
Procedural Urban Environments for FPS Games
Jan Kruse

Auckland University of Technology
Private Bag 92006, Wellesley Street

Auckland 1142, New Zealand
+64 9 921 9999

jan.kruse@aut.ac.nz

Ricardo Sosa
Auckland University of Technology

Private Bag 92006, Wellesley Street
Auckland 1142, New Zealand

+64 9 921 9999

ricardo.sosa@aut.ac.nz

Andy M. Connor
Auckland University of Technology

Private Bag 92006, Wellesley Street
Auckland 1142, New Zealand

+64 9 921 9999

andrew.connor@aut.ac.nz

ABSTRACT

This paper presents a novel approach to procedural generation of

urban maps for First Person Shooter (FPS) games. A multi-agent

evolutionary system is employed to place streets, buildings and

other items inside the Unity3D game engine, resulting in playable

video game levels. A computational agent is trained using machine

learning techniques to capture the intent of the game designer as

part of the multi-agent system, and to enable a semi-automated

aesthetic selection for the underlying genetic algorithm.

CCS Concepts

• Software and its engineering➝Software organization and

properties➝ Contextual software domains➝Virtual worlds

software➝Interactive games

• Applied computing➝Computers in other domains➝ Personal

computers and PC applications➝ Computer games

Keywords

Procedural Environment; Computer Games; First Person Shooter,

Urban Environment; Genetic Algorithm; Agents; Artificial

Intelligence; Unity.

1. INTRODUCTION
First Person Shooter (FPS) games have been one of the most

successful and fastest growing genres in the computer games

industry over the past decade [1]. Titles such as Battlefield,

Insurgency, Halo, Call of Duty and many others sell millions of

copies every year. Creating engaging playable maps for FPS games

is a challenging and laborious task [2] which is usually achieved

manually which ensures that the level is both playable and matches

the intent of the designer. Urban environments are particularly

challenging as they are characterized by high complexity. The large

number of individual items such as houses, streets, cars or similar

obstacles and smaller props pose huge challenges for game level

designers. This paper outlines a novel semi-automated approach to

urban map design, which draws on Interactive Evolutionary

Computation and Autonomous Agents to produce fully playable

FPS game levels. The approach has the potential to significantly

reduce the degree of manual labour, making the design process

more efficient.

2. BACKGROUND AND RELATED WORK
Procedural level creation is a popular application for creative

computational systems [3] and has been used since the 1980s to

produce generative content for video games [4]. It gained new

momentum in recent years due to the availability of computational

resources in form of faster CPUs and general-purpose computing

on GPUs [5]. However, most approaches to procedural content

generation are designed to replace the human game designer. Such

approaches offer both benefits and disadvantages typical of

applying Artificial Intelligence (AI) approaches to cognitive task.

AI approaches can work much faster than a human level designer,

and are in some cases able to explore the design space automatically

to find levels with desirable qualities. But they aren't able to capture

the human creativity that produces the most interesting level

designs, and they are usually very specific to their particular

domain [6].

2.1 Evolving FPS Maps
In this paper procedural or generative design denotes the automatic

or semi-automatic generation of game levels, including the terrain,

position of buildings, streets and other items. Instead of manually

placing game assets into the map, significant parts of this task are

automated. While there are some similarities to work conducted for

instance by Cardamone et al. [7] in context of FPS content

generation, and also by Cook and Colton [8] for general procedural

3D game design, this approach differs in that it heavily considers

the (human) game designers intent and feeds this deliberate choice

back into the automated selection process of the evolutionary

algorithm. Our approach is not about getting computer to produce

content or whole game procedurally, but more an attempt to support

the game designer in an otherwise very costly and time consuming

process. Currently, as a result of high design and development

costs, FPS games offer only a few hours of single-player gameplay

and oftentimes just a small number of multiplayer maps [7]. This

paper offers a semi-automated approach that should allow level

designers to produce a higher number of maps at significantly

reduced costs which has the potential to boost the popularity of a

new title as a means to commercial success.

Another important benefit of the proposed approach is the

reduction of game testing costs by use of automated content

evaluators in addition to pure content generators. The algorithm

allows simple integration of additional agents, which provides

flexible approaches to design and evaluation. Testing levels to fix

issues around playability, technical flaws, enjoyableness and fair

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ACSW '16 Multiconference, February 02 - 05, 2016, Canberra, Australia
Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-4042-7/16/02…$15.00

DOI: http://dx.doi.org/10.1145/2843043.2843479

http://dx.doi.org/10.1145/2843043.2843479

balance in case of multiplayer team-based gameplay is currently

another significant issue for commercial game development. Some

companies tend to release maps as open betas to get the gamer

community to evaluate the maps and identify technical and ludic

issues before the official release of the game or game extension.

