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Abstract— The proposed feasibility analysis introduces a new 

methodology for modelling and understanding functional 

Magnetic Resonance Image (fMRI) data recorded during human 

cognitive activity. This constitutes a type of Spatio-Temporal 

Brain Data (STBD) measured according to neurons spatial 

location inside the brain and their signals oscillating over the 

mental activity period [1]; thus, it is challenging to analyse and 

model dynamically. This paper addresses the problem by means 

of a novel Spiking Neural Networks (SNN) architecture, called 

NeuCube [2].  After the NeuCube is trained with the fMRI 

samples, the ‘hidden’ spatio- temporal relationship between data 

is learnt. Different cognitive states of the brain are activated while 

a subject is reading different sentences in terms of their polarity 

(affirmative and negative sentences).  These are visualised via the 

SNN cube (SNNc) and then recognized through its classifier. The 

excellent classification accuracy of 90% proves the NeuCube 

potential in capturing the fMRI data information and classifying 

it correctly. The significant improvement in accuracy is 

demonstrated as compared with some already published results [3] 

on the same data sets and traditional machine learning methods. 

Future works is based on the proposed NeuCube model are also 

discussed in this paper. 
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The human brain processes input information across 
different evoked cognitive states, acting as a complex 
information processing machine [1]; therefore, a proper model 
is needed that is capable of tracing this information and the 
mental processes that generate it. Over the past decades, a 
variety of imaging techniques have been developed to address 
this challenge and analyse the spatio-spectro temporal activity. 
They differ in what they can measure and what level of spatial 
and temporal resolution they can obtain [4]. Some of these 
techniques are Magneto Encephalography (MEG), Electro 
Encephalography (EEG) and fMRI. MEG and EEG are based on 
magnetic and electrical activity of the brain and possess high 
temporal resolution but unclear localization (i.e. brain signals 
are recorded in the sequence of milliseconds) [4]. In contrast, 
fMRI data is defined as a powerful STBD that presents neuron 
localization with high resolution [4]. This data is based on 
magnetic resonance, which can be affected by blood flow 
changing against neuronal activities. In fact, active neurons 
demand high level of oxygen to start firing, which is carried by 
blood cells. By increasing the number of spikes in activated 
brain regions, blood flow will be increased in those particular 

parts; therefore, fMRI data is based on Blood Oxygenation Level 
Dependent (BOLD) contrast [5]. Patterns of voxels activity are 
influenced by BOLD responses, while different regions of the 
brain are activated by means of different stimulus. The fMRI 
data provides the spatial localization of the brain in a three 
dimensional cell (i.e. a voxel) and the temporal information as 
the fourth dimension. Each of these voxels represents fluctuation 
of BOLD intensity of thousands of neurons over time.  
Additionally, the fMRI technique is not considered harmful on 
subjects. All of these reasons, brought researchers to choose 
fMRI technique to study the brain functional activities. There are 
numerous common objectives pursued in fMRI data analysis, 
including: (1) localizing the activated brain regions during a 
particular mental task; (2) detecting the brain information 
pathways corresponding to the functional activities; and (3) 
predicting disease or psychological states [4]. 

In this paper, available online fMRI data [6] of one subject 
is analysed to study how affirmative/negative sentences affect 
the neural activities and whether different sentences in term of 
their polarity can be recognized or not. 

To achieve these goals, we have used the recent proposed 
NeuCube SNN architecture [1] to perform multi voxel patterns 
analysis of the fMRI data. The spiking neurons of the cube are 
able to evolve new connections according to the temporal 
information ‘hidden’ in data. This information can be visualised 
in the SNNc and the output classified. An evolving SNN (eSNN) 
is also used in output classifier [7, 2]. 

In the following section, the NeuCube-based model is 
presented. Then, in section II the model design and 
implementation is described. In section III. A, dynamic brain 
activities are visualised. In section III.B the classification 
outputs are presented and compared with already published 
results on the same data set and also traditional Machin learning 
methods. Finally, conclusion and future works are presented in 
section IV and V respectively. 

I. A SPIKING NEURAL NETWORK METHODOLOGY 

FOR MODELLING FMRI SPATIO-TEMPORAL DATA OF 

BRAIN COGNITIVE ACTIVITIES 

A. Spiking neural network for modelling STBD 

The brain processes the input information in the form of 
temporal binary events called spikes [1].  



