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Abstract  
 
A survey of a variety of computational procedures for finding the mean first passage 
times in Markov chains is presented. The author recently developed a new accurate 
computational technique, an Extended GTH Procedure, Hunter (Special Matrices, 
2016) similar to that developed by Kohlas (Zeit. fur Oper. Res., 1986).  In addition, 
the author has recently developed a variety of new perturbation techniques for finding 
key properties of Markov chains including finding the mean first passage times, Hunter 
(Linear Algebra and its Applications, 2016). These recently developed procedures are 
compared with other procedures including the standard matrix inversion technique 
using the fundamental matrix (Kemeny and Snell, 1960), some simple generalized 
matrix inverse techniques developed by Hunter (Asia Pacific J. Oper. Res., 2007), 
and the FUND technique (with some modifications) of Heyman (SIAM J Matrix Anal. 
and Appl., 1995).  MatLab is used to compute errors when the techniques are used on 
some test problems that have been used in the literature. A preference for the accurate 
procedure of the author is exhibited.  
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1. Introduction 
 
In Markov chain (MC) theory mean first passage times (MFPTs) provide significant 
information regarding the short term behaviour of the MC. A review of MFPTs, together 
with details regarding stationary distributions and the group inverse of the Markovian 
kernel, is given in [18].  
We refer the reader to this aforementioned article as it provides the relevant background 
to this paper and enables us to avoid repetition of the material. In Hunter [18], which 
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focuses on computational techniques for the key properties of irreducible MCs using 
perturbation techniques, we commented that in a sequel paper we would consider a 
variety of other techniques to get a better impression as to whether perturbation 
procedures may in fact prove to be suitable alternatives. We address these issues in this 
paper. 
 
We firstly however set the scene by reintroducing the notation that was used in [18].  
 
Let {Xn, n ≥ 0} be a finite MC with state space S = {1, 2, …, m} and transition matrix P = 
[pij], where pij = P{Xn = j | Xn-1 = i} for all i, j ∈ S.  
 
The stationary distribution {πj}, (1 ≤ j ≤ m), exists and is unique for all irreducible MCs, 
that πj > 0 for all j, and satisfies the equations (the stationary equations) 
                                              π j = π ii=1

m∑ pij  with π ji=1

m∑ = 1.                                       (1.1) 
If πT ≡ (π1, π2,…, πm), the stationary probability vector,  and e is a column vector of 1’s, 
the stationary equations (1.1) can be expressed as  

        π
T (I − P) = 0T ,  with    π

T e = 1 .                                           (1.2) 
Let [ ]0min 1, |ij nT n X j X i= ≥ = =  be the first passage time from state i to state j (first 

return when i = j) and define 0|ij ijm E T X i⎡ ⎤= =⎣ ⎦ as the MFPT from state i to state j (or 
mean recurrence time of state i when i = j). For finite irreducible MCs all the mij are well 
defined and finite. Let M = [mij] be the MFPT matrix. Letδ ij = 1,when i = j and 0, when

i ≠ j.  Let Md = δ ijmij⎡⎣ ⎤⎦  be the diagonal matrix formed from the diagonal elements of M, 
and E = [1] (i.e. all the elements are unity). 
 
It is well known ([19]) that, for 1 ≤ i, j ≤ m, 
                                                           mij = 1+ pikk≠ j∑ mkj .                                           (1.3) 

In particular, for all j ∈ S, the mean recurrence time of state j is given by  
                                                           mjj = 1 π j .                                                            (1.4) 
From (1.3) and (1.4) it follows that M satisfies the matrix equation  

   (I – P)M = E – PMd , with Md = Πd( )−1 .                               (1.5)                                                                                              
 

Note that the expression (1.5) typically involves knowledge of Πd, i.e. the stationary 
probabilities. In this paper we are not focussing on the computation of stationary 
distributions but when we require such terms when they are not explicitly derived in 
carrying out the computations for M, we typically use the GTH algorithm of Grassman, 
Taksar and Heyman [3], (or equivalently the State Reduction procedure of Sheskin [23]), 
as these are known to give accurate results with no subtractions being involved. There are 
however other alternative procedures that could be used, for example the eig procedure of 
MatLab. 
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In this paper we provide twelve procedures for solving, in effect, equations (1.3) or (1.5), 
for the MFPTs. In Section 2 we give some direct procedures (Procedures 1 and 2) based 
upon utilising matrix inverses. In Section 3 we summarise the six perturbation procedures 
(Procedures 3 to 8), given by Hunter in [18]. In Section 4 we outline the extended GTH 
procedure (EGTH) of Hunter [17] based upon Kohlas [20] (Procedure 9), while in 
Section 5 we outline the FUND procedure of Heyman [7] which we modify to simpler 
procedures that enables us to find the MFPTs without directly computing the fundamental 
matrix, to yield Procedures 10, 11 and 12.   
 
In the final section, utilising the test problems used initially by Harrod and Plemmons 
([5]) in comparing different techniques for computing the stationary probabilities, we use 
MatLab computations to compare errors, typically the maximum absolute errors, the 
overall residual errors in our computations, in both single and double precision, and the 
number additional accurate digits achieved with double precision over single precision. 
This leads to the conclusion that the Hunter EGTH Procedure ([17]) generally gives us 
the most accurate results. Such a procedure is much more accurate than any of the 
perturbation procedures. 
 
Section 2: Computation of MFPTs using matrix inverses 
 
If A is an m × m matrix of real elements and X is any m × m matrix that satisfies the 
condition AXA = A, then X is said to be a one-condition generalised matrix inverse, a g-
inverse, of A, and is often written as A− . If A is non-singular then A− =  A−1 . 
 
All g-inverses of I – P can be expressed in terms utilising matrix inverses, as pioneered 
by Hunter [11]. The general result is as follows: 
 
Theorem 2.1: Let P be the transition matrix of a finite irreducible Markov chain with m 
states and stationary probability vector  π

T = (π1, π2, …, πm).  Let  eΤ = (1, 1, …, 1) and t 
and u be any vectors. 
(a)   I − P + tuT  is non-singular if and only if    π

T t ≠ 0  and   u
T e ≠ 0.                                      

(b) If    π
T t ≠ 0  and    u

T e ≠ 0  then    [I − P + tuT ]−1  is a one-condition g-inverse of I – P. 
(c) All one-condition g-inverses of I – P can be expressed as 
            A

− = [I − P + tuT ]−1 + ef T + gπ T  for arbitrary vectors f and g.  
!  

Well-known special g-inverses of I – P are Kemeny and Snell’s fundamental matrix 
Z = [I − P +Π ]−1  where Π = eπT, introduced in [19], (and initially shown to be a g-
inverse of I – P by Hunter ([10])) and Meyer’s group inverse of I – P given by A# = Z – 
Π , ([21]).  (A#, is more restrictive than a simple g-inverse in that it is the unique g-inverse 
that satisfies, (I – P)A# = A#(I – P) = I  – eπT,  A#e = 0 and  πTA# = 0T where A = I – P.  
 
The reason we introduce g-inverses is that one condition g-inverses of I – P are typically 
used to solve systems of linear equations involving I – P (as in (1.2) and (1.5)), and are 
hence called  “equation solving” g-inverses.   
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Specialising to the equations of the form (1.5) to be solved for MFPTs, we have the 
following general result, (see [11],[12]): 
 
Theorem 2.2:  Let A and B be given m × m matrices, and X is an unknown m × m 
matrix. 
A necessary and sufficient condition for AX = B to have a solution is that  
AA-B = B. If this consistency condition is satisfied the general solution is given by  
 X = A-B + W - A-AW, where W is an arbitrary matrix.                                               (2.1) 

!  
 
