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Abstract 

A recent theory of perceptual mapping argues that humans process spatial information 

in a different way than previously thought. In particular, the theory suggests a process 

which, unlike SLAM, does not correct perceptual errors and does not need to integrate 

successive views when computing the map. Such a process could equally be applied for 

robot mapping.  

The purpose of this study is to implement the theory on a mobile robot, and see what 

maps can be produced. Towards this end, an algorithm based on it has been 

implemented and tested on a mobile robot equipped with a laser sensor. Its 

performance has been analyzed in relation to the traditional SLAM approaches, and 

different experiments have been conducted which cover typical problems of robotic 

mapping. Additionally, a simple method has been shown which enables a robot to 

autonomously navigate using the map created.  

The results obtained showed that the generated maps do indeed preserve a good 

layout of the environment, thus supporting the integral claim of the theory. It was also 

found that basic navigation with the produced maps is possible. The principal 

conclusion is thus that the theory shows much promise and could be used as a 

foundation for further research of human cognition and to develop new algorithms for 

robot mapping.  
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1 Introduction 

How do humans perceive their surroundings? How do we see, process and remember 

our environment? And how do we use this information to navigate? There has been 

much debate on this topic across various disciplines, from geographers (Lynch, 1960) 

to neurophysiologists (O'Keefe & Nadel, 1978) and behavioural psychologists (Tolman, 

1948). These researchers agree that what is computed is a complex map, which they 

refer to as a cognitive map (Tversky, 1993). A cognitive map is not simply a description 

of the layout of the environment. Among other things, it consists of one’s emotional as 

well as one’s physical experience of the environment. For instance, one feels that an 

outward journey often takes a longer time than an inward journey. It also depends on 

how one conceives a place as opposed to one’s direct perception of it. Kuipers’ (2000) 

Spatial Semantic Hierarchy model of a cognitive map, for example, consists of 4 

complex layers: a control layer, a causal layer, a topological layer and a metrical layer. 

While this is the most detailed and complex model to date, it is still inadequate to 

capture the full complexity of a cognitive map. 

Yet, the cognitive mapping process must begin from where perception ends. When an 

autonomous agent, be it a human or a robot, takes a step forward, it must somehow 

remember the spatial layout of things seen from the previous views. Otherwise, it 

would have no idea what is immediately behind it. Such an initial map of the 

environment, which is obtained directly from one’s perception, is referred to as a 

perceptual map. The perceptual map then provides a basis from which one’s cognitive 

map emerges. Much research has been conducted by psychologists to investigate what 

frame of reference is used by humans to compute a perceptual map (for recent work, 

see Mou, McNamara, Valiquette, & Rump, 2004; Wang & Spelke, 2000). There is little 

dispute that multiple different frames of reference are used in cognitive maps but for 

the perceptual map, the question arises as to whether it uses an egocentric frame of 

reference or an allocentric frame of reference. The former implies that the centre of 

the co-ordinate system is focused on the viewer; this requires constant updating as 

one moves. The latter implies that the centre is independent of the viewer and is thus 

more stable. In general, it was thought that a human’s perceptual map utilizes an 

egocentric frame of reference and the information is then transferred to the cognitive 
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map which uses an allocentric frame of reference (Burgess, 2006). However, how 

exactly information is transferred between the two maps has not been explained - if it 

is simply copied without further processing then the maps are, mathematically 

speaking, equivalent. 

Robotics researchers have developed some impressive algorithms to show how a 

spatial map of one’s environment can be built directly from one’s perception of it. 

They do not first compute an egocentric map and then convert it to an allocentric one. 

Rather, they build a precise metric map for the entire environment experienced. They 

refer to this process as simultaneous localization and mapping or, in short, SLAM. Their 

overriding concern is to enable the robot to know where it is. Consequently, their 

solution is to compute a precise metric map, whereby even the position of the robot in 

it is known. Humans, in contrast, do not remember their precise location in the 

cognitive map and they cannot tell the exact co-ordinates of objects in it (Passini, 

1984). 

So, how do humans compute a perceptual map? What is the solution discovered by 

nature? One of the earliest works on cognitive maps that pays attention to this 

problem is Yeap’s (1988) computational theory of cognitive mapping. Yeap argued that 

two representations are most important: a MFIS (a memory for one’s immediate 

surroundings) and an ASR (an absolute space representation). The former is the 

perceptual map as discussed above and the latter is the information extracted from 

the perceptual map to become part of one’s cognitive map. Recently, Yeap (2011) 

extended his theory to provide an explanation as to how a perceptual map is 

computed. 

This thesis provides an implementation of Yeap’s theory of perceptual mapping using a 

mobile robot equipped with laser sensors. Chapter 2 describes the perceptual mapping 

problem in detail and outlines Yeap’s theory. Chapter 3 describes the implementation 

of Yeap’s theory and the results obtained and chapter 4 concludes the thesis with a 

summary and future directions.  
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2 The Perceptual Mapping Problem 

The perceptual mapping problem is concerned with how humans compute a spatial 

layout of their immediate surroundings. Naturally, successive views of the 

environment need to be integrated to form a map - the details of such an approach 

have been much studied by roboticists, who refer to this problem as SLAM. This 

concept has dominated the field of autonomous robotics research for many years 

(Sünderhauf & Protzel, 2010). SLAM stands for Simultaneous Localization And Mapping 

and can be described as “the ability to place an autonomous vehicle at an unknown 

location in an unknown environment and then have it build a map, using only relative 

observations of the environment, and then to use this map simultaneously to 

navigate” (Dissanayake, Newman, Clark, Durrant-Whyte, & Csorba, 2001). Great 

strides have been made towards obtaining solutions for the problem, and the general 

approach is now well understood by researchers (Bailey & Durrant-Whyte, 2006). 

SLAM solutions are characterized by extreme spatial accuracy, as it is typically argued 

that this is needed to perform correct navigation in an otherwise unknown 

environment (Sünderhauf & Protzel, 2010; Williams, Dissanayake, & Durrant-Whyte, 

2002). In order to achieve such precision, probabilistic error correction has been the 

de-facto standard for many years (Thrun, 2003). SLAM has met with great success and 

the power of such algorithms has been clearly demonstrated: complex and large-scale 

environments have been mapped with great accuracy, and SLAM techniques have 

been used to successfully complete the DARPA Grand Challenge, enabling a computer-

guided car to travel autonomously for over 200 kilometres through difficult terrain 

(Thrun, et al., 2007). 

Yeap (2011) noted that the SLAM solution posed a major problem for computing 

humans’ perceptual map. Psychologists believe that information made explicit in a 

perceptual map will eventually be transferred into one’s cognitive map (Mou, et al., 

2004; Wang & Spelke, 2000). However, the precision of the information contained in 

such a map is not compatible with what is made explicit in a cognitive map. Humans 

work with inaccurate and fragmented memories in their cognitive map (Tunstel, 1995). 

Note that this does not imply that the cognitive map does not have metric information. 

Humans can have a good sense of direction even after only a short exposure to a novel 
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environment (Ishikawa & Montello, 2006). They simply do not maintain an accurate 

metric map, and consequently they cannot “read off” the exact position of things 

(including their own position) from it. 

