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I 

 

Abstract 
 

Face recognition is one of the most important applications in video surveillance and 

computer vision. However, the conventional algorithms of face recognition are 

susceptible to multiple conditions, such as lighting, occlusion, viewing angle or camera 

rotation. Therefore, face recognition based on deep learning can greatly improve the 

recognition speed and compatible external interference. In this thesis, we use 

convolutional neural networks (ConvNets) for face recognition, the neural networks 

have the merits of end-to-end, sparse connection and weight sharing. 

    The purpose of this thesis project is to identify the name of different people based on 

location of the detected box of a face. Then, we can obtain recognition results with 

different confidence under various distances. 

    This thesis presents different methods with comparisons, namely, comparing the 

training results and the test results of different parameters under the same model, 

training results of the same test video under different models. We find that the 

recognition accuracy of this model is mainly affected by face proportion and the number 

of samples. If we get larger proportion of a face on screen, then we have higher 

recognition accuracy; if we obtain much greater number of samples, we can get higher 

recognition accuracy. 

    In this work, we first collect sufficient samples as our dataset and use the suitable 

model embedded in the platform Google TensorFlow to complete the training and test. 

We collected five different faces and obtained 500 images on each face as training set, 

each of which can be cropped and rotated by using 50 different angles of the picture 

having a human face, of which 40 for training, 10 for verification. 

    The use of neural networks for face recognition improves the speed of recognition. 

The contributions of this thesis are: (1) The use of elliptical markers can identify a 

human face including rotation and position. (2) The confidence of human face 

recognition is mainly affected by the proportion of face occupied on the screen. 

Keywords: CNNs, face recognition, data augmentation, SSD, Inception v2 
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Chapter 1 

Introduction 
 

 

    The first chapter of this thesis consists of five sections. In the 

first section, the background and motivation are introduced, face 

recognition can be used not only for access control systems, but 

also for supermarket shopping, such as payment methods, to 

facilitate ordinarily people's lives. The second section and the 

third section of this thesis will introduce the main research 

questions and contributions of this thesis. The fourth section will 

introduce the objective. Finally, in the fifth section, we will mainly 

outline the structure of this thesis. 
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1.1 Background and Motivation 
 

With rapid development of computer technology, computers are becoming intelligent. 

Artificial Intelligence (AI) has also become a crucial branch of computer science, it has 

also become the core of contemporary high-tech, its application also involves various 

fields. Among them, computer vision (CV) is one of the important areas of artificial 

intelligence (Rautaray & Agrawal, 2015), it attempts to obtain information from images 

or data, uses computer algorithms to identify or track images and videos, and then 

performs image processing to achieve the purpose of making computers replace human 

eyes (Koch, 2018) (Yan, 2017). 

    Nowadays, face recognition is also widely used in our ordinary life. There are many 

types of applications of face recognition, e.g., gender, identity, age and emotion are the 

most important characteristics of human (Lawrence, Campbell, & Skuse, 2015) (Gu, 

Nguyen, & Yan, 2016). Face recognition mainly includes three key aspects: geometric 

structure (Gao, Huang, Gao, Shen, & Zhang, 2015), subspace local features (Liao, Hu, 

Zhu, & Li, 2015), and deep learning (Parkhi, Vedaldi, & Zisserman, 2015). Traditional 

face recognition algorithms, such as LBP, PCA, and LDA, have drawbacks in feature 

extraction and recognition (Dewangan & Verma, 2016). Because they need to make 

some effective features to make the face recognizable; each feature is separated, usually 

the test results are not optimal. Deep learning, as a new technology in recent years, has 

made great contributions in speech recognition, image recognition and license plate 

recognition, and has played a key role in the process. So, this thesis will mainly 

introduce the use of deep learning to achieve face recognition and confirm the identity 

of the objects. 

    With the development of neuroscience, computer scientists have found that brain 

signals are transmitted through a complex structure, if time permits, some of the 

characteristics can be used to understand the signals, which lead to the emergence of 

deep learning for the establishment and simulation of human brain for analysis and 

learning (Kriegeskorte, 2015). Convolution Neural Networks (ConvNets) have been 

successfully applied to visual imagery in the past few years, such as flame detection 

(Shen, Chen, Nguyen, Yan, 2018) (Jiao, Weir, & Yan, 2011), image denoising (Liu, 

Yan, & Yang, 2018), integrated multi-scale event verification (Gu, Yang, Yan, & Klette, 
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2017) and license plate recognition (Li, Nguyen, & Yan, 2018). One of the most 

important factors is the need to provide a large amount of training data. But in face 

recognition, due to lack of large scale of data sets, some experiments will be limited 

(Karpathy, Toderici, Shetty, Leung, Sukthankar, & Fei-Fei, 2014). 

    From 2012, AlexNet defeated traditional algorithms in the field of image recognition 

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), deep learning 

algorithms have gradually become the mainstream of image recognition. Although deep 

learning has been widely used in recent years, it also has a long history of development 

(Sivaramakrishnan, Antani, Candemir, Xue, Abuya, Kohli, & Thoma, 2018). 

    In 1943, the neuroscientist McCulloch and logic scholar Walter Pitts proposed that 

the first artificial neuron model: MP model, they tried to connect the basic units together 

to understand how human brain produced highly complex patterns. This has made a 

significant contribution to the development of neural networks (Bressloff, Ermentrout, 

Faugeras, & Thomas, 2016). In 1958, Rosenblatt published the infected person’s speech 

based on the MP model, greatly developed the neural network theory and applied it to 

the real problems (Ayouche, Aboulaich, & Ellaia, 2017). In 1986, Rumelhart et al. 

proposed backpropagation algorithm, which is an important method in neural networks 

to calculate the error of neurons after data processing (Raza & Khosravi, 2015) (Wang 

& Yan, 2016). This algorithm is still the most popular one now and is one of the most 

widely used artificial neural networks in artificial intelligence (Yan, Chambers, & 

Garhwal, 2015). 

    In recent years, deep learning algorithms such as ConvNets, Recurrent Networks 

(RNNs) have achieved great success in experiments (Zheng, Yan, & Nand, 2018). The 

convolutional layer extracts visual features through local connections and weight 

sharing. It has the advantage of feature extraction through dimension reduction of 

convolutional layers. After nonlinear mapping, the network can automatically form 

feature extractors and classifiers adapted to the task from training samples. ConvNets 

is essentially a forward feedback network, aiming at simplifying the pre-processing 

operation and simulating the alternating cascade structure of the simple and complex 

cells used for feature extraction (Cao, Liu, Yang, Yu, Wang, Wang, & Ramanan, 2015). 

Face recognition, as biometrics, is a significant components of video surveillance 

and visual security which is wildly applied to identification today (Cui & Yan, 2016). 
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In some large shopping malls, face recognition is used to retrieve goods, monitor the 

passengers in the shopping mall, and provide users with more convenient services. At 

the entrance of the school or company, face recognition is used to implement access 

control system, which prevents the entry of foreign persons and ensures the security of 

premise. With the development of technology, face recognition can also be used to 

deblock devices, such as smart phones and computers. This can better protect the 

privacy of users, improve the security of the data. Face recognition, as a special part of 

human-computer interaction through a computer identifies users, serves them with 

great convenience (Parmar & Mehta, 2013). 

    Therefore, with the improvement of image and video processing technology, the 

appearance of deep learning has made a great contribution to computer vision. This also 

makes it possible to achieve face recognition with better algorithms and models. After 

surveying the literature, the study of this thesis has been achieved. 

1.2 Research Questions 
 

Face recognition has been widely used in recent years; extracting facial features and 

classifying a given face are the basic procedure of face detection and recognition. 

Therefore, the research questions in this thesis are: 

Question: 

What kind of technology and methods can achieve face recognition? 

    Although face recognition technology matured, there also has a big gap with 

fingerprints and retinas in recognition. After a full conclusion, we find that the main 

reasons that may affect face recognition are: 

1) Uncertainty in the acquisition of face images, such as the direction of light, and 

the intensity of light, etc. 

2) Face diversity, such as beards, glasses, hairstyles, etc. 

3) Uncertainty of human faces, such as facial expressions, etc. 

    Because there are multiple factors affecting the recognition results, the recognition 

results will be more complicated in the process of face recognition. According to these 
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existing factors, we tried to study the following questions and the sub-question of the 

above main question is: 

“What kind of algorithm is suitable for face recognition? Which method can make 

recognition faster and compatible with the diversity of face changes?” 

    In the process of recognition, because the proportion of face occupied by screen is 

various, the degree of confidence will be different. Therefore, we have extended the 

following research question: 

“What is the relationship between confidence and the proportion of faces?” 

    Since the core idea of this thesis is to find more effective methods to improve the 

accuracy of recognition results, we need to choose more advanced models and 

algorithms to achieve it. 

1.3 Contribution 
 

The contribution of this thesis is based on deep learning for face recognition. We will 

conduct the experiments through real-time recognition; for example, when people move 

close to a camera, the system will verify the proportion of a human face and its 

confidence, we will take the proportion as a major reason. The experiment has four 

parts: 1) collect the data, 2) accept the command parameters, 3) define the neural 

network model, 4) training model. 

    Moreover, finding suitable algorithms which are suitable for face recognition from 

deep learning is also introduced in this thesis. Comparing and analysing the accuracy 

of different parameters will be conducted in the same model framework. 

    In addition, because this thesis uses neural networks to study, the focus of this thesis 

is on the models established by using SSD. At the end of this thesis, we will also 

compare the results of models by using the same dataset to prove the suitability of our 

algorithm. 

1.4 Objective of This Thesis 
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Firstly, we need to collect large-scale data sets of human faces under the requirement 

of deep learning. But we think that it is too slow and may waste our time; in terms of 

data sets, our objective is to use reasonable data augmentation methods to segment the 

collected images so as to reach the number of training datasets. 

    Secondly, under the condition of external disturbance factors, we tried to find an 

algorithm to avoid the influence of environment and light and explore whether the 

system can recognize the occluded face and the rotated face position. 

    Finally, we will compare experimental results and explore the effect of facial 

proportions on confidence in recognition. 

1.5 Structure of This Thesis 
 

This thesis consists of six chapters: 

    In the second chapter, we mainly introduce literature review. First, we will introduce 

feature extraction method of convolutional neural networks and list the relatively new 

algorithms and models used in recent years, outline the working principles, and then 

propose solutions for overfitting problems. Therefore, the second chapter is more about 

learning and understanding the results of previous studies and summing up experiences 

to better conduct the next research. 

    In the third chapter, we will discuss the methodology of this thesis. These include 

data collection methods, data augmentation methods, and model design methods. The 

design and implementation of the experimental process will also be listed. 

    In the fourth chapter, the results of the experiment are mainly introduced, including 

training and test results of the proposed model, which also includes analysing the results 

of the experiment under the conditions of four different parameters. We will also show 

the figures and tables with an intuitive explanation. 

    In the fifth chapter, we will analyse and discuss our experimental results and compare 

the results with different models. To prove the advantages of our algorithm, the 

conclusions and future work will be presented in Chapter 6. 
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Chapter 2 
 

Literature Review 

 

 

    After in-depth study and understanding of the 

previously studied algorithms and structures, we know 

that the core of this thesis is based on test video to identify 

people, including face location and face classification. 

Therefore, this chapter will introduce and summarize a 

completely new algorithm for face recognition in deep 

learning and outline its principle. 
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2.1 Introduction 
 

Deep Neural Networks (DNNs) have a development history of more than 10 years, but 

it has not been enough attention in the scientific research field until the concept of deep 

learning was presented. The DNNs was originated in 1943 when Walter Pitts and 

Warren McCulloch created a computer model based on human brain neural network 

that eventually became a hot topic after a century of development (McCulloch & Pitts, 

1943). The Neocognitron was the first artificial neural network that introduced 

convolutional neural networks (CNNs), where the receptive field of a convolutional 

unit gave weight vector (Fukushima & Miyake, 1982). In 2006, Hinton presented the 

concept of a fast learning algorithm for deep belief net, and he also presented the deep 

learning methods and improvement of DNNs training model (Hinton, Osindero, & Teh, 

2006). He presented two main arguments of deep learning in the literature, both of them 

are the multi-layer DNNs model, which has a strong feature learning ability and the 

method of layer-by-layer training to achieve the deep learning model. However, deep 

learning remains in theoretical stage until Hinton with his team win the championship 

of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by using Alexnet 

Model using a deep learning algorithm in 2012, it is an important milestone in DNN’s 

history. They got the accuracy of 84.7% in the ILSVRC, which is far better than the 

previous best result of 74.3%. The deep learning has aroused widespread concern after 

the ILSVRC and began to develop rapidly (Schmidhuber, 2015). 

    There are four reasons that why AlexNet can succeed and DNN becomes one of the 

most popular topics: 1) big data training with millions ImageNet image data, 2) 

assisting with GPU accelerated training, 3) methods of prevent over-fitting, e.g., 

dropout and data augmentation, 4) development of nonlinear activation function, e.g., 

ReLU (Krizhevsky, Sutskever, & Hinton, 2012). 

    In this thesis, we will also discuss the methods of preventing overfitting of data 

augmentation and dropout operation (Lee, Gallagher, & Tu, 2016). In addition, this 

thesis will introduce the operation of DNNs structure. 

    The research field of this thesis is object detection, which includes object 

identification and classification (Satat, Tancik, Gupta, Heshmat, & Raskar, 2017). In 

recent years, DNN has been applied to object detection. Object detection using DNNs 
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has been developed rapidly based on the success of AlexNet model, and many models 

have been developed and popularized after AlexNet model, such as Region 

Convolutional Neural Network (RCNN), Spatial Pyramid Pooling (SPP-net), Fast 

RCNN, Faster RCNN, You Only Look Once (YOLO), and Single Shot MultiBox 

Detector (SSD) (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murply, 2017). 

Among them, from RCNN to Faster RCNN, they elaborate the model optimization 

process. The Faster RCNN has a good accuracy, but the effect on real-time detection is 

still not ideal (Zhang, Lin, Liang, & He, 2016); the main feature of YOLO model is 

very fast for detection, but the accuracy of small object detection of YOLO is also not 

good (Molchanov, Vishnyakov, Vizilter, Vishnyakova, & Knyaz, 2017). The SSD 

model is one of the first attempts to use a ConvNet’s pyramidal feature hierarchy, which 

adds the ability to map features onto multiscale feature maps (Lin, Dollár, Girshick, He, 

Hariharan, & Belongie, 2017); it is a very advanced object detection model, which takes 

into account the detection accuracy, it is one of the best choices for real-time object 

detection. 

