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AUTOMATIC VARIANCE 
CONTROL AND VARIANCE 
ESTIMATION LOOPS* 
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Abstract. A closed-loop servo approach is applied to the problem of controlfing and 
estimating variance in nonstationary signals. The new circuit closely resembles, but is not 
the same as, automatic gain control, which is common in radio and other circuits. The 
closed-loop nature of the solution to this problem makes this approach highly accurate, 
and it can be used recursively in real time. 
Key words: Automatic gain control, variance estimation, closed-loop control, adaptive 
filters. 

1. Introduction 

In applications that use adaptive filters, usually some estimate of variance is 
required if  a least-mean squares (LMS) algorithm is used for weight vector es- 
timation [1]. Normally, a window or moving window of data can be used, and the 

sample variance computed. A finer approach is to update the variance recursively. 
That is (assuming large k), for a sample variance cr 2 of k samples of  zero-mean 

data y~ 

, (1) 
i=1 

the recursive equivalent is given by [4] 

~2 2 1 2 
= Crk-1 + -s -- a2-11' (2) 

For stationary signals, the recursive variance estimator converges asymtotically as 
k --+ oc. A similar method can be used for estimating the mean recursively [4]. 
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However, if the signal is nonstationary, then (2) must be able to track the time- 
varying variance. 

The problem is that with large k, equation (2) pays little attention to new 
information and "switches off." Sometimes a factor of safety is used, and the 
variance magnitude is underestimated to allow for any sudden changes, or if the 
dynamic range of the signal (as is the case with speech) is known, a worst-case 
upper estimate can be used. In the case of the LMS algorithm, if the variance is 
underestimated, the algorithm can become unstable due to the step size becoming 
too large. Conversely, if the variance is overestimated, the convergence of the 
LMS algorithm may well be too slow [1 ]. This basic problem has been recognized 
in [2], where the authors alter the LMS algorithm to implicitly include automatic 
gain control (AGC). It is usual in the literature to use some form of exponential 
weighting of past data to track the variance. This facilitates the use of a '~ 
factor." For example, it is often proposed to use 

cr 2 = 2 ~cr~_ 1 + (1 - fl)y2, (3) 

where 0 < ,(3 < I is the forgetting factor, which controls the bandwidth and the 
time constant of the first-order recursive digital filter. For a typical speech signal, 
using/~ = 0.95 can be made to work, although the estimate is not very smooth. 
Increasing/3 gives smoother estimates at the expense of worse tracking. 

The implicit approach in [2] uses a forgetting factor approach similar to the one 
above. Although methods like these can be made to work for certain applications, 
they are generally used ad hoc and are a compromise between smoothness of 
the estimate and tracking ability. The approach used here can be used for accurate 
tracking of variance or better still to accurately define the variance of a signal with 
a predefined setpoint. The philosophy is similar to that used in radio receivers, 
where an AGC boosts the radio frequency signal to a useful power for later 
amplification and detection. Hence this approach is proposed as a front end to 
adaptive algorithms rather than an implicit change to the LMS algorithm itself, 
such as has been proposed in [2]. An AGC strategy has been proposed in [31 which 
improves the performance of an LMS adaptive filter, but it too uses forgetting 
factors and is highly nonlinear. 

2. Automatic variance contro~ 

The automatic variance control (AVC) described here is essentially a form of AGC 
calibrated to variance rather than amplitude or average power rather than voltage. 
Although it seems obvious that an AGC may well suffice, recall that AGCs are 
largely nonlinear and would not result in accurate tracking. Although the AVC 
uses nonlinear elements, its tracking ability is entirely linear with theoretically 
zero steady-state error to a step change in variance. 

The block diagram of the AVC is shown in Figure t. It comprises a pure squarer, 
a linear multiplier, a summing junction (with setpoint), and an integrator. 
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The operation of the circuit is essentially as follows. The input signal fi (t) is 
assumed to be free of dc. This signal is multiplied by the integrator output y(t), 
which for a stationary or periodic input signal will be constant. The multiplier 
output is the output signal with the predefined variance defined by the setpoint 
v(t). Should the input signal power change, the input to the squarer will also 
change momentarily, and this is in turn fed into the squarer. When a signal is 
squared, it produces a dc term plus higher harmonics. The higher harmonics are 
filtered by the integrator, and any change in dc from the squarer output produces 
either a larger or smaller error from the summing junction, which is in turn inte- 
grated. The integrator will either ramp up or down to scale the input signal to a 
predefined amount defined by v(t). A squarer is used within the loop as opposed 
to the modulus detector normally used in AGC loops because the square provides 
the suitable scaling for variance rather than amplitude. 

3. Steady-state analysis 

The analysis follows from the block diagram of Figure 1. The input f /( t)  can be 
either deterministic or stochastic but must be nonzero in the long term and free 
from dc. The integrator output becomes 

y(t) = K f e(t) dt. (4) 

The error signal e(t) is defined as the difference between the setpoint v(t) and the 
squarer output u (t) 

e(t) = v(t) - u(t), (5) 

where u (t) when combined with the multiplier output results in 

u(t) = (ft. (t)y(t)) 2 . (6) 

The setpoint v(t) > 0 is normally a constant and can be set to unity for simplicity. 