Other companies rely on “free to play” models to test the base

content of the game before selling additional items commercially.

Examples include Battlefield Community Testing Environment

(free beta play), Team Fortress 2 (free to play) and the recently

announced Rainbow Six Siege (‘closed’ beta with access for anyone

with an NVidia graphics card). Eventually, this work will also lead

to reduced cost of map testing by use of additional evaluation

agents, resulting in cost effective generation and evaluation of

game content.

Evolving FPS game levels, also often called FPS maps, is not an

entirely novel idea. Previous work includes Cardamone et al. [7]

who also based the map generation on evolutionary algorithms,

with the main difference that their work used a reasonably simple

mathematical fitness function based on the average fighting time of

the player plus the free space on the map. The fitness function is

not only purely theory-driven rather than modelled on data-driven

player capabilities and preferences, but it also reflects a purely

player-oriented approach, which excludes the game designer’s

intent. Here the computational agent is the single designing entity.

Our approach differs from this in that it considers the map designer

and their preference. We use a design-driven instead of user-driven

approach to map generation. Potential expansions of this idea is

outlined below under Human-based Genetic Algorithms.

Another recent example for procedurally generated FPS maps is

work conducted by Lanzi et al. [9] which in turn utilizes Search-

based Procedural Content Generation [10]. Their work aims to

evolve game levels that provide basic match balancing properties

based on player skill and strategies. The content generator uses

genetic algorithms and is not dissimilar to the level generation

outlined above [7]. The novelty of our approach and main

difference to their work lies in the addition of a multi-agent system

and the ability to capture a human game designer’s preferences.

2.2 Human-Based Genetic Algorithms
Human-based Genetic Algorithms (HBGA) are a variation of

Interactive Genetic Algorithms [11]. The human user is replaced by

a multi-agent system consisting of human and computational agents

[12]. A generic example of a hybrid human and computational

HBGA is shown in Error! Reference source not found., where

the human works in combination with an agent to perform selection

from the population. An additional agent undertakes the

recombination processes.

Figure 1. Human-Based Genetic Algorithm.

HBGA have been used to successfully counteract user fatigue, one

of the implicit problems of Interactive Evolutionary Systems when

applied to creative design tasks [13]. A machine learning classifier

(J48) is trained using the designer’s input over a number of GA

generations to gauge the aesthetic preference and capture the design

intent. An agent based on this classifier provides additional

(computational) selections, which reduces the selection runs for the

human in the HBGA. This approach has shown modest, but

promising results in previous applications [13].

While it could be argued that calling an interactive genetic

algorithm with additional agents a Human-based Genetic

Algorithm is merely an academic exercise, the idea of a multi-agent

system that feeds into a genetic algorithm goes beyond that. It poses

a paradigm shift, where selection and recombination are separated

and performed by different entities. This allows subsequently to

add a variety of agents to the algorithm as we will show in the

following sections of this paper. It is envisaged that such agents

could focus on different aspects of the design, so potentially could

include a diversity agent that drives the design towards novel

layouts. This inclusion of multiple agents transforms canonical

Interactive Evolutionary Computation as introduced by Takagi and

Iba [14] from a purely generative algorithm into a flexible system

for generation and evaluation. Therefore, using the concept of

Human-based Genetic Algorithm proves to be a successful

framework for procedural content for video games.

But the HBGA opens up additional possibilities, for instance

running design intent and user preference concurrently as the

driving forces behind map generation. The HBGA allows both

design- and user-driven paradigms to be implemented by choosing

selection agents accordingly. The multi-agent system could be

made of both (human) designer agent for selection as well as

(human) player agent for selection, both in additional to

computational agents. Some games such as Battlefield or

Insurgency allow users at the start of the round to select the map

that is going to be played next. With HBGA map generation in

mind, this pre-game ‘vote’ could be used to feed back into the

HBGA to capture the player’s intent and therefore increase the

chance of more enjoyable gameplay for the target group.

3. URBAN FPS GENERATOR
We present an Urban FPS Generator, which is a multi-agent

evolutionary system that integrates human and computational

agents into the selection process of a genetic algorithm. It is capable

of addressing different aspects of Computational Creativity, and in

its current version targets placement of game assets to form

playable FPS maps. Figure 2 shows a typical game level in Unity3D

developed with the approach.