Yeap (2011) recently developed a new approach for computing a human perceptual 

map. This chapter provides an overview of his theory. We begin, in Section 2.1, by 

highlighting some general questions that researchers often ask about cognitive maps 

and these are the questions that are also of interests to us. In section 2.2, a brief 

overview of Yeap’s computational theory of cognitive maps is presented (Yeap, 1988; 

Yeap & Jefferies, 1999). This provides the background of his work which leads to the 

development of his (2011) new perceptual theory. The latter is described in section 

2.3. 

 

2.1 General background on cognitive maps 

A cognitive map is commonly referred to as an internal spatial representation, used as 

a guide to travel by humans (Golledge, 1999). While it is safe to assume that the 

cognitive map is not necessarily a metric “map” in a cartographic sense, there is still 

much debate as to the exact nature of such a map. 

Looking at the issue from a functional perspective, Scholkopf and Mallot (1995) argue 

that the basic computational purpose of a cognitive map is to allow one to perform 

specific kinds of behaviour, such as exploration and navigation. According to them, it 

must thus include information which enables place recognition, as well as finding 

spatial relations between these places. This data in turn is gathered from observations 

about the environment (Beeson, Modayil, & Kuipers, 2008). But in what form could 

such information be stored in the map? 

A very important issue is accuracy. When moving through an environment, humans 

usually do not rely on exact measurements. Rather, they have a subjective impression 

of distance (Tunstel, 1995). A human might say an object is “a couple of metres away”, 

or even “it’s over there”. But where is over there? It becomes evident that humans can 

navigate their environment by using only very rough estimates. It has been suggested 

that cognitive maps can be constructed in several layers (Beeson, et al., 2008). A low-
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level map would consist of raw geometric input, e.g. distances and orientations. From 

this map, a higher-level representation can then be synthesized (Yeap, 1988). In an 

indoor scenario, for example, a simple low-level map would consist of walls, whereas 

the high-level map could consist of rooms. This can be seen as an analogy to human 

categorizing: a human would move from one room to another, and not directly think 

of the walls constituting these rooms (Kuipers, 2000).  

The question is of course: how would one go about separating an environment into 

disjoint spaces – which then form the high-level map? How can one recognize exits, 

the splitting points where one logical space ends and another starts (Jefferies, Baker, & 

Weng, 2008)? While this thesis will mostly focus on low-level geometry, some 

experiments will be conducted in order to see what kind of high-level maps can be 

generated, and how they could be used to travel.   

The low-level map is often referred to as a perceptual map. One important question is 

how to combine subsequent views to form it. The question arises whether they are 

combined into a continuous spatial map (Yeap, 1988), or if they are merely 

remembered as independent snapshots, with only a logical connection between them 

(Scholkopf & Mallot, 1995). Assuming that views are spatially connected, how would 

one add new objects to the existing map, especially considering errors in perception?  

When moving through an environment, humans are able to recognize and track 

familiar objects (Scholl, Pylyshyn, & Feldman, 2001). It seems thus logical that, when 

encountering a new object, it can simply be placed relative to other known objects 

which have been tracked over the last views. By employing this strategy, inaccurate 

perception is less of an issue because any global error in the view affects objects and 

reference together. Since the position of the reference target in the map is known, the 

new object can thus be positioned correctly – no matter how great the global error. 

Naturally this is possible only under the assumption that two successive views always 

overlap, and that they share common objects. If this is not the case, the individual 

becomes disoriented and makes mistakes in integrating a new view into the map. This 

can however be considered quite natural, as humans usually become disoriented when 

unable to visually track objects, for example when being blindfolded and moved to an 
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unknown environment (Wang & Spelke, 2000). As will be shown in Section 2.3, Yeap 

(2011) proposed the use of such a strategy to compute a perceptual map.  

 

2.2 Yeap’s theory of cognitive mapping 

Yeap (1988) proposed a computational theory of cognitive mapping whereby he 

argued that the cognitive mapping process must compute a representation of the local 

space that one is in and a representation of the spatial layout of one’s immediate 

surroundings. The former is referred to as an Absolute Space Representation (ASR) and 

the latter is referred to as a Memory For one’s Immediate Surroundings (MFIS). A 

network of ASRs thus becomes the basis for one’s cognitive map. While the theory was 

meant to describe human cognitive mapping, it has always been tested using a mobile 

robot. Thus, without any loss of generality, we will, from here on, discuss the theory 

from a robot’s perspective. 

 

2.2.1 Representing local spaces 

The idea of ASR computation is that one makes explicit a description of the local 

environment that has been visited. When a robot leaves the current local space and 

enters a different one, a new ASR is generated and a connection between them is 

formed. By this method a topological network of ASRs is built as the robot explores its 

environment - Figure 2.1 shows an example. Of special interest is the question of 

where one ASR ends and another begins. The robot must judge by itself and recognize 

when it has entered a new local space. The partition of an environment into these 

spaces can be quite subjective; a human might for example divide a building into 

separate rooms, and then use this network of rooms to navigate.  
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Figure 2.1: A network of ASRs (Jefferies & Yeap, 2001)

The part of the ASR boundary that leads to a different local space is called an exit, 

since the robot uses it to leave the current ASR and enter a new one. A key issue in the 

algorithm is the detection of such exits, because they are the connecting points of the 

(Yeap, 1988). They uphold the spatial relation between ASRs, and thus a robot 

can only navigate between different local spaces if it is able to identify and cross them.

An ASR must thus contain spatial information about its exits. This is especially 

important for navigation: consider a robot that has already built a network of ASRs and 

now wants to travel back to a known location. In order to do so, it has to find a route 

– this is easily accomplished by a graph search, as shown in 

. But when trying to follow this route, the robot still has to navigate from o

to the next; thus it must be able to identify the exit which leads to the correct space. 

demonstrates this: in order to find a path from ASR1 to ASR3 the robot must 

know where the correct exit is located. For this reason, exit positions are part of the 
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Remembering immediate surroundings 

From what input can an ASR - and its exits - be generated though? Yeap argues that a 

level representation of the environment is needed. He thus 

proposes the MFIS, or memory for immediate surroundings. I

memory containing the last few local spaces visited (Jefferies & Yeap, 2001)

consists of all the objects seen in these spaces in the form of a geometric map. Here 

the environment is represented by a two-dimensional map whic

geometric surfaces that have been recognized by the robot (see for example 

Figure 2.4: Surfaces inside the MFIS 

This leads to the question of what frame of reference should be used for surfaces in 

the MFIS. Are they perceived relative to the individual (egocentric), or would they be 

seen relative to a different point in the world (allocentric)? Naturally the sensory input 

is egocentric since the robot scans for surfaces and notes their distance from itself. 

However would they also be stored in the map in this way? After all, the robot is 

moving and constantly changing position. If the environment is represented relative to 

it, then the whole map would have to be changed after every step. This seems quite 

counterintuitive, since it is the world which is considered fixed and the robot which is 

 solution would be a map with a fixed coordinate system 

representing the world, where the robot position is moving relative to it 

The MFIS is thus using an allocentric frame of reference, fixed to a certain point in the 

environment. Jeffries and Yeap (1999) argue that this point need not be chosen 

arbitrarily and that the entrance of the current ASR could be used as this reference. In 

this way, the robot would perceive its immediate surroundings relative to the local 

space it is currently in. 