Spiking Neural Networks (SNNs) are inspired from a 
biologically realistic model of the brain that processes the 
dynamic input information across a large number of spiking 
neurons. SNNs are considered as the third generation of neural 
networks. In this network, during the learning process, the 
connection weights between neurons are modified by 
transferring the spikes across the synaptic connections. SNNs 
structure have been used in many approaches, such as encoding 
the continuous data into trains of spikes [8] and data learning [9, 
10, 11]. Some of their remarkable features are: compact 
representation of space and time; fast data learning; time-based 
and frequency-based information representation [2, 12]. Due to 
these reasons, SNNs can be considered as one of the best 
techniques for STBD analysis, such as fMRI data.  

In this study, we used a NeuCube-based model for cognitive 
fMRI data learning, classification and understanding. This 
model used an eSNN approach during its learning process and a 
dynamic evolving SNN approach (deSNN) in its classifier. 
These two methods are briefly introduced in the following. 

1) The eSNN paradigm extends the evolving connectionist 

system models with the use of integrative and fire model (IFM) 

of a neuron and Rank-order (RO) learning [2]. The RO learning 

motivation is based on the assumption that most important 

information of an input pattern is contained in earlier arriving 

spikes [13]. It establishes a priority of inputs (synapses) based 

on the order of the spike arrival on these synapses for a 

particular pattern, which is a phenomenon observed in 

biological systems [2, 13, 14]. 

2) deSNN: based on this learning rule, for every training 

sample, a new output neuron is created and connected to the all 

neurons of the cube.  Their connection weights are initially set 

to zero and then established by RO rule. Also they will be 

dynamically modified by further incoming spike trains.  

B. Brain-like NeuCube for fMRI data modelling   

For fMRI data implementation, we used NeuCube as a 
computational model, presented in a software simulator written 
in MATLAB.  The NeuCube is a brain-inspired evolving spiking 
neural network architecture for STBD analysis and knowledge 
extraction from the data and the brain processes that generates it 
[15]. A representation of the NeuCube for fMRI data modelling 
and classification is shown in Fig.1. 

 This NeuCube consists of three significant modules: fMRI 
data encoding and mapping; unsupervised learning and brain-
like SNNc visualisation; supervised learning and classification 
output validation.  

- In the first module, data is spatially mapped to a 3D 
cube, according to the voxel coordinates. Then, pre-
selected voxel activity patterns of particular brain 
regions are encoded into spike trains using Address 
Event Representation (AER) algorithm [14, 16] and 
later fed into the SNNc via inputs neurons. 

- In the evolving SNNc module, unsupervised learning is 
performed using Spike-Timing Dependent Plasticity 
(STDP) learning rule [2]. In this module, the spatio-
temporal relationship between data are encoded to the 

connection weights. These weights are influenced by the 
temporal relationship between two active neighbour 
neurons. In fact, when the spike trains are continuously 
fed into the SNNc in their temporal order, the 
connection weight between two neurons will increases 
or decreases depending on the timing of post-synaptic 
action potential in relation to the pre-synaptic spike. 
Consequently, all connection weights are established to 
the trained network. 

 

Fig. 1. A block diagram of the NeuCube architecture with its main modules for 
a case study on fMRI 

- In the output classification module, supervised learning 
of the spike sequences is performed using deSNN 
algorithm [17]. When a new data without class label 



(test data) is propagated to the network, an output 
neuron is created and its connection weights are 
calculated. These new connection weights will be 
compared with those ones generated during the 
unsupervised learning. Then testing data will be labelled 
with the label of existing neurons that have closest 
connection weights. Therefore, the same neurons are 
spiking to recall the same temporal connectivity that 
was created during the unsupervised learning [18]. 

In this study, the output neurons learnt to classify the voxel 
activity patterns of the fMRI data into two cognitive states (class 
1: the brain activity patterns while the subject is reading 
affirmative sentences and class2: the brain activity patterns 
while the subject is reading negated sentences). 