DNNs has promoted the third wave of artificial intelligence research (LeCun, Bengio, 

& Hinton, 2015). The achievements made by using DNNs have also proved its broad 

prospects for development in recent years (Jordan & Mitchell, 2015). The DNN 

software framework plays a key role in the development and application of neural 

network models, many software frameworks are proposed and have been widely used, 

such as TensorFlow (Abadi, Barham, Chen, Chen, Davis, Dean, & Kudlur, 2016), Caffe, 

Torch7 (Jia, Shelhamer, Donahue, Karavev, Long, Girshick, & Darrell, 2014), Theano 

(Bergstra, Breuleux, Lamblin, Pascanu, Delalleau, Desjardins, & Kaelbling, 2011), 

Keras, Lasagne (Shatnawi, Al-Bdour, Al-Ourran, & Al-Avvoub, 2018), and Chainer 

(Tokui, Oono, Hido, & Clayton, 2015). Among them, we choose TensorFlow as our 

framework in this thesis. 

TensorFlow plays a decisive role in development and application of CNNs, which 

has integrated most common units in deep learning framework (Shi, Wang, Xu, & Chu, 

2016), it is also independent on open source framework for DNNs model based on C++, 

python (Flores, Barrón-Cedeño, Rosso, & Moreno, 2011), and CUDA (Kirk, 2007). One 

of the important features of TensorFlow is flexible portability, which makes it easy to 

deploy the same codes to multiple CPUs and GPUs with no modification. Another 

reason of choose TensorFlow as our framework is that TensorFlow library has the 
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DNNs model of the most widely used software framework. Deep learning framework 

as the core role of DNNs models must be explicit before implementation of DNNs 

model. In a typical DNNs framework model, such as TensorFlow, it is constituted by 

two phases “Define” and “Run”, namely, Define-and-Run (Tokui, Oono, Hido, & 

Clayton, 2015). 

In the Define phase, the DNNs model constructs a computational graph based on 

specific inter-layer connections, initial weights, and activation functions. After the 

computational graph has been built in memory of computer, the forward computation 

and backward computation are set; then, it will enter the “Run” phase. In the Run phase, 

it repeats training the set of training samples in the computational graph, finally 

achieves the goal of reducing the loss function and optimizing the results of DNNs 

model. 

2.2 Meta-architectures 
 

The architecture of deep learning consists of a computational graph that is most 

conveniently constructed by composing layers with other layers (Perez, 2017). Many 

processes have been made remarkable achievement on object detection since the use of 

convolutional neural networks (Schmidhuber, 2015).  The working principle of DNNs 

model is to collect the original data set, after duplicated layers of extraction and 

optimization, eventually minimized the loss function and obtain the best object 

detection results, we can see the flowchart in Figure 2.1. The meta-models of DNNs 

are objectives, optimizers, activations, metrics, and layers. Normally, an objective is a 

function and an optimizer is an algorithm. Consequently, we can deduce the figure of 

DNNs meta-model, see Figure 2.2. With the rapid development of DNNs, the objective 

function has become a neural network and the optimizer has also become a neural 

network. Thus, DNNs meta-model will be evolved from Figure 2.2 into Figure 2.3. 
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Figure 2.1 Flowchart of DNNs fundamental 

 

 

Figure 2.2 Schematic diagram of DNNs meta-model 
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Figure 2.3 Schematic diagram of modern DNNs meta-model 

Modern CNNs meta-architecture (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & 

Murphy, 2017) (Yadav & Binay, 2017) (Chin, Yu, Halpern, Genc, Tsao, & Reddi, 2018) 

(Oquab, Bottou, Laptev, & Sivic, 2014) of object detection is mainly represented by 

SSD (Liu, Anguelov, Erhan, Szegedv, Reed, Fu, & berg, 2016), Faster R-CNN (Ren, 

He, Girshick, & Sun, 2015), R-FCN (Dai, Li, He, & Sun, 2016), Multibox (Erhan, 

Szegedy, Toshev, & Anguelov, 2014), and YOLO (Redmon, Divvala, Girshick, & 

Farhadi, 2016). 

In this project of detecting the effect of facial area ratio and angle on face recognition, 

the two most important requirements are real-time performance and average precision 

(Ren, Nguyen, & Yan, 2018). Unfortunately, only the papers of SSD (Liu, Anguelov, 

Erhan, Szegedv, Reed, Fu, & berg, 2016), R-FCN (Dai, Li, He, & Sun, 2016), and 

YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) discussed the running time on 

details. The work (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy, 2017) 

retest the frame-rate of SSD, R-FCN, Faster R-CNN, statistics a full picture of the speed 

and accuracy trade-off in a unified platform environment. 

Around these modern meta-architecture, SSD and YOLO are using a single 

feedforward convolutional network to directly predict object (Kong, Sun, Yao, Liu, Lu, 

& Chen, 2017); in CVPR2017 (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy, 

2017), SSD is defined as the classification of all CNNs meta-architecture that used 

single feedforward convolutional network to directly classify default boxes offset 
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without requiring the second stage per-proposal classification operation. Thereby, the 

meta-architecture of YOLO is also a kind of SSD. However, the dominant idea of object 

detection is to use the Faster R-CNN architecture, which requires the second stage per 

proposal classification operation (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & 

Murphy, 2017). 

In the Faster R-CNN architecture, object detection requires two stages that region 

proposal network (RPN) and box proposal network (Ren, Zhu, &Xiao, 2018). The stage 

of RPN (Cai, Fan, Feris, & Vasconcelos, 2016) is used to predict class-agnostic box 

proposals by using feature extractors, such as Inception v2 (Tri, Duong, Van, Van, 

Nguyen, Toan, & Snasel, 2017). The stage of box proposal network is used to crop 

features from the same intermediate feature map, and then feed to the remainder of the 

feature extractor for predicting the class and class-specific box (Zagoruyko, Lerer, Lin, 

Pinheiro, Gross, Chintala, & Dallar, 2016). The running time of box proposal network 

depends on the number of regions proposed by the RPN (Huang, Rathod, Sun, Zhu, 

Korattikara, Fathi, & Murphy, 2017). Faster-RCNN has the good average precision 

(mAP) on object detection, but it cannot be achieved real-time detection due to 

requirement of two stages in each prediction (Wu, Iandola, Jin, & Keutzer, 2017). 

However, SSD is able to realize real-time object detection by applying the approach of 

single feedforward predict classes and default boxes offsets, thus, we are going to focus 

on applying the method of SSD meta-architectures. 

    In CNN meta-architectures, it is typical to have a collection of boxes overlaid on the 

image at different spatial locations, scales and aspect ratios, namely, default boxes (Liu, 

Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016). Some papers are named as priors 

(Erhan, Szegedy, Toshev, & Anguelov, 2014) (Bao & Chung, 2018) or anchors (Ren, 

He, Girshick, & Sun, 2016). The CNNs model on object detection requires to make two 

predictions for each default boxes, respectively, a discrete class prediction for each 

anchor, and a continuous prediction of an offset to shift the default boxes fit the ground 

truth bounding box (Erhan, Szegedy, Toshev, & Anguelov, 2014). There have a lot of 

default box in each image, if a default box matches the class offsets of ground truth 

bounding box, which becomes positive default boxes; otherwise, it calls negative 

default boxes (Liao, Shi, Bai, Wang, & Liu, 2017) (Shi, Bai, & Belongie, 2017). In SSD 

meta-architecture, each box is out of k at a given location, it computes c class sores and 

four offsets related to the original default box shape (Liu, Anguelov, Erhan, Szegedy, 
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Reed, Fu, & Berg, 2016). For each default box, it predicts both the shape offsets and 

confidences (Nguyen, YOsinski, & Clune, 2015) for different object categories. 

 

2.2.1 Single Shot Detector (SSD) 

 

SSD as recently developed the state-of-the-art convolutional network for real-time 

object detection (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) (Poirson, 

Ammirato, Fu, Liu, Kosecka, & Berg, 2016), it discretizes the output space of bounding 

box into a set of default boxes at different scales and aspect ratios in each feature map 

coordinate; object detection in a single shot without intermediate stage of detecting 

parts or initial bounding boxes eliminates proposal generation and subsequent pixel, or 

feature resample stage. In the time of object prediction, the network generates scores 

for each object category in each default box (Liao, Shi, Bai, Wang, & Liu, 2017); SSD 

network will also adjust each default box to better match the shape of the object. The 

fundamental of SSD is combination and improvement of YOLO (Redmon, Divvala, 

Girshikck, & Farhadi, 2016) and R-FCN (Dai, Li, He, & Sun, 2016) architecture. 

SSD is broadly defined as an architecture that uses a single feedforward 

convolutional network for object detection without requiring the second stage per-

proposal classification operation (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & 

Murphy, 2017), which indicates that the SSD represents all single shot convolutional 

network, includes YOLO (Redmon, Divvala, Girshikck, & Farhadi, 2016) and Overfeat 

(Sermanet, Eigen, Zhang, Mathieu, Fergus, & LeCun, 2014). However, we further 

study the single shot feedforward convolutional network (Yan, Chambers, 2013) and 

need to understand SSD (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) and 

YOLO (Redmon, Divvala, Girshikck, & Farhadi, 2016) architecture respectively, then, 

build a suitable architecture for real-time face recognition. 

For the SSD network architecture, the feature layer of size mn with p channel, the 

kernel size is 33p for predicting parameters of a potential detection that a score for a 

category or a shape offset related to the default box coordinates (Chen, Papandreou, 

Kokkinos, Murphy, & YUille, 2016) (Hager, Dewan, & Stewart, 2004). The kernel is 

the core element that generates the default box (Nie, Zhang, Niu, Dou, & Xia, 2017). 
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The YOLO network architecture has a similar approach to SSD network architecture, 

and the main difference between these two is that SSD uses six fully convolutional layer 

for object detection, and YOLO uses two fully connected layers instead of the 

convolutional filter in output layers (Redmon, Divvala, Girshikck, & Farhadi, 2016) 

(Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016). Therefore, the 

improvements of SSD from YOLO are mainly attributed to three aspects: (1) it uses a 

small convolutional filter to predict object categories and offsets for default boxes 

coordinates, (2) it utilizes separate filters for different aspect ratio detections, (3) it 

carries out detection at multiple scales by using these filters to multiple feature maps 

from the later stages of the network (Jeong, Park, & Kwak, 2017). 

The traditional SSD (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & Berg, 2016) and 

YOLO (Redmon, Divvala, Girshikck, & Farhadi, 2016) architectures enable real-time 

detection because they are using grid cells of feature maps proposal generator instead 

of region proposal network (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy, 

2017). 

Among them, the YOLO model uses a 77 grid cells feature map for proposal 

generating and the SSD model uses multiple feature maps from different feature layers, 

such as 88 grid cells of feature map and 44 grid cells of feature map (Redmon, 

Divvala, Girshikck, & Farhadi, 2016) (Liu, Anguelov, Erhan, Szegedy, Reed, Fu, & 

Berg, 2016). In YOLO model, each grid cell predicts the object, and totally it has 98 

proposal generators (Kong, Yao, Chen, & Sun, 2016). The grid cells of YOLO output 

results are confidence and position coordinate which is a great attempt and achieved 

good detection results (Redmon, Divvala, Girshick, & Farhadi, 2016). However, the 

accuracy of small object detection in YOLO is not satisfactory because feature maps is 

divided into fixed 77 grid cells (Al-masni, Al-antari, Park, Gi, Kim, Rivera, & Kim, 

2018). The lower layer feature map can capture more details of the input object (Long, 

Shelhamer, & Darrell, 2015), thus utilizes the lower layer feature map with fewer grid 

cells to improve the accuracy of small object detection based on this conclusion (Wang, 

Ouyang, Wang, & Lu, 2015). Simultaneously, the upper feature map has an 

irreplaceable advantage in the detection of large objects (Cong & Xiao, 2014). Thereby, 

the SSD model applies both the lower and upper feature maps for object detection, such 

as 88 feature map and 44 feature map (Liu, Anguelov, Erhan, Szegedy, Reed, FU, & 

Berg, 2016). 
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    Similar as YOLO, the output values of feature map of SSD are also location 

coordinate and confidence, which define the coordinates and categories of default boxes 

(Liu, Anguelov, Erhan, Szegedy, Reed, FU, & Berg, 2016). The confidences output all 

object categories by c1, c2, …, cp, where p represents category; the localization outputs 

the coordinates of default boxes by using the centre (cx, cy), width (w), and height (h). 

Therefore, the loss function of SSD is a weighted sum of localization loss and the 

confidence loss: 

                  𝐿(𝑥, 𝑐, 𝑙, 𝑔) =  
1

𝑁
 (𝐿 · 𝑐𝑜𝑛𝑓 (𝑥, 𝑐) + 𝑎 · 𝐿 · 𝑙𝑜𝑐 (𝑥, 𝑙, 𝑔))                     (2.1) 

    In the equation above, N is the number of match default boxes, the loss result is 0 

when the N = 0; 𝑙 refers to the predicted box; 𝑔 represents the ground truth box; and 𝑎 

stands for the weight term. The localization loss of SSD is applying the Smooth L1 loss 

function (Gkioxari, Girshick, & Malik, 2015), and the confidence loss is utilizing the 

Softmax loss function (Zhang, Zhang, Jing, Li, & Yang, 2017) (Zheng, Javasumana, 

Romera-Paredes, Vineet, Su, Du, & Torr, 2015) (Liu, Wen, Yu, & Yang, 2016). The 

Softmax loss function (Gu, Yang, Kong, Yan, & Klette, 2017) will also apply to CNNs 

model, and activation functions and loss function are also an important part of the CNNs 

model, we will talk about separately in below of this thesis. 

 

2.2.2 Faster R-CNN 

 

The Faster R-CNN (Ren, He, Girshick, & Sun, 2015) is the state-of-the-art 

convolutional network for object detection, which has the highest accuracy of object 

detection since the development from R-CNN and Fast R-CNN (Gkioxari, Girshick, & 

Malik, 2015) (Girshick, 2015). At the prediction phase, it has two stages of region 

proposal network (RPN) and box proposal (Gu, Yang, Yan, Li, & Klette, 2017). 

The object detection of Faster R-CNN (Ren, He, Girshick, & Sun, 2015) can be 

divided into five main parts: 1) input the training set of object images into the Faster R-

CNN model for feature extraction; 2) apply RPN generates proposal sliding windows, 

each image generates 300 sliding windows; 3) map sliding windows to the last layer of 

the  Faster R-CNN convolutional feature map; 4) generate a fixed size feature map 

through the pooling layer; 5) utilize Softmax loss function and Smooth L1 loss function 
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(Liu, Wen, Yu, & Yang, 2016) (Gkioxari, Girshick, & Malik, 2015) combines classifier 

and bounding box regression together. 

Similar to the SSD model, the Faster R-CNN also is employed as an end-to-end 

network (Serban, Sordoni, Bengio, Gourville, & Pineau, 2016), but it applies fully-

convolutional network (Long, Shelhamer, & Darrell, 2015) for the output layer. The 

difference is to train the fully-convolutional network by using back-propagation and 

stochastic gradient (LeCun, Boser, Denker, Henderson, Howard, Hubbard, & Jackel, 

1989). The feature concatenation of Faster R-CNN (Cai, Fan, Feris, & Vasconcelos, 

2016) is the approach that improves the RoI pooling (Girshick, 2015) by combining the 

feature maps of multiple convolution layers for lower and upper layer features. The 

Faster R-CNN network architecture is shown in Figure 2.4. 

