

Real-Time Face Detection and

Recognition Based on Deep Learning

Hui Wang

A thesis submitted to Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2018

School of Engineering, Computer and Mathematical Sciences

I

Abstract

Face recognition is one of the most important applications in video surveillance and

computer vision. However, the conventional algorithms of face recognition are

susceptible to multiple conditions, such as lighting, occlusion, viewing angle or camera

rotation. Therefore, face recognition based on deep learning can greatly improve the

recognition speed and compatible external interference. In this thesis, we use

convolutional neural networks (ConvNets) for face recognition, the neural networks

have the merits of end-to-end, sparse connection and weight sharing.

 The purpose of this thesis project is to identify the name of different people based on

location of the detected box of a face. Then, we can obtain recognition results with

different confidence under various distances.

 This thesis presents different methods with comparisons, namely, comparing the

training results and the test results of different parameters under the same model,

training results of the same test video under different models. We find that the

recognition accuracy of this model is mainly affected by face proportion and the number

of samples. If we get larger proportion of a face on screen, then we have higher

recognition accuracy; if we obtain much greater number of samples, we can get higher

recognition accuracy.

 In this work, we first collect sufficient samples as our dataset and use the suitable

model embedded in the platform Google TensorFlow to complete the training and test.

We collected five different faces and obtained 500 images on each face as training set,

each of which can be cropped and rotated by using 50 different angles of the picture

having a human face, of which 40 for training, 10 for verification.

 The use of neural networks for face recognition improves the speed of recognition.

The contributions of this thesis are: (1) The use of elliptical markers can identify a

human face including rotation and position. (2) The confidence of human face

recognition is mainly affected by the proportion of face occupied on the screen.

Keywords: CNNs, face recognition, data augmentation, SSD, Inception v2

II

Table of Contents

Abstract .. I

List of Figures ... IV

List of Tables ... VI

Attestation of Authorship ... VII

Acknowledgement ... VIII

Chapter 1 Introduction ... 1

1.1 Background and Motivation .. 2

1.2 Research Questions ... 4

1.3 Contribution ... 5

1.4 Objective of This Thesis .. 5

1.5 Structure of This Thesis... 6

Chapter 2 Literature Review ... 7

2.1 Introduction ... 8

2.2 Meta-architectures ... 10

2.2.1 Single Shot Detector (SSD) ... 14

2.2.2 Faster R-CNN .. 16

2.3 Feature Extractor of CNNs Model .. 18

2.3.1 LeNet-5 .. 19

2.3.2 Dan Ciresan Net .. 19

2.3.3 AlexNet ... 20

2.3.4 VGGNet ... 20

2.3.5 Inception .. 21

2.3.6 ResNet ... 23

2.4 Overfitting Problems and Solutions .. 24

2.4.1 Data Augmentation ... 25

2.4.2 Dropout ... 26

2.5 Activation and Loss Function .. 27

2.6 Multilayer Perceptron .. 28

Chapter 3 Methodology ... 30

3.1 Research Designing ... 31

3.1.1 Data Sources and Data Collection .. 32

3.1.2 Face Labelling .. 33

3.1.3 Data Augmentation ... 36

3.1.3.1 Scaling Conversion .. 38

III

3.1.3.2 Rotation Conversion .. 39

3.1.3.3 Cropping and Flipping ... 40

3.1.3.4 Summary ... 40

3.2 The Principle of CNNs .. 41

3.3 Model Design of DNNs ... 43

Chapter 4 Results ... 50

4.1 Training Model .. 51

4.2 Comparison and Analysis of the Four Models .. 52

4.3 Effect of Face Ratio on Accuracy ... 58

4.4 Classification Results .. 62

4.5 Limitations of the Research ... 63

Chapter 5 Analysis and Discussions .. 65

5.1 Analysis ... 66

5.1.1 SSD Inception (v2) Model .. 66

5.1.2 Simplified SSD model .. 68

5.1.3 Comparisons ... 70

5.1.3.1 Comparisons of Architecture ... 70

5.1.3.2 Comparisons of Training Time ... 71

5.1.3.3 Activation and Loss Function Comparisons .. 73

5.1.3.4 Comparisons of Loss Value ... 74

5.1.3.5 Precision Comparisons .. 77

5.2 Discussions .. 78

Chapter 6 Conclusion and Future Work .. 79

6.1 Conclusion ... 80

6.2 Future Work .. 80

References ... 82

IV

List of Figures

Figure 2.1 Flowchart of DNNs fundamental………………………………………….11

Figure 2.2 Schematic diagram of DNNs meta-model…………………………………11

Figure 2.3 Schematic diagram of modern DNNs meta-model………………………...12

Figure 2.4 Faster R-CNN architecture of the feature concatenation scheme………….17

Figure 2.5 Flowchart of object detection of Faster R-CNN…………………………...17

Figure 2.6 Classic Inception module………………………………………………….22

Figure 2.7 The new version of Inception module…………………………………….23

Figure 3.1 The steps to achieve face recognition……………………………….…….31

Figure 3.2 Data collection by taking a video…………………………………………33

Figure 3.3 Label the face position…………………………………………………….34

Figure 3.4 Marked files saved in text format………………………………………….35

Figure 3.5 Contents of the labelled files………………………………………………35

Figure 3.6 Flowchart of data augmentation…………………………………………...36

Figure 3.7 Schematic diagram of data augmentation…………………………………41

Figure 3.8 The working principle of CNNs…………………………………………...42

Figure 3.9 The working principle of feature extraction of CNNs…………………….42

Figure 3.10 Model training structure…………………………………………………43

Figure 3.11 Model design structure…………………………………………………...44

Figure 4.1 The resultant example of the test video…………………………….……...51

Figure 4.2 Training curve: box=1 and w=1………………………………….……….53

Figure 4.3 Training curve: box=1 and w=10…………………………………………54

Figure 4.4 Training curve: box=2 and w=1………………………..…………………55

Figure 4.5 Training curve: box=2 and w=10…………………………………………56

V

Figure 4.6 Accuracy comparisons of four models on the validation set……………….57

Figure 4.7 Recognition results………………………………………………….…….58

Figure 4.8 Face with different sizes…………………………………………………...59

Figure 4.9 The relationship between accuracy and facial proportion …………………60

Figure 4.10 The relationship between accuracy and facial angle……………………...61

Figure 4.11 Results of face recognition and classification……………………………63

Figure 5.1 Flowchart of SSD Inception (v2) model…………………………………...66

Figure 5.2 Architecture of SSD Inception (v2) ………………………………….…...68

Figure 5.3 Architecture of simplified SSD network model…………………………...69

Figure 5.4 Results of loss function of the model SSD Inception (v2) ……………….75

Figure 5.5 Results of loss function of the Simplified SSD Model I………………….75

Figure 5.6 Results of loss function of the Simplified SSD Model II…………………76

Figure 5.7 Results of loss function of the Simplified SSD Model III………………...76

Figure 5.8 Results of loss function of the Simplified SSD Model IV………………...77

VI

List of Tables

Table 3.1 Classes in our experiment………………………………………………….32

Table 4.1 Comparisons of training results of the four models………………………...52

Table 5.1 The distribution of SSD Inception (v2) …………………………………….67

Table 5.2 Comparisons of architectures…………………………………………...….71

Table 5.3 Comparisons of training process……………………………………...……72

Table 5.4 Comparisons of activation function………………………………………...73

Table 5.5 Comparisons of loss function…………………………………………...….74

Table 5.6 Comparison of precisions……………………………………………….…77

VII

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgments), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

of a university or other institution of higher learning.

Signature: Date: 21 June 2018

VIII

Acknowledgement

This research was completed in response to the requirements of the Master of Computer

and Information Science (MCIS) program at the School of Computer and Mathematical

Sciences (SCMS) in the Auckland University of Technology. First, I would like to

thank my parents for supporting me to study in Auckland and give me financial help. I

also want to thank my friends who supported me in my life and study.

In this research project, my deepest thanks are given to my primary supervisor Dr

Wei Qi Yan. I thank him very much for giving me technical and academic teaching.

Under his leadership, I learned a lot of knowledge in deep learning and I am confident

I can achieve my master’s degree with his assistance. In addition, I would also like to

appreciate my second supervisor Professor Nikola Kasabov who gave me invaluable

comments on my work. In addition, I am very grateful to my third supervisor Dr

Michael Watts, who gave invaluable advice on my thesis.

Hui Wang

Auckland, New Zealand

21 June 2018

1

Chapter 1

Introduction

 The first chapter of this thesis consists of five sections. In the

first section, the background and motivation are introduced, face

recognition can be used not only for access control systems, but

also for supermarket shopping, such as payment methods, to

facilitate ordinarily people's lives. The second section and the

third section of this thesis will introduce the main research

questions and contributions of this thesis. The fourth section will

introduce the objective. Finally, in the fifth section, we will mainly

outline the structure of this thesis.

2

1.1 Background and Motivation

With rapid development of computer technology, computers are becoming intelligent.

Artificial Intelligence (AI) has also become a crucial branch of computer science, it has

also become the core of contemporary high-tech, its application also involves various

fields. Among them, computer vision (CV) is one of the important areas of artificial

intelligence (Rautaray & Agrawal, 2015), it attempts to obtain information from images

or data, uses computer algorithms to identify or track images and videos, and then

performs image processing to achieve the purpose of making computers replace human

eyes (Koch, 2018) (Yan, 2017).

 Nowadays, face recognition is also widely used in our ordinary life. There are many

types of applications of face recognition, e.g., gender, identity, age and emotion are the

most important characteristics of human (Lawrence, Campbell, & Skuse, 2015) (Gu,

Nguyen, & Yan, 2016). Face recognition mainly includes three key aspects: geometric

structure (Gao, Huang, Gao, Shen, & Zhang, 2015), subspace local features (Liao, Hu,

Zhu, & Li, 2015), and deep learning (Parkhi, Vedaldi, & Zisserman, 2015). Traditional

face recognition algorithms, such as LBP, PCA, and LDA, have drawbacks in feature

extraction and recognition (Dewangan & Verma, 2016). Because they need to make

some effective features to make the face recognizable; each feature is separated, usually

the test results are not optimal. Deep learning, as a new technology in recent years, has

made great contributions in speech recognition, image recognition and license plate

recognition, and has played a key role in the process. So, this thesis will mainly

introduce the use of deep learning to achieve face recognition and confirm the identity

of the objects.

 With the development of neuroscience, computer scientists have found that brain

signals are transmitted through a complex structure, if time permits, some of the

characteristics can be used to understand the signals, which lead to the emergence of

deep learning for the establishment and simulation of human brain for analysis and

learning (Kriegeskorte, 2015). Convolution Neural Networks (ConvNets) have been

successfully applied to visual imagery in the past few years, such as flame detection

(Shen, Chen, Nguyen, Yan, 2018) (Jiao, Weir, & Yan, 2011), image denoising (Liu,

Yan, & Yang, 2018), integrated multi-scale event verification (Gu, Yang, Yan, & Klette,

3

2017) and license plate recognition (Li, Nguyen, & Yan, 2018). One of the most

important factors is the need to provide a large amount of training data. But in face

recognition, due to lack of large scale of data sets, some experiments will be limited

(Karpathy, Toderici, Shetty, Leung, Sukthankar, & Fei-Fei, 2014).

 From 2012, AlexNet defeated traditional algorithms in the field of image recognition

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), deep learning

algorithms have gradually become the mainstream of image recognition. Although deep

learning has been widely used in recent years, it also has a long history of development

(Sivaramakrishnan, Antani, Candemir, Xue, Abuya, Kohli, & Thoma, 2018).

 In 1943, the neuroscientist McCulloch and logic scholar Walter Pitts proposed that

the first artificial neuron model: MP model, they tried to connect the basic units together

to understand how human brain produced highly complex patterns. This has made a

significant contribution to the development of neural networks (Bressloff, Ermentrout,

Faugeras, & Thomas, 2016). In 1958, Rosenblatt published the infected person’s speech

based on the MP model, greatly developed the neural network theory and applied it to

the real problems (Ayouche, Aboulaich, & Ellaia, 2017). In 1986, Rumelhart et al.

proposed backpropagation algorithm, which is an important method in neural networks

to calculate the error of neurons after data processing (Raza & Khosravi, 2015) (Wang

& Yan, 2016). This algorithm is still the most popular one now and is one of the most

widely used artificial neural networks in artificial intelligence (Yan, Chambers, &

Garhwal, 2015).

 In recent years, deep learning algorithms such as ConvNets, Recurrent Networks

(RNNs) have achieved great success in experiments (Zheng, Yan, & Nand, 2018). The

convolutional layer extracts visual features through local connections and weight

sharing. It has the advantage of feature extraction through dimension reduction of

convolutional layers. After nonlinear mapping, the network can automatically form

feature extractors and classifiers adapted to the task from training samples. ConvNets

is essentially a forward feedback network, aiming at simplifying the pre-processing

operation and simulating the alternating cascade structure of the simple and complex

cells used for feature extraction (Cao, Liu, Yang, Yu, Wang, Wang, & Ramanan, 2015).

Face recognition, as biometrics, is a significant components of video surveillance

and visual security which is wildly applied to identification today (Cui & Yan, 2016).

4

In some large shopping malls, face recognition is used to retrieve goods, monitor the

passengers in the shopping mall, and provide users with more convenient services. At

the entrance of the school or company, face recognition is used to implement access

control system, which prevents the entry of foreign persons and ensures the security of

premise. With the development of technology, face recognition can also be used to

deblock devices, such as smart phones and computers. This can better protect the

privacy of users, improve the security of the data. Face recognition, as a special part of

human-computer interaction through a computer identifies users, serves them with

great convenience (Parmar & Mehta, 2013).

 Therefore, with the improvement of image and video processing technology, the

appearance of deep learning has made a great contribution to computer vision. This also

makes it possible to achieve face recognition with better algorithms and models. After

surveying the literature, the study of this thesis has been achieved.

1.2 Research Questions

Face recognition has been widely used in recent years; extracting facial features and

classifying a given face are the basic procedure of face detection and recognition.

Therefore, the research questions in this thesis are:

Question:

What kind of technology and methods can achieve face recognition?

 Although face recognition technology matured, there also has a big gap with

fingerprints and retinas in recognition. After a full conclusion, we find that the main

reasons that may affect face recognition are:

1) Uncertainty in the acquisition of face images, such as the direction of light, and

the intensity of light, etc.

2) Face diversity, such as beards, glasses, hairstyles, etc.

3) Uncertainty of human faces, such as facial expressions, etc.

 Because there are multiple factors affecting the recognition results, the recognition

results will be more complicated in the process of face recognition. According to these

5

existing factors, we tried to study the following questions and the sub-question of the

above main question is:

“What kind of algorithm is suitable for face recognition? Which method can make

recognition faster and compatible with the diversity of face changes?”

 In the process of recognition, because the proportion of face occupied by screen is

various, the degree of confidence will be different. Therefore, we have extended the

following research question:

“What is the relationship between confidence and the proportion of faces?”

 Since the core idea of this thesis is to find more effective methods to improve the

accuracy of recognition results, we need to choose more advanced models and

algorithms to achieve it.

1.3 Contribution

The contribution of this thesis is based on deep learning for face recognition. We will

conduct the experiments through real-time recognition; for example, when people move

close to a camera, the system will verify the proportion of a human face and its

confidence, we will take the proportion as a major reason. The experiment has four

parts: 1) collect the data, 2) accept the command parameters, 3) define the neural

network model, 4) training model.

 Moreover, finding suitable algorithms which are suitable for face recognition from

deep learning is also introduced in this thesis. Comparing and analysing the accuracy

of different parameters will be conducted in the same model framework.

 In addition, because this thesis uses neural networks to study, the focus of this thesis

is on the models established by using SSD. At the end of this thesis, we will also

compare the results of models by using the same dataset to prove the suitability of our

algorithm.

1.4 Objective of This Thesis

6

Firstly, we need to collect large-scale data sets of human faces under the requirement

of deep learning. But we think that it is too slow and may waste our time; in terms of

data sets, our objective is to use reasonable data augmentation methods to segment the

collected images so as to reach the number of training datasets.

 Secondly, under the condition of external disturbance factors, we tried to find an

algorithm to avoid the influence of environment and light and explore whether the

system can recognize the occluded face and the rotated face position.

 Finally, we will compare experimental results and explore the effect of facial

proportions on confidence in recognition.

1.5 Structure of This Thesis

This thesis consists of six chapters:

 In the second chapter, we mainly introduce literature review. First, we will introduce

feature extraction method of convolutional neural networks and list the relatively new

algorithms and models used in recent years, outline the working principles, and then

propose solutions for overfitting problems. Therefore, the second chapter is more about

learning and understanding the results of previous studies and summing up experiences

to better conduct the next research.

 In the third chapter, we will discuss the methodology of this thesis. These include

data collection methods, data augmentation methods, and model design methods. The

design and implementation of the experimental process will also be listed.

 In the fourth chapter, the results of the experiment are mainly introduced, including

training and test results of the proposed model, which also includes analysing the results

of the experiment under the conditions of four different parameters. We will also show

the figures and tables with an intuitive explanation.

 In the fifth chapter, we will analyse and discuss our experimental results and compare

the results with different models. To prove the advantages of our algorithm, the

conclusions and future work will be presented in Chapter 6.

7

Chapter 2

Literature Review

 After in-depth study and understanding of the

previously studied algorithms and structures, we know

that the core of this thesis is based on test video to identify

people, including face location and face classification.

Therefore, this chapter will introduce and summarize a

completely new algorithm for face recognition in deep

learning and outline its principle.