II. MODEL DESIGN AND IMPLEMENTATION  

The principle represented in Fig.1 is applied to visualise and 
classify the cognitive fMRI data through the following 
procedure: 

1. Task-related fMRI cognitive data is selected 
amongst the online available [6]. 

2. Particular brain regions of interest, which are 
activated during the mental task are detected. 

3. Selected voxels of the fMRI data are encoded into 
trains of spikes. 

4. The whole brain voxels are mapped into the SNNc 
and input neurons are allocated according to the 
input feature coordinates. 

5. Unsupervised training of the SNNc is performed 
[17]. 

6. The spiking activity and the neuron connections are 
visualised according to the voxel activity patterns 
generated by affirmative/negated sentences.  

7. Supervised training of the classifier is performed 
and classification results are then evaluated. 

8. The classification accuracy is optimized using grid 
search method and the best accuracy is reported.  

A flowchart of the fMRI data analysis via NeuCube is 
illustrated in Fig. 2. 

 

Fig. 2. A flowchart of the NeuCube framework. STDP learning rule is used 

during the NeuCube training and deSNN method is used in classifier.  

A. fMRI data description     

The known Star/ Plus fMRI data set, originally collected by 
Marcel Just and his colleagues in Carnegie Mellon University's 
CCBI [6, 19], was selected for this experimental study. Star/plus 
fMRI data sets are sequences of images from the whole brain 
volume captured every 500 milliseconds, while human subjects 
were undertaking a cognitive task. This task-related fMRI data 
set consists of a collection of trials. Each trial is started by 
presenting a stimuli (picture or sentence) that remains on the 
screen for 4 seconds. Then, a blank screen appears for another 4 
seconds. After that, second stimuli (picture or sentence) is 
presented for the next 4 seconds.  Subjects are supposed to press 
the button ‘Yes’ or ‘No’ whether a sentence describes the picture 
correctly or not. Finally, each trial is followed by 15 seconds of 
resting period before the beginning of the next trial. Each trial 
takes approximately 27 seconds corresponding to 54 fMRI data 
points (two brain images per second). The brain is partitioned 
into 27 distinct regions of interest (ROIs), each corresponding to 
different voxel activity patterns.  

When the subject is reading different sentences on the 
screen, different areas of the brain are activated with respect to 
the sentence polarity. Therefore, in this study, we selected the 
most informative voxels associated with brain regions activated 
by reading trials to run the experiments with the NeuCube-based 
model.  

B. Affirmative vs negative sentence trials 

In order to analyse the brain activity generated by sentence 
stimuli, the more corresponding activated voxels were extracted 
from the whole fMRI data. We selected the brain images 
captured during 40 trials. The first 20 trials started with a picture 
stimuli, which remains on the screen for 4 seconds, equal to 8 
fMRI sequences (2 images per seconds). That was followed by 
4 seconds rest, which is equal to another 8 fMRI sequences. 

Therefore, the onset of the sentence presentation is the 8th second 

of the trial or the 16
th

 brain image (images from i=17 to i=32). 

The other 20 trials started with a sentence stimuli which remains 
on the screen for 4 seconds. That was followed by 4 seconds rest. 

Therefore, the onset of the sentence presentation is the 0
th

 

second of the trial or the 1
th

 brain image (i=1 to i=16).  

C. An fMRI features selection approach 

An fMRI case study contains a huge number of voxels, 
according to the different brain data sizes. To analyse the voxel 
activity patters of the activated ROIs, the most suitable features 
need to be chosen. To create our computational model, we have 
selected the most appropriate features using Signal-to-Noise 
Ratio (SNR) feature selection [7, 20]. SNR evaluates how 
appropriate a variable is to distinguish samples fitting to 
dissimilar classes [7]. Features are ranked with respect to their 
SNR values.  The SNR results were obtained using the available 
online NeuCom platform [21]. The NeuCom is a generic 
knowledge engineering environment for data analysis, 
modelling and knowledge discovery developed by the 
Knowledge Engineering and Discovery Research Institute – 
KEDRI [21]. 



D. fMRI data mapping to the SNNc of NeuCube  

In order to prove the scalability of NeuCube to adapt the 
SNNc for different brain structures and data size, we visualised 
the fMRI data using two different brain mappings (M1: star/plus 
fMRI coordinates and M2: Talairach- based coordinates [22]).   