Solving the equations given by (1.5), using Theorems 2.1 and 2.2, yield the following 
general results for finding the MFPTs of MCs (see [11], [12] for (a) and [16] for (b) and 
(c)): 
 
Theorem 2.3:  
(a) If G is any g-inverse of I – P, then the MFPT matrix M, is given as 
       M = [GΠ  – E(GΠ)d + I – G + EGd]D,                                             (2.2)  
where D = (Πd )

−1 = (eπ T )d⎡⎣ ⎤⎦
−1
.                                                             

(b) If H ≡  G(I –Π) then H is a g-inverse of I – P with He =  0 and 
                M = [I – H + EHd]D.                                                                                      (2.3) 
(c)   Ge = ge  for some g  if and only if    
                M = [ I – G + EGd]D.                                                                                     (2.4)  

!  
Special cases of (2.4) for M are G = Z and G = A#. 
 
Note that the implementation of Theorem 2.3 typically requires prior calculation of the 
stationary probability vector π T .  It is well known that the most accurate procedure for 
finding the stationary probabilities is the GTH algorithm, ([3]). See Section 4 for the 
details. 
 
Theorem 2.3 above leads to the following two procedures. 
 
Procedure 1: (Standard method) 
Given an irreducible P  
(i) Compute the stationary probability vector πT.  
(ii) Compute the fundamental matrix Z = [I − P + eπ T ]−1 . 
(iii) Compute M = [I – Z + EZd ][(eπ)d]-1 . 
 
This is the original procedure developed by Kemeny and Snell ([19]) and has been 
universally used in the past. It, of course, suffers from the requirement to compute a 
matrix inverse that can lead to significant inaccuracy, (see (8], [18]). As identified above, 
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prior to computing Z, the stationary probability vector πT is required. We use the GTH 
algorithm to compute πT.  
 
Hunter ([15]) established a number of results regarding expressions for the MFPTs using 
a range of simple matrix inverses of the form given in Theorem 2.1, (typically with f and 
g taken as zero vectors.) The simplest result is given as follows. 
 
Procedure 2: (Simple method) 
Given an irreducible P  
(i) Compute the g-inverse G = I − P + eeb

T⎡⎣ ⎤⎦
−1

 where eb
T

 is a vector with 1 in the b-th 
position and 0 elsewhere. 
(ii) Compute, π T = Geb

T  so that if  G = [ gij ] then π j = gbj ,  j = 1,2,  ...,m.   
(iii) Compute M = [I – G + EGd ][ (eπΤ)d]-1 . 
 
Thus following one matrix inversion (actually only the b-th row, typically the first row, 
for the stationary distribution), one can find the stationary probabilities and the mean first 
passage times.  The choice of b is arbitrary. We take b = 1 in our test examples (in 
Section 6). 
 
As the above two procedures both require the evaluation of matrix inverses we do not 
expect them to perform well in examples where we have either a large number of states 
or ill-conditioned matrices. One way to expedite the calculations is to consider using a 
perturbation technique that in effect carries out the required computations sequentially, 
row by row. We consider that in the next section. 
 
 
Section 3: Computation of MFPTs using perturbation procedures 
 
The general idea behind the perturbation procedures, which are considered in detail in 
Hunter [18], is the following. Start with a simple transition matrix P0 with known or 
easily computed stationary probability vector π 0

T , mean first passage time matrix M0 and 
a simple g-inverse G0 or easily computed fundamental matrix Z0 or group inverse A0

#  . 
Then sequentially change the transition matrix P0 by replacing the i-th row of P0  with the 
i-th row of the given transition matrix P (i.e. pi

T = ei
T P )  (i = 1, 2, …, m) to obtain Pi 

ending up with Pm = P.  Thus, as in [18], letP0 = eii=1

m∑ p(0)i
T  so that if P = eii=1

m∑ pi
T  then 

Pi = Pi−1 + eibi
T  with bi

T = pi
T −  p(0)i

T , for i = 1, 2, …, m. Thus we update π i−1
T ,  Mi−1, and 

Gi−1  ( or Zi−1,  Ai−1
# )  to π i

T ,  Mi , and Gi ( or Zi ,  Ai
# )  finishing with π T = π m

T , M = Mm and 
G = Gm ,  (or Z = Zm, A# = Am

# ).  
The simplest structure to start with is the irreducible transition matrix P0 = ee

T m .  This 
also ensures that each subsequent updated transition matrix is also irreducible. Thus 
p0(i )
T = eT m,  π 0

T = eT m,  Z0 = I ,  A0
# = I − eeT m,  and M 0 = mee

T . 
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The successive updates effectively make use of the Sherman- Morrison (1949) formula, 
([22]), for computing matrix inverses:  

If A is invertible, then (A + uvT )−1 = A−1 − 1
1+ vT A−1u

A−1uvT A−1 . 

In particular, [I − ahT ]−1 = I + (1 1− hTa)ahT ,  when hTa ≠ 1.  
 
We do not give the details as the results are derived in [18]. 
 
The first perturbation procedure was an extension to the procedure of Hunter (1991) 
([14]) updating a one-condition generalized inverse to find successive stationary 
probability vectors, leading to computation of the MFPT matrix. Let Gi = [I − Pi + tiui

T ]−1 . 
We update the g-inverse Gi-1 to Gi successively with t0 = e , u0

T = eT m  with G0 =
[I − P0 + t0u0

T ]−1 = I .  We use Theorem 2.3(b) above as this eliminates the requirement to 
find the group inverse but utilises the structure of H, a particular g-inverse of I – P.  This 
is Algorithm 1 in [18]. 
 
Procedure 3: (G-inverse update – Pert AL1) 

(i)   Let G0 = I ,  u0
T = eT m .  

(ii)    For i = 1,  2,  ...,m,  let pi
T = ei

T P,  ui
T = ui−1

T + pi
T −  eT m ,  

           Gi = Gi−1 +Gi−1(ei−1 − ei )(ui−1
T Gi−1 ui−1

T Gi−1ei ).  

(iii)    At i = m, let Gm = G and π T = π m
T = um

TGm

um
TGme

.  

(iv)   Compute  H = G(I − eπ T ).  

(vi)   Compute   M = [I − H + E(diag(H ))]D where 

   E = [1] and  D = inv[diag(eπ T )].  
 
For the next procedure we consider an extension to Procedure 3 through updating using 
matrix procedures that yield, in tandem at each step, the stationary probability vectors 
and the group inverses. This is Algorithm 2 in [18]. 
 
Procedure 4: (Group inverse update – Pert AL2) 
Start with P.  
(i)    Set R0 = I − ee

T m .  
(ii)    For i = 1, 2, …, m,  let pi

T = ei
T P,  bi

T = pi
T −  eT m ,  

            
   
Ri = Ri−1 +

1
1− bi

T Ri−1ei

Ri−1eibi
T Ri−1.  

(iii)    Compute  π
T = e1

T − e1
T (I − P)Rm .  

(iv)     Compute M = [I − Rm + E(diag(Rm ))]D,  where E  = [1] and D = inv[diag(eπ T )].  
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Some simplifications to this algorithm are  
possible, as not all the calculations are required.  In (ii) note that Ri = Ri−1 I +Ci( ),where 
Ci = 1 ki( )eibiT Ri−1 and ki = 1− bi

T Ri−1ei  implying that Ci has all terms zero except terms in 
the ith row. So that at the ith recursion the only terms that are updated are in the first i 
rows with the rows numbered i+1, i+2, …, m remaining unchanged.  

Rather than carry out the updating by stationary probability vectors we can use a 
procedure based on updating the limiting matrix   Π = eπ T  and the group inverse A# by 
matrix operations rather than by row operations. 

Under a perturbation Ε  when  π
T  leads to   π

T = (π T (I − Ε A# )−1) , if   Π = eπ T and 

  Π = eπ
T

 then   Π =Π (I − Ε A# )−1.                                                      

Now under the perturbation    Ε = eibi
Tto the i-th row with bi

T e = 0,  yields,  

    
Π =Π I + 1

1− bi
T A#ei

eib
T A#⎡

⎣
⎢

⎤

⎦
⎥

 
and  

   
A

#
= (I −Π )A# I + 1

1− bi
T A#ei

eibi
T A#⎛

⎝⎜
⎞

⎠⎟
.  

This leads to the following procedure. (For more details see Algorithm 3 in [18]). 

 
Procedure 5: (Group inverse by matrix updating – Pert AL3) 

 (i) Let P0 = ee
T m , implying Π0 = ee

T m ,  A0
# = I − eeT m . 