Figure 2. Game Level in Unity3D.

Urban FPS Generator extends the generic HBGA framework

shown in Figure 1. The specific agents involved are shown in

Figure 3.

Figure 3. Urban FPS Generator System Overview.

The usage of the system would typically start with the manual

design of a number of different game levels that are used in the

development of the player model. These levels are played

extensively by a group of suitable play testers and this gameplay is

used to generate the player model. This development of the player

model is performed “offline” from the game design process. When

the game designer wishes to start the design of a new level, the

interactive Genetic Algorithm generates a new initial random

population. The creation of the next generation is enacted through

a combination of the designer’s choices and the input of the player

model agent which evaluates the playability of each level. As the

designer evolves the new level the design intent agent observes the

designer’s choices and learns about the goal of the designer,

whether such a goal is even implicit. The design intent agent can

accelerate the evolution of new levels by acting on the behalf of the

designer and therefore reducing the fatigue associated with typical

interactive evolutionary computation approaches. Whilst not yet

developed, the agent architecture allows for additional agents to

also influence the evolution of the new level. For example, a

novelty agent may inject candidate solutions that are distinct from

those generated by the designer and/or the design intent agent as a

means to prevent premature convergence. The Human-Based

Genetic Algorithm is therefore the combination of these agents

with the interactive Genetic Algorithm and the designer.

Previous work on procedural generation of cityscapes [13] was

implemented in Java, assisted by the core libraries of the

Processing programming language as imported jar files to visualize

the underlying map layouts. In contrast, Urban FPS Generator is

written as an extension to Unity3D, a commercially available game

development environment using C# (and optionally JavaScript).

Unity3D offers cross-platform development for browser games,

native PC platforms, game consoles and handheld devices in a

highly versatile and extensible way. It is also a very efficient video

game engine with support for the latest graphics options (DirectX

11 and OpenGL 4), which allows games to run at a playable

framerate with minimal lag while the graphics are attractive and

aesthetically pleasing. These attributes make it a good choice for

FPS game research, and given that one of the aims of this project is

a fully functional, distributable and simple to install application.

This application is intended to serve as a platform for future

research into player behaviour and agent systems, therefore

Unity3D seems to be a better choice, superior to fully custom

developments in Java.

The systems makes use of prefabs, which are prebuilt game assets

inside the Unity3D project. Prefabs can be used as instances inside

a game level (or scene). The current version of Urban FPS

Generator uses 12 building prefabs, a range of street sections, a

number of simple props such as chairs, tables, leaves, containers

and plants, as well as 5 weapons from the UFPS package from the

Unity3D asset store. This has allows the system to be suitably

robust and have the ability to produce fully playable levels. One

such level is shown in Figure 4.

Figure 4. Fully Playable FPS Map.

Playable

Game Level

Design Intent

Agent

Initial

Random

Population

Initial

Level(s)

Design

Player Model

Agent

Interactive

GA

Additional

Agents

Game Designer

Play Testers

We are currently working on extending this basic library of prefabs

by adding additional items, but also even smaller building blocks.

Our main intent is the generation of maps, but it is also possible to

evolve the building blocks for these maps from even smaller units

such as parts of buildings (windows, framing, doors, and wall

pieces). Currently, Urban FPS Generator is not capable of creating

interiors of multi-level buildings or complex maze-like structures

such as interior office spaces or cluttered warehouses. Using partial

prefabs to evolve buildings and other structures allows us to address

these issues.

Further, we are building terrain support into the evolutionary

system, which enables rugged environments such as mountain

ranges and elevated city layouts to be part of the map generation.

While this means an increase in parameters for the HBGA, the user

is factually only interacting with the same interface and requires no

additional skills or knowledge. At the same time, with an increase

of the number of parameters, the need for additional iterations in

the HBGA will rise and therefore compensation for user fatigue

through learning computational agents is of even higher

significance for the overall system performance.

3.1 User Interaction
The system presents a selection of 9 maps to the designer using the

inbuilt UI system in Unity3D. The maps are rendered top-down

views of three-dimensional game levels. The user selects the two

most preferred maps, which are fed back into the evolutionary

breeding pool. In parallel, the agent receives all 9 maps classified

by the user selection as training data. The process is repeated for a

maximum number of times or when terminated by the designer. The

final map is used as the active game level for the FPS round.