M1: The whole fMRI voxels were spatially mapped into the 
SNNc, which can evolve according to the different number of 
voxels (data size). Then, every pre-selected voxel allocated an 
input neuron to transfer its activity patterns. 

M2: Star/Plus coordinates can also be converted into 
Talairach- based coordinates [22]. We transformed the 
coordinates of the pre-selected voxels and mapped them into a 
NeuCube of 1471 spiking neurons. Each of these neurons 

represents the centre coordinate of a one cubic centimetre area 
from the 3D Talairach Atlas. To map the star/plus fMRI 
coordinates of the informative voxels, we detected the activated 
brain regions containing these voxels. Each brain region is 
defined as a Brodmann area with distinct Talairach coordinate 
inside the brain. For every voxel, we found the nearest 
Talairach-based coordinate in the relevant Brodmann area and 
mapped it to the cube. The 3D size of the cube is able to change 
to adapt the data dimension. We obtained a cube of 51x56x8 
spiking neurons corresponding to the maximum values of x, y 
and z coordinates from the Star/Plus fMRI data. Fig. 3 illustrates 
the mapping of the fMRI data into the SNNc (according to the 
Star/Plus and Talairach-based coordinates). The 20 input 
neurons were allocated and labelled with their corresponding 
brain region’s names. 

 

Fig. 3. M1: the whole fMRI data loaded into the SNNc based on the star/ plus coordinates and then 20 pre-selected voxels were allocated and labelled by brain region 

names;  M2: the 20 pre-selected voxels were mapped into the 1471 spiking neurons of the cube with respect to their Talairach coordinates. 

To transfer the STBD to the SNNc, AER encoding model 
was applied on the input voxel activity patterns. In this approach, 
if a voxel BOLD intensity value exceeds the AER threshold, a 
spike occurs [14]. Fig.4 represents an example of 5 voxel 
activity patterns were transferred into the 5 spike trains during 
16 fMRI time series. The spike trains represent the time 
relationship between neurons of the SNNc, which is 

implemented using leaky integrate and fire model of the 
neurons. After the fMRI data was fed into the SNNc, neurons 
were trained using STDP learning rule [2] during an 
unsupervised learning. Therefore, neurons learnt from spatio-
temporal patterns of the input fMRI data to create new neuron 
connections.

 
Fig. 4. An example of 5 voxel activity patterns encoded to spike trains via AER encoding algorithm. 

E. The NeuCube parameter setting  

NeuCube is a stochastic method, which means that the initial 
connections between the neurons of the cube are randomly 

created. Also, the model is highly influenced by parameter 
setting.   Some of the most important parameters of the model 
are explained in the following.  



- AER encoding threshold used to transfer the input fMRI 
voxel activity patterns into the spike trains.  

- The connection distance between neurons of the SNNc- 
Once the spike trains of the fMRI data were fed into the 
NeuCube, the initial connection between the input 
neurons and their neighbours were created based on this 
distance parameter (i.e. The initial connections of the 
SNNc are based on the small world connection rule 
where: each neuron in the cube is connected to its 
nearby neurons which are within a distance d, where d 
is equal to the longest distance between any pair of 
neurons in the cube [23]). 

- The STDP rate parameter [17]- According to this 
learning rule, the connection weight is influenced by the 
temporal relationship between two active neighbour 
neurons. In fact, their connection weight will increases 
or decreases depends on the order of neuron firing.  

- The deSNN classifier parameters- (mod and drift 
parameters). As explained in [2], an output neuron is 
evolved for every fMRI training sample and connected 
to all neurons in the SNNc. The initial connection 
weights of the output neurons are set to zero. The weight 
of every new connection is based on RO learning rule. 
This is calculated depending on a modulation factor 
(mod) of the order of the incoming spikes. The new 
connection weights will then increase or decrease 
according to the number of spikes that follow the first 
one (drift). We have set these parameters values of 0.4 
and 0.25 respectively. 

III. EXPERIMENTAL RESULTS 

As mentioned in section II.C, we have used SNR tool 
(available through NeuCom) to select the most important voxels 
containing the BOLD responses generated by sentence stimuli. 
Fig. 5 illustrates the fMRI voxels ranked by their SNR values. 
The voxel with higher SNR value represents the feature with 
most informative activity patterns. 