(ii) For  i = 1,  2,  ...,m,  let pi
T = ei

T P,  bi
T = pi

T − eT m ,  

         Si = I +
1

1− bi
T Ai−1

# ei
eibi

T Ai−1
# ,   Πi =Πi−1Si ,  Ai

# = (I −  Πi )A
#
i−1Si .  

(iii) At  i = m, let S = Sm then  Π  =Πm−1S,  A# = (I −Π )Am−1
# S.  

(iv) Compute M =  [I − A# + EAd
# ]D,  where E  = [1] and  D = (Πd )−1.  

 
We now give three interrelated procedures, each with different starting conditions, based 
on updating simple generalised inverses of I – P0 that lead to simple computations for the 
stationary probabilities, the group inverse and the mean first passage time matrix. 
 
From Theorem 2.3(c)), if we choose a g-inverse G of I – P with the property that Ge = 
ge, by taking G of the form G = [I − P + eβ T ]−1 , then we have expressions for π  T that are 
given as  π

T = β T [I − P + eβ T ]−1 . Further we have a simple form of the MFPT matrix M 
given by eqn. (2.3).  While it is easy to find an expression for the group inverse of I – P 
as A# = (I − eπ T )G  we don’t actually require that step to find expressions for M. 
 
In Hunter [15] we explored the properties of some generalized inverses of this form. For 
the three procedures to follow we use, successively, the special forms, 
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Ge ≡ I − P + ee
T

m
⎡

⎣
⎢

⎤

⎦
⎥

−1

, Ge1 ≡ [I − P + ee1
T ]−1  and Gee ≡ [I − P + eeT ]−1 , and the Sherman- 

Morrison matrix inversion formula ([22]). The starting conditions for each procedure are 
different and, although we carry out similar recursions, we have different expressions for 
the stationary probability vector πT but identical calculation procedures for the MFPT 
matrices. Once again the reader is referred to [18] for full details.  
 
This leads to three further algorithms – Algorithms 4A, 4B, and 4C in [18]. They are all 
variants of the generic recursion given by (ii) with identical steps (iv) and (v) as in 
Procedure 6. 
 
Procedure 6: (Update using Ge  - Pert AL4A) 
(i)  Start with K0  = I .     

 

(ii)  For  i = 1,  2,  ...,m,  let pi
T = ei

T P,  bi
T = pi

T −  eT m ,

        Ki = Ki−1 I +Ci( ),where ki = 1− bi
T Ki−1ei  and  Ci =

1
ki
eibi

T Ki−1.
 

(iii)  At  i = m, let K = Km and then compute π T = 1
m
eTK  

 
 
 
Procedure 7: (Update using Ge1 - Pert AL4B) 

(i)  Start with K0 = I + e
eT

m
− e1

T⎛
⎝⎜

⎞
⎠⎟

.   

(ii)   Carry out Step (ii) of Procedure 6. 
(iii)  At  i = m, let K = Km and then compute π T = e1

TK . 

 

(iv)   Carry out Step (iv) of Procedure 6, to compute M. 
 
Procedure 8: (Update using Gee – Pert AL4C) 

(i)  Start with K0 = I −
m −1
m2

⎛
⎝⎜

⎞
⎠⎟ ee

T .  

(ii)   Carry out Step (ii) of Procedure 6. 
(iii)  At  i = m, let K = Km and then compute π T = eTK .

 

(iv)   Carry out step (iv) of Procedure 6, to compute M. 
 
Section 4: Computation of MFPTs using Hunter Extended GTH (EGTH) procedure 
 
The details of this EGTH procedure are given in Hunter [17] to which the reader is 
referred. We make use of the GTH procedure of Grassman, Taksar and Heyman ([3])  (or 
the equivalent state reduction procedure by Sheskin ([23]) for finding the stationary 
probability vector π .   Let us provide some details that serves to introduce some additional 
notation. 

(iv)  Compute  M =  [I − K + EKd ]D,   where E  = [1] and D = (Πd )−1. 
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We start with the given transition matrix P (= P(m)) of the irreducible MC {Xk

(m ),k ≥ 0}  
with state space S = {1,2,…, m} = Sm. The general idea is to reduce the state space, one 
state at a time successively removing states m – 1, m- 2, … until we are left with a single 
state 1. Once state 1 is reached the state space is expanded one state at a time i.e. insert 
states 2, …, to finally insert state m.  
 
Suppose we reach the stage where we have n states Sn = {1, 2, …n} with MC 
{Xk

(n),k ≥ 0}  and transition matrix P(n), then it is easily shown during the state reduction 
process that the elements of P(n−1) = pij

(n−1)⎡⎣ ⎤⎦  are related as  

                                  
pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
,   1≤ i ≤ n −1,  1≤ j ≤ n −1,                         (4.1) 

where S(n) = 1− pnn
(n) = pnj

(n)
j−1

n−1∑ .  Note that the transition probabilities of the reduced MC 

can all be obtained without carrying out any subtraction. The MC {Xk
(n−1),k ≥ 0} on the 

reduced state space, Sn-1 is the “censored” MC (see [2]), i.e. the MC restricted to the states 
of Sn-1. Further the irreducibility of the reduced state MC is retained. One can derive 
relationships between the stationary distributions of the respective MCs, {π i

(n),i ∈Sn}  for 
{Xk

(N ),k ≥ 0}.  In particular, it can be shown 

                                 π i
(n−1) = π i

(n)

1−π n
(n) =

π i
(n)

π k
(n)

k=1

n−1∑
,   1≤ i ≤ n −1.   

Similarly when we expand the state space we can show that 

                    π (n) ≡ π1
(n),....,π n

(n)( ) = cn−1 π1
(n−1),...,π n−1

(n−1),
π i
(n−1)pin

(n)
i=1

n−1∑
S(n)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,  

where cn–1 is determined from the fact that π i
(n)

i=1

n∑ = 1.   
From these results we have the following algorithm. 
 
GTH Procedure for computing the stationary probabilities of a MC: 
Let MC {Xk

(m ),k ≥ 0}  be finite irreducible MC with state space Sm = {1, 2, …, m} and 
transition matrix P = P(m ) = pij

(m )⎡⎣ ⎤⎦.
 
Let {π i

(m )}
 
be its stationary probabilities. 

Step 1. Compute, successively for n = m, m  – 1, …, , 3,  

pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,   1≤ i ≤ n −1,  1≤ j ≤ n −1 where S(n) = pnj

(n)
j=1

n−1∑ .
  

Step 2. Set r1=1 and compute successively for n = 2, …, m, rn = ri pin
(n)

i=1

n−1∑ S(n).   
 

Step 3. Compute, for i = 1, 2, …, m, π i
(m ) = ri rjj=1

m∑ .                                                      � 
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In extending this algorithm to find the MFPTs, Kohlas showed ([20]) that it is more 
natural to consider the process as a Markov renewal process (MRP), {(Xk

(n),Tk
(n) ),k ≥ 0} , 

where {Xk
(n),k ≥ 0}  is the embedded MC when the state space is Sn = {1, .., n} andTk

(n)  is 
time that the process stays in the state before making the next transition. Let 
µi
(n) = E[Tk

(n+1) −Tk
(n) | Xk

(n) = i]  be the expected holding time in state i when the state space 
is Sn.  When the process is censored by eliminating state n the mean holding time vector 
eliminates that state and reduces to a smaller (n-1)-dimension vector as 

 µ (n−1)T = (µ1
(n−1),...,µn−1

(n−1) )  where µi
(n−1) = µi

(n) + pin
(n)µn

(n)

S(n)
,  1≤ i ≤ n −1.   

Under the MC setting, which we assume in this paper, initially µi
(m ) = 1  for all i ∈Sm .  In 

[17] it is shown how this influences the MFPTs showing, in particular, that  

       mij =
µi

(i ) + pik
(i )mkjk=1,k≠ j

i−1∑
S(i)

,  3≤ i ≤ m,1≤ j ≤ i −1,  with m21 =
µ2
(2)

S(2)
, and  

      mii = µi
(i ) + pik

(i )mkik=1,

i−1∑ ,  2 ≤ i ≤ m,  with m11 = µ1
(1).  