The Perceptual Mapping Problem 
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(Jefferies & Yeap, 2001). This MFIS 

consists of all the objects seen in these spaces in the form of a geometric map. Here 

dimensional map which, in turn, contains 

geometric surfaces that have been recognized by the robot (see for example Figure 
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counterintuitive, since it is the world which is considered fixed and the robot which is 
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When moving, the robot recognizes new surfaces that it has not seen before. The MFIS 

is then updated by integrating them into the global map. It is grown after every step, 

since every movement could potentially yield new information about the environment. 

It is reasonable to believe that there are overlapping parts between successive views 

(Yeap, 1988) and thus common surfaces between them can be identified. These 

surfaces can be used as reference targets for updating the MFIS: with them it is 

possible to determine where to put a newly encountered surface in the map. 

 

2.3 A new theory of perceptual mapping  

One significant problem with Yeap’s theory of cognitive mapping is implementability. 

While Yeap provided significant arguments as to why these representations are 

computed, there are several problems related to how this is actually done. For 

example, it was never clearly defined what an ASR is or what the extent of the MFIS 

should be. If the older parts of the MFIS are simply removed and new parts are simply 

added, then the MFIS is really a representation of the whole environment visited but 

with the most recent parts displayed. Such a map would be no different from what 

robotics researchers compute for their mobile robots using SLAM. Yet, as discussed 

earlier, SLAM is inappropriate for describing the mapping process of humans.  

Finally, this problem was solved and Yeap (2011) developed a solution which does not 

need constant updating and does not rely on an accurate computation of position 

information of surfaces/objects in view. The solution is based upon observing that 

one’s view provides a good description of the local environment which one is about to 

explore. He used the example of wandering down a corridor. As one enters it, one’s 

view down the corridor provides a good description of the local space that one is about 

to explore. As one moves inside of it, one does not need to update that description. 

However, at some point down the corridor (e.g. when one is about to move out of it), 

one needs to update the description with a new view. 

One problem remains with this idea. That is, how do we add a new view into the map if 

we do not constantly update the map with successive views? The solution came from 

asking how humans recognise where they are – they recognise familiar objects in the 

environment. Using the corridor example again, how does one know where one is 
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when one is half-way down the corridor? If one is able to recognise that the exit at the 

end is the same exit which has been observed earlier and remembered in the map, 

then one would be able to triangulate one’s position in the map. This method requires 

tracking of known objects across successive views, which is a task that humans are 

good at. If no known objects are to be found in the next view, it is time to update the 

map with information from the current view. New surfaces in the current view are 

added to the map using the same triangulation method. 

This way of updating removes the need for error correction inside the map. A mapping 

error is generally considered to be the insertion of objects at a wrong place in the map. 

If we assume that our algorithm is working as intended, such errors can only come in 

the form of wrong measurements from the robot’s sensors. The typical robot for which 

the algorithm is designed uses just two sensors: a laser rangefinder to detect surfaces, 

and an odometer to keep track of robot movement. Errors in the former only affect 

individual surfaces and are thus not critical to overall mapping success. MFIS updating 

is not impeded by a small number of faulty surfaces and can safely continue as long as 

at least one reference target can still be identified. The other source of errors, a 

wrongly measured robot movement, is far more dangerous. Traditional robot mapping 

algorithms often depend on this information – it is used as a mathematical transform 

which projects the newly seen surfaces into the coordinate space of the map. While 

the idea might seem intuitive, it is problematic because even the slightest error in the 

measured movement can have disastrous consequences. A wrongly measured 

rotation, for example, will offset all surfaces on the map together, and objects far away 

from the robot will drastically change position. But worse still, in the next step another 

such error is added to the map. Eventually the accumulated error becomes so great 

that the entire map is rendered useless. Consider Figure 2.5: the surface shown has 

been rotated by the small error ��. The mapping process is continued, and in the next 

step it is rotated again by another small error, ��. But since the errors accumulate, the 

global error between the first and last steps becomes very large.   
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Figure 2.5: Error propagation during mapping 

Here lies the key advantage of Yeap’s approach: since surfaces are inserted relative to 

a reference target, the measured robot movement is not needed at all. The MFIS can 

therefore be updated without introducing these errors. As a side effect, the robot 

keeps no account of where exactly it has travelled; it orients itself based on its 

surroundings instead. The downside to this is obviously the strong dependence on an 

accurate reference target. In the case that no common surfaces between two views 

can be found, the robot would be completely lost. This however happens very rarely 

and only in special situations, as experiments in chapter 3 will show. 

Now that a global map with all surfaces exists, the geometry in the MFIS can be used 

to construct ASRs. Since ASRs are connected via exits, these have to be identified 

before the network can be built. But how can the robot detect where one local space 

ends and another begins? Yeap and Jeffries (1999) define an exit as gap in the 

boundary of a local space. They argue that these boundaries are the surfaces which 

constitute the overall shape of the space, and that any passage between them is 

automatically an exit. The robot must recognize this whenever it reaches such a 

location. Yeap and Jeffries further argue that depth information should be used to 

determine which surfaces are boundaries and which are not, but this is beyond the 

scope of this thesis. Since all our experiments have been performed in indoor 

environments we can greatly simplify the problem: if we assume that local spaces 

represent rooms in such environments, then exits will represent doorways. Since a 

doorway is an opening in the wall of a room, it cannot be wider than the room itself. 

Consequently, an exit must always be narrower than the local spaces which are 

connected by it.  Following this assumption, the robot can easily determine how 

�� 

�� 

�� + �� Start 

After 1 step 

After 2 steps 
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narrow its current surroundings are – for example by measuring the distance of 

surfaces to its immediate left and right, similar to a human using peripheral vision.  

Whenever such a narrow passage is crossed, the robot can thus deduce it has crossed 

an exit. Once that happens, the spatial connection between the individual ASRs can be 

defined and the network can be constructed.  

Using ASRs and the MFIS, a mobile robot possesses both a rich spatial map and a 

topological network of places. By combining this information it can then navigate its 

surroundings and recognize places it has already visited, instead of creating new ASRs 

for them (Jefferies & Yeap, 2001). Here it does not matter if the sensors are inaccurate, 

because only a rough spatial connection between the ASRs is remembered. If there are 

indeed errors in perception, resulting in skewed geometry, these errors will not be 

propagated for the rest of the journey. After all, once a new ASR has been entered its 

geometry is not directly connected with surfaces from the previous space – there is 

only the logical connection in the network. The layout of every new ASR is instead built 

from scratch, resetting any propagated errors. 

In this manner some of the traditional issues in robot cognition can be circumvented. 

The loop closing problem, for example, is considered a typical challenge to robotic 

mapping algorithms (Thrun, 2003). It describes a situation in which a robot, after 

having travelled some distance, comes back to an area previously visited. If one uses a 

precise metric map, its ends would then need to connect. But if only the slightest 

sensor error is encountered, this will not be the case and the robot will get lost. Figure 

2.6 below shows a metric map of a cyclic environment which has been traversed twice. 

