Space-Geodesy for Earth System Studies SE91-A006

AOGS2011 9 August 2011 Taipei International Convention Center, Taiwan

Towards Synergy of VLBI and GNSS Geodetic Techniques in Geologically Dynamic New Zealand

Institute for Radio Astronomy and Space Research Auckland University of Technology

Sergei Gulyaev, <u>Hiroshi Takiguchi</u>, Tim Natusch, Stuart Weston, Lewis Woodburn

Contents

\diamond Introduction

- \diamond Our radio telescope
- \diamond Why we are considering the synergy of VLBI and GNSS

\diamond Synergy of VLBI and GNSS

- \diamond the model of Japan
- ♦ First synergistic result
 - \diamond determination of VLBI reference point by using GPS
- \diamond Projects in progress

Introduction WARK12M

first & only research capable radio telescope

 \diamond 8 October, 2008

Antenna type	Dual-sh
Manufacturer	Cobhar
Main dish Diam.	12.1
Secondary refl. Diam.	1.8 m
Focal length	4.538 r
Surface accuracy	0.35 m
Pointing accuracy	18"
Frequency range	1.4 - 4
Mount	alt-aziı
Azimuth axis range	90° ± 2
Elevation axis range	6° to 8
Azimuth axis max speed	5°/s
Elevation axis max speed	1°/s
Main dish F/D ratio	0 375

naped Cassegrain m/Patriot, USA

m 3 GHz nuth 70`

Institute for Radio Astronomy and Space Research, AUT

 \diamond

valuable station of the southern hemisphere

DBBC, Mark5B+, Mark5C, Hydrogen Maser

Southern Hemisphere

Network: KAREN, Trans-Tasman, Southern Cross

> connectivity 1Gbps

Northern Hemisphere

 \diamond

 \diamondsuit

Introduction

Space Geodesy @NZ

before launch of VLBI only GNSS Po

- **PositioNZ** by LINZ (Land Information New Zealand)
 - 31 (2:Chatham Islands, 3: Antarctica)
 - Geodetic system, NZGD2000, surveying, mapping
- **GeoNet** by Earthquake Commission & GNS Science
 - to monitor earthquakes, volcanic unrest, land deformation, geothermal activity and tsumami
 - seismometer, accelerometer, tide gauge, sea level pressure
 - GPS : active volcanic activity area, over 100

Synergy of VLBI and GNSS

http://www.gns.cri.nz

Synergy of VLBI and GNSS

♦ Geodetic situation of New Zealand is similar to Japan \diamond locate the plate boundaries \diamond a lot of earthquakes \diamond GPS network ♦ Geodetic Datum \diamond VLBI

♦ New Zealand

 \diamond Japan

♦ New Zealand

268,680 km²

 \diamond Japan

\diamond New Zealand

\diamond Japan

♦ New Zealand

10

GPS network

New Zealand PositioNZ, GeoNet

http://www.gns.cri.nz

\diamond Japan

VERSITY

Geodetic Datum

♦ New Zealand ♦ NZGD2000 (1998) ♦ ITRF96, 2000.0 ♦ Semi-dynamic system GPS

Japan \diamondsuit

132°

138°

♦ JGD2000 (2002)

- ♦ ITRF94, 1997.0
- \diamond Static system
 - + Semi-dynamic correction (referred New Zealand)

IRASR

VERSITY

Synergy of VLBI and GNSS

\diamond model of Japan

 \diamond Synergetic relationship between VLBI and GPS in Japan

modified from *<u>Tsuji et al. 2003</u>*

IRASR

First synergistic result

Determination of VLBI reference point

collaboration with the New Zealand Crown Research Institute, GNS Science and LINZ

14

 \diamond RTK GPS

 \diamond respect to PositioNZ: WARK

The first IVS results

IVS R1472 session S/X VLBI

VLBI-GPS
 less than 10cm
 @each component

O. Titov

Projects in progress

Mt Pleasant

anzska

5,500km baseline

IŘASR

17

Ultra-rapid EOP measurement

we are coordinating the experiment together with GSI and NICT.

Warkworth 12m - Tsukuba 32m

S band

ISUKUB32 - WARKWORI CH#:1 2232.99Hz U 150Hz sompling Source: 0106+013, Integ(sec)=88.0, PRI:2011/049 02:06:45 Amp = 0.000254, SNR = 9.5 (no amp correction) Delay Res (sec): 1.6356-07 Rate Res(s(s): -1.823e-12

TSUKUB32 - WARKWORT CH#3 2256.99MHz U 1bit 16MHz sampling Source: 0106+013, integ(sec)=88.0, PRI:2011/049 02:06:45 Amp = 0.000524, SNR = 19.7 (no amp correction) Delay Res (sec): 1.621e-07 Rate Res(s/s): -2.324e-12

ISURUB32 - WARKWORI CH#:2 2240.99MHz U 151 f5MHz sampling Source : 0106+013, Integ(sec)=88.0, PRI:2011/049 02:06:45 Amp = 0.000604, SNR = 22.7 (no emp correction) Delay Res (sec) : 1.598e-07 Rate Res(s(s) : -1.967e-12

TSUKUB32 – WARKWORT CH∦:4 2312.99M/z U 15/1 t8M/Hz sompling Source: 0106+013, Integ(sec)=88.0, PRT:2011/049 02:06:45 Amp = 0.000544, SNR = 20.4 (na amp correction) Delay Res (sec): 1.672e-07 Rote Res(s/s) : -1.976e-12

X band

ISUKUB322 - WARKWORT ISUKUB322 - WARKWORT Source: 0106+013, Integ(sec)=88.0, PRI:2011/049 02:06:45 Amp = 0.000342, SNR = 12.8 (no amp correction) Delay Res (sec): 1.550e-07 Rate Res(s(s): -1.624e-12

TSUKUB32 - WARKW0RT CH#3 8352.99MHz U 1bit 16MHz sampling Source : 0106+013, integ(sec)=88.0, PRI:2011/049 02:06:45 Amp = 0.000329, SNR = 12.3 (na emp correction) Delay Res (sec) : 1.573e-07 Rote Res(s/s) : -1.569e-12

ISUKUB32 - WARKWORI CH#:2 8752-99MHz U bit 16MHz sompling Source: 0106+013, integ(sec)=88.0, PRI:2011/049 02:06:45 Amp = 0.000305, SNIs = 11.4 (no amp correction) Delay Res (sec): 1.461e-07 Reite Res(s/s): -1.637e-12

TSUKUB32 - WARKWORT CH#:4 5512.99MHz U 1bit 15MHz.sompling Source:0106+013, integ(sec)=88.0, PR1:2011/049 02:06:45 Amp = 0.000281, SNR = 10.5 (no amp correction) Delay Res (sec): 1.516e-07 Rate Res(s/s): -1.606e-12

Future Plans

Develop new capabilities

especially
Ultra-rapid EOP Measurement
IVS sessions
cont11
(campaign of two weeks continuous VLBI sessions)

Periodical co-location observation
\$\&OPS\$ and other geodetic techniques

 \diamond Conversion of the 30m antenna

30m antenna

November 2010
 Telecom NZ handed over 30m antenna to AUT
 It was manufactured in 1984 by NEC
 It located just 200m north of 12m radio telescope

 \diamond convert to radio telescope

21

Thank you very much for your attention.

Thanks to Leonid Petrov, Neville Palmer, Dave Collett, Oleg Titov and