The expressions for mij ,  for 1≤ i ≤ m −1,  i +1≤ j ≤ m  are much more complicated; (see 
[17]). However, by focussing primarily on the terms mi1  for 1≤ i ≤ m , i.e. the first 
column of the matrix of MFPTs, we can produce a simple algorithmic procedure. 
  
Procedure 9:  (EGTH – Hunter Extended GTH Procedure) 
Let {Xk

(m ),k ≥ 0}  be a finite irreducible MC with state space Sm = {1, 2, …, m} and 
transition matrix P ≡ P(m ) ≡ pij

(m )⎡⎣ ⎤⎦ . 
Step 1(i): Carry out step 1 of the GTH Procedure, i.e. 
Compute, successively for n = m, m–1, …, 3, 

pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,   1≤ i ≤ n −1,  1≤ j ≤ n −1 where S(n) = pnj

(n)
j=1

n−1∑ .  

Step 1(ii): Compute, successively for n = m, m–1, …, , 3, 2,   

µi
(n−1) = µi

(n) + µn
(n)pin

(n)

S(n)
,   1≤ i ≤ n −1, where µ (m )T = (µ1

(m ),....,µm
(m ) ) = (1,...,1).  

Step 1(iii): Compute the m ×1  column vector  

wherem11 = µ1
(1), m21 =

µ2
(2)

S(2)
,  and for i = 3, ,,,, m, mi1 =

µi
(i ) + pik

(i )mk1k=2

i−1∑
S(i)

.
 

Thus, starting with P(m)  ≡ P(m )(1),  we can obtain the entries of the first column  of M = 
[mij] = mm

(1)(m ),mm
(2)(m ),...,mm

(m )(m )( ).   
The procedure that follows to find the other MFPTs is to permute the state space to   
Sm
(2) =  {2, 3, …, m,1} and do this successively finishing up with Sm

(m ) = {m, 1, 2, …m -1}. 
This can be effected by permuting the elements of the transition matrix. For example, for 
Sm
(2) we can do this by moving the elements of first column of P(m) to after the m-th 

mm
(1)(m ) = (mi1),
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column, followed by moving the first row to the last row, to obtain a new transition 
matrix P(m)(2) . One of the easier ways to do this in MatLab is to note that  
P(m)(2) (mod(row + m – 2, m) + 1, mod(col + m – 2, m) + 1)  = P(m)(1) (row, col). 
 
Step 2:  For k = 2, 3, 4,…, m – 1, m.  
(i) Repeat Step 1(i) with P(m) = P(m)(k). 
(ii) Repeat Step 1(ii) with µ (k )(m ) = µ (m ) = (1,,1,..,1).  
(iii) Repeat Step 1(iii) to calculate the m ×1  column vector mm

(k )(m )T =  
mkk ,mk+1,k ,..mm,k ,m1,k ,...,mk+1,k( ).  

 
Step 3: Combine the results of the Steps 1(iii) and 2(iii) to find M as follows. 
LetM = (mm

(1)(m ),mm
(2)(m ),....,mm

(m )(m ) )  and reorder the elements of  to obtain  
M = (mm

(1)(m ),mm
(2)(m ),....,mm

(m )(m ) ) . This can be carried out in MatLab by noting that for each 
row and column entry, M (mod(row + col − 2,m)+1,col) = M (row,col).   
 
A key observation is that the EGTH algorithm retains calculation accuracy as no 
subtractions are involved.  
 
Further, the stationary probabilities do not need to be computed in advance and can be 
found directly as inverses of the mean recurrence times. Once again, no subtraction 
operation need be performed. 
 
 
Section 5: Computation of MFPTs using the Heyman FUND algorithm and its 
modifications 
In carrying out  Step 1 of the  EGTH algorithm observe that the elements for pij

(n−1)  in the 

block upper left hand (n −1)× (n −1)  corner of the transition matrix are based only on the 

elements pij
(n), pin

(n), pnj
(n),   1≤ i ≤ n −1,  1≤ j ≤ n −1 .  This means that we can in effect 

overwrite the elements of the transition matrix that are not required in the future. At the 

conclusion of the reduction process we are this left with a matrix of elements P = pij⎡⎣ ⎤⎦,  

where pij =

pij
( j ) = uij , 1≤ i < j ≤ m,

pii
(i ) = dii , 1≤ i = j ≤ m,

pij
(i ) = lij , 1≤ j < i ≤ m;

⎧

⎨
⎪⎪

⎩
⎪
⎪

  

 
so that P =U + D + L  where U  is strictly upper triangular, L  is strictly lower triangular 
and D is a diagonal matrix.  

M
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Observe from (4.1) that pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,   1≤ i ≤ n −1,  1≤ j ≤ n −1,  so that 

pij
(n−2) = pij

(n−1) +
pi,n−1

(n−1)pn−1, j
(n−1)

S(n −1)
= pij

(n) +
pin

(n)pnj
(n)

S(n)
+
pi,n−1

(n−1)pn−1, j
(n−1)

S(n −1)
,   1≤ i ≤ n − 2,  1≤ j ≤ n − 2.  

It is easy to establish, by considering t = n - 3, …., t = n - k, that  

pij
(t ) = pij

(n) +
pik

(k )pkj
(k )

S(k)k=t+1

n∑ ,   1≤ i ≤ t ≤ n −1,  1≤ j ≤ t ≤ n −1.
 

Since pij
(m ) = pij it is easy to see that if, for k = 2, …., m, we define qkk =1/S(k),

pij
(t ) = pij + uikk=t+1

m∑ qkklkj  for 1≤ i ≤ t ≤ m -1,  1≤ j ≤ t ≤ m -1 with pij
(t ) = pij  for i = m or  j  = m.

 Thus   P = P +U
!"
QL  where Q ≡ diag(q11,q22,...,qmm ).  Note that at this stage q11 can be 

arbitrarily defined.  The first column and last row of U  are empty and the first row and 

column of L  are also empty. Further, since S k( ) = pkj
(k )

j=1

k−1∑ = 1− pkk
(k ),  

D = diag(p11
(1), p22

(2),,..., pmm
(m ) ) = diag(1,1− S(2),...,1− S(m)) implying I -D = diag(0,S(2),..,S(m)).

Let S = diag(1,S(2),...,S(m)) = E11 + I − D so that D = E11 + I −  S.  We define q11 = 1 so 

that S−1
=Q . From these results we establish the following theorem. 

 
Theorem 5.1: For an irreducible transition matrix P, the Markovian kernel I – P can be 
factored into a UL form where L is a lower triangular matrix and U is an upper triangular 
matrix, i.e. I – P = UL.  
In particular, if P =U + D + L  is the matrix of overwritten elements of P from the GTH 
algorithm, U =US −1 − I and L = L − (I − D)where S = E11 + (I − D).   
 
Proof: From the results above 
I − P = I − P +UQL = I −U − D − L +US

−1
L = I − D −U + (US

−1
− I )L

i.e. I − P = S − E11 −U + (US
−1
− I )L   since S − E11 = I − D.

 

Now  (US
−1
− I )(E11 − S)  =  US

−1
E11 −U − E11 + S = S − E11 −U

since (US
−1
E11 =Udiag(q11,q22,...,qmm )E11 =UE11 = 0 (since u11 = 0).

 

Thus I − P = US
−1
− I( ) L − S + E11( ) =UL,  where

U ≡US
−1
− I  is upper triangular and L ≡ L − S + E11 = L − (I − D) is lower triangular.  

!  
Grassman [4] first explored an UL factorisation of I – P based upon the GTH algorithm.  
A version of this UL factorisation was used by Heyman [7] to produce his FUND 
algorithm to compute Z, the fundamental matrix of irreducible Markov chains. The proof 
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given above is modified, due to some arbitrariness in the choice of the Q  matrix, through 
a possible choice of q11.  
 
Our choice for Q  and hence forS  leads to U having all the elements of its diagonal as -1 
and the other elements strictly upper triangular. This leads to U having determinant (-1)m 
and consequently implying the non-singularity of U.  L has all the elements of its first 
row as 0. 
 