In this study, we have used 20 of these voxels to allocated 20 
input neurons inside the SNNc for the STBD transferring.  

 
Fig. 5. The first 20 important voxels based on SNR results (voxel number 2959 
is ranked as the highest. 

Table 1 reports the 20 pre-selected voxels and their 
corresponding ROIs according to the voxels geometric 
coordinates.  

Table I.  More activated ROIs are presented in decreasing order of SNR 

values. In bracket is the number of voxels located in every region. 
Activated brain region (number of selected voxels) 

1 'LT' (3)      4 'LDLPFC' (6) 7 'RDLPFC'(1) 

2 'LOPER' (3) 5 'RT'(2) 8 'RSGA' (1) 

3 'LIPL'(1) 6 'LSGA'(1) 9 'RIT'(1) 

We can conclude from the Table 1 that when a subject is 
making a decision about sentence polarity, more numbers of 
activated voxels (6 of them) are located on the Left Dorsolateral 
Prefrontal Cortex (LDLPFC). However, there are 8 more brain 
regions associated with this mental activity. In fact, if we look at 
the SNR results, the Left Temporal (LT) region obtained the 
highest SNR value followed by the LOPER region and then the 
Inferior Parietal Lobule (LIPL) region.  

We have taken into account this information to designed 
three different experiments (or sessions), as explained in the 
following:  

- Session I: 20 voxels were selected from a combination 
of 9 active brain ROIs, as reported in Table 1. 

- Session II: 20 voxels were selected only from the Right 
Dorsolateral Prefrontal Cortex (RDLPFC) which was 
one of the most activated brain regions during the 
sentence reading trials (resulted from “LDLPFC(6)” 
written in Table 1). In this experiment, we used only 
these voxels as inputs to the SNR algorithm to select the 
most informative ones. Then, 20 of them were selected.  

- Session III: 20 voxels were selected from the LDLPFC 
region via SNR feature selection. 

A. The NeuCube visualisation for spatio-temporal 

connections based on the fMRI spiking activity 

 After the NeuCube learning process, the spatio-temporal 
relationship between different brain regions was analysed with 
respect to the data collected. For this study, the fMRI data was 
divided into two classes according to the sentence polarity (class 
1 - the subject is reading an affirmative sentence; class 2 - the 
subject is reading a negative sentence). The evolvability of the 
model is realised in 2 ways: new input variables and data can be 
used for the SNNc training; new class labels can be evolved in 
the output classifier eSNN. Fig. 6 and Fig. 7 represent the 1471 
neurons of the brain-like cube were mapped according to the 
Talairach brain atlas. The dynamic brain activities were captured 
inside the SNNc, while the spiking neurons were trained with 
two fMRI time series (affirmative versus negative sentences) 
respectively. Blue lines are positive spikes while the red lines 
are negative spikes. The brighter the colour of a neuron, the 
stronger its activity with a neighbour neuron. Thickness of the 
lines also identify the neuron’s enhanced connectivity.  We can 
conclude from these figures that the subjects performed 
differently for different complex mental tasks. The more and 
stronger connections were formed between the neurons located 
in the left hemisphere (LDLPFC and LT) than in the right 
hemisphere (RDLPFC and RT). The connectivity was especially 



enhanced between the input neurons (i.e. the selected voxels) of 
the LDLPFC and LOPER regions. Also, the spatio-temporal 
relationship between these neurons can be segmented as a 
homogeneous region in terms of the spatial correlation between 
neighbouring neurons and their temporal spiking activities over 
the time. Fig.8 illustrates a segmentation of the activated brain 
regions captured via the NeuCube network analysis.  

 
Fig. 6. Neuron connections generated by affirmative sentences. 

 
Fig. 7. Neuron connections generated by negative sentences. 

 
Fig. 8. The NeuCube SNNc can be used to analyse the spatio-temporal 
segmentation of the activated brain regions. Each colour represents a distinct 

segmented area of the brain based on the spatio-temporal similarity. 