From the picture one can see that the robot suffered errors in sensory input, probably 

rotational, and thus mapped the same geometry twice. 
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Figure 2.6: Errors in a cyclic environment (Thrun, 2003) 

Combining ASR and MFIS information can solve this problem, since it enables the 

algorithm to recognize local spaces that have already been visited. When trying to 

build a new ASR for such a place, the robot can see from the MFIS that its position 

overlaps with another ASR, which is already known, and simply connect them 

together. Consider the images below: they show the ASR network and corresponding 

MFIS of 12 local spaces traversed. When coming back to the first space, a new ASR-12 

is created. However from the MFIS it is clearly evident that ASR-12 is part of ASR-1. 

Now ASR-1 replaces ASR-12 and it is connected to ASR-12, closing the loop.  

 

Figure 2.7: ASRs after traversing a circuitous route 

(Jefferies & Yeap, 2001) 

 

Figure 2.8: MFIS after traversing a circuitous route 

(Jefferies & Yeap, 2001)  

 

In this manner, the robot can solve the problem by simply reasoning that ASR1 and 

ASR12 are one and the same. Figure 2.8 shows the MFIS perfectly connecting at the 

end of the loop; here it is a coincidence and actually not a requirement for the 

algorithm to work. In fact, it is highly probable that the ends do not connect so 

accurately, since the MFIS is a global map without error correction. However, even if 

the ASRs in question have been displaced because of errors, they will still be in rough 
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vicinity of each other. From this the robot can then deduce that they are one and the 

same, and connect the loop in the ASR network. It must however be said that a “rough 

vicinity” is only given if the errors encountered are sufficiently small. In a case where 

the ends of the loop are not even remotely close to each other, there need to be 

additional methods for ASR identification. The robot could for example compare their 

size and shape. As can be seen in Figure 2.8, ASR12 fits smoothly into ASR1, so it seems 

probable that they represent indeed the same local space. 

Maintaining ASRs and MFIS at the same can therefore be expected to produce a useful 

layout of the environment, even without error correction. Now that the functionality 

of the algorithm has been described, we turn towards its implementation. 

 

2.4 Conclusion 

A cognitive map is a complex representation that holds one's total knowledge about 

the environment. For humans, this includes one's conceptual view in addition to the 

perceptual view of the environment experienced. The "map" computed from one's 

perceptual view is the perceptual map or what Yeap (1988) referred to as an MFIS, a 

memory for one's immediate surroundings. Furthermore, Yeap (1988) argued that a 

network of local spaces or ASRs (absolute space representations) is then abstracted 

from one's perceptual map. Such a network provides an initial abstraction of what is 

perceived. Until recently, how the MFIS and ASRs are computed remained unclear.  

Yeap (2011) provided an algorithm for computing an MFIS. In an abstract form, the 

algorithm is described as follows:  

1. Execute movement instruction and get new view 

2. Compare the current view with the previous and identify reference objects  

3. If the new view contains objects that were not seen before, determine their 

position relative to the references, and add them to the MFIS. Go to step 1. 
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3 Implementations 

This chapter describes the implementation of Yeap's perceptual theory on a mobile 

robot. The goal is to investigate whether the map produced is useful. This is judged 

subjectively by looking at the shape of the maps produced for different environments 

and by computing a network of ASRs for the robot to find its way home. If the maps 

maintain the shape of the environment traversed and also allow the robot to perform 

basic navigation tasks, then the implementation is claimed to be successful. However, 

Section 3.1 begins with a straightforward implementation of the standard 

transformation approach for robot mapping. This will allow us to have some 

comparison of the new approach with the standard approach. Section 3.2 describes 

the implementation of Yeap’s algorithm to produce the MFIS and ASRs. Section 3.3 

shows how these representations are used to find one’s home.  

All of these implementations are designed for a mobile robot which uses a two-

dimensional laser rangefinder. Laser data is easy to work with since the sensor can 

quickly generate a fairly accurate outline of the robot’s surroundings - thus not much 

effort is needed to capture the environment in spatial terms. The disadvantage with 

this, however, is an inability to perform complex object recognition and feature 

detection techniques, since laser data only consists of positions and distance 

measures.  Naturally the sensor is thus only able to generate a two-dimensional image 

which shows the distance of objects from to the robot.  

  

3.1 Traditional algorithm 

This section outlines the design of a traditional, error-correcting algorithm and 

describes the steps necessary for its implementation. 

 

3.1.1 Identifying surfaces 

The only kinds of objects easily recognized from laser data are geometrical surfaces, 

such as walls limiting a room; therefore they will constitute the robot’s representation 

of its environment. The simplest form of surface is of course a straight line, and thus it 
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will be used as basic unit of this implementation. Naturally, before the mapping 

process itself can begin, these surfaces must be synthesized from the laser input first. 

 

Figure 3.1: Recognizing surfaces 

Legend:  

R Robot position 

x Point detected by laser rangefinder 

 Surface to be used by the algorithm  

 

Figure 3.1 shows a sample laser scan, grouped into surfaces. It can be seen that this 

generalization works well with long surfaces, which in the picture are representing 

walls, and not so much with smaller objects – see for example the encircled surfaces to 

the right. In this particular example, the sensor has scanned the legs of a chair. This 

however is not apparent in the picture; the scan only shows a cluster of points closely 

huddled together. It is clearly not enough information to identify the object, and for 

this reason it will simply be treated as debris: an obstacle of arbitrary form, to be 

avoided by the robot. Longer surfaces can be considered more important, since they 

typically are the defining geometrical features of the environment in which our 

experiments are carried out. However, in this implementation all surfaces detected are 

entered into the map. If it becomes necessary later, they can then be interpreted 

further. 

 

3.1.2 Integrating views by transformation 

In order to generate a continuous map, the algorithm has to combine successive views 

of the environment. For this traditional metric map a simple coordinate transformation 

is used: the robot turns, moves, and then scans its environment. From its odometer, 

the robot knows where it has travelled; the map in memory is then rotated and 

R 
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translated so it fits on top of the current view. Such an approach seems intuitive: we 

move to a new place and then offset everything we see in the map by the distance and 

direction travelled. Theoretically all geometry should then fit together, as shown in 

Figure 3.2, and the map would be precise as a result. 

 

Figure 3.2: Coordinate transformation between two views 

The problem is of course: the surfaces do not fit together in practice. How would the 

robot know exactly how far it has travelled? What if its odometer is not precise? What 

if it slips, or travels on uneven surfaces? It is easy to see that this measure is not 

accurate; and as a result, new geometry will be placed in the wrong location, thereby 

quickly rendering the map useless. Consider Figure 3.3 for example: if there is only a 

slight error in estimating the distance and angle moved, then a new surface would be 

placed at a wrong position. 

 

Figure 3.3: Bad surface placement 

R 

Measured movement 
Actual movement 

R1 

R2 
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From this, one can deduce that error correction methods are needed which negate 

such inaccuracies and - by doing so - enable the robot to fit one view on top of another 

correctly. In chapter 2 it has been argued that this reasoning might be flawed and that 

human-like cognition may not necessarily use such correction. However, since it has 

been an integral part of many approaches in the past (Thrun, 2003), it will be used for 

the traditional, metric mapping implementation described here.  

 

3.1.3 A simple error correction method  

In traditional robot mapping algorithms, very complex methods are often used in order 

to correct errors, such as statistical optimization with Kalman filters (Thrun, 2003). 