 

Figure 2.4 Faster R-CNN architecture of the feature concatenation scheme 

 

Figure 2.5 Flowchart of object detection of Faster R-CNN 

    The feature concatenation training of Faster R-CNN (Ren, Zhu, & Xiao, 2018) is 

shown in Figure 2.4, which has four stages: 1) training the RPN separately, the network 

parameter load from the per-training model, 2) training the Fast R-CNN network 

separately, the training parameter loaded from the output of RPN, 3) training the RPN 

again, the parameters are shared between the Fast R-CNN and the RPN, 4) the 

parameters of the second RPN output to ROI pooling layer (Ren, He, Girshick, & Sun, 
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2015). It is noteworthy that the hardware requirements of training environment of Faster 

R-CNN also have very high threshold, such as it requires at least the level of NVIDIA 

Titan GPU for training (He, Gkioxari, Dollar, & Girshick, 2017). Faster R-CNN is a 

sophisticated and rigorous network model that achieves the highest accuracy of object 

detection by using the design of architecture, though it is not suitable for real-time 

applications (Akselrod-Ballin, Karlinsky, Alpert, Hasoul, Ben-Ari, & Barkan, 2016). 

2.3 Feature Extractor of CNNs Model 
 

Meta-architecture of deep learning can be regarded as the concrete application model 

of deep learning, its essence is based on the development of deep learning feature 

extraction model (Huang, Rathod, Sun, Zhu, Korattikara, Fathi, & Murphy, 2017). 

Convolutional feature extraction network model develops from the initial LeNet5 

model (LeCun, Bottou, Bengio, & Haffner, 1998) to AlexNet model (Krizhevshy, 

Sutskever, & Hinton, 2012), Network-in-Network model (Lin, Lin, Zhou, & Tang, 

2014), VGG model (Lin & Yuan, 2016), GoogLeNet model (Szegedy, Liu, Jia, 

Sermanet, Reed, Anguelov, & Rabinovich, 2015), and ResNet model (He, Zhang, Ren, 

& Sun, 2016). We conclude that the depth and complexity of convolutional networks 

are increasing in order to improve the accuracy of object detection, but the training time 

also increases with the increasing model complexity. 

    Nonetheless, the development of convolutional feature extraction model has entered 

a bottleneck, the VGG-19 (Lin & Yuan, 2016) did not achieve good detection accuracy 

even if it has most operations. Convolutional feature extraction of Inception, ResNet 

and VGG model is the state-of-the-art technology according to the top one accuracy of 

object detection (Rajalingham, Issa, Bashivan, Kar, Schmidt, & DicCarlo, 2018). 

However, all feature extraction models are widely used in various meta-architectures 

which represent the basic model of convolutional models. 

    Among them, the meta-architecture of SSD (Liu, Anguelov, Erhan, Szegedy, Reed, 

Fu, & Berg, 2016) and Faster R-CNN (Ren, He, Girshick, & Sun, 2015) uses the VGG-

16 network as a base, the meta-architecture of YOLO (Redmon, Divvala, Girshick, & 

Farhadi, 2016) uses the GoogLeNet model as a base, the meta-architecture of MultiBox 

(Erhan, Szegedy, Toshev, & Anguelov, 2014) applies the Inception model as a base, 

the meta-architecture of R-FCN (Dai, Li, He, & Sun, 2016) utilizes the ResNet-101 as 
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a base. The convolutional feature extraction network, as the theoretical basis of meta-

architecture, needs to profound understanding before we construct an approach of 

object detection model. 

2.3.1 LeNet-5 
 

LeNet-5 is a ground-breaking convolutional neural network architecture that was 

released in 1998 (LeCun, Bottou, Bengio, & Haffner, 1998). It greatly promoted the 

development of convolutional deep neural networks. Most convolutional deep learning 

models are based on the core ideas of LeNet-5 in recent years (Tang, Lu, Wang, Huang, 

& Li, 2015). In 1998, there was no approach of GPU acceleration training, the saving 

of parameters and computation is an important feature of LeNet-5. Therefore, LeNet-5 

proposed three main features of CNNs: locally connected neural network, weight 

shared, and subsampling (LeCun, Bottou, Bengio, & Haffner, 1998). The features of 

the architecture of LeNet-5 model can be summarized as five parts: 1) LeNet-5 

convolutional network using three layers that convolution layer, pooling layer, and non-

linearity function; 2) the subsample of LeNet-5 using spatial average of maps; 3) the 

non-linearity activation function applies Tanh or Sigmoids function; 4) the final 

classifier applies the multi-layer neural network(MLP); 5) it applies sparse connection 

matrix between each layer in order to avoid large computational cost (LeCun, Jackel, 

Bottou, Cortes, Denker, & Vapnik, 1995). LeNet-5 is an epoch-making convolutional 

feature extraction network, which key features have been used in the state-of-the-art 

convolutional networks. 

2.3.2 Dan Ciresan Net 
 

Dan Ciresan Net (Ciresan, Meier, Gambardella, & Schmidhuber, 2010) is the first 

training of deep neural network under GPU environment, which was proposed in 2010. 

This network model implemented both forward and backward training on a NVIDIA 

GTX 280 graphic processor, which can be trained up to nine layers of this neural 

network. In the test results, the training speed of Dan Ciresan Net neural network 

increased more than 10 times faster. This is a great attempt to greatly enhance the 

training velocity of deep neural network under the GPU environment; it opens a new 

chapter for the development of deep neural networks. After that, most of the deep neural 
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network models using the GPU environment have been developed to train their datasets 

(Chen & Lin, 2014). 

2.3.3 AlexNet 
 

In the introduction of DNNs above, we briefed that AlexNet win the object detection 

on ILSVRC and the deep neural network entered the public’s awareness, which 

promoted the third wave of artificial intelligence research (Lee, Chen, Yu, & Lai, 2018). 

AlexNet is created based on the LeNet-5 model which improves the 5-convolution layer 

to 7-convolution layer, and it can extract more complex high-dimensional image 

features from the image (Krizhevsky, Sutskever, & Hinton, 2012). Overall, the 

architecture of AlexNet model and its features can be summarized as four parts: 1) 

compared with the sigmoid function of LeNet-5, AlexNet utilizes ReLU functions as 

activation function to reduces the amount of computation; 2) it applies Dropout 

technique that temporarily deletes partial neurons randomly, which reduces overfitting 

effectively; 3) it utilizes max-pooling technique to reduce the computations of 

convolutional layer; 4) it uses double GPU NVIDIA GTX 580 graphic processor, 

further improves the training velocity of CNNs (Krizhevsky, Sutskever, & Hinton, 

2012). AlexNet is the first deep neural network based on the ILSVRC model whose 

object detection performance surpasses the traditional algorithms in whole aspects. Its 

appearance represents the object detection field where deep neural network begins to 

dominate (Khan & Yong, 2017). Simultaneously, artificial intelligence started a new 

development. 

2.3.4 VGGNet 
 

VGGNet (Lin & Yuan, 2016) was a new model of deep neural networks released by 

the University of Oxford in 2014, which uses a small 33 convolution kernel in per 

convolution layer to extract minutiae and arrange these small convolutional kernels as 

a sequence of convolutions. It seems to be contrary to the principles of LeNet-5 and 

AlexNet, where VGGNet proposes to use a 33 small convolutional kernel while 

AlexNet use 77, 99 and 1111 large convolutional kernel. The fundamental of 

VGGNet is to convolve the original image using 33 small convolution kernels, and 

then apply 33 convolution kernels continuously for multiple convolutions (Chu, 
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Ouyang, Li, & Wang, 2016). The approach of multiple 33 small convolution kernels 

can simulate the effect of large convolution kernel for local feature extraction, thus 

greatly reduce computation parameters and the time of object detection. Because only 

9 weight parameters are used for 33 convolution kernel, the 77 convolution kernel 

uses 49 weight parameters (Wu, Leng, Wang, Hu, & Cheng, 2016). 

    VGGNet (Lin & Yuan, 2016) pointed out that the use of large convolution kernel 

will waste lots of time, small convolution kernel can reduce the computation parameters 

to save computational overhead. However, if we utilize small convolution kernels, it 

will also lead to increase the training time and require high performance of hardware 

but reduce prediction time and computation parameters of overall. 

 

2.3.5 Inception 
 

Inception model, also known as GoogLeNet, is a deep neural network structure released 

by Google in 2014 (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, & Rabinovich, 2015). 

The first version of Inception model shown in Figure 2.6 is a 11, 33, or 55 

convolution kernel series parallelly combined deep neural network (Szegedy, Liu, Jia, 

Sermanet, Reed, Anguelov, & Rabinovich, 2015). Its main core is the 11 convolution 

kernel, which effectively reduces the number of features for parallel convolution 

kernels. The idea of 11 convolution kernel was inspired by the Network-in-Network 

model (Lin, Chen, & Yan, 2013), knows as “bottleneck layer”. The bottleneck layer 

reduces the number of operational complexities of each convolution layer, thus shortens 

the time of computations (Szegedy, Vanhouche, loffe, Shlens, & Wojna, 2016). 

    Suppose ConvNet has 256 features coming in and 256 features coming out, then, it 

only uses 33 convolution kernel which has to perform 25625633 convolutions; 

while using bottleneck layer can reduce computation parameters, it shrinks one of the 

256 features to 256/4 in 11 convolution kernel which performs 2566411 

convolutions, then uses 64 convolution on all Inception branches utilizing 33 

convolution kernel, which needs 646433 convolutions, and then takes advantage of 

again a 11 convolution kernel for transfer 64 features to 256 which performs 

6425611 convolutions. Without the bottleneck layer only using 33 convolution 

kernel, it must perform 25625633 convolutions; while with the bottleneck layer 
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parallel combined 33 convolution kernel, it must perform 2566411 + 646433 

+ 6425611 convolutions which reduce almost 10 times. 

 

Figure 2.6 Classic Inception module 

The bottleneck layer is the core idea of Inception, we define the parallel combined 

methods, the purpose is to reduce the operation parameters (Lin & Chen, 2015). 

Christiam and his Google team introduced the concept of batch-normalized Inception 

(Szegedy, loffe, Vanhoucke, & Alemi, 2017) in 2015. Batch-normalization computes 

the mean and standard-deviation of all feature maps and output them to a layer. It 

corresponds to “whitening” (Hoffer Ailon, 2015) the data, it makes all the neural maps 

respond in the same range with zero mean. The batch-normalization helps training as 

the next layer which does not have to learn offsets in the input data, and then it can 

focus on combine features. The new version of Inception module is shown in Figure 

2.7, its main improvement can divide into four parts: 1) it adds feature maps before the 

pooling layer for constructing networks that balance depth and width; 2) it increases 

the depth of neural networks and the number of features; 3) it enriches the combination 

of features before next layer by increasing width of the layers; 4) it employs only 33 

and 11 convolution kernels by using VGGNet (Szegedv, loffe, Vanhoucke, & Alemi, 

2017). The classifier of Inception is using pooling layer and Softmax layer, which is 

similar to VGGNet. 



23 

 

 

Figure 2.7 The new version of Inception module 

 

2.3.6 ResNet 
 

ResNet is a deep neural network model released in 2015 (He, Zhang, Ren, & Sun, 2016). 

The main feature of ResNet is the depth of network model which is able to achieve 

more than 1000 layers network model. The core idea of ResNet is to feed the output of 

two successive convolutional layer and bypass the input of the next layers (Toderici, 

Vincent, Johnston, Hwang, Minnen, Shor, & Covell, 2017). With the development of 

deep neural networks and graphic process performance, the depth of neural network 

model increases accordingly. The depth of neural model deepens and leads to difficulty 

increasing in optimization, which limits the accuracy of object detection and 

recognition. Thus, the ResNet is provided a new idea for solving complex deep neural 

network model (He, Zhang, Ren, & Sun, 2016). It is similar as Inception, ResNet also 

applies the bottleneck layer to reduce operation parameters and uses pooling layer plus 

Softmax as final classifier. ResNet has both parallel and serial modules which the 

income as parallel and the output of each modules connect in series (He, Zhang, Ren, 

& Sun, 2016). ResNet may be widely used with the development of neural network 
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models. However, ResNet has some undeniable disadvantages for our research, which 

requires high standard of operating environment and takes long time for training. 

2.4 Overfitting Problems and Solutions 
 

Overfitting corresponds too closely or exactly to a particular set of data and may fail to 

fit additional data or predict future observations reliably (Hitchcock & Sober, 2004). 

The concrete performance of overfitting is that the function of models perfectly matches 

with the data of training set, but the prediction results are much lower than the expected 

value. The primary reason caused overfitting is that the architecture of deep neural 

network models is too large and involves too many feature latitudes, this leads to a 

perfect fitting of the functions of model with training dataset while predictive accuracy 

cannot reach the expected since training dataset has their own features (Hinton, Vinvals, 

& Dean, 2015). 

    Underfitting has similar problem to overfitting, while the reason for underfitting is 

that the model is too simple that leads to the model cannot fit the training dataset well, 

moreover, predictive accuracy cannot reach the expected value. With the development 

of deep neural networks, the feature extraction models are also much more perfect, 

thereby, the problem of under-fitting does not occur any more (Ghiassi, Saidance, & 

Zimbra, 2005). However, the feature extraction models are more and more complex, 

which lead to the overfitting becoming a factor that cannot be neglected. 

    How to prevent overfitting is being paid more and more attention. Currently, it 

mainly has six popular overfitting solutions (Clark, 2004), which are cross-validation, 

train with more data, features removal, early stopping, regularization, and ensembles. 

Among them, cross-validation is a powerful measure to prevent overfitting. In the deep 

neural network models, it optimizes training results through training the dataset 

repeatedly (Clark, 2004). Therefore, all the deep neural networks are using cross-

validation method to reduce the overfitting; for the methods of training with more data, 

it can help our algorithms detect the signal better. In deep learning field, the method of 

training with more data is called Data Augmentation. 

    The main idea of Data augmentation is to generate more similar datasets through 

scaling, rotation and interception of the image, ultimately achieve the effect of 
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expanding the training dataset (Ding, Chen, Liu, & Huang, 2016). Data augmentation 

is a simple implementation and an excellent way to reduce overfitting. The method of 

removing features is also an effective approach to reduce overfitting. The specific 

implementation method is to simplify the feature extraction model according to training 

dataset. In the application of feature extraction model, many deep neural models are too 

complex for a training dataset, we can simplify the feature extraction model to reduce 

the overfitting. However, the underlying architecture of feature extraction models is 

complex; thus, this method is difficult to be implemented; the method of temporarily 

shield neurons is called dropout in deep neural networks (Schmidhuber, 2015). It 

reduces overfitting by randomly deleting some neurons temporarily, which has 

excellent achievement through the results of AlexNet model (Krizhevskv, Sutskever, 

& Hinton, 2012). This method has been widely used in deep learning, we will also 

introduce on details in this thesis. 

    The method of early stopping is to find the best training time, because sometimes the 

accuracy of training does not necessarily cause longer training time. With the deep 

neural models having gradually solved this problem, the long training time of the state-

of-the-art model will not reduce training accuracy. 