 Fig.9 and Fig. 10 represent the spatio-temporal connections 

between 5062 spiking neurons after the NeuCube training 
process by affirmative sentence stimulus versus negative 

sentence stimulus respectively.   The SNNc was constructed 
based on the star/plus voxel coordinates and plotted in 2D. 

 
Fig. 9. Neuron connections generated by affirmative sentences. 

 
Fig. 10. Neuron connections generated by negative sentences. 

B. EEG data classification using deSNN classifier of the 

NeuCube 

In this study, the classification results were evaluated using 
both repeated random rub-sampling cross validation (RRSV) 
and leave-one-out cross validation (LOOCV). In this 
experiment, the RRSV method has been applied with 50% 
training data and 50% test data. In order to optimize the 
classification accuracy, we have altered the value of three 
selected parameters (AER threshold, Connection distance and 
STDP rate). After a total number of 1000 model generated, the 
best accuracy was reported. The parameters that generated the 
best classification accuracy are reported in Table 2.  

Table II. Parameter setting of the NeuCube 

 AER 

threshold  

Connection 

distance 

STDP 

rate 

Firing 

threshold 

deSNN  

mod 

Session I 3.327 0.128 0.010 0.5 0.4 

Session II 2.852 0.125 0.013 0.5 0.4 

Session III 2.0929 0.108 0.014 0.5 0.4 

Table 3 summarised the fMRI data classification accuracy of 
affirmative sentences class versus negative sentences class 
obtained using RRSV and LOOCV evaluation methods of the 
NeuCube-based model. Table 4 reports the classification 
accuracy results attained via traditional machine learning 
methods simulated in NeuCome, such as Support Vector 



Machine (SVM), Multiple Linear Regression (MLR), Multi-
Layer Perceptron (MLP), Evolving Classification Function 
(ECF), and Evolving Clustering Methods (ECMC). Table 5 

demonstrates the recently published classification results of the 
affirmative sentences versus negative sentences on the same 
fMRI data [3]. These results achieved via SVM.

Table III. Classification accuracy of affirmative/negated classes using RRSV and LOOCV of the NeuCube .The sample file contains 40 examples (20 examples per 

class). Confusion table is reported on the right column to show misclassified samples after the testing (in RRSV 50% of the data used for testing: 10 out of 20) 
NeuCube 

validation 

method 

The classification accuracy resulted from NeuCube-based model 

Brain region (number of voxels) Accuracy Confusion table 

C1 C2 Total 

 

 

 

 

 

    RRSV 

Session I:  'LSGA'(1), 'LT' (3), LOPER '(3) 
'LIPL'(1), LDLPFC' (6) 'RT'(2), 'CALC'(1)'RIT'(1) 
'RDLPFC'(1), 'RSGA' (1),   

 

80% 

 

100% 

 

90% 
 C1 C2 

C1 8 2 

C2 0 10 

 

 
Session II:  RDLPFC (20) 

 
90% 

 
80% 

 
85% 

 C1 C2 

C1 9 1 

C2 2 8 

 

 

Session III: LDLPFC (20) 

 

90% 

 

80% 

 

85% 
 C1 C2 

C1 9 1 

C2 2 8 

 

 

   LOOCV 

'LSGA'(1), 'LT' (3), LOPER '(3) 
'LIPL'(1), LDLPFC' (6) 'RT'(2), 'CALC'(1)'RIT'(1) 
'RDLPFC'(1), 'RSGA' (1),   

 

60% 

 

50% 

 

55% 
 C1 C2 

C1 12 8 

C2 10 10 

Table IV. Classification accuracy for affirmative/negated sentences obtained using traditional machine learning methods (obtained via NeuCom).  

 

Method 

 

Parameter setting 

 

Accuracy 

 

Confusion table 

Class 

Performance 

Variance 

C1 C2 total   

 
0.05 

 

SVM 

Number of features used: All Features 
SVM Kernal: Polynomial Degree, 
Gamma, N/A : 1 

 
70% 

 
75% 

 

 
72.50 

 C1 C2 

C1 14 6 

C2 5 15 

         

 

MLP 

Number of features used: All Features 

Number of Hidden Units: 5 
Number of Training Cycles: 600 

Output Value Precision:0.0001 

Output Function Precisio:0.0001 
Output Activation Function: linear 

Optimisation : scg 

 