Set-Point  
I ~ ~ , v ( t )  

tq Ul MultipBer Squarer ]__ Integrator 

fo ( t )  [ 

Figure l. AVC block diagram. 
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Combining (4), (5), and (6) results in the differential equation 

1 dy( t )  
-- v( t )  -- ( f i ( t ) y ( t ) )  2. (7) 

K dt  

For any closed-loop system, the gain K must be as high as possible for a gwen 
bandwidth. 

Assuming K >> 1 in (7) results in 

( f i ( t ) y ( t ) )  2 -+ v(t) .  (8) 

However, because fo( t )  = fi  (t)y(t), we must have 

f2o (t ) -+ v(t) .  (9) 

This can be interpreted as follows for two classes of input signal. 

3.]. Deterministic input signals 

For a setpoint variance v(t)  = 1 and input waveform r (t) consisting of a sine 
wave of unity amplitude, the output of the AVC fo( t )  will have a root mean 
square (rms) value of unity or an amplitude of ,,/2. Provided there is no dc offset 
on the input waveform, the output waveform is always scaled so that the rms value 
of fo( t )  follows the square root of the setpoint v(t)  from (9). For a sine wave 
input of frequency f ,  Hz, the squarer output, from basic trigonometry, produces 
a dc term and a component at 2 f ,  Hz. Just as with a phase-locked loop, the 
2 f ,  term must be sufficiently attenuated by the bandwidth of the loop to avoid 
distortion. This is achieved by ensuring that the unity gain crossover frequency 
of the integrator is at least 10 times smaller than the 2fu component. Hence 
the bandwidth of the AVC must be chosen to be at least one-tenth of the lowest 
frequency of interest. A phase-locked loop can operate at much higher bandwidths 
because the input frequency is usually in the kHz or MHz region. Clearly for 
our applications, because the input frequencies are usually baseband, the AVC, 
like an AGC, is a slow acting control loop with a practical bandwidth of at most 
25 Hz. 

3.2. Random input signals 

Taking expectations of both sides of (9) gives 

E [ f 2 ( t ) l  ~ E[v(t)] .  (10) 

The variance setpoint v(t)  is deterministic, and clearly E[v(t)]  = v(t) .  
Hence from (10) it is seen that the random output signal will be scaled so ~a t  

its variance tracks the setpoint. For example, a zero-mean white noise input of unit 
variance and a setpoint variance of unity will result in an output variance of unity, 
and the statistical characteristics will remain otherwise unchanged. For the same 
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setpoint, if the input variance slowly increases or decreases, the output variance 
will stay at unity. 

For a time-varying input of, say, a speech waveform, the AVC will not have 
sufficient bandwidth to respond to periods of nonspeech. This is a positive result 
because any amplification of background noise is undesirable, as is any distortion 
of the speech "envelope." 

4. Estimation of input variance 

With slight modification, the AVC can be used as an accurate recursive method of 
estimating variance and will not suffer from the same disadvantages as discussed 
for equations (1) and (2). This method, like all closed-loop methods, is only 
limited by the bandwidth of the loop. A fundamental assumption is made here 
that the integrator output is statistically independent of the input signal, and we 
can write 

E [ f 2 ( t ) ]  = E[ f i2( t ) ]E[y2( t ) ] .  (11) 

This assumption is borne out by the fact that the bandwidth of the AVC is small, 
and the integrator smoothes out any high-frequency components. For stationary 
input signals, the integrator output will be a constant in steady state, and effec- 
tively y( t )  ~ To. A similar argument is used in the analysis of the weights for an 
LMS algorithm [1]. 

The input variance can now be computed by rearranging (11) and substituting 
the setpoint variance instead of E [ f Z ( t ) ]  via (10). Then 

E[fZ(t) ] --+ v( t )  (12) 
E[y2( t )]  ' 

which requires the division of the setpoint with the mean-squared integrator out- 
put. To avoid division, which is computationally time consuming, a further closed- 
loop system is used (see Figure 2), which consists of an integrator, a setpoint, and 
a multiplier. 

An additional squarer is required outside the AVC loop from the integrator 
which obtains yZ(t). The analysis of the loop of Figure 2 follows closely the 
method used previously. From the block diagram, the error signal is given by 

e2(t) = v( t )  - y2( t )y2( t ) ,  (13) 

where yz(t)is the integrator output in Figure 2. 
Assume that the integrator gain K >> 1; this results in 

v(t) 
yz(t) --* - -  (14) 

y2(t) '  

which is the instantaneous division of the setpoint variance with the squared 
output of the AVC integrator. Taking expectations of (14) results in equation (12), 
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v(t) 

Squarer 3duttiptier~fn~g ratOr 

! 
Figure 2. Variance estimation loop. 

indicating that the integrator output of Figure 2 has a variance equal to the vari- 
ance of the original input waveform. In steady state its value is constant and gives 
a direct reading of variance. For deterministic inputs, the variance estimator gives 
the rms value squared as an output or average power in the waveform. The same 
restrictions on bandwidth as the AVC do not apply because there is no feed- 
through component, hence the bandwidth of the integrator of this loop is chosen 
to be as much as I0 times faster than the AVC loop. It is also interesting to see by 
rearranging (12) that the output of the integrator of the AVC y(t) has the form 

E[y(r,)l ~ - - ,  (15) 
o" 

where cr is the standard deviation (or rms value) of the input signal (for a dc- 
free signal). For unity setpoint, (15) simplifies to the reciprocal of the standard 
deviation. 