8

2.1 Introduction

Deep Neural Networks (DNNs) have a development history of more than 10 years, but

it has not been enough attention in the scientific research field until the concept of deep

learning was presented. The DNNs was originated in 1943 when Walter Pitts and

Warren McCulloch created a computer model based on human brain neural network

that eventually became a hot topic after a century of development (McCulloch & Pitts,

1943). The Neocognitron was the first artificial neural network that introduced

convolutional neural networks (CNNs), where the receptive field of a convolutional

unit gave weight vector (Fukushima & Miyake, 1982). In 2006, Hinton presented the

concept of a fast learning algorithm for deep belief net, and he also presented the deep

learning methods and improvement of DNNs training model (Hinton, Osindero, & Teh,

2006). He presented two main arguments of deep learning in the literature, both of them

are the multi-layer DNNs model, which has a strong feature learning ability and the

method of layer-by-layer training to achieve the deep learning model. However, deep

learning remains in theoretical stage until Hinton with his team win the championship

of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by using Alexnet

Model using a deep learning algorithm in 2012, it is an important milestone in DNN’s

history. They got the accuracy of 84.7% in the ILSVRC, which is far better than the

previous best result of 74.3%. The deep learning has aroused widespread concern after

the ILSVRC and began to develop rapidly (Schmidhuber, 2015).

 There are four reasons that why AlexNet can succeed and DNN becomes one of the

most popular topics: 1) big data training with millions ImageNet image data, 2)

assisting with GPU accelerated training, 3) methods of prevent over-fitting, e.g.,

dropout and data augmentation, 4) development of nonlinear activation function, e.g.,

ReLU (Krizhevsky, Sutskever, & Hinton, 2012).

 In this thesis, we will also discuss the methods of preventing overfitting of data

augmentation and dropout operation (Lee, Gallagher, & Tu, 2016). In addition, this

thesis will introduce the operation of DNNs structure.

 The research field of this thesis is object detection, which includes object

identification and classification (Satat, Tancik, Gupta, Heshmat, & Raskar, 2017). In

recent years, DNN has been applied to object detection. Object detection using DNNs

9

has been developed rapidly based on the success of AlexNet model, and many models

have been developed and popularized after AlexNet model, such as Region

Convolutional Neural Network (RCNN), Spatial Pyramid Pooling (SPP-net), Fast

RCNN, Faster RCNN, You Only Look Once (YOLO), and Single Shot MultiBox

Detector (SSD) (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murply, 2017).

Among them, from RCNN to Faster RCNN, they elaborate the model optimization

process. The Faster RCNN has a good accuracy, but the effect on real-time detection is

still not ideal (Zhang, Lin, Liang, & He, 2016); the main feature of YOLO model is

very fast for detection, but the accuracy of small object detection of YOLO is also not

good (Molchanov, Vishnyakov, Vizilter, Vishnyakova, & Knyaz, 2017). The SSD

model is one of the first attempts to use a ConvNet’s pyramidal feature hierarchy, which

adds the ability to map features onto multiscale feature maps (Lin, Dollár, Girshick, He,

Hariharan, & Belongie, 2017); it is a very advanced object detection model, which takes

into account the detection accuracy, it is one of the best choices for real-time object

detection.

DNNs has promoted the third wave of artificial intelligence research (LeCun, Bengio,

& Hinton, 2015). The achievements made by using DNNs have also proved its broad

prospects for development in recent years (Jordan & Mitchell, 2015). The DNN

software framework plays a key role in the development and application of neural

network models, many software frameworks are proposed and have been widely used,

such as TensorFlow (Abadi, Barham, Chen, Chen, Davis, Dean, & Kudlur, 2016), Caffe,

Torch7 (Jia, Shelhamer, Donahue, Karavev, Long, Girshick, & Darrell, 2014), Theano

(Bergstra, Breuleux, Lamblin, Pascanu, Delalleau, Desjardins, & Kaelbling, 2011),

Keras, Lasagne (Shatnawi, Al-Bdour, Al-Ourran, & Al-Avvoub, 2018), and Chainer

(Tokui, Oono, Hido, & Clayton, 2015). Among them, we choose TensorFlow as our

framework in this thesis.

TensorFlow plays a decisive role in development and application of CNNs, which

has integrated most common units in deep learning framework (Shi, Wang, Xu, & Chu,

2016), it is also independent on open source framework for DNNs model based on C++,

python (Flores, Barrón-Cedeño, Rosso, & Moreno, 2011), and CUDA (Kirk, 2007). One

of the important features of TensorFlow is flexible portability, which makes it easy to

deploy the same codes to multiple CPUs and GPUs with no modification. Another

reason of choose TensorFlow as our framework is that TensorFlow library has the

10

DNNs model of the most widely used software framework. Deep learning framework

as the core role of DNNs models must be explicit before implementation of DNNs

model. In a typical DNNs framework model, such as TensorFlow, it is constituted by

two phases “Define” and “Run”, namely, Define-and-Run (Tokui, Oono, Hido, &

Clayton, 2015).

In the Define phase, the DNNs model constructs a computational graph based on

specific inter-layer connections, initial weights, and activation functions. After the

computational graph has been built in memory of computer, the forward computation

and backward computation are set; then, it will enter the “Run” phase. In the Run phase,

it repeats training the set of training samples in the computational graph, finally

achieves the goal of reducing the loss function and optimizing the results of DNNs

model.

2.2 Meta-architectures

The architecture of deep learning consists of a computational graph that is most

conveniently constructed by composing layers with other layers (Perez, 2017). Many

processes have been made remarkable achievement on object detection since the use of

convolutional neural networks (Schmidhuber, 2015). The working principle of DNNs

model is to collect the original data set, after duplicated layers of extraction and

optimization, eventually minimized the loss function and obtain the best object

detection results, we can see the flowchart in Figure 2.1. The meta-models of DNNs

are objectives, optimizers, activations, metrics, and layers. Normally, an objective is a

function and an optimizer is an algorithm. Consequently, we can deduce the figure of

DNNs meta-model, see Figure 2.2. With the rapid development of DNNs, the objective

function has become a neural network and the optimizer has also become a neural

network. Thus, DNNs meta-model will be evolved from Figure 2.2 into Figure 2.3.

11

Figure 2.1 Flowchart of DNNs fundamental

Figure 2.2 Schematic diagram of DNNs meta-model

12

Figure 2.3 Schematic diagram of modern DNNs meta-model

Modern CNNs meta-architecture (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, &

Murphy, 2017) (Yadav & Binay, 2017) (Chin, Yu, Halpern, Genc, Tsao, & Reddi, 2018)

(Oquab, Bottou, Laptev, & Sivic, 2014) of object detection is mainly represented by

SSD (Liu, Anguelov, Erhan, Szegedv, Reed, Fu, & berg, 2016), Faster R-CNN (Ren,

He, Girshick, & Sun, 2015), R-FCN (Dai, Li, He, & Sun, 2016), Multibox (Erhan,

Szegedy, Toshev, & Anguelov, 2014), and YOLO (Redmon, Divvala, Girshick, &

Farhadi, 2016).

In this project of detecting the effect of facial area ratio and angle on face recognition,

the two most important requirements are real-time performance and average precision

(Ren, Nguyen, & Yan, 2018). Unfortunately, only the papers of SSD (Liu, Anguelov,

Erhan, Szegedv, Reed, Fu, & berg, 2016), R-FCN (Dai, Li, He, & Sun, 2016), and

YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) discussed the running time on

details. The work (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy, 2017)

retest the frame-rate of SSD, R-FCN, Faster R-CNN, statistics a full picture of the speed

and accuracy trade-off in a unified platform environment.

Around these modern meta-architecture, SSD and YOLO are using a single

feedforward convolutional network to directly predict object (Kong, Sun, Yao, Liu, Lu,

& Chen, 2017); in CVPR2017 (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy,

2017), SSD is defined as the classification of all CNNs meta-architecture that used

single feedforward convolutional network to directly classify default boxes offset

13

without requiring the second stage per-proposal classification operation. Thereby, the

meta-architecture of YOLO is also a kind of SSD. However, the dominant idea of object

detection is to use the Faster R-CNN architecture, which requires the second stage per

proposal classification operation (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, &

Murphy, 2017).

In the Faster R-CNN architecture, object detection requires two stages that region

proposal network (RPN) and box proposal network (Ren, Zhu, &Xiao, 2018). The stage

of RPN (Cai, Fan, Feris, & Vasconcelos, 2016) is used to predict class-agnostic box

proposals by using feature extractors, such as Inception v2 (Tri, Duong, Van, Van,

Nguyen, Toan, & Snasel, 2017). The stage of box proposal network is used to crop

features from the same intermediate feature map, and then feed to the remainder of the

feature extractor for predicting the class and class-specific box (Zagoruyko, Lerer, Lin,

Pinheiro, Gross, Chintala, & Dallar, 2016). The running time of box proposal network

depends on the number of regions proposed by the RPN (Huang, Rathod, Sun, Zhu,

Korattikara, Fathi, & Murphy, 2017). Faster-RCNN has the good average precision

(mAP) on object detection, but it cannot be achieved real-time detection due to

requirement of two stages in each prediction (Wu, Iandola, Jin, & Keutzer, 2017).

However, SSD is able to realize real-time object detection by applying the approach of

single feedforward predict classes and default boxes offsets, thus, we are going to focus

on applying the method of SSD meta-architectures.

 In CNN meta-architectures, it is typical to have a collection of boxes overlaid on the

image at different spatial locations, scales and aspect ratios, namely, default boxes (Liu,

Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016). Some papers are named as priors

(Erhan, Szegedy, Toshev, & Anguelov, 2014) (Bao & Chung, 2018) or anchors (Ren,

He, Girshick, & Sun, 2016). The CNNs model on object detection requires to make two

predictions for each default boxes, respectively, a discrete class prediction for each

anchor, and a continuous prediction of an offset to shift the default boxes fit the ground

truth bounding box (Erhan, Szegedy, Toshev, & Anguelov, 2014). There have a lot of

default box in each image, if a default box matches the class offsets of ground truth

bounding box, which becomes positive default boxes; otherwise, it calls negative

default boxes (Liao, Shi, Bai, Wang, & Liu, 2017) (Shi, Bai, & Belongie, 2017). In SSD

meta-architecture, each box is out of k at a given location, it computes c class sores and

four offsets related to the original default box shape (Liu, Anguelov, Erhan, Szegedy,

14

Reed, Fu, & Berg, 2016). For each default box, it predicts both the shape offsets and

confidences (Nguyen, YOsinski, & Clune, 2015) for different object categories.

2.2.1 Single Shot Detector (SSD)

SSD as recently developed the state-of-the-art convolutional network for real-time

object detection (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) (Poirson,

Ammirato, Fu, Liu, Kosecka, & Berg, 2016), it discretizes the output space of bounding

box into a set of default boxes at different scales and aspect ratios in each feature map

coordinate; object detection in a single shot without intermediate stage of detecting

parts or initial bounding boxes eliminates proposal generation and subsequent pixel, or

feature resample stage. In the time of object prediction, the network generates scores

for each object category in each default box (Liao, Shi, Bai, Wang, & Liu, 2017); SSD

network will also adjust each default box to better match the shape of the object. The

fundamental of SSD is combination and improvement of YOLO (Redmon, Divvala,

Girshikck, & Farhadi, 2016) and R-FCN (Dai, Li, He, & Sun, 2016) architecture.

SSD is broadly defined as an architecture that uses a single feedforward

convolutional network for object detection without requiring the second stage per-

proposal classification operation (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, &

Murphy, 2017), which indicates that the SSD represents all single shot convolutional

network, includes YOLO (Redmon, Divvala, Girshikck, & Farhadi, 2016) and Overfeat

(Sermanet, Eigen, Zhang, Mathieu, Fergus, & LeCun, 2014). However, we further

study the single shot feedforward convolutional network (Yan, Chambers, 2013) and

need to understand SSD (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) and

YOLO (Redmon, Divvala, Girshikck, & Farhadi, 2016) architecture respectively, then,

build a suitable architecture for real-time face recognition.

For the SSD network architecture, the feature layer of size mn with p channel, the

kernel size is 33p for predicting parameters of a potential detection that a score for a

category or a shape offset related to the default box coordinates (Chen, Papandreou,

Kokkinos, Murphy, & YUille, 2016) (Hager, Dewan, & Stewart, 2004). The kernel is

the core element that generates the default box (Nie, Zhang, Niu, Dou, & Xia, 2017).

15

The YOLO network architecture has a similar approach to SSD network architecture,

and the main difference between these two is that SSD uses six fully convolutional layer

for object detection, and YOLO uses two fully connected layers instead of the

convolutional filter in output layers (Redmon, Divvala, Girshikck, & Farhadi, 2016)

(Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016). Therefore, the

improvements of SSD from YOLO are mainly attributed to three aspects: (1) it uses a

small convolutional filter to predict object categories and offsets for default boxes

coordinates, (2) it utilizes separate filters for different aspect ratio detections, (3) it

carries out detection at multiple scales by using these filters to multiple feature maps

from the later stages of the network (Jeong, Park, & Kwak, 2017).

The traditional SSD (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) and

YOLO (Redmon, Divvala, Girshikck, & Farhadi, 2016) architectures enable real-time

detection because they are using grid cells of feature maps proposal generator instead

of region proposal network (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy,

2017).

Among them, the YOLO model uses a 77 grid cells feature map for proposal

generating and the SSD model uses multiple feature maps from different feature layers,

such as 88 grid cells of feature map and 44 grid cells of feature map (Redmon,

Divvala, Girshikck, & Farhadi, 2016) (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, &

Berg, 2016). In YOLO model, each grid cell predicts the object, and totally it has 98

proposal generators (Kong, Yao, Chen, & Sun, 2016). The grid cells of YOLO output

results are confidence and position coordinate which is a great attempt and achieved

good detection results (Redmon, Divvala, Girshick, & Farhadi, 2016). However, the

accuracy of small object detection in YOLO is not satisfactory because feature maps is

divided into fixed 77 grid cells (Al-masni, Al-antari, Park, Gi, Kim, Rivera, & Kim,

2018). The lower layer feature map can capture more details of the input object (Long,

Shelhamer, & Darrell, 2015), thus utilizes the lower layer feature map with fewer grid

cells to improve the accuracy of small object detection based on this conclusion (Wang,

Ouyang, Wang, & Lu, 2015). Simultaneously, the upper feature map has an

irreplaceable advantage in the detection of large objects (Cong & Xiao, 2014). Thereby,

the SSD model applies both the lower and upper feature maps for object detection, such

as 88 feature map and 44 feature map (Liu, Anguelov, Erhan, Szegedy, Reed, FU, &

Berg, 2016).

16

 Similar as YOLO, the output values of feature map of SSD are also location

coordinate and confidence, which define the coordinates and categories of default boxes

(Liu, Anguelov, Erhan, Szegedy, Reed, FU, & Berg, 2016). The confidences output all

object categories by c1, c2, …, cp, where p represents category; the localization outputs

the coordinates of default boxes by using the centre (cx, cy), width (w), and height (h).

Therefore, the loss function of SSD is a weighted sum of localization loss and the

confidence loss:

 𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
 (𝐿 · 𝑐𝑜𝑛𝑓 (𝑥, 𝑐) + 𝑎 · 𝐿 · 𝑙𝑜𝑐 (𝑥, 𝑙, 𝑔)) (2.1)

 In the equation above, N is the number of match default boxes, the loss result is 0

when the N = 0; 𝑙 refers to the predicted box; 𝑔 represents the ground truth box; and 𝑎

stands for the weight term. The localization loss of SSD is applying the Smooth L1 loss

function (Gkioxari, Girshick, & Malik, 2015), and the confidence loss is utilizing the

Softmax loss function (Zhang, Zhang, Jing, Li, & Yang, 2017) (Zheng, Javasumana,

Romera-Paredes, Vineet, Su, Du, & Torr, 2015) (Liu, Wen, Yu, & Yang, 2016). The

Softmax loss function (Gu, Yang, Kong, Yan, & Klette, 2017) will also apply to CNNs

model, and activation functions and loss function are also an important part of the CNNs

model, we will talk about separately in below of this thesis.

2.2.2 Faster R-CNN

The Faster R-CNN (Ren, He, Girshick, & Sun, 2015) is the state-of-the-art

convolutional network for object detection, which has the highest accuracy of object

detection since the development from R-CNN and Fast R-CNN (Gkioxari, Girshick, &

Malik, 2015) (Girshick, 2015). At the prediction phase, it has two stages of region

proposal network (RPN) and box proposal (Gu, Yang, Yan, Li, & Klette, 2017).

The object detection of Faster R-CNN (Ren, He, Girshick, & Sun, 2015) can be

divided into five main parts: 1) input the training set of object images into the Faster R-

CNN model for feature extraction; 2) apply RPN generates proposal sliding windows,

each image generates 300 sliding windows; 3) map sliding windows to the last layer of

the Faster R-CNN convolutional feature map; 4) generate a fixed size feature map

through the pooling layer; 5) utilize Softmax loss function and Smooth L1 loss function

17

(Liu, Wen, Yu, & Yang, 2016) (Gkioxari, Girshick, & Malik, 2015) combines classifier

and bounding box regression together.

Similar to the SSD model, the Faster R-CNN also is employed as an end-to-end

network (Serban, Sordoni, Bengio, Gourville, & Pineau, 2016), but it applies fully-

convolutional network (Long, Shelhamer, & Darrell, 2015) for the output layer. The

difference is to train the fully-convolutional network by using back-propagation and

stochastic gradient (LeCun, Boser, Denker, Henderson, Howard, Hubbard, & Jackel,

1989). The feature concatenation of Faster R-CNN (Cai, Fan, Feris, & Vasconcelos,

2016) is the approach that improves the RoI pooling (Girshick, 2015) by combining the

feature maps of multiple convolution layers for lower and upper layer features. The

Faster R-CNN network architecture is shown in Figure 2.4.