 
 

70% 

 

 
 

75% 

 

 

 
 

72% 

 C1 C2  

 
 

0.05 

C1 14 6 

C2 5 15 

         

 

MLR 

 
Number of features used: 20 

 

 
65% 

 
60% 

 
62% 

 C1 C2  
0.26 C1 13 7 

C2 8 12 

       

 

ECF 

Number of features used: 20 

Maximum Influence Field: 1 
Minimum Influence Field: 0.01 

M of N: 3 

Number of Membership Functions: 2 
Number of Epochs: 4 

 

 
55 % 

 

 
70% 

 

 
62% 

 C1 C2  

 
0.17 

C1 11 9 

C2 6 14 

 

ECMC 

Number of features used: 30 

Maximum Influence Field    : 2 
Minimum Influence Field    : 0.01 

M of N  : 3 

 

65% 

 

70% 

 

70% 
 C1 C2  

0.05 C1 13 7 

C2 6 14 

Tabless V. The classification accuracy results published in previous study on the same fMRI data set using the SVM [3]. 
 Brain region Accuracy Confusion table 

C1 C2 total 

 

 

SVM classification 

accuracy results 

published in [3] 

 

Session I: RDLPFC 

 

63.33% 

 

67.81% 

 

65.57% 
 C1 C2 

C1 63.33 36.63 

C2 32.19 67.81 

 

Session II: RDLPFC  

64.08% 
 

 

68.44% 

 

66.26% 
 C1 C2 

C1 64.08 35.92 

C2 31.56 68.44 



IV. CONCLUSION 

In this study, we have used fMRI data using NeuCube 
evolving SNN model to analyse the evoked areas of the brain 
while a human subject was reading different sentences. The 
experimental results proved the following phenomena:  

The brain activity patterns of the subject performed 
differently in affirmative versus negative sentence. With the 
proposed NeuCube-based model, we obtained higher 
classification accuracy in comparing with previous study that 
used the SVM classifier on the same fMRI data proposed in 
[3] and also traditional machine learning methods. 

The overall classification accuracy achieved during the 
experimental session I was the highest. 100% of the voxel 
activity patterns corresponding to the negative sentence 
stimulus were classified correctly; while, the accuracy of the 
affirmative sentence stimulus was 80%. We can conclude that 
the brain activity patterns of negated sentences are more 
distinguishable than affirmative sentence. 

Through the visualisation of the SNNc, we can observe 
that the NeuCube is able to evolve in size to adapt different 
STBD. Also, the visualisation proved that the left hemisphere 
(LDLPFC and LT) was more activated than right hemisphere 
(RDLPFC and RT) while reading a negative sentence stimuli. 

V. FUTURE WORKS 

Further improvement and development of the proposed 

NeuCube-based model, are believed to significantly 

contribute to the advancement in machine learning for the 

classification, segmentation and understanding of fMRI 

spatio-temporal brain data. For this reason, appropriate 

methods for fMRI data segmentation in terms of both spatial 

and temporal similarities will be defined. 

VI. ACKNOWLEDGMENT 

The research is supported by the Knowledge Engineering 
and Discovery Research Institute of the Auckland University 
of Technology (www.kedri.aut.ac.nz). The authors would like 
to acknowledge all the researchers that have contributed to the 
realization of this study. 

VII. REFERENCES 

[1]  N. Kasabov, “NeuCube: A spiking neural network architecture for 
mapping, learning and understanding of spatio-temporal brain data,” 

Neural Networks, vol. 52, pp. 62-76, 2014.  

[2]  N. Kasabov, K. Dhoble, N. Nuntalid and G. Indiveri, “Dynamic 
evolving spiking neural networks for on-line spatio-and spectro-

temporal pattern recognition,” Neural Networks, vol. 41, pp. 188-

201, 2013.  

[3]  M. Behroozi and M. R. Daliri, “RDLPFC area of the brain encodes 

sentence polarity: a study using fMRI,” Brain imaging and behavior, 

pp. 1-12, 2014.  

[4]  M. A. Lindquist, “The statistical analysis of fMRI data,” Statistical 

Science, vol. 23, pp. 439-464, 2008.  

