1.4920E-02 1.6139E+00 1.5876E+02

Table A.6: ORE under Double Precision

ORE(D) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 3.1486E-13 4.2940E-11 8.2400E-09 4.3465E-13 4.1593E-11 3.4351E-09 3.2901E-07

Procedure 2 2.9809E-13 3.8647E-11 7.2145E-09 4.4076E-13 2.8369E-11 4.0932E-09 1.9688E-07

Procedure 3 1.1076E-12 1.0909E-10 1.6599E-08 1.6265E-12 1.0069E-10 8.7043E-09 8.7043E-09

Procedure 4 4.0834E-13 3.5271E-10 1.6354E-04 6.8556E-13 6.8057E-11 4.7508E-09 5.2569E-07

Procedure 5 5.8542E-13 8.0202E-11 1.4783E-08 7.6406E-13 6.9908E-11 6.9648E-09 7.2536E-07

Procedure 6 3.1319E-13 3.9636E-11 6.9062E-09 3.8036E-13 2.9394E-11 3.2306E-09 2.2832E-07

Procedure 7 3.6315E-13 4.8937E-11 1.1378E-08 3.6848E-13 4.4544E-11 4.6604E-09 4.2368E-07

Procedure 8 4.5819E-13 1.0442E-10 1.5714E-08 8.0280E-13 8.5687E-11 1.1774E-08 6.2413E-07

Procedure 9 2.9554E-13 2.8481E-11 5.2755E-09 2.8832E-13 1.9558E-11 1.5769E-09 1.4170E-07

Procedure 10 2.4492E-13 4.1265E-11 5.2111E-05 3.4472E-13 3.7945E-11 3.1286E-09 3.4516E-07

Procedure 11 2.1694E-13 4.2175E-11 5.2112E-05 3.2230E-13 3.7490E-11 3.3033E-09 3.4516E-07

Procedure 12 2.8488E-13 3.6427E-11 5.2112E-05 2.9698E-13 3.0710E-11 3.0476E-09 2.5663E-07

23

Table A.7 for MINE(S, D) between Single and Double Precision calculations

MIN(S, D) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 2.8422E-14 1.8878E-08 8.9733E-08 3.7478E-08 2.5415E-07 2.5415E-07 2.5415E-07

Procedure 2 4.4409E-16 3.7599E-05 2.9789E-02 1.0393E-07 8.1511E-09 3.4234E-07 2.1804E-07

Procedure 3 4.6971E-08 3.8719E-05 1.4642E-02 4.9425E-08 1.1721E-04 1.4576E-03 1.4576E-03

Procedure 4 1.0398E-07 4.2477E-05 2.1705E-02 1.3248E-07 2.8595E-05 4.7612E-04 Inf

Procedure 5 9.5415E-09 3.0867E-04 3.0409E-03 2.5835E-08 3.8400E-06 4.0875E-04 7.5673E-02

Procedure 6 3.8137E-09 1.8545E-04 3.0409E-03 4.4225E-09 2.8390E-06 2.8088E-04 5.6237E-02

Procedure 7 3.0546E-08 3.3281E-04 3.0409E-03 3.8417E-07 5.2825E-05 5.2960E-03 6.7380E-01

Procedure 8 1.2641E-09 1.8556E-04 3.0409E-03 1.6998E-08 2.7935E-06 2.8083E-04 5.6237E-02

Procedure 9 0.0000E+00 7.8481E-08 1.1097E-07 1.0259E-08 1.5811E-08 2.3757E-08 5.6944E-09

Procedure 10 0.0000E+00 1.8878E-08 8.9733E-08 1.2903E-07 9.2766E-08 2.5415E-07 2.5415E-07

Procedure 11 0.0000E+00 1.8878E-08 8.9733E-08 1.2903E-07 9.2766E-08 2.5415E-07 2.5415E-07

Procedure 12 0.0000E+00 1.8878E-08 8.9733E-08 3.7478E-08 3.7478E-08 3.7478E-08 3.7478E-08

Table A.8: MAXE(S, D) errors between Single and Double Precision calculations

MAX(S, D) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 2.7127E-05 4.5160E-01 1.3403E+05 5.8003E-05 6.8901E-02 6.7987E+02 1.0528E+08

Procedure 2 4.9506E-05 3.7231E+00 9.7505E+04 5.0969E-05 3.8604E-01 3.6333E+03 2.5358E+07

Procedure 3 6.9505E-03 3.2695E+00 5.5296E+05 1.4576E-04 1.0315E+00 7.0150E+03 7.0150E+03

Procedure 4 2.9093E-03 1.7307E+00 2.6785E+05 1.0287E-04 2.3300E+00 1.2735E+04 1.0000E+10

