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Abstract 
 
Smart computer algorithms and signal processing techniques have led to rapid 

development in the field of patient monitoring. Accelerated growth in the field of 

medical science has made data analysis more demanding and thus the complexity of 

decision-making procedures. Anaesthetists working in the operating theatre are 

responsible for carrying out a multitude of tasks which requires constant vigilance and 

thus a need for a smart decision support system has arisen. It is anticipated that such 

an automated decision support tool, capable of detecting pathological events can 

enhance the anaesthetist’s performance by providing the diagnostic information to the 

anaesthetist in an interactive and ergonomic display format.   

 

The main goal of this research was to develop a clinically useful diagnostic alarm 

system prototype for monitoring pathological events during anaesthesia. Several 

intelligent techniques, fuzzy logic, artificial neural networks, a probabilistic alarms 

and logistic regression were explored for developing the optimum diagnostic modules 

in detecting these events. New real-time diagnostic algorithms were developed and 

implemented in the form of a prototype system called real time – smart alarms for 

anaesthesia monitoring (RT-SAAM). Three diagnostic modules based on, fuzzy logic 

(Fuzzy Module), probabilistic alarms (Probabilistic Module) and respiration induced 

systolic pressure variations (SPV Module) were developed using MATLABTM and 

LabVIEWTM. In addition, a new data collection protocol was developed for acquiring 

data from the existing S/5 Datex-Ohmeda anaesthesia monitor in the operating theatre 

without disturbing the original setup. 

 

The raw physiological patient data acquired from the S/5 monitor were filtered, pre-

processed and analysed for detecting anaesthesia related events like absolute 

hypovolemia (AHV) and fall in cardiac output (FCO) using SAAM. The accuracy of 

diagnoses generated by SAAM was validated by comparing its diagnostic information 

with the one provided by the anaesthetist for each patient. Kappa-analysis was used 

for measuring the level of agreement between the anaesthetist’s and RT-SAAM’s 

diagnoses. 
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In retrospective (offline) analysis, RT-SAAM that was tested with data from 18 

patients gave an overall agreement level of 81% (which implies substantial agreement 

between SAAM and anaesthetist). RT-SAAM was further tested in real-time with 6-

patients giving an agreement level of 71% (which implies fair level of agreement). 

More real-time tests are required to complete the real-time validation and 

development of RT-SAAM.     

 

This diagnostic alarm system prototype (RT-SAAM) has shown that evidence based 

expert diagnostic systems can accurately diagnose AHV and FCO events in 

anaesthetized patients and can be useful in providing decision support to the 

anaesthetists.
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Chapter 1 Introduction 

1.1. Background 
Last two decades have witnessed a tremendous growth in the field of biomedical 

engineering. Another domain of interest is intelligent computer systems which have 

been successfully applied in various applications from aircraft controllers [1] to 

automated control processes in many industrial applications [2, 3] and smart patient 

monitoring systems. These intelligent systems are also referred as “Expert Systems” 

because they mimic the operation of the expert human operator in their respective 

fields. Expert Systems can be used to provide decision support to human operator by 

integrating and displaying information in an easy to grasp format and thereby improve 

the operational performance of the operator [4, 5].  

 

During a routine surgery an anaesthetist is in charge of maintaining patient’s 

physiological state in sound condition through vigilant analysis of multiple channels of 

patient data [6].  Deneault [7] compared anaesthetists’ task to the complex decision 

making process executed by an aircraft controller or a nuclear plant operator. Patient 

management and monitoring are some of the key tasks that an anaesthetist performs 

during routine surgical procedures in the operation theatre. Thus an anaesthetist is 

required to maintain very high level of vigilance at all times, analysing patient 

information from a vast array of monitoring equipments present in the operation theatre 

and make appropriate decisions. The anaesthetists’ task is further complicated by the 

diversity of the display formats from the monitoring equipments manufactured by 

different vendors [7]. Anaesthetists are often overloaded with data from the monitoring 

equipment and thus lead to anaesthesia related mishaps. Human errors contribute to a 

large portion of the anaesthesia related mishaps and they can be easily prevented by 

providing decision support to the anaesthetists [8, 9].  

 

Many expert decision support systems have been proposed in the past to enhance the 

anaesthetists’ performance [5, 10]. Decision support systems can provide diagnostic 

information for critical events during anaesthesia, thus aiding the anaesthetist and, in 

some cases, even outperforming the anaesthetist. For instance in retrospective analysis 

an expert system called “SENTINEL” [5, 11] diagnosed the onset of malignant 
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hyperpyrexia about 10 minutes before the anaesthetist. Numerous techniques have been 

proposed in the past and some were employed for developing diagnostic alarm systems 

[12-16]. Most of the expert diagnostic systems for detecting anaesthesia related events 

were designed for offline/retrospective analysis [6, 11, 17, 18]. This had prompted the 

development of a diagnostic alarm prototype of clinical significance which could 

provide decision support to the anaesthetists and tested in real-time. Having redundant 

(extra) diagnostic information provides more concrete evidence and thus increases the 

confidence in one particular diagnosis [15]. Hence it was proposed that the diagnostic 

alarm prototype developed in this research project should have multiple diagnostic 

modules so that redundant diagnosis could be generated for each critical event. During 

this research, several different techniques were studied through intensive literature 

review and the most suitable techniques were selected for developing new algorithms 

which were implemented for generating diagnoses.  

  

1.2. Motivation 
Digital signal processing is a rapidly expanding field and has numerous real-life 

applications ranging from medical imaging and patient monitoring [19-22] to 

telecommunication-based applications [23, 24]. In this research project, new signal 

processing scripts were required for filtering and analysing the raw patient data before 

generating diagnostic information from the analysed data. The development of the 

proposed diagnostic system prototype was a practical application of the signal 

processing techniques and has provided a challenging research project, on part of a 

signal processing engineer.  

 

Knowledgeable project mentors have provided the researcher a good understanding in 

the field of signal processing and anaesthesiology. This project was a brain child of 

external project supervisor Dr. Michael Harrison, Anaesthetist, Auckland City Hospital. 

Dr. Harrison had worked on several projects on anaesthesia alarm development in the 

past and has strong knowledge in the field of anaesthesia.  

 

The motivation for this research project was the development of a new computer based 

prototype which could improve patient safety by reducing human error. The main 

objective of this research was to develop a diagnostic alarm prototype capable of 

generating diagnosis for anaesthesia related critical events and present the diagnosis to 

the anaesthetist on an interactive and ergonomic user interface on the computer screen. 
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1.3. Literature Review 
With the accelerated growth in the field of medical science it became evident that 

experts had to cope with large volumes of data and decision making processes [25]. 

Thus the need for expert systems in assisting the decision making task became even 

more apparent. Technological advances in clinical science and engineering had given 

birth to a whole new era of computer assisted systems called “smart/expert systems”. 

Research into computer assisted decision making tools began as early as 1950s [25]. 

Expert systems are capable of mimicking the performance of a human operator by using 

a computer based decision making algorithm. Expert systems have been widely applied 

in decision making processes for various medical applications [26-30] as well as non-

medical applications [31-33]. In this research project we focus our concentration on 

expert systems applied to anaesthesia and their applications for monitoring pathological 

conditions during the administration of anaesthesia. 

  

1.3.1. Expert Systems in Anaesthesia Monitoring 
Anaesthesia is one of the most demanding branches of medical science. During 

routine surgical procedures in the operating theatre, anaesthetists have to execute 

several critical tasks, some of which are listed below:  

1) Analyse large amount of data presented by various monitoring equipments [8]. 

2) If a problem is detected, it must be diagnosed as a matter of urgency. 

3) Execute various patient management protocols [34].  

 

In certain circumstances anaesthetists may be overloaded by patient data from the 

monitoring equipments and the analysis of these data. The anaesthetists could 

potentially be too occupied to diagnose the patient’s condition [35] and this could 

lead to potentially grave consequences [11]. The common anaesthesia mishaps that 

occur during day-to-day anaesthesia causing these disastrous errors in anaesthesia 

administration were classified and studied by Reason [36]. Human errors in 

anaesthesia account for 82% of the preventable mishaps [9]. The raw information 

given to the anaesthetist can be analysed and presented to anaesthetist in an 

ergonomic form which helps to reduce data overloading and hence the associated 

errors during anaesthesia administration. It was suggested by van den Eijkel and co-

workers [8] that such conditions can be overcame by using a knowledge based 

anaesthesia monitor (Expert System). Evidence/knowledge based anaesthesia 
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monitor which analyses the data and presents the results to the anaesthetist can help 

the anaesthetist to carry out effective diagnosis and hence prevent such mishaps. 

 

Another approach towards aiding the anaesthetists’ task include providing the 

information to the anaesthetist in an integrative display format which reduces the 

response time of the anaesthetist in detecting pathological events [7]. Thus it can be 

inferred that, an expert anaesthesia monitor should analyse the patient data from the 

monitoring equipment in the operating theatre and present the diagnosis to the 

anaesthetists in an explicit way on an integrative, ergonomic user interface. 

 

The existing anaesthesia monitors in the operating theatre are capable of monitoring 

raw physiological data with no diagnostic alarm capabilities. Present anaesthesia 

monitoring systems are capable of monitoring numerous physiological parameters 

like: 

1) Blood pressure (BP) 

2) Plethysmography/Pulse volume (PV) 

3) End tidal (exhaled) carbon dioxide (ETCO2) 

4) Inspired (inhaled) carbon dioxide (ICO2) 

5) Pulse oximetry (oxygen saturation level of haemoglobin in blood) (SPO2), 

etc. 

     

The majority of expert systems have been developed for offline/retrospective 

analysis of clinical data and hence cannot be tested in real-time [5, 6, 37, 38]. Some 

recent works [11, 13, 37, 39, 40] in the field have given way to new online 

monitoring techniques like fuzzy logic based diagnosis, artificial neural network 

based diagnosis, logistic regression based trend detection and statistical/probability 

based techniques.   

 

Sukuvaara et al. [39] developed an online expert system that acquires data from an 

anaesthesia monitor and analyses the acquired data to give two level (alarm and 

alert) warnings to the anaesthetist. This alarm detects hypovolaemic, hyperdynamic 

and hyperventilation states in postoperative cardiac surgical patients. Another 

monitoring algorithm developed by Krol et al. [37] detects low anaesthesia level and 

unstable blood pressure (lability).  
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However, it has been established that overlapping parameters can improve the 

accuracy of the diagnosis and by giving more weight to a closely related parameter 

can further enhance the correct diagnosis. For instance the diagnosis of a fall in 

cardiac output (FCO) is likely to be more accurate if ETCO2 is given more weight 

than the other parameters in the rule base used for detection of CO [11]. 

Anaesthetists make decisions in complex circumstances by monitoring various 

parameters like BP, SpO2, ETCO2 and reacting to an abnormal  stimulus (abnormal 

patterns in the signals being monitored) [8]. The response of the anaesthetists is 

based on the available clinical evidence. Anaesthetist execute the decision making 

task by forming a mental map of the available evidence and identifying the disease 

patterns (stimulus) in the data signals. For example use of the central venous 

pressure (CVP) monitoring during the preanaesthetic period is essential to the 

anaesthetist for evaluation of the patients state who has been suffering massive blood 

loss[41]. Quantitative measures like thermodilution CO measurement by pulmonary 

artery catheterisation [42, 43] and central venous pressure can also be useful for 

monitoring CO and  FCO but might not be always available, for example in patients 

undergoing non-cardiac surgeries.   

An expert diagnostic system mimics an expert’s behaviour by executing a series of 

smart/intelligent algorithms which scan the available data for stimulus. The expert 

knowledge implemented by anaesthetists for making the diagnosis exists in the form 

of linguistic rules. These linguistic rules are required to be converted into 

programmable sets of rules for the development of smart computer algorithms. 

Fuzzy logic based algorithms and probabilistic alarm algorithms discussed in the 

following sections have the potential for implementing these linguistic rules into 

logical algorithms.   
 

By using a fuzzy logic based algorithm, expert diagnostic systems can be developed 

to match or exceed the performance of the anaesthetists as discussed by Grant and 

Naesh [44]. These authors have also pointed out some applications for control of 

depth of anaesthesia where decision making algorithms have outperformed the 

anaesthetist. It was also suggested that the expert diagnostic systems are more 

reliable than manual interventions. The SENTINEL system developed by Lowe [11] 

is a prime example of how fuzzy logic and knowledge based systems can be 

developed for detection of adverse condition during anaesthesia administration.  
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Expert systems based on fuzzy logic and artificial neural networks (ANN) can also 

be used for detecting rare pathological conditions like malignant hyperpyrexia (MH). 

For instance a fuzzy logic based algorithm was developed by Lowe and Harrison [5] 

for detecting MH. In offline validation of the algorithm, the system detected MH 

nine minutes before the anaesthetist diagnosed it. The work done by Lowe and 

Harrison exemplifies how expert systems can be implemented to facilitate and 

enhance anaesthetists’ performance in the clinical environment and thus improving 

patient safety. The algorithms developed by Lowe and Harrison (SENTINEL) are 

offline test algorithms and therefore were tested retrospectively.  These algorithms 

need to be redeveloped as real-time test modules so that they can be used for real-

time diagnostics during a clinical procedure. The evolution of relevant technologies 

and innovations has generated a whole new breed of intelligent algorithms and 

techniques. The following literature discusses various computer based techniques 

which can be used for implementing an expert diagnostic alarm system.  

 

1.3.1.1. Fuzzy and Crisp Sets 
Sets are ubiquitous in all logic based systems. Sets theory was proposed by Cantor 

[45] in late 1890s. Sets are defined as logical groups of abstract elements. For 

example consider the linguistic diagnostic rule for absolute hypovolaemia (AHV) 

defined by the anaesthetist which can be expressed in the form of following logical 

statement.  

 
 

Now using the classical crisp set theory we can define a low blood pressure set 

(LBP) and low pulse volume set (LPV) as in equations 1.1 and 1.2 respectively, see 

the graphical illustration. Further crisp set operators like AND, OR, NOR, etc. 

operator can be used for combining two or more sets to create more complex sets 

(refer equation 1.3), this is graphically illustrated in the following Venn diagram 

Figure 1.3.1-1. 

 

  Set LBP = { }XmmHgdatasetBPX ≥∈ 95|_   (1.1) 

  Set LPV = { }XLitresdatasetPVX ≥∈ 3|_    (1.2) 

“If blood pressure is very low AND pulse volume is very low then absolute 
hypovolaemia is very likely.” 
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  Set AHV = Set LBP AND Set LPV    (1.3) 

  

 

Figure 1.3.1-1. Venn diagram for AHV. 

 

Fuzzy sets can be used for representing information where the boundaries of the set 

are not clearly defined [46]. In the above diagnostic rule, blood pressure (BP) of 

94.9999 mmHg will be classified as either high BP (1 or ON) or low BP (0 or OFF) 

depending upon what limiting condition is set for the crisp set (refer Figure 1.3.1-2). 

However it is very likely that an expert would classify BP values of 94.9999 mmHg 

and 95.0001 mmHg as high BP when the threshold is set at 95 mmHg. Thus the 

vagueness and uncertainty in linguistic rules cannot be clearly represented if the BP 

is expressed using a crisp set. For instance very high BP, very low BP, moderately 

high BP cannot have fractional/partial membership to the crisp set.   

  

 

Figure 1.3.1-2. Crisp Sets. 

 

 

Figure 1.3.1-3. Fuzzy Sets. 
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Fuzzy sets were first proposed by Zadeh [47] in 1965. Fuzzy sets can be useful 

when defining such sets where the boundaries of the sets are imprecisely defined. 

Figure 1.3.1-3 shows the fuzzy set representation for the blood pressure set where 

the fuzzy variable (BP in the above example) has a degree of membership in the 

fuzzy set. In fuzzy sets the variable (BP) is mapped into a fuzzy domain through a 

fuzzy membership function. Theoretically fuzzy set is defined as, 

 

  
⎩
⎨
⎧>

=
0
0

)(xsμ    
if
if

 
Sx
Sx

∉
∈

     (1.4) 

 

Where S is the fuzzy BP_set, )(xSμ  is the fuzzy membership function which maps 

the crisp blood pressure values of X on [0, 1], that is, the degree of belonging of 

element x to the universe X can be any number 1)(0 ≤≤ xSμ .  

 

 

Figure 1.3.1-4. Pyramid of structured human knowledge in the world of fuzzy logic [48]. 
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Due to this capability of fuzzy logic to express linguistic rules in terms of degrees of 

membership, the vagueness and uncertainties can be easily handled. Fuzzy logic 

based methods can be used for designing expert systems on the basis of knowledge 

expressed in a common language [48]. The relationship between fuzzy logic and 

linguistic knowledge can be graphically illustrated by Figure 1.3.1-4. The capability 

of fuzzy logic to easily map human knowledge into algorithmic rules has allowed 

the application of fuzzy logic in many expert diagnostic systems. 

 

Fuzzy logic has been successfully applied in many decision and control applications. 

A very relevant application of fuzzy logic to this research project was for diagnosis 

of a rare pathological condition called malignant hyperpyrexia by Lowe and 

Harrison [5]. Some more publications by Zadeh were studied for more thorough 

understanding of fuzzy logic and its applications in diagnostic analysis. In another  

publication [49] titled “Fuzzy Logic = Computing with words” Zadeh demonstrated 

how robust fuzzy algorithms could be created by exploiting the ability of fuzzy sets 

to handle imprecise linguistic rules. Zadeh [50] also discussed the use of fuzzy logic 

and its impact in the domain of soft computing. Soft computing is real life 

application of computer based methodologies aimed at accommodating the 

imprecision in real world computer applications. Similar to crisp set operators like 

AND, OR and NOR, etc., fuzzy operators are defined for fuzzy sets. These fuzzy 

operators can be used for forming a complex diagnostic rule like the AHV rule 

mentioned above.  

  

Diagnostic alarm development for anaesthesia monitoring is one such application 

wherein soft computing methods can be applied. Some other soft computing 

techniques which were reviewed are discussed below.  

 

1.3.1.2. Artificial Neural Networks 
Artificial neural networks have found applications in a large number of biomedical 

applications. Some of these applications include anaesthesiology, radiology, 

cardiology, psychiatry and neurology [51]. Naguib et al. [51] have summarised an 

impressive collection of articles on practical application of ANN including patient 

monitoring. ANN is particularly useful in applications where the problem to be 

solved is not clearly defined and the development of algorithmic solution is not 

feasible.  ANN finds its application in areas of biomedical application where the 
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knowledge is shallow and it is not feasible to form an algorithmic solution by 

formulating rules from the expert’s knowledge. One typical application for neural 

networks is feature extraction [19] for biomedical signal/images wherein the 

embedded features in the signal/images are unknown. It is therefore considered as 

the black box approach when employed in a smart computational application [48] 

like the one proposed in this research project. ANNs are self learning modules and 

take decisions by learning from examples through training sessions. Neural 

networks learn by forming internal linkages corresponding to the examples they are 

trained with. Thus sufficient sample data sets need to be available for each critical 

condition that needs to be diagnosed using the ANN based algorithms. However for 

some rare critical conditions for example malignant hyperpyrexia sufficient data 

might not be available beforehand. Also “The lack of a readily understandable 

explanation for the ‘black box’ operation of neural networks prohibits some 

potential further deployment”[52]. Due to these limitations ANN cannot be directly 

used for diagnostic applications in anaesthesia.  