[5]  S. Ogawa, . D. W. Tank, . R. Menon, . J. M. Ellermann, S. G. Kim, 
H. Merkle and K. gurbil, “Intrinsic signal changes accompanying 

sensory stimulation: functional brain mapping with magnetic 
resonance imaging,” Proceedings of the National Academy of 

Sciences, vol. 89, no. 13, pp. 5951-5955, 1992.  

[6]  M. Just, “StarPlus fMRI data,” [Online]. Available: 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/. 

[Accessed 13 07 2014]. 

[7]  N. Kasabov, Evolving connectionist systems, Springer, 2007.  

[8]  L. Benuskova and N. Kasabov, Computational neurogenetic 

modeling, New York : Springer, 2007.  

[9]  W. Gerstner, “What is different with spiking neurons?,” in Plausible 

neural networks for biological modelling., Netherlands, Springer, 

2001, pp. 34-48. 

[10]  H. L. Alan and A. F. Huxley, “A quantitative description of 

membrane current and its application to conduction and excitation in 

nerve,” The Journal of physiology 1, vol. 117, pp. 500-544, 1952.  

[11]  W. Maass, N. Thomas and M. Henry, “Real-time computing without 

stable states: a new framework for neural computation based on 

perturbations,” Neural Computation, vol. 14, no. 11, p. 2531–2560, 

2002.  

[12]  N. Kasabov and E. Capecci, “Spiking neural network methodology 

for modelling, classification and understanding of EEG spatio-
temporal data measuring cognitive processes,” Information Sciences, 

2014.  

[13]  N. Kasabov, “NeuCube EvoSpike Architecture for Spatio-
temporal,” in Artificial Neural Networks in Pattern Recognition, 

Lecture Notes in Computer Science, 2012.  

[14]  N. Kasabov, . V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. 
Krishnamurthi, M. Othman and P. Parmar, “Evolving spiking neural 

networks for personalised modelling, classification and prediction of 

spatio-temporal patterns with a case study on stroke,” 
Neurocomputing, vol. 134, pp. 269-279, 2014.  

[15]  K. Dhoble, N. Nuntalid, G. Indiveri and N. Kasabov, “Online spatio-

temporal pattern recognition with evolving spiking neural networks 
utilising address event representation, rank order, and temporal spike 

learning,” in IEEE World Congress on Computational Intelligence, 

Brisbane, Australia, 2012.  

[16]  S. Thorpe and G. Jacquse, “Rank order coding,” in Computational 

Neuroscience, 1998.  

[17]  S. Song, M. D. Kenneth and A. F. Larry, “Competitive Hebbian 
learning through spike-timing-dependent synaptic plasticity,” 

Nature neuroscience, vol. 3, pp. 919-926, 2000.  

[18]  E. M. Izhikevich, “Polychronization: Computation with Spikes,” 
Neural Computation, vol. 18, pp. 245-282, 2006.  

[19]  F. Pereira, “E-print Network,” 13 02 2002. [Online]. Available: 

http://www.osti.gov/eprints/topicpages/documents/record/181/3791
737.html. [Accessed 2014 07 13]. 

[20]  D. I. Hoult and R. Richards, “The signal-to-noise ratio of the nuclear 

magnetic resonance experiment,” Journal of Magnetic Resonance, 
vol. 24, no. 1, pp. 71-85, 1976.  

[21]  “Knowledge Engineering and Discovery Research Institute,” 

[Online]. Available: http://www.kedri.aut.ac.nz/. [Accessed 13 07 

2014]. 

[22]  J. L. Lancaster, M. G. Woldorff, L. M. Parsons, . M. Liotti, C. S. 
Freitas, . L. Rainey, . P. . V. Kochunov, D. Nickerson, S. . A. Mikiten 

and . P. T. Fox, “Automated Talairach Atlas Labels For Functional 

Brain,” Human brain mapping, vol. 10, no. 3, pp. 120--131, 2000.  

[23]  E. Tu, N. Kasabov, M. Othman, Y. Li, S. Worner, J. Yang and Z. Jia, 

“NeuCube(ST) for Spatio-Temporal Data Predictive Modelling with 

a Case Study on Ecological Data,” in Neural Networks (IJCNN), 
Beijing, China, 2014.  

 

 