Procedure 5 2.8536E-03 1.8751E+00 1.8137E+05 5.3411E-05 3.4919E-01 3.6567E+03 1.2861E+08

Procedure 6 2.5588E-03 8.9710E-01 1.8137E+05 3.8305E-05 2.4802E-01 2.6363E+03 4.9001E+07

Procedure 7 2.2191E-03 2.0862E+00 1.8137E+05 5.7456E-05 3.4977E-01 3.6567E+03 1.2861E+08

Procedure 8 2.5609E-03 8.9731E-01 1.8137E+05 3.9159E-05 2.4806E-01 2.6363E+03 4.9001E+07

Procedure 9 6.7817E-05 2.2032E-03 1.2214E+00 1.4700E-05 1.0511E-03 1.1536E-01 7.6999E+00

Procedure 10 8.8162E-05 1.4282E+00 1.8206E+05 1.9367E-05 6.0751E-02 6.1944E+02 7.3597E+06

Procedure 11 8.8162E-05 1.4282E+00 1.8206E+05 2.0312E-05 6.0751E-02 6.1944E+02 7.3597E+06

Procedure 12 2.7127E-05 1.4272E+00 1.8206E+05 1.7415E-05 6.0359E-02 6.1942E+02 7.3597E+06

24

Table A.9: REL(S, D) errors between Single and Double Precision calculations

REL(S, D) TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 6.2602E-05 1.8238E-04 9.7760E+00 8.5381E+05 2.0605E-03 2.9959E+00 2.9939E+04

Procedure 2 4.2048E-05 2.2072E-04 5.5973E+01 6.8745E+05 9.9624E-04 9.6408E+00 9.0833E+04

Procedure 3 8.0903E-05 4.1639E-02 5.6868E+01 3.7384E+06 4.9278E-03 3.4096E+01 2.2813E+05

Procedure 4 1.1128E-04 1.7467E-02 1.8265E+01 1.5096E+06 2.2607E-03 3.1956E+01 2.1517E+05

Procedure 5 2.5273E-05 1.7052E-02 2.9542E+01 1.5219E+06 1.7384E-03 1.2950E+01 1.3674E+05

Procedure 6 2.3256E-05 1.5258E-02 1.8216E+01 1.5219E+06 1.4254E-03 1.0783E+01 1.1486E+05

Procedure 7 4.2810E-05 1.3236E-02 3.3603E+01 1.5219E+06 1.5823E-03 1.0819E+01 1.1517E+05

Procedure 8 2.4030E-05 1.5273E-02 1.8219E+01 1.5219E+06 1.4598E-03 1.0785E+01 1.1486E+05

Procedure 9 2.5894E-05 2.9606E-04 2.6209E-02 5.3162E+00 2.4325E-04 1.3152E-02 1.1988E+00

Procedure 10 1.0148E-04 4.8392E-04 4.0830E+01 1.5125E+06 4.9828E-04 2.6174E+00 2.7278E+04

Procedure 11 9.1177E-05 4.9096E-04 4.0828E+01 1.5125E+06 4.7100E-04 2.6174E+00 2.7278E+04

Procedure 12 1.0511E-04 1.6090E-04 4.0822E+01 1.5125E+06 4.4613E-04 2.6199E+00 2.7278E+04

Table A.10: Average extra digits between Single and Double Precision calculations