5. Simulation results 

The AVC and variance estimation loops can be implemented either in digita1 or 
analog form. For this work, the loops were implemented in software, and several 
different signal types were tested. For convenience, a setpoint of unity was used 
for all cases. For a sine wave input of unity amplitude and unity setpoint, the AVC 
gave an output of a sine wave with magnitude 1.412, as expected. Figure 3a shows 
the original sinusoid, and Figure 3b shows the AVC output. The integrator output 
of the AVC is shown in Figure 3c which converges to 1.412. The sinusoid was 
chosen to have a frequency of 100 Hz, and the bandwidth of the AVC loop was 
l0 Hz. The ripple is due to 200 Hz feed-through terms caused by the squaring 
action within the loop. 

The AVC was then tested on a speech signal. Two different bandwidths were 
used to illustrate the effect of too high a bandwidth. At first, speech sampled at 
12 kHz was processed with an AVC bandwidth of 0.1 Hz. The setpoint variance 
was unity. Figure 4a shows the original speech signal, and Figure 4b shows the 
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Figure 3. AVC acting on a sinusoid. (a) Input waveform to AVC f~.(t), (b) AVC output fo(t), 
(c) integrator output y (t). 
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Figure 4. AVC output (bandwidth 0. ! Hz) for a speech waveform. (a) Speech waveform input to 
AVCfi (t), (b) output of AVC fo (t). 
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Figure 5. AVC output (bandwidth l0 Hz) for a speech waveform. (a) Original speech waveform fi (t), 
(b) Ave  output fo (t). 

AVC output, which has been scaled by the AVC so that the average variance is 
unity across the whole waveform. 

For a bandwidth of 10 Hz, the AVC is then able to compress the speech so 
as to give unity variance at all times. However, the envelope of the speech is 
"flattened" for this high-bandwidth case, as is shown in Figure 5. Although the 
lower-bandwidth case would be used in practice, it is worth commenting that the 
intelligibility of the speech was unaffected by the AVC for this case. 

The variance estimation loop was added to the AVC as in Figure 2 and was 
initially tested on a sinusoidal input. Figure 6a, b and c show the original t00 Hz 
sinusoid, the AVC output, and the variance estimator output, respectively. The 
variance converges to 0.5, which represents the rms value of the input signal 
squared. Tests were also carried out on other types of periodic waveforms. 

For the unity white noise input waveform shown in Figure 7a, the variance esti- 
mation loop output (Figure 7c) converges to unity, and the AVC output (Figure 7b) 
remains unchanged. 

Finally, if the bandwidth of the loops is taken as 10 Hz, then it is possible 
to track the variance of a speech signal with time. Figure 8a shows the original 
speech waveform, Figure 8b shows the AVC flattened output, and Figure 8c shows 
the variance estimator output. The AVC output has the "flattened" form discussed 
in the earlier example. However, this is of no consequence if it is the tracking 
ability of the variance that is primarily required, rather than setting the total 
average variance to a predefined setpoint. 
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Figure 6. Variance estimation for a sinusoidal input. (a) Signal input to AVC fz' (t), (b) AVC output 
fo (t), (c) variance estimator output Y2 (t). 
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Figure 7. Variance estimation for white noise unit variance. (a) White noise input to AVC ft'(t), 
(b) AVC output fo (t), (e) variance estimator output Y2 (t). 



10 MOIR 

(a) 

20  i i t 

0 0.5 1 1.5 2 2.5 

10 

(b) 0 

-10 --~ 
0 8.5 1 1.5 2 2,5 

(c) 50 

0 
0 0.5 1 1.5 2 2.5 

Samples x 10 4 

Figure 8. Tracking the variance of a speech waveform. (a) Speech waveform input to AVC j~. ~ ), 
(b) AVC output fo(t) ,  (c) variance estimator output y2(t). 

6, Conclusions 

A new closed-loop circuit termed automatic variance control has been presented 
which has the ability to alter the variance of a signal to a predefined value on 
a sample-by-sample basis rather than relying on batch-data type computations. 
A second control loop that interfaces to the AVC has the ability to estimate the 
variance of the original input signal and track it accurately with time. Several 
examples were shown to illustrate the operation of both loops. The new technique 
will have applications in areas of adaptive signal processing that are variance 
sensitive, such as LMS adaptive filters. 
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