    The method of regularization is reducing the overfitting by using the functions of 

models; the method of ensembles is one of machine learning algorithms for combining 

prediction from multiple separate models (Wan, Zeiler, Zhang, LeCun, & Fergus, 2013). 

2.4.1 Data Augmentation 
 

The number of images in dataset is an important factor that determines the accuracy of 

recognition in deep learning. The method of Data Augmentation is to enhance the 

training data by using artificially transformations, in order to achieve the purpose of 

reducing overfitting and improving the accuracy of recognition results (Ding, Chen, 

Liu, & Huang, 2016). The two distinct forms of Data Augmentation respectively are to 

generate image translations and horizontal reflections and alter the intensities of the 

RGB channels in training images. Both methods are able to convey multiple images 

from the original one with very little computation; the transformed images do not need 

to be stored on disk which can be generated before deep learning training (Krizhevsky, 

Sutskever, & Hinton, 2012). 
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    For the form of generating image translations and horizontal reflections, if the 

training dataset is with images having the resolution 256256, we can randomly extract 

a fixed number of images (224224) and horizontal reflection of these images, then, 

scale all images to a uniform size. In supervised training, all the images we cropped 

need to include the labelled region; hence, we can extract different labelling size and 

angles from one image. 

    For the form of altering the intensities of RGB channels in training images 

(Krizhevsky, Sutskever, & Hinton, 2012), we perform PCA on the set of RGB values 

and convert RBG to HSV colour space throughout the training dataset. This scheme 

approximately captures the principal components of natural images, the intensity and 

colour of object are invariable. 

2.4.2 Dropout 
 

The key idea of dropout is to take a large model that overfits easily and repeatedly 

sample and train smaller sub-models from it. Dropout was presented by Hinton in 2012. 

The Dropout is a neural network unit temporarily discarded from the deep learning 

model in accordance with a certain probability in the training process of deep learning. 

It should be noticed that the temporarily discarded neuron parameters are merely hidden 

in this training phase, the essence is to ignore the part of feature classifier, which means 

that the part of the hidden layer nodes tends to zero in each cycle of training. This 

approach can reduce the interaction in feature classifier, thus, effectively diminishes the 

overfitting phenomenon. 

    We also think that Dropout is an average model, each sample inputs into the neural 

network and its corresponding network structure is different, but all these different 

neural network structures share the weight of hidden layer nodes at the same cycle. This 

technology is used to improve the performance of deep learning in a variety of 

applications, such as image recognition, digital recognition, speech recognition, object 

classification and data analysis of computational biology (Gal & Ghahramani, 2016). 

Dropout is widely used in the field of DNNs, which directly shows the superiority of 

this technology in improving the accuracy of verification results. But the drawbacks of 

Dropout are also noteworthy, which greatly increases the time of data training and the 

complexity of the nonlinear activation function (Maalei, Tagougui, & Kherallah, 2016). 
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However, both Dropout and Data Augmentation are effective methods to reduce 

overfitting. 

2.5 Activation and Loss Function 
 

The main function of activation functions (Specht, 1990) is to provide the nonlinear 

modelling capabilities of a neural network model. If there is no activation function in 

neural network model, then, the model can only express linear mapping which achieves 

the effect of single layer network. Therefore, deep neural network only has a layered 

nonlinear learning ability by adding the activation function. The loss function (Murata, 

Yoshizawa, & Amari, 1994) is used to estimate the difference between the predicted 

value and the ground truth in a neural model, which is a non-negative numerical 

function. The loss function is the main approach to inspect the training results of deep 

neural network model, the smaller loss function of this model is with a better robustness 

(Quang, Chen, & Xie, 2014). The activation and loss functions are the core component 

of deep neural network model; thus, choice of the suitable function is crucial for 

constructing deep learning model. 

    In the current deep learning model, the LeNet-5 (LeCun, Bottou, Bengio, & Haffner, 

1998) used the Sigmoid and Softmax activation function (Marreiros, Daunizeau, Kiebel, 

& Friston, 2008) with the loss function  of MLE (Maximum Likelihood Estimation 

criterion) (Wood, 2011); the AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) and 

VGGNet (Lin & Yuan, 2016) apply the ReLu nonlinearity activation function (Jin, Xu, 

Feng, Wei, Xiong, & Yan, 2016) with the cross entropy softmax loss function (DeBoer, 

Kroese, Mannor, & Rubinstein, 2005), it is noteworthy that VGGNet (Lin & Yuan, 

2016) can be regarded as an upgraded version of AlexNet (Krizhevsky, Sutskever, & 

Hinton, 2012); the Inception (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, & 

Rabinovich, 2015) utilizes the Sigmoid activation function (Marreiros, Daunizeau, 

Kiebel, & Friston, 2008) with the cross entropy softmax loss function (DeBoer, Kroese, 

Mannor, & Rubinstein, 2005); the ResNet (He, Zhang, Ren, & Sun, 2016) applies ReLu 

activation function (Jin, Xu, Feng, Wei, Xiong, & Yan, 2016) with the loss function of 

cross entropy softmax. 

    The function of Sigmoid nonlinear activation function is 𝑎(𝑥) = 1/(1 + 𝑒−𝑥). Deep 

learning model enters a parameter into the Sigmoid function, then compresses it into a 
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range of 0 to 1. In the Sigmoid function, the inactive parameter indicated as 0 and the 

fully saturated of model indicated as 1. The Sigmoid has two disadvantages: 1) Sigmoid 

saturation and kill gradients; 2) Sigmoid outputs are not zero-cantered (Rawlings, 

Woodland, & Craford, 2006). In addition, the Tanh activation function is very similar 

to Sigmoid, but it compresses the input parameter signal into a range of -1 to 1 (Wan, 

Zeiler, Zhang, LeCun, & Fergus, 2013). 

    The function of ReLu nonlinear activation function is 𝑓(𝑥) = max(0, 𝑥) . Deep 

neural network model enters a parameter signal into the ReLu function; the output 

equals to the input if greater than 0; and the output is equal to 0 if less than 0. The 

advantages of the ReLu function are: 1) the convergence of this model is much faster 

than the Sigmoid function; 2) the function will not be saturated; 3) the operation is less 

than the Sigmoid function (Zhang & Woodland, 2016). But its drawback is also obvious 

that ReLu is fragile in training time which easily leads to neuron necrosis. 

    The loss function of cross entropy is indicated as 𝐶 =  −
1

𝑛 
∑ (𝑦𝑙𝑛𝑎 + (1 −𝑥

𝑦)ln (1 − 𝑎)), where C is the loss value, x stands for the input sample, y represents the 

predicted value, a means the actual output signal of neuron which 𝑎 =  𝜎 (𝑧), n refers 

to the total number of samples. The cross-entropy function (Maas, Hannun, & Ng, 2013) 

applies classification approach to the computation of loss values, if the output of 

Softmax function (Kivinen & Warmuth, 1998) on the verge of 1, then it is 

corresponding to correct class label 1 which indicates 𝑦 = 1; otherwise, the output 

value of Softmax function on the verge of 0, then it is corresponding to incorrect class 

label 0 which indicates 𝑦 = 0. If the difference between the output signal parameters 

of the Softmax function classifier, the loss function value is big. In addition, loss 

function based on cross entropy is able to offset the shortcoming of saturation, thus, 

Sigmoid activation function usually matches with the cross-entropy loss function 

(Dunne & Campbell, 1997). 

2.6 Multilayer Perceptron 
 

Multilayer Perceptron (MLP) (Taud & Mas, 2018) can be interpreted as an artificial 

neural network, which contains input layer, hidden layer, and output layer. The layers 

are connected by using fully-connected layer in MLP, the simplest MLP can have only 
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one hidden layer. In CNNs model, an MLP consists of multiple fully-connected layers 

with nonlinear activation functions (Lin, Chen, & Yan, 2013). It is noteworthy that 

images input to the MLP layer in the CNNs model are an abstract one from convolution 

layers which describes that this feature is invariant to variations of the same concept 

after the feature extraction from convolution layers (Bengio, Courville, & Vincent, 

2013). 

    In MLP, the function is described (Perez, 2017), if the size of input vector is x, the 

size of the output vector is f (x), bias vectors are b (1) and b (2), weight matrices are W (1) 

and W (2), activation functions are G and s, then the matrix notation of MLP is 

                             𝑓(𝑥) = 𝐺(𝑏(2) + 𝑊(2)(𝑠(𝑏(1) + 𝑊(1)𝑥))).                        (2.2) 

    The output vector of MLP is obtained as  

                              𝑜(𝑥) = 𝐺(𝑏(2)  +  𝑊(2)ℎ(𝑥))                                            (2.3) 

    In order to train the MLP layer, the DNN model needs to learn all the parameters, 

and the set of parameters is {W (2), b (2), W (1), b (1)}. In addition, the output of MLP layer 

also is the CNNs model results. 
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Chapter 3 
 

Methodology 

 

 

    The purpose of this chapter is to introduce the methodology 

we used for our experiments that contributed to the final 

outcomes. This includes data sources, data augmentation 

methods, and model design. We will clearly explain the details 

and process of the method. 
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3.1 Research Designing 

Since the purpose of this thesis is to achieve face recognition, we listed the steps of face 

recognition as shown in Figure 3.1. In this figure, we listed seven steps to show the 

structure of this research. 

 

Figure 3.1 The steps to achieve face recognition 

In the flowchart of face recognition as shown in Figure 3.1, the first three steps are 

used to prepare the data for training, the last four steps mainly refer to the workflow 

inside the model. The combination of the two parts can achieve face recognition. 

In our experiment, we chose to collect data sets through ourselves. Next, we will 

mark the face location in the dataset and then put our original dataset into the data 

augmentation program to increase the number of datasets. After the external data is 

processed, the internal model of image processing will tackle the input images again. 

The model uses the convolutional layer to extract features of the face, the feature 

extraction results is input to the fully connected layer through the Dropout process to 

perform face classification and localization. 
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3.1.1 Data Sources and Data Collection 
 

The core issue of this thesis is the use of deep learning to detect and recognize faces. 

The primary problem of deep learning is how to train data, so we need to prepare 

training data and mark the location and classification of faces in each image. Because 

it is difficult to find public datasets that meet our requirements, so we choose to collect 

data by ourselves. 

    Since we mainly investigate the influence of face proportion on confidence and 

accuracy, a proportion of face images is the data we need to collect. That is, we need to 

collect faces of different sizes as datasets. Of course, the data collected using different 

devices will have different resolutions, and if the pixels of the collected face images are 

clearer, the recognition precision will also be increased. Therefore, the performance of 

the identification is closely related to the quality of the dataset. It is worth mentioning 

that this thesis uses the rear camera of Apple iPhone 7 plus which has 12 million pixels 

as a device for collecting data. We can't deny that if we use better pixels and resolution 

devices to collect datasets, we will get better recognition results. 

    There are five categories in the data set we collected. Table 3.1 indicates that we have 

five participants in the experiment. Because in this thesis we collected the data by 

ourselves, there are five classes we collected, each class represents one category. 

Table 3.1 Classes in our experiment 

Classes Names 

1 Person No.1 

2 Person No.2 

3 Person No.3 

4 Person No.4 

5 Person No.5 

 

    The data we collected is shown in Figure 3.2. We collected face data by taking a 

video of each person and store each video in a folder with their own names. In order to 

get a better training effect, we should pay attention to the following points when 

collecting datasets: 
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• The picture is clear, and the movement is small, avoiding the dynamic blurring 

of the image. 

• Various positions of a person’s face in an image, people can walk a few steps. 

• Faces are big enough in size and need to have images taken at different distances. 

• Faces are big enough in forms, which means, taking under different expressions 

and actions. 

 

Figure 3.2 Data collection by taking a video 

    After the video was collected, we used a tool to acquire frames in the video. Each 

video took an average of 120 images. Because we used five people in our dataset, we 

have a total of 600 images. The 600 images will be automatically saved in the folder. 

In order to ensure quality of the dataset, we select 100 individuals from 120 images, 

among which 100 images are selected for each person for 500 images in total. 

3.1.2 Face Labelling 
 

After collecting the original data, we need to label face position on the collected images. 

Face detection is a branch task of object detection, a rectangular bounding box is 

generally used to mark the position of a human face in the traditional method. However, 

the human face can be approximated as an ellipse. Using the ellipse mark not only can 

accurately confirm the position of the human face, but also can recognize that the 

human face rotates in the image. The ellipse labelling method of bounding box has been 

applied to traffic-sign recognition and the medical application of vessel detection, 

which has achieved high precision and practical application effect. 

    For the traffic-sign detection, previous research adopts the ellipse labels bounding 

box with circle signs, and label arbitrary “vertices” along the bounding box of the 

ellipse label (Zhu, Liang, Zhang, Huang, Li, & Hu, 2016). For the medical application, 

Smistad and Løvstakken proposed utilize the ellipse labels method for vessel detection 
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in ultrasound images (Smistad & Løvstakken, 2016). The method of ellipse label is also 

suitable for the face recognition filed based on the shape of the human face, thus we 

adopted the bounding box of ellipse label. 

    We use a tool to mark ellipse shapes based on human faces. Our labelling procedure 

is shown in Figure 3.3. When we label face, we need to specify the positions of three 

points, which are the two endpoints of the major axis of the ellipse and one endpoint of 

the minor axis. We see from Figure 3.3, using a rectangular mark will not reflect the tilt 

angle of a human face. 

 

Figure 3.3 Labelling the face position 

    After we label the face location, these labelled files are automatically deposited to a 

folder and archived in text format. As shown in Figure 3.4, these are our marked files. 
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Figure 3.4 Marked files saved in text format 

 

    Figure 3.5 shows the contents of the labelled file, which contains the category name 

of objects, and the coordinates of the labelled face. Among them, xc, yc represent the 

centre point of the ellipse, a is the semi-major axis of the ellipse, b is the semi-minor 

axis of the ellipse, and t refers to the rotation angle. 

 

Figure 3.5 Contents of the labelled files 

    However, elliptical markers will bring new difficulties in data augmentation. We will 

address and solve these problems below in this thesis. 
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3.1.3 Data Augmentation 
 

After marking the data set, we got 500 original images which have been labelled. 

However, this number is not enough for training, if the number of our data set is very 

small, the model training will be inadequate, which will affect the final accuracy of the 

model. In order to make the training dataset fully trained, we tried a method to improve 

the data and increase the amount of data. 

Scale to the 
same size

Random flip Random rotate

Random crop
Scale to the 
same size

Random color 
adjustment

 

Figure 3.6 Flowchart of data augmentation 

    Figure 3.6 above shows the flowchart of data augmentation. Then, we will introduce 

the details of each step one by one. 

• For the collected data, there will inevitably be different sizes. The format of the 

video input is generally different, such as Full HD (19201080), HD 

(1280720), qHD (960540), and nHD (640360). The first thing we need to 

commitment is to cut the collected data into uniform sizes. Due to computer 

hardware limitations, we chose nHD (640360) as the input size of the DNNs. 