Average extra digits TP1 TP2 TP3 TP41 TP42 TP43 TP44

Procedure 1 ***6.7522 4.9691 3.2245 6.5086 5.0423 3.2272 0.7819

Procedure 2 **7.1182 4.5133 2.4592 6.7433 5.0996 3.5632 2.3108

Procedure 3 6.2773 3.9600 1.7416 6.0373 3.9882 2.1693 2.1693

Procedure 4 6.3811 4.5148 1.8947 6.3439 4.0975 2.1999 NaN

Procedure 5 6.8213 4.3463 2.1006 6.5652 4.5249 2.5096 0.1074

Procedure 6 6.7783 4.3526 2.1006 6.7684 4.8025 2.7873 0.5022

Procedure 7 6.8009 4.1487 2.1006 6.4926 4.4743 2.4530 0.1447

Procedure 8 6.9079 4.3525 2.1006 6.7396 4.8026 2.7873 0.5022

Procedure 9 *7.3504 7.2928 7.3526 7.3681 7.4157 7.4296 7.3321

Procedure 10 *6.6272 4.5093 2.9679 6.8748 5.1722 3.3115 1.4794

Procedure 11 *6.5949 4.5091 2.9679 6.9339 5.1722 3.3115 1.4794

Procedure 12 ***6.7660 4.5436 2.9679 7.0429 5.5830 4.1590 2.7397

25

Appendix B: Charts of errors for all Procedures and all Test Problems

Chart B.1: MINRE under Single Precision

Chart B.2: MINRE under Double Precision

26

Chart B.3: MAXRE under Single Precision

Chart B.4: MAXRE under Double Precision

27

Chart B.5: ORE under Single Precision

Chart B.6: ORE under Double Precision

28

Chart B.7 for MINE(S, D) between Single and Double Precision calculations

Chart B.8: MAXE(S, D)) errors between Single and Double Precision calculations

29

Chart B.9: REL(S, D) errors between Single and Double Precision calculations

Chart B.10: Average extra digits between Single and Double Precision calculations

30

References

[1] Benzi, M. A direct projection method for Markov chains. Linear Algebra Appl, 386,
(2004), 27-49.

[2] D.A. Bini, G. Latouche, B. Meini. Numerical Methods for Structured Markov Chains,
Oxford University Press, New York. (2005).

[3] W. K. Grassman, M.I. Taksar, D.P. Heyman, Regenerative analysis and steady state
distributions for Markov chains. Oper. Res. 33 (1985) 1107-1116.

[4] W. K. Grassman, Means and variances in Markov reward systems, in Linear Algebra,
Markov Chains and Queuing Models, C.D. Meyer and R.J. Plemmons. Eds, Springer-
Verlag, New York, (1993), 193-204.

[5] W.J. Harrod, R.J. Plemmons, Comparison of some direct methods for computing
stationary distributions of Markov chains. SIAM J Sci Stat Comput, 5 (1984), 463-479.

[6] D.P. Heyman, Further comparisons of direct methods for computing stationary
distributions of Markov chains. SIAM J. Alg. Disc Meth. 8, (1987) 226-232.

[7] D.P. Heyman, Accurate computation of the Fundamental Matrix of a Markov chain,
SIAM J. Matrix Anal. Appl. 16 (1995) 954-963.

[8] Heyman, D.P., O’Leary, D.P. What is fundamental for Markov chains: First Passage
Times, Fundamental matrices, and Group Generalized Inverses, Computations with
Markov Chains, Chap 10, 151-161, Ed W.J. Stewart, Springer. New York, (1995).

[9] D.P. Heyman, A. Reeves, Numerical solutions of linear equations arising in Markov
chain models. ORSA J. Comp. 1 (1989) 52-60.

 [10] J.J. Hunter, On the moments of Markov renewal processes. Adv. in Appl. Probab. 1
(1969) 188-210.

 [11] J.J. Hunter, Generalized inverses and their application to applied probability
problems. Linear Algebra Appl. 45 (1982) 157-198.

[12] J.J. Hunter, Mathematical Techniques of Applied Probability, Volume 2, Discrete
Time Models: Techniques and Applications, Academic, New York. (1983).

[13] J.J. Hunter, Characterisations of generalized inverses associated with Markovian
kernels, Linear Algebra Appl. 102 (1988) 121-142.

[14] J.J. Hunter, The computation of stationary distributions of Markov chains through
perturbations. J Appl Math Stoch. Anal. 4 (1991) 29-46.

[15] J.J. Hunter, Simple procedure for finding mean first passage times in Markov chains.
Asia Pac. J. Oper. Res. 24 (2007) 813-829.

31

[16] J. J. Hunter, Generalized inverses of Markovian kernels in terms of properties of the
Markov chain. Linear Algebra Appl. 447 (2014) 38-55.

[17] J.J. Hunter, Accurate calculations of stationary distributions and mean first passage
times in Markov renewal processes and Markov chains. Special Matrices 4 (2016) 151-
175.

 [18] J.J. Hunter, The computation of the key properties of Markov Chains via
Perturbations, Linear Algebra Appl. 511 (2016) 176-202.

[19] J. G. Kemeny, J.L. Snell, Finite Markov chains, Von Nostrand, New York, 1960.

[20] J. Kohlas, Numerical computation of mean passage times and absorption
probabilities in Markov and semi-Markov models. Z. Oper.- Res. 30 (1986) 197-207.

[21] C.D. Meyer Jr., The role of the group generalized inverse in the theory of Markov
chains. SIAM Rev. 17 (1975) 443-464.

[22] J. Sherman, W.J. Morrison, Adjustment of an Inverse Matrix Corresponding to
Changes in the Elements of a Given Column or a Given Row of the Original Matrix
(abstract). Ann Math Stat 20 (1949) 621.

[23] T.J. Sheskin, A Markov partitioning algorithm for computing steady state
probabilities. Oper. Res. 33 (1985) 228-235.