Figure 2.4 Faster R-CNN architecture of the feature concatenation scheme

Figure 2.5 Flowchart of object detection of Faster R-CNN

 The feature concatenation training of Faster R-CNN (Ren, Zhu, & Xiao, 2018) is

shown in Figure 2.4, which has four stages: 1) training the RPN separately, the network

parameter load from the per-training model, 2) training the Fast R-CNN network

separately, the training parameter loaded from the output of RPN, 3) training the RPN

again, the parameters are shared between the Fast R-CNN and the RPN, 4) the

parameters of the second RPN output to ROI pooling layer (Ren, He, Girshick, & Sun,

18

2015). It is noteworthy that the hardware requirements of training environment of Faster

R-CNN also have very high threshold, such as it requires at least the level of NVIDIA

Titan GPU for training (He, Gkioxari, Dollar, & Girshick, 2017). Faster R-CNN is a

sophisticated and rigorous network model that achieves the highest accuracy of object

detection by using the design of architecture, though it is not suitable for real-time

applications (Akselrod-Ballin, Karlinsky, Alpert, Hasoul, Ben-Ari, & Barkan, 2016).

2.3 Feature Extractor of CNNs Model

Meta-architecture of deep learning can be regarded as the concrete application model

of deep learning, its essence is based on the development of deep learning feature

extraction model (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy, 2017).

Convolutional feature extraction network model develops from the initial LeNet5

model (LeCun, Bottou, Bengio, & Haffner, 1998) to AlexNet model (Krizhevshy,

Sutskever, & Hinton, 2012), Network-in-Network model (Lin, Lin, Zhou, & Tang,

2014), VGG model (Lin & Yuan, 2016), GoogLeNet model (Szegedy, Liu, Jia,

Sermanet, Reed, Anguelov, & Rabinovich, 2015), and ResNet model (He, Zhang, Ren,

& Sun, 2016). We conclude that the depth and complexity of convolutional networks

are increasing in order to improve the accuracy of object detection, but the training time

also increases with the increasing model complexity.

 Nonetheless, the development of convolutional feature extraction model has entered

a bottleneck, the VGG-19 (Lin & Yuan, 2016) did not achieve good detection accuracy

even if it has most operations. Convolutional feature extraction of Inception, ResNet

and VGG model is the state-of-the-art technology according to the top one accuracy of

object detection (Rajalingham, Issa, Bashivan, Kar, Schmidt, & DicCarlo, 2018).

However, all feature extraction models are widely used in various meta-architectures

which represent the basic model of convolutional models.

 Among them, the meta-architecture of SSD (Liu, Anguelov, Erhan, Szegedy, Reed,

Fu, & Berg, 2016) and Faster R-CNN (Ren, He, Girshick, & Sun, 2015) uses the VGG-

16 network as a base, the meta-architecture of YOLO (Redmon, Divvala, Girshick, &

Farhadi, 2016) uses the GoogLeNet model as a base, the meta-architecture of MultiBox

(Erhan, Szegedy, Toshev, & Anguelov, 2014) applies the Inception model as a base,

the meta-architecture of R-FCN (Dai, Li, He, & Sun, 2016) utilizes the ResNet-101 as

19

a base. The convolutional feature extraction network, as the theoretical basis of meta-

architecture, needs to profound understanding before we construct an approach of

object detection model.

2.3.1 LeNet-5

LeNet-5 is a ground-breaking convolutional neural network architecture that was

released in 1998 (LeCun, Bottou, Bengio, & Haffner, 1998). It greatly promoted the

development of convolutional deep neural networks. Most convolutional deep learning

models are based on the core ideas of LeNet-5 in recent years (Tang, Lu, Wang, Huang,

& Li, 2015). In 1998, there was no approach of GPU acceleration training, the saving

of parameters and computation is an important feature of LeNet-5. Therefore, LeNet-5

proposed three main features of CNNs: locally connected neural network, weight

shared, and subsampling (LeCun, Bottou, Bengio, & Haffner, 1998). The features of

the architecture of LeNet-5 model can be summarized as five parts: 1) LeNet-5

convolutional network using three layers that convolution layer, pooling layer, and non-

linearity function; 2) the subsample of LeNet-5 using spatial average of maps; 3) the

non-linearity activation function applies Tanh or Sigmoids function; 4) the final

classifier applies the multi-layer neural network(MLP); 5) it applies sparse connection

matrix between each layer in order to avoid large computational cost (LeCun, Jackel,

Bottou, Cortes, Denker, & Vapnik, 1995). LeNet-5 is an epoch-making convolutional

feature extraction network, which key features have been used in the state-of-the-art

convolutional networks.

2.3.2 Dan Ciresan Net

Dan Ciresan Net (Ciresan, Meier, Gambardella, & Schmidhuber, 2010) is the first

training of deep neural network under GPU environment, which was proposed in 2010.

This network model implemented both forward and backward training on a NVIDIA

GTX 280 graphic processor, which can be trained up to nine layers of this neural

network. In the test results, the training speed of Dan Ciresan Net neural network

increased more than 10 times faster. This is a great attempt to greatly enhance the

training velocity of deep neural network under the GPU environment; it opens a new

chapter for the development of deep neural networks. After that, most of the deep neural

20

network models using the GPU environment have been developed to train their datasets

(Chen & Lin, 2014).

2.3.3 AlexNet

In the introduction of DNNs above, we briefed that AlexNet win the object detection

on ILSVRC and the deep neural network entered the public’s awareness, which

promoted the third wave of artificial intelligence research (Lee, Chen, Yu, & Lai, 2018).

AlexNet is created based on the LeNet-5 model which improves the 5-convolution layer

to 7-convolution layer, and it can extract more complex high-dimensional image

features from the image (Krizhevsky, Sutskever, & Hinton, 2012). Overall, the

architecture of AlexNet model and its features can be summarized as four parts: 1)

compared with the sigmoid function of LeNet-5, AlexNet utilizes ReLU functions as

activation function to reduces the amount of computation; 2) it applies Dropout

technique that temporarily deletes partial neurons randomly, which reduces overfitting

effectively; 3) it utilizes max-pooling technique to reduce the computations of

convolutional layer; 4) it uses double GPU NVIDIA GTX 580 graphic processor,

further improves the training velocity of CNNs (Krizhevsky, Sutskever, & Hinton,

2012). AlexNet is the first deep neural network based on the ILSVRC model whose

object detection performance surpasses the traditional algorithms in whole aspects. Its

appearance represents the object detection field where deep neural network begins to

dominate (Khan & Yong, 2017). Simultaneously, artificial intelligence started a new

development.

2.3.4 VGGNet

VGGNet (Lin & Yuan, 2016) was a new model of deep neural networks released by

the University of Oxford in 2014, which uses a small 33 convolution kernel in per

convolution layer to extract minutiae and arrange these small convolutional kernels as

a sequence of convolutions. It seems to be contrary to the principles of LeNet-5 and

AlexNet, where VGGNet proposes to use a 33 small convolutional kernel while

AlexNet use 77, 99 and 1111 large convolutional kernel. The fundamental of

VGGNet is to convolve the original image using 33 small convolution kernels, and

then apply 33 convolution kernels continuously for multiple convolutions (Chu,

21

Ouyang, Li, & Wang, 2016). The approach of multiple 33 small convolution kernels

can simulate the effect of large convolution kernel for local feature extraction, thus

greatly reduce computation parameters and the time of object detection. Because only

9 weight parameters are used for 33 convolution kernel, the 77 convolution kernel

uses 49 weight parameters (Wu, Leng, Wang, Hu, & Cheng, 2016).

 VGGNet (Lin & Yuan, 2016) pointed out that the use of large convolution kernel

will waste lots of time, small convolution kernel can reduce the computation parameters

to save computational overhead. However, if we utilize small convolution kernels, it

will also lead to increase the training time and require high performance of hardware

but reduce prediction time and computation parameters of overall.

2.3.5 Inception

Inception model, also known as GoogLeNet, is a deep neural network structure released

by Google in 2014 (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, & Rabinovich, 2015).

The first version of Inception model shown in Figure 2.6 is a 11, 33, or 55

convolution kernel series parallelly combined deep neural network (Szegedy, Liu, Jia,

Sermanet, Reed, Anguelov, & Rabinovich, 2015). Its main core is the 11 convolution

kernel, which effectively reduces the number of features for parallel convolution

kernels. The idea of 11 convolution kernel was inspired by the Network-in-Network

model (Lin, Chen, & Yan, 2013), knows as “bottleneck layer”. The bottleneck layer

reduces the number of operational complexities of each convolution layer, thus shortens

the time of computations (Szegedy, Vanhouche, loffe, Shlens, & Wojna, 2016).

 Suppose ConvNet has 256 features coming in and 256 features coming out, then, it

only uses 33 convolution kernel which has to perform 25625633 convolutions;

while using bottleneck layer can reduce computation parameters, it shrinks one of the

256 features to 256/4 in 11 convolution kernel which performs 2566411

convolutions, then uses 64 convolution on all Inception branches utilizing 33

convolution kernel, which needs 646433 convolutions, and then takes advantage of

again a 11 convolution kernel for transfer 64 features to 256 which performs

6425611 convolutions. Without the bottleneck layer only using 33 convolution

kernel, it must perform 25625633 convolutions; while with the bottleneck layer

22

parallel combined 33 convolution kernel, it must perform 2566411 + 646433

+ 6425611 convolutions which reduce almost 10 times.

Figure 2.6 Classic Inception module

The bottleneck layer is the core idea of Inception, we define the parallel combined

methods, the purpose is to reduce the operation parameters (Lin & Chen, 2015).

Christiam and his Google team introduced the concept of batch-normalized Inception

(Szegedy, loffe, Vanhoucke, & Alemi, 2017) in 2015. Batch-normalization computes

the mean and standard-deviation of all feature maps and output them to a layer. It

corresponds to “whitening” (Hoffer Ailon, 2015) the data, it makes all the neural maps

respond in the same range with zero mean. The batch-normalization helps training as

the next layer which does not have to learn offsets in the input data, and then it can

focus on combine features. The new version of Inception module is shown in Figure

2.7, its main improvement can divide into four parts: 1) it adds feature maps before the

pooling layer for constructing networks that balance depth and width; 2) it increases

the depth of neural networks and the number of features; 3) it enriches the combination

of features before next layer by increasing width of the layers; 4) it employs only 33

and 11 convolution kernels by using VGGNet (Szegedv, loffe, Vanhoucke, & Alemi,

2017). The classifier of Inception is using pooling layer and Softmax layer, which is

similar to VGGNet.

23

Figure 2.7 The new version of Inception module

2.3.6 ResNet

ResNet is a deep neural network model released in 2015 (He, Zhang, Ren, & Sun, 2016).

The main feature of ResNet is the depth of network model which is able to achieve

more than 1000 layers network model. The core idea of ResNet is to feed the output of

two successive convolutional layer and bypass the input of the next layers (Toderici,

Vincent, Johnston, Hwang, Minnen, Shor, & Covell, 2017). With the development of

deep neural networks and graphic process performance, the depth of neural network

model increases accordingly. The depth of neural model deepens and leads to difficulty

increasing in optimization, which limits the accuracy of object detection and

recognition. Thus, the ResNet is provided a new idea for solving complex deep neural

network model (He, Zhang, Ren, & Sun, 2016). It is similar as Inception, ResNet also

applies the bottleneck layer to reduce operation parameters and uses pooling layer plus

Softmax as final classifier. ResNet has both parallel and serial modules which the

income as parallel and the output of each modules connect in series (He, Zhang, Ren,

& Sun, 2016). ResNet may be widely used with the development of neural network

24

models. However, ResNet has some undeniable disadvantages for our research, which

requires high standard of operating environment and takes long time for training.

2.4 Overfitting Problems and Solutions

Overfitting corresponds too closely or exactly to a particular set of data and may fail to

fit additional data or predict future observations reliably (Hitchcock & Sober, 2004).

The concrete performance of overfitting is that the function of models perfectly matches

with the data of training set, but the prediction results are much lower than the expected

value. The primary reason caused overfitting is that the architecture of deep neural

network models is too large and involves too many feature latitudes, this leads to a

perfect fitting of the functions of model with training dataset while predictive accuracy

cannot reach the expected since training dataset has their own features (Hinton, Vinvals,

& Dean, 2015).

 Underfitting has similar problem to overfitting, while the reason for underfitting is

that the model is too simple that leads to the model cannot fit the training dataset well,

moreover, predictive accuracy cannot reach the expected value. With the development

of deep neural networks, the feature extraction models are also much more perfect,

thereby, the problem of under-fitting does not occur any more (Ghiassi, Saidance, &

Zimbra, 2005). However, the feature extraction models are more and more complex,

which lead to the overfitting becoming a factor that cannot be neglected.

 How to prevent overfitting is being paid more and more attention. Currently, it

mainly has six popular overfitting solutions (Clark, 2004), which are cross-validation,

train with more data, features removal, early stopping, regularization, and ensembles.

Among them, cross-validation is a powerful measure to prevent overfitting. In the deep

neural network models, it optimizes training results through training the dataset

repeatedly (Clark, 2004). Therefore, all the deep neural networks are using cross-

validation method to reduce the overfitting; for the methods of training with more data,

it can help our algorithms detect the signal better. In deep learning field, the method of

training with more data is called Data Augmentation.

 The main idea of Data augmentation is to generate more similar datasets through

scaling, rotation and interception of the image, ultimately achieve the effect of

25

expanding the training dataset (Ding, Chen, Liu, & Huang, 2016). Data augmentation

is a simple implementation and an excellent way to reduce overfitting. The method of

removing features is also an effective approach to reduce overfitting. The specific

implementation method is to simplify the feature extraction model according to training

dataset. In the application of feature extraction model, many deep neural models are too

complex for a training dataset, we can simplify the feature extraction model to reduce

the overfitting. However, the underlying architecture of feature extraction models is

complex; thus, this method is difficult to be implemented; the method of temporarily

shield neurons is called dropout in deep neural networks (Schmidhuber, 2015). It

reduces overfitting by randomly deleting some neurons temporarily, which has

excellent achievement through the results of AlexNet model (Krizhevskv, Sutskever,

& Hinton, 2012). This method has been widely used in deep learning, we will also

introduce on details in this thesis.

 The method of early stopping is to find the best training time, because sometimes the

accuracy of training does not necessarily cause longer training time. With the deep

neural models having gradually solved this problem, the long training time of the state-

of-the-art model will not reduce training accuracy.

 The method of regularization is reducing the overfitting by using the functions of

models; the method of ensembles is one of machine learning algorithms for combining

prediction from multiple separate models (Wan, Zeiler, Zhang, LeCun, & Fergus, 2013).

2.4.1 Data Augmentation

The number of images in dataset is an important factor that determines the accuracy of

recognition in deep learning. The method of Data Augmentation is to enhance the

training data by using artificially transformations, in order to achieve the purpose of

reducing overfitting and improving the accuracy of recognition results (Ding, Chen,

Liu, & Huang, 2016). The two distinct forms of Data Augmentation respectively are to

generate image translations and horizontal reflections and alter the intensities of the

RGB channels in training images. Both methods are able to convey multiple images

from the original one with very little computation; the transformed images do not need

to be stored on disk which can be generated before deep learning training (Krizhevsky,

Sutskever, & Hinton, 2012).

26

 For the form of generating image translations and horizontal reflections, if the

training dataset is with images having the resolution 256256, we can randomly extract

a fixed number of images (224224) and horizontal reflection of these images, then,

scale all images to a uniform size. In supervised training, all the images we cropped

need to include the labelled region; hence, we can extract different labelling size and

angles from one image.

 For the form of altering the intensities of RGB channels in training images

(Krizhevsky, Sutskever, & Hinton, 2012), we perform PCA on the set of RGB values

and convert RBG to HSV colour space throughout the training dataset. This scheme

approximately captures the principal components of natural images, the intensity and

colour of object are invariable.

2.4.2 Dropout

The key idea of dropout is to take a large model that overfits easily and repeatedly

sample and train smaller sub-models from it. Dropout was presented by Hinton in 2012.

The Dropout is a neural network unit temporarily discarded from the deep learning

model in accordance with a certain probability in the training process of deep learning.

It should be noticed that the temporarily discarded neuron parameters are merely hidden

in this training phase, the essence is to ignore the part of feature classifier, which means

that the part of the hidden layer nodes tends to zero in each cycle of training. This

approach can reduce the interaction in feature classifier, thus, effectively diminishes the

overfitting phenomenon.

 We also think that Dropout is an average model, each sample inputs into the neural

network and its corresponding network structure is different, but all these different

neural network structures share the weight of hidden layer nodes at the same cycle. This

technology is used to improve the performance of deep learning in a variety of

applications, such as image recognition, digital recognition, speech recognition, object

classification and data analysis of computational biology (Gal & Ghahramani, 2016).

Dropout is widely used in the field of DNNs, which directly shows the superiority of

this technology in improving the accuracy of verification results. But the drawbacks of

Dropout are also noteworthy, which greatly increases the time of data training and the

complexity of the nonlinear activation function (Maalei, Tagougui, & Kherallah, 2016).

27

However, both Dropout and Data Augmentation are effective methods to reduce

overfitting.

2.5 Activation and Loss Function

The main function of activation functions (Specht, 1990) is to provide the nonlinear

modelling capabilities of a neural network model. If there is no activation function in

neural network model, then, the model can only express linear mapping which achieves

the effect of single layer network. Therefore, deep neural network only has a layered

nonlinear learning ability by adding the activation function. The loss function (Murata,

Yoshizawa, & Amari, 1994) is used to estimate the difference between the predicted

value and the ground truth in a neural model, which is a non-negative numerical

function. The loss function is the main approach to inspect the training results of deep

neural network model, the smaller loss function of this model is with a better robustness

(Quang, Chen, & Xie, 2014). The activation and loss functions are the core component

of deep neural network model; thus, choice of the suitable function is crucial for

constructing deep learning model.