• Due to our camera that might be reversal during the time of data collection, the 

image will also appear inconsistent. In order to ensure the recognition accuracy, 

we randomly flipped the images involved in the training to improve the 

accuracy of verification and enabled it to recognize a variety of situations. 

• We use the ellipse shape to label people’s faces so that the faces can be 

recognized when the face is tilted. Since the images are randomly selected 

frames from the video, the non-tilted human face occupies the main part of that 

dataset. For example, if there is an image from one of the 100 images, the face 

is labelled. Even if the model does not consider the labelled faces, the precision 

can reach 99%. This will not predict the tilted faces very well. So, we need to 

increase the number of tilted faces. 
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• Next, we will perform randomly cropping the image. The purpose is to let a face 

occupy various positions in the image to enhance the size and position of the 

face. After cropped, the position of the face and its ratio to the picture have been 

changed. 

• After cropping, we need to scale the cropped image down to our desired size so 

that it can be used as training data. 

• Considering that different cameras will have different colour when shooting, in 

order to simulate the colour difference, we convert the RGB colour to the HSV 

colour space and randomly adjust the saturation (S) and value (V) component. 

    In the steps listed, we take the colour conversion into consideration, but in image 

processing, we also need to alter the position of the bounding box because we are using 

the elliptical bounding box. The focus of this problem is on how to calculate the 

corresponding parameters of the ellipse after the transformation. Then, we will 

introduce the calculation of this ellipse transformation. 

    Equation (3.1) is used for the ellipse of the major axis on the x-axis  

                                                   
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1     (𝑎 ≥ 𝑏),                                              (3.1) 

where a is the semi-major axis of the ellipse and b is the semi-minor axis of the ellipse. 

When a=b, the ellipse becomes a circle. This elliptical parametric equation can be 

written as 

                                                     {
𝑥 = 𝑎 cos 𝑡
𝑦 = 𝑏 sin 𝑡 ,      𝑡 ∈ [0,2𝜋].                                           (3.2) 

    Now we rotate the ellipse shown in equation (3.2), set the angle between the long 

axis of the ellipse and the x-axis as 𝜙 ; then, the parameter equation can be written as 

                                                                         

                                        (𝑥
𝑦

) = ( cos 𝜙−sin 𝜙
sin 𝜙     cos 𝜙

) (𝑎 cos 𝑡
𝑏 sin 𝑡

).                                  (3.3) 

    Then, we shift centre of the ellipse to (𝑥𝑐 , 𝑦𝑐), and finally get the parameter equation 

for the ellipse 

                                          

                                    (𝑥
𝑦

) = ( 𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙    𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐
𝑦𝑐

).                       (3.4) 
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    Therefore, any ellipse can be uniquely determined by using these five parameters 

𝐸 = [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 𝜙]. The difficulty of the problem lies in what values should be taken 

for the corresponding five parameters after the original image is scaled, rotated, and 

cropped. 

3.1.3.1 Scaling Conversion 
 

First, we perform the scaling conversion 𝑆(𝑠𝑥, 𝑠𝑦), if the transformation equation is 

                                      

                                                     (𝑥′
𝑦′

) = (𝑠𝑥   0
0    𝑠𝑦

) (𝑥
𝑦

),                                              (3.5) 

where (𝑥, 𝑦) is the original coordinates and  (x′, y′) is the transformed. Then the 

parametric equation of the scaled ellipse is 

                                          

                         (𝑥′

𝑦′) = (𝑠𝑥   0
0    𝑠𝑦

) (( 𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛𝜙     𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐
𝑦𝑐

)) =

                                           ( 𝑠𝑥   0
0    𝑠𝑦

) ( 𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛𝜙     𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑠𝑥𝑥𝑐
𝑠𝑦𝑦𝑐

)      .               (3.6) 

    As we see after the conversion 

      

                                                      
𝑥𝑐

′=𝑠𝑥𝑥𝑐

𝑦𝑐
′=𝑠𝑦𝑦𝑐

 .                                                       (3.7) 

    However, the new 𝑎′, 𝑏′, 𝜙′ cannot be directly determined, which means that we 

cannot find a group of 𝑎′, 𝑏′, 𝜙′, 𝑡′directly so that equation (3.8) establishes: 

                   

            (𝑠𝑥   0
0    𝑠𝑦

) ( 𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛𝜙     𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) = ( 𝑐𝑜𝑠 𝜙′−𝑠𝑖𝑛 𝜙′

𝑠𝑖𝑛 𝜙′      𝑐𝑜𝑠 𝜙′
) (𝑎′ 𝑐𝑜𝑠(𝑡+𝑡′)

𝑏′ 𝑠𝑖𝑛(𝑡+𝑡′)
)        (3.8) 

However, we calculate the corresponding 𝑎′, 𝑏′, 𝜙′from the definition of long and 

short axes. Let  

 

                                        
𝑢=𝑠𝑥(𝑎 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝑡−𝑏 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝑡)

𝑣=𝑠𝑦(𝑎 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝑡+𝑏 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝑡)

𝑓(𝑡)=𝑢2+𝑣2

 ,                                      (3.9) 
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    Calculate 

                                         

                                                   
𝑓(𝑡𝑎)=𝑚𝑎𝑥 𝑓(𝑡)

𝑓(𝑡𝑏)=𝑚𝑖𝑛 𝑓(𝑡)
.                                             (3.10) 

    Then, we get 

 

                                             𝑎′ = √𝑓(𝑡𝑎), 𝑏′ = √𝑓(𝑡𝑏), 𝜙′ = 𝑡𝑎.                              (3.11)  

    Although theoretical calculations of 𝑡𝑎, 𝑡𝑏are more complex, numerical calculations 

are very simple. We use the numerical method to calculate 𝑡𝑎and 𝑡𝑏. 

    In summary, scaling  𝑆(𝑠𝑥, 𝑠𝑦)  for the ellipse 𝐸 = [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 𝜙]  can get a new 

ellipse                           

                                        𝐸′ = [𝑠𝑥𝑥𝑐 , 𝑠𝑦𝑦𝑐 , √𝑓(𝑡𝑎), √𝑓(𝑡𝑏), 𝑡𝑎].                                     (3.12) 

3.1.3.2 Rotation Conversion 
 

After scaling conversion, we consider the rotation conversion 𝑅(𝜃, 𝑤, ℎ). Because the 

rotation of this image is on the centre of the image to rotated, our ellipse is the origin 

of the upper-left corner of the image, the x axis is the width direction, and the y axis is 

the height direction. Therefore, the result of the rotation is not only related to rotation 

angle 𝜃 , it is but also related to the size of the image [ℎ, 𝑤]. 

    Rotating the centre of image  𝐶 = (𝑤 2⁄ , ℎ 2⁄ ) by 𝜃 degree, as a transformation of the 

ellipse from the 𝑥𝑂𝑦 coordinate system to the 𝑥′𝐶𝑦′ coordinate system, we rotate the 

new origin by 𝜃  degree, and converse back to the 𝑥𝑂𝑦  coordinate. Therefore, the 

transformed ellipse is shown in equation (3.13) 

(𝑥′
𝑦′

) = ( 𝑐𝑜𝑠 𝜃−𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃     𝑐𝑜𝑠 𝜃

) (( 𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙     𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐−𝑤 2⁄

𝑦𝑐−ℎ 2⁄
)) + (𝑤 2⁄

ℎ/2
) =

         ( 𝑐𝑜𝑠(𝜙+𝜃)−𝑠𝑖𝑛(𝜙+𝜃)
𝑠𝑖𝑛(𝜙+𝜃)     𝑐𝑜𝑠(𝜙+𝜃)

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + ( 𝑐𝑜𝑠 𝜃−𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃     𝑐𝑜𝑠 𝜃

) (𝑥𝑐−𝑤 2⁄

𝑦𝑐−ℎ 2⁄
) + (𝑤 2⁄

ℎ 2⁄ ) . (3.13) 

    Then, we see 
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𝑎′=𝑎,𝑏′=𝑏,𝜙′=𝜙+𝜃

(𝑥𝑐′
𝑦𝑐′)=(𝑐𝑜𝑠 𝜃−𝑠𝑖𝑛 𝜃

𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜃)(
𝑥𝑐−𝑤 2⁄
𝑦𝑐−ℎ 2⁄

)+(
𝑤 2⁄
ℎ 2⁄ )

.                         (3.14) 

3.1.3.3 Cropping and Flipping 
 

Compared to the scaling and rotation transformations, the calculation of ellipse 

parameters under cropping and flipping changes is relatively simple. 

    Suppose the cropped image centred on (𝑥0, 𝑦0) and its size is  [ℎ′, 𝑤′] , then the 

transformed ellipse is 

                                             

                                                𝐸′ = [𝑥𝑐 − 𝑥0, 𝑦𝑐 − 𝑦0, 𝑎, 𝑏, 𝜙].                               (3.15) 

    The left and right flips are about  𝑥 = 𝑤 2⁄  for axisymmetric transformation, so the 

transformed ellipse is 

                                             

                                                𝐸′ = [𝑤 − 𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 𝜋 − 𝜙].                                          (3.16) 

3.1.3.4 Summary 
 

After solving the problems above, we achieve data augmentation. Because our original 

training dataset has 500 images, there are 100 images for each of the five classes. After 

we have augmented the data, it will generate 50 different samples for the same original 

samples. Among them, 40 augmentation samples are generated for training, and 10 

augmentation samples are produced for verification. So, in our training dataset, our 

training set contains 20,000 samples for training and 5000 samples for verification. This 

increases the number of training sets, includes various aspects of the face in the image; 

it can fully identify faces in various situations. The effect of the data augmentation is 

shown in Figure 3.7. We get multiple samples with different angles, different sizes, and 

different positions using one of our samples. 
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Figure 3.7 Schematic diagram of data augmentation 

3.2 The Principle of CNNs 
 

The principle of CNNs in our model is shown in Figure 3.8, which can be divided into 

convolution layer, pooling layer, and fully connected MLP. The convolution layer 

convolves the image into different feature maps according to the number of convolution 

kernels to achieve the purpose of feature extraction. We used 5×5 and 3×3 convolution 

kernels in the convolution layers, and each convolution layer follows a pooling layer in 

common CNNs model to reduce neuron parameters. The fully connected layer is the 

output layer of the CNNs, which adopts the cross entropy as the neurons output function 
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of classification and utilizes the smooth L1 as the neurons output function of 

localization. In addition, we deploy the Dropout operation in the fully-connected layer 

to reduce the overfitting of model training. 

 

Figure 3.8 The working principle of CNNs 

The principle of the feature extraction process is shown in Figure 3.9. When the 

original image input to the CNNs model, which convolve the images into different 

feature maps through the 3×3 and 5×5 convolution kernels. It adopts the activation 

function of Leaky_ReLU to activate the CNNs model and utilizes the 2×2 pooling layer 

with stride of 2 to reduce the neuron parameters. The activation function converts the 

linear function of images into a neuron parameter of nonlinear complex function so as 

to improve the expression ability of the neural network model. The purpose of the 

pooling layers is to reduce neuron parameters, which are applied in the most of 

convolutional neural networks. 

 

Figure 3.9 The working principle of feature extraction of CNNs 

    In summary, the types of neurons are the neurons output function and the neurons 

activation function; the model connections by convolution kernels, neurons activation 

function, pooling, dropout, and neurons output function; the learning rule of CNNs can 

be divided into feature extraction and prediction, which convolution layer and pooling 

layer are responsible for feature extraction, fully-connected MLP is responsible for 

prediction. 
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3.3 Model Design of DNNs 
 

Face recognition is a kind of object recognition, we refer to the existing models to 

design DNNs models. This thesis refers to the SSD architecture for model design. SSD 

is a network structure that can classify and locate objects in one step. This network 

architecture is particularly suitable for our research topics, because at different 

distances, the effect we pursue is to locate and recognize human faces at the same time. 

This network structure is mainly divided into the following steps: 

• First, we need to input the image. 

• Second, the input image is extracted through the CNNs structure for feature 

extraction. 

• Finally, for CNNs input, the model uses two MLP structures to achieve object 

classification and localization. 

    Therefore, our model training structure can be shown in Figure 3.10. 

 

Figure 3.10 Model training structure 
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    Each step in the model training overview diagram above is a part of the model 

training including the input processing layer and the convolutional layer, where the 

input processing layer refers to the processing of the image by the system, the 

convolutional network layer refers to the use of convolutional layers for feature 

extraction of human faces. The detailed workflow of the convolution layer is described 

on details. After feature extraction, we use dropout operation to prevent overfitting. In 

this process, some neural nodes are randomly deleted. Afterwards, a fully connected 

layer is used to implement the location and classification of human faces. Ultimately, 

face position prediction and recognition can be achieved. 

    Next, we will mainly discuss the details of the model and the internal parameters of 

the convolutional layer. We see that the model design structure from Figure 3.11. 

Input
[N,360,640,3]

Conv:5x5
Pool:2x2

[N,180,320,16]

Conv:3x3
Pool:2x2

[N,90,160,32]

Conv:3x3
Pool:2x2

[N,45,80,64]

Conv:3x3
Pool:2x2

[N,23,40,256]

Conv:3x3
Pool:2x2

[N,12,20,256]

Conv:3x3
Pool:2x2

[N,6,10,512]

Flatten+Dropout
[N,30720]

FC
 [N,512]

FC 
[N,2048]

Classify
[N,nClass]

Location 
[N,5]

 

Figure 3.11 Model design structure 

    In the process of designing the model, we have referenced many models, combined 

with the complexity of our tasks and our goals as well as the limitations of our operating 

equipment. We have designed the DNNs network structure shown in Figure 3.11. We 

have found that such a network structure can well realize the location and recognition 

of human faces. Then, we will discuss the framework and operate principles of this 

model. 
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    First, when the DNNs model is used to train the input image, it is not an image 

followed by an image for training, but training N images in one step. This N can be set 

as batch size. We see that at the very beginning of this model, we need to input the 

images, the dimensions of the model parameters are 4D, namely, N, 360, 640, 3. Among 

them, 360640 is the size of these images, 3 is the number of channels of the image, 

because the general image is an RGB 3-channel image. 

    In the following several convolutional layers of the model, we also see that the 

dimension represents the feature that has heights H and width W, channel number is C. 

Then, we set up six convolutional layers in our model. In these six convolutional layers, 

we set up a 55 large convolution kernel in the first convolutional layer to capture a 

wide range of image information and set a 33 small convolution kernel at the next five 

convolutional layers, which is used to capture a small range of image information. In 

each of the six convolutional layers, a 22 maximum pooling layer is set for each 

convolutional layer. The maximum pooling operation means that for each 22 small 

mesh, the maximum value is taken as the output, and the output also reduces the size 

of the special name at the same time. 

    After feature extraction of six convolutional layers, we expand the features of each 

sample into a vector and convert the features into a matrix. While expanding the vector, 

we add dropout operation into it. The dropout operation indicates that at the time of 

output, the values of some nodes are randomly deleted. If we use the dropout before 

fully-connected layers, we can effectively prevent overfitting. 