However, since the traditional algorithm described here is not the main focus of this 

thesis, a relatively simple solution has been implemented. When exploring its 

environment, at every step the robot turns a certain angle and then moves a certain 

distance. The measured values for both variables are affected by movement errors, 

and as such the correct values (the actual angle and distance travelled) have to be 

determined. The goal here is to find a positioning where the detected surfaces of the 

current view fit as closely as possible on top of the previous view. This would then be 

the optimal positioning for updating the map. In order to find this optimal solution a 

simple heuristic search has been implemented. Heuristic optimization can be defined 

as a technique which iteratively tries to improve a candidate solution, while little or no 

knowledge about the actual problem is required (Reeves, 1993). Thus, without needing 

to analyze exactly how the errors are generated, we can conveniently use the 

technique to correct them. The candidate solution here is the imprecise measurement 

obtained from the odometer, and the heuristic is used to optimize it. For this, the issue 

has to be formulated as a search problem: 

Let θ be the angle turned and x the distance which the robot thinks it has travelled. 

They form a coordinate transformation �(�, �), leading from one view to the next. As 

a result of this movement, let �(̅θ, x) be the error observed when integrating the 

current view into the map. To correct the error, the heuristic will try to minimize this 

function. �  ̅ describes how accurately the map fits on top of the current view of the 

environment, formulated as the average error of all matching surfaces. A pair of 
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matching surfaces, as shown in Figure 3.4, is characterized by a low endpoint distance 

and a low difference in orientation: 

 

Figure 3.4: Measuring a pair of matching surfaces 

 A greater error thus results from a greater distance and rotation. Let � be the 

matching error between surfaces S1 and S2:  

����, ��	 = 
����, ��	 ∙ 
����, ��	 ∙ ����, ��	 

By multiplying the values, the error � rises with increasing difference. Here it has to be 

said that the actual formula used in the implementation is slightly more complex, in 

order to account for special cases (for example when � is exactly 0). The overall result 

however is similar: the matching error increases with surface distance and rotation.  

To calculate the average error, all surfaces in the view have to be compared: let ����� 

be the current view, containing all surfaces the robot is seeing after moving, and ���	
 

the surfaces from the previous step which are taken from the map. Rotated by θ and 

translated by x, ���	
  is transformed to ���	

� : 

���	

� = �(�, �) ∙ ���	
 

Between these views, the surfaces are compared individually. For each surface 

 ����� 


 ����� the closest matching surface ���	

� 
 ���	


�  is picked; that is, for which the 

error �(����� ,

���	

� ) is minimal. For the sake of simplicity we assume here that every 

surface can only match a single partner from another view. From all resulting pairs 

 (����� ,

���	

� ) the average surface-matching error �  ̅ can then be calculated, with � 

being the number of matches: 

� ̅ =
∑� (����� ,

���	

� )
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We are thus able to determine the overall error � .̅ The goal is now to correct the 

transformation, or rather to find the optimal combination of θ and x for which �(̅θ, x) 

is minimal.  

The heuristic search technique employed is a simple Annealing search: starting with 

the values measured by the robot, θ and x are changed by adding and subtracting 

random numbers. If the resulting error �  ̅ is less, then this solution replaces the 

previous one. Again the variables are modified, albeit by an increasingly smaller 

margin. Since most searches will start near an optimum (views are almost matching), 

the solution is likely to converge towards it. While such a search technique can be 

considered quite basic, it is also easy to implement and thus has been used for this 

simple algorithm. 

Now that the optimal combination (θ�
� 

 and  x�
� 

) with the smallest error has been 

found, it is used to transform the map and estimate the robot’s movement. Finally, the 

new surfaces from ����� can be added. With the map now updated, the robot can 

continue its travel. But how strong is this approach? Can it really account for all errors, 

and will it generate a clean and accurate map? To find out, the algorithm must be 

tested. 

 

3.1.4 Experiments  

In order to see what maps it produces, the algorithm has been tested on two different 

laboratory robots which are instructed to map their environment. Both are Pioneer 3-

DX research robots equipped with a SICK laser rangefinder; one however is older and 

has been found to move with significantly lower accuracy. Because of this difference in 

precision, the robots are henceforth referred to as “good” and “bad”. Their movement 

is controlled by user input but the mapping process is completely automatic. Also they 

have no prior knowledge about the environment or their own position.  

 

A small environment 

In the first experiment, the robots have been run through a comparatively small office 

space. The route travelled is approx. 6 meters long and both robots have traversed it in 
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8 movement steps. A small environment has been chosen in order to observe the 

placement of individual surfaces – if the algorithm performs well, then surfaces which 

are seen several times can be expected to overlap. If it does not, however, then 

identical surfaces will be placed in different locations, duplicating them on the map.  

 

Figure 3.5: Good robot in a small environment 

 

Figure 3.6: Bad robot in a small environment 

 

The above figures show the resulting maps which have been calculated by the robots, 

with the travelled route highlighted in the left picture. The surfaces are marked with a 

different colour for each view, thus it is easy to spot placement errors. In both figures, 

most surfaces are placed fairly accurately. Especially the long surfaces mapped by the 

good robot seem very precise. There are, however, some displaced lines which have 

been added as duplicate surfaces, such as the ones encircled in Figure 3.6.  

In Figure 3.6, one can also see several surfaces to the right that seemingly do not 

match at all, but occupy the same space. This a side effect of the surface recognition 

technique described earlier: small objects cannot be properly represented by lines, and 

thus they are assigned short surfaces which can change orientation when viewed from 

a different angle. In this example, the legs of several tables have been scanned. Such 

debris on the map however is not our primary concern; much more important are long 

and straight surfaces. Since these have been mapped quite precisely, it can still be said 

that the algorithm has performed well. Both images look very similar, and even the 

bad robot has placed the long surfaces accurately, thus the error correction seems to 

work well for such a small-scale map. 

R 
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A large environment

Errors from sensory input can be small at times, and barely noticeable. However, big 

problems can still arise from error propagation: since at every step a new 

transformation is added to the map, the errors accumulate with the distance travelled. 

In order to see the impact of small errors on a bigger map, the robots have been 

steered through a considerably larger office environment, shown in 

The route travelled in this experiment is approx. 90 metres long, and both robots have 

traversed it in roughly 100 movement steps. It should also be noted that the route is 

circular, meaning the robots arrived at the same place from

high precision is achieved, it can be expected that the ends of the generated map will 

connect. 
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A large environment 

s from sensory input can be small at times, and barely noticeable. However, big 

problems can still arise from error propagation: since at every step a new 

transformation is added to the map, the errors accumulate with the distance travelled. 

e the impact of small errors on a bigger map, the robots have been 

steered through a considerably larger office environment, shown in 

Figure 3.7: Floor plan of the large office environment

The route travelled in this experiment is approx. 90 metres long, and both robots have 

traversed it in roughly 100 movement steps. It should also be noted that the route is 

, meaning the robots arrived at the same place from which they started. Thus, if 

high precision is achieved, it can be expected that the ends of the generated map will 
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s from sensory input can be small at times, and barely noticeable. However, big 

problems can still arise from error propagation: since at every step a new 
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e the impact of small errors on a bigger map, the robots have been 

steered through a considerably larger office environment, shown in Figure 3.7.  