 In the current deep learning model, the LeNet-5 (LeCun, Bottou, Bengio, & Haffner,

1998) used the Sigmoid and Softmax activation function (Marreiros, Daunizeau, Kiebel,

& Friston, 2008) with the loss function of MLE (Maximum Likelihood Estimation

criterion) (Wood, 2011); the AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) and

VGGNet (Lin & Yuan, 2016) apply the ReLu nonlinearity activation function (Jin, Xu,

Feng, Wei, Xiong, & Yan, 2016) with the cross entropy softmax loss function (DeBoer,

Kroese, Mannor, & Rubinstein, 2005), it is noteworthy that VGGNet (Lin & Yuan,

2016) can be regarded as an upgraded version of AlexNet (Krizhevsky, Sutskever, &

Hinton, 2012); the Inception (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, &

Rabinovich, 2015) utilizes the Sigmoid activation function (Marreiros, Daunizeau,

Kiebel, & Friston, 2008) with the cross entropy softmax loss function (DeBoer, Kroese,

Mannor, & Rubinstein, 2005); the ResNet (He, Zhang, Ren, & Sun, 2016) applies ReLu

activation function (Jin, Xu, Feng, Wei, Xiong, & Yan, 2016) with the loss function of

cross entropy softmax.

 The function of Sigmoid nonlinear activation function is 𝑎(𝑥) = 1/(1 + 𝑒−𝑥). Deep

learning model enters a parameter into the Sigmoid function, then compresses it into a

28

range of 0 to 1. In the Sigmoid function, the inactive parameter indicated as 0 and the

fully saturated of model indicated as 1. The Sigmoid has two disadvantages: 1) Sigmoid

saturation and kill gradients; 2) Sigmoid outputs are not zero-cantered (Rawlings,

Woodland, & Craford, 2006). In addition, the Tanh activation function is very similar

to Sigmoid, but it compresses the input parameter signal into a range of -1 to 1 (Wan,

Zeiler, Zhang, LeCun, & Fergus, 2013).

 The function of ReLu nonlinear activation function is 𝑓(𝑥) = max(0, 𝑥) . Deep

neural network model enters a parameter signal into the ReLu function; the output

equals to the input if greater than 0; and the output is equal to 0 if less than 0. The

advantages of the ReLu function are: 1) the convergence of this model is much faster

than the Sigmoid function; 2) the function will not be saturated; 3) the operation is less

than the Sigmoid function (Zhang & Woodland, 2016). But its drawback is also obvious

that ReLu is fragile in training time which easily leads to neuron necrosis.

 The loss function of cross entropy is indicated as 𝐶 = −
1

𝑛
∑ (𝑦𝑙𝑛𝑎 + (1 −𝑥

𝑦)ln (1 − 𝑎)), where C is the loss value, x stands for the input sample, y represents the

predicted value, a means the actual output signal of neuron which 𝑎 = 𝜎 (𝑧), n refers

to the total number of samples. The cross-entropy function (Maas, Hannun, & Ng, 2013)

applies classification approach to the computation of loss values, if the output of

Softmax function (Kivinen & Warmuth, 1998) on the verge of 1, then it is

corresponding to correct class label 1 which indicates 𝑦 = 1; otherwise, the output

value of Softmax function on the verge of 0, then it is corresponding to incorrect class

label 0 which indicates 𝑦 = 0. If the difference between the output signal parameters

of the Softmax function classifier, the loss function value is big. In addition, loss

function based on cross entropy is able to offset the shortcoming of saturation, thus,

Sigmoid activation function usually matches with the cross-entropy loss function

(Dunne & Campbell, 1997).

2.6 Multilayer Perceptron

Multilayer Perceptron (MLP) (Taud & Mas, 2018) can be interpreted as an artificial

neural network, which contains input layer, hidden layer, and output layer. The layers

are connected by using fully-connected layer in MLP, the simplest MLP can have only

29

one hidden layer. In CNNs model, an MLP consists of multiple fully-connected layers

with nonlinear activation functions (Lin, Chen, & Yan, 2013). It is noteworthy that

images input to the MLP layer in the CNNs model are an abstract one from convolution

layers which describes that this feature is invariant to variations of the same concept

after the feature extraction from convolution layers (Bengio, Courville, & Vincent,

2013).

 In MLP, the function is described (Perez, 2017), if the size of input vector is x, the

size of the output vector is f (x), bias vectors are b (1) and b (2), weight matrices are W (1)

and W (2), activation functions are G and s, then the matrix notation of MLP is

 𝑓(𝑥) = 𝐺(𝑏(2) + 𝑊(2)(𝑠(𝑏(1) + 𝑊(1)𝑥))). (2.2)

 The output vector of MLP is obtained as

 𝑜(𝑥) = 𝐺(𝑏(2) + 𝑊(2)ℎ(𝑥)) (2.3)

 In order to train the MLP layer, the DNN model needs to learn all the parameters,

and the set of parameters is {W (2), b (2), W (1), b (1)}. In addition, the output of MLP layer

also is the CNNs model results.

30

Chapter 3

Methodology

 The purpose of this chapter is to introduce the methodology

we used for our experiments that contributed to the final

outcomes. This includes data sources, data augmentation

methods, and model design. We will clearly explain the details

and process of the method.

31

3.1 Research Designing

Since the purpose of this thesis is to achieve face recognition, we listed the steps of face

recognition as shown in Figure 3.1. In this figure, we listed seven steps to show the

structure of this research.

Figure 3.1 The steps to achieve face recognition

In the flowchart of face recognition as shown in Figure 3.1, the first three steps are

used to prepare the data for training, the last four steps mainly refer to the workflow

inside the model. The combination of the two parts can achieve face recognition.

In our experiment, we chose to collect data sets through ourselves. Next, we will

mark the face location in the dataset and then put our original dataset into the data

augmentation program to increase the number of datasets. After the external data is

processed, the internal model of image processing will tackle the input images again.

The model uses the convolutional layer to extract features of the face, the feature

extraction results is input to the fully connected layer through the Dropout process to

perform face classification and localization.

32

3.1.1 Data Sources and Data Collection

The core issue of this thesis is the use of deep learning to detect and recognize faces.

The primary problem of deep learning is how to train data, so we need to prepare

training data and mark the location and classification of faces in each image. Because

it is difficult to find public datasets that meet our requirements, so we choose to collect

data by ourselves.

 Since we mainly investigate the influence of face proportion on confidence and

accuracy, a proportion of face images is the data we need to collect. That is, we need to

collect faces of different sizes as datasets. Of course, the data collected using different

devices will have different resolutions, and if the pixels of the collected face images are

clearer, the recognition precision will also be increased. Therefore, the performance of

the identification is closely related to the quality of the dataset. It is worth mentioning

that this thesis uses the rear camera of Apple iPhone 7 plus which has 12 million pixels

as a device for collecting data. We can't deny that if we use better pixels and resolution

devices to collect datasets, we will get better recognition results.

 There are five categories in the data set we collected. Table 3.1 indicates that we have

five participants in the experiment. Because in this thesis we collected the data by

ourselves, there are five classes we collected, each class represents one category.

Table 3.1 Classes in our experiment

Classes Names

1 Person No.1

2 Person No.2

3 Person No.3

4 Person No.4

5 Person No.5

 The data we collected is shown in Figure 3.2. We collected face data by taking a

video of each person and store each video in a folder with their own names. In order to

get a better training effect, we should pay attention to the following points when

collecting datasets:

33

• The picture is clear, and the movement is small, avoiding the dynamic blurring

of the image.

• Various positions of a person’s face in an image, people can walk a few steps.

• Faces are big enough in size and need to have images taken at different distances.

• Faces are big enough in forms, which means, taking under different expressions

and actions.

Figure 3.2 Data collection by taking a video

 After the video was collected, we used a tool to acquire frames in the video. Each

video took an average of 120 images. Because we used five people in our dataset, we

have a total of 600 images. The 600 images will be automatically saved in the folder.

In order to ensure quality of the dataset, we select 100 individuals from 120 images,

among which 100 images are selected for each person for 500 images in total.

3.1.2 Face Labelling

After collecting the original data, we need to label face position on the collected images.

Face detection is a branch task of object detection, a rectangular bounding box is

generally used to mark the position of a human face in the traditional method. However,

the human face can be approximated as an ellipse. Using the ellipse mark not only can

accurately confirm the position of the human face, but also can recognize that the

human face rotates in the image. The ellipse labelling method of bounding box has been

applied to traffic-sign recognition and the medical application of vessel detection,

which has achieved high precision and practical application effect.

 For the traffic-sign detection, previous research adopts the ellipse labels bounding

box with circle signs, and label arbitrary “vertices” along the bounding box of the

ellipse label (Zhu, Liang, Zhang, Huang, Li, & Hu, 2016). For the medical application,

Smistad and Løvstakken proposed utilize the ellipse labels method for vessel detection

34

in ultrasound images (Smistad & Løvstakken, 2016). The method of ellipse label is also

suitable for the face recognition filed based on the shape of the human face, thus we

adopted the bounding box of ellipse label.

 We use a tool to mark ellipse shapes based on human faces. Our labelling procedure

is shown in Figure 3.3. When we label face, we need to specify the positions of three

points, which are the two endpoints of the major axis of the ellipse and one endpoint of

the minor axis. We see from Figure 3.3, using a rectangular mark will not reflect the tilt

angle of a human face.

Figure 3.3 Labelling the face position

 After we label the face location, these labelled files are automatically deposited to a

folder and archived in text format. As shown in Figure 3.4, these are our marked files.

35

Figure 3.4 Marked files saved in text format

 Figure 3.5 shows the contents of the labelled file, which contains the category name

of objects, and the coordinates of the labelled face. Among them, xc, yc represent the

centre point of the ellipse, a is the semi-major axis of the ellipse, b is the semi-minor

axis of the ellipse, and t refers to the rotation angle.

Figure 3.5 Contents of the labelled files

 However, elliptical markers will bring new difficulties in data augmentation. We will

address and solve these problems below in this thesis.

36

3.1.3 Data Augmentation

After marking the data set, we got 500 original images which have been labelled.

However, this number is not enough for training, if the number of our data set is very

small, the model training will be inadequate, which will affect the final accuracy of the

model. In order to make the training dataset fully trained, we tried a method to improve

the data and increase the amount of data.

Scale to the
same size

Random flip Random rotate

Random crop
Scale to the
same size

Random color
adjustment

Figure 3.6 Flowchart of data augmentation

 Figure 3.6 above shows the flowchart of data augmentation. Then, we will introduce

the details of each step one by one.

• For the collected data, there will inevitably be different sizes. The format of the

video input is generally different, such as Full HD (19201080), HD

(1280720), qHD (960540), and nHD (640360). The first thing we need to

commitment is to cut the collected data into uniform sizes. Due to computer

hardware limitations, we chose nHD (640360) as the input size of the DNNs.

• Due to our camera that might be reversal during the time of data collection, the

image will also appear inconsistent. In order to ensure the recognition accuracy,

we randomly flipped the images involved in the training to improve the

accuracy of verification and enabled it to recognize a variety of situations.

• We use the ellipse shape to label people’s faces so that the faces can be

recognized when the face is tilted. Since the images are randomly selected

frames from the video, the non-tilted human face occupies the main part of that

dataset. For example, if there is an image from one of the 100 images, the face

is labelled. Even if the model does not consider the labelled faces, the precision

can reach 99%. This will not predict the tilted faces very well. So, we need to

increase the number of tilted faces.

37

• Next, we will perform randomly cropping the image. The purpose is to let a face

occupy various positions in the image to enhance the size and position of the

face. After cropped, the position of the face and its ratio to the picture have been

changed.

• After cropping, we need to scale the cropped image down to our desired size so

that it can be used as training data.

• Considering that different cameras will have different colour when shooting, in

order to simulate the colour difference, we convert the RGB colour to the HSV

colour space and randomly adjust the saturation (S) and value (V) component.

 In the steps listed, we take the colour conversion into consideration, but in image

processing, we also need to alter the position of the bounding box because we are using

the elliptical bounding box. The focus of this problem is on how to calculate the

corresponding parameters of the ellipse after the transformation. Then, we will

introduce the calculation of this ellipse transformation.

 Equation (3.1) is used for the ellipse of the major axis on the x-axis

𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 (𝑎 ≥ 𝑏), (3.1)

where a is the semi-major axis of the ellipse and b is the semi-minor axis of the ellipse.

When a=b, the ellipse becomes a circle. This elliptical parametric equation can be

written as

 {
𝑥 = 𝑎 cos 𝑡
𝑦 = 𝑏 sin 𝑡 , 𝑡 ∈ [0,2𝜋]. (3.2)

 Now we rotate the ellipse shown in equation (3.2), set the angle between the long

axis of the ellipse and the x-axis as 𝜙 ; then, the parameter equation can be written as

 (𝑥
𝑦

) = (cos 𝜙−sin 𝜙
sin 𝜙 cos 𝜙

) (𝑎 cos 𝑡
𝑏 sin 𝑡

). (3.3)

 Then, we shift centre of the ellipse to (𝑥𝑐 , 𝑦𝑐), and finally get the parameter equation

for the ellipse

 (𝑥
𝑦

) = (𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐
𝑦𝑐

). (3.4)

38

 Therefore, any ellipse can be uniquely determined by using these five parameters

𝐸 = [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 𝜙]. The difficulty of the problem lies in what values should be taken

for the corresponding five parameters after the original image is scaled, rotated, and

cropped.

3.1.3.1 Scaling Conversion

First, we perform the scaling conversion 𝑆(𝑠𝑥, 𝑠𝑦), if the transformation equation is

 (𝑥′
𝑦′

) = (𝑠𝑥 0
0 𝑠𝑦

) (𝑥
𝑦

), (3.5)

where (𝑥, 𝑦) is the original coordinates and (x′, y′) is the transformed. Then the

parametric equation of the scaled ellipse is

 (𝑥′

𝑦′) = (𝑠𝑥 0
0 𝑠𝑦

) ((𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐
𝑦𝑐

)) =

 (𝑠𝑥 0
0 𝑠𝑦

) (𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑠𝑥𝑥𝑐
𝑠𝑦𝑦𝑐

) . (3.6)

 As we see after the conversion

𝑥𝑐

′=𝑠𝑥𝑥𝑐

𝑦𝑐
′=𝑠𝑦𝑦𝑐

 . (3.7)

 However, the new 𝑎′, 𝑏′, 𝜙′ cannot be directly determined, which means that we

cannot find a group of 𝑎′, 𝑏′, 𝜙′, 𝑡′directly so that equation (3.8) establishes:

 (𝑠𝑥 0
0 𝑠𝑦

) (𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) = (𝑐𝑜𝑠 𝜙′−𝑠𝑖𝑛 𝜙′

𝑠𝑖𝑛 𝜙′ 𝑐𝑜𝑠 𝜙′
) (𝑎′ 𝑐𝑜𝑠(𝑡+𝑡′)

𝑏′ 𝑠𝑖𝑛(𝑡+𝑡′)
) (3.8)

However, we calculate the corresponding 𝑎′, 𝑏′, 𝜙′from the definition of long and

short axes. Let

𝑢=𝑠𝑥(𝑎 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝑡−𝑏 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝑡)

𝑣=𝑠𝑦(𝑎 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝑡+𝑏 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝑡)

𝑓(𝑡)=𝑢2+𝑣2

 , (3.9)

39

 Calculate

𝑓(𝑡𝑎)=𝑚𝑎𝑥 𝑓(𝑡)

𝑓(𝑡𝑏)=𝑚𝑖𝑛 𝑓(𝑡)
. (3.10)

 Then, we get

 𝑎′ = √𝑓(𝑡𝑎), 𝑏′ = √𝑓(𝑡𝑏), 𝜙′ = 𝑡𝑎. (3.11)

 Although theoretical calculations of 𝑡𝑎, 𝑡𝑏are more complex, numerical calculations

are very simple. We use the numerical method to calculate 𝑡𝑎and 𝑡𝑏.

 In summary, scaling 𝑆(𝑠𝑥, 𝑠𝑦) for the ellipse 𝐸 = [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 𝜙] can get a new

ellipse

 𝐸′ = [𝑠𝑥𝑥𝑐 , 𝑠𝑦𝑦𝑐 , √𝑓(𝑡𝑎), √𝑓(𝑡𝑏), 𝑡𝑎]. (3.12)

3.1.3.2 Rotation Conversion

After scaling conversion, we consider the rotation conversion 𝑅(𝜃, 𝑤, ℎ). Because the

rotation of this image is on the centre of the image to rotated, our ellipse is the origin

of the upper-left corner of the image, the x axis is the width direction, and the y axis is

the height direction. Therefore, the result of the rotation is not only related to rotation

angle 𝜃 , it is but also related to the size of the image [ℎ, 𝑤].

 Rotating the centre of image 𝐶 = (𝑤 2⁄ , ℎ 2⁄) by 𝜃 degree, as a transformation of the

ellipse from the 𝑥𝑂𝑦 coordinate system to the 𝑥′𝐶𝑦′ coordinate system, we rotate the

new origin by 𝜃 degree, and converse back to the 𝑥𝑂𝑦 coordinate. Therefore, the

transformed ellipse is shown in equation (3.13)

(𝑥′
𝑦′

) = (𝑐𝑜𝑠 𝜃−𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

) ((𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐−𝑤 2⁄

𝑦𝑐−ℎ 2⁄
)) + (𝑤 2⁄

ℎ/2
) =

 (𝑐𝑜𝑠(𝜙+𝜃)−𝑠𝑖𝑛(𝜙+𝜃)
𝑠𝑖𝑛(𝜙+𝜃) 𝑐𝑜𝑠(𝜙+𝜃)

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑐𝑜𝑠 𝜃−𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

) (𝑥𝑐−𝑤 2⁄

𝑦𝑐−ℎ 2⁄
) + (𝑤 2⁄

ℎ 2⁄) . (3.13)

 Then, we see

40

𝑎′=𝑎,𝑏′=𝑏,𝜙′=𝜙+𝜃

(𝑥𝑐′
𝑦𝑐′)=(𝑐𝑜𝑠 𝜃−𝑠𝑖𝑛 𝜃

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃)(
𝑥𝑐−𝑤 2⁄
𝑦𝑐−ℎ 2⁄

)+(
𝑤 2⁄
ℎ 2⁄)

. (3.14)

3.1.3.3 Cropping and Flipping

Compared to the scaling and rotation transformations, the calculation of ellipse

parameters under cropping and flipping changes is relatively simple.