    Then, we constructed two dual-layer MLPs to implement object classification and 

location. The dimension of the output of the classified MLP is [N, nClass], where 

nClass represents the number of categories. In our experiment, nClass=5. Each row of 

the output results represents a classification vector  

                                                   𝑝 = [𝑝1, ⋯ , 𝑝𝑛𝐶𝑙𝑎𝑠𝑠],                                                      (3.17) 

where 𝑝𝑘 represents the probability of the k-th classification of the input of this sample. 

Used to measure the gap between the predicted classification and the actual 

classification of the sample, cross entropy is generally used as a loss function. Suppose 

that the actual classification of the sample is 𝑗, then the predicted classification vector 

of the sample is 
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                                                  𝑞 = [𝑞1, ⋯ , 𝑞𝑛𝐶𝑙𝑎𝑠𝑠].                                                       (3.18) 

    It satisfies that  

                        

                                                       𝑞𝑘 = {
1     𝑘 = 𝑗
0     𝑘 ≠ 𝑗

  .                                                       (3.19) 

    The loss function of classification model is  

                                                   𝐿𝑐𝑙𝑠 = − ∑ 𝑞𝑘 𝑙𝑜𝑔 𝑝𝑘
𝑛𝐶𝑙𝑎𝑠𝑠
𝑘=1 .                                            (3.20) 

    Since the feature vector of the output of the location MLP is [N, 5], each row of the 

output result represents the code of an ellipse shape. Let  𝐸̂ be the ellipse position 

predicted by the model,  𝐸 be the actual ellipse position of the sample, then the location 

loss function of model is  

         

                                                   𝐿𝑙𝑜𝑐 = ∑ 𝑓(𝐸̂𝑘 − 𝐸𝑘 ).5
𝑘=1                                                 (3.21) 

    We are calculating norms of vector 𝐸̂𝑘 − 𝐸𝑘 . When 𝑓(𝑥) = |𝑥|, this is a 1-norm, 

when 𝑓(𝑥) = 𝑥2, this is a 2-norm. The 1-norm is not prone to gradient explosions, but 

the derivative is not continuous; the 2-norm is prone to gradient explosions, but the 

derivatives are continuous. After considering the two points above, we choose the 

smooth 1-norm as 𝑓, then  

      

                                                   𝑓(𝑥) = {
|𝑥| − 0.5     𝑥 < 1

0.5𝑥2           𝑥 ≥ 1
 .                                        (3.22) 

    It is worth mentioning that we chose Leaky ReLu as the activation function of the 

model, where 

                                             𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥      𝑥 ≥ 0
0.1𝑥 𝑥 < 0 

.                       (3.23) 

    In the previous section, we used  𝐸 = [𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 𝜙] as the ellipse code to analyse 

the new parameters of the ellipse after data augmentation. In actual training, we do not 

use this code directly, because the size of each component of the code has a different 
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effect on the position of the ellipse. Thus, we designed two codes for training. The first 

code is 

                                    

                                                    𝐸1 = [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 180𝜙 𝜋⁄ ] .                                          (3.24) 

    The only difference between this encoding and the original encoding is that we 

change the angle of ellipse from radian to angle. Because we believe that the effect of 

shifting the position of the ellipse by 1 pixel and the angular deviation of the ellipse by 

1 degree is approximate. The deviation of 1 radians (approximately 57.3º) is a large 

deviation. 

    The second code is 

                                               

                                                    𝐸2 = [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏],                                            (3.25) 

where  (𝑥1, 𝑦1)(𝑥2, 𝑦2) is the two endpoints of the long axis and 𝑏 is the length of the 

minor axis. This can also uniquely identify an ellipse. Conversion from the original 

code 𝐸 to 𝐸2 can be used as 

                                               

                                                    
𝑥1=𝑥𝑐−𝑎 𝑐𝑜𝑠 𝜙
𝑦1=𝑦𝑐−𝑎 𝑠𝑖𝑛 𝜙
𝑥2=𝑥𝑐+𝑎 𝑐𝑜𝑠 𝜙
𝑦2=𝑦𝑐+𝑎 𝑠𝑖𝑛 𝜙

𝑏=𝑏

     .                                         (3.26) 

    The conversion from code 𝐸2 to original code 𝐸 can be used 

                                              

                                          

𝑥𝑐=
𝑥1+𝑥2

2

𝑦𝑐=
𝑦1+𝑦2

2

𝜙=𝑎𝑟𝑐 𝑡𝑎𝑛
𝑦2−𝑦1
𝑥2−𝑥1

𝑎=
1

2
√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2

𝑏=𝑏

 .                                         (3.27) 

    Compared to the first encoding, the theoretical advantage of the second encoding is 

that each component of the encoding is based on pixels, but for the first encoding, first 

4 classifications are in pixels units and the fifth components are in angle units. 

Therefore, the components of this coding are more uniform. 
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    Finally, the loss function of the model training is 

                                               

                                                           𝐿 = 𝐿𝑐𝑙𝑠 + 𝑤𝐿𝑙𝑜𝑐.                                             (3.28) 

where 𝑤 is the weight of the location, we will try to take  𝑤 ∈ {1,10} during our training. 

The process of DNNs model training is to use the training data and minimize the loss 

function. 

    In addition, in order to measure the accuracy of this model, we also need to establish 

criteria to determine the correct prediction results. In the general object detection task, 

determining a prediction results requires: (1) the classification result is correct; (2) IoU 

of the prediction bounding box and the real bounding box is greater than 0.5. 

    Because the traditional bounding box is a rectangle oriented to the axis, it is relatively 

easy to calculate the IoU value. Let the model predicting the bounding box be  𝐴 =

[𝑥1, 𝑥2, 𝑦1, 𝑦2] and the real bounding box be 𝐵 = [𝑥3, 𝑥4, 𝑦3, 𝑦4], then 

                                      

                                              𝐼𝑜𝑈(𝐴, 𝐵) =
𝑆𝐴∩𝐵

𝑆𝐴∪𝐵
=

𝑆𝐴∩𝐵

𝑆𝐴+𝑆𝐵−𝑆𝐴∩𝐵
 ,                                 (3.29) 

where 𝑆𝐴∩𝐵 denotes the area of the intersection of A and B,  𝑆𝐴∪𝐵 denotes the area of 

the union set of A and B. For the case of a rectangle 

           
𝑆𝐴=(𝑥2−𝑥1)(𝑦2−𝑦1)

𝑆𝐵=(𝑥4−𝑥3)(𝑦4−𝑦3)

𝑆𝐴∩𝐵=𝑚𝑎𝑥(0,𝑚𝑖𝑛(𝑥2,𝑥4)−𝑚𝑎𝑥(𝑥1,𝑥2)) 𝑚𝑎𝑥(0,𝑚𝑖𝑛(𝑦2,𝑦4)−𝑚𝑎𝑥(𝑦1,𝑦3))

       (3.30) 

    But for the ellipses  𝐴 = [𝑥𝑐1, 𝑦𝑐1, 𝑎1, 𝑏1, 𝜙1] and  𝐵 = [𝑥𝑐2, 𝑦𝑐2, 𝑎2, 𝑏2, 𝜙2], though 

we can calculate 

                                                        

                                                    
𝑆𝐴=𝜋𝑎1𝑏1
𝑆𝐵=𝜋𝑎2𝑏2

 .                                                     (3.31) 

    However, it is very difficult for 𝑆𝐴∩𝐵. Therefore, we decided to calculate the IoU of 

two ellipses using IoU of the ellipse's bounding rectangle. Then, we need to determine 

the parameter representation of the rectangle of the ellipse 𝐸 = [𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 𝜙]. 

    Examining the parametric equation of the ellipse 
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                                   (𝑥
𝑦

) = (𝑐𝑜𝑠 𝜙−𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙   𝑐𝑜𝑠 𝜙

) (𝑎 𝑐𝑜𝑠 𝑡
𝑏 𝑠𝑖𝑛 𝑡

) + (𝑥𝑐
𝑦𝑐

).                          (3.32) 

    We write it as 

{
x = a cos ϕ cos t − b sin ϕ sin t + xc = √(a cos ϕ)2 + (b sin ϕ)2 sin (t − arc tan

a cos ϕ

b sin ϕ
) + xc

y = a sin ϕ cos t + b cos ϕ sin t + yc = √(a sin ϕ)2 + (b cos ϕ)2 sin (t + arc tan
a sin ϕ

b cos ϕ
) + yc

     

(3.33) 

    Obviously, there is 

                 

                       
𝑥𝑐−√(𝑎 𝑐𝑜𝑠 𝜙)2+(𝑏 𝑠𝑖𝑛 𝜙)2≤𝑥≤𝑥𝑐+√(𝑎 𝑐𝑜𝑠 𝜙)2+(𝑏 𝑠𝑖𝑛 𝜙)2

𝑦𝑐−√(𝑎 𝑠𝑖𝑛 𝜙)2+(𝑏 𝑐𝑜𝑠 𝜙)2≤𝑦≤𝑦𝑐+√(𝑎 𝑠𝑖𝑛 𝜙)2+(𝑏 𝑐𝑜𝑠 𝜙)2
 .            (3.34) 

    Therefore, we can get the bounding rectangle of ellipse is 

                                       

                                          [𝑥𝑐 − 𝑤𝑐 , 𝑥𝑐 + 𝑤𝑐 , 𝑦𝑐 − ℎ𝑐 , 𝑦𝑐 + ℎ𝑐].                               (3.35) 

    Among them, 

                                          

                                           
𝑤𝑐=√(𝑎 𝑐𝑜𝑠 𝜙)2+(𝑏 𝑠𝑖𝑛 𝜙)2

ℎ𝑐=√(𝑎 𝑠𝑖𝑛 𝜙)2+(𝑏 𝑐𝑜𝑠 𝜙)2
 .                                         (3.36) 

    After obtained the bounding rectangle of the ellipse, the IoU value of the ellipse can 

be easily calculated according to the calculation method of the rectangle IoU. 
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Chapter 4 
 

Results 

 

 

     This chapter mainly shows the results of face recognition of 

our experiments. The result of face recognition will also be 

introduced on details. We will also list the comparative 

evaluations of the four models. In the end, we will select the 

model with the highest verification set as our final model. 
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4.1 Training Model  
 

In our experiment, we mainly used three related software to achieve it, which are 

MATLAB, Python and TensorFlow. The work we did with MATLAB are labelled 

images and data augmentation, which mainly are used to data processing. It is also used 

for data input and output, including feeding data into Python and accepting output data 

from Python; the main work in this experiment is to use Python to implement it, 

including model construction and training; TensorFlow provides an environmental 

framework of deep learning; we transfer the model framework using TensorFlow. 

    According to the model design above, we trained the two sets of codes  𝐸1 =

[𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 180𝜙 𝜋⁄ ] and 𝐸2 = [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏], taking weight 𝑤 ∈ {1,10}, and trained 

a total of four different models. 

    In our dataset, we have 20,000 training samples, we take a batch size 50, and train 

75 epochs. In order to fully train the model, we set the number of training steps to 

30,000 steps. Then, we used TensorFlow to implement the model and accelerate 

training on the NVIDIA GTX 1070 graphics card, each model takes about 4 hours of 

training, and the four models cost us about 16 hours. 

    After training, we test results of the training, which means we use the test video to 

visually reflect the effect. We put the test video in the specified folder, click on the 

program to run, and the test results will be automatically saved to the program. We 

found that each person’s face is located and classified. An example of this test is shown 

in Figure 4.1. 

 
Figure 4.1 The resultant example of the test video 
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    From the test results, we found that human face can be well positioned and classified 

for multiple objects with various distances as well as different face angles, or external 

conditions such as lighting. It can accurately find a human face and identify the identity 

of the object. This achieves the purpose of using deep learning for human face detection 

and recognition. 

4.2 Comparison and Analysis of the Four Models 
 

According to the above introduction, we set four models to compare each other. For the 

same training samples, we compare the accuracy based on the training dataset and the 

accuracy on the validation set. The training results for the four models are shown in 

Table 4.1. 

Table 4.1 Comparisons of training results of the four models 

Models Bounding Boxes w Means Trainings Validations 

I [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 180𝜙 𝜋⁄ ] 1 0.9736 0.9947 0.8890 

II [𝑥𝑐 , 𝑦𝑐 , 𝑎, 𝑏, 180𝜙 𝜋⁄ ] 10 0.9714 0.9935 0.8832 

III [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏] 1 0.9718 0.9907 0.8962 

IV [𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏] 10 0.9731 0.9910 0.9018 

 

    Through comparing the four models, we see that accuracy of the four models on the 

training dataset has reached more than 99%, which indicates that the four models have 

been fully trained. However, there are some differences with regard to accuracy of the 

validation set. Among them, assume the ellipse code is 𝐸, and the positioning weight 

𝑤 = 10 of the model II has the lowest accuracy on the validation set, only 88.32%. 

    Suppose the ellipse code is  𝐸2 , the positioning weight  

𝑤 = 10 of the model IV has the highest accuracy on the validation set which can reach 

90.18%. Thus, we use model IV with a higher accuracy as our final model. 

    In order to better understand the training process and results of the four models, we 

have the training curve as shown in Figure 4.2~4.5. 
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Figure 4.2 Training curve: box=1 and w=1 

• Fig. 4.2 (a) represents the loss function of models based on training dataset and 

the loss function based on the validation set, which mainly are used to observe 

whether the model exists overfitting. When the loss function decreases on the 

training set, the loss function does not increase on the validation set, but also 

decreases, which indicates that this model does not have to be fitted. 

• Fig. 4.2 (b) shows the changes in the accuracy of training dataset and validation 

dataset. The accuracy of training set is mainly used to observe whether the 

model has been fully trained. From Figure 4.2(b), we see that the training set is 

accurate, the accuracy is almost 100%. This shows that this model has been fully 

trained. Starting from Step 20,000, the accuracy based on the validation set is 

also basically stable and reaches the rates more than 80%. 

• Fig. 4.2 (c) is used to compare the loss function values of the localization and 

classification on the training set, where the blue line represents the classification 

loss function value and the red line represents the location loss function value. 

From Fig. 4.2(c), we see that the decreasing amplitude of the classification loss 

function is larger than the value of local loss function, which indicates that in 

the process of training, positioning is more complex than classification; the 

positioning is more difficult to be trained. 
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• Fig. 4.2(d) is used to compare the changes in the accuracy of location and 

classification on the training set. In Fig4.2(d), the blue line increases faster than 

that of the red line, and the accuracy of classification is also the first to be stable 

and convergent. The accuracy of this model is affected by the correctness of 

positioning after approximately 5000 steps. 

    Next, we will introduce the training curve of box=1, w=10 as shown in the Figure 

4.3. 

 

Figure 4.3 Training curve: box=1 and w=10 

• Same as Figure 4.2, Fig. 4.3(a) compares the loss function in the training set 

and the validation set. The loss functions on the training set and validation set 

are falling rapidly before 15,000 steps, and slow down after 15,000 steps, which 

reflects that this model has not been fitted. After 20,000 steps, it slowly and 

steadily shows that the accuracy of the model is basically stable. 