Heyman [7] uses the UL factorisation to find an expression for Z.  For completeness we 
incorporate the results of his Theorem 1within our Theorem 5.2 below but extend his 
results and give a non-constructive proof. 
 
Theorem 5.2: Let P be the transition matrix of an irreducible finite MC, πT its stationary 
probability vector and Π = eπT.   
(i) If X is any solution of    

(I – P)X = I – Π,                                                     (5.1) 
then X is a one-condition generalised inverse of I – P and satisfies the property that  

 Xe = xe, where x is a constant.        (5.2) 
(ii) If X is a solution of (5.1) then A#, the group inverse of I – P, is given by  

A# = (I – Π)X,                                         (5.3) 
and Z, the fundamental inverse of I – P, is given by  

 Z   =  Π   +  (Ι  – Π)X.                                                                     (5.4) 
Proof: 
(i) Observe that from (5.1) and (1.2), (I – P)X(I – P) = (I – eπT)(I – P) =  I – P , implying 
that X is a one-condition generalised inverse of I – P. Further, from (5.1) and (1.2), 
(I – P)Xe = e – eπTe =  0,   implying that Xe is a  right eigenvector of   I – P and hence 
must be a multiple of e.             
(ii) From Theorem 6.3 of [11] or Corollary 4.6 of [13], if G is any g-inverse of I – P, 
when P is irreducible, then (I – Π)G(I – Π) = A#.  Taking G = X observe that 
(I – Π)X(I – Π) = (I – Π)X – ( I – Π)XeπT =(I – Π)X –xeπT + xeπTeπT = (I – Π)X leading 
to (5.3).  Z, the fundamental inverse of I – P, is given by Z = [I – P + Π  ]−1 

=  A# + Π   =  Π  + (Ι  – Π)X, leading to (5.4).      
!  

   
With I – P = UL, equation (5.1) can be solved in steps.  
First let  
                                            LX = Y,                              (5.5)  
implying that  
                                            UY = I – Π.                                        (5.6)                                                            
We first solve, from equation (5.6), Y, uniquely, by backward substitution. In Matlab we 
use the procedure Y = U\( I – Π).   Note that for all j = 1, …, m,  y j

(r )Te = yiji=1

m∑ = 0.   

Further, from equation (5.5), since e1
T L = 0T ,  we have that e1

TY = 0T ,  and we conclude 
that the first row of Y, y1

(r )T = (y11,..., y1m ),  consists of zero elements. 
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Since we may take any one-condition g-inverse of I – P, we may take the first row of X as 
the zero vector. Thus we may partition L, X and Y in block form as 

LX =
0 0T

l1
(c) L1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0T

x1
(c) X1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0 0T

y1
(c) Y1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Y ,

 
implying that

 
L1x1

(c) = y1
(c)  and L1X1 = Y1,

 
or equivalently  L1(x1

(c),X1) = (y1
(c),Y1).

Thus if X̂ = (x1
(c),X1),  Ŷ = (y1

(c),Y1),  then we need to solve L1X̂ = Ŷ .   
 
Procedure 10: (Heyman FUND Algorithm for M using Z). 
1. Start with P and use the GTH algorithm to compute πT. 
2. Use the decomposition of Theorem 5.1 finding P  and hence U and L.  
3. Solve UY = I – Π , where Π = eπT, by back substitution. 
4. Solve L1X̂ = Ŷ , by forward substitution. 

5. Let X = 0T

X̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. 

6. Compute  Z   =  Π   +  (Ι  – Π)X.   
7. Compute M = [ I – Z + EZd]D where D = Πd( )−1 .       
 
Heyman’s FUND algorithm for finding the MFPT’s can be modified by noting that  
instead of computing Z one can compute the group inverse, reducing the number of 
calculations required in Step 6 of Procedure 10 as follows. 
 
Procedure 11: (Modified Heyman FUND Algorithm for M using A#). 
1. Carry out steps 1 to 5 of Procedure 10. 
2. Compute A# = (I – Π)X. 
3. Compute M = [ I – A# + EAd

# ]D where D = Πd( )−1 .   
 
Actually one doesn’t need to compute either Z or A# since X is a one-condition inverse 
with the property that Xe = 0, (x = 0 in Theorem 5.2 (i), since X is chosen to have the first 
row the zero vector) and thus from Theorem 2.3 (c) the following procedure is justified. 
Note that Heyman also observed this computational benefit for finding M in the final 
section of his paper, [7]. 
 
Procedure 12:  (Modified Heyman FUND Algorithm for M using X). 
1. Carry out steps 1 to 5 of Procedure 10. 
2. Compute M = [ I – X + EXd ]D where D = Πd( )−1 .   
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Section 6: Computational comparisons 
 
For our numerical computations and comparisons we coded each algorithm using MatLab 
(64-bit version R2015b on a MacBook Air computer) and used various test problems, 
which have previously been considered in the literature.  MatLab was run in both single 
and double precision to enable us to compute and compare the matrices M(S) = [mij(S)] 
and M(D) = [mij(D)] for each procedure and test problem. 
 
We use the following test problems which were introduced by Harrod & Plemmons ([5]) 
They were initially introduced as poorly conditioned examples for computing the 
stationary distribution of the underlying irreducible MC but have been used as examples 
for testing various different algorithms for computing M, the matrix of MFPTs, ([8],  [9]). 
While the dimensions of the state space are relatively small, the test problems lead to 
some computational difficulties.  
 
TP1: (As modified by Heyman and Reeves ([9]). The original version of TP1, given in 
[5] related to a 10-state MC however it was shown, by Heyman [6], that four of the states 
were in fact transient and the irreducible sub chain was identified as 

                                                

TP2:  A typo for the original problem for element (1, 5) was identified and corrected in 
[9]. The test problem is also known as the 8 X 8 Courtois matrix and was also considered 
in a paper by Benzi, [1]. 

  

 
 
 
 
 

.1 .6 0 .3 0 0

.5 .5 0 0 0 0

.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .0009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.



 16 

TP3: 

  

TP4 and variants: 
  

 

 
We compute, with the specified transition matrix for each test problem, the following 
errors for the MFPT matrix, , under both double and single precision:  

Minimum absolute residual error, MINRE =   

Maximum absolute residual error, MAXRE  =   

and the overall residual error, ORE =  

The accuracy of each algorithm was also evaluated in terms of the minimum error, the 
maximum error and the relative errors between the double and single precision 
computations as  
MINE(S, D) = min

1≤i≤m, 1≤ j≤m
mij (S)−mij (D) ,  

MAXE(S, D) = max
1≤i≤m, 1≤ j≤m

mij (S)−mij (D) ,  

and REL(S, D) = mij (S)−mij (D)j=1

m∑i=1

m∑ .   
 
Following Heyman and Reeves ([9]) and Heyman and O’Leary ([8]), if one regards the 
double precision result as the “true” result and the single precision result as the 
“computed” result, then the number of (extra) accurate digits can be defined as the 

0.999999 1.0 E − 07 2.0 E − 07 3.0 E − 07 4.0 E − 07
0.4 0.3 0 0 0.3

5.0 E − 07 0 0.999999 0 5.0 E − 07
5.0 E − 07 0 0 0.999999 5.0 E − 07
2.0 E − 07 3.0 E − 07 1.0 E − 07 4.0 E − 07 0.999999

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

TP41 :ε = 1.0E − 01;  TP42 :ε = 1.0E − 03;TP43 :ε = 1.0E − 05;  TP44 :ε = 1.0E − 07

.1− ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1− ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

M = mij⎡⎣ ⎤⎦

min
1≤i≤m,1≤ j≤m

mij − pikmkj −1k≠ j∑ ,

max
1≤i≤m,1≤ j≤m

mij − pikmkj −1k≠ j∑ ,

mij − pikmkj −1k≠ j∑
j=1

m

∑
i=1

m

∑ .



 17 

overall average of 
.
 We compute this statistic for each of 

our procedures and test problems. 
 
We identify the following procedures in the tables and charts to follow. 
 