 Suppose the cropped image centred on (𝑥0, 𝑦0) and its size is [ℎ′, 𝑤′] , then the

transformed ellipse is

 𝐸′ = [𝑥𝑐 − 𝑥0, 𝑦𝑐 − 𝑦0, 𝑎, 𝑏, 𝜙]. (3.15)

 The left and right flips are about 𝑥 = 𝑤 2⁄ for axisymmetric transformation, so the

transformed ellipse is

 𝐸′ = [𝑤 − 𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 𝜋 − 𝜙]. (3.16)

3.1.3.4 Summary

After solving the problems above, we achieve data augmentation. Because our original

training dataset has 500 images, there are 100 images for each of the five classes. After

we have augmented the data, it will generate 50 different samples for the same original

samples. Among them, 40 augmentation samples are generated for training, and 10

augmentation samples are produced for verification. So, in our training dataset, our

training set contains 20,000 samples for training and 5000 samples for verification. This

increases the number of training sets, includes various aspects of the face in the image;

it can fully identify faces in various situations. The effect of the data augmentation is

shown in Figure 3.7. We get multiple samples with different angles, different sizes, and

different positions using one of our samples.

41

Figure 3.7 Schematic diagram of data augmentation

3.2 The Principle of CNNs

The principle of CNNs in our model is shown in Figure 3.8, which can be divided into

convolution layer, pooling layer, and fully connected MLP. The convolution layer

convolves the image into different feature maps according to the number of convolution

kernels to achieve the purpose of feature extraction. We used 5×5 and 3×3 convolution

kernels in the convolution layers, and each convolution layer follows a pooling layer in

common CNNs model to reduce neuron parameters. The fully connected layer is the

output layer of the CNNs, which adopts the cross entropy as the neurons output function

42

of classification and utilizes the smooth L1 as the neurons output function of

localization. In addition, we deploy the Dropout operation in the fully-connected layer

to reduce the overfitting of model training.

Figure 3.8 The working principle of CNNs

The principle of the feature extraction process is shown in Figure 3.9. When the

original image input to the CNNs model, which convolve the images into different

feature maps through the 3×3 and 5×5 convolution kernels. It adopts the activation

function of Leaky_ReLU to activate the CNNs model and utilizes the 2×2 pooling layer

with stride of 2 to reduce the neuron parameters. The activation function converts the

linear function of images into a neuron parameter of nonlinear complex function so as

to improve the expression ability of the neural network model. The purpose of the

pooling layers is to reduce neuron parameters, which are applied in the most of

convolutional neural networks.

Figure 3.9 The working principle of feature extraction of CNNs

 In summary, the types of neurons are the neurons output function and the neurons

activation function; the model connections by convolution kernels, neurons activation

function, pooling, dropout, and neurons output function; the learning rule of CNNs can

be divided into feature extraction and prediction, which convolution layer and pooling

layer are responsible for feature extraction, fully-connected MLP is responsible for

prediction.

43

3.3 Model Design of DNNs

Face recognition is a kind of object recognition, we refer to the existing models to

design DNNs models. This thesis refers to the SSD architecture for model design. SSD

is a network structure that can classify and locate objects in one step. This network

architecture is particularly suitable for our research topics, because at different

distances, the effect we pursue is to locate and recognize human faces at the same time.

This network structure is mainly divided into the following steps:

• First, we need to input the image.

• Second, the input image is extracted through the CNNs structure for feature

extraction.

• Finally, for CNNs input, the model uses two MLP structures to achieve object

classification and localization.

 Therefore, our model training structure can be shown in Figure 3.10.

Figure 3.10 Model training structure

44

 Each step in the model training overview diagram above is a part of the model

training including the input processing layer and the convolutional layer, where the

input processing layer refers to the processing of the image by the system, the

convolutional network layer refers to the use of convolutional layers for feature

extraction of human faces. The detailed workflow of the convolution layer is described

on details. After feature extraction, we use dropout operation to prevent overfitting. In

this process, some neural nodes are randomly deleted. Afterwards, a fully connected

layer is used to implement the location and classification of human faces. Ultimately,

face position prediction and recognition can be achieved.

 Next, we will mainly discuss the details of the model and the internal parameters of

the convolutional layer. We see that the model design structure from Figure 3.11.

Input
[N,360,640,3]

Conv:5x5
Pool:2x2

[N,180,320,16]

Conv:3x3
Pool:2x2

[N,90,160,32]

Conv:3x3
Pool:2x2

[N,45,80,64]

Conv:3x3
Pool:2x2

[N,23,40,256]

Conv:3x3
Pool:2x2

[N,12,20,256]

Conv:3x3
Pool:2x2

[N,6,10,512]

Flatten+Dropout
[N,30720]

FC
 [N,512]

FC
[N,2048]

Classify
[N,nClass]

Location
[N,5]

Figure 3.11 Model design structure

 In the process of designing the model, we have referenced many models, combined

with the complexity of our tasks and our goals as well as the limitations of our operating

equipment. We have designed the DNNs network structure shown in Figure 3.11. We

have found that such a network structure can well realize the location and recognition

of human faces. Then, we will discuss the framework and operate principles of this

model.

45

 First, when the DNNs model is used to train the input image, it is not an image

followed by an image for training, but training N images in one step. This N can be set

as batch size. We see that at the very beginning of this model, we need to input the

images, the dimensions of the model parameters are 4D, namely, N, 360, 640, 3. Among

them, 360640 is the size of these images, 3 is the number of channels of the image,

because the general image is an RGB 3-channel image.

 In the following several convolutional layers of the model, we also see that the

dimension represents the feature that has heights H and width W, channel number is C.

Then, we set up six convolutional layers in our model. In these six convolutional layers,

we set up a 55 large convolution kernel in the first convolutional layer to capture a

wide range of image information and set a 33 small convolution kernel at the next five

convolutional layers, which is used to capture a small range of image information. In

each of the six convolutional layers, a 22 maximum pooling layer is set for each

convolutional layer. The maximum pooling operation means that for each 22 small

mesh, the maximum value is taken as the output, and the output also reduces the size

of the special name at the same time.

 After feature extraction of six convolutional layers, we expand the features of each

sample into a vector and convert the features into a matrix. While expanding the vector,

we add dropout operation into it. The dropout operation indicates that at the time of

output, the values of some nodes are randomly deleted. If we use the dropout before

fully-connected layers, we can effectively prevent overfitting.

 Then, we constructed two dual-layer MLPs to implement object classification and

location. The dimension of the output of the classified MLP is [N, nClass], where

nClass represents the number of categories. In our experiment, nClass=5. Each row of

the output results represents a classification vector

 𝑝 = [𝑝1, ⋯ , 𝑝𝑛𝐶𝑙𝑎𝑠𝑠], (3.17)

where 𝑝𝑘 represents the probability of the k-th classification of the input of this sample.

Used to measure the gap between the predicted classification and the actual

classification of the sample, cross entropy is generally used as a loss function. Suppose

that the actual classification of the sample is 𝑗, then the predicted classification vector

of the sample is

46

 𝑞 = [𝑞1, ⋯ , 𝑞𝑛𝐶𝑙𝑎𝑠𝑠]. (3.18)

 It satisfies that

 𝑞𝑘 = {
1 𝑘 = 𝑗
0 𝑘 ≠ 𝑗

 . (3.19)

 The loss function of classification model is

 𝐿𝑐𝑙𝑠 = − ∑ 𝑞𝑘 𝑙𝑜𝑔 𝑝𝑘
𝑛𝐶𝑙𝑎𝑠𝑠
𝑘=1 . (3.20)

 Since the feature vector of the output of the location MLP is [N, 5], each row of the

output result represents the code of an ellipse shape. Let 𝐸̂ be the ellipse position

predicted by the model, 𝐸 be the actual ellipse position of the sample, then the location

loss function of model is

 𝐿𝑙𝑜𝑐 = ∑ 𝑓(𝐸̂𝑘 − 𝐸𝑘).5
𝑘=1 (3.21)

 We are calculating norms of vector 𝐸̂𝑘 − 𝐸𝑘 . When 𝑓(𝑥) = |𝑥|, this is a 1-norm,

when 𝑓(𝑥) = 𝑥2, this is a 2-norm. The 1-norm is not prone to gradient explosions, but

the derivative is not continuous; the 2-norm is prone to gradient explosions, but the

derivatives are continuous. After considering the two points above, we choose the

smooth 1-norm as 𝑓, then

 𝑓(𝑥) = {
|𝑥| − 0.5 𝑥 < 1

0.5𝑥2 𝑥 ≥ 1
 . (3.22)

 It is worth mentioning that we chose Leaky ReLu as the activation function of the

model, where

 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑥 ≥ 0
0.1𝑥 𝑥 < 0

. (3.23)

 In the previous section, we used 𝐸 = [𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 𝜙] as the ellipse code to analyse

the new parameters of the ellipse after data augmentation. In actual training, we do not

use this code directly, because the size of each component of the code has a different

47

effect on the position of the ellipse. Thus, we designed two codes for training. The first

code is

 𝐸1 = [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 180𝜙 𝜋⁄] . (3.24)

 The only difference between this encoding and the original encoding is that we

change the angle of ellipse from radian to angle. Because we believe that the effect of

shifting the position of the ellipse by 1 pixel and the angular deviation of the ellipse by

1 degree is approximate. The deviation of 1 radians (approximately 57.3º) is a large

deviation.

 The second code is

 𝐸2 = [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏], (3.25)

where (𝑥1, 𝑦1)(𝑥2, 𝑦2) is the two endpoints of the long axis and 𝑏 is the length of the

minor axis. This can also uniquely identify an ellipse. Conversion from the original

code 𝐸 to 𝐸2 can be used as

𝑥1=𝑥𝑐−𝑎 𝑐𝑜𝑠 𝜙
𝑦1=𝑦𝑐−𝑎 𝑠𝑖𝑛 𝜙
𝑥2=𝑥𝑐+𝑎 𝑐𝑜𝑠 𝜙
𝑦2=𝑦𝑐+𝑎 𝑠𝑖𝑛 𝜙

𝑏=𝑏

 . (3.26)

 The conversion from code 𝐸2 to original code 𝐸 can be used

𝑥𝑐=
𝑥1+𝑥2

2

𝑦𝑐=
𝑦1+𝑦2

2

𝜙=𝑎𝑟𝑐 𝑡𝑎𝑛
𝑦2−𝑦1
𝑥2−𝑥1

𝑎=
1

2
√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2

𝑏=𝑏

 . (3.27)

 Compared to the first encoding, the theoretical advantage of the second encoding is

that each component of the encoding is based on pixels, but for the first encoding, first

4 classifications are in pixels units and the fifth components are in angle units.

Therefore, the components of this coding are more uniform.

48

 Finally, the loss function of the model training is

 𝐿 = 𝐿𝑐𝑙𝑠 + 𝑤𝐿𝑙𝑜𝑐. (3.28)

where 𝑤 is the weight of the location, we will try to take 𝑤 ∈ {1,10} during our training.

The process of DNNs model training is to use the training data and minimize the loss

function.

 In addition, in order to measure the accuracy of this model, we also need to establish

criteria to determine the correct prediction results. In the general object detection task,

determining a prediction results requires: (1) the classification result is correct; (2) IoU

of the prediction bounding box and the real bounding box is greater than 0.5.

 Because the traditional bounding box is a rectangle oriented to the axis, it is relatively

easy to calculate the IoU value. Let the model predicting the bounding box be 𝐴 =

[𝑥1, 𝑥2, 𝑦1, 𝑦2] and the real bounding box be 𝐵 = [𝑥3, 𝑥4, 𝑦3, 𝑦4], then

 𝐼𝑜𝑈(𝐴, 𝐵) =
𝑆𝐴∩𝐵

𝑆𝐴∪𝐵
=

𝑆𝐴∩𝐵

𝑆𝐴+𝑆𝐵−𝑆𝐴∩𝐵
 , (3.29)

where 𝑆𝐴∩𝐵 denotes the area of the intersection of A and B, 𝑆𝐴∪𝐵 denotes the area of

the union set of A and B. For the case of a rectangle

𝑆𝐴=(𝑥2−𝑥1)(𝑦2−𝑦1)

𝑆𝐵=(𝑥4−𝑥3)(𝑦4−𝑦3)

𝑆𝐴∩𝐵=𝑚𝑎𝑥(0,𝑚𝑖𝑛(𝑥2,𝑥4)−𝑚𝑎𝑥(𝑥1,𝑥2)) 𝑚𝑎𝑥(0,𝑚𝑖𝑛(𝑦2,𝑦4)−𝑚𝑎𝑥(𝑦1,𝑦3))

 (3.30)

 But for the ellipses 𝐴 = [𝑥𝑐1, 𝑦𝑐1, 𝑎1, 𝑏1, 𝜙1] and 𝐵 = [𝑥𝑐2, 𝑦𝑐2, 𝑎2, 𝑏2, 𝜙2], though

we can calculate

𝑆𝐴=𝜋𝑎1𝑏1
𝑆𝐵=𝜋𝑎2𝑏2

 . (3.31)

 However, it is very difficult for 𝑆𝐴∩𝐵. Therefore, we decided to calculate the IoU of

two ellipses using IoU of the ellipse's bounding rectangle. Then, we need to determine

the parameter representation of the rectangle of the ellipse 𝐸 = [𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 𝜙].

 Examining the parametric equation of the ellipse

49

 (𝑥
𝑦

) = (𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐
𝑦𝑐

). (3.32)

 We write it as

{
x = a cos ϕ cos t − b sin ϕ sin t + xc = √(a cos ϕ)2 + (b sin ϕ)2 sin (t − arc tan

a cos ϕ

b sin ϕ
) + xc

y = a sin ϕ cos t + b cos ϕ sin t + yc = √(a sin ϕ)2 + (b cos ϕ)2 sin (t + arc tan
a sin ϕ

b cos ϕ
) + yc

(3.33)

 Obviously, there is

𝑥𝑐−√(𝑎 𝑐𝑜𝑠 𝜙)2+(𝑏 𝑠𝑖𝑛 𝜙)2≤𝑥≤𝑥𝑐+√(𝑎 𝑐𝑜𝑠 𝜙)2+(𝑏 𝑠𝑖𝑛 𝜙)2

𝑦𝑐−√(𝑎 𝑠𝑖𝑛 𝜙)2+(𝑏 𝑐𝑜𝑠 𝜙)2≤𝑦≤𝑦𝑐+√(𝑎 𝑠𝑖𝑛 𝜙)2+(𝑏 𝑐𝑜𝑠 𝜙)2
 . (3.34)

 Therefore, we can get the bounding rectangle of ellipse is

 [𝑥𝑐 − 𝑤𝑐 , 𝑥𝑐 + 𝑤𝑐 , 𝑦𝑐 − ℎ𝑐 , 𝑦𝑐 + ℎ𝑐]. (3.35)

 Among them,

𝑤𝑐=√(𝑎 𝑐𝑜𝑠 𝜙)2+(𝑏 𝑠𝑖𝑛 𝜙)2

ℎ𝑐=√(𝑎 𝑠𝑖𝑛 𝜙)2+(𝑏 𝑐𝑜𝑠 𝜙)2
 . (3.36)

 After obtained the bounding rectangle of the ellipse, the IoU value of the ellipse can

be easily calculated according to the calculation method of the rectangle IoU.

50

Chapter 4

Results

 This chapter mainly shows the results of face recognition of

our experiments. The result of face recognition will also be

introduced on details. We will also list the comparative

evaluations of the four models. In the end, we will select the

model with the highest verification set as our final model.

51

4.1 Training Model

In our experiment, we mainly used three related software to achieve it, which are

MATLAB, Python and TensorFlow. The work we did with MATLAB are labelled

images and data augmentation, which mainly are used to data processing. It is also used

for data input and output, including feeding data into Python and accepting output data

from Python; the main work in this experiment is to use Python to implement it,

including model construction and training; TensorFlow provides an environmental

framework of deep learning; we transfer the model framework using TensorFlow.

 According to the model design above, we trained the two sets of codes 𝐸1 =

[𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 180𝜙 𝜋⁄] and 𝐸2 = [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏], taking weight 𝑤 ∈ {1,10}, and trained

a total of four different models.

 In our dataset, we have 20,000 training samples, we take a batch size 50, and train

75 epochs. In order to fully train the model, we set the number of training steps to

30,000 steps. Then, we used TensorFlow to implement the model and accelerate

training on the NVIDIA GTX 1070 graphics card, each model takes about 4 hours of

training, and the four models cost us about 16 hours.

 After training, we test results of the training, which means we use the test video to

visually reflect the effect. We put the test video in the specified folder, click on the

program to run, and the test results will be automatically saved to the program. We

found that each person’s face is located and classified. An example of this test is shown

in Figure 4.1.

Figure 4.1 The resultant example of the test video

52

 From the test results, we found that human face can be well positioned and classified

for multiple objects with various distances as well as different face angles, or external

conditions such as lighting. It can accurately find a human face and identify the identity

of the object. This achieves the purpose of using deep learning for human face detection

and recognition.

4.2 Comparison and Analysis of the Four Models

According to the above introduction, we set four models to compare each other. For the

same training samples, we compare the accuracy based on the training dataset and the

accuracy on the validation set. The training results for the four models are shown in

Table 4.1.

Table 4.1 Comparisons of training results of the four models

Models Bounding Boxes w Means Trainings Validations

I [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 180𝜙 𝜋⁄] 1 0.9736 0.9947 0.8890

II [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 180𝜙 𝜋⁄] 10 0.9714 0.9935 0.8832

III [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏] 1 0.9718 0.9907 0.8962

IV [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏] 10 0.9731 0.9910 0.9018

 Through comparing the four models, we see that accuracy of the four models on the

training dataset has reached more than 99%, which indicates that the four models have

been fully trained. However, there are some differences with regard to accuracy of the

validation set. Among them, assume the ellipse code is 𝐸, and the positioning weight

𝑤 = 10 of the model II has the lowest accuracy on the validation set, only 88.32%.