• From Fig 4.3(b), we see that the blue curve represents the accuracy of the 

training set, the red curve indicates the accuracy of the validation set, and the 

accuracy on the training set is basically stable after 10,000 steps, nearly 100%, 

this shows that the model is also fully trained, the accuracy on the validation set 

fluctuates a little bit after 10,000 steps, and basically converges after 25,000 

steps. 
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• Fig. 4.3(c) is the loss function for classification and location. Comparing with 

the first model, the loss function of classification obviously decreases than that 

of the location, which indicates that the classification is easier to be trained. 

• Fig. 4.3(d) is the accuracy of comparative location and classification. From 

approximately 2000 steps, the location accuracy is more than that of 

classification. The accuracy of classification began to converge at about 5,000 

steps, and the accuracy of location start converging at 10,000 steps. 

    Subsequently, we will discuss the training results of the third model from Figure 4.4. 

 

Figure 4.4 Training curve: box=2 and w=1 

• In the comparison of the loss function of Fig. 4.4(a), there is no overfitting in 

this model. The loss functions of training set and validation set converge 

basically after 20,000 steps. 

• Fig. 4.4(b) is the accuracy based on the training set and the validation set. The 

training set converges approximately at 15,000 steps, while the validation set 

tend to approximately at 25,000 steps. Although the loss function based on the 

training set continues to be decreased, the accuracy of the training set no longer 

increases in the subsequent training, and the accuracy of the validation set only 

increases slightly. 
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• Fig. 4.4(c) compares the loss function values of classification and location, the 

loss function of classification is still dipping faster than the loss function value 

of the location, which indicates that the classification is still easy to be trained. 

• Fig. 4.4(d) reflects the accuracy of classification and location, the accuracy of 

the classification also increases faster than the accuracy of the location, and it 

is more convergent. 

    After that, the analysis results of the fourth model are shown in Figure 4.5. This 

model is also the model we used because it has the highest accuracy among these four 

models. 

 

Figure 4.5 Training curve: box=2 and w=10 

• In the fourth model, in the graph that explores the value of loss function, the 

blue curve represents the value of loss function on the training set, we see that 

when the blue curve is decreasing, the red curve does not increase, it also 

steadily declines until convergence. 

• Fig. 4.5(b) shows the accuracy based on training set and validation set. We see 

that the accuracy on the training set converges around 11,000 steps, the training 

model is fully trained, and the accuracy based on the validation set reaches more 

than 80% around 10,000 steps. It is slow after 10,000 steps, the final accuracy 

on validation set reaches about 90%. 
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• With regard to the loss function for classification and location, the classified 

curve has a larger decrease than the localized curve; the loss function of the 

localization has a small decrease, the location is difficult to be trained and can 

hardly be affected. 

• Similarly, we see that in the accuracy of classification and location, the 

classification is less fluctuating than the location, the classification curve 

converges at about 5,000 steps, and the location curve converges at about 10,000 

steps; there is little difference between these two, but the location curve is still 

more complicated than that of classification. 

    It is worth noting that if we use original data to make graphs, the changes in the 

graphs will not be very intuitively. Each point in the graph is the average of 20 data 

points of the original data, so that we can better understand the relevant trends. 

    Next, we will compare the accuracy based on the validation set for these four models. 

Figure 4.6 shows that the trend of accuracy based on the validation set. In the plot, we 

see the curves of the four models together so that we can better understand the trend of 

the curves. 

 

Figure 4.6 Accuracy comparisons of four models on the validation set 
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    In Figure 4.6, the blue curve represents the first model, the red line shows the second 

model, the orange line indicates the third model, and the purple line is on behalf of the 

fourth model. Before 6,000 steps, the accuracy of these four models rises rapidly, and 

then slowly increases until their convergence after 6,000 steps. We easily know from 

Figure 4.6, the convergence of the four models is basically the same during training, 

and all models basically converge after 20,000 steps. After 20,000 steps, the strengths 

and weaknesses of each model are determined. We see that the purple line has the 

highest accuracy and the best effect. Therefore, we choose model IV as our final model. 

4.3 Effect of Face Ratio on Accuracy 
 

After the model training, we choose model IV as our final model. Our model can label 

every frame of the input video, but the face is difficult to be recognized, because this 

model has some drawbacks to recognize small objects. Our results are shown in Figure 

4.7. Marked results can be divided into three parts: 

• Use an ellipse shape to mark the face contour. We use ellipse markers, because 

it not only reflects the position of human face but also reflects the angle of 

human face. This will identify face patterns from multiple perspectives. 

• The ellipse bounding box. 

• The classification of human faces and the possibility of faces belongs to this 

category. For example: “Person No.5: 1.00” indicates that the probability of this 

person's face is 100%. 

 

Figure 4.7 Recognition results 
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    Of course, we will get different sizes of a face at different distances. As shown in 

Figure 4.8, when a person moves closer to the camera, the system will detect the human 

face with different sizes in different distance. The size of this face in the image is also 

an important factor that affects the recognition effect: 

• If the face is large, there are few samples, the model can obtain more abundant 

face information. It will be easier to locate and classify the face and obtain better 

accuracy. 

• If the face is small, the number of samples is large, there are a lot of interferences, 

the face information is relatively vague and results in that the model cannot 

detect the face accurately, thus it reduces the accuracy. 

 

Figure 4.8 Face with different sizes 

    Because the purpose of this thesis is to investigate face detection and recognition 

based on the accuracy, the size of human face can be measured by using proportion of 

the face to the total size of the image. Let the width and height of the image be 𝑤, ℎ, 

respectively, the ellipse shape of a face is denoted as {𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏, 𝜙}, then the area of 

the bounding box of the human face is 

                           

                  𝑆𝐹 = 4√(𝑎 𝑐𝑜𝑠 𝜙)2 + (𝑏 𝑠𝑖𝑛 𝜙)2√(𝑎 𝑠𝑖𝑛 𝜙)2 + (𝑏 𝑐𝑜𝑠 𝜙)2.                   （4.1） 

     Thus, the area ratio of the face in the image can be obtained by using 
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                 𝐴 =
4

𝑤ℎ
√(𝑎 𝑐𝑜𝑠 𝜙)2 + (𝑏 𝑠𝑖𝑛 𝜙)2√(𝑎 𝑠𝑖𝑛 𝜙)2 + (𝑏 𝑐𝑜𝑠 𝜙)2 .                （4.2） 

    Obviously, if A is larger, which indicates a larger face in the image, people are closer 

to the camera; otherwise, if A is smaller, which reveals a smaller face is detected in the 

image, that represents that human face is far from the camera. 

    In order to better understand the influence of proportion of a human face on the 

accuracy, we will calculate the recognition accuracy and IoU value for different sizes 

of faces. 

 

Figure 4.9 The relationship between accuracy and facial proportion 

    Among them, IoU value can more accurately reflect the accuracy of the recognition 

because we set the IoU > 0.5 is the correct recognition results, but if the IoU value tends 

to 1.0, then the bounding box of the face is close to the actual results. 

    In Figure 4.9, the histograms in Fig. 4.9 represent the proportion of a face having 

different sizes in the samples. The green line represents the changes in accuracy, 

meanwhile, the blue line stands for the change in IoU. The y-axis scaling on the left 

corresponds to the accuracy and the IoU value, the y-axis scaling on the right 

corresponds to the proportion of the sample. 
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    From the histogram, we see that if the proportion of a human face is small, the 

number of samples is large; if the ratio of faces increases, the number of samples 

gradually decrease. At the same time, both the accuracy and the IoU value are 

increasing first and then decrease. This is because: (1) if the face occupies a large 

proportion area of the image, it is easily to be recognized and the accuracy is high; (2) 

the proportion of the face area to the image is large, the number of samples is less, and 

the insufficient training of the model for this sample. Therefore, we see that the values 

of accuracy and IoU have been changed around the ratio of 0.4, which begins to decline, 

because there are few samples, the statistical results fluctuate greatly. 

    In addition to the influence of face proportions, we also analysed the influence of 

face angles based on accuracy and IoU. We got the results as shown in Figure 4.10. 

 

Figure 4.10 The relationship between accuracy and facial angle 

 

    We see from Figure 4.10, if the angle of a human face is closer to 90º, the accuracy 

and IoU value are higher. This is the reason why the number of samples at 90 º is the 

biggest one. When the face angle is about 20 º and 160 º, both the values of accuracy 
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and IoU are mutated, it is also because there are few samples in these two angles; the 

accuracy is unstable, and the statistical results fluctuate very much. 

    To sum up, we conclude: 

• The recognition accuracy of this model is mainly affected by the proportion of 

the face and the number of samples. If the face ratio is large, the recognition 

accuracy will be higher; if the number of samples is large, the recognition 

accuracy will be higher. 

• Our model has the highest accuracy for face recognition with a medium-sized 

face and a small angle of inclination, the accuracy becomes lower when the 

inclination angle becomes larger. 

4.4 Classification Results 
 

Classification is also an important part of face recognition because it directly affects 

the final results. In order to verify the classification results, we use the test video for 

verification. In this thesis, we have five participants. They are: Person No.1, Person 

No.2, Person No.3, Person No.4, and Person No.5. Our expectation is that when a 

person walks in front of the camera, the system will automatically detect the object 

within a certain distance. Of course, beyond a range, the computer can hardly recognize 

small faces. We list the example of recognition results in Figure 4.11. 
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Figure 4.11 Results of face recognition and classification 

 

    From Figure 4.11, we show the classification results of Person No.5. The first two 

images represent the recognition results within the range, and the other two images are 

the resulting images beyond the identification range because the small object is very 

difficult to be identified. We also revealed that face proportion plays an important role 

in recognition, the proportion of faces in the image is small so that it is difficult to be 

identified. Of course, we also found that in our test video, beyond 4 meters, the face 

will not be detected. 

4.5 Limitations of the Research 
 

Although the model introduced in this thesis has been successfully applied to face 

recognition, but the face recognition based on deep learning still has some limitations. 

We will introduce the parts that need improvement below: 

(1) Because the model of deep learning is very flexible; with a large number of 

architectures and node types, training a large neural network is time-consuming and 

requires high computer hardware; hence, low budget and low cost are difficult to 

achieve. 

(2) The outcome of deep learning is based on strict conditions because it requires 

support from a large amount of data. These data are the criteria for successful model 

training. This thesis uses data augmentation to enhance the data set; otherwise, the 

model is difficult to be fully trained. 
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(3) There are only five participants in this thesis. In future, we will consider more people 

to participate in this project. 
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Chapter 5 
 

Analysis and Discussions 

 

 

    In the previous chapter, the experimental results have been 

presented, but there is no excessive analysis and comparisons. 

In this chapter, we will focus on analysing the results of 

experiments and comparing the effects and accuracy of 

different models. Finally, we will explain the reasons for using 

this model and the contributions we made in this thesis. 
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5.1 Analysis 
 

We detailed the direct results of face recognition in the last chapter. In this chapter, we 

will analyse the accuracy between the different models. At the same time, this chapter 

explained another model: SSD Inception (v2) we used. Although the results of this 

model have room to improve them better, the outcomes reflect the availability of our 

model framework. 

5.1.1 SSD Inception (v2) Model 
 

In Chapter 4, our network model and its experimental results were depicted in detail, 

while we also utilize other CNNs models based on SSD meta-architecture to compare 

with the model we introduced before. The SSD Inception (v2), as a combined CNNs 

network model, was used to face recognition by using the same training dataset in this 

project. The SSD Inception (v2) uses Inception v2 as the basic architecture of the CNNs 

model and applies the method of SSD meta-architecture to improve the Inception (v2) 

network model; our purpose is to achieve the better results of object recognition. The 

flowchart of SSD Inception (v2) is shown in Figure 5.1, which demonstrates the 

processing steps of face recognition based on SSD Inception (v2) model, including 

images labelling, random crop and reshape image, feature extraction, predict location, 

and classify prediction; then, we can achieve face recognition. 

 

Figure 5.1 Flowchart of SSD Inception (v2) model 
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    The SSD Inception (v2) model is a large CNNs model with 282 layers of convolution 

layers, the model distribution is shown in Table 5.1. This model is able to be divided 

into three main parts: image processing, feature extraction, and box predictor. The part 

of image process is from the 1st convolution layer to the 26th convolution layer, which 

achieves the effects of data augmentation through adjusting image parameters. The part 

of feature extraction is from the 27th convolution layer to 258th convolution layer, which 

extracts the abstract features of images from a deep hidden layer to simulate visual 

nervous system. The part of box predictor layer is from the 259th convolution layer to 

282nd convolution layer, which utilizes the SSD meta-architecture to improve the 

predict accuracy and frame per second (FPS) of predict results. 

Table 5.1 The distribution of SSD Inception (v2) 

 Image processing Feature 

extraction 

Classification 

and Localization 

Layer 1st to 26th layer 27th to 258th 

layer 

259th to 282nd 

layer 

Action Data augmentation/ 

adjusting image 

parameters 

Use the base 

Inception_v2 

network 

Use SSD method 

for end-to-end 

object detection 

and recognition 

 

    The architecture of SSD Inception (v2) is shown in Figure 5.2, which indicates the 

relationship between image process, feature extraction, and meta-architecture. In the 

part of image process, the 1st convolution layer to 6th convolution layer execute the 

action of random crop image, which deal with the shape of objects in images; the 7th 

convolution layer to 26th convolution layer are responsible for re-adjusting the number 

of rows, columns, and dimensions of images matrix, which is the processing of reshape. 

Thus, the part of image processing section mainly performs data augmentation and 

image adjustment. In the part of feature extraction, it utilizes basic network of Inception 

(v2) for feature extraction, which involves 231 convolution layers; in the part of box 

predictor, it applies the method of SSD meta-architecture, which utilizes six different 

feature layers in the end of the base network of Inception (v2) to predict the location of 

box. Each box predictor includes four convolution layers, which two convolution layers 
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are used to implement object classification and two convolution layers are employed to 

execute object localization. 

 

Figure 5.2 Architecture of SSD Inception (v2) 

 

    In the model SSD Inception (v2), it costs approximately 82% time in the part of base 

network for feature extraction and spent about 8% time in the part of SSD meta-

architecture for object classification and localization, around 10% time was spent in the 

part of image processing. The SSD Inception (v2) including the data augmentation 

section, is difficult to utilize external data augmentation based on the integrity and 

complexity of its model. In the actual operation of face recognition, its huge network 

model will also cause overfitting problem, it is also a disadvantage of this model. 

Therefore, a relatively simple CNNs model might have better accuracy in single object 

detection. 

5.1.2 Simplified SSD model 
 

The simplified SSD network is an end-to-end object detection and recognition model 

based on the method of SSD meta-architecture, the architecture of the simplified SSD 
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network model is shown in Figure 5.3. It includes six convolution layers, two fully 

connected layers, and we dropout optimization between convolution layers and fully 

connected layers. The convolution layers involving 55 convolution kernel and 33 

convolution kernel to capture the wide and small range of the image information; the 

1st convolution layer utilizes 55 convolution kernel and 2nd to 6th convolution layers 

adopt 33 convolution kernel. For two fully-connected layers, one of the fully 

connected layers carries out the prediction of location of bounding box; another fully 

connected layer executes the classified prediction. We introduced the network model 

in detail. 