 

arge office environment 

The route travelled in this experiment is approx. 90 metres long, and both robots have 

traversed it in roughly 100 movement steps. It should also be noted that the route is 
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high precision is achieved, it can be expected that the ends of the generated map will 
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Figure 3.8: Good robot in a large environment 

 

 

Figure 3.9: Bad robot in a large environment 

As can be seen from the figures above, the maps produced by the robots differ 

significantly. While neither map connects accurately at the end, the overall shape of 

the map in the left picture is relatively good. Even though the loop is not closed, the 

map still seems usable over long stretches, and there is a clear resemblance to the 

floor plan. Not so with the bad robot: the shape of its map is extremely skewed and 

the route takes the form of a triangle instead of roughly a rectangle. This of course can 

be attributed to extreme error propagation - by the time the robot has arrived at its 

starting position, the rotational error seems to be almost 90°. It is obvious that such a 

map is unsuitable for navigation, since the robot’s estimate of its global position is 

completely wrong. Also the map is cluttered with duplicated of the same surfaces, 

completely blocking the robot’s path at times. 

It becomes thus apparent that the correction method described can only handle very 

small errors, and even then does not achieve a perfect result. When confronted with 

greater errors from the bad robot, the map is rendered useless very quickly.  

 

3.1.5 Discussion 

The experiments show that the maps created by the good robot are relatively 

accurate; however this is only the case because its sensors are quite precise. From the 

results obtained by the bad robot it becomes apparent that, even though the 

movement error has been mitigated, the maps produced are not accurate at all. Worse 

still: at many points there are surface duplicates, often deviating by a great distance. 
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Finally, even with error correction, the map of a larger environment is skewed and the 

ends of the loop do not connect. Of course, the implemented optimization is quite 

crude and greater accuracy could be obtained by error correction techniques which 

are more powerful. With them it might be possible to generate highly accurate metric 

maps, but is it really necessary to use them? Do we really need to go to such lengths in 

order to achieve maximum precision? Or can we achieve similar – or better – results 

without error correction, using a human-inspired algorithm? 

This implementation was done as an initial exercise to see how well a simple robot 

mapping strategy would work. It turns out that the algorithm works well for a new 

robot and not so well for an older robot. This is interesting and suggests that an older 

robot should be used to test the new algorithm in the next chapter, since an important 

claim of the cognitive mapping approach is that a reasonable map can be computed 

without error handling. As such, we have to ensure that the robot does produce many 

errors in its sensing. 

 

  



TESTING COGNITIVE MAPPING IDEAS ON A MOBILE ROBOT Implementations 

  
 31 

3.2 Cognitive mapping algorithm 

This section describes the implementation of the MFIS (see Section 3.2.1) and ASR (see 

Section 3.2.2) using the new algorithm described in Chapter 2. Section 3.2.3 shows the 

results obtained and Section 3.2.4 concludes with a brief discussion. Similar to the 

traditional approach, the robot has to rely on geometric surfaces, since they are the 

only objects which can be properly recognized from the laser input. 

 

3.2.1 Integrating surfaces into the MFIS 

The MFIS is a global metric map which contains all recognized surfaces and exits. As 

such it has to be grown and updated when new data is available, that is whenever the 

robot has recognized new surfaces. A “new” surface here describes one that has not 

been seen before and does not yet exist in the map. Every time the robot moves it can 

potentially find such objects: the platform might move into an unexplored area or turn 

and see its surroundings from a different angle. According to the theory, such an 

update does not necessarily need to happen after every step, but for the 

implementation described here, all new surfaces will immediately be added to the 

MFIS, so as to not miss any information. The robot, unlike humans, can remember 

everything it sees. 

The robot starts with the first view of its environment – a collection of surfaces. Then it 

turns and moves, and after this step scans its surroundings again. This is similar to the 

traditional approach, but the key difference is the way in which the new information is 

processed. For the MFIS, common surfaces are tracked across subsequent views and, 

based on them, newly seen surfaces are added. 

 

Identifying common surfaces 

The first step is to compare the current view of the environment with the previous one 

(which already exists in the map). Common surfaces can be recognized by using the 

same matching as described in section 3.1: surfaces that are roughly in the same spot 

and have a similar orientation are considered matching. One could thus argue that 

they are one and the same, just seen from a different viewpoint. This is the key to 
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updating: why keep two records of the same object? Since the surface already exists in 

the MFIS, nothing has to be done and the newly detected one can simply be ignored. 

This fits with the concept of a stable world: old information in memory is not updated, 

even if the newer surface might be more precise. Consider a human: when we track an 

object across several views, we do not update its shape or position unless it has 

significantly changed. (Intraub, 1997). Why then should the robot? 

One issue remains though: the algorithm has to recognize matching surfaces in order 

to track them. Since they are represented as two-dimensional lines they carry little 

information that would make them unique. The only way to identify a match is by 

spatial proximity and similar orientation – but how can this proximity be measured 

though? The absolute positioning of surfaces is unknown after all. The robot could still 

use its odometer to determine where it has moved between two views, but this would 

re-introduce the errors found in the traditional approach! 

The problem can be solved by taking the middle way: by using a rough estimate of how 

far it turned and travelled between them, the robot can project two views on top of 

each other. Similarly to this, humans usually know roughly where they are moving. Of 

course this could also be called a transformation, however the major difference to the 

traditional approach is that it is only used to identify common objects, but not for the 

placement of new surfaces. Once the matching surfaces are recognized the 

transformation can be discarded - and the new surfaces are processed without it. This 

matching technique can thus be simply considered a crutch for the robot, since it is the 

only way surfaces can be tracked with the laser sensor. In future implementations a 

camera could be used in order to reliably identify unique objects, removing the need 

for such a transformation completely. Potential errors from this transformation will 

only hamper the algorithm if matching surfaces cannot be detected at all between two 

views. As long as at least one such common object is identified though, no error will be 

added to the map. Consider Figure 3.10: even though the surfaces are not exactly 

overlapping, because of their small distance and similar orientation the robot can 

conclude that they are the same.  
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Figure 3.10: Matching surfaces 

 

Adding new surfaces 

Surfaces which match old ones are thus not added into the MFIS. They do however 

have a very special use: since they have been tracked across several views, the robot 

can use them as references to orient itself. This holds true especially for adding new 

surfaces: consider a completely new surface which has not been seen before. What 

position does it occupy? How does it relate to our frame of reference, the coordinate 

system? Since the robot has been moving, it does not know its accurate position in 

metric terms. The only things it has kept track of are the common surfaces, and thus 

they can be used for adding new geometry.  

The figures below demonstrate the concept. Figure 3.11 shows the current view of a 

robot’s environment and all surfaces in it. Figure 3.12 shows the MFIS after updating. 

The algorithm has identified a common surface (between the view and the MFIS) and – 

based on this information - inserted a new one into the MFIS. In order to do this, the 

distance and angle relative to this reference target were determined and, by 

transferring the measurements to the MFIS, the new surface could be placed correctly. 