3.2 Map Encoding
Unity3D supports 3D game levels of nearly any complexity, only

limited by computer performance and creation time. We take a

much simpler approach and limit the maps to currently only a single

level. Urban FPS Generator is based on a two-dimensional matrix

(512x512 units) which roughly follows Unity3D’s terrain system

with a few exceptions. We use zero elevation for the urban

environments. Our street system also uses large sections of 25 units,

which limits the number of streets and intersections in each

dimension. This can easily be extended by increasing the base

terrain size, but in order to keep computation times for the map

generation to a minimum, we have opted for these rather small

game levels. From experience with existing maps in AAA titles,

this is not a disadvantage. Battlefield has an additional content

package that explicitly focusses on close quarter, infantry only

warfare. Given that Urban FPS Generator has no inbuilt

functionality for vehicles, we believe this choice is sufficient and

has no impact on playability or enjoyableness. This will be verified

in future work.

The chromosomes of the maps are represented as a strongly typed

list where all parameters such as building height, type of content

(building, street, free space) and position of props (leaves,

containers, obstacles, fences, plants) are held as numerical values.

The system is able to produce environments where props are well

placed in context, as shown in Figure 5. We use real coded values

to counteract some of the known issues when dealing with variables

in continuous domains [15]. Accordingly, crossover and mutation

are performed on real values instead of binary strings.

Figure 5. Placement of Props.

3.3 Agents
The computational agents in our HBGA are currently based on J48

(open source C4.5 implementation) classifiers that feed into simple

decision trees. Previous work [13] successfully utilised J48 as a

classifier of designer intent, though we acknowledge that this might

not be the ideal classifier for this type of machine learning

application due to the inherent system noise based on the low

number of training samples (user inputs) in relation to the number

of attributes being classified. J48 has been acknowledged as

problematic in this regard in other applications [16]. As further

attributes are introduced to the classifier as Urban FPS Generator

is extended is expected that J48 will reach a threshold level of

performance. We are looking at alternatives in a different context

and will replace this algorithm within Urban FPS Generator at

some point in time.

The agent captures user input through the selection process as

indicated above. A set of abstract features such as occupied/free

space, density of street system and number of (obstacle) props used

are used as values for the training set. The agent uses all 9 maps of

each iteration, with the preferred selection classified as positive,

and the remaining 7 maps as rejected training samples. Over the

course of a defined number of iterations (we use either 10 or 20 for

testing purposes), the agent receives a small training set of selected

and rejected candidates. We are aware of the limitations due to the

relatively small number of samples in the training set, given that

J48 classifiers are often trained using hundreds or thousands of

samples. But even under these circumstances the contribution of

the agent has shown improvements of the overall system

performance by reducing the required number of iterations by the

designer [13].

Additional agents can be added into the multi-agents system to

support the game design process even further. For example

evaluation agents are commonly modelled on behaviours similar to

non-player characters (NPCs), which make use of simple artificial

intelligence (AI) techniques such as decision trees and pathfinding.

Keeping the AI simple allows for real time performance, an

important property of NPCs. The capability of such evaluation

agents is in turn relatively simple as well. We are currently looking

at using ray casting to create advanced evaluation agents. Ray

casting essentially allows for basic ‘vision’ so that agents can detect

potential areas that serve as cover for players by identifying

obstacles (obstructions to the cast rays). This process also enables

agents to find areas that are lacking cover and could potentially be

exploited by players and lead to so called choke points during

multi-player matches. Further, ray casting works in three

dimensional space, whereas path finding is limited to simple two

dimensional maps. Ray casting is conveniently part of the Unity3D

physics engine. It is therefore efficient and simple to use. Overall

ray casting is a mechanism that provides significant improvements

over simple path finding and advances common AI techniques used

for NPCs. Figure 6 demonstrates the use of these techniques.

Figure 6. NPC Using Advanced AI.

4. FUTURE WORK
The work shown here serves as the foundation for future research

into player behavior. We intent to use Cognitive Modelling [17]

based on data gathered through in-game metric as well as player

profile, demographic and other static factors. For the former we will

utilize Urban FPS Generator as a testbed to extract data in a

controlled way. Many commercial games, while providing the

technical facilities to do so, allow no in-game measurements

legally. Urban FPS Generator avoids these implications. The

HBGA offers sufficient flexibility to customize the type and

number of agents in a very economical way. It therefore provides a

viable platform for future research into different generation and

evaluation agents. That includes alternative machine learning

algorithms to improve response to human fatigue during interactive

iterations. But it also allows for more advanced evaluation agents

testing game levels before they reach the breeding pool of the

genetic algorithm. Finally, there is the possibility to model adaptive

in-game AI agents that are used as NPCs to continuously adjust to

human players, for instance as training bots or competitive partners.