 Suppose the ellipse code is 𝐸2 , the positioning weight

𝑤 = 10 of the model IV has the highest accuracy on the validation set which can reach

90.18%. Thus, we use model IV with a higher accuracy as our final model.

 In order to better understand the training process and results of the four models, we

have the training curve as shown in Figure 4.2~4.5.

53

Figure 4.2 Training curve: box=1 and w=1

• Fig. 4.2 (a) represents the loss function of models based on training dataset and

the loss function based on the validation set, which mainly are used to observe

whether the model exists overfitting. When the loss function decreases on the

training set, the loss function does not increase on the validation set, but also

decreases, which indicates that this model does not have to be fitted.

• Fig. 4.2 (b) shows the changes in the accuracy of training dataset and validation

dataset. The accuracy of training set is mainly used to observe whether the

model has been fully trained. From Figure 4.2(b), we see that the training set is

accurate, the accuracy is almost 100%. This shows that this model has been fully

trained. Starting from Step 20,000, the accuracy based on the validation set is

also basically stable and reaches the rates more than 80%.

• Fig. 4.2 (c) is used to compare the loss function values of the localization and

classification on the training set, where the blue line represents the classification

loss function value and the red line represents the location loss function value.

From Fig. 4.2(c), we see that the decreasing amplitude of the classification loss

function is larger than the value of local loss function, which indicates that in

the process of training, positioning is more complex than classification; the

positioning is more difficult to be trained.

54

• Fig. 4.2(d) is used to compare the changes in the accuracy of location and

classification on the training set. In Fig4.2(d), the blue line increases faster than

that of the red line, and the accuracy of classification is also the first to be stable

and convergent. The accuracy of this model is affected by the correctness of

positioning after approximately 5000 steps.

 Next, we will introduce the training curve of box=1, w=10 as shown in the Figure

4.3.

Figure 4.3 Training curve: box=1 and w=10

• Same as Figure 4.2, Fig. 4.3(a) compares the loss function in the training set

and the validation set. The loss functions on the training set and validation set

are falling rapidly before 15,000 steps, and slow down after 15,000 steps, which

reflects that this model has not been fitted. After 20,000 steps, it slowly and

steadily shows that the accuracy of the model is basically stable.

• From Fig 4.3(b), we see that the blue curve represents the accuracy of the

training set, the red curve indicates the accuracy of the validation set, and the

accuracy on the training set is basically stable after 10,000 steps, nearly 100%,

this shows that the model is also fully trained, the accuracy on the validation set

fluctuates a little bit after 10,000 steps, and basically converges after 25,000

steps.

55

• Fig. 4.3(c) is the loss function for classification and location. Comparing with

the first model, the loss function of classification obviously decreases than that

of the location, which indicates that the classification is easier to be trained.

• Fig. 4.3(d) is the accuracy of comparative location and classification. From

approximately 2000 steps, the location accuracy is more than that of

classification. The accuracy of classification began to converge at about 5,000

steps, and the accuracy of location start converging at 10,000 steps.

 Subsequently, we will discuss the training results of the third model from Figure 4.4.

Figure 4.4 Training curve: box=2 and w=1

• In the comparison of the loss function of Fig. 4.4(a), there is no overfitting in

this model. The loss functions of training set and validation set converge

basically after 20,000 steps.

• Fig. 4.4(b) is the accuracy based on the training set and the validation set. The

training set converges approximately at 15,000 steps, while the validation set

tend to approximately at 25,000 steps. Although the loss function based on the

training set continues to be decreased, the accuracy of the training set no longer

increases in the subsequent training, and the accuracy of the validation set only

increases slightly.

56

• Fig. 4.4(c) compares the loss function values of classification and location, the

loss function of classification is still dipping faster than the loss function value

of the location, which indicates that the classification is still easy to be trained.

• Fig. 4.4(d) reflects the accuracy of classification and location, the accuracy of

the classification also increases faster than the accuracy of the location, and it

is more convergent.

 After that, the analysis results of the fourth model are shown in Figure 4.5. This

model is also the model we used because it has the highest accuracy among these four

models.

Figure 4.5 Training curve: box=2 and w=10

• In the fourth model, in the graph that explores the value of loss function, the

blue curve represents the value of loss function on the training set, we see that

when the blue curve is decreasing, the red curve does not increase, it also

steadily declines until convergence.

• Fig. 4.5(b) shows the accuracy based on training set and validation set. We see

that the accuracy on the training set converges around 11,000 steps, the training

model is fully trained, and the accuracy based on the validation set reaches more

than 80% around 10,000 steps. It is slow after 10,000 steps, the final accuracy

on validation set reaches about 90%.

57

• With regard to the loss function for classification and location, the classified

curve has a larger decrease than the localized curve; the loss function of the

localization has a small decrease, the location is difficult to be trained and can

hardly be affected.

• Similarly, we see that in the accuracy of classification and location, the

classification is less fluctuating than the location, the classification curve

converges at about 5,000 steps, and the location curve converges at about 10,000

steps; there is little difference between these two, but the location curve is still

more complicated than that of classification.

 It is worth noting that if we use original data to make graphs, the changes in the

graphs will not be very intuitively. Each point in the graph is the average of 20 data

points of the original data, so that we can better understand the relevant trends.

 Next, we will compare the accuracy based on the validation set for these four models.

Figure 4.6 shows that the trend of accuracy based on the validation set. In the plot, we

see the curves of the four models together so that we can better understand the trend of

the curves.

Figure 4.6 Accuracy comparisons of four models on the validation set

58

 In Figure 4.6, the blue curve represents the first model, the red line shows the second

model, the orange line indicates the third model, and the purple line is on behalf of the

fourth model. Before 6,000 steps, the accuracy of these four models rises rapidly, and

then slowly increases until their convergence after 6,000 steps. We easily know from

Figure 4.6, the convergence of the four models is basically the same during training,

and all models basically converge after 20,000 steps. After 20,000 steps, the strengths

and weaknesses of each model are determined. We see that the purple line has the

highest accuracy and the best effect. Therefore, we choose model IV as our final model.

4.3 Effect of Face Ratio on Accuracy

After the model training, we choose model IV as our final model. Our model can label

every frame of the input video, but the face is difficult to be recognized, because this

model has some drawbacks to recognize small objects. Our results are shown in Figure

4.7. Marked results can be divided into three parts:

• Use an ellipse shape to mark the face contour. We use ellipse markers, because

it not only reflects the position of human face but also reflects the angle of

human face. This will identify face patterns from multiple perspectives.

• The ellipse bounding box.

• The classification of human faces and the possibility of faces belongs to this

category. For example: “Person No.5: 1.00” indicates that the probability of this

person's face is 100%.

Figure 4.7 Recognition results

59

 Of course, we will get different sizes of a face at different distances. As shown in

Figure 4.8, when a person moves closer to the camera, the system will detect the human

face with different sizes in different distance. The size of this face in the image is also

an important factor that affects the recognition effect:

• If the face is large, there are few samples, the model can obtain more abundant

face information. It will be easier to locate and classify the face and obtain better

accuracy.

• If the face is small, the number of samples is large, there are a lot of interferences,

the face information is relatively vague and results in that the model cannot

detect the face accurately, thus it reduces the accuracy.

Figure 4.8 Face with different sizes

 Because the purpose of this thesis is to investigate face detection and recognition

based on the accuracy, the size of human face can be measured by using proportion of

the face to the total size of the image. Let the width and height of the image be 𝑤, ℎ,

respectively, the ellipse shape of a face is denoted as {𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 𝜙}, then the area of

the bounding box of the human face is

 𝑆𝐹 = 4√(𝑎 𝑐𝑜𝑠 𝜙)2 + (𝑏 𝑠𝑖𝑛 𝜙)2√(𝑎 𝑠𝑖𝑛 𝜙)2 + (𝑏 𝑐𝑜𝑠 𝜙)2. （4.1）

 Thus, the area ratio of the face in the image can be obtained by using

60

 𝐴 =
4

𝑤ℎ
√(𝑎 𝑐𝑜𝑠 𝜙)2 + (𝑏 𝑠𝑖𝑛 𝜙)2√(𝑎 𝑠𝑖𝑛 𝜙)2 + (𝑏 𝑐𝑜𝑠 𝜙)2 . （4.2）

 Obviously, if A is larger, which indicates a larger face in the image, people are closer

to the camera; otherwise, if A is smaller, which reveals a smaller face is detected in the

image, that represents that human face is far from the camera.

 In order to better understand the influence of proportion of a human face on the

accuracy, we will calculate the recognition accuracy and IoU value for different sizes

of faces.

Figure 4.9 The relationship between accuracy and facial proportion

 Among them, IoU value can more accurately reflect the accuracy of the recognition

because we set the IoU > 0.5 is the correct recognition results, but if the IoU value tends

to 1.0, then the bounding box of the face is close to the actual results.

 In Figure 4.9, the histograms in Fig. 4.9 represent the proportion of a face having

different sizes in the samples. The green line represents the changes in accuracy,

meanwhile, the blue line stands for the change in IoU. The y-axis scaling on the left

corresponds to the accuracy and the IoU value, the y-axis scaling on the right

corresponds to the proportion of the sample.

61

 From the histogram, we see that if the proportion of a human face is small, the

number of samples is large; if the ratio of faces increases, the number of samples

gradually decrease. At the same time, both the accuracy and the IoU value are

increasing first and then decrease. This is because: (1) if the face occupies a large

proportion area of the image, it is easily to be recognized and the accuracy is high; (2)

the proportion of the face area to the image is large, the number of samples is less, and

the insufficient training of the model for this sample. Therefore, we see that the values

of accuracy and IoU have been changed around the ratio of 0.4, which begins to decline,

because there are few samples, the statistical results fluctuate greatly.

 In addition to the influence of face proportions, we also analysed the influence of

face angles based on accuracy and IoU. We got the results as shown in Figure 4.10.

Figure 4.10 The relationship between accuracy and facial angle

 We see from Figure 4.10, if the angle of a human face is closer to 90º, the accuracy

and IoU value are higher. This is the reason why the number of samples at 90 º is the

biggest one. When the face angle is about 20 º and 160 º, both the values of accuracy

62

and IoU are mutated, it is also because there are few samples in these two angles; the

accuracy is unstable, and the statistical results fluctuate very much.

 To sum up, we conclude:

• The recognition accuracy of this model is mainly affected by the proportion of

the face and the number of samples. If the face ratio is large, the recognition

accuracy will be higher; if the number of samples is large, the recognition

accuracy will be higher.

• Our model has the highest accuracy for face recognition with a medium-sized

face and a small angle of inclination, the accuracy becomes lower when the

inclination angle becomes larger.

4.4 Classification Results

Classification is also an important part of face recognition because it directly affects

the final results. In order to verify the classification results, we use the test video for

verification. In this thesis, we have five participants. They are: Person No.1, Person

No.2, Person No.3, Person No.4, and Person No.5. Our expectation is that when a

person walks in front of the camera, the system will automatically detect the object

within a certain distance. Of course, beyond a range, the computer can hardly recognize

small faces. We list the example of recognition results in Figure 4.11.

63

Figure 4.11 Results of face recognition and classification

 From Figure 4.11, we show the classification results of Person No.5. The first two

images represent the recognition results within the range, and the other two images are

the resulting images beyond the identification range because the small object is very

difficult to be identified. We also revealed that face proportion plays an important role

in recognition, the proportion of faces in the image is small so that it is difficult to be

identified. Of course, we also found that in our test video, beyond 4 meters, the face

will not be detected.

4.5 Limitations of the Research

Although the model introduced in this thesis has been successfully applied to face

recognition, but the face recognition based on deep learning still has some limitations.

We will introduce the parts that need improvement below:

(1) Because the model of deep learning is very flexible; with a large number of

architectures and node types, training a large neural network is time-consuming and

requires high computer hardware; hence, low budget and low cost are difficult to

achieve.

(2) The outcome of deep learning is based on strict conditions because it requires

support from a large amount of data. These data are the criteria for successful model

training. This thesis uses data augmentation to enhance the data set; otherwise, the

model is difficult to be fully trained.

64

(3) There are only five participants in this thesis. In future, we will consider more people

to participate in this project.

65

Chapter 5

Analysis and Discussions

 In the previous chapter, the experimental results have been

presented, but there is no excessive analysis and comparisons.

In this chapter, we will focus on analysing the results of

experiments and comparing the effects and accuracy of

different models. Finally, we will explain the reasons for using

this model and the contributions we made in this thesis.

66

5.1 Analysis

We detailed the direct results of face recognition in the last chapter. In this chapter, we

will analyse the accuracy between the different models. At the same time, this chapter

explained another model: SSD Inception (v2) we used. Although the results of this

model have room to improve them better, the outcomes reflect the availability of our

model framework.

5.1.1 SSD Inception (v2) Model

In Chapter 4, our network model and its experimental results were depicted in detail,

while we also utilize other CNNs models based on SSD meta-architecture to compare

with the model we introduced before. The SSD Inception (v2), as a combined CNNs

network model, was used to face recognition by using the same training dataset in this

project. The SSD Inception (v2) uses Inception v2 as the basic architecture of the CNNs

model and applies the method of SSD meta-architecture to improve the Inception (v2)

network model; our purpose is to achieve the better results of object recognition. The

flowchart of SSD Inception (v2) is shown in Figure 5.1, which demonstrates the

processing steps of face recognition based on SSD Inception (v2) model, including

images labelling, random crop and reshape image, feature extraction, predict location,

and classify prediction; then, we can achieve face recognition.

Figure 5.1 Flowchart of SSD Inception (v2) model

67

 The SSD Inception (v2) model is a large CNNs model with 282 layers of convolution

layers, the model distribution is shown in Table 5.1. This model is able to be divided

into three main parts: image processing, feature extraction, and box predictor. The part

of image process is from the 1st convolution layer to the 26th convolution layer, which

achieves the effects of data augmentation through adjusting image parameters. The part

of feature extraction is from the 27th convolution layer to 258th convolution layer, which

extracts the abstract features of images from a deep hidden layer to simulate visual

nervous system. The part of box predictor layer is from the 259th convolution layer to

282nd convolution layer, which utilizes the SSD meta-architecture to improve the

predict accuracy and frame per second (FPS) of predict results.

Table 5.1 The distribution of SSD Inception (v2)

 Image processing Feature

extraction

Classification

and Localization

Layer 1st to 26th layer 27th to 258th

layer

259th to 282nd

layer

Action Data augmentation/

adjusting image

parameters

Use the base

Inception_v2

network

Use SSD method

for end-to-end

object detection

and recognition

 The architecture of SSD Inception (v2) is shown in Figure 5.2, which indicates the

relationship between image process, feature extraction, and meta-architecture. In the

part of image process, the 1st convolution layer to 6th convolution layer execute the

action of random crop image, which deal with the shape of objects in images; the 7th

convolution layer to 26th convolution layer are responsible for re-adjusting the number

of rows, columns, and dimensions of images matrix, which is the processing of reshape.

Thus, the part of image processing section mainly performs data augmentation and

image adjustment. In the part of feature extraction, it utilizes basic network of Inception

(v2) for feature extraction, which involves 231 convolution layers; in the part of box

predictor, it applies the method of SSD meta-architecture, which utilizes six different

feature layers in the end of the base network of Inception (v2) to predict the location of

box. Each box predictor includes four convolution layers, which two convolution layers

68

are used to implement object classification and two convolution layers are employed to

execute object localization.

Figure 5.2 Architecture of SSD Inception (v2)

 In the model SSD Inception (v2), it costs approximately 82% time in the part of base

network for feature extraction and spent about 8% time in the part of SSD meta-

architecture for object classification and localization, around 10% time was spent in the

part of image processing. The SSD Inception (v2) including the data augmentation

section, is difficult to utilize external data augmentation based on the integrity and

complexity of its model. In the actual operation of face recognition, its huge network

model will also cause overfitting problem, it is also a disadvantage of this model.

Therefore, a relatively simple CNNs model might have better accuracy in single object

detection.

5.1.2 Simplified SSD model

The simplified SSD network is an end-to-end object detection and recognition model

based on the method of SSD meta-architecture, the architecture of the simplified SSD

69

network model is shown in Figure 5.3. It includes six convolution layers, two fully

connected layers, and we dropout optimization between convolution layers and fully

connected layers. The convolution layers involving 55 convolution kernel and 33

convolution kernel to capture the wide and small range of the image information; the

1st convolution layer utilizes 55 convolution kernel and 2nd to 6th convolution layers

adopt 33 convolution kernel. For two fully-connected layers, one of the fully

connected layers carries out the prediction of location of bounding box; another fully

connected layer executes the classified prediction. We introduced the network model

in detail.

Figure 5.3 Architecture of simplified SSD network model

70

This model is simpler than SSD Inception (v2), the overfitting is relatively easy to

prevent. We adopted the dropout method in the end of convolution layers to optimize

the output results in fully-connected layers. Therefore, this network model can

effectively avoid overfitting under the sufficient samples of the training dataset. We

utilized the external data augmentation method based on the low complexity of this

model. We have labelled 500 facial images and each image generates 50 images by

scaling to the same size, random flip, random rotate, random crop, scale to the same

size, and random color adjustment. Finally, we used 20,000 images to training. The best

accuracy of four different models is more than 90%, which proves the correctness of

our inference.

5.1.3 Comparisons

5.1.3.1 Comparisons of Architecture

We described the SSD Inception (v2) model and Simplified SSD model in this Chapter.