Procedure 1: (Standard method) 
Procedure 2: (Simple method) 
Procedure 3: (G-inverse update – Pert AL1) 
Procedure 4: (Group inverse update – Pert AL2) 
Procedure 5: (Group inverse by matrix updating – Pert AL3) 
Procedure 6: (Update using Ge – Pert AL4A) 
Procedure 7: (Update using Ge1 – Pert AL4B) 
Procedure 8: (Update using Gee – Pert AL4C) 
Procedure 9: (EGTH – Hunter Extended GTH Procedure) 
Procedure 10: (Heyman FUND Algorithm for M using Z). 
Procedure 11: (Modified Heyman FUND Algorithm for M using A#). 
Procedure 12: (Modified Heyman FUND Algorithm for M using X). 
 
Appendix 1 gives a table of all the MatLab results for the error calculations for all test 
problems and procedures. 
 
An arXiv.com version of this paper gives an additional appendix with a set of Excel 
charts for the errors for all procedures and test problems. 
 
We make some general comments regarding the computations and the results. 
 
Firstly, if the computation of the minimum absolute residual error (MINRE) yields a zero 
(either under single or double precision) indicates that at least one MFPT is computed 
exactly. Under single precision only Procedures 2, 9 and 12 yield MINRE zero for all test 
problems whilst under double precision for all procedures and test problems this error is 
always zero. Thus single precision is not generally recommended as a suitable 
computation procedure unless one is using the restricted set of Procedures 2, 9, and 12. 
 
For those procedures with minimal MAXRE errors all absolute residual errors are kept 
under control. No one single procedure does that to achieve the smallest MAXRE for any 
given test problem.  Procedures 1, 3, 5, 6, 8, 9 under single precision and Procedures 1, 2, 
3, 6, 7, 9, 10, 11, 12 under double precision each generate a minimum value for at least 
one test problem.  
 
The overall residual error, ORE, is perhaps a better indicator of accuracy as a small ORE 
indicates that the sum of all the absolute residual errors are minimized. Minimum values 
of ORE are achieved by the following procedures for specific test problems. 
 Under single precision: Procedure 12 (TP1), Procedure 9 (TP2, TP3, TP41, TP42, 
TP43), Procedure 3 (TP44). 

− log10
resulttrue − resultcomputed

resulttrue
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Under double precision: Procedure 11 (TP1), Procedure 9 (TP2, TP3, TP41,TP42, TP43), 
Procedure 3 (TP 44).  
This does suggest that Procedure 9 (Hunter’s Extended GTH Procedure) appears to 
generally give the most accurate results. When the other procedures give a smaller error, 
Procedure 9 is the second most accurate procedure (except for TP1 under single precision 
when it doesn’t give a very accurate result at all). Chart 6.1 gives the overall residual 
errors, as given in Table A.6 for all procedures and test problems, under double precision.  
 
Chart 6.1: Overall Residual Errors, under double precision, all procedures and test 
problems 
 
                                 See Chart B.6: ORE under Double Precision 

 
 
Heyman and Reeves ([9]) and Heyman and O’Leary ([8]) computed the accurate digits 
statistic for the above set of test problems when computing the MFPT matrix. In both of 
these papers their results were displayed in figures and no actual numerical results were 
tabulated. We computed this statistic for each the seven test problems and the twelve 
procedures, achieving the results given in Appendix 1: Table A.10 
 
We comment on TP1. This test problem has some unique features in that it is possible to 
deduce exact results for three MFPT’s. In particular, it can be shown that m21 = 2, m43 = 
160.5 and m53 = 26.3. If one computes the MFPT matrices we find that, under double 
precision, all the twelve procedures obtain these exact three results. However, under 
single precision, only Procedure 1 and Procedure 12 yield all three exact results, while 
Procedure 2 gives the exact results for m21 and m43, and Procedures 9, 10 and 11 yield the 
exact result for m21. Thus when calculating the average number of accurate digits we must 
omit the results when the MFPTs under single and double precision are the same, as the 
logarithm of zero is negative infinity. In Table A.10, under TP1, we indicate with *** 
when the average is taken over the 33 finite terms, ** with an average over 34 terms and 
* over 35 terms.  Plotting leads to Chart 6.2. 
 
Chart 6.2: Average extra digits between single and double precision for all 
procedures and test problems  
 
(See  Chart B.10:  Average extra digits between Single and Double Precision 
calculations) 
 
Observe from Table A1.10 that Procedure 9 gives the largest average number of extra 
digits provided by the double precision over the single precision calculations for all the 
test problems.  
 
Heyman and O’Leary [8] used two algorithms for computing M, without previously 
computing Z or A#  – an algorithm MH, which is based on the two stage UL factorisation, 
using U-1 and L factors as in Heyman’s method (similar to our Procedure 12),  and an 
algorithm M, using the UL factors and normalisation. They obtained values, for the 
number of extra accurate digits, between 6 and 7 for all TPs for their algorithm M but 
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displayed widely varying values for different TPs for the algorithm M. They also showed 
that if Z or A# were known in advance then the M matrix could only be computed 
accurately from Z or from A# (as special cases of our (2.4)) for TP1, TP3, and TP41.  
 
Heyman and Reeves [9] presented four algorithms - LINPACK, SR, KSGTH, and 
KSGAUSS for computing M with the same test problems used in this paper. They 
explored different software packages deciding that LINPACK “worked the best”. The 
KSGTH is the same as our Procedure 1 using the GTH algorithm to compute the steady 
state probabilities while KSGAUSS used Gaussian elimination to solve the stationary 
equations.  Their favoured algorithm, is the SR, “State reduction”, procedure of Kohlas 
on which Procedure 9 is based. The Hunter EGTH Procedure consistently produces 
results in the range 7.30 to 7.43, similar to that achieved by Heyman & Reeves [9] (as 
extrapolated from their graphical output), which was not exceeded by any other 
procedure, either in [9] or this paper. 
 
The solution computed by LINPACK did not run for TP44 as the matrix inverse could 
not be computed. In our calculations the only test problem and procedure that could not 
be computed accurately was for TP44 under Procedure 4 (updating the Group inverse 
under Pert AL2 using single precision). MATLAB enabled us to carry out all of the other 
calculations.  An interesting observation for this particular ill-conditioned test problem is 
that Procedure 3 (updating a G-inverse under Pert AL1) gives the most accurate overall 
residual errors. 
 
There is a range of other comparisons that we can make, using the results given in 
Appendix 1, but we generally end up pointing to Hunter’s extended GTH Procedure as 
giving the most accurate results. Our general recommendation is to use this procedure 
where possible. 
 
When paper [18] was written it was hoped that the perturbation procedures were going to 
generally yield accurate results, comparable with other procedures. Apart from isolated 
situations, Procedures 3 – 8 do not perform as well as we had hoped. The EGTH 
procedure, involving no subtractions generally overshadows the perturbation procedures. 
Procedure 12, while not in the same class as Procedure 9, reliably produces the second 
most accurate results. 
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Appendix A: Error calculations for all Procedures and all Test Problems  
 
Table A.1: MINRE under Single Precision 
MINRE(S) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0902E-02 

Procedure 2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 3 0.0000E+00 2.8133E-05 1.5333E-02 1.1921E-07 3.3379E-06 1.9091E-04 1.9091E-04 

Procedure 4 0.0000E+00 2.8014E-06 1.2846E-03 0.0000E+00 2.5034E-06 1.4853E-04 NaN 

Procedure 5 0.0000E+00 9.9784E-06 1.2996E-03 0.0000E+00 1.1921E-06 1.8179E-04 4.9167E-02 

Procedure 6 0.0000E+00 1.0908E-05 1.2996E-03 0.0000E+00 5.8413E-06 8.6933E-04 1.0224E-01 

Procedure 7 0.0000E+00 5.7817E-06 1.2996E-03 0.0000E+00 1.5497E-06 3.1388E-04 4.2600E-02 

Procedure 8 0.0000E+00 1.7941E-05 1.2996E-03 0.0000E+00 4.4107E-06 2.2805E-04 7.9652E-02 

Procedure 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.6164E-03 

Procedure 11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.6164E-03 

Procedure 12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
 
Table A.2: MINRE under Double Precision 
MINRE(D) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 5 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 8 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 10 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Procedure 12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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Table A.3: MAXRE under Single Precision 
 
MAXRE(S) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 1.5259E-05 2.3131E-03 1.0000E+00 7.6294E-06 7.3242E-04 9.3750E-02 1.9313E+01 

Procedure 2 3.0518E-05 1.9531E-03 1.0000E+00 1.5259E-05 9.7656E-04 6.2500E-02 7.7565E+00 

Procedure 3 5.8830E-05 1.9503E-03 7.4928E-01 9.0599E-06 8.2135E-04 5.8108E-02 5.8108E-02 

Procedure 4 3.0518E-05 1.3188E-03 7.6065E-01 6.4373E-06 7.2205E-04 4.4751E-02 NaN 

Procedure 5 5.7161E-05 1.1806E-03 1.4523E+00 5.8413E-06 3.8600E-04 5.0105E-02 2.7472E+01 

Procedure 6 2.2531E-05 1.5189E-03 1.4884E+00 5.7220E-06 3.3975E-04 4.0965E-02 1.1226E+01 

Procedure 7 8.1241E-05 1.9780E-03 1.4482E+00 5.0068E-06 3.8671E-04 4.6234E-02 2.5369E+01 

Procedure 8 2.4557E-05 1.5258E-03 1.4909E+00 4.8876E-06 3.6669E-04 4.6220E-02 1.1133E+01 

Procedure 9 6.1035E-05 1.9531E-03 5.3333E-01 7.6294E-06 4.9897E-04 8.5969E-02 5.0000E+00 

Procedure 10 6.1035E-05 1.9531E-03 1.6523E+04 1.5259E-05 9.7656E-04 7.5120E-02 7.0000E+00 

Procedure 11 6.1035E-05 1.9531E-03 1.6522E+04 7.6294E-06 9.7656E-04 7.5120E-02 7.0000E+00 

Procedure 12 1.5259E-05 1.9531E-03 1.6522E+04 7.6294E-06 4.8828E-04 7.1746E-02 9.0000E+00 
 
Table A.4:  MAXRE under Double Precision 
 
MAXRE(D) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 1.1369E-13 2.4714E-12 1.8626E-09 1.4211E-14 1.8190E-12 1.1642E-10 1.4901E-08 

Procedure 2 5.6843E-14 3.6380E-12 1.4461E-09 1.4211E-14 9.0949E-13 1.7462E-10 7.4506E-09 

Procedure 3 2.2737E-13 5.4570E-12 2.5251E-09 6.1950E-14 6.3665E-12 3.4925E-10 3.4925E-10 

Procedure 4 1.1369E-13 2.3647E-11 4.2285E-05 2.1316E-14 2.3099E-12 1.7462E-10 2.2352E-08 

Procedure 5 2.8422E-13 4.7893E-12 1.9447E-09 1.5987E-14 2.3055E-12 2.3283E-10 2.9802E-08 

Procedure 6 1.1369E-13 3.6380E-12 1.8626E-09 1.4211E-14 9.0949E-13 1.1642E-10 7.5181E-09 

Procedure 7 1.1369E-13 3.6380E-12 1.8626E-09 1.4211E-14 1.8190E-12 1.7462E-10 1.4901E-08 

Procedure 8 1.1369E-13 4.2912E-12 1.8626E-09 2.8422E-14 3.6380E-12 3.4925E-10 2.0740E-08 

Procedure 9 1.1369E-13 3.6380E-12 1.4461E-09 1.4211E-14 1.8190E-12 1.1642E-10 7.4506E-09 

Procedure 10 5.6843E-14 3.7313E-12 2.0940E-05 1.4211E-14 1.8190E-12 1.7462E-10 2.2352E-08 

Procedure 11 5.6843E-14 3.7313E-12 2.0941E-05 1.4211E-14 1.8190E-12 1.7462E-10 2.2352E-08 

Procedure 12 1.1369E-13 3.7313E-12 2.0941E-05 1.4211E-14 1.8190E-12 1.1642E-10 1.4901E-08 
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Table A.5: ORE under Single Precision 
  
ORE(S) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 7.9721E-05 2.8165E-02 3.7670E+00 2.1267E-04 1.7017E-02 1.8252E+00 5.2130E+02 

Procedure 2 8.4311E-05 1.9942E-02 5.1353E+00 3.4666E-04 1.4591E-02 1.4978E+00 1.4851E+02 

Procedure 3 2.6092E-04 3.5845E-02 5.4519E+00 2.6882E-04 2.8050E-02 1.6858E+00 1.6858E+00 

Procedure 4 1.3366E-04 1.8962E-02 3.6441E+00 1.7709E-04 1.5828E-02 1.4867E+00 NaN 

Procedure 5 1.7825E-04 1.8865E-02 5.8119E+00 1.4186E-04 9.3399E-03 1.1775E+00 3.3758E+02 

Procedure 6 1.2526E-04 1.9844E-02 6.0251E+00 1.2279E-04 9.7828E-03 8.9603E-01 1.9242E+02 

Procedure 7 2.4018E-04 1.9384E-02 5.7981E+00 1.3071E-04 1.0204E-02 9.7736E-01 2.3153E+02 

Procedure 8 1.2872E-04 1.6985E-02 6.0274E+00 1.2934E-04 9.7471E-03 9.3048E-01 1.9473E+02 

Procedure 9 2.0275E-04 1.6383E-02 3.5601E+00 1.1259E-04 5.3112E-03 7.8108E-01 8.5883E+01 

Procedure 10 1.8367E-04 2.7213E-02 3.3883E+04 2.2340E-04 1.7498E-02 2.1203E+00 1.7003E+02 

Procedure 11 1.7092E-04 2.7842E-02 3.3883E+04 2.4676E-04 1.7498E-02 2.1203E+00 1.7203E+02 

Procedure 12 7.1913E-05 2.6956E-02 3.3883E+04 1.9002E-04 1.4920E-02 1.6139E+00 1.5876E+02 
 
 
Table A.6: ORE under Double Precision 
 
ORE(D) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 3.1486E-13 4.2940E-11 8.2400E-09 4.3465E-13 4.1593E-11 3.4351E-09 3.2901E-07 

Procedure 2 2.9809E-13 3.8647E-11 7.2145E-09 4.4076E-13 2.8369E-11 4.0932E-09 1.9688E-07 

Procedure 3 1.1076E-12 1.0909E-10 1.6599E-08 1.6265E-12 1.0069E-10 8.7043E-09 8.7043E-09 

Procedure 4 4.0834E-13 3.5271E-10 1.6354E-04 6.8556E-13 6.8057E-11 4.7508E-09 5.2569E-07 

Procedure 5 5.8542E-13 8.0202E-11 1.4783E-08 7.6406E-13 6.9908E-11 6.9648E-09 7.2536E-07 

Procedure 6 3.1319E-13 3.9636E-11 6.9062E-09 3.8036E-13 2.9394E-11 3.2306E-09 2.2832E-07 

Procedure 7 3.6315E-13 4.8937E-11 1.1378E-08 3.6848E-13 4.4544E-11 4.6604E-09 4.2368E-07 

Procedure 8 4.5819E-13 1.0442E-10 1.5714E-08 8.0280E-13 8.5687E-11 1.1774E-08 6.2413E-07 

Procedure 9 2.9554E-13 2.8481E-11 5.2755E-09 2.8832E-13 1.9558E-11 1.5769E-09 1.4170E-07 

Procedure 10 2.4492E-13 4.1265E-11 5.2111E-05 3.4472E-13 3.7945E-11 3.1286E-09 3.4516E-07 

Procedure 11 2.1694E-13 4.2175E-11 5.2112E-05 3.2230E-13 3.7490E-11 3.3033E-09 3.4516E-07 

Procedure 12 2.8488E-13 3.6427E-11 5.2112E-05 2.9698E-13 3.0710E-11 3.0476E-09 2.5663E-07 
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Table A.7 for MINE(S, D) between Single and Double Precision calculations 

 
MIN(S, D) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 2.8422E-14 1.8878E-08 8.9733E-08 3.7478E-08 2.5415E-07 2.5415E-07 2.5415E-07 

Procedure 2 4.4409E-16 3.7599E-05 2.9789E-02 1.0393E-07 8.1511E-09 3.4234E-07 2.1804E-07 

Procedure 3 4.6971E-08 3.8719E-05 1.4642E-02 4.9425E-08 1.1721E-04 1.4576E-03 1.4576E-03 

Procedure 4 1.0398E-07 4.2477E-05 2.1705E-02 1.3248E-07 2.8595E-05 4.7612E-04 Inf 

Procedure 5 9.5415E-09 3.0867E-04 3.0409E-03 2.5835E-08 3.8400E-06 4.0875E-04 7.5673E-02 

Procedure 6 3.8137E-09 1.8545E-04 3.0409E-03 4.4225E-09 2.8390E-06 2.8088E-04 5.6237E-02 

Procedure 7 3.0546E-08 3.3281E-04 3.0409E-03 3.8417E-07 5.2825E-05 5.2960E-03 6.7380E-01 

Procedure 8 1.2641E-09 1.8556E-04 3.0409E-03 1.6998E-08 2.7935E-06 2.8083E-04 5.6237E-02 

Procedure 9 0.0000E+00 7.8481E-08 1.1097E-07 1.0259E-08 1.5811E-08 2.3757E-08 5.6944E-09 

Procedure 10 0.0000E+00 1.8878E-08 8.9733E-08 1.2903E-07 9.2766E-08 2.5415E-07 2.5415E-07 

Procedure 11 0.0000E+00 1.8878E-08 8.9733E-08 1.2903E-07 9.2766E-08 2.5415E-07 2.5415E-07 

Procedure 12 0.0000E+00 1.8878E-08 8.9733E-08 3.7478E-08 3.7478E-08 3.7478E-08 3.7478E-08 

 
Table A.8: MAXE(S, D) errors between Single and Double Precision calculations 

 
MAX(S, D) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 2.7127E-05 4.5160E-01 1.3403E+05 5.8003E-05 6.8901E-02 6.7987E+02 1.0528E+08 

Procedure 2 4.9506E-05 3.7231E+00 9.7505E+04 5.0969E-05 3.8604E-01 3.6333E+03 2.5358E+07 

Procedure 3 6.9505E-03 3.2695E+00 5.5296E+05 1.4576E-04 1.0315E+00 7.0150E+03 7.0150E+03 

Procedure 4 2.9093E-03 1.7307E+00 2.6785E+05 1.0287E-04 2.3300E+00 1.2735E+04 1.0000E+10 

Procedure 5 2.8536E-03 1.8751E+00 1.8137E+05 5.3411E-05 3.4919E-01 3.6567E+03 1.2861E+08 

Procedure 6 2.5588E-03 8.9710E-01 1.8137E+05 3.8305E-05 2.4802E-01 2.6363E+03 4.9001E+07 

Procedure 7 2.2191E-03 2.0862E+00 1.8137E+05 5.7456E-05 3.4977E-01 3.6567E+03 1.2861E+08 

Procedure 8 2.5609E-03 8.9731E-01 1.8137E+05 3.9159E-05 2.4806E-01 2.6363E+03 4.9001E+07 

Procedure 9 6.7817E-05 2.2032E-03 1.2214E+00 1.4700E-05 1.0511E-03 1.1536E-01 7.6999E+00 

Procedure 10 8.8162E-05 1.4282E+00 1.8206E+05 1.9367E-05 6.0751E-02 6.1944E+02 7.3597E+06 

Procedure 11 8.8162E-05 1.4282E+00 1.8206E+05 2.0312E-05 6.0751E-02 6.1944E+02 7.3597E+06 

Procedure 12 2.7127E-05 1.4272E+00 1.8206E+05 1.7415E-05 6.0359E-02 6.1942E+02 7.3597E+06 
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Table A.9:  REL(S, D) errors between Single and Double Precision calculations 

 
REL(S, D) TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 6.2602E-05 1.8238E-04 9.7760E+00 8.5381E+05 2.0605E-03 2.9959E+00 2.9939E+04 

Procedure 2 4.2048E-05 2.2072E-04 5.5973E+01 6.8745E+05 9.9624E-04 9.6408E+00 9.0833E+04 

Procedure 3 8.0903E-05 4.1639E-02 5.6868E+01 3.7384E+06 4.9278E-03 3.4096E+01 2.2813E+05 

Procedure 4 1.1128E-04 1.7467E-02 1.8265E+01 1.5096E+06 2.2607E-03 3.1956E+01 2.1517E+05 

Procedure 5 2.5273E-05 1.7052E-02 2.9542E+01 1.5219E+06 1.7384E-03 1.2950E+01 1.3674E+05 

Procedure 6 2.3256E-05 1.5258E-02 1.8216E+01 1.5219E+06 1.4254E-03 1.0783E+01 1.1486E+05 

Procedure 7 4.2810E-05 1.3236E-02 3.3603E+01 1.5219E+06 1.5823E-03 1.0819E+01 1.1517E+05 

Procedure 8 2.4030E-05 1.5273E-02 1.8219E+01 1.5219E+06 1.4598E-03 1.0785E+01 1.1486E+05 

Procedure 9 2.5894E-05 2.9606E-04 2.6209E-02 5.3162E+00 2.4325E-04 1.3152E-02 1.1988E+00 

Procedure 10 1.0148E-04 4.8392E-04 4.0830E+01 1.5125E+06 4.9828E-04 2.6174E+00 2.7278E+04 

Procedure 11 9.1177E-05 4.9096E-04 4.0828E+01 1.5125E+06 4.7100E-04 2.6174E+00 2.7278E+04 

Procedure 12 1.0511E-04 1.6090E-04 4.0822E+01 1.5125E+06 4.4613E-04 2.6199E+00 2.7278E+04 

 
Table A.10:  Average extra digits between Single and Double Precision calculations 

 
Average extra digits TP1 TP2 TP3 TP41 TP42 TP43 TP44 

Procedure 1 ***6.7522 4.9691 3.2245 6.5086 5.0423 3.2272 0.7819 

Procedure 2 **7.1182 4.5133 2.4592 6.7433 5.0996 3.5632 2.3108 

Procedure 3 6.2773 3.9600 1.7416 6.0373 3.9882 2.1693 2.1693 

Procedure 4 6.3811 4.5148 1.8947 6.3439 4.0975 2.1999 NaN 

Procedure 5 6.8213 4.3463 2.1006 6.5652 4.5249 2.5096 0.1074 

Procedure 6 6.7783 4.3526 2.1006 6.7684 4.8025 2.7873 0.5022 

Procedure 7 6.8009 4.1487 2.1006 6.4926 4.4743 2.4530 0.1447 

Procedure 8 6.9079 4.3525 2.1006 6.7396 4.8026 2.7873 0.5022 

Procedure 9 *7.3504 7.2928 7.3526 7.3681 7.4157 7.4296 7.3321 

Procedure 10 *6.6272 4.5093 2.9679 6.8748 5.1722 3.3115 1.4794 

Procedure 11 *6.5949 4.5091 2.9679 6.9339 5.1722 3.3115 1.4794 

Procedure 12 ***6.7660 4.5436 2.9679 7.0429 5.5830 4.1590 2.7397 
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Appendix B: Charts of errors for all Procedures and all Test Problems  
 
Chart B.1: MINRE under Single Precision 
 

 
 
Chart B.2: MINRE under Double Precision 
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Chart B.3: MAXRE under Single Precision 

 

 
 
 
Chart B.4:  MAXRE under Double Precision 
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Chart B.5: ORE under Single Precision 

 

 
 
Chart B.6: ORE under Double Precision 
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Chart B.7 for MINE(S, D) between Single and Double Precision calculations 

 

 
 
Chart B.8: MAXE(S, D)) errors between Single and Double Precision calculations 
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Chart B.9:  REL(S, D) errors between Single and Double Precision calculations 

 

 
 
Chart B.10:  Average extra digits between Single and Double Precision calculations 
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