The main benefit of our work is the flexibility of the HBGA that

allows fast development of different computational agents as part

of the overall multi-agent system.

5. CONCLUSIONS
This paper introduces Urban FPS Generator a design tool for FPS

map creation within the Unity3D game development environment

using HBGA. We demonstrate its potential to create fully playable

game levels with the option to run multi-player matches without

any additional involvement of game designers or programmers.

The system uses computational agents to compensate for

limitations normally found in interactive evolutionary systems.

Finally, Urban FPS Generator provides a platform for future

research into player behaviour and team play including the option

to derive in-game metrics during multi-player matches.

6. REFERENCES

[1] F. Cifaldi, “Analysts: FPS ‘Most Attractive’ Genre for

Publishers,” Gamasutra, 21-Feb-2006. [Online]. Available:

http://www.gamasutra.com/php-

bin/news_index.php?story=8241. [Accessed: 08-Sep-2015].

[2] K. Hullett and J. Whitehead, “Design patterns in FPS

levels,” in proceedings of the Fifth International Conference

on the Foundations of Digital Games, 2010, pp. 78–85.

[3] A. Liapis, G. N. Yannakakis, and J. Togelius,

“Computational game creativity,” in Proceedings of the

Fifth International Conference on Computational

Creativity, 2014, pp. 285–292.

[4] M. Toy, G. Wichman, K. Arnold, and J. Lane, “Rogue,”

Comput. Sci. Res. Group UC Berkeley, 1980.

[5] B. Mark, T. Berechet, T. Mahlmann, and J. Togelius,

“Procedural Generation of 3D Caves for Games on the

GPU,” in Proceedings of the 10th International Conference

on the Foundations of Digital Games, Pacific Grove, CA,

2015.

[6] P. Mawhorter and M. Mateas, “Procedural level generation

using occupancy-regulated extension,” in 2010 IEEE

Symposium on Computational Intelligence and Games

(CIG), 2010, pp. 351–358.

[7] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L.

Lanzi, “Evolving Interesting Maps for a First Person

Shooter,” in Applications of Evolutionary Computation, C.

D. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I.

Esparcia-Alcázar, J. J. Merelo, F. Neri, M. Preuss, H.

Richter, J. Togelius, and G. N. Yannakakis, Eds. Springer

Berlin Heidelberg, 2011, pp. 63–72.

[8] M. Cook and S. Colton, “Ludus ex machina: Building a 3D

game designer that competes alongside humans,” in

Proceedings of the 5th International Conference on

Computational Creativity, 2014.

[9] P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps

for match balancing in first person shooters,” in 2014 IEEE

Conference on Computational Intelligence and Games

(CIG), 2014, pp. 1–8.

[10] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C.

Browne, “Search-Based Procedural Content Generation: A

Taxonomy and Survey,” IEEE Trans. Comput. Intell. AI

Games, vol. 3, no. 3, pp. 172–186, Sep. 2011.

[11] H. Takagi, “Interactive evolutionary computation: fusion of

the capabilities of EC optimization and human evaluation,”

Proc. IEEE, vol. 89, no. 9, pp. 1275 –1296, Sep. 2001.

[12] A. Kosorukoff, “Human based genetic algorithm,” in 2001

IEEE International Conference on Systems, Man, and

Cybernetics, 2001, vol. 5, pp. 3464 –3469 vol.5.

[13] J. Kruse and A. M. Connor, “Multi-agent evolutionary

systems for the generation of complex virtual worlds,” EAI

Endorsed Trans. Creat. Technol., vol 2, no. 5, pp. e5, Oct.

2015.

[14] H. Takagi and H. Iba, “Interactive Evolutionary

Computation,” New Gener. Comput., vol. 23, no. 2, pp. 113–

114, Apr. 2005.

[15] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling Real-

Coded Genetic Algorithms: Operators and Tools for

Behavioural Analysis,” Artif. Intell. Rev., vol. 12, no. 4, pp.

265–319, Aug. 1998.

[16] J. Finlay, A. M. Connor, and R. Pears, “Mining Software

Metrics from Jazz,” in 2011 9th International Conference

on Software Engineering Research, Management and

Applications (SERA), 2011, pp. 39–45.

[17] G. N. Yannakakis, P. Spronck, D. Loiacono, and E. André,

“Player Modeling.,” Artif. Comput. Intell. Games, vol. 6, pp.

45–59, 2013.