Small endpoint distance 

Similar orientation 
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Figure 3.11: Surfaces in the current view 

 

Figure 3.12: MFIS when inserting a new surface 

  

 

In this way new surfaces can be added to the MFIS without having to use a 

mathematical transformation that emulates robot movement. Section 3.1 has found 

this transformation to be the major source of errors when updating, and by not using it 

such problems are avoided from the start. As a result no correction is needed.  

Greatly simplified, the implemented algorithm performs these major steps: 

1. Turn and move (controlled by the user). 

2. Do a laser scan. 

3. Generate surfaces from the laser scan. 

4. Save all surfaces into the MFIS (first view). 

5. Turn, move and scan again, generate new surfaces. 

6. Identify common surfaces between current and previous view. From these 

surfaces, the closest-matching pair will be the reference target for inserting 

new surfaces. 

7. Place new surfaces into MFIS, relative to the reference target. 

8. Repeat from 5, until stopped by the user. 

Now that the robot possesses a continuously updated global map, the ASR network 

can be created.  

 

Legend: 

 Surfaces in the view / MFIS  New surface inserted into MFIS 

 Common surface (reference target) R Robot position 

 

d 
α 

d 

α 

R 
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3.2.2 Building a network of ASRs

From the surfaces contained in the MFIS the network of ASRs is generated. An ASR 

describes the local space in wh

theory of cognitive mapping, it contains the surfaces of the current space along with 

exit information. An exit is a passage in the boundary which enables the robot to move 

to the next space and is th

order to know where one ASR starts and the other ends, this point must naturally be 

recognized. 

Once the exits have been identified, some unique information about the ASRs must be 

gathered. Since a lo

defined by the surfaces inside of it. Subsequently, the algorithm must take all surfaces 

from the MFIS and decide which ASRs they belong to. Thus there are two major tasks 

when building ASRs: 

recognized surfaces among them.

  

Detecting exits 

An exit can be considered a gap in the boundary between two spaces. When the robot 

passes such a gap it enters a different local space, for 

generated. For this implementation it is assumed that an exit will take the form of a 

relatively narrow passage between two wide spaces. Consider 

seems obvious to the human eye that th

two. The one on the right however does not have a narrow passage and, for this 

reason, no partition seems necessary.

A
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Building a network of ASRs 

From the surfaces contained in the MFIS the network of ASRs is generated. An ASR 

describes the local space in which the robot currently resides. As described by Yeap’s 

theory of cognitive mapping, it contains the surfaces of the current space along with 

exit information. An exit is a passage in the boundary which enables the robot to move 

to the next space and is thus the point where ASRs are connected to each other.

order to know where one ASR starts and the other ends, this point must naturally be 

Once the exits have been identified, some unique information about the ASRs must be 

gathered. Since a local space is defined by the objects inside of it, an ASR can be 

defined by the surfaces inside of it. Subsequently, the algorithm must take all surfaces 

from the MFIS and decide which ASRs they belong to. Thus there are two major tasks 

when building ASRs: one has to find the exits which separate them, and distribute the 

recognized surfaces among them. 

An exit can be considered a gap in the boundary between two spaces. When the robot 

passes such a gap it enters a different local space, for which a new ASR must be 

generated. For this implementation it is assumed that an exit will take the form of a 

relatively narrow passage between two wide spaces. Consider 

seems obvious to the human eye that the space on the left should be partitioned into 

two. The one on the right however does not have a narrow passage and, for this 

reason, no partition seems necessary. 

Figure 3.13: Separating spaces with a narrow passage

A B A 
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From the surfaces contained in the MFIS the network of ASRs is generated. An ASR 

ich the robot currently resides. As described by Yeap’s 

theory of cognitive mapping, it contains the surfaces of the current space along with 

exit information. An exit is a passage in the boundary which enables the robot to move 

us the point where ASRs are connected to each other. In 

order to know where one ASR starts and the other ends, this point must naturally be 

Once the exits have been identified, some unique information about the ASRs must be 

cal space is defined by the objects inside of it, an ASR can be 

defined by the surfaces inside of it. Subsequently, the algorithm must take all surfaces 

from the MFIS and decide which ASRs they belong to. Thus there are two major tasks 

one has to find the exits which separate them, and distribute the 

An exit can be considered a gap in the boundary between two spaces. When the robot 

which a new ASR must be 

generated. For this implementation it is assumed that an exit will take the form of a 

relatively narrow passage between two wide spaces. Consider Figure 3.13 below: it 

e space on the left should be partitioned into 

two. The one on the right however does not have a narrow passage and, for this 

 

passage 
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It can thus be assumed that an exit 

robot’s immediate surroundings

detect such passages: as the robot travels it keeps a measure of this 

can be as simple as the distance of geometry to its left and right. When travelling it will 

notice a local minimum in the function of this

an exit. An example can be seen in 

travels through a narrow passage and arrives in a wide space again. Because of this, it 

will reason that it has crossed an exit.

The obvious drawback of this method is that exits can only be recognized after they 

have been crossed. There is evidence to suggest that humans can identify exits long 

before crossing, and actually use them as targets for navig

1999). However, the method

show, also quite reliable in finding exits on the robot’s route, and for these reasons it 

has been chosen for this implementation. 

 

Separating the local spaces

After an exit has been crossed, the robot has entered a new local space. Subsequently, 

a new ASR is generated and connected to the previous one. However, if we think back 

to the MFIS, which surfaces belong to which ASR? Intuitively, newly s

would be in the new ASR and old ones in the previous. But this ignores the fact that 
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It can thus be assumed that an exit is located at a local minimum of “wideness” in

surroundings. When following this notion it becomes quite easy to 

detect such passages: as the robot travels it keeps a measure of this 

can be as simple as the distance of geometry to its left and right. When travelling it will 

local minimum in the function of this measure and thus deduce it has crossed 

an exit. An example can be seen in Figure 3.14 below: the robot starts in a wide space, 

travels through a narrow passage and arrives in a wide space again. Because of this, it 

will reason that it has crossed an exit. 

Figure 3.14: Wideness when crossing an exit 

The obvious drawback of this method is that exits can only be recognized after they 

have been crossed. There is evidence to suggest that humans can identify exits long 

before crossing, and actually use them as targets for navigation 

the method is very simple to implement and, as later experiments will 

reliable in finding exits on the robot’s route, and for these reasons it 

has been chosen for this implementation.  

he local spaces 

After an exit has been crossed, the robot has entered a new local space. Subsequently, 

a new ASR is generated and connected to the previous one. However, if we think back 

to the MFIS, which surfaces belong to which ASR? Intuitively, newly s

would be in the new ASR and old ones in the previous. But this ignores the fact that 

�� �� �� 
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a local minimum of “wideness” in the 

. When following this notion it becomes quite easy to 

detect such passages: as the robot travels it keeps a measure of this wideness, which 

can be as simple as the distance of geometry to its left and right. When travelling it will 

measure and thus deduce it has crossed 

below: the robot starts in a wide space, 

travels through a narrow passage and arrives in a wide space again. Because of this, it 

 

The obvious drawback of this method is that exits can only be recognized after they 

have been crossed. There is evidence to suggest that humans can identify exits long 

ation (Yeap & Jefferies, 

is very simple to implement and, as later experiments will 

reliable in finding exits on the robot’s route, and for these reasons it 

After an exit has been crossed, the robot has entered a new local space. Subsequently, 

a new ASR is generated and connected to the previous one. However, if we think back 

to the MFIS, which surfaces belong to which ASR? Intuitively, newly seen surfaces 

would be in the new ASR and old ones in the previous. But this ignores the fact that 
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some surfaces from the new local space were already visible before the robot entered 

it. Consider the figure below:  

  

Figure 3.15: Surfaces seen across the exit 

The picture shows the surfaces of two ASRs, separated by an exit. It is apparent that, at 

position R�, the robot can already see some of the surfaces which will later form ASR2. 