 

1.3.1.3. Logistic Regression 
Logistic regression is a statistical tool for finding the best relationship between an 

outcome (dependent variable, diagnosis) and a set of independent variables (patient 

data), the outcome variable is binary (‘0’ or ‘1’). These set of independent variables 

are also called covariates [53]. Thus logistic regression can be used for determining 

the outcome (i.e. diagnosis/decisions) from multiple independent variables (like 

blood pressure, pulse volume, heart rate, etc). Some logistic regression based 

applications are mentioned below.  

 

Diagnosing pathological events during anaesthesia monitoring is analogous to fault 

detection and diagnosis (FDD) processes in industrial applications [11]. Logistic 

regression is widely used in many FDD processes. Sutanto [54] discussed one such 

industrial application wherein logistic regression-based FDD technique was used for 

predicting future faults in a printing process. In this article Sutanto suggested that 

logistic regression analysis with successive data collection (as in anaesthesia 

monitoring) could result in an unstable process with incomprehensible results. Such 

instability should be anticipated as regression analysis is very sensitive to the nature 

of the data collection and the outliers present in the input data set. Physiological data 
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from the patient monitors are very likely to be artifact and noise prone and thus a 

regression-based diagnostic module is very likely to suffer instability.   

 

An expert system called “TrenDx” developed by Haimowitz et al. [16, 55] was a 

regression-based system which was capable of detecting stimulus (clinically 

significant trends) in patient data. TrenDx has successfully diagnosed paediatric 

growth trends in the patient data achieving same diagnostic performance as the 

experts. However, TrenDx was in early stages of the development and needed 

further work before it could be used for real-time application. Moreover the 

diagnostics in anaesthesia are far more rigid in time than paediatric and intensive 

care monitoring for which TrenDx was designed.  

 

1.3.1.4. Statistics based Physiological Alarms 
For diagnosing anaesthesia related critical events disease patterns in the patient data 

need to be identified. Identification of these disease patterns involves detecting 

excessive changes in the physiological variables. Many statistical tools like logistic 

regression discussed above and clustering analysis [56] were available. Harrison and 

Connor [13] [In press] suggest that a fall in BP of 10 mmHg from a previous value 

of 70 mmHg had far greater significance than a fall of 10 mmHg from 150 mmHg. 

Thus it becomes difficult to develop a simple algorithm for detection of adverse 

changes in physiological variables. Probabilistic alarms from sequential 

physiological measurements by Harrison and Connor is mathematically 

straightforward and is a rapid statistical tool for detecting clinically adverse 

physiological variations. The methodology of this probabilistic alarm algorithm is 

explained in detail in Chapter 3. The adverse changes in physiological variables (i.e. 

the output of probabilistic alarm algorithm) are expressed in multiples of standard 

deviations (SD) and the sensitivity of the probabilistic alarms can be tuned by 

specifying an appropriate alarm limit. For instance an alarm limit of 2SD can be set 

for BP. Any adverse changes in BP data which generate a probabilistic alarm level 

greater than 2SD could be seen as a strong evidence for a clinically significant 

change.  

 

A probabilistic alarm algorithm is logically straight forward and simple for the 

anaesthetist to understand. The reasoning behind the alarm level will become more 

transparent to the anaesthetists if this algorithm were to be employed in an expert 
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diagnostic system. Probabilistic alarms also have the advantage of being 

computationally less demanding compared to other complex diagnostic algorithms 

like fuzzy logic and ANN. Harrison and Connor have also described the heuristic 

relationships patterns for some common critical states which might arise during 

anaesthesia administration.  

 

These heuristic relationships (refer Table 1) combine the transformation in 

observable physiological variables like blood pressure, heart rate, pulse-volume and 

end-tidal CO2 to reveal the patterns for clinical pathological states. For instance the 

heuristic relationship for absolute hypovolaemia is identified by an increase in HR 

and decrease in BP and decrease in PV and variable ETCO2. 

 

Table 1. Heuristic relationships between deviations in observable physiological variables and 
clinical pathological states [13]. 

Heart Rate
(HR)  

Blood Pressure
(BP)

Pulse Volume
(PV)

End Tidal CO2
(ETCO2)

Relative 
hypovolemia

~ ↓ ↑ ~

Absolute 
hypovolemia

↑ ↓ ↓ ~

Sympathetic 
response

↑ ↑ ↓ ↑

Fall in cardiac 
output

↑↓ ↓ ↓ ↓
 

Where, 

  ↑  indicates increase in the physiological parameter  

↓ indicates decrease in the physiological parameter 

↑↓ indicates increase or decrease in the physiological parameter 

~ indicates a variable physiological parameter. 

 

1.3.1.5. Selection of Diagnostic Techniques 
After consultation with the external project supervisor Dr. Harrison (Anaesthetist), it 

was decided that multiple diagnostic modules should be employed for generating 

diagnostics in the diagnostic alarm prototype. In order to reduce visual clutter on the 

user interface of RT-SAAM the number of diagnostic modules were limited to three. 

Based on the literature review presented above it was decided that a fuzzy logic 

based module would be used for developing the diagnostic alarm prototype 

proposed in this research project. Fuzzy logic was chosen because of its successful 



 

 13  

offline application in the field of anaesthesia monitoring and its capability to handle 

the linguistic complexity in the expert knowledge [11]. The probabilistic alarm 

algorithm was selected as the second module. It was anticipated that computational 

simplicity of the probabilistic alarm algorithm and the transparency of the reasoning 

behind the probabilistic alarm results would give the anaesthetist more confidence 

when using the evidence presented by the prototype system. The third diagnostic 

module (SPV based diagnostic module) selected for the prototype system requires 

understanding of some clinical knowledge which is presented in the following 

section.   

 

1.4. Clinical Literature 
Human anatomy and physiology is complex and covering the minute details is beyond 

the scope of this text, we concentrate our attention on the cardio-pulmonary system and 

the associated physiological parameters which are important from this research point of 

view. The human cardio-pulmonary system consists of the cardiovascular system and 

the respiratory system.  

1.4.1. Cardiovascular System 
From the moment its starts beating until the moment it stops the heart works 

tirelessly providing the power needed for life. The heart undergoes fairly 

complicated movements as it alternately contracts (systole), forcing the blood out of 

its chambers, and relaxes (diastole), refilling its chambers with blood [57]. The 

cardiac cycle of the heart consists of all the events associated with the heart during 

one complete heart beat. Figure 1.4.1-1 shows the cardiac cycle and describes the 

events occurring in the left side of the heart, we focus our attention only to events 

significant from the project point of view.  

 

During ventricular systole as the atria relax, the ventricles contract and their walls 

close in on the blood in their chambers and the pressure steeply rises (phase 2a in 

Figure 1.4.1-1). The blood pressure in the heart is at its peak. This is called systolic 

pressure. During relaxation, the atrioventricular valves are open and the ventricles 

relax causing the pressure to drop. The backflow of the blood in the aorta and 

pulmonary trunk closes the semilunar valves causing the pressure to rise briefly. This 

is shown in Figure 1.4.1-1 as the dicrotic notch. The ventricles relax completely and 

this marks the diastolic pressure. The blood pressure is always expressed in pairs 
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(systolic pressure and diastolic pressure). The typical range for systolic and diastolic 

pressure is in the range  110 to 130 mmHg and 70 to 80 mmHg  respectively [57]. 

The mean of the blood pressure waveform computed over a fixed interval of time is 

called mean arterial pressure (MAP). The systolic pressure value derived from 

invasive pressure waveform (BP/P1) is also called systolic arterial pressure (SAP). 

 
Figure 1.4.1-1.  Summary of events occurring in the heart during the cardiac cycle [57]. 

(a) Events in the left side of the heart. An ECG tracing is superimposed on the graph (top) so that 
pressure and volume changes can be related to electrical events occurring at any point. Time 
occurrence of heart sounds is also indicated. 

(b) Events of phases 1 through 3 of the cardiac cycle are depicted in diagrammatic views of the 
heart. 

 

1.4.1.1. Cardiac Output 
Cardiac output (CO) is defined as the amount of blood pumped out by each 

ventricle in one minute.  Heart rate (HR) is calculated as the number of 

contractions (beats) of the heart in one minute. The unit of HR is thus beats per 

minute (bpm). The average heart rate for an adult male is 75 bpm. CO can be 

expressed as the product of HR and stroke volume (SV). Stroke volume is defined 
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as the amount of blood pumped out by a ventricle with each beat. The average SV 

for an adult male is 70 ml per beat [57]. Thus, 

CO (ml/min) = HR (75 beats/min) x SV (70 ml/beat)  

∴  CO = 5250 ml/min (5.25L/min). 

Cardiac output may be reduced due to numerous reasons. The fall in cardiac output 

(FCO) can be defined as state where the compensatory mechanisms in the human 

body are insufficient to maintain the blood circulation.  

 

1.4.1.2. Pulse volume (PV) 
Plethysmography is a non-invasive method for measuring the blood flow within the 

blood vessels, or arteries [58]. Pulse oximetry is primarily for the measurement of 

oxygen saturation of haemoglobin but as a by-product there is a unitless ‘pulse 

volume’ output. It can be used as one of the parameters for monitoring patient’s 

hemodynamic state during anaesthesia.  

 

1.4.2. Respiratory System 
During inspiration the diaphragm contracts, which results in the expansion of the 

thoracic cavity (refer Figure 1.4.2-1). As the thorax expands the lungs get pulled 

along with it and intra-alveolar and pleural pressure fall below atmospheric level 

(about -3mm Hg). Air rushes into the lungs due to the pressure gradient which now 

exists. 

 

During natural breathing (unventilated) the pressure in the pleural cavity (between 

the lungs and thoracic cage) is negative (about -3mm Hg). During positive pressure 

ventilation expansion of the lungs occurs with positive pressure and increases the 

pleural pressure, this reduces the flow of venous blood into the chest and therefore 

reduces venous return to the heart (refer Figure 1.4.2-2).  In the presence of absolute 

hypovolaemia (blood loss) the venous return to the heart is markedly reduced.  

Venous return will vary throughout the respiratory cycle (because of intra-thoracic 

pressure changes) and thus the stroke volume will vary and this will influence the 

systemic arterial pressure 
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Figure 1.4.2-1. Natural respiration [59]. 

 
.  

 

 
Figure 1.4.2-2 . Positive pressure (mechanical) respiration [59]. 

 

Theoretically a ventilation failure will occur if the load placed on the respiratory 

system exceeds its capacity. The conditions responsible for increasing the 

respiratory load are also responsible for reducing ventilatory capacity and will place 
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the individual at the risk of respiratory insufficiency [60].  In the event of absolute 

hypovolaemia blood loss occurs reducing the venous supply to the respiratory 

system and hence reducing the drive capacity. Mechanical ventilation changes the 

pleural pressure in the thoracic cavity and thus the relationship of the intra-thoracic 

and extra-thoracic structures by changing the right and left ventricular loading. By 

monitoring the respiration induced systolic pressure variations (SPV), hemodynamic 

changes (particularly AHV) can be detected. SPV can be used for monitoring 

sympathetic regulation in anaesthetized patients under positive-pressure 

(mechanical) ventilation [61]. 

 

Rook et al.[62] and Magder [63] have indicated in their studies that SPV provides a 

useful measure for fluid responsiveness. The changes in SPV are related to the blood 

volume capacity of the patient, for instance increasing SPV indicates increasing 

hypovolaemia. Ornstein and co-workers [64] suggested that SPV is a better indicator 

than loss in blood volume. 

 

Dalibon et al. [65] studied 67 subjects for assessing the accuracy of the SPV for 

detecting low ventricular preload in non-hypotensive patients. Through this study 

they had concluded that in anaesthetized non-hypotensive patients SPV does not 

reflect low left ventricular preload. Thus in such patients SPV was not an accurate 

measure for hypovolaemia. But patients undergoing major surgical procedures are 

very likely to suffer blood loss and hence majority of the patients under anaesthesia 

monitoring are likely to be hypotensive. A SPV based algorithm was chosen as the 

third diagnostic algorithm for the proposed diagnostic alarm prototype.  

1.4.2.1. End-Tidal CO2 and Inspired CO2 
Carbon-dioxide (CO2) produced by cellular metabolism is transported to the right 

ventricle by the venous system. It is hence pumped to the lungs by the heart and 

diffuses out into the exhaled air. The concentration at the end of the expiration cycle 

is called End tidal CO2 (ETCO2), which reflects the metabolism, circulation and 

ventilation [66].  
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1.4.2.2. Inspired CO2 

Inspired carbon-dioxide (ICO2) is the carbon-dioxide breathed in by the patient and 

is normally zero. If rebreathing occurs then the ICO2 may be greater than zero.  A 

raised CO2 will affect the patient’s hemodynamic state [67].  

 

SPV values reflect changes in blood volume capacity only if patient is under 

positive pressure ventilation [61]. In the SPV based diagnostic module proposed in 

section 1.4.2, ICO2 and ETCO2 values are to be used for determining if the patient is 

breathing with or without positive pressure (mechanical) ventilation. The detailed 

functionality of the SPV algorithm is explained in the following chapter. 

 

1.5. Research Contribution  
During the course of research, new filtering algorithms, signal processing algorithms 

and diagnostic modules were developed. An interactive user interface was programmed 

after consultation with the anaesthetists. The diagnoses generated by the diagnostic 

alarm prototype were compared with the diagnoses generated by the expert 

(anaesthetist). The objective was to obtain high level of agreement between the two 

diagnoses thereby validating the reliability of the diagnostic algorithms. 

 

The real-time version of the proposed system is called “Real-Time Smart Alarms for 

Anaesthesia Monitoring (RT-SAAM)” and it required new communication protocol to 

be developed for testing RT-SAAM. This setup will be explained in detail in Chapter 4. 

It is anticipated that this communication protocol can be used for other anaesthesia 

related research wherein data collection is required.    

 

This research has identified probability (statistic) based alarms, fuzzy logic based 

alarms and systolic variations in blood pressure with respiration (SPV) based alarms as 

the three diagnostic alarm modules for generating diagnoses. The development of these 

three modules and their application for anaesthesia monitoring will be explained in the 

following chapters. This research forms a small component of the ongoing development 

for the proposed diagnostic alarm prototype which will be further refined through more 

rigorous real-time testing.  
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1.6. Thesis Outline 
 

Chapter 1: This chapter presents the background, motivations, literature review and 

contributions of the research documented in this thesis. The theoretical development of 

the research concepts and the diagnostic process are also discussed. The following 

paragraphs briefly describe the contents of other chapters of this thesis.  

 
Chapter 2: Data Analysis and Algorithm Development discusses the data simulation, 

relevant signal processing and diagnostic theory. The analytical working of the 

diagnostic modules is also explained, followed by the real-time algorithm development 

which added functionality to the proposed diagnostic alarm prototype.   

 

Chapter 3: Real Time System Development presents the communication protocol 

developed for conducting real-time testing of the RT-SAAM. An overview of the real-

time system is given and the real-time implementation of RT-SAAM is discussed in 

detail.   

 

Chapter 4: Diagnostics and Testing describes the data collection process wherein the 

actual experimental setup is shown and explained. The system validation section in this 

chapter reviews the diagnostic method used and the offline and real-time analysis test 

results.  

 
 
Chapter 5: Discussion and Conclusions summarises the major aspects of the research 

outcomes and possible future works in refining the prototype that was developed in the 

previous chapters.  

 

1.7. Summary 
The aim of this thesis is to extend the work of Andrew Lowe and Michael Harrison [5, 

11, 68, 69] by developing real time algorithms for analysis of the hemodynamic data 

from the patient and providing a warning/alarm to the anaesthetist. The alarm system 

prototype developed in the following chapters uses the new fuzzy logic algorithms for 

real-time diagnosis; they are however based on same underlying principles as in 

SENTINEL by Lowe. The newly developed probabilistic alarm algorithms and SPV 

based diagnostic alarm algorithms were also discussed. 
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A major part of this thesis is the amalgamation of the results from these three 

algorithms in such a way that the anaesthetist was presented with a real time interactive 

display, this allowed the anaesthetists to respond to the diagnosis (agree/disagree) in 

real time. 
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Chapter 2 Data Analysis and Algorithm Development 

2.1. Introduction 
Digital signal processing (DSP) has been successfully applied in many biomedical 

applications including patient monitoring and diagnostic systems [5, 38]. This chapter 

introduces some of the techniques which have been used in SAAM. Furthermore, we 

discuss development of the signal processing algorithms which form the foundation 

blocks for the proposed alarm system. Based on the theory and techniques reviewed in 

Chapter-1 and Chapter-2 a modular alarm system is proposed. This chapter provides 

with an in depth description of LabVIEWTM and MATLABTM algorithms employed in 

SAAM. Some of the topics discussed in this chapter are noise filtering techniques, 

signal processing algorithms, diagnostic techniques followed by the diagnostic modules. 

2.2. Signal Processing Theory 
SAAM uses physiological data derived from the output port of the Datex Ohmeda S/5 

anaesthesia monitor. There are various physiological signals which are available at the 

output port of the S/5 anaesthesia monitor. The signals of our interest are invasive 

pressure waveform (P1), plethysmography (Pulse volume-PV) and end tidal CO2 

(ETCO2). These signals represent the analogue waveform information for the P1, PV 

and ETCO2 signals in a digital time-series format. Digital signals are derived by 

sampling the analogue signals coming from various sensors at a particular sampling 

rate. For instance the analogue signal coming from the pulse oximetery probe is 

sampled at a frequency of 100 Hz, i.e. 100 digital samples are recorded in a buffer at 

every 1 second interval. Since the digital representation of the analogue signal is 

discrete and not continuous in time, these digital signals are also called ‘discrete-time 

series signal’.    

 

The raw signals acquired from the S/5 anaesthesia monitor have embedded noise/ 

artifacts due various pneumatic, hydraulic, optical and electronic devices. These 

noise/artifacts need to be discarded; this is called pre-processing of digital signals. Pre-

processing of the signals involve filtering and smoothing of the original signal to make 

it noise-free. Numerous signal processing techniques were employed for filtering the 
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individual signals. This section describes the theory and algorithm development for 

each of the filtering technique that has been employed in SAAM. 

2.2.1. Noise and Artifact Rejection 
 

Noise/artifacts in the raw physiological signals have a different frequency component 

and thus cannot be eliminated by employing a single band stop filter. Various 

filtering techniques with different specifications were tried for achieving the desired 

level of filtering. The cleaned signal waveforms obtained through noise filtering 

were to be used for diagnosis.  

 

2.2.1.1. Spectral Analysis of the Raw Signals  
The physiological signals have specific frequency components which represent the 

rate of changes of the physiological variables. The frequency spectrum of the signals 

can be used for distinguishing the clean signal samples from the noisy samples.  

 

In order to define filter specification for a signal it is essential to distinguish between 

the useful frequencies and the noisy frequencies in the raw signals obtained from the 

anaesthesia monitor. This process of analysing the frequency content in the signal is 

called spectral analysis. To obtain the frequency content of a discrete time signal we 

need to transform the time domain signal into the frequency domain. The DSP tool 

used for transforming the time domain signal into the frequency domain signal is 

called discrete-time Fourier transform (DTFT) [70]. 

 

2.2.1.2. Discrete-Time Signals 
In digital signal processing, signals are represented as sequences of numbers called 

samples. A sample value of a typical discrete-time signal or sequence is denoted as 

x[n] where the argument n is an integer between ∞−  and ∞ . It should be noted that 

x[n] is defined only for integer values of n and is undefined for non-integer values 

of the argument n [70]. 

 

2.2.1.3. Discrete-Time Fourier Transform (DTFT) 
The discrete-time Fourier transform (DTFT) of a discrete-time sequence x[n] is a 

complex exponential representation { }nje ω−  where ω  is a real frequency variable. 
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The discrete-time Fourier transform ( )ωjeX  of a discrete-time sequence x[n] is 

defined by Eq.2.1.  

   ( ) ∑
∞

−∞=

−=
n

njj enxeX ωω 2][      2.1 

2.2.1.4. Discrete Fourier Transform (DFT) 
For a finite-length sequence x[n], 10 −≤≤ Nn  there exists a simpler relation 

between the sequence and its discrete-time Fourier transform ( )ωjeX . For a length-

N sequence, only N values of ( )ωjeX , called the frequency samples, at N distinct 

frequency points, ,kωω =  10 −≤≤ Nn , are sufficient to determine x[n], and hence, 

( )ωjeX , uniquely. This frequency domain representation of a finite-length sequence 

is called discrete Fourier transform (DFT). The DFT is one of the most commonly 

used DSP tool for analysing the frequency content of a time-series signal. By 

definition the DFT of a sequence x[n] is given by following equation (refer to 

Eq.2.2).   
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The DFT of a sequence can be computed efficiently in practice using a fast Fourier 

transform (FFT) algorithm. MATLABTM provides built-in functions for the 

computation of the DFT. The power spectrum of the signal gives the measurement 

of power in a signal at different frequencies. These functions were implemented 

during the data analysis for identifying the frequency spectrum of the clean 

physiological data in the raw signals. After performing the DFT of the BP and PV 

signals a power spectrum of the signals was plotted. The clean signals are identified 

by the high power band in the frequency spectrum. Figure 2.2.1-1 shows the power 

spectrum of the BP signal transformed to the frequency domain using FFT 

algorithm. It illustrates that the frequency of clean BP data is in the range 0 Hz to 2 

Hz (high power content). 
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Figure 2.2.1-1. Power spectrum of BP signal. 

 

2.2.1.5. Lowpass Filter 
A lowpass filter passes the signals in the lower spectrum of the frequency and blocks 

the signals in the higher frequency range. Some signal sources generate 

interference/noisy signals and these sources are ambient sources producing noisy 

signal of much higher frequency than the useful signals. For instance, noise due to 

cauterization procedure usually has a frequency much higher than the signal under 

consideration. Other artifacts are embedded in the signal from the sensor itself. For 

example touching or moving the invasive pressure sensor will generate noise, 

resulting in a P1 signal which is highly contaminated. By filtering the signal with a 

lowpass filter noise from high frequency noise sources can be eliminated. For in 

depth theory on filter design refer to [70]. 

 

MATLABTM has built in filter modules that generate filter coefficients automatically 

for user specified filter specifications. Once the frequency range is identified for the 

filter the MATLABTM FDAtool can be used for generating appropriate filter 

coefficients. Figure 2.2.1-2 shows a standard low pass filter specification and 

illustrates the symbols used in this context.  
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Figure 2.2.1-2. Lowpass Filter Specification [70] 

 
All signals having frequencies in the range of 0 to pΩ pass through filter without 

any attenuation while the signals with frequencies greater pΩ are highly attenuated. 

Ideally a low pass filter should have a transition band of infinitesimally small band 

width (i.e. ps Ω≈Ω ), which requires a very high filter order and thus increases the 

computation requirement for the executing the filter algorithm. In practice filter has 

a transition band of moderate width which is a compromise between the ideal filter 

specification and the available computational resources. Also the magnitude 

response of the passband and stopband is not constant and specified with some 

tolerance limits in terms of the ripple content. Figure 2.2.1-3 shows the practical 

magnitude response of a lowpass filter for invasive blood pressure (P1) waveform.   

 

Where, 

pΩ   Passband edge frequency.  

sΩ   Stopband edge frequency. 

pδ   Passband ripple. 

sδ   Stopband ripple. 

)( ΩjH a  Magnitude of the filter. 
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Figure 2.2.1-3. Magnitude response of a lowpass filter for invasive pressure (P1) waveform.  

  

2.2.1.6. Adaptive filtering 
Adaptive filters are basically digital filters with self-adjusting characteristics 

(specifications). An adaptive filter consists of two distinct parts: a digital filter with 

adjustable coefficients, and an adaptive algorithm which modifies the coefficients of 

the filter depending upon the noise characteristics of the contaminated signal. An 

adaptive filter was also tested with the sample BP and PV data but successful 

filtering could not be achieved due to the high variability of the noise in the input 

signals [71].    

2.2.1.7. Variance Based Filtering 
Variance and standard deviation are extensively used in the following algorithms 

and it is worthwhile to take a brief look at these terms. In statistics theory, the 

variance is defined as the measure of statistical dispersion of a random variable. 

Variance of a random number indicates how dispersed the population sample is for 

the random variable in the given data samples. The square root of the variance is 

called standard deviation. 

 

Standard deviation measures how widely spread the values in a data set are. If the 

data points are all close to the arithmetic mean, then the standard deviation is close 

to zero. If data points are spread far from the mean, then the standard deviation is far 

from zero.  

 

The variance based filtering technique discussed in this chapter was used for 

eliminating major artifacts. The variance based filtering algorithm developed for 

SAAM analyses variance of data-batches, which represent a segment of the whole 

time series data, and filters the time-series data on a batch-by-batch basis. The 
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functionality of this filtering algorithm is illustrated by the block diagram shown in 

Figure 2.2.1-4 and explained below. 

 

 
Figure 2.2.1-4. Block diagram for variance based filtering technique. 

 
Variance based filtering algorithm: 

1. The mean of each batch of input data is computed. 

2. The computed mean is then subtracted from the original batch. This is termed 

as ‘normalization of the data about the mean value’. 

3. Variance of the normalized data is computed. 

4. The data batches which have embedded artifacts have a variance which lies 

outside the normal variance thresholds and these batches of data are rejected 

from the raw input data.  

5. The data set resulting from step-4 is filtered data with all major artifacts 

rejected. 

As evident from Figure 2.2.1-6 the high frequency component is eliminated 

through lowpass filtering from the raw BP signal shown in Figure 2.2.1-5. Further 

filtering using a variance based filtering algorithm eliminates the noisy signals 

(refer to Figure 2.2.1-7). The highlighted portion (in red) of the waveform shows 

the high frequency noise before and after performing lowpass filtering. After 

performing the lowpass filtering and variance based filtering the resultant P1 

waveform (Figure 2.2.1-7) shows that majority of the artifacts are completely 

eliminated. 
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Figure 2.2.1-5. Raw P1 waveform. 

 
Figure 2.2.1-6. Lowpass filtered P1 waveform. 

 

 
Figure 2.2.1-7. Filtered data after variance based filtering. 

 

2.5 3 3.5 4 4.5 5 
x 10 4 -50 

0 
50 

100 
150 
200 
250 
300 

Raw Blood Pressure

Sample #

mm Hg 

2 2.
5 3 3.

5
4 4.

5 x 
10 4 

0

5
0 

10
0 
15
0 
20
0 
25
0 
30
0 

Filtered Blood 
Pressure

Sample 
#

mm 
Hg

2 2.
5

3 3.
5

4 4.
5 x 

10 4 
5
0 
6
0 
7
0 
8
0 
9
0 

10
0 
11
0 
12
0 
13
0 
14
0 
15
0 

Variance Filtered 
Data

Sample 
#

mm 
Hg



 

 29  

2.2.2. Peak (or Trough) Detection 
Some of the diagnostic techniques described in this section and the following section 

require peak (and/or trough) detection from the invasive blood pressure waveform 

(P1) and the plethysmographic waveform (PV). For instance the peak detection from 

the P1 waveform is essential for computing the heart rate (HR). SAAM employs two 

separate peak (or trough) detection algorithms for P1 and PV waveforms which 

differ slightly in the operation but use the same underlying principle. 

 

Figure 2.2.2-1. Blood Pressure (P1) waveform [72] 

 

Several algorithms were studied [73-75] and tried for peak detection of P1 and PV 

waveforms, some of these algorithms are listed below with their advantages and 

disadvantages with respect to the signals under study: 

2.2.2.1. Slope-based peak detection:  
This technique simply check for a change in slope from positive (rising) slope to 

negative (falling) slope for detecting the peaks in the P1 and PV waveforms. For 

detection of troughs in the peak it checks for change in slope of the waveforms from 

negative slope to positive slope. The slope based detection by itself is not very 

reliable because some of spurious peaks or even the peaks due to the dicrotic notch 

get detected as a systolic pressure peak (Refer Figure 2.2.2-1) in case of P1 

waveforms.  

2.2.2.2. Maxima/Minima-based peak (or trough) detection:  
Jacobson [74] had proposed a periodic Maxima-detection based method. This 

algorithm simply computes the maximum and minimum values for a window of data 

with length equal to one cycle length of the waveform under consideration. The data 

samples with the maximum and minimum values are then detected as peaks and 

troughs for each window of the data. 

 

Dicrotic Notch 
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Peak (or trough) detection algorithms used in SAAM are a hybrid of the basic peak 

(or trough) detection techniques described above and supplementary threshold limits 

on the input waveform. These peak (or trough) detection techniques are more signal 

specific and optimum for the P1 and PV waveforms which are used for generating 

the diagnosis. 

 

Listed below are the criterions which need to be satisfied for a peak in the P1/PV 

waveform to be qualified as a genuine peak:  

 

1) There should be a change in the sign of the derivative (slope-change). 

2) The data point on the waveform should be a local maxima. 

3) There should not be an already detected peak in the previous data segment 

equal to half the periodic length of the waveform. For instance P1 

waveform sampled at 100 Hz has a period of 100 data points. If a peak was 

detected in the P1 waveform at 25th sample then no genuine peak will be 

detected for the next 50 data points (until the 75th sample). This avoids 

spurious peaks or peaks due to the dicrotic notch. 

4) Threshold limiting condition is imposed on peaks, to filter out the spurious 

peaks. For e.g. the P1 value is limited by limiting values of 50 and 220 

mmHg.  

 

In the following sections we first introduce the three diagnostic models which 

generate the diagnosis in SAAM and then we apply all the techniques discussed 

above for analyzing the three input signals and generating an alarm level based on 

the diagnosis generated by the algorithms. 

 

2.3. Model Overview 
For a diagnostic system to be of any clinical significance the system needs to be reliable 

and accurate. Both these requirements can be met by implementing multiple diagnostic 

modules (redundancy). The proposed diagnostic alarm system therefore employs the 

following three modules for generating a diagnosis. 

• Statistic (Probability based) module. 

• Systolic variation in arterial pressure with respiration (SPV) based module and 

• Fuzzy logic module.  
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The modular structure for proposed alarm is shown in Figure 2.2.2-1 below.  
 

 
 

Figure 2.2.2-1. Block Diagram of the Alarm Model. 

 

2.3.1. Probabilistic Model 
The probabilistic alarms based model is a real time application of  statistics based 

physiological alarms proposed by Harrison and Connor [13]. In this model the 

various input parameters to the system such as Blood Pressure (BP), Heart Rate 

(HR), Pulse Volume (PV) and End Tidal CO2 (ETCO2) are normalised about the 

mean data collected from a cluster of population and they are then expressed in 

terms of multiples of standard deviations in respect to the population data of same 

age group as the current patient being monitored. Thus all the input parameters are 

expressed in terms of a common scale of standard deviations. The alarm levels are 

then computed for each of the four signals being monitored. For in depth 

explanation of the probabilistic alarm algorithm refer to section 2.4.1.2. Alarm 

levels for individual signals are then merged together to give the Statistical Alarms 

based on the expert rules for Absolute Hypovolaemia (AHV) and Fall in Cardiac 

Output (FCO) provided by anaesthetists.  

2.3.2. Systolic Variations in Pressure with Respiration (SPV) Based Model 
In case of anaesthetised patients on mechanical ventilation (positive pressure 

ventilation) the systolic pressure variations with respiration can provide a useful 

measure for loss in blood volume [63, 64, 76]. The SPV model uses this information 

embedded in the invasive blood pressure signal (BP/P1) for diagnosing AHV and 

FCO. The first step in the SPV model is to determine if the patient is breathing with 
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or without positive pressure ventilation. The range of ETCO2 and ICO2 values for a 

patient with positive pressure ventilation are generally in the range 0 to 40 for 

ETCO2 and < 1 for ICO2. We use these threshold conditions for assessing if the 

patient is breathing with or without the positive pressure ventilation. For patients on 

positive pressure ventilation the SPV module calculates the percentage change in 

SPV from the arterial pressure signal. Any change in percentage SPV over 16% 

signifies AHV. The sensitivity of SPV module can be changed by changing the alarm 

level (which is currently 16%), this value will be optimised through offline and 

online testing so as to obtain accurate diagnosis.  

 

2.3.3. Fuzzy Model 
Diagnosing critical conditions during anaesthesia is analogous to detecting a fault in 

a complex industrial process and these faults can be identified by monitoring the 

system variables. In anaesthesia management the critical events are monitored by 

monitoring the physiological signals from the anaesthesia monitor. The anaesthetist 

diagnoses a critical event by monitoring the available clinical data/waveforms from 

the screen of the anaesthesia monitor and by forming a mental map of all the clinical 

information that is available to him/her. The diagnosis generated by the anaesthetist 

(expert) has an inherent vagueness and uncertainty, fuzzy logic based alarms can 

mimic the expert diagnoses.  

 

The fuzzy logic module is based on the fuzzy logic based alarm module proposed by 

Lowe and Harrison, [11, 34, 40, 68]. For an in depth theoretical background on 

application of fuzzy logic for diagnostic applications refer to [11].  

 

The fuzzy model is subdivided into various fuzzy templates each of which monitors a 

specific critical condition. The output of this fuzzy templates is a fuzzy membership 

value, the membership values indicates how well the patients current physiological 

state is following or deviating from the fuzzy course. The fuzzy template which 

monitors AHV, for instance will monitor the four input signals (BP, HR, PV and 

ETCO2) and generate an output membership value. This membership value indicates 

how well the patient’s physiological state is following / deviating from the AHV 

course. The basis of such a fuzzy course is human knowledge represented as 

linguistic rules. For example an expert may express the diagnosis for AHV in the 

form of linguistic statements, as follows (refer to Eq.2.3 and Eq.2.4);  
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LIKELY. is iahypovolaem absolute
 then decreases Volume Pulse AND

 decreases pressure blood AND increases rateheart  If
    2.3 

      

LIKELY. VERY is iahypovolaem absolute
 then low very is Volume Pulse AND

 low is pressure blood ANDhigh  very is rateheart  If
    2.4 

 

Linguistic interpretation of the expert’s diagnostic rules cannot be clearly expressed 

using crisp logic because there is no provision for accommodating degree of 

agreement/disagreement. For instance in crisp logic heart rate (HR) can be expressed 

as high (1) or low (0) but the there is no provision for expressing very high HR, very 

low HR and likely absolute hypovolaemia. However fuzzy logic can be used to 

complex rules with degree of agreement/disagreement and thereby the uncertainty 

and vagueness in the expert linguistic rules can be easily programmed in the form of 

a fuzzy course.  Refer to [11] for a conceptual explanation for applying fuzzy theory 

in fault detection and diagnosis (FDD). The relevant real time algorithms used for 

generating the anaesthesia related diagnostics are explained in section 2.4.8.    

 

2.4. Real Time Algorithms 
Real time algorithms for SAAM were developed with modular programming approach, 

i.e. each block of algorithm is functionally independent from the other. The incoming 

signals namely P1/BP, Pleth/PV and ETCO2 are each pre-processed prior to analysing 

these signals for generating any diagnostic information. In the following stage the 

signals are further processed to compute specific information like MAP, SPV or HR 

changes. Figure 2.3.3-1 shows how the incoming data flows through the various 

algorithms and the logical sequence of the algorithm modules. Each of these algorithm 

blocks are explained in details in the sub-sections that follow. 

 



 

 34  

 
Figure 2.3.3-1. Real-Time Algorithm’s Hierarchical Layout. 

 

2.4.1. Pulse Volume/Plethysmography (PV) based Algorithms 

2.4.1.1. PV Pre-Processing Algorithm 
The PV pre-processing algorithm performs the following tasks sequentially: 

1) It performs lowpass filtering of the PV waveform using a lowpass PV-

filter. The low pass PV-filter has the following filter specifications. These 

filter specifications were chosen after analysing the sample data during the 

algorithm development stage by trial and error so as to attain maximum 

noise attenuation from the sample data. MATLABTM Filter Design and 

Analysis FDA-tool (Filter Design and Analysis Tool) was used to 

determine the optimal parameter values for the filters applied in this 

research. 

a. pΩ   Passband edge frequency = 1 Hz.  

b. sΩ   Stopband edge frequency = 2 Hz. 

c. pδ   Passband ripple = 0.6 dB. 

d. sδ   Stopband gain = 100 dB. 

2) It then performs variance based filtering of the PV waveform, variance 

based filtering algorithm is explained in section 2.2.1.6. The PV variance 

based filtering algorithm processes a batch of 1000 data samples (i.e. 10-
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seconds data) at a time. If the batch has variance which is beyond the 

normal range then the whole batch of data is removed from the PV-

waveform.  

3) The resultant PV waveform will have clean PV signal with majority of the 

low-frequency noise eliminated and all major artifacts removed. We call 

the resultant PV-waveform ‘clean PV’.  
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Figure 2.4.1-1. Block diagram for PV-processing algorithm. 

 

2.4.1.2. PV-Processing Algorithm 
The PV-processing algorithm processes the clean PV data to obtain the intermittent 

PV-value (absolute) at a regular interval of 1000 data sample (10-seconds). This is 

accomplished by first computing the peak and trough value for each PV waveform 

segment of length 10-seconds and then subtracting the PV trough value from the PV 

peak value. The PV value so obtained is called ‘Absolute PV value’. The PV-

Processing algorithm thus generates a series of absolute PV-values at every 10-

seconds interval and these values are stored in an array called “PV-10 sec data”.  

Refer to Figure 2.4.1-1 for a graphical illustration. 

 

We then compute the changes in absolute PV over every 60-seconds period. These 

changes are computed intermittently at every 10-seconds interval and used for 

computing probabilistic alarm level for the PV. For example if we are currently 

processing the PV which was recorded with a time stamp of 9:15:50am then we 

compare the absolute PV value for 9:15:40am (current) with  the  absolute PV value 

at 9:14:40am (60 seconds back in time from the current value). Next we compare the 

absolute PV value for 9:15:50am (current) with the absolute PV value at 9:14:50am 

(60-seconds back in time from the current value) and so on. This iteration is 

performed for every data element in the PV-10 sec data array. This computation 
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gives us the change in absolute PV values at every 10-seconds interval (obtained by 

comparing PV values at every 60-seconds interval).  

 

Figure 2.4.1-2.  PV processing Algorithms Output. 

 

The above algorithm is implemented in the form of a moving window of length 60-

seconds (6000 sample) moving in steps of 10-seconds (1000 samples) as illustrated 

in Figure 2.4.1-3 below. The resultant 10-second PV data is further analysed by the 

probabilistic alarm algorithm for computing the probabilistic alarm level of PV-

signal.  
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Figure 2.4.1-3. PV Processing by Moving Window. 

The probabilistic alarm for PV is generated by comparing the current PV value and 

the change in absolute PV value over a fixed interval of time (i.e. 60-seconds in the 

above case) with a cluster of population data. The probabilistic alarm algorithm 

implements the following mathematical operations for generating the probabilistic 

alarm level: 

 

1) For each data-point, the current absolute PV (x) is plotted against the 

corresponding change in PV value (y) over the last 60-seconds time interval. 

See Figure 2.4.1-4.(a).  

2)  Plot obtained in step-1 is centred about the origin by subtracting the 

population average values from each data-point ( )xx −  vs. ( )yy −  as shown 

in Figure 2.4.1-4.(b). This is called ‘centring of the cluster’. It should be 

noted that in Figure 2.4.1-4 (b) ( )xx −  signifies the PV values normalised 

about the population average (and not about the patient’s average PV value). 

The PV values for this particular patient are much higher than the population 

average and hence the ( )xx −  values for the data points are all positive.  

3) The x and y-coordinates for each data point are then divided by standard 

deviation of PV and standard deviation (SD) and change in PV respectively 

( ) xsxx /−  vs. ( ) ysyy /− , as shown in Figure 2.4.1-4.(c). These standard 

deviation values are obtained from the population data. The average (SD) 
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PV for the population data was 6.096 (0.75), the average (SD) change in PV 

is 0.01 (0.55). The distance of any data point from the origin gives the 

probabilistic alarm level corresponding to that particular point. For instance 

consider the point A in Figure 2.4.1-4.(c) with current PV of 5, and a recent 

change of 2.1. 

  

(Current PV – Average) / SD = (5-6.096)/0.75 = -1.46; value on x-axis 

       (Change in PV – Average) / SD = (2.1-0.01)/0.55 = 3.8; value on y-axis 

 

4) The probabilistic alarm level for each data-point in Figure 2.4.1-4.(c) is 

computed by calculating the corresponding distance from the origin. The 

values above are combined using Pythagoras theorem for computing the 

overall distance of point A from the mean value in terms of standard 

deviations, see Eq.2.5. The alarm levels so obtained are plotted in Figure 

2.4.1-4.(d). 

 

22 8.346.1 +− = 4.07 SD from the mean    2.5 

 

 

Here point A represents a single data-point on the PV-waveform. Thus the 

integration of the probabilistic alarm levels for all the points on a PV-signal 

segment (say of length 10-seconds) gives the PV probabilistic alarm for the 

10-seonds waveform segment. 
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Figure 2.4.1-4. PV probabilistic alarm processing. 

 

2.4.2. Blood Pressure (BP / P1) based Algorithms 
The BP pre-processing algorithm performs the following operations sequentially: 

1. It performs lowpass filtering of the BP waveform using a lowpass BP-filter. The 

low pass BP-filter has the following filter specification.  

a. pΩ   Passband edge frequency = 1 Hz.  

b. sΩ   Stopband edge frequency = 2 Hz. 

c. pδ   Passband ripple = 0.0345 dB. 

d. sδ   Stopband ripple = 0.00001 dB. 

2. It then performs variance based filtering of the BP waveform as explained in 

section 2.2.1.6. The BP variance based filtering algorithm processes a batch of 

1000 data samples (i.e.10-seconds data) at a time. If the batch has variance 

which is beyond the normal range then the whole batch of data is removed from 

the BP-waveform.  

3. The resultant BP waveform will have clean BP signal with majority of the low-

frequency noise eliminated and all major artifacts removed. We call the resultant 

BP-waveform ‘clean BP’.  
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2.4.2.1. MAP Processing Algorithm 
The mean arterial pressure (MAP) is obtained by simply computing the mean of the 

clean BP waveform over a fixed time interval (window of data). We compute the 

MAP value at every 10-seconds (i.e. 1000 samples at 100 Hz) interval by using a 

moving window of length 60 seconds (i.e. 6000 samples). This is graphically 

illustrated in Figure 2.4.2-1. Figure 2.4.2-2 shows the MAP envelope obtained after 

applying MAP algorithm to a clean BP waveform. Thus we get a series of MAP 

values at 10-seconds intervals which are further processed to obtain the changes in 

BP over 60-seconds interval, computed intermittently at every 10-seconds interval. 

Functionally this is similar to PV-processing algorithm except the methodology 

which computes the MAP value from the clean BP waveform.  

 

Figure 2.4.2-1. MAP computation by moving data window. 
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Figure 2.4.2-2. MAP Envelope obtained by applying MAP algorithm. 

 
We then compute the changes in MAP over every 60-seconds period. These changes 

are computed intermittently at every 10-seconds interval and used for computing 

probabilistic alarm level for MAP. The MAP probabilistic alarm algorithm is 

functionally similar to the PV probabilistic alarm algorithm. The MAP processing 

algorithm can be summarised in the following logical steps: 

1. The MAP value is computed from the clean BP waveform at every 10-

seconds interval.  

2. The MAP values at 10-seconds interval are then evaluated to compute the 

change in MAP over a 60-seconds period, this value is intermittently 

obtained for every 10-second interval using a 60-seconds data window 

advancing in increments of 10-seconds. 

3. The changes in MAP over 60-seconds are stored in an array and used for 

computing the probabilistic alarm level for MAP. This step is identical to the 

PV probabilistic alarm computation (refer section 2.4.1.2). Figure 2.4.2-4 

illustrates the probabilistic alarm computation for MAP. It should be noted 

that in Figure 2.4.2-4 (b) ( )xx −  signifies the MAP values normalised about 

the population average (and not about the patient’s average MAP value). The 

MAP values for this particular patient are much higher than the population 

average and hence the ( )xx −  values for the data points are all positive. 

0 0.
2 0.

4 0.
6

0.
8

1 1.
2

1.
4

1.
6 1.

8 2

x 
10

5

0 
2
0 

4
0 

6
0 

8
0 

10
0 

12
0 

14
0 

Sample No.

mm 
Hg 

MAP Computation

 

 

MAP

Raw BP



 

 42  

 

Figure 2.4.2-3. MAP processing algorithms output. 

 

 

Figure 2.4.2-4. MAP probabilistic alarm processing. 
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2.4.3. Systolic Pressure Algorithm 
Systolic pressure is obtained from the clean BP waveform by computing the average 

value of the peak BP values for every 10-seconds long batch of the data. Thus the 

first step in the systolic pressure algorithm is to obtain the peak envelope of the BP 

waveform. This is accomplished by using a BP peak detection algorithm which is 

functionally similar to the peak detection used for PV peak detection. The criterion 

for a BP peak to qualify as a genuine peak when implementing the BP peak detection 

algorithm is listed below: 

1. The peak BP data point should be local maxima in the current data window. 

2. There should be a change in slope from positive slope (rising) to negative 

slope (falling). 

3. There should be no previously detected peak at any of the previous 50 data 

points. 

4. The current BP value should be within the threshold range 50 to 220 mm Hg. 

 

The resultant BP peak envelope is then further processed to obtain the following 

information: 

a) Heart Rate (HR) value: The HR value is obtained by counting the number 

of systolic peaks in every 60-seconds data batch. The HR values obtained are 

expressed in beats per minute. It also checks if there is any gap in the current 

cleaned BP-data batch. If any gap is detected than the HR value for that 

particular data batch is recorded as NaN value (Not a number).  

 

 

 

b) SPV value: Systolic variation in BP due to respiration (SPV) value is 

obtained by computing the difference between the maximum and minimum 

values in the peak BP envelope over each 30-seconds long data segment. 

Figure 2.4.3-1 shows the logical flow of data between the various BP based 

algorithms used in SAAM. 

 

HR =  No. of systolic peaks (in 60-seconds data window) 
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Figure 2.4.3-1. Block diagram for BP (P1)-processing algorithm. 

 

2.4.4. HR Algorithm  
 

The HR algorithm computes the HR values from the peak BP envelope by counting 

the number of BP peaks in each 10-seconds data batch. The resultant HR values are 

labelled “10-sec HR data”. The 10-sec HR data is then further processed using the 

moving data window approach identical to PV and MAP processing to obtain the 

changes in HR values over 60-seconds duration, computed intermittently at every 10-

seconds interval. The changes in HR computed in the previous step are then used for 

computing the probabilistic alarm level of HR. The probabilistic alarm algorithm for 

PV, MAP, HR and ETCO2 is the same, refer to section 2.4.1.2 for detailed 

description on the probabilistic alarm algorithm. 
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Figure 2.4.4-1. Output of the SPV algorithm. 

 

2.4.5. SPV Algorithm 
 

SPV represents the change in the BP peak (Systolic BP) values due to respiration. 

The SPV algorithm computes the SPV value from the BP peak envelope simply by 

computing the difference between maximum and minimum BP value for each 30-

seconds data window. The SPV is then expressed as percentage of the maximum 

Systolic BP in the current 30-seconds data window. The SPV algorithm updates the 

display module with a new SPV (%) value after every 30-seconds interval. Figure 

2.4.4-1 above shows the output of the SPV algorithm. 

 

2.4.6. ETCO2 Algorithm 
 

The raw ETCO2 signal is the cleanest signal out of the three input signals that are 

used in SAAM. Thus the ETCO2 signal does not require any pre-processing. The raw 

ETCO2 waveform is processed to obtain the maximum and minimum values for each 

10-second ETCO2 waveform segment. The maximum value for each 10-seconds 

segment gives the ETCO2 value and the corresponding minimum value identifies the 

inspired CO2 (ICO2). A limiting threshold condition is enforced on computed ETCO2 

value to ensure that the raw ETCO2 is genuine. The computed ETCO2 values (10-

seconds ETCO2 data) have to be greater than a threshold value of 3 to qualify as a 

genuine ETCO2 signal. The 10-seconds ETCO2 data is then further processed using 
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the 60-seconds moving window algorithm for computing the changes in ETCO2 

values over 60-seconds duration, computed intermittently at every 10-seconds 

interval. Next, the changes in ETCO2 computed in the previous step are used for 

computing the probabilistic alarm level for ETCO2. A copy of the array with 10-

seconds data for ETCO2 and ICO2 is also passed to the SPV algorithm where these 

values are used for determining if patient is breathing with or without mechanical 

ventilation. 

 

2.4.7. Probabilistic Module Algorithm 
The probabilistic module basically integrates the four probabilistic alarm levels viz. 

MAP alarm level, HR alarm level, PV alarm level and ETCO2 alarm level to 

generate an integrated probabilistic alarm level which is displayed in the display 

module. The probabilistic module simply takes an average of the four alarm levels 

and updates the display module after every 10-seconds.  

2.4.8. Fuzzy Module Algorithm 
The fuzzy logic algorithm executes a hierarchy of fuzzy functions for evaluating the 

membership values for each data-set over the specified fuzzy course. The 

hierarchical structure for the AHV fuzzy module is illustrated in Figure 2.4.8-1 

below. The data flow to the fuzzy functions and flow of the membership values 

between the fuzzy functions is shown in Figure 2.4.8-2-(a) below. The flow chart 

illustrated in Figure 2.4.8-2-(b) shows the analytical fuzzy steps being executed by 

the corresponding functional blocks in the fuzzy algorithm. 

 

2.4.8.1. Fuzzification: 
A fuzzy interval is the basic building block of a fuzzy template. A fuzzy interval 

performs the task of mapping each data point to the fuzzy domain. A trapezoidal 

membership function is used for evaluating the membership value of each data 

sample. The fuzzification of the data samples is achieved by: 

 

1) Evaluating the membership value of the data samples to the fuzzy signal 

level interval and the fuzzy time-change interval.  

2) The membership values obtained in the previous step are than evaluated by 

the fuzzy course function and a fuzzy course membership value is generated.  
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A fuzzy course membership is thus generated for each data-sample. This is 

graphically illustrated in Figure 2.4.8-3 above. 

 

 

Figure 2.4.8-1. AHV Fuzzy Logic Algorithms’ Hierarchical Layout. 
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Figure 2.4.8-2. AHV_HR Algorithm's Flow Chart.  

(a) Fuzzy AHV_HR algorithm, (b) Fuzzy methodology flowchart. 

 

 

Figure 2.4.8-3.  Membership of a signal waveform (data-set) to a fuzzy course is 
aggregation of membership of data-samples in the signal waveform to individual slices of 
the fuzzy course (trapezoidal function) [11]. 
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2.4.8.2. Fuzzy Composition: 
The fuzzy course memberships for all the data-samples in a waveform segment 

(data-set) are then aggregated by using a fuzzy MIN or fuzzy MAX operator to 

generate a fuzzy segment membership value. This is called ‘Fuzzy Composition’. 

Similarly fuzzy segment membership values are computed for AHV_BP_Segment, 

AHV_PV_Segment and AHV_ETCO2_Segment.  

 

2.4.8.3. Fuzzy Inference: 
The four Signal_Segment membership values are then evaluated using fuzzy 

inference rule, for example the following inference rule (Eq.2.6) is used by the 

AHV_Diagnostic module.     

 

LIKELY). is iahypovolaem (absolute then  low) isgment (AHV_PV_Se
 AND low) isgment (AHV_BP_Se

 AND high) isgment (AHV_HR_Se If
   2.6 

 

The fuzzy statements (enclosed within brackets) in Eq.2.6 before ‘then’ are called 

antecedents and the fuzzy statement after ‘then’ is called the consequent. The value 

of the consequent depends on the overall value of the antecedent. Eq.2.6 forms a 

fuzzy relation which maps the four Signal_Segment membership values from 

antecedent domain (fuzzy) to consequent domain (fuzzy). The resultant fuzzy value 

is called inferred fuzzy value. 

2.4.8.4. Fuzzy Aggregation  
Fuzzy modules can have more than one fuzzy inference rule for generating the same 

diagnosis. This improves the accuracy of the fuzzy module by providing redundant 

diagnosis for the same critical event. For instance we can have multiple inference 

rules for obtaining multiple AHV diagnoses. These diagnoses are in the form of 

fuzzy values and need to be aggregated prior to performing defuzzification. 

However in SAAM we are implementing one inference rule per diagnosis and 

therefore fuzzy aggregation is not required. 

 

2.4.8.5. Defuzzification 
The fuzzy aggregated fuzzy value obtained after defuzzification is then mapped onto 

the crisp domain by using a defuzzification function. For instance if fuzzy inference 
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value (after defuzzification) is high then the corresponding crisp diagnosis will be 

AHV very likely. Thus defuzzication maps the fuzzy inference value onto a crisp 

domain. The output obtained from the defuzzication function is generally a linguistic 

statement, but the resultant can also be expressed in the form of a number.  

 

The fuzzy module algorithm was programmed with LabVIEWTM graphical script 

and has a similar structure as explained in this section of the text.  

2.5. Algorithms Overview and Description 
All the algorithms described above are developed using MATLABTM programming 

language. Data simulation and analysis can be easily carried out in MATLABTM. All the 

algorithms are tested repetitively so as to optimise their performance and accuracy. 

Offline data previously collected from the S/5 monitor was used for data simulation and 

analysis in MATLABTM. Each of these algorithms are written in separate MATLABTM 

(**.m) files. Offline data simulation and algorithm testing gave satisfactory outputs.    

2.6. Final Developments 
Since the application of SAAM in real-time needs data communication with external 

devices, a more robust development platform, LabVIEWTM was chosen. The following 

factors influenced the selection of LabVIEWTM as the development tool for developing 

the real-time version of SAAM: 

1. The MATLABTM algorithm can be easily reused in LabVIEWTM using the 

Mathscript block. This ensures that the accuracy of the algorithm is not affected due 

to migration across different programming platforms. 

2. LabVIEWTM provides user friendly communication tools which were used for 

acquiring data in real time. 

3. LabVIEWTM provides a user friendly tool for building executable version of the 

final application, thus eliminating the need of installing LabVIEWTM application on 

the test bench in the operating theatre where RT-SAAM was tested in real time. 

4. The modular programming approach can be easily implemented in LabVIEWTM by 

using the hierarchical Virtual Instruments (VIs) and sub-VIs. 

2.7. Chapter Summary 
SAAM derives physiological waveform data from the S/5 monitor. The waveform data 

is filtered, processed, analysed using modular algorithms which process the waveform 

data to generate diagnostic information. There are three diagnostic modules in SAAM 

viz. probabilistic module, fuzzy module and SPV module which generate three different 
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alarm levels which are displayed on a display module. The display is updated regularly 

and provides the front-end information to the end-user (i.e. the anaesthetist). These 

algorithms were developed in MATLABTM and were later reused in LabVIEWTM. The 

following chapter discusses how these algorithms operate and interact in real time to 

generate the diagnostic alarm levels and interact with the anaesthetist.   
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Chapter 3 Real Time System Development 

3.1. Introduction 
The ultimate goal of this research project was to develop a prototype alarm system 

which could be tested and validated through clinical testing. Diagnostic algorithms 

discussed in the previous chapters were used as foundation blocks for constructing a 

Real Time version of SAAM (RT-SAAM). A major hurdle encountered during the real-

time system development was the acquisition of data from the S/5 Datex-Ohmeda 

anaesthesia monitor without affecting the existing setup in the operating theatre. The 

serial and TCP communication protocols which were implemented to overcome this 

issue are described in section 3.2 of this chapter.  

 
The real-time system was programmed by taking into account the communication issue 

and was built using the state-engine / state-machine technique. Thus SAAM was 

developed using the state-engine approach where the system control is passed from one 

state to another state as data progresses through the various stages in the system. The 

state-engine approach neatly integrates the different blocks of the real-time algorithm 

whilst maintaining the integrity of individual algorithms. The state-engine thus 

promotes a lucid modular programming approach for an otherwise complex system. 

Following sections in this chapter explain the real time system development and the 

various algorithms which were employed for implementing the real-time state engine in 

SAAM. 

3.2. Data Acquisition 
In order to comprehend how SAAM communicates with S/5 monitor and to recognize 

the problems that were involved in testing SAAM it is essential to understand the 

existing data collection setup in the operating theatre (refer to Figure 2.4.8-1). The 

computer labelled ‘IDAS’ is a data logging computer used by the Auckland City 

Hospital’s computerised database. The S/5 monitor continuously relays the waveform 

data and the physiological data through a single serial port at the back of the S/5 

monitor. The IDAS system acquired the patient data from the S/5 monitor via the serial 

port and saved it into the patient record keeping system on the hospital’s server. To 

accomplish this serial communication between S/5 and IDAS various handshake signals 

were continuously exchanged between S/5 monitor and the IDAS system.  
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Figure 2.4.8-1. Original data collection setup in the operating theatre (Setup-A). 

 

For testing the prototype system (SAAM) it was crucial that the inflow of data to IDAS 

was maintained whilst simultaneously acquiring and feeding the data from S/5 to 

SAAM. The Following communication setups were studied for data acquisition and 

testing of SAAM without affecting the setup-A described in Figure 2.4.8-1. 

3.2.1. Using Different Data Channels for IDAS and SAAM 
 

The technical manual for Datex-Ohmeda S/5 monitor was referred to for 

investigating alternative ports at the back of the S/5 monitor which could be used for 

data collection and testing. Datex-Ohmeda, GE technical support was contacted to 

investigate the availability of using alternate communication channel for acquiring 

the data signals for testing SAAM. Through this exercise it was learned that S/5 

monitor relays all the data signals only via a single serial port and has no other 

provision for data acquisition. Thus it became evident that the same serial port had to 

be used for data acquisition (which was currently occupied by IDAS). This required 

a data relaying solution which could acquire the data from the serial port on the S/5 

monitor and simultaneously relay the acquired data to SAAM and IDAS. Therefore 

other options were tried considering the new technical requirements for data 

collection setup. 

3.2.2. Implementing Y-Splitter Serial Cable (Setup-B) 
 

This setup implemented a Y-splitter serial cable (illustrated in Figure 3.2.2-1) with 

one serial connector at one end (connected to S/5) and two serial connectors at the 
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other end (connected to IDAS and SAAM). However a single serial port can 

exchange handshake signals only with one device at a time. In this case the serial 

port was receiving handshake signals from two devices and therefore resulted in a 

hardware conflict. Thus setup-B did not meet the objective. 

 

Figure 3.2.2-1. Serial Communication using a Y-splitter serial cable (Setup-B). 

 

3.2.3. Virtual Serial Splitter (Setup-C) 
 

Virtual splitter is a software based approach towards resolving the hardware conflict 

caused in the previous setup (setup-B). Figure 3.2.3-1 below graphically illustrates 

how setup-C operates. A virtual serial splitter is a computer application which assists 

multiple devices to simultaneously communicate with a single serial port, it does so 

by giving each device a turn to communicate with the serial port. A virtual splitter  

virtually splits the serial port between several devices by handling the handshake 

signals on behalf of each device [77].  

 

A virtual serial splitter was tested for data collection with SAAM but it failed as 

IDAS did not receive all the requested data from the S/5 monitor.  
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Figure 3.2.3-1. Virtual Serial Splitter (Setup-C). 

 

3.2.4. Data Collection using S/5 Collect (Setup-D): 
S/5 Collect is a data collection software from GE Healthcare (the manufacturer of 

S/5 monitor). S/5 Collect however can only collect data from the S/5 monitor into the 

data collection computer, the acquired data can be saved into a digital data file which 

can be used for offline analysis. It has no provision for relaying data to any other 

device or application and thus it could not be used for real time data collection and 

testing. In the past S/5 collect was used for collecting data from the anaesthesia 

monitor but then the serial port was not occupied by IDAS and this data was 

collected for offline testing only.  Some of the data which was collected using S/5 

collect in the past was used for offline testing of SAAM.  

 

3.2.5. Communication using DOMonitor Application (Setup-E) 
 

DOMonitor is a JAVATM based data collection application developed by Dr. Andrew 

Lowe, Ilixir Limited. Originally DOMonitor was used for acquiring data from the 

S/5 monitor, saving acquired data to a digital file and simultaneously relaying the 

data over another serial port.  The digital file saved by DOMonitor can be used for 

offline analysis. The hardware setup for SAAM when using DOMonitor for data 

collection is illustrated in Figure 3.2.5-1. 
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Figure 3.2.5-1. Communication using DOMonitor Application (Setup-E). 

 
DOMonitor had to be modified so that the acquired data could be relayed to the real-

time version of SAAM developed using LabVIEWTM. DOMonitor served as a very 

handy tool for testing SAAM as it performed the following tasks simultaneously 

which smoothed the whole testing process; 

1) Acquires data from the S/5 monitor. 

2) Relays acquired data to IDAS over another serial port on the back of the data 

collection computer. 

3) Relays the required data signals to SAAM over a Transmission Control Protocol 

(TCP) port.  

4) Saves the selected waveform data to a digital file which can be accessed in 

offline mode for retrospective analysis. 

 

DOMonitor runs on the same data collection computer which runs SAAM. During 

the trial runs DOMonitor successfully communicated with both SAAM and IDAS. 

The following sections elucidate the analytical grouping and interactions of the 

different modules used in SAAM and explain the state-engine based algorithm which 

was developed using LabVIEWTM. 



 

 57  

3.3. Real Time System Overview 
SAAM was required to execute the following tasks in real time: 

1.) TCP-reading: Read the data being relayed by DOMonitor over the TCP port. 

These data were in the form of data packets which had to be retrieved, identified 

and sorted into different data buffers before initiating data processing. 

2.) Checking if sufficient data had been read into the input buffer. 

3.) If sufficient data were read, the control would activate the data processing state 

which pre-processes the input data and then further processes it to generate the 

diagnostic alarms. 

4.)  Data processing state then passes the control to display state which updated the 

SAAM’s front panel with the most recent diagnosis and generates a voice 

prompt if necessary. 

5.) This operation would be continued in a closed loop, until the user exited SAAM. 

6.) Comment Logging: At the end of each data-collection session when the user 

exited SAAM, the user comments would be logged into a file for retrospective 

analysis of SAAM’s performance. 

3.3.1. TCP Read  
The data sent by DOMonitor to SAAM was in the following data-packet format: 

 
Each data-packet has following basic format: 

[  

[wave:4,100,false:13947,14185,14094,13787,13389,12969,12560,12151,11741,11343,10968,106
16,10263,9900,9536,9161,8775,8422,8070,7740,7468,7252,7070,6888,6717,6581,6490,6422,636
5,6319,6274,6228,6217,6217,6206,6194,6171,6149,6126,6092,6012,5956,5933,5876,5830,5796,
5728,5671,5614,5535,5501,5944,7524,9638,11139,12014,12742,13492,14071,14287,14174,1385
6,13458,13037,12605,12185,11787,11389,11003,10650,10298,9945,9616,9275,8911,8558,8206,
7865,7581,7354,7161,6979,6808,6649,6524,6456,6399,6331,6285,6251,6229,6217,6194,6183,61
60,6115,6069,6035,5967,5910,] 
 
[wave:8,100,false:-185,-193,-199,-204,-210,-216,-221,-225,-229,-231,-233,-236,-237,-238,-238,-
233,-223,-205,-175,-133,-81,22,38,98,154,204,245,278,304,323,335,341,341,336,326,313,297, 
279,259, 236,212,186,159,131,102,73,45,18,-7,-33,-57,-80,-101,-118,-134,-148,-160,-172,-180,-
187,194,-199,-204,-210,-216,-221,-225,-229,-231,-233,-235,-236,-237,-234,-225,-206,-177,-135,-
84,-26,33,92, 148, 197,240,276,303,322,333,338,338,333,324,311,296,279,259,236, 212,185,] 
 
[wave:5,100,false:1483,1508,1520,1513,1499,1494,1511,1550,1594,1637,1674,1704,1737,1773,
1801,1817,1829,1836,1845,1857,1868,1866,1849,1824,1808,1820,1868,1946,2040,2135,2204,22
43,2259,2261,2257,2252,2248,2245,2243,2231,2208,2174,2132,2123,2192,2277,2273,2171,1996
,1766,1582,1520,1545,1589,1614,1614,1614,1631,1654,1667,1663,1651,1649,1670,1700,1730,1
758,1783,1808,1847,1882,1912,1932,1928,1930,1944,1953,1964,1978,1974,1969,1971,1988, 
2040,2109, 2183,2270,2346,2385,2406,2420,2408,2385,2372,2349, 2321,2303,2273,2218,2162,] 
 
[phdb:basic] 
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Datatype of the relayed data:   .…..waveform (wave) or physiological data (phdb) 

Wave-number identifying the signal,            .….. (4/5/8 or 9)  

Data length,             .….. (100 or 25) 

 Gap in data,          .….. (true of false) 

 Actual data to be read into the data buffers     .…..data to be read 

] 

Here the first component (in pink) in the data packet identifies if it is a waveform 

data-packet or physiological data-packet. Wave-number (in grey) sorts the data 

packets to one of the four waveform signals. These wave-numbers and the implied 

waveforms are explained below. The next component (in yellow) indicates the length 

of data in the packet followed by the gap identifier (in turquoise) which indicates if 

there is any gap in the data, followed by the actual data.  

 

4→ Invasive blood pressure waveform1. 

5→ Invasive blood pressure waveform2 (central venous pressure waveform). 

8→ Plethysmography waveform. 

9→ End Tidal CO2 waveform. 

 

TCP-read algorithm reads and sorts these data and puts them in appropriate data 

buffers. The data buffers can be either read or written to but do not support 

simultaneous read and write operations on the data buffers. Therefore the TCP-read 

algorithm needs to check for any current read operation on the data buffer and 

acquire a write control whenever the buffer is in idle state. 

3.3.2. State-Engine in RT-SAAM 
This section explains the fundamental concepts which control the execution of the 

state-engine and thus the program flow in the RT-SAAM.  

 

State-Engine: A state-engine is an advanced computer programming tool available 

in LabVIEWTM wherein a computer application is divided into logical blocks of 

program code called states. Only one state can be active (running) at any instant of 

time. The word ‘state’ is often referred to as “waiting” in context to state-engine, 

which implies that the system waits in the current state until the next event occurs 

and triggers a state change. Events are external occurrences to which the state-engine 

responds by taking appropriate action. For instance RT-SAAM is divided into 

following six states: 
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1. Start / Initialising State. 

2. Pre-File-Read State. 

3. File-Read State. 

4. Analysing/Processing State 

5. Display State and  

6. Exit State.  
 

The program control is passed from one state to another in response to an event. For 

example data received from the TCP-port-1467 would trigger an event which causes 

the program control to be passed from pre-file-read to file-read state. Another 

integral concept to a state-engine is an action. Actions are the responses generated by 

a state machine whenever an event occurs. Action can be in the form of a simple 

state change or activating an external device. The action generated in response to the 

event depends upon the current state and the event that has occurred. Thus a state 

engine passes the program control between various states in the state engine 

depending upon its interactions with the external occurrences (signalled by 

corresponding event). In the case of SAAM, external events that trigger state-

changes are those events which result from TCP-read and the size of the buffer 

variables. The state-engine algorithm employed in RT-SAAM is explained in detail 

in section 3.4.3. For more theory on state-engine refer to [78]. 

3.3.3. Comment Logging 
SAAM has a comment section on the user interface which provides various buttons 

for logging the anaesthetists’ response. For example the anaesthetist can press the 

“Yes” button in the absolute hypovolaemia comment section when the patient is 

showing symptoms of possible hypovolaemia. These responses from the 

anaesthetists are saved into a digital file at the end of each data collection to be used 

later for offline analysis of SAAM’s performance. The real-time version of SAAM is 

also responsible for handling this commenting section.  

 

3.4. Real Time Algorithm Development  
RT-SAAM was developed using MATLABTM, LabVIEWTM and JavaTM scripts. Most 

of the algorithms implemented in RT-SAAMTM were in math-script programming 

language (executable MATLABTM code) implemented using the mathscript block in 

LabVIEWTM. The State-Engine, TCP-Read and Comment-logging scripts were 
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implemented in LabVIEWTM in the form of LabVIEWTM graphical code and math-

script.  

 
RT-SAAM has to simultaneously perform following three operations; 

1. Read data packets and save them to appropriate data buffers (TCP-read). 

2. Process data. 

3. Log/save the user comments (Comment-logging). 

 

Considering the system requirements, the state-engine entity was a realistic approach 

towards developing the complex system in an efficient form. The following flowcharts 

summarised the state-engine algorithm along with the two auxiliary algorithms for 

performing TCP-read and Comment-logging. In RT-SAAM flowchart (Figure 3.3.3-1) 

the blocks highlighted in blue represent the TCP-read algorithm, the green blocks 

represent the Comment-Logging algorithm and the blocks in black represent the state-

engine algorithm. The TCP-read algorithm has a sub-module called Temp-Data 

Logging which performs the actual operation of sorting and logging the data-packets 

into appropriate buffer variable, refer flowchart in Figure 3.3.3-1. State-engine 

algorithm is graphically illustrated in Figure 3.4.3-1. 

 
Figure 3.3.3-1. RT-SAAM Flowchart. 
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RT-SAAM is implemented in the form of three closed loops illustrated in Figure 3.3.3-1 

above: 

1. Data acquisition loop (in blue) reads data from the TCP-port and logs them into 

appropriate data-buffers. 

2. Comment-logging loop (in green) is responsible for logging user 

comments/diagnoses into a text file. 

3. State-engine loop (in black) which reads the data from the data-buffers and 

processes the data to generate the diagnostic alarms and audio-visual prompts. 

 

Each of these three loops executes repetitively and simultaneously until the user exits 

SAAM by pressing the “STOP” button on the front panel. 

 

3.4.1. Data Acquisition Loop (Algorithm)  
Data acquisition loop executes the following tasks: 

1.) TCP connection is opened on TCP-port-1467. DOMonitor relays data on port-

1467. 

2.) A while loop is executed which repetitively reads a character from the 

established TCP connection. 

3.) If a character is read successfully then it concatenates the most recently read 

character to the previously read characters from the current data-packet. 

4.) Step 2 and step 3 are repeated in a nested while loop until a ‘]’ is encountered in 

the data-packet, indicating the end of the data-packet is reached. 

5.) The wave number, gap information and the packet length are extracted from the 

read data characters. This information is used for identifying and sorting the 

data-packets.  

6.) The buffer status is checked by checking the buffer flag. If the buffer is idle a 

write lock is acquired on the buffer. 

7.) Based on the wave number, appropriate data logging block is executed as 

illustrated in the last section of the temp-data logging flowchart (see Figure 

3.4.1-1). 
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Figure 3.4.1-1. Temp-Data Logging Flowchart. 

 

3.4.2. Comment-Logging Loop/Algorithm  
 

The comment logging loop is implemented in the form of a LabVIEWTM event 

structures nested within a while loop. Event structures are equivalent to action 

listeners in JavaTM and the primary function of an event structure is to capture any 

user generated events. For instance if the user presses ‘YES’ button in the FCO 

comment section of the SAAM’s front panel (see Figure 3.4.2-1) then a button press 

event is triggered. The event structure captures this event and executes appropriate 

action code which is programmed in the event structure.   
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Figure 3.4.2-1. RT-SAAM Front Panel. 

 
The event structures in the comment logging loop captures all the button press events 

generated in response to the user pressing the buttons. The time-stamp (date and 

time) of each button-press event is captured. All the captured events are logged into a 

text file. Comment logging loop executes repetitively until the ‘STOP’ button is 

pressed by the user. A sample comment logging output is illustrated below. These 

comment logs can be used for checking the anaesthetists’ diagnoses against the 

diagnoses generated by SAAM. 

   
 

3.4.3. State-Engine Loop/Algorithm  
The state-engine loop in RT-SAAM is programmed in LabVIEWTM by nesting a 

case-structure inside a while loop. The state-engine flowchart in Figure 3.4.3-1 

graphically illustrates how the program control is passed between the six states in 

RT-SAAM. The external events which trigger state changes and actions are user 

generated events like button press and the events generated by data acquisition 

blocks. The blocks which trigger state changes are highlighted in yellow. The data 

acquisition blocks continuously update the global buffer variable with new data-

packets. The current status (represented by the flag value) changes from ‘0’ which 

27/12/2006 12:08:18 p.m. AHV_Yes 
27/12/2006 12:08:18 p.m. AHV_Not_Sure 
27/12/2006 12:08:23 p.m. AHV_No 
27/12/2006 12:08:20 p.m. FCO_Yes 
27/12/2006 12:08:23 p.m. FCO_No 
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indicates the buffer is idle to ‘2’ when it is being written by the temp data-logging 

algorithm. Each of these states is explained in detail in the following text. 

 

3.4.3.1. Start-State 
When RT-SAAM is executed the system is in start-state, all the input and output files 

are loaded into the computers memory. The control automatically passes from start-

state to init-state (simultaneously). The data-acquisition loop and comment-logging 

loop are also activated simultaneously. 

 

3.4.3.2. Init-State (Initialising state) 
The init-state is executed only once during a single data-collection session. 

Initialising state’s main task is to initialise all the global data buffer variables and 

flag to zero. There are six global variables and a global buffer flag which indicates 

the buffer status. The three global buffer variables store the data temporarily before it 

is transferred to corresponding global data-batch variables (three). The global buffer 

variables can be accessed only when they are idle (i.e. flag = 0). After initialising the 

global variables and flag to zero value the control is passed to the pre-file-read-state. 

To visualise the behaviour of global variables in context to SAAM refer to Figure 

3.4.3-2. 

 

3.4.3.3. Pre-File-Read-State  
Pre-file-read-state checks if data read into the buffer is ≥ 10-second data (1000 data 

samples) for each of the four data-waveforms required by SAAM. Once the data in 

the buffer exceeds the 1000-sample threshold for all four-signals, the control is 

passed to the file-read state. The pre-file-read state is timed out after every 1 

millisecond interval if it is waiting for more data to be read into the buffer. This 

prevents the race condition in the state-engine, waiting for other events.  
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Figure 3.4.3-1.  State Engine Flowchart. 
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Figure 3.4.3-2. Global variables in RT-SAAM. 

3.4.3.4. File-Read-State  
In the file-read-state the population reads data from the text-file corresponding to the 

patient age selected in the settings panel on the user interface. For instance if the 

patient’s age is 43 years, file-read-state reads the file containing the population 

statistics and fetches the data corresponding to the age group of 40  to 50 years. File-

read-state then checks for the global buffer status. If the buffer is idle the file-read-

state acquires a read lock on the global variable (by setting the global flag to ‘1’). In 

the event that the buffer is not idle the file-read state waits for 1-millisecond for the 

buffer to become idle, otherwise the file-read state is timed-out. This prevents the 

occurrence of race condition in the state-engine. The first 1000 data samples (10-

second data) are transferred from the global buffer variables to global data-batch 

variables (see Figure 3.4.3-2). Thus the data in the global buffer variables are stored 

and disposed based on first-in-first-out (FIFO) principle. The global variable lock is 

released at the end of the file-read-state by setting global flag to ‘0’.  

 

3.4.3.5. Analysis-State  
Analysis-state performs the actual data processing of the waveform signal to generate 

diagnostic alarm levels. Firstly the analysis-state checks if the length of the data-set 

from the previous iteration is ≥ 2 minutes (13000-samples) for each of the waveform 

signals. Some diagnostic algorithms discussed in the previous chapters require a 

minimum of 2-minute long data for generating diagnosis.  
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If the data-set from the previous iteration is ≥ 13000-samples long, then the first 

1000-samples (10-second long data) are discarded and the new data-batch (1000-

samples) is added to the data from the previous iteration. Thus in every run of the 

state engine, the data in the state-engine is updated with a new set of data as the data-

collection progresses. If the data from the previous iteration is < 13000-samples then 

the new 1000-samples are simply appended to the data from the previous iteration 

until the state-engine accumulates sufficient data (≥ 13000-samples). 

 

The updated data-set is then supplied to the probabilistic alarm algorithm, fuzzy 

algorithm and the SPV algorithm. These processing algorithms then generate the 

corresponding alarm levels. Finally the program control and alarm levels are 

transferred to the display-state.   

 

3.4.3.6. Display-State  
The display-state generates appropriate audio-visual alarms after taking into account 

the sensitivity of the alarm selected by the user. The sensitivity of the probabilistic 

alarm can be varied by adjusting the alarm level control provided in RT-SAAMs’ 

settings panel. Display-state checks if the ‘STOP’ button is pressed by the user. If the 

‘STOP’ button is pressed, the control is passed to the exit-state otherwise the control 

is passed back to pre-file-read-state and so on. 

3.4.3.7. Exit-State 
The exit-state simply exits the RT-SAAM application and simultaneously the TCP-

connection is closed and all open input/output files are closed. The program control 

can be transferred from any other state in the state-engine to the exit-state at any 

instant by pressing the ‘STOP’ button.   

 

3.5. Chapter Summary 
The RT-SAAM program communicates with the S/5 monitor via the DOMonitor. 

DOMonitor maintains the data transmission to IDAS so that the original communication 

setup in the hospital is not affected. Using this communication setup RT-SAAM can be 

used for data-collection and testing. Following chapters will discuss real-time data 

collection and the performance of the system in offline and online testing.  
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Chapter 4 Diagnostics and Testing 

4.1. Introduction 
SAAM provides a test platform for testing the prototype diagnostic alarm system 

proposed in Chapter 1. With ethics approval from local ethics committees and informed 

patient consent, physiological data was collected in real-time. SAAM was tested out 

extensively through offline (retrospective) testing and a few real-time clinical test 

sessions. The clinical tests were conducted in operating theatres on Level-8, Auckland 

City Hospital. Dr. Michael Harrison, Anaesthetist, Auckland City Hospital provided his 

expertise and valuable time during the data-collection and data-analysis phases. The 

diagnoses generated by SAAM in offline and real-time tests were evaluated against the 

anaesthetists’ diagnoses. SAAM was then further refined to minimise the number of 

false negatives and false positives. This Chapter concludes with a result summary and a 

brief discussion on the fine-tuning of the offline and real-time versions of SAAM. 

 

4.2. Ethics Approval and Patient Consent 
 
Since physiological data collection from the patient monitor would require ethical 

approval from the local ethics committees, ethics approvals were obtained from the 

Northern-X Regional Ethics Committee and from the Auckland University of 

Technology Ethics Committee (AUTEC). Copies of these ethics approval letters from 

Northern-X and AUTEC can be found in Appendix B1 and B2 respectively. As part of 

the ethics approval, an informed written consent was required from each patient who 

participated in this research. Before signing the consent form, each patient was informed 

about the project by the anaesthetist and the participant was given a patient information 

sheet to understand the purpose of the research. Appendix B3 and Appendix B4 

respectively show a copy of the patient information sheet and the consent form 

respectively. 

 

4.3. Data Collection  
The physiological data were directly collected from the S/5 Datex-Ohmeda (GE, Datex-

Ohmeda, Helsinki, Finland) anaesthesia monitor in the operating theatre during a 
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variety of operative procedures. A large amount of patient data used for offline 

(retrospective) analyses were collected over many years by the projects’ external 

supervisor, Dr. Michael Harrison. These data were collected from patients in UK and 

New Zealand with the respective local ethical approvals obtained by Dr. Michael 

Harrison for the use of these data in developing an anaesthesia alarm systems like 

SAAM. Some of these data were used for generating the population statistics which is 

used by the probabilistic module. These data were collected using a software program 

called S/5 Collect from GE Healthcare Limited. S/5 Collect, however, supports only 

data-logging to a digital file and does not relay the data to any other device or 

application. Therefore S/5 Collect can not be used for real-time testing.    

Real-time data-collection involves tracking and recruiting patients for data-collection 

and setting up the desktop computer running SAAM and DOMonitor in an operating 

theatre prior to every data-collection session. The patients recruited for real-time data 

collection were patients who were likely to suffer moderate to major blood-loss due to 

the nature of the surgery. Another important criterion to be considered during patient 

recruitment was that, only those patients who needed an arterial pressure line (for 

measuring BP/P1 signal invasively) during the surgery could be recruited for data-

collection. 

4.3.1. Setup  
Figure 4.3.1-1 to Figure 4.3.1-4 show the practical setup for the real-time test bed 

during a real-time data collection and testing session at the Auckland City Hospital. 

The goal of the real-time data collection was to capture the anaesthetists’ diagnosis 

and the patient data with the correct time-stamp and to get suggestions from the 

anaesthetist for making the prototype alarm more ergonomic. The alarm-levels 

generated by SAAM would be compared with the anaesthetists’ diagnosis to 

determine the level of agreement between SAAM and the anaesthetists.  This 

comparison was carried out in offline mode. 
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Figure 4.3.1-1. RT-SAAM Setup in the Operating Theatre. 

 

 

Figure 4.3.1-2. Existing Setup in the Operating Theatre. 
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Figure 4.3.1-3. Screen-Shot of the RT-SAAM During a Real-Time Data-Collection Session. 

 

 

Figure 4.3.1-4. Screen-Shot of the Datex-Ohmeda S/5 Monitor During a Real-Time Data-Collection 
Session. 
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4.3.2. Challenges  
Prior to the development of the real-time system it was proposed to use a PCI 

(Peripheral Component Interconnect) based data-acquisition card for data collection 

from the older S/3 Datex-Ohmeda anaesthesia monitor. The S/3 monitor relays the 

required analogue data waveforms to a 44-pin port in addition to the serial port 

which exists on the newer S/5 monitor. A PCI-based data-collection approach was 

proposed to be used for data-acquisition via a 44-pin port at the back of the S/3 

anaesthesia monitor. However the anaesthesia monitors in the operation theatre were 

recently upgraded to the latest S/5 series Datex-Ohmeda models. The S/5 monitors 

deprecated (rendered obsolete) the 44-pin port which existed in the older S/3 

monitors. In the new S/5 monitors all the data are relayed out of the monitor via 

single serial port, thus new means for real-time data collection had to be developed 

as discussed in Chapter 4. Establishing the new communication protocol for real-

time data collection was time-consuming as it required several visits to the operation 

theatre and liaising with Dr. Andrew Lowe for his expertise in data-collection. This 

communication issue was not anticipated earlier and it took more than two months to 

resolve this issue, thus system validation had to be postponed. After resolving the 

communication issue RT-SAAM required a couple of trial runs for debugging the 

new setup before successfully establishing data communication with DOMonitor and 

S/5 in real-time. 

4.4. System Validation  
Complete real-time testing of RT-SAAM is beyond the scope of this project as it 

involves recruiting suitable patients which is a time-consuming task. Also the exact 

number of real time test sessions required for gauging system performance and refining 

the system can not be predicted beforehand. It is a rough estimation that at least 30-test 

sessions will be required for successful testing and refining of RT-SAAM. The real time 

testing phase will follow the study methodology illustrated in Figure 4.3.2-1. Initially 10 

real-time test sessions will be conducted. Following this part of the study, the process 

will be repeated either once or twice for further refining the system. It is proposed that 

after every test batch of 10-patients the analyzing algorithm will be fine tuned to make 

RT-SAAM’s diagnoses more accurate. The system performance however could be 

validated through a few trial real-time test sessions and extensive offline tests. 
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Figure 4.3.2-1. Flow Chart for Real-Time Test Methodology. 

 

At the time of publishing this thesis RT-SAAM had been successfully tested with 6-

patients (14 hours worth data) in real-time tests and 18-patients (51 hours worth data) in 

offline tests. Real-time performance of the system can not be validated through 6-

patients and thus more real-time testing is required. Real-time data collection is a very 

slow process as it involves recruiting sufficient number of suitable patients. The 

performance of RT-SAAM therefore could only be validated through offline analysis 

which will be described in detail in this section. The offline test results still hold true for 

both (offline and real time) versions of SAAM because both employ the same 

diagnostic algorithms. The real-time testing was carried out on the test-bed shown in 

Figure 4.3.1-1. The graphical interface provided to the anaesthetists is shown in Figure 

4.4.1-1. 

4.4.1. RT-SAAM’s User Interface 
RT-SAAM’s front panel is divided into following three sections: 

4.4.1.1. AHV Diagnosis Section 
AHV diagnosis section has three progress bars on the left hand side which indicate 

the AHV alarm levels from the three (Fuzzy, Probabilistic and SPV) diagnostic 

modules. The right hand side of the AHV diagnosis section has four buttons using 

which the anaesthetists interacts with RT-SAAM. The settings tab in AHV-

diagnosis lets the user select the patient’s age and sensitivity of the probabilistic 

alarm module. 
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Figure 4.4.1-1. RT-SAAM’s Front Panel. 



 

 75  

4.4.1.2. FCO Diagnosis Section 
FCO diagnosis section has two progress bars on the left hand side which indicate the 

FCO alarm levels from the two (Fuzzy and Probabilistic) diagnostic modules. The 

right hand side of the FCO diagnosis section has four buttons using which the 

anaesthetists interacts with RT-SAAM.  

4.4.1.3. Raw Data Display Section 
The raw data display section located in the bottom portion of the RT-SAAM’s front 

panel displays four variables namely, heart rate (HR), mean arterial pressure (MAP), 

plethysmography (Pleth) and respiration induced systolic pressure variations (SPV). 

4.4.2. Diagnostic Method 
Anaesthetists can record their response by clicking one of the buttons on the front 

panel. For instance if the anaesthetists detect absolute hypovolaemia by monitoring 

the patient information on the S/5 monitor (conventional method for diagnosis) then 

he/she can respond by pressing the ‘YES’ button on the AHV comment panel. After 

consultation with anaesthetists it was decided that the anaesthetists should be 

presented with an audio prompt at 15 minutes intervals, asking him/her to respond. 

For instance the AHV module, generates an audio prompt after every 15 minutes, 

asking the user, “IS HYPOVOLAEMIA POSSIBLE ?”. The anaesthetist can respond 

by pressing one of the buttons on RT-SAAMs’ comment panel. RT-SAAMs’ 

performance can be reviewed by checking the anaesthetists’ response to the audio 

prompt. The diagnostic alarm levels generated by various modules in RT-SAAM are 

evaluated for reliability by verifying them against the clinical evidence and the 

anaesthetists’ response. This comparison is carried out for every 15-minutes epoch. 

The level of agreement between the computer generated (SAAMs’) diagnosis and the 

experts’ (anaesthetists’) diagnosis gives a performance indicator for the prototype 

diagnostic system. 

 

Prior to proceeding to the next section it is imperative to acknowledge the fact that is 

very likely that there might be some variability regarding the diagnosis among a 

group of anaesthetists [15].  

 

Experts handle each clinical event in real-time by monitoring the patient’s 

hemodynamic state and studying all the evidence (cues) at hand.  Anaesthetists take a 

therapeutic decision by forming a mental map of the available clinical evidence. 



 

 76  

Diagnosis of any critical events during anaesthesia depends on all the available 

information (evidence) and the ability of the expert to recognise patterns of disease 

behaviour. 

 

Expert diagnosis may vary between anaesthetists and authenticity of the diagnosis 

depends on the skills and experience of the anaesthetists. Thus there is no right or 

wrong diagnosis as even the anaesthetists’ diagnoses has an uncertainty attached to 

them. Thus for evaluating SAAMs’ diagnostic performance the level of agreement 

between SAAM and the anaesthetists is used as measure of how accurately SAAM 

can mimic anaesthetists performance. 

4.4.3. Offline Analysis 
Sufficient historical patient data collected by co-researchers over the past years were 

available and could be used for testing this prototype system. These data were used 

for offline data-simulation and analysed retrospectively by revisiting all the available 

patient information for each patient record. The analysis of this data set in offline 

mode is identical to the real-time analysis as same diagnostic algorithms were used 

for offline analysis as well as online analysis. Physiological data from 18-patients 

(divided into 204 epochs of 15-minutes duration each) was used for offline analysis. 

These data-sets had incomplete expert diagnoses (anaesthetists’ diagnosis), as some 

of the 15-minutes epoch expert diagnoses were not available. Dr. Harrison studied 

the clinical evidence for each of these 204-epochs and generated the corresponding 

diagnoses for the incomplete epochs. However, it should be noted that as the clinical 

evidence relevant to this offline data was in the form of short notes / logs. Hence it 

would be difficult for another anaesthetist to correctly interpret offline data with 

reference to the accompanying clinical evidence. Due to this reason the offline data 

was analysed only by one anaesthetist i.e. Dr. Harrison. 

 

All the clinical events and procedures that took place during each of these historical 

data collection sessions had been saved into text files and these files provided the 

clinical evidence which could be used by an expert for retrospectively analysing each 

15-minutes epoch. A sample log file and the corresponding physiological data-

waveforms can be found in Appendix C1. 

 

The expert diagnosis was generated for each 15-minutes epoch from the entire 

physiological data-set. Even though retrospective expert diagnosis can not be as 
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accurate as the real-time diagnosis given by the anaesthetist but it may be considered 

very close to the real-time diagnosis. Expert opinion in anaesthesia varies between 

anaesthetists and there is no gold standard for the expert diagnosis. The accuracy of 

the expert diagnosis in case of anaesthesia related critical events depends totally on 

the expertise of the anaesthetist and his past experience. Dr. Harrison has been 

working as anaesthetist for last 30-years and his expertise and experience provided 

the diagnoses for the 15-minutes epochs with missing diagnoses.   

 

SAAM (offline version of the prototype alarm system) is capable of reading the 

binary patient data files and it analyses the data-waveforms in these files and 

generates the alarm levels for the entire length of the data-set. The data from the 

digital patient files was fed to SAAM and the corresponding computer generated 

diagnostic alarm levels were produced by the three diagnostic modules. The 

diagnostic alarm levels are in the form of a continuous waveform for the duration of 

the data-set and divided into 15-minutes epochs for comparison with the expert 

diagnoses.  

 

Figure 4.4.3-1 shows the front panel of SAAM after the diagnosis is generated. In the 

figure the x-axis on the waveforms labelled Probabilistic, Fuzzy and SPV display the 

time elapsed since the first data sample was recorded in patient file which is 

currently being analysed. For instance ‘100’ on x-axis indicates 100-seconds since 

the first recorded sample in that file. Thus the alarm level for each 15-minutes epoch 

was manually noted down into a comparison chart (refer to Table 2 and Table 3 

below) by checking the corresponding time interval on these waveforms on the front 

panel.  

 

For each 15-minutes epoch the following rules were used for classifying the 

computer generated alarm levels on the front panel as positive and negative 

diagnosis: 

1. SPV alarm level with a value ≤ 16% and ≥ 15% was considered possible 

AHV (P). 

2. SPV alarm with a value > 16% was considered very likely AHV (V).  

3. SPV alarm with a value < 15% was considered AHV not likely (N). 

4. For probabilistic alarm level with a value ≤ 1.8 S.D. and ≥ 2 S.D. was 

considered possible AHV (P). 
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5. Probabilistic alarm with a value > 2 S.D.  was considered very likely AHV 

(V).  

6. Probabilistic alarm with a value < 1.8 S.D. was considered AHV not likely 

(N).  

7. Any 15-minute epoch which had a ‘possible AHV (P)’ / ’very likely AHV 

(V)’ diagnosis was classified as positive diagnosis. 

8. Any 15-minute epoch which had an ‘AHV not likely (N)’ was classified as 

negative diagnosis. 
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Figure 4.4.3-1. SAAM’s front panel.
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Based on these classification rules each of the 204-epochs was studied and a 

comparison chart was constructed. Table 2 shows a sample comparison chart for 

patient #10. Similar comparison charts were constructed for all the 18 patients. Based 

on the agreement between the expert’s diagnosis and SAAM’s diagnosis, each of the 

204-epochs was classified into four categories (TruePOS, TrueNEG, FalsePOS and 

FalseNEG). 

 

Table 3 shows a sample classification for patient #10, this classification will be 

explained in detail in the next section. The results from this comparison were 

evaluated using an statistical test called Kappa, refer Kundel [79]. Kappa gives a 

statistical measure for evaluating inter-observer variability, that is, how often two or 

more observers agree/disagree in their interpretation.  

 

Various literatures were surveyed to determine the validation approaches used for 

evaluating similar systems [5, 30, 34, 80-82]. However due to the simplicity of the 

kappa analysis and transparency of this assessment method it was selected as a tool 

for determining the inter observer variability. In this research project the expert 

(anaesthetist) and SAAM are the two observers interpreting the diagnoses for the 

pathological events from the physiological data. The value of kappa computed in the 

following section indicates the level of agreement/disagreement between the expert 

and SAAM. 

4.4.4. Kappa Analysis for Offline Tests 
For validating the performance of the alarm system prototype it was required to 

determine the reliability of SAAM’s diagnoses for absolute hypovolaemia diagnosis. 

According to Kundel and Polansky [79], measurement of the level of agreement 

between the expert diagnoses and the computer generated diagnoses can provide; 

1. A measurement for reliability of the diagnostic system. 

2. A measure of specificity and sensitivity of the diagnostic system. 

3. A measure for consistency of the diagnostic system.  
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Table 2. Offline Test - Diagnosis Outcome (for Patient #10). 

Time 8:45a.m. 9am 9:15 9:30 9:47 10am 10:15 10:30 10:45 11:05 11:15 11:30 11:45 12p.m. 12:15 12:23 12:45 1pm 1:08 1:30 1:45

Slot 0-15 16-30 31-45 46-60 61-75 76-90 91:105 106-120 121-135 136-150 151-165 166-180 181-195 196-210 211-225 226-240 241-255 256-270 271:285 286-290291-305

Prob. -- V N P N N -- V N N V V N N V N N V N
SVP. -- V N N V N -- P N N V P N V P N V V N

-- --
Expert Diag Dr. Harrison --  P N P V N -- P P V V V  N V V  N P P  N

= Positive Diagnoses 
= Negative Diagoses
= Unsure

-- = Major Artefact
= No data Avail.

V = AHV Very Likely
P = AHV Possible
N = No AHV

80104-6 80104-3 80104-4 80104-5 

SAAM Diag

Patient (10) Filename

80104 80104-2 
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Table 3. Offline Test – Agreement Chart (for Patient #10). 

TruePOS TrueNEG FalsePOS FalseNEG
Agreement Agreement Disagreement Disagreement

SAAM +ve SAAM -ve SAAM +ve SAAM-ve
Expert +ve Expert -ve Expert -ve Expert +ve

Patient 10 9:00 V P BP unstable 1
9:15 N N 1
9:47 P P BP unstable 1

10:00 V V 0953-1025 CVP fell 17 - 8 1
10:15 N N 1
11:05 V P BP down, HR up 1
11:15 N P RASVP 1
11:30 N V 1121-1136 metaraminol, CVP 5 1
11:45 V V 1144-1213 CVP 6, MAP v variable 1
12:00 V V 1144-1214 1
12:15 N N BP unstable but going up 1
12:23 V V 1230-1244 Colloid, CVP 7, 1
12:45 V P BP down, HR up 1
13:00 N N 1
13:08 V P 1314-1337 MAP down to 67mmHg 1
13:30 V P 1
13:45 N N 1

Total 10 5 0 2

Expert CommentsPatient 
No. 

Time
Slot

SAAM 
Diag.

Expert 
Diag.
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For computing the level of agreement between the expert’s diagnosis and SAAM’s 

diagnosis, each of the diagnoses was explicitly expressed as positive or negative. 

Based on the positive or negative diagnosis generated by SAAM and the diagnosis 

by expert there were four possible permutations for AHV diagnosis; 

a) Both SAAM and Expert agree that AHV exists (TruePOS). 

b) Both SAAM and Expert agree that AHV does not exist (TrueNEG). 

c) SAAM gives positive diagnosis while Expert gives negative diagnosis 

(FalsePOS). 

d) SAAM gives negative diagnosis while Expert gives positive diagnosis 

(FalseNEG). 

 

A total of 204-epochs from the offline data-sets were identified and classified into 

the four classes described above. From Table 3, Table 4 was developed for 

computing the various statistical entities for kappa analysis and represents the 

epoch’s corresponding to patient #10. 

 

Similar classification was carried out for the entire data-set, refer Appendix C2 for 

offline testing – agreement chart for the entire data-set. The resulting statistical 

information for the entire data-set is summarised in the  

Table 5 below. 

 

Table 4. Kappa Table (for Patient #10). 

Expert(+ve) Expert(-ve)
SAAM(+ve) 10 0 10
SAAM(-ve) 2 5 7

12 5 17  

 

Table 5. Kappa Table for Offline-Analysis of the Complete Data-Set. 

Expert(+ve) Expert(-ve)
SAAM(+ve) 94 27 121
SAAM(-ve) 11 72 83

105 99 204  
 

Based on the data from  

Table 5 the positive agreement (Ppos) and negative agreement (Pneg) indices were 

calculated as follows: 
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( ) ( ) 83.0
11942794

9494
=

+++
+

=posP        4.1 

( ) ( ) 79.0
72117227

7272
=

+++
+

=negP        4.2 

  

The third index of agreement gives the overall agreement (Po) level between the 

expert and SAAM; it was calculated with the following equation: 

81.0
204

7294
=

+
=oP         4.3 

  

Agreements between the two diagnoses may be affected by chance. For instance if 

the expert had any prior knowledge that most of the epoch’s had a positive diagnosis, 

then he would have had adopted a strategy of reporting a positive diagnosis 

whenever he had a doubt. Kappa (k) is a measurement of agreement between the 

expert and SAAM which has been corrected for error by chance.  Kappa (k) is 

calculated by subtracting the proportion of readings that are expected to agree by 

chance (Pe) from the overall agreement (Po) and dividing the remainder by the 

number of cases on which agreement is not expected to occur by chance. 

e

eo

P
PPk

−
−

=
1

         4.4 

 

The agreement expected by chance (Pe) was calculated as follows: 

50.0
204
99

204
83

204
105

204
121

=⎟
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⎞

⎜
⎝
⎛ ⋅+⎟

⎠
⎞

⎜
⎝
⎛ ⋅=eP      4.5 

∴ 62.0
5.01

5.081.0
=

−
−

=k          4.6 

 

The standard error (SE) of k for a 2x2 table could be estimated with Eq.4.7: 

 
( )
( )21

1

e

oo

Pn
PPSE

−
−

=         4.7 

∴ ( )
( )

055.0
5.01204
81.0181.0

2 =
−
−

=SE   CIs for k were 055.096.162.0 ⋅+  = 0.73 

and 055.096.162.0 ⋅−  = 0.51. The kappa analysis for offline tests is summarised in  

Table 6. 
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        4.8 

 

The 95% confidence intervals (CIs) for k could be calculated with the following 

equation (see Eq.4.9): 

 SEkCI ⋅±= 96.1%95         4.9 

         

Thus the 95%  

Table 6. Offline analysis results. 

Po Ppos Pneg Pe SE CI95%

0.81 0.83 0.79 0.50 0.06 0.73 and 0.51

Standard 
Error

95% Confidence 
Intervals for k

Overall 
Aggreement

Positive 
Agreement

Negative 
Agreement 

Agreement by 
chance

 
 

The value of k represents the strength of agreement between the two diagnoses; 

Table 7 below illustrates how a range of k-values are related to the corresponding 

strength of agreement beyond chance. 

Table 7. k-Values Expressed as Strength of Agreement, [79].  

<0 Poor
0-0.2 Slight
0.21-0.40 Fair
0.41-0.6 Moderate
0.61-0.8 Substantial
0.81-1 Almost perfect

Strength of Agreement 
beyond chancek-value

 
Thus for the offline-tests (retrospective analysis) performed, kappa based statistical 

analysis showed substantial level of agreement (k = 0.62) between the expert’s and 

SAAM’s diagnoses.  

4.4.5. Real Time Analysis  
Real-time test result carries much more weight than the offline test result for two 

reasons. First, expert diagnosis is based on more clinical evidence than the 

retrospective expert diagnosis which was generated for the offline analysis. Second, 

the real-time testing simulates the actual operating environment for RT-SAAM.  

 

At the time of publication of this thesis, RT-SAAM had been tested with 6-patients 

in real-time and the data from these tests were analysed retrospectively using the 

kappa analysis, as in the offline-tests. To obtain a reliable measure of agreement for 

real-time analysis of the system, a sizeable amount of patient data is required. Thus 

more data collection is required and therefore testing of the RT-SAAM prototype 
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will be continued after the completion of this M.E. thesis.  Further real-time tests will 

span over a period of 3 months and will be tested with up to 30 more patients.   

 

RT-SAAM uses the communication protocol developed in Chapter 3 for data-

acquisition. The acquired data is processed by RT-SAAM in real-time to generate the 

alarm levels as the time progresses. The alarm levels generated by RT-SAAM are 

saved into a text file (alarm log file) at every 10-seconds interval. The content of the 

alarm log file for patient RT02 is shown in Table 8 below. These alarm levels were 

later compared with the expert comments/opinions which were logged by pressing 

the comment buttons in the comment section of the front panel. As in offline 

analysis, the real-time test results were further evaluated using kappa analysis. 

Table 8. Alarm Log File for Patient # RT02. 

15/12/2006 10:07:27 a.m. AHV Prob. Alarm Level = 1.2326 
15/12/2006 10:07:27 a.m. AHV SPV Alarm Level = 10.5632 
15/12/2006 10:07:27 a.m. AHV Fuzzy Alarm Level = 2.1213 
15/12/2006 10:12:20 a.m. AHV Prob. Alarm Level = 1.3412 
15/12/2006 10:12:20 a.m. AHV SPV Alarm Level = 11.5637 
15/12/2006 10:12:20 a.m. AHV Fuzzy Alarm Level = 2.1324 
15/12/2006 10:17:31 a.m. AHV Prob. Alarm Level = 1.2567 
15/12/2006 10:17:31 a.m. AHV SPV Alarm Level = 11.0234 

  

4.4.6. Kappa Analysis for Real-Time Tests 
The expert diagnosis and the RT-SAAM diagnosis were compared using the 

following excel spreadsheet (Table 9). During each data collection session a manual 

record of clinical events was also kept for backup. For example Table 10 shows a 

manual record for the first real time patient (patient # RT02). Such a record would 

prove useful in the unlikely event that the expert comments were not entered or 

saved due to some reason. 

 

Kappa analysis was carried out for the complete data-set (refer to Appendix C3) from 

the real-time test and the results obtained are tabulated below (refer to Table 11). The 

real-time test kappa analysis showed that there was moderate level of agreement (k = 

0.42) between the expert and RT-SAAM. 



 

 87  

Table 9. Real-Time test – Diagnosis Outcome (for Patient # RT02). 

Patient File 151206-1 151206-2 151206-2
RT-02 Time 9:50 10:05 10:20 10:35 10:50 11:05 11:20 11:35 11:50 12:05 12:20 12:35 12:50 1:05 1:20 1:35 1:50 2:05 2:20

Slot 0-15 16-30 31-45 46-60 61-75 76-90 91:105 106-120 121-135 136-150 151-165 166-180 181-195 196-210 211-225 226-240 241-255 256-270 271:285

Prob -- N N N N N N V N N N V V -- -- -- -- --
SVP -- N N V N N N N N V V V V V V N V V

Mike
N N N N N N N P P P P P V V N N V N

= Positive Diagnoses 
= Negative Diagoses
= Unsure

-- = Major Artefact
= No data Avail.

V = AHV Very Likely
P = AHV Possible
N = No AHV

Alarm
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Table 10. Manual Record for Clinical Events. 

Patient # RT02  Date & Time: 9:50 am 151206
Time Comments AHV FCO
9:50:00 a.m. File start, Surgery starts
9:55:00 a.m. Local anes in epidural N N
10:00:00 a.m. Stable(slight BP fluct bcoz of epidural) N N
10:15:00 a.m. Data collection(DC) going normal N N
10:30:00 a.m. DC going normal N N
10:45:00 a.m. This pat. has an irreg HR rhytm…investigate N N
11:00:00 a.m. N N
11:15:00 a.m. N N
11:30:00 a.m. N N
11:45:00 a.m. A little resp change P N
12:00:00 p.m. IVC is clamped P N
12:15:00 p.m. IVC released(12:24) P N
12:30:00 p.m. IVC surgical compr….AHV likely P N
12:45:00 p.m. Blood is being given… V P
1:00:00 p.m. Minor fall in FCO, Definite AHV(1pm & 1:11pm V V
1:15:00 p.m. Stable (break) N N
1:30:00 p.m. Stable (break) N N
1:45:00 p.m. Surgery resumed(bp, etco2 going down) V P
2:00:00 p.m. Surgery ends. N N

Status

  
 

Table 11. Real-Time Analysis Results. 

Po Ppos Pneg Pe SE CI95%

0.75 0.56 0.82 0.50 0.13 0.68 and 0.15

Standard 
Error

95% Confidence 
Intervals for k

Overall 
Aggreement

Positive 
Agreement

Negative 
Agreement 

Agreement by 
chance

 
 

4.5. Refining the Algorithms 

Most of the algorithm refining and fine-tuning were carried out during the algorithm 

development cycle, for example the filter specifications were selected after evaluating 

and simulating the sample data sets from the historical offline data that was available 

during the initial stages of this research project. During the development phase, each of 

the algorithms was evaluated with sample test-data and the algorithms were fine-tuned 

for optimal performance, refer to Section 2.4 in Chapter 2. However it is projected that 

the real-time testing phase and the application of the prototype into real-life simulations 

may require further fine-tuning for improving the system performance. Some of the 

threshold values set for the pre-processing and the processing algorithms need to be 

further refined as more data is collected and evaluated during the system validation. For 

example the ETCO2 threshold value which is currently set at 3 can be optimised to a 

more specific value as more data is collected. This will improve the diagnostic 

specificity and accuracy of the ETCO2 algorithm. Also the filter specifications and the 

threshold values for individual algorithms can be made accurate as more data is 

collected and evaluated during the clinical testing and validation of RT-SAAM.  
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4.6. Chapter Summary  

SAAM was successfully tested in both online and offline modes with ethical consent 

obtained from local ethics committees. From offline analysis it was evident that the pre-

processing algorithms and diagnostic modules in the prototype system achieved 

satisfactory performance. Prior to being implemented in SAAM, each of the pre-

processing and the diagnostic modules was tested individually with a large amount of 

patient data. The algorithms were refined over a period of 3 months before their 

implementation into SAAM. Both offline and real-time versions of SAAM used the 

same diagnostic algorithms and thus the system performance realized through offline 

tests was used as a performance indicator for the both the real-time and offline 

diagnostic versions.  

The offline and real-time testing of the diagnostic alarm system prototype generated 

satisfactory values for kappa (k) indicating that there was substantial to moderate level 

of agreement between the expert and the computer generated diagnosis. Further real-

time testing is required for making the real-time test results more credible.  More real-

time tests will be conducted in the near future and further fine-tuning of the system may 

be required for improving the system accuracy.  
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Chapter 5 Discussions and Conclusions 

5.1. Introduction 
This chapter presents discussion, conclusions and recommendations for future work. A 

concise and detailed discussion is presented on some of the major developmental stages 

of this research project. The conclusions section provides a summary of the research 

outcome and the conclusions reached. Finally recommendations are made for possible 

future works for further refining the performance of RT-SAAM and other possible 

applications for RT-SAAM.  

5.2. Discussions 

5.2.1. Data Simulation 
Data simulation in MATLABTM was one of the milestones in this research project. 

The resultant algorithms developed during data simulation provided the basic 

foundation for SAAM and RT-SAAM.  MATLABTM programming codes and 

techniques were learned and understood before starting with the data-simulation 

phase. 

 

Data simulation for the sample physiological signals was carried out in MATLABTM 

environment. During data simulation it was learnt that the blood pressure signals 

(BP/P1) and the pulse volume signals (PV) were highly corrupted with noise signals 

and interference due to a variety of intra-operative events and procedures. Due to the 

random nature of these noisy physiological signals conventional filtering techniques 

could not achieve satisfactory noise cancellation as described in Chapter 2. Thus new 

filtering and pre-processing algorithms were developed for BP and PV signals. The 

noise filtering capability of these algorithms was further assessed through more 

rigorous data simulation. From the output of the BP and PV filtering algorithms it 

was observed that successful noise filtering could be achieved with the developed 

pre-processing algorithms (see Figure 5.2.1-1 to Figure 5.2.1-4). The variance based 

filtering algorithm eliminates segments of the data-waveforms which were highly 

corrupted by noise, it uses a DFT based low pass filter for attenuating the low-

frequency noise component.  
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With the variance threshold values set at 50 to 1000 for the BP signal and 0.1 and 30 

for the PV signal the noisy signal segments (with variance values exceeding these 

threshold values) were eliminated from the BP and PV waveforms. The limits for the 

variance based filter were generalised during the data-analysis stage by trial and error 

analysis of the sample physiological data. It was observed that the variance threshold 

values for PV signal had much wider inter-patient variability and therefore threshold 

values were not uniform for the different patient samples. After analysing data from 

15 patients the limits were set at 0.1 and 30. It is anticipated that as more 

physiological data are collected and analysed the limits of the variance-based 

filtering will be fine tuned to reduce the inter-patient variability and thereby making 

the filtering process more accurate for the PV signal.  
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Figure 5.2.1-1. BP Pre-Processing Algorithm's Output. 
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Figure 5.2.1-2. PV Pre-Processing Algorithm's Output.  
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Figure 5.2.1-3. Raw Blood Pressure Waveform. 

 
Figure 5.2.1-4. Filtered Blood Pressure Waveform. 

 

Prior to implementing the variance based algorithm, conventional filtering 

algorithms (discussed in Chapter 2) were tested for their possible application in this 

research project but the results obtained were unsatisfactory. For instance the low 

pass BP signal shown in Figure 5.2.1-5 had a random noise component which had 

the same frequency component as the useful signal component and therefore the low 

pass filtering algorithm could not reject the random noise component. On the other 

hand the BP pre-processing algorithm developed in this research successfully 

eliminated such random noise components and simultaneously filtered the signal for 

high frequency noise (refer to Figure 5.2.1-1).  
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Figure 5.2.1-5. Lowpass filtered BP signal. 

 

5.2.2. Algorithm Development 
After data simulation in MATLABTM the diagnostic algorithms were developed by 

selecting the most appropriate signal processing techniques and several new 

algorithms were developed. A signal processing technique called windowing was 

then used for extracting the required information from the segments of the pre-

processed physiological signals. For instance the HR, MAP and SAP were derived 

from the pre-processed BP signal using the BP-processing algorithm.  

 

For detecting HR and SAP values from the raw BP waveform requires detecting the 

highest peaks (systolic pressure peaks) from the BP waveform. The number of 

systolic pressure peaks in the BP waveform per minute gives the HR value. Several 

conventional peak detection algorithms [73-75] like slope-based peak detection, DFT 

based peak detection and maxima-minima based peak detection were studied for this 

application. The presence of spurious peaks, for example dicrotic notches and their 

associated peaks, and the noise induced peaks in the raw BP waveform made peak 

detection a challenging task (refer to Figure 5.2.1-3). The conventional peak-

detection algorithms were not effective when applied as separate algorithms and 

hence a new hybrid peak-detection algorithm was developed. The new peak-

detection algorithm successfully extracted the genuine systolic peaks from the BP 
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waveforms (see Figure 5.2.2-1).  The SAP values were used for computing the 

respiration induced variations in the systolic pressure in the SPV module. With slight 

modification the same peak-detection algorithm was used for detecting the peaks and 

trough values from the filtered PV-signal. The PV peak and trough values were then 

further processed for computing the PV-value. The new peak detection algorithm 

proved to be very efficient at detecting peaks and troughs from the BP and PV 

waveforms.  

 

Figure 5.2.2-1. Systolic Peak detection from the BP Waveform. 

 

The probabilistic alarm module generates the probabilistic alarm level by comparing 

the changes in each signal sample with similar changes from a population cluster. 

For implementing the probabilistic alarm module the most essential set of data 

required were the statistical data (i.e. average and standard deviation values) for each 

of the four physiological parameters (i.e. MAP, HR, PV and ETCO2). Dr. Harrison 

had provided these statistical values for MAP, HR and ETCO2 from a relevant study 

[13] by analysing a cluster of physiological signals from a large population sample. 

The statistical values were not available for the PV signal. During the data simulation 

stage these statistical data values were generated for PV signal from a relatively 

smaller population sample. Hence the PV probabilistic algorithm using these values 

was relatively less accurate as compared to the probabilistic algorithms for the other 

0 1 2 3 4 5 6 7 8 9 10
x 10

4

0

100

200
Raw BP

0 1 2 3 4 5 6 7 8 9 10
x 10

4

0

100

200
Filtered BP

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

Time (secs)

Systolic Peak  Envelope 

mm Hg 

mm Hg 

mm Hg 



 

 95  

three signals. In the current form the PV signal generated a higher probabilistic alarm 

level as compared to the other three signals and thus the probabilistic alarm value 

from the PV module was scaled down. The resulting PV alarm level could then be 

used in conjunction with the probabilistic alarm values from the other three signals 

for computing the over all probabilistic alarm level for absolute hypovolaemia. It was 

expected that as more physiological data was collected the PV statistical values will 

be recalculated from a larger population sample. Thus the accuracy of the PV module 

could be further improved.   

 

The diagnostic algorithms initially developed with MATLABTM, were later 

reprogrammed as LabVIEWTM code. LabVIEWTM was chosen because of its data 

acquisition, signals analysis and real-time application development capabilities. 

Initially JavaTM was considered for developing RT-SAAM but due to the 

compatibility issues with MATLABTM code and the lack of built-in data acquisition 

and signal processing capabilities it was decided that LabVIEWTM was a more 

practicable approach for developing RT-SAAM. Familiarity and expertise was 

gained by self learning the required program codes and programming techniques in 

LabVIEWTM. 

 

The fuzzy logic algorithm was initially programmed in MATLABTM but 

LabVIEWTM did not have a compatible object oriented programming (OOP) toolbox 

and hence the fuzzy logic module could not be reprogrammed in LabVIEWTM. The 

complexity of the fuzzy module and the computational overhead without the OOP 

implementation would produce a large delay in the real-time analysis and hence it 

was not feasible to implement the fuzzy module in RT-SAAM. However using third 

party implementation of OOP for LabVIEWTM it would be possible to do this. The 

learning curve for the third party OOP toolbox would require additional time and 

additional simulated testing and thus could not be accommodated within the allotted 

time duration of this thesis. The exclusion of the fuzzy logic from RT-SAAM had 

very little effect on the diagnostic capability of RT-SAAM as a whole.  However 

reprogramming the fuzzy logic module would provide a redundant diagnosis thereby 

improving the overall strength of the diagnosis. 
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5.2.3. Real-Time System Development 
The diagnostic alarm prototype implemented in the RT-SAAM is described in 

Chapter 4. RT-SAAM was developed using a modular programming approach in 

LabVIEWTM environment, the programming block was sub-divided into modular 

blocks of code called Sub-Virtual Instruments (sub-VIs). The modular layout of 

SAAM and RT-SAAM facilitated addition of new program-blocks and depreciation 

of existing program-blocks with little or no effect on the functionality of the system 

as a whole.  

 

The RT-SAAM was also provided with a data-acquisition module (for collecting data 

from the S/5 anaesthesia monitor) and a data relaying module (for relaying the data 

to other equipment i.e. IDAS) in the operating theatre. These capabilities of RT-

SAAM enabled the data-collection and testing without affecting the operation of the 

existing equipment in the operating theatre. The development of this communication 

setup was one of the most time-consuming phases of this research project. Several 

communication setups were tried before successfully implementing the DOMonitor 

based communication protocol. A new communication module was added to RT-

SAAM to enable it to communicate with the DOMonitor program. After 

implementing the communication protocol RT-SAAM was tested in an empty 

operating theatre before its successful implementation for real-time data collection.  

 

In the current form RT-SAAM can be tested in real-time in the operating theatre and 

its clinical usefulness has been assessed in real-time tests. The real-time test 

capability and clinical usefulness of RT-SAAM distinguishes it from other diagnostic 

systems [6, 11, 17, 18] in anaesthesia. The results obtained from a the offline 

(retrospective) analysis and real-time analysis of the RT-SAAM during the system 

validation phase showed that there was a high level of agreement between the 

anaesthetist and the RT-SAAM pertaining to the diagnosis of the critical events. 

Section 5.2.5 in this chapter provides a detailed discussion on system performance, 

accuracy of diagnoses and the problems encountered during the system validation 

phase. However, it should be noted that the evaluation of RT-SAAM from 

computation cost point of view will be a big research objective in itself and is beyond 

the scope of this thesis. Once RT-SAAM’s performance is validated and refined in 

clinical context then the computational utilisation of this diagnostic system can be 

evaluated and optimised. 



 

 97  

 

5.2.4. Audio-Visual Display Design 
One of the goals of this research project was to provide the diagnostic information on 

an ergonomic, interactive display to the users (i.e. the anaesthetists). Therefore 

anaesthetist’s feedback was obtained while designing the front panel of the RT-

SAAM. The aim was to minimise the visual clutter on the front panel and to display 

the diagnostic information in an easy to grasp format. Thus progress bars were used 

for indicating the alarm levels and waveform graphs were avoided. To notify about 

any critical events the alarm level progress bars were provided with blinking 

property and an audio alarm to get the user’s attention. An audio alarm was 

implemented in the form of a human voice that asked the anaesthetist “IS 

HYPOVOLEMIA POSSIBLE ?”. Thus the anaesthetists were prompted to provide 

their diagnosis based on the present state of the patient. The interactive capability of 

RT-SAAM was useful for logging anaesthetists’ responses and thus evaluating the 

system performance. Using LabVIEWTM graphically rich, interactive displays can be 

easily produced and modified.  

   

5.2.5. System Performance 
For testing of the diagnostic system prototype in the operation theatre required 

ethical consent from the local ethics committees. Ethical approval was obtained from 

the Northern-X Regional Ethics Committee and Auckland University of Technology 

Ethics Committee (AUTEC). An informed, written consent was obtained from each 

patient participating in this research and strict clinical guidelines were followed 

during the real-time testing so that little or no interference was caused to the routine 

clinical proceedings.  

 

The prototype system could be tested only with those patients who were likely to 

suffer moderate to major blood-loss and who required an arterial pressure line during 

the surgery. Emergency procedures were avoided because informed consent is more 

difficult in such cases. The recruitment of suitable patients was a time consuming 

task. At the time of publication of this thesis only 6 suitable research participants 

could be recruited and during the first clinical trial the data relaying module in 

DOMonitor did not function as anticipated and thus the data collection could not be 
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continued. Hence RT-SAAM could be successfully tested with only 5 patients in 

real-time.  

 

The prototype system was tested with physiological data from 18-patients in offline 

(retrospective) analysis and 5 patients in real-time analysis. The physiological data 

were divided into 15-minutes epochs and the diagnoses for each of these epochs were 

evaluated. For some of the 15-minutes epochs the data were noisy and thus the 

diagnoses were unavailable. A total of 259 epochs (i.e. approximately 65 hours of 

physiological data) were analysed. The useful diagnoses from the expert 

(anaesthetist) and the expert system prototype (RT-SAAM) were compared to 

measure the level of agreement between the two observers. Kappa analysis was used 

for computing the level of agreement between the two independent observers (i.e. 

Expert and RT-SAAM in the above case). During the offline tests and real-time tests 

substantial and moderate levels of agreements were achieved respectively. For some 

15-minutes epochs RT-SAAM made diagnosis 5-10 minutes before the anaesthetist. 

 

During the analysis of some 15-minutes epochs from the real-time data it was 

observed that the diagnostic system prototype generated false positive alarms. These 

epochs were re-analysed to determine the cause of these false positive alarms. During 

the re-analysis of the RT-SAAM system it was found that the data-communication 

module appended a zero value at the end of each data batch resulting in a large 

variation in the signals and thus generating false positive alarms. After removing the 

appended zeros from the data batches the false positive alarms were minimised.  

 

Kappa analysis used in this research is a statistics based analysis that does not pre-

judge that either of the observers is correct, simply measuring the level of agreement 

between the two observers. It is important as this research aims to improve on 

anaesthetists’ diagnoses. It is likely that RT-SAAM may make the diagnosis when 

the clinician does not, in this case RT-SAAM could be correct and yet there is 

disagreement. This shows that even though kappa statistics can provide a measure of 

agreement between the two observers but does not completely represents the actual 

performance of RT-SAAM. However the diagnoses from the expert and RT-SAAM 

cannot be studied independently and hence the kappa analysis provides incomplete 

yet most reliable performance indicator. 
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Some important factors to be noted about the diagnostic analysis are listed below: 

• In an ideal world the individual assessments should be made in different 

patients so that the data is completely independent. This would mean only 

having one assessment per patient which is infeasible, thus statistical results 

should be interpreted with this in consideration. 

• The data-set analysed for timeslot 1-15 minutes is not completely independent 

of the data-set for timeslot 16-30 minutes (refer to Table 1 and Table 8 in 

Chapter 4). Thus the alarm level in any particular 15-minute epoch could be 

related occurring in the adjacent epochs, resulting in a disagreement. 

• During the real-time tests it was observed that the normal changes in BP, HR, 

ETCO2 were not detected as significant changes by the diagnostic algorithms. 

Hence it could be inferred that the diagnostic algorithms detected only the 

significant (genuine) changes in the physiological parameters as critical 

events.  

• The measurement of actual blood volume is extremely difficult and complex 

and therefore we have had to depend on clinical expertise for an assessment. 

Thus there was no gold standard measure for comparing the output of the 

diagnostic algorithm. 

 

It is expected that more clinical trials will be conducted in the operating theatre in the 

near future and the performance of the system will be further refined. The results 

from the clinical trials will be used for making appropriate fine-tuning of the system 

components for making the diagnosis more accurate. 

5.3. Conclusion 
In summary, this research has developed a clinically useful diagnostic alarm for 

anaesthesia monitoring by investigating various topics in digital signal processing, data 

communication techniques, data collection from anaesthetised patients in the operating 

theatre. The complete clinical usefulness of this system however needs to be validated 

through more rigorous testing in the real test environment and is a time consuming 

process. Fuchs-Buder[83] discusses evaluation guidelines for monitoring/diagnostics 

systems like RT-SAAM. Another aspect of the system validation which needs further 

investigation is the comparison in the performance of the various diagnostic modules 

(Probabilistic, SPV and Fuzzy). This will give more insight into the accuracy of the 

individual algorithms and hence the better understanding of the overall accuracy of RT-
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SAAM. In its current state the system is ready for clinical use as a test bed for 

validating the diagnostic algorithms presented in this thesis. The complete validation of 

RT-SAAM as a clinically useful diagnostic alarm system and evaluation of the 

diagnostic accuracy and specificity of the individual algorithm is a time consuming 

undertaking and will be continued. 

 
The area that had been covered during this research project included: 

• Biomedical signal processing algorithms that used principles of digital signal 

processing in DFT, FFT, Windowing. 

• Understanding the physiological signals and the anaesthesia monitoring 

techniques used by the anaesthetists. 

• Real-time algorithm development using the state-engine approach. 

• Diagnostic algorithms based on fuzzy logic, statistics and the respiratory 

induced systolic pressure variations (SPV). 

• Protocols for collecting and relaying the physiological signals.   

 

The results produced during this research showed that the developed diagnostic system 

(RT-SAAM) is capable of diagnosing the pathological events with substantial to fair 

level of agreement between RT-SAAM and the anaesthetist. Thus RT-SAAM is 

potentially promising and with further research the monitoring system could be 

commercialised.   

5.4. Future Work 
This research project achieved approximately 80% of the research objectives. The 

recommendations for future work provided in the following paragraphs are towards 

improving the RT-SAAM developed during this research project followed by other 

possible applications to which RT-SAAM can be extended. 

 

5.4.1. Fuzzy Logic Module 
Fuzzy logic can be implemented in RT-SAAM using third party OOP toolbox for 

LabVIEWTM. 

5.4.2. Refining RT-SAAM  
Further real-time testing and data collection of RT-SAAM will provide more fruitful 

results and constructive feedback on the basis of which the system can be fine tuned 

for obtaining optimal performance. As more data is available after more data-
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collection sessions the BP  and PV variance threshold values could be reanalysed 

thereby improving the accuracy of the pre-processing algorithms in RT-SAAM. The 

average and standard deviation values for the PV signal also need to be obtained for 

a larger population sample and with future data collection and clinical trials this can 

be easily achieved. 

5.4.3. Expanding RT-SAAM for Monitoring Additional Events  
After complete validation of RT-SAAM for diagnosing absolute hypovolaemia, the 

system can be further expanded for monitoring more anaesthesia related events like 

relative hypovolaemia, sympathetic response and malignant hyperpyrexia. 

5.4.4. Data Acquisition, Apparatus and Setups 
A touch screen implementation of RT-SAAM with wireless communication 

capability can make the system more ergonomic and reduce the complexity involved 

in deploying the setup in the operating theatre. Using touch screen and wireless setup 

will reduce the clutter in the operating theatre creating a safer work place.      

5.4.5. Patient Database for Physiological Data and Events  
Developing a database of the patient data for future research in the field of patient   

monitoring could highly benefit future projects in this field. 

5.4.6. Application to General Patient Monitoring 
Some of the signal processing algorithms developed during this project can be used 

in other patient monitoring systems where similar physiological signals need to be 

processed. Thus it is possible to extend the diagnostic capability of RT-SAAM to 

other patient monitoring applications. More research can be done in this area.  

5.4.7. Comparative Performance Validation of Diagnostic Algorithms 
A comparative validation and more intense performance study of the diagnostic 

algorithms will prove helpful in recognising and selecting more accurate and specific 

algorithm. Such a study will prove to be a useful aid in identifying and refining these 

algorithms and thereby improving the RT-SAAM diagnostic system as a whole. 

5.4.8. Complete Performance Validation of the System 
A complete, intensive performance validation of RT-SAAM is required for 

determining for proving the clinical usefulness of this diagnostic system. It is 

proposed that such a validation should be carried out to determine RT-SAAMs 

performance with reference to sensitivity, real-time analysis, hum-factors 

engineering, etc. 
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Appendix A1 - Real-Time Algorithm with State-Engine Implementation by LabVIEW, Init-State.  
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Appendix A2 - Real-Time Algorithm with State-Engine Implementation by LabVIEW, PreFileRead-State. 
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Appendix A3 - Real-Time Algorithm with State-Engine Implementation by LabVIEW, FileRead-State. 
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Appendix A4 - Real-Time Algorithm with State-Engine Implementation by LabVIEW, Analysis-State. 
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Appendix A5 - Real-Time Algorithm for  TCP-Read by LabVIEW. 
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Appendix A6 - Real-Time Algorithm for Comment Logging 
by LabVIEW. 
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Appendix B1 - Northern X-Ethics Approval Letters. 
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Appendix B2 - AUTEC X-Ethics Approval Letter. 
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Appendix B3 - Patient Information Sheet. 
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Appendix B4 - Consent Forms. 
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Appendix C1 - Patient Log. 
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Appendix C2 - Offline Analysis Results. 
 

        TruePOS TrueNEG FalsePOS FalseNEG 

Agreement Agreement Disagreement Disagreement 

SAAM +ve SAAM -ve SAAM +ve SAAM-ve 

Patient 
No.  

Timeslot SAAM 
Diag. 

Expert 
Diag. 

Expert +ve Expert -ve Expert -ve Expert +ve 

Patient 1 7:52 V P         
  8:00 N N   1     
  8:36 N N   1     
  8:45 N P       1
  9:19 V N     1   
  9:30 N N   1     
  9:50 V N     1   
  10:00 P N     1   
  10:21 P P 1       
  10:30 N N   1 1   
  10:52 V N     1   
  11:00 V N         
               
Patient 3 9:47 N P       1
  10:00 P P 1       
  10:34 P P 1       
  10:45 V N     1   
  11:37 N N   1     
  11:45 N P       1
  12:00 P P 1       
  12:09 V V 1       
  12:30 V V 1       
  13:09 P P 1       
  13:30 N N   1     
               
               
               
Patient4 11:00 VP P 1       
  11:15 NN P       1
  11:30 VV V 1       
  11:45 NV P 1       
  12:00 NN N   1     
  12:15 VV V 1       
  12:30 NN          
  12:45 VV p 1       
  1:00 VN P 1       
  1:15 VN P 1       
  1:30 VN P 1       
               
Patient 5 10:24 V P 1       
  10:52 P N     1   
  11:19 N N   1     
  11:37 N N   1     
  11:45 N N   1     
  12:12 N N   1     
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 Timeslot SAAM Expert TruePOS TrueNEG FalsePOS FalseNEG 
  12:30 N N   1     
  12:45 V N     1   
  13:00 V N     1   
  13:15 V N     1   
  13:23 N N   1     
  13:45 V P 1       
               
               
Patient 6 10:45 P N     1   
  1100 N N   1     
  1115 VP N     1   
  11:32 NV P 1       
  1145 PV P 1       
  1204 NN N   1     
  1215 NV P 1       
  1230 NN N   1     
  1251 NN P 1       
  1300 NV V         
               
Patient 7 9:23 NN N   1     
  9:30 VV N     1   
  10:29 NV P 1       
  10:45 PV P 1       
  11:05 NN N   1     
  11:38 NN N   1     
  12:00 NN N   1     
               
               
Patient 8              
  10:19 V N     1   
  10:30 V P 1       
  10:45 N N   1     
  11:00 V P 1       
  11:13 V N     1   
  11:30 V V 1       
  11:45 V P 1       
  11:56 P P 1       
  12:15 N N   1     
  12:27 N N   1   1
  12:45 N P       1
  13:00 N N   1     
               
Patient 9 11:25 VN N     1   
  11:45 NV P 1       
  12:37 NN N   1     
  12:45 NN N   1     
  13:00 NN N   1     
  13:15 NP P 1       
  13:30 NN N   1     
  13:45 NN N   1     
  14:09 NV N     1   
  14:15 NN N   1     
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 Timeslot SAAM Expert TruePOS TrueNEG FalsePOS FalseNEG 
Patient 10 9:00 V P 1       
  9:15 N N   1     
  9:47 P P 1       
  10:00 N V       1
  10:15 N N   1     
  11:05 V P 1       
  11:15 N P       1
  11:30 N V       1
  11:45 V V 1       
  12:00 V V 1       
  12:15 N N   1     
  12:23 V V 1       
  12:45 V P 1       
  13:00 N N   1     
  13:08 V P 1       
  13:30 V P 1       
  13:45 N N   1     
               
               
Patient 11 8:58 PN P 1       
  9:15 NN N   1     
  9:29 VV V 1       
  9:45 VV V 1       
  10:00 VV V 1       
  10:09 VN P 1       
               
Patient 13 9:15 NV ????         
  9:44 N N   1     
  10:00 NV P 1       
  10:18 NN N 1       
  10:30 NN N 1       
  10:49 NN N 1       
  11:05 NV N     1   
               
Patient 15 8:30 NV P 1       
  8:45 NV P 1       
  9:00 VN P 1       
  9:26 VV V 1       
  9:45 VV V 1       
  10:00 NP P 1       
  11:15 NV V 1       
  11:30 NN P       1
  11:45 VN N     1   
               
Patient 16 9:00 NN N   1     
  9:17 NN N   1     
  9:30 VN P 1       
  9:45 NN N   1     
  9:58 VV P 1       
  10:12 PV V 1       
  10:30 NV P 1       
  10:50 NV V 1       
  11:00 NV V 1       
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 Timeslot SAAM Expert TruePOS TrueNEG FalsePOS FalseNEG 
  11:15 PN V 1 1     
  11:35 NN N   1     
  11:45 NN P         
               
               
Patient 17 8:45 NN N   1     
  9:45 PN N     1   
  9:58 NN N   1     
  10:19 NN N   1     
  10:30 VV N 1       
  10:50 NN N   1     
  11:00 NP P 1       
  11:15 NN N   1     
  11:28 VN P 1       
  11:45 NN N   1     
  12:01 NN N   1     
  12:15 NN N   1     
  12:51 PP P 1       
  13:15 NN N   1     
  13:25 NN N   1     
  13:45 VV P 1       
  14:00 NN P       1
  14:08 VN N     1   
  14:30 NN N   1     
  14:43 NN N   1     
  15:00 NN N   1     
               
Adden 2 9:17 VV          
  9:30 VV          
  9:45 NV          
  10:00 VV          
  10:15 NN          
  10:30 NN N   1     
  11:27 VV P 1       
  11:45 VN P 1       
  12:00 VN P 1       
  12:15 VV P 1       
  12:29 PV P 1       
  12:45 VV P 1       
  13:00 NN N   1     
               
Adden 3 9:17 VV P 1       
  9:30 VV P 1       
  9:45 VV N     1   
  10:02 VV V 1       
  10:15 VV PV 1       
  10:30 VV V 1       
  10:45 VV V 1       
  11:00 VV V 1       
  11:15 VV V 1       
  11:30 VV V 1       
  11:45 VV V 1       
  12:00 VV V 1       
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 Timeslot SAAM Expert TruePOS TrueNEG FalsePOS FalseNEG 
  12:15 VV P 1       
  12:30 VN P 1       
               
Adden 4 14:24 PN P 1       
  14:43 NN N   1     
  15:00 VN N     1   
  15:15 NN N   1     
  15:27 NN N   1     
  15:45 PN P 1       
  16:00 PN P 1       
  16:15 NN N   1     
  16:34 VN P 1       
  16:45 NV N     1   
  17:00 VN P 1       
  17:15 NV P   1     
  17:30 NN N         
               
Adden 5 9:59 NN N   1     
  10:15 VN P 1       
  10:30 NN N   1     
  10:45 NN N   1     
  10:59 VN N     1   
  11:15 NV N     1   
  11:30 VN P 1       
  11:45 NN N   1     
  12:01 NN N   1     
  12:15 NN N   1     
  12:30 NV N     1   
  12:45 NN N   1     
  13:00 NN P       1
  13:15 NN N   1     
  13:30 NN N   1     
  13:45 NN N   1     

Total       93 72 27 12
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Appendix C3 - Real-Time Test Results 
 

        TruePOS TrueNEG FalsePOS FalseNEG 

Agreement Agreement Disagreement Disagreement 

SAAM +ve SAAM -ve SAAM +ve SAAM-ve 

Patient No.  TimeSlot SAAM 
Diag. 

Expert 
Diag. 

Expert +ve Expert -ve Expert -ve Expert +ve 

Patient 1 9:50 -- N         
  10:05 NN N   1     
  10:20 NN N   1     
  10:35 NV N     1   
  10:50 NN N   1     
  11:05 NN N   1     
  11:20 NP N     1   
  11:35 PP P 1       
  11:50 NN P       1
  12:05 NV P 1       
  12:20 NV P 1       
  12:35 VV P 1       
  12:50 VV V 1       
  1:05 OV V 1       
  1:20 OV N     1   
  1:35 NN N   1     
  1:50 OV V 1       
  2:05 OV N     1   
               
Patient 2 9:00 NN N   1     
  9:15 NN N   1     
  9:30 NN N   1     
  9:45 NV N     1   
  10:00 NN N   1     
  10:15 NV N     1   
  10:30 NV N     1   
  10:45 NN N   1     
  11:00 NN N   1     
  11:15 NN N   1     
  11:30 NP P 1       
  11:45 PP P 1       
  12:00 NP N     1   
  12:15 NN N   1     
  12:30 NN N   1     
               
                
Patient 4 9:00 -- --         
  9:15 -- N         
  9:30 NN N   1     
  9:45 NV N     1   
  10:00 NV N     1   
  10:15 NN N   1     
  10:30 NN N   1     
  10:45 NN N   1     
  11:00 NN N   1     
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  11:15 NN N   1     
        

 Timeslot SAAM Expert TruePOS TrueNEG FalsePOS FalseNEG 

Patient 5 12:00pm -- --         
  12:15 -- --         
  12:30 NN N   1     
  12:45 VV N   1     
  1:00 NV N     1   
  1:15 NN N   1     
  1:30 NV N     1   
  1:45 NN N   1     
                
Patient 6 9:00 -- --         
  9:15 NN N   1     
  9:30 NN N   1     
  9:45 NN N   1     
  10:00 NN N   1     
  10:15 NN N   1     
  10:30 NN N   1     
  10:45 NN N   1     
  11:00 VN N     1   
  11:15 NN N   1     
                

Total       9 32 13 1
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