 

Figure 5.3 Architecture of simplified SSD network model 

 



70 

 

This model is simpler than SSD Inception (v2), the overfitting is relatively easy to 

prevent. We adopted the dropout method in the end of convolution layers to optimize 

the output results in fully-connected layers. Therefore, this network model can 

effectively avoid overfitting under the sufficient samples of the training dataset. We 

utilized the external data augmentation method based on the low complexity of this 

model. We have labelled 500 facial images and each image generates 50 images by 

scaling to the same size, random flip, random rotate, random crop, scale to the same 

size, and random color adjustment. Finally, we used 20,000 images to training. The best 

accuracy of four different models is more than 90%, which proves the correctness of 

our inference. 

 

5.1.3 Comparisons 
 

5.1.3.1 Comparisons of Architecture 
 

We described the SSD Inception (v2) model and Simplified SSD model in this Chapter. 

We are going to compare these two models with each other in this section. The 

comparison is shown in Table 5.2. The SSD Inception (v2) has internal data 

augmentation in network model, while its difficulty is to use external software for data 

augmentation, which limits the amount of supervised training dataset; the simplified 

SSD network model has not internal data augmentation and its facility to adopt external 

software for data augmentation. At this point, the SSD Inception (v2) model 

outperforms Simplified SSD network model based on its internal image process, while 

higher operation leads to overfitting. Therefore, it is difficult to exert on its performance 

if there is no sufficient amount of training dataset. In additional, the SSD Inception (v2) 

utilizes the base inception (v2) network for feature extraction, while the Simplified SSD 

model adopts the six-convolution layer network by using TensorFlow. 

    Thus, the SSD Inception (v2) model is more difficult to be optimized for overfitting 

issue based on its large amount of feature extraction layers, while the Simplified SSD 

network model is able to be outstanding avoid the overfitting issue. The SSD Inception 

(v2) model adopts the fully convolutional layer for object classification and localization 

by using six different size of feature map, while the Simplified SSD network model 
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utilizes two fully connected layers; the SSD Inception (v2) adopted 11, 22, 33 

convolution kernel to capture image information, and the Simplified SSD model 

applied 33, 55 convolution kernels. Both of network models apply the method of 

SSD meta-architecture, which utilizes end-to-end object detection and recognition to 

ensure high FPS of verification. 

Table 5.2 Comparisons of architectures 

 SSD Inception (v2) Simplified SSD model 

Data augmentation Internal (1st layer to 26th 

layer) 

External software 

Feature extraction 231 convolution layers 6 convolution layers 

Box prediction 24 fully convolution layers 2 fully connected layers 

Convolution kernel 11 conv; 22 conv; 33 

conv 

55 conv; 33 conv 

 

5.1.3.2 Comparisons of Training Time 
 

The learning rate indicates the effective training time of the model, if the effective 

training time is shorter, the model is trained faster. If the learning rate is infinitely close 

to 0 and no longer fluctuate denotes the final training time. We show the comparison 

of training process of two models in Table 5.3, which includes training time, training 

steps, effective training time, and batch size. Amongst them, the setting of batch size 

depends on the performance of the training machine. We found that if we set the batch 

size to 20 in SSD Inception (v2) model and the batch size to 50 in the Simplified SSD 

model, the algorithm can obtain the best and fastest training results. We got the final 

training time based on these batch size selected. 
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Table 5.3 Comparisons of training process 

 Training 

time 

Training 

steps 

Effective training 

time 

Batch 

size 

SSD Inception (v2) 20h 9m 

42s 

17.31k 2h 27m 38s 20 

Simplified SSD 

Model I 

3h 32m 

1s 

30.00k 2h 8m 5s 50 

Simplified SSD 

Model II 

3h 32m 

17s 

30.00k 2h 8m 54s 50 

Simplified SSD 

Model III 

3h 32m 

5s 

30.00k 2h 8m 51s 50 

Simplified SSD 

Model IV 

3h 33m 

39s 

30.00k 2h 9m 31s 50 

 

    From Table 5.3, we find that the total training time, effective training time, and steps 

for both CNNs models. Among them, the effective training time refers to the training 

time before the value of the learning rate converges and tends to 0. Since the internal 

structure of SSD Inception (v2) is too large, we are not sure whether the computer 

configuration can afford training, so, we did not set a certain number of training steps 

for this model. After training for 20 hours, we stopped training. At this time, the number 

of training steps reached 17,310. However, we found that the training time with 

fluctuating learning rate was only 2hours and 27minutes; the Simplified SSD Model I 

took more than 3 hours after 30,000 training steps; the simplified SSD Model II spent 

3 hours after 30,000 training steps; the Simplified SSD Model III took more than 3 

hours through 30,000 training steps; the Simplified SSD Model IV used more than 3 

hours after 30,000 steps training. 

    According to Table 5.3, it is able to summarize that the training time of the Simplified 

SSD network models is shorter than that of SSD Inception (v2) model, while the 

training steps of the Simplified SSD network models are much more than the SSD 

Inception (v2) model. The simplified network model trained more steps with less time, 

because the network model of SSD Inception (v2) is much more complex than the 

Simplified SSD model. However, the effective training time of Simplified SSD network 

model and SSD Inception (v2) model are very close, the shortest effective training time 
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of Simplified SSD network Model I used more than 2 hours; the effective training time 

of SSD Inception (v2) model cost two and half hours. Therefore, learning rate of the 

Simplified SSD network model is slightly better than the SSD Inception (v2) model, 

the training efficiency is better than SSD Inception (v2). 

5.1.3.3 Activation and Loss Function Comparisons 

• Activation Function 

The activation function of the Simplified SSD network is adopted Leaky ReLU; the 

SSD Inception (v2) utilizes ReLU. The comparisons of activation function of two 

CNNs model is demonstrated in Table 5.4. The Leaky ReLU function and ReLU_6 

function is shown below, 

                                 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥       𝑥 ≥ 0
0.1𝑥 𝑥 < 0

                                  (5.1) 

                                 Re𝐿𝑈6(𝑥) = max(0, 6, 𝑥)                                           (5.2) 

Table 5.4 Comparisons of activation function 

Models Activation Function 

The Simplified SSD model Leaky_ReLU 

SSD Inception (v2) ReLU_6 

 

    The ReLU_6 is defined by using TensorFlow, which is able to solve the gradient 

vanishing problem; if the training parameter deactivated, then it is difficult to be 

reactivated. The input parameter might be deactive, when the input parameter is less 

than 0 or greater than 6, the Leaky ReLU can be used to solve the de-active problem 

effectively. 

• Loss Function 

The comparison of loss function is shown in Table 5.5. We find that the loss function 

of the Simplified SSD network model is utilized cross entropy and smooth L1 while the 

SSD Inception (v2) uses sigmoid and smooth_L1. The equation of cross entropy and 

smooth L1 of the Simplified SSD model shows in equation (5.3) and (5.4). 

                                      𝐿𝑐𝑙𝑠 =  − ∑ 𝑞𝑘𝑙𝑜𝑔𝑝𝑘
𝑛𝐶𝑙𝑎𝑠𝑠
𝑘=1                                         (5.3) 
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                                𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) =  {
|𝑥| − 0.5   |𝑥| > 1

0.5 𝑥2        |𝑥| ≤ 1
                           (5.4) 

where the classification loss function of SSD Inception (v2) model is 

                                         𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =  
1

1+ 𝑒−𝑥                                        (5.5) 

Table 5.5 Comparisons of loss function 

 Classification/Localization Loss 

function 

Formula 

Simplified 

SSD model 

Classification loss function Cross 

entropy 
𝐿𝑐𝑙𝑠 =  − ∑ 𝑞𝑘𝑙𝑜𝑔𝑝𝑘

𝑛𝐶𝑙𝑎𝑠𝑠

𝑘=1

 

Localization loss function Smooth L1 𝑓(𝑥)

=  {
|𝑥| − 0.5   |𝑥| > 1

0.5 𝑥2        |𝑥| ≤ 1
 

SSD 

Inception 

(v2) 

Classification loss function  Sigmoid 
𝑓(𝑥) =  

1

1 + 𝑒−𝑥
 

Localization loss function  Smooth L1   𝑓(𝑥)

=  {
|𝑥| − 0.5   |𝑥| > 1

0.5 𝑥2        |𝑥| ≤ 1
 

 

5.1.3.4 Comparisons of Loss Value 
 

We also analyzed the loss value results of the Simplified SSD network model and the 

SSD Inception (v2) network model. The loss function graph of SSD Inception (v2) 

model is demonstrated in Figure 5.4, the loss function of the Simplified SSD network 

models is displayed in Figure 5.5 to Figure 5.8. The loss function measures the unit of 

SSD Inception (v2) model and the Simplified SSD model are different because they 

adopted different loss functions. From the comparisons, we find that the loss value of 

SSD Inception (v2) model starts from around 32, and the final value of loss function 

around 1.86; the Simplified SSD Model I has the lowest value of loss function, the 

value of loss function starts around 180, and the final value of loss function is less than 

9; the final value of loss function of the Simplified SSD Model II is 94.87, and the 

training time is longer than the Model I; the final value of loss function of the Simplified 

SSD Model III is around 13.33 and the Model IV is around 136. Therefore, the 
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Simplified SSD models are better than the SSD Inception (v2) model in the value of 

loss function, because the loss function of the Simplified SSD model is relatively low. 

However, because the training process is prone to occurring overfitting problems, this 

does not mean that the training effect of the Simplified SSD model is better than that 

of SSD Inception (v2). We also need to compare the final accuracy of the model. In the 

following, we will mainly introduce the prediction precision of the two models. 

 
Figure 5.4 Results of loss function of the model SSD Inception (v2) 

 

 
 

Figure 5.5 Results of loss function of the Simplified SSD Model I 
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Figure 5.6 Results of loss function of the Simplified SSD Model II 

 

 
 

Figure 5.7 Results of loss function of the Simplified SSD Model III 
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Figure 5.8 Results of loss function of the Simplified SSD Model IV 

 

5.1.3.5 Precision Comparisons 
 

In this thesis, the same training images and verification images are adopted in the 

Simplified SSD model and the SSD Inception (v2) model. After training, we got the 

precision of the Simplified SSD model of four models with different parameters and 

the SSD Inception (v2). The comparisons with regard to precisions for two network 

models are shown in Table 5.6. From the model comparisons, we found that the 

precision of the Simplified SSD models is much higher than that of SSD Inception (v2). 

In four Simplified SSD models, the Model IV has the highest precision, which can reach 

90.18%. Therefore, the Simplified SSD models are more suitable than SSD Inception 

(v2) network model for face recognition. 

Table 5.6 Comparison of precisions 

Models Precisions 

SSD Inception (v2) 65% 

Simplified SSD Model I 88% 

Simplified SSD Model II 88% 

Simplified SSD Model III 89% 

Simplified SSD Model IV 90% 
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    The SSD Inception (v2) model is more complex than that of the Simplified model, 

but the verification accuracy is lower than that of the Simplified SSD model. The 

reasons can be divided into threefold: 1) SSD Inception (v2) model has high complexity, 

which is difficult to achieve external data augmentation and the internal image 

processing is also difficult to be controlled; it is easy to cause insufficient training of 

data sets; 2) the SSD Inception (v2) model has a higher depth and more parameter, 

which makes it more difficult to optimize the overfitting problem; 3) the depth of CNNs 

network model is hard to avoid the vanishing gradient problem. 

5.2 Discussions 
 

From the analysis of this thesis, we found that the SSD Inception (v2) model is more 

complex than the Simplified SSD model, because SSD Inception (v2) contains 282 

convolution layers, while the Simplified SSD model has only 6 convolution layers. The 

Simplified SSD model dealt with the input images from the external data augmentation 

including 20,000 images, while the training dataset of SSD Inception (v2) model only 

is able to improve it by using the internal image process. However, the precision of the 

Simplified SSD model is better than the SSD Inception (v2) model because large 

models have complex structures that are prone to solving different problems. 

    We compared the Simplified SSD model and SSD Inception (v2) model, we found 

that the simplified model has shorter training time and higher accuracy. Therefore, a 

complex CNNs model is not necessarily better than a simple CNNs model, the 

suitability of the training dataset and the CNNs model is also important. With the 

development of deep learning model, the depth and complexity of CNNs models are 

continuously and constantly being developed, but the precision of validating has always 

been difficult to achieve a breakthrough improvement, which requires high 

performance of the hardware for training. It reflects the bottleneck in the development 

of deep learning in CNNs model. 
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Chapter 6 
 

Conclusion and Future Work 

 

 

    We have elaborated on the model and algorithm on details. 

After verification, we know that our model can be used to 

recognize human faces. In this chapter, we will summarize this 

thesis and our results; we will also depict our future work and 

the possible improvements in this thesis. 
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6.1 Conclusion 
 

The purpose of this thesis is to identify the identity of each person in front of a camera. 

The main analysis is the classification of a human face and the influence of proportion 

of the human face on the accuracy. We propose five classes; each class represents a 

classification. Under the same model framework, we compared four models with 

different parameters and summarized the best model as our final model. During the 

analysis phase, we compared the training results of different models under a unified 

dataset. We have found that our model using deep learning can detect and recognize 

faces very well. After completing face recognition, our main contributions are 

summarized as follows: 

    We have found that the proportion of a face affects the accuracy. When a person is 

closer to the camera, the face becomes larger, the confidence of the program tends to 

higher and the recognition result is good; when the person is far away from the camera, 

the confidence gradually decreases; the system cannot detect it until the face is small. 

Therefore, we find that our model has certain limitations for detecting small objects. 

    In the comparison of different model frameworks, our model performs better than 

SSD Inception (v2) which has greater usability in surveillance. Our model has the 

highest accuracy of 90.18% for different face recognition projects, and each class is 

well recognized. The recognition distance of SSD Inception (v2) is very short, and the 

requirements for face data sets are relatively high, the degree of completion under the 

same data set is not as good as our model. 

 

6.2 Future Work 
 

Our project has a lot of expansion in future, including the following aspects, 

    (1) Although our model has well validation results, but this may not apply to any 

kind of training data set. In future, we will optimize our model based on the existing 

results of this project so that the model can be applied to different data sets. 

    (2) We can use the same training dataset to test more models, such as FaceNet or 

MobileNet. This may also include models under different platforms, not limited to 
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TensorFlow, so as to better select a model that is more stable and suitable for face 

recognition. 

    (3) We may add more values which are not only limited to face recognition, but also 

include the recognition of genders and facial expressions. Of course, this requires us to 

innovate our datasets and models. 

(4) We are trying to use other neural networks to achieve face recognition, not limited 

to use convolutional neural networks (CNNs) only. 

(5) We may use windows of spatiotemporal data instead of feature vector to better 

express neuron parameters, and we may replace TensorFlow in NeuCube as the model 

framework in the future. 
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