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The Evolution of the Evolving Neuro-Fuzzy Systems:

From Expert Systems to Spiking-, Neurogenetic-, and

Quantum Inspired

Nikola Kasabov

Abstract This chapter follows the development of a class of intelligent information systems

called evolving neuro-fuzzy systems (ENFS). ENFS combine the adaptive/evolving learning

ability of neural networks and the approximate reasoning and linguistically meaningful ex-

planation features of fuzzy rules. The review includes fuzzy expert systems, fuzzy neuronal

networks, evolving connectionist systems, spiking neural networks, neurogenetic systems, and

quantum inspired systems, all discussed from the point of few of fuzzy rule interpretation as

new knowledge acquired during their adaptive/evolving learning. This review is based on

the author’s personal (evolving) research, integrating principles from neural networks, fuzzy

systems and nature.

22.1 Early work on the integration of neural networks and fuzzy

systems for knowledge engineering: Neuro-fuzzy expert systems

The seminal work by Lotfi Zadeh on fuzzy sets, fuzzy rules and intelligent sys-

tems [36–38] opened the field for the creation of new types of expert systems that

combined the learning ability of neural networks, at a lower level of information

processing, and the reasoning and explanation ability of fuzzy rule-based systems, at

the higher level. An exemplar system is shown in Figure 22.1, where at a lower level

a neural network (NN) module predicts the level of a stock index and a fuzzy rea-

soning module combines the predicted values with some macro-economic variables,

using the following types of fuzzy rules [18]:

IF <the predicted by the NN module stock is high>

AND <the economic situation is good>

THEN <buy stock>

(22.1)

These fuzzy expert systems continued the development of the hybrid NN-rule-

based expert systems that used crisp propositional and fuzzy rules [13, 15, 17]. They

represented a major topic at some conferences (Figure 22.2).



166 The Evolution of the Evolving Neuro-Fuzzy Systems

Fig. 22.1. A hybrid NN-fuzzy rule-based expert system for financial decision support (from

[18]).

Fig. 22.2. At the 1995 ANNES conference in New Zealand: Lotfi Zadeh with T. Yamakawa,

Mrs T. Yamakawa, D. Mehandjiiska-Stavreva and N. Kasabov.

22.2 Fuzzy neurons and fuzzy neural networks. Evolving

connectionist systems

The low-level integration of fuzzy rules into a single neuron model and larger neural

network structures, tightly coupling learning and fuzzy reasoning rules into connec-

tionists structures, was initiated by Prof. Takeshi Yamakawa and other Japanese sci-
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entists and promoted at a series of IIZUKA conferences in Japan [35]. Many models

of fuzzy neural networks were developed based on these principles [6, 18, 19].

The evolving neuro-fuzzy systems developed further these ideas, where instead

of training a fixed connectionist structure, the structure and its functionality were

evolving from incoming data, often in an on-line, one-pass learning mode. This is

the case with the evolving connectionist systems (ECOS) [19–23, 31]. ECOS are

modular connectionist based systems that evolve their structure and functionality

in a continuous, self-organised, on-line, adaptive, interactive way from incoming

information [20]. They can process both data and knowledge in a supervised and/or

unsupervised way. ECOS learn local models from data through clustering of the data

and associating a local output function for each cluster represented in a connectionist

structure. They can learn incrementally single data items or chunks of data and also

incrementally change their input features [22, 24]. Elements of ECOS have been

proposed as part of the classical NN models, such as SOM, RBF, FuzyARTMap,

Growing neural gas, neuro-fuzzy systems, RAN (see [22,24]). Other ECOS models,

along with their applications, have been reported in [7, 24, 31, 32].

Fig. 22.3. An example of EFuNN model [21].

The principle of ECOS is for neurons to be allocated as centres of fuzzy data

clusters and for the system to create local models in these clusters. Fuzzy clustering,

as a mean to create local knowledge-based systems, was stimulated by the pioneer-

ing work of Bezdek, Yager and Filev [2–4, 34]. Here we will briefly illustrate the

concepts of ECOS on two implementations: EFuNN [21] and DENFIS [23]. Exam-

ples of EFuNN and DENFIS are shown in Figure 22.3 and Figure 22.4 respectively.

In ECOS clusters of data are created based on similarity between data samples either

in the input space (this is the case in some of the ECoS models, e.g. the dynamic

neuro-fuzzy inference system DENFIS), or in both the input and output space (this

is the case e.g. in the EFuNN models). Samples that have a distance to an existing
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node (cluster center, rule node) less than a certain threshold are allocated to the same

cluster. Samples that do not fit into existing clusters, form new clusters. Cluster

centers are continuously adjusted according to new data samples, and new clusters

are created incrementally. ECOS learn from data and automatically create or update

a local fuzzy model/function, e.g.:

IF <data is in a fuzzy cluster Ci> THEN <the model is Fi>, (22.2)

where Fi can be a fuzzy value, a linear or regression function (Figure 22.4) or a NN

model [22–24].

Fig. 22.4. An example of DENFIS model [24] for medical application.

A special direction of ECOS was transductive reasoning and personalised mod-

elling. Instead of building a set of local models (e.g. prototypes) to cover the whole

problem space and then use these models to classify/predict any new input vector, in

transductive modelling for every new input vector a new model is created based on

selected nearest neighbour vectors from the available data. Such ECOS models are

NFI and TWNFI [28]. In TWNFI for every new input vector the neighbourhood of

closets data vectors is optimised using both the distance between the new vector and

the neighbouring ones and the weighted importance of the input variables, so that the

error of the model is minimised in the neighbourhood area [25].
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While the classical ECOS use a simple McCulloch and Pitts model of a neuron,

the further developed evolving spiking neural network (eSNN) architectures used a

spiking neuron model using the same or similar ECOS principles and applications.

22.3 Evolving Spiking Neural Networks (eSNN) and Fuzzy Rule

Extraction

A single biological neuron and the associated synapses is a complex information

processing machine that involves short term information processing, long term in-

formation storage, and evolutionary information stored as genes in the nucleus of the

neuron. A spiking neuron model assumes input information represented as trains of

spikes over time. When sufficient input information is accumulated in the membrane

of the neuron, the neuron’s post synaptic potential exceeds a threshold and the neu-

ron emits a spike at its axon (Figure 22.5). Some of the-state-of-the-art models of a

spiking neuron include: early models by Hodgkin and Huxley [10], 1952; more re-

cent models by Maas, Gerstner, Kistler, Izhikevich and others, e.g.: Spike Response

Models (SRM); Integrate-and-Fire Model (IFM) (Figure 22.5); Izhikevich models;

adaptive IFM; probabilistic IFM [11, 12].

Fig. 22.5. The structure of the LIFM.

Based on the ECOS principles, an evolving spiking neural network architecture

(eSNN) was proposed in [24, 33] which was initially designed as a visual pattern

recognition system. The first eSNNs were based on the Thorpe’s neural model [29],

in which the importance of early spikes (after the onset of a certain stimulus) is

boosted, called rank-order coding and learning. Synaptic plasticity is employed by

a fast supervised one-pass learning algorithm. Different eSNN models were devel-

oped, including: a reservoir-based eSNN for spatio- and spectro-temporal pattern

recognition (Figure 22.6) [30]; eSNN an architecture that used both rank-order and
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time-based learning methods to account for spatio-temporal data [27]; specialised

architectures for EEG modelling [24]; moving object recognition systems; etc.

Fig. 22.6. A reservoir-based eSNN for spatio-temporal pattern classification.

Extracting fuzzy rules from an eSNN would make the eSNN not only efficient

learning models, but also knowledge-based models. A method was proposed in [26]

and illustrated in Figure 22.7). Based on the connection weights W between the

receptive field layer L1 and the class output neuron layer L2 the following fuzzy

rules are extracted:

IF (input variable v is SMALL) THEN class Ci;

IF (v is LARGE) THEN class C j.
(22.3)

(a) (b)

Fig. 22.7. (a): A simple structure of an eSNN for 2-class classification based on one input

variable using 6 receptive fields to convert the input values into spike trains; (b): The connec-

tion weights of the connections to class Ci and C j output neurons respectively are interpreted

as fuzzy rules
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22.4 Computational Neuro-Genetic Models (CNGM) and Fuzzy

Rules

A neurogenetic model of a neuron is proposed in [24] and studied in [1]. It utilises

information about how some proteins and genes affect the spiking activities of a

neuron such as fast excitation, fast inhibition, slow excitation, and slow inhibition.

An important part of the model is a dynamic gene/protein regulatory network (GRN)

model of the dynamic interactions between genes/proteins over time that affect the

spiking activity of the neuron - (Figure 22.8).

Fig. 22.8. A schematic diagram of a CNGM framework, consisting of a GRN as part of a

eSNN [1].

New types of neuro-genetic fuzzy rules can be extracted from such CNGM in the

form of:

IF < GRN is represented by a function F >

AND < input is Small >

THEN < Class C >

(22.4)

22.5 Quantum Inspired SNN (QiSNN)

QiSNNs use the principle of superposition of states to represent and optimize fea-

tures (input variables) and gene parameters of the SNN [24]. They are optimized

through quantum inspired genetic algorithm [5] or QiPSO. Features or genes are

represented as qubits in a superposition of 1 (selected), with a probability p1, and

0 (not selected) with a probability p0. When the model has to be calculated, the

quantum bits ’collapse’ in 1 or 0. Fuzzy rules in QiSNN would look like:
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IF < GRN is represented by a function F with a quantum probability p >

AND < input is Small with a quantum probability q >

AND < the model parameters are S with quantum probability s >

THEN < Class C, with probability r >

(22.5)

22.6 Conclusion

This chapter presented brief highlights of the development of neuro-fuzzy models for

intelligent information systems. The main idea is to facilitate the discovery of new

knowledge, along with the development of new connectionist models and systems in-

tegrating principles from neural networks, fuzzy systems, evolutionary computation

and quantum computing.
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