We are going to compare these two models with each other in this section. The

comparison is shown in Table 5.2. The SSD Inception (v2) has internal data

augmentation in network model, while its difficulty is to use external software for data

augmentation, which limits the amount of supervised training dataset; the simplified

SSD network model has not internal data augmentation and its facility to adopt external

software for data augmentation. At this point, the SSD Inception (v2) model

outperforms Simplified SSD network model based on its internal image process, while

higher operation leads to overfitting. Therefore, it is difficult to exert on its performance

if there is no sufficient amount of training dataset. In additional, the SSD Inception (v2)

utilizes the base inception (v2) network for feature extraction, while the Simplified SSD

model adopts the six-convolution layer network by using TensorFlow.

 Thus, the SSD Inception (v2) model is more difficult to be optimized for overfitting

issue based on its large amount of feature extraction layers, while the Simplified SSD

network model is able to be outstanding avoid the overfitting issue. The SSD Inception

(v2) model adopts the fully convolutional layer for object classification and localization

by using six different size of feature map, while the Simplified SSD network model

71

utilizes two fully connected layers; the SSD Inception (v2) adopted 11, 22, 33

convolution kernel to capture image information, and the Simplified SSD model

applied 33, 55 convolution kernels. Both of network models apply the method of

SSD meta-architecture, which utilizes end-to-end object detection and recognition to

ensure high FPS of verification.

Table 5.2 Comparisons of architectures

 SSD Inception (v2) Simplified SSD model

Data augmentation Internal (1st layer to 26th

layer)

External software

Feature extraction 231 convolution layers 6 convolution layers

Box prediction 24 fully convolution layers 2 fully connected layers

Convolution kernel 11 conv; 22 conv; 33

conv

55 conv; 33 conv

5.1.3.2 Comparisons of Training Time

The learning rate indicates the effective training time of the model, if the effective

training time is shorter, the model is trained faster. If the learning rate is infinitely close

to 0 and no longer fluctuate denotes the final training time. We show the comparison

of training process of two models in Table 5.3, which includes training time, training

steps, effective training time, and batch size. Amongst them, the setting of batch size

depends on the performance of the training machine. We found that if we set the batch

size to 20 in SSD Inception (v2) model and the batch size to 50 in the Simplified SSD

model, the algorithm can obtain the best and fastest training results. We got the final

training time based on these batch size selected.

72

Table 5.3 Comparisons of training process

 Training

time

Training

steps

Effective training

time

Batch

size

SSD Inception (v2) 20h 9m

42s

17.31k 2h 27m 38s 20

Simplified SSD

Model I

3h 32m

1s

30.00k 2h 8m 5s 50

Simplified SSD

Model II

3h 32m

17s

30.00k 2h 8m 54s 50

Simplified SSD

Model III

3h 32m

5s

30.00k 2h 8m 51s 50

Simplified SSD

Model IV

3h 33m

39s

30.00k 2h 9m 31s 50

 From Table 5.3, we find that the total training time, effective training time, and steps

for both CNNs models. Among them, the effective training time refers to the training

time before the value of the learning rate converges and tends to 0. Since the internal

structure of SSD Inception (v2) is too large, we are not sure whether the computer

configuration can afford training, so, we did not set a certain number of training steps

for this model. After training for 20 hours, we stopped training. At this time, the number

of training steps reached 17,310. However, we found that the training time with

fluctuating learning rate was only 2hours and 27minutes; the Simplified SSD Model I

took more than 3 hours after 30,000 training steps; the simplified SSD Model II spent

3 hours after 30,000 training steps; the Simplified SSD Model III took more than 3

hours through 30,000 training steps; the Simplified SSD Model IV used more than 3

hours after 30,000 steps training.

 According to Table 5.3, it is able to summarize that the training time of the Simplified

SSD network models is shorter than that of SSD Inception (v2) model, while the

training steps of the Simplified SSD network models are much more than the SSD

Inception (v2) model. The simplified network model trained more steps with less time,

because the network model of SSD Inception (v2) is much more complex than the

Simplified SSD model. However, the effective training time of Simplified SSD network

model and SSD Inception (v2) model are very close, the shortest effective training time

73

of Simplified SSD network Model I used more than 2 hours; the effective training time

of SSD Inception (v2) model cost two and half hours. Therefore, learning rate of the

Simplified SSD network model is slightly better than the SSD Inception (v2) model,

the training efficiency is better than SSD Inception (v2).

5.1.3.3 Activation and Loss Function Comparisons

• Activation Function

The activation function of the Simplified SSD network is adopted Leaky ReLU; the

SSD Inception (v2) utilizes ReLU. The comparisons of activation function of two

CNNs model is demonstrated in Table 5.4. The Leaky ReLU function and ReLU_6

function is shown below,

 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑥 ≥ 0
0.1𝑥 𝑥 < 0

 (5.1)

 Re𝐿𝑈6(𝑥) = max(0, 6, 𝑥) (5.2)

Table 5.4 Comparisons of activation function

Models Activation Function

The Simplified SSD model Leaky_ReLU

SSD Inception (v2) ReLU_6

 The ReLU_6 is defined by using TensorFlow, which is able to solve the gradient

vanishing problem; if the training parameter deactivated, then it is difficult to be

reactivated. The input parameter might be deactive, when the input parameter is less

than 0 or greater than 6, the Leaky ReLU can be used to solve the de-active problem

effectively.

• Loss Function

The comparison of loss function is shown in Table 5.5. We find that the loss function

of the Simplified SSD network model is utilized cross entropy and smooth L1 while the

SSD Inception (v2) uses sigmoid and smooth_L1. The equation of cross entropy and

smooth L1 of the Simplified SSD model shows in equation (5.3) and (5.4).

 𝐿𝑐𝑙𝑠 = − ∑ 𝑞𝑘𝑙𝑜𝑔𝑝𝑘
𝑛𝐶𝑙𝑎𝑠𝑠
𝑘=1 (5.3)

74

 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
|𝑥| − 0.5 |𝑥| > 1

0.5 𝑥2 |𝑥| ≤ 1
 (5.4)

where the classification loss function of SSD Inception (v2) model is

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1+ 𝑒−𝑥 (5.5)

Table 5.5 Comparisons of loss function

 Classification/Localization Loss

function

Formula

Simplified

SSD model

Classification loss function Cross

entropy
𝐿𝑐𝑙𝑠 = − ∑ 𝑞𝑘𝑙𝑜𝑔𝑝𝑘

𝑛𝐶𝑙𝑎𝑠𝑠

𝑘=1

Localization loss function Smooth L1 𝑓(𝑥)

= {
|𝑥| − 0.5 |𝑥| > 1

0.5 𝑥2 |𝑥| ≤ 1

SSD

Inception

(v2)

Classification loss function Sigmoid
𝑓(𝑥) =

1

1 + 𝑒−𝑥

Localization loss function Smooth L1 𝑓(𝑥)

= {
|𝑥| − 0.5 |𝑥| > 1

0.5 𝑥2 |𝑥| ≤ 1

5.1.3.4 Comparisons of Loss Value

We also analyzed the loss value results of the Simplified SSD network model and the

SSD Inception (v2) network model. The loss function graph of SSD Inception (v2)

model is demonstrated in Figure 5.4, the loss function of the Simplified SSD network

models is displayed in Figure 5.5 to Figure 5.8. The loss function measures the unit of

SSD Inception (v2) model and the Simplified SSD model are different because they

adopted different loss functions. From the comparisons, we find that the loss value of

SSD Inception (v2) model starts from around 32, and the final value of loss function

around 1.86; the Simplified SSD Model I has the lowest value of loss function, the

value of loss function starts around 180, and the final value of loss function is less than

9; the final value of loss function of the Simplified SSD Model II is 94.87, and the

training time is longer than the Model I; the final value of loss function of the Simplified

SSD Model III is around 13.33 and the Model IV is around 136. Therefore, the

75

Simplified SSD models are better than the SSD Inception (v2) model in the value of

loss function, because the loss function of the Simplified SSD model is relatively low.

However, because the training process is prone to occurring overfitting problems, this

does not mean that the training effect of the Simplified SSD model is better than that

of SSD Inception (v2). We also need to compare the final accuracy of the model. In the

following, we will mainly introduce the prediction precision of the two models.

Figure 5.4 Results of loss function of the model SSD Inception (v2)

Figure 5.5 Results of loss function of the Simplified SSD Model I

76

Figure 5.6 Results of loss function of the Simplified SSD Model II

Figure 5.7 Results of loss function of the Simplified SSD Model III

77

Figure 5.8 Results of loss function of the Simplified SSD Model IV

5.1.3.5 Precision Comparisons

In this thesis, the same training images and verification images are adopted in the

Simplified SSD model and the SSD Inception (v2) model. After training, we got the

precision of the Simplified SSD model of four models with different parameters and

the SSD Inception (v2). The comparisons with regard to precisions for two network

models are shown in Table 5.6. From the model comparisons, we found that the

precision of the Simplified SSD models is much higher than that of SSD Inception (v2).

In four Simplified SSD models, the Model IV has the highest precision, which can reach

90.18%. Therefore, the Simplified SSD models are more suitable than SSD Inception

(v2) network model for face recognition.

Table 5.6 Comparison of precisions

Models Precisions

SSD Inception (v2) 65%

Simplified SSD Model I 88%

Simplified SSD Model II 88%

Simplified SSD Model III 89%

Simplified SSD Model IV 90%

78

 The SSD Inception (v2) model is more complex than that of the Simplified model,

but the verification accuracy is lower than that of the Simplified SSD model. The

reasons can be divided into threefold: 1) SSD Inception (v2) model has high complexity,

which is difficult to achieve external data augmentation and the internal image

processing is also difficult to be controlled; it is easy to cause insufficient training of

data sets; 2) the SSD Inception (v2) model has a higher depth and more parameter,

which makes it more difficult to optimize the overfitting problem; 3) the depth of CNNs

network model is hard to avoid the vanishing gradient problem.

5.2 Discussions

From the analysis of this thesis, we found that the SSD Inception (v2) model is more

complex than the Simplified SSD model, because SSD Inception (v2) contains 282

convolution layers, while the Simplified SSD model has only 6 convolution layers. The

Simplified SSD model dealt with the input images from the external data augmentation

including 20,000 images, while the training dataset of SSD Inception (v2) model only

is able to improve it by using the internal image process. However, the precision of the

Simplified SSD model is better than the SSD Inception (v2) model because large

models have complex structures that are prone to solving different problems.

 We compared the Simplified SSD model and SSD Inception (v2) model, we found

that the simplified model has shorter training time and higher accuracy. Therefore, a

complex CNNs model is not necessarily better than a simple CNNs model, the

suitability of the training dataset and the CNNs model is also important. With the

development of deep learning model, the depth and complexity of CNNs models are

continuously and constantly being developed, but the precision of validating has always

been difficult to achieve a breakthrough improvement, which requires high

performance of the hardware for training. It reflects the bottleneck in the development

of deep learning in CNNs model.

79

Chapter 6

Conclusion and Future Work

 We have elaborated on the model and algorithm on details.

After verification, we know that our model can be used to

recognize human faces. In this chapter, we will summarize this

thesis and our results; we will also depict our future work and

the possible improvements in this thesis.

80

6.1 Conclusion

The purpose of this thesis is to identify the identity of each person in front of a camera.

The main analysis is the classification of a human face and the influence of proportion

of the human face on the accuracy. We propose five classes; each class represents a

classification. Under the same model framework, we compared four models with

different parameters and summarized the best model as our final model. During the

analysis phase, we compared the training results of different models under a unified

dataset. We have found that our model using deep learning can detect and recognize

faces very well. After completing face recognition, our main contributions are

summarized as follows:

 We have found that the proportion of a face affects the accuracy. When a person is

closer to the camera, the face becomes larger, the confidence of the program tends to

higher and the recognition result is good; when the person is far away from the camera,

the confidence gradually decreases; the system cannot detect it until the face is small.

Therefore, we find that our model has certain limitations for detecting small objects.

 In the comparison of different model frameworks, our model performs better than

SSD Inception (v2) which has greater usability in surveillance. Our model has the

highest accuracy of 90.18% for different face recognition projects, and each class is

well recognized. The recognition distance of SSD Inception (v2) is very short, and the

requirements for face data sets are relatively high, the degree of completion under the

same data set is not as good as our model.

6.2 Future Work

Our project has a lot of expansion in future, including the following aspects,

 (1) Although our model has well validation results, but this may not apply to any

kind of training data set. In future, we will optimize our model based on the existing

results of this project so that the model can be applied to different data sets.

 (2) We can use the same training dataset to test more models, such as FaceNet or

MobileNet. This may also include models under different platforms, not limited to

81

TensorFlow, so as to better select a model that is more stable and suitable for face

recognition.

 (3) We may add more values which are not only limited to face recognition, but also

include the recognition of genders and facial expressions. Of course, this requires us to

innovate our datasets and models.

(4) We are trying to use other neural networks to achieve face recognition, not limited

to use convolutional neural networks (CNNs) only.

(5) We may use windows of spatiotemporal data instead of feature vector to better

express neuron parameters, and we may replace TensorFlow in NeuCube as the model

framework in the future.

82

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016).

TensorFlow: A System for Large-Scale Machine Learning. In OSDI (Vol. 16,

pp. 265-283).

Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., & Barkan, E.

(2016). A region based convolutional network for tumor detection and

classification in breast mammography. In Deep Learning and Data Labeling

for Medical Applications (pp. 197-205). Springer, Cham.

Al-masni, M. A., Al-antari, M. A., Park, J. M., Gi, G., Kim, T. Y., Rivera, P., ... &

Kim, T. S. (2018). Simultaneous detection and classification of breast masses

in digital mammograms via a deep learning YOLO-based CAD system.

Computer methods and programs in biomedicine, 157, 85-94.

Ayouche, S., Aboulaich, R., & Ellaia, R. (2017). Partnership credit scoring

classification Problem: A neural network approach. International Journal of

Applied Engineering Research, 12(5), 693-704.

Bao, S., & Chung, A. C. (2018). Multi-scale structured CNN with label consistency

for brain MR image segmentation. Computer Methods in Biomechanics and

Biomedical Engineering: Imaging & Visualization, 6(1), 113-117.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and

new perspectives. IEEE Transactions on PAMI, 35(8), 1798-1828.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., ... &

Bengio, Y. (2011). Theano: Deep learning on GPUs with Python. In NIPS 2011,

BigLearning Workshop, Granada, Spain (Vol. 3).

83

Bressloff, P. C., Ermentrout, B., Faugeras, O., & Thomas, P. J. (2016). Stochastic

Network Models in Neuroscience: A Festschrift for Jack Cowan. The Journal

of Mathematical Neuroscience, 1(6), 1-9.

Cai, Z., Fan, Q., Feris, R. S., & Vasconcelos, N. (2016). A unified multi-scale deep

convolutional neural network for fast object detection. In European Conference

on Computer Vision (pp. 354-370). Springer, Cham.

Cao, C., Liu, X., Yang, Y., Yu, Y., Wang, J., Wang, Z., ... & Ramanan, D. (2015).

Look and think twice: Capturing top-down visual attention with feedback

convolutional neural networks. In IEEE International Conference on Computer

Vision (pp. 2956-2964).

Cao, G., Xie, X., Yang, W., Liao, Q., Shi, G., & Wu, J. (2018). Feature-fused SSD:

fast detection for small objects. In Ninth International Conference on Graphic

and Image Processing (ICGIP 2017) (Vol. 10615, p. 106151E). International

Society for Optics and Photonics.

Chen, X. W., & Lin, X. (2014). Big data deep learning: challenges and perspectives.

IEEE Access, 2, 514-525.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018).

Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 40(4), 834-848.

Chin, T. W., Yu, C. L., Halpern, M., Genc, H., Tsao, S. L., & Reddi, V. J. (2018).

Domain-Specific approximation for object detection. IEEE Micro, 38(1), 31-

40.

84

Chu, X., Ouyang, W., Li, H., & Wang, X. (2016). Structured feature learning for pose

estimation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 4715-4723).

Cireşan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big,

simple neural nets for handwritten digit recognition. Neural

Computation, 22(12), 3207-3220.

Clark, T. E. (2004). Can out‐of‐sample forecast comparisons help prevent

overfitting. Journal of Forecasting, 23(2), 115-139.

Cong, J., & Xiao, B. (2014). Minimizing computation in convolutional neural networks.

In International Conference on Artificial Neural Networks (pp. 281-290).

Springer, Cham.

Cui, W., & Yan, W. Q. (2016). A scheme for face recognition in complex environments.

International Journal of Digital Crime and Forensics (IJDCF), 8(1), 26-36.

Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object detection via region-based

fully convolutional networks. In Advances in neural information processing

systems (pp. 379-387).

De Boer, P. T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on

the cross-entropy method. Annals of Operations Research, 134(1), 19-67.

Dewangan, R., & Verma, S. (2016). A review on the comparison of global features-

based techniques LDA, PCA, And LBP Algorithm for face recognition. i-

manager's Journal on Pattern Recognition, 3(3), 32.

85

Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural network with

data augmentation for SAR target recognition. IEEE Geoscience and Remote

Sensing Letters, 13(3), 364-368.

Dunne, R. A., & Campbell, N. A. (1997). On the pairing of the Softmax activation and

cross-entropy penalty functions and the derivation of the Softmax activation

function. In Aust. Conf. on the Neural Networks, Melbourne (Vol. 181, p. 185).

Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014). Scalable object detection

using deep neural networks. In the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 2147-2154).

Flores, E., Barrón-Cedeño, A., Rosso, P., & Moreno, L. (2011). Towards the detection

of cross-language source code reuse. In International Conference on

Application of Natural Language to Information Systems (pp. 250-253).

Springer, Berlin, Heidelberg.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition. In Competition and

cooperation in neural nets (pp. 267-285). Springer, Berlin, Heidelberg.

Gal, Y., & Ghahramani, Z. (2016). A theoretically grounded application of dropout in

recurrent neural networks. In Advances in neural information processing

systems (pp. 1019-1027).

Gao, Q., Huang, Y., Gao, X., Shen, W., & Zhang, H. (2015). A novel semi-supervised

learning for face recognition. Neurocomputing, 152, 69-76.

86

Ghiassi, M., Saidane, H., & Zimbra, D. K. (2005). A dynamic artificial neural network

model for forecasting time series events. International Journal of Forecasting,

21(2), 341-362.

Girshick, R. (2015, December). Fast R-CNN. In IEEE International Conference on

Computer Vision (ICCV), (pp. 1440-1448). IEEE.

Gkioxari, G., Girshick, R., & Malik, J. (2015). Contextual action recognition with R-

CNN. In IEEE ICCV (pp. 1080-1088).

Gu, D., Nguyen, M., Yan, W. Cross models for twin recognition. International Journal

of Digital Crime and Forensics, 8 (4), 26-36.

Gu, D., Nguyen, M., & Yan, W. (2016). Cross models for twin recognition.

International Journal of Digital Crime and Forensics (IJDCF), 8(4), 26-36.

Gu, Q., Yang, J., Kong, L., Yan, W. Q., & Klette, R. (2017). Embedded and real-time

vehicle detection system for challenging on-road scenes. Optical Engineering,

56(6), 063102.

Gu, Q., Yang, J., Yan, W. Q., Li, Y., & Klette, R. (2017). Local Fast R-CNN flow for

object-centric event recognition in complex traffic scenes. In Pacific-Rim

Symposium on Image and Video Technology (pp. 439-452). Springer, Cham.

Gu, Q., Yang, J., Yan, W. Q., & Klette, R. (2017). Integrated multi-scale event

verification in an augmented foreground motion space. In Pacific-Rim

Symposium on Image and Video Technology (pp. 488-500). Springer, Cham.

Hager, G. D., Dewan, M., & Stewart, C. V. (2004). Multiple kernel tracking with SSD.

In CVPR 2004 (Vol. 1, pp. I-I). IEEE.

87

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017, October). Mask R-CNN.

In ICCV (pp. 2980-2988). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In IEEE CVPR (pp. 770-778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual

networks. In European Conference on Computer Vision (pp. 630-645).

Springer, Cham.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18(7), 1527-1554.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural

Network. stat, 1050, 9.

Hitchcock, C., & Sober, E. (2004). Prediction versus accommodation and the risk of

overfitting. The British Journal for the Philosophy of Science, 55(1), 1-34.

Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network.

In International Workshop on Similarity-Based Pattern Recognition (pp. 84-

92). Springer, Cham.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... & Murphy, K.

(2017). Speed/accuracy trade-offs for modern convolutional object detectors.

In IEEE CVPR.

Jeong, J., Park, H., & Kwak, N. (2017) Enhancement of SSD by concatenating feature

maps for object detection. image, 1024, 19.

88

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell,

T. (2014). Caffe: Convolutional architecture for fast feature embedding.

In ACM Multimedia (pp. 675-678). ACM.

Jiao, Y., Weir, J., & Yan, W. (2011). Flame detection in surveillance. Journal of

Multimedia, 6(1).

Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., & Yan, S. (2016). Deep learning with S-

Shaped rectified linear activation units. In AAAI (pp. 1737-1743).

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and

prospects. Science, 349(6245), 255-260.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014).

Large-scale video classification with convolutional neural networks. In

Proceedings of the IEEE CVPR (pp. 1725-1732).

Koch, M. (2018). Artificial intelligence is becoming natural. Cell, 173(3), 531-533.

Khan, S., & Yong, S. P. (2017). A deep learning architecture for classifying medical

images of anatomy object. In Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA ASC), 2017 (pp. 1661-

1668). IEEE.

Kirk, D. (2007). NVIDIA CUDA software and GPU parallel computing architecture.

In ISMM (Vol. 7, pp. 103-104).

Kivinen, J., & Warmuth, M. K. (1998). Relative loss bounds for multidimensional

regression problems. In Advances in neural information processing

systems (pp. 287-293).

89

Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., & Chen, Y. (2017). Ron: Reverse

connection with objectiveness prior networks for object detection. In IEEE

CVPR (Vol. 1, p. 2).

Kong, T., Yao, A., Chen, Y., & Sun, F. (2016). Hypernet: Towards accurate region

proposal generation and joint object detection. In IEEE CVPR (pp. 845-853).

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling

biological vision and brain information processing. Annual Review of Vision

Science, 1, 417-446.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information

Processing Systems (pp. 1097-1105).

Lawrence, K., Campbell, R., & Skuse, D. (2015). Age, gender, and puberty influence

the development of facial emotion recognition. Frontiers in Psychology, 6, 761.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4), 541-551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., ... & Vapnik,

V. (1995). Learning algorithms for classification: A comparison on handwritten

90

digit recognition. Neural networks: the statistical mechanics perspective, 261,

276.

Lee, C. Y., Gallagher, P. W., & Tu, Z. (2016). Generalizing pooling functions in

convolutional neural networks: mixed, gated, and tree. In Artificial Intelligence

and Statistics (pp. 464-472).

Lee, S. J., Chen, T., Yu, L., & Lai, C. H. (2018). Image classification based on the

boost convolutional neural network. IEEE Access, 6, 12755-12768.

Liao, M., Shi, B., Bai, X., Wang, X., & Liu, W. (2017). TextBoxes: A Fast Text

Detector with a Single Deep Neural Network. In AAAI (pp. 4161-4167).

Liao, S., Hu, Y., Zhu, X., & Li, S. Z. (2015). Person re-identification by local maximal

occurrence representation and metric learning. In IEEE CVPR (pp. 2197-2206).

Lin, B. Y., & Chen, C. S. (2015, November). Two parallel deep convolutional neural

networks for pedestrian detection. In IEEE IVCNZ (pp. 1-6).

Lin, Y. P., Lin, Y. X., Zhou, Q., & Tang, D. P. (2014). Nafion/Thionine/Platinum

Nanowires-Modified Electrode for Electrocatalyzing Glucose. Journal of

Electrochemistry, 6, 007.

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017).

Feature pyramid networks for object detection. In CVPR (Vol. 1, No. 2, p. 4).

Lin, Z., & Yuan, C. (2016). A very deep sequences learning approach for human action

recognition. In International Conference on Multimedia Modelling (pp. 256-

267). Springer, Cham.

91

Li, P., Nguyen, M., & Yan, W. Q. (2018). Rotation correction for license plate

recognition. In 4th International Conference on Control, Automation and

Robotics (ICCAR) (pp. 400-404). IEEE.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.

(2016). SSD: Single shot multibox detector. In ECCV (pp. 21-37). Springer,

Cham.

Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016). Large-Margin Softmax Loss for

Convolutional Neural Networks. In ICML (pp. 507-516).

Liu, Z., Yan, W. Q., & Yang, M. L. (2018). Image denoising based on a CNN model.

In 4th International Conference on Control, Automation and Robotics (ICCAR)

(pp. 389-393). IEEE.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In IEEE CVPR (pp. 3431-3440).

Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2017). Brain intelligence: go beyond

artificial intelligence. Mobile Networks and Applications, 1-8.

Lu, J., Shen, J. Yan, W., Boris, B. An Empirical Study for Human Behaviour Analysis,

International Journal of Digital Crime and Forensics 9 (3), 11-17

Maalej, R., Tagougui, N., & Kherallah, M. (2016). Online Arabic handwriting

recognition with dropout applied in deep recurrent neural networks.

In Document Analysis Systems (DAS) (pp. 417-421). IEEE.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In Proc. ICML (Vol. 30, No. 1, p. 3).

92

Marreiros, A. C., Daunizeau, J., Kiebel, S. J., & Friston, K. J. (2008). Population

dynamics: variance and the sigmoid activation function. Neuroimage, 42(1),

147-157.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

Molchanov, V. V., Vishnyakov, B. V., Vizilter, Y. V., Vishnyakova, O. V., & Knyaz,

V. A. (2017). Pedestrian detection in video surveillance using fully

convolutional YOLO neural network. In Automated Visual Inspection and

Machine Vision II (Vol. 10334, p. 103340Q). International Society for Optics

and Photonics.

Murata, N., Yoshizawa, S., & Amari, S. I. (1994). Network information criterion-

determining the number of hidden units for an artificial neural network

model. IEEE Transactions on Neural Networks, 5(6), 865-872.

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. In IEEE Conference

on Computer Vision and Pattern Recognition (pp. 427-436).

Nie, G. H., Zhang, P., Niu, X., Dou, Y., & Xia, F. (2017). Ship Detection Using

Transfer Learned Single Shot Multi Box Detector. In ITM Web of Conferences

(Vol. 12, p. 01006). EDP Sciences.

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-

level image representations using convolutional neural networks. In IEEE

Conference on Computer Vision and Pattern Recognition, (pp. 1717-1724).

IEEE.

93

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. In BMVC

vol. 1, No. 3, p. 6.

Parmar, D. N., & Mehta, B. B. (2013). Face Recognition Methods &

Applications. International Journal of Computer Technology and

Applications, 4(1), 84.

Poirson, P., Ammirato, P., Fu, C. Y., Liu, W., Kosecka, J., & Berg, A. C. (2016). Fast

single shot detection and pose estimation. In International Conference on 3D

Vision (3DV), (pp. 676-684). IEEE.

Perez, C. E. (2017). The deep learning AI playbook: strategy for disruptive artificial

intelligence (pp. 125-132), Intuition Machine Inc.

Quang, D., Chen, Y., & Xie, X. (2014). DANN: a deep learning approach for

annotating the pathogenicity of genetic variants. Bioinformatics, 31(5), 761-

763

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: ImageNet

classification using binary convolutional neural networks. In European

Conference on Computer Vision (pp. 525-542). Springer, Cham.

Rautaray, S. S., & Agrawal, A. (2015). Vision based hand gesture recognition for

human computer interaction: a survey. Artificial Intelligence Review, 43(1), 1-

54.

Rawlings, A. L., Woodland, J. H., & Crawford, D. L. (2006). Telerobotic surgery for

right and sigmoid colectomies: 30 consecutive cases. Surgical Endoscopy and

Other Interventional Techniques, 20(11), 1713-1718.

94

Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence-based load

demand forecasting techniques for smart grid and buildings. Renewable and

Sustainable Energy Reviews, 50, 1352-1372.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In IEEE CVPR (pp. 779-788).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time

object detection with region proposal networks. In Advances in neural

information processing systems (pp. 91-99).

Ren, Y., Nguyen, M., & Yan, W. Q. (2018). Real-Time recognition of series seven

New Zealand banknotes. International Journal of Digital Crime and Forensics

(IJDCF), 10(3), 50-65.

Ren, Y., Zhu, C., & Xiao, S. (2018). Object Detection Based on Fast/Faster RCNN

Employing Fully Convolutional Architectures. Mathematical Problems in

Engineering, 2018.

Satat, G., Tancik, M., Gupta, O., Heshmat, B., & Raskar, R. (2017). Object

classification through scattering media with deep learning on time resolved

measurement. Optics Express, 25(15), 17466-17479.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks, 61, 85-117.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. C., & Pineau, J. (2016). Building

End-To-End Dialogue Systems Using Generative Hierarchical Neural Network

Models. In AAAI (Vol. 16, pp. 3776-3784).

95

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & Lecun, Y. (2014).

Overfeat: Integrated recognition, localization and detection using

convolutional networks. In International Conference on Learning

Representations (ICLR2014), CBLS, April 2014.

Shatnawi, A., Al-Bdour, G., Al-Qurran, R., & Al-Ayyoub, M. (2018). A comparative

study of open source deep learning frameworks. In International Conference on

Information and Communication Systems (ICICS), (pp. 72-77). IEEE.

Shen, D., Chen, X., Nguyen, M., & Yan, W. Q. (2018). Flame detection using deep

learning. In 4th International Conference on Control, Automation and Robotics

(ICCAR) (pp. 416-420). IEEE.

Shi, B., Bai, X., & Belongie, S. (2017). Detecting oriented text in natural images by

linking segments. In CVPR (Vol. 3).

Shi, S., Wang, Q., Xu, P., & Chu, X. (2016). Benchmarking the state-of-the-art deep

learning software tools. In Cloud Computing and Big Data (CCBD), (pp. 99-

104). IEEE.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.

Sivaramakrishnan, R., Antani, S., Candemir, S., Xue, Z., Abuya, J., Kohli, M., ... &

Thoma, G. (2018). Comparing deep learning models for population screening

using chest radiography. In Medical Imaging 2018: Computer-Aided Diagnosis

(Vol. 10575, p. 105751E).

96

Smistad, E., & Løvstakken, L. (2016). Vessel detection in ultrasound images using

deep convolutional neural networks. In Deep Learning and Data Labelling for

Medical Applications (pp. 30-38).

Specht, D. F. (1990). Probabilistic neural networks. Neural networks, 3(1), 109-118.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Frank Wang,

Y. C. Going deeper with convolutions. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2016). Inception-v4, inception-

ResNet and the impact of residual connections on learning. In AAAI (Vol. 4, p.

12).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In IEEE CVPR (pp. 2818-2826).

Tang, A., Lu, K., Wang, Y., Huang, J., & Li, H. (2015). A real-time hand posture

recognition system using deep neural networks. ACM Transactions on

Intelligent Systems and Technology (TIST), 6(2), 21.

Taud, H., & Mas, J. F. (2018). Multilayer Perceptron (MLP). In Geomatic Approaches

for Modelling Land Change Scenarios (pp. 451-455). Springer, Cham.

Toderici, G., Vincent, D., Johnston, N., Hwang, S. J., Minnen, D., Shor, J., & Covell,

M. (2017). Full resolution image compression with recurrent neural networks.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp.

5435-5443). IEEE.

Tokui, S., Oono, K., Hido, S., & Clayton, J. (2015). Chainer: a next-generation open

source framework for deep learning. In Proceedings of Workshop on Machine

97

Learning Systems (LearningSys) in the Twenty-ninth Annual Conference on

Neural Information Processing Systems (NIPS) (Vol. 5).

Tri, N. C., Duong, H. N., Van Hoai, T., Van Hoa, T., Nguyen, V. H., Toan, N. T., &

Snasel, V. (2017). A novel approach based on deep learning techniques and

UAVs to yield assessment of paddy fields. In International Conference on

Knowledge and Systems Engineering (KSE), (pp. 257-262). IEEE.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., & Fergus, R. (2013). Regularization of

neural networks using DropConnect. In International Conference on Machine

Learning (pp. 1058-1066).

Wang, J., Yan, W., Kankanhalli, M., Jain, R., Reinders, M. (2003) Adaptive

monitoring for video surveillance, IEEE Conference on Information,

Communications and Signal Processing.

Wang, J., Kankanhalli, M., Yan, W., Jain, R. (2003) Experiential sampling for video

surveillance. In ACM SIGMM international workshop on Video surveillance,

77-86.

Wang, J., & Yan, W. Q. (2016). BP-neural network for plate number recognition.

International Journal of Digital Crime and Forensics (IJDCF), 8(3), 34-45.

Wang, L., Ouyang, W., Wang, X., & Lu, H. (2015). Visual tracking with fully

convolutional networks. In IEEE CVPR (pp. 3119-3127).

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood

estimation of semiparametric generalized linear models. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 73(1), 3-36.

98

Wu, B., Iandola, F., Jin, P. H., & Keutzer, K. (2017). SqueezeNet: Unified, Small, Low

Power Fully Convolutional Neural Networks for Real-Time Object Detection

for Autonomous Driving. In IEEE Conference on Computer Vision and Pattern

Recognition Workshops (pp. 129-137).

Wu, J., Leng, C., Wang, Y., Hu, Q., & Cheng, J. (2016). Quantized convolutional

neural networks for mobile devices. In IEEE Conference on Computer Vision

and Pattern Recognition (pp. 4820-4828).

Yadav, N., & Binay, U. (2017). Comparative Study of Object Detection Algorithms.

International Research Journal of Engineering and Technology (IRJET), (Vol.

4, pp. 586-591).

Yan, W. Q. (2017). Introduction to Intelligent Surveillance: Surveillance Data Capture,

Transmission, and Analytics. Springer.

Yan, W. Q., & Chambers, J. (2013). An empirical approach for digital currency

forensics. In IEEE International Symposium on Circuits and Systems (ISCAS),

(pp. 2988-2991).

Yan, W. Q., Chambers, J., & Garhwal, A. (2015). An empirical approach for currency

identification. Multimedia Tools and Applications, 74(13), 4723-4733.

Yan, W., Kankanhalli, M. (2015) Face search in encrypted domain. In Pacific-Rim

Symposium on Image and Video Technology, 775-790.

Yan, W., Kankanhalli, M., Wang, J., Reinders, M. (2003) Experiential sampling for

monitoring. In ACM SIGMM workshop on Experiential telepresence, 70-72.

99

Zagoruyko, S., Lerer, A., Lin, T. Y., Pinheiro, P. H., Gross, S., Chintala, S., & Dollar,

P. (2016). A MultiPath Network for Object Detection. In British Machine

Vision Conference (No. EPFL-CONF-224546). BMVA Press.

Zhang, C., & Woodland, P. C. (2016). DNN speaker adaptation using parameterised

sigmoid and ReLU hidden activation functions. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5300-

5304). IEEE.

Zhang, K., Zhang, D., Jing, C., Li, J., & Yang, L. (2017). Scalable Softmax loss for

face verification. In International Conference on Systems and Informatics

(ICSAI), (pp. 491-496). IEEE.

Zhang, L., Lin, L., Liang, X., & He, K. (2016). Is Faster R-CNN doing well for

pedestrian detection. In ECCV (pp. 443-457). Springer, Cham.

Zheng, K., Yan, W. Q., & Nand, P. (2018). Video dynamics detection using deep

neural networks. IEEE Transactions on Emerging Topics in Computational

Intelligence, 2(3), 224-234.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., ... & Torr,

P. H. (2015). Conditional random fields as recurrent neural networks. In IEEE

ICCV (pp. 1529-1537).

Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., & Hu, S. (2016). Traffic-sign detection

and classification in the wild. In IEEE Conference on Computer Vision and

Pattern Recognition (pp. 2110-2118).