When arriving at position R� however, after crossing the exit, it has to transfer the 

surfaces behind the exit to the new ASR. But how can it decide what is “behind”? From 

the image it is clear that a simple cut along the infinite line defined by the exit is not a 

good idea: some surfaces which should belong to ASR1 are behind this line.  

In order to solve this problem, the robot must employ logical reasoning. If a surface in 

ASR2 can be seen from inside ASR1, then it must be visible through the exit. 

Subsequently, the line of sight from R� to any surface in ASR2 must intersect the exit 

passage. Conversely, if the line of sight to a surface does not directly cross an exit, it 

belongs to the same local space in which the robot resides. 

With the MFIS and ASR thus implemented, experiments can be carried out in order to 

see how well the algorithm performs.  

 

ASR1 

ASR2 

�� 

�� 
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3.2.3 Experimental Results 

A laboratory robot equipped with a laser rangefinder has been run through different 

environments, mapping its surroundings by using the new implementation. An integral 

claim of the cognitive approach is that it can generate usable maps without needing 

any form of error correction. In order to verify this, the bad robot is used exclusively. 

The experiments are conducted in the same way as the ones for the traditional 

algorithm: robot movement is controlled by user input, but the mapping process is 

completely automatic. Also the robot has no prior knowledge about the environment 

or its own position. 

 

Surface placement in the MFIS 

Of great interest is the update mechanism which inserts new surfaces into the MFIS. 

Can the algorithm place them correctly without error correction? Figure 3.16 below 

shows the global map of the MFIS after travelling approx. 15m through an office 

environment, in 34 steps. The surfaces which have been seen are marked in a different 

colour for each view, together with the position of the robot at that particular time.  

 

Figure 3.16: Surface placement in the MFIS 

It can be seen that there are little duplicates found in the MFIS, especially for the long 

surfaces. There are still a lot of small surfaces which change shape when viewed from a 

different angle but, as explained before, these are not our primary concern. The long 

surfaces, in contrast, look very good: most of them exist only once in the picture, 

which means the algorithm has correctly matched them in subsequent views. It is also 

apparent that, while single surfaces are sometimes displaced, the overall shape is 
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almost perfectly rectangular. This supports a basic claim of the algorithm, namely that 

errors - although contained in the map 

be corrected.  

One surface stands out from the image: the one encircled

that this surface should have been matched to the wall next to it; but this is not the 

case and it has instead been placed at a wrong location. This is very troubling, since the 

spatial deviation so high. How could this ha

to have been placed quite well? The reason for this lies in the recognition of common 

objects between two views. Although a similar surface did exist in the MFIS before, it 

could not be matched to the new one, si

orientation) are highly ambiguous. Subsequently, the surface was treated as if it had 

not been seen before, and added to the map via reference target. As a coincidence, it 

seems that a bad reference target had been c

 

Consider Figure 3.17

sometimes change shape 

them can then become a problem: the algorithm assumes that an error always affects 

both surfaces together, and is negated by matching them. In this case however, only 

one of them carries t

As a result, the matching pair is unsuitable as a reference target: 

surfaces relative to it. 

�
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almost perfectly rectangular. This supports a basic claim of the algorithm, namely that 

although contained in the map - are not propagated and thus do not need to 

One surface stands out from the image: the one encircled to the far right. It is apparent 

that this surface should have been matched to the wall next to it; but this is not the 

case and it has instead been placed at a wrong location. This is very troubling, since the 

spatial deviation so high. How could this happen, especially as the other surfaces seem 

to have been placed quite well? The reason for this lies in the recognition of common 

objects between two views. Although a similar surface did exist in the MFIS before, it 

could not be matched to the new one, since the matching criteria (distance and 

orientation) are highly ambiguous. Subsequently, the surface was treated as if it had 

not been seen before, and added to the map via reference target. As a coincidence, it 

seems that a bad reference target had been chosen and thus the surface got displaced.

Figure 3.17: A bad reference target 

17 above: when scanned from a different viewpoint, surfaces 

shape – this is because of inaccuracy in the laser input. Matching 

them can then become a problem: the algorithm assumes that an error always affects 

both surfaces together, and is negated by matching them. In this case however, only 

one of them carries the error, which subsequently cannot be negated upon insertion. 

As a result, the matching pair is unsuitable as a reference target: 

surfaces relative to it. Figure 3.18 shows an exaggerated example: 

�� �� 
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almost perfectly rectangular. This supports a basic claim of the algorithm, namely that 

are not propagated and thus do not need to 

to the far right. It is apparent 

that this surface should have been matched to the wall next to it; but this is not the 

case and it has instead been placed at a wrong location. This is very troubling, since the 

ppen, especially as the other surfaces seem 

to have been placed quite well? The reason for this lies in the recognition of common 

objects between two views. Although a similar surface did exist in the MFIS before, it 

nce the matching criteria (distance and 

orientation) are highly ambiguous. Subsequently, the surface was treated as if it had 

not been seen before, and added to the map via reference target. As a coincidence, it 

hosen and thus the surface got displaced. 

 

above: when scanned from a different viewpoint, surfaces 

this is because of inaccuracy in the laser input. Matching 

them can then become a problem: the algorithm assumes that an error always affects 

both surfaces together, and is negated by matching them. In this case however, only 

he error, which subsequently cannot be negated upon insertion. 

As a result, the matching pair is unsuitable as a reference target: it will displace any 

shows an exaggerated example:  
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Figure 3.18: Surface displacement when picking a bad reference 

Here, two views are shown superimposed on each other. The algorithm has identified 

a common surface (encircled to the right), containing an error such as described 

above. Using this flawed match as a reference target then results in a considerable 

displacement of new surfaces, as can be seen from the image.  

The obvious conclusion is that such inaccurately recognized surfaces must not be used 

as reference targets. Accuracy in surface detection depends on a number of factors, 

such as surface length, distance from the robot, or the orientation relative to the laser 

sensor - all of which have been incorporated into the implementation in order to avoid 

the problem. However, at some point there will always be errors in one form or 

another and the only solution is more powerful recognition. The problem observed 

above clearly shows that comparing two-dimensional surfaces is not enough to reliably 

identify common objects. 

In spite of these difficulties, the environment initially shown in Figure 3.16 has still 

retained its overall shape; and even though some surfaces have been heavily 

displaced, the bulk of the environment has been mapped quite accurately. This 

strongly suggests that the errors encountered are not propagated across views, and 

that the MFIS remains usable even with them. Naturally, in order to test this 

assumption, the algorithm has to be tested in a larger environment. 
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MFIS accuracy in a large environment 

The algorithm has been tested on a large environment to see if it produces useable 

maps even after longer journeys. It has been run through an office building which 

contains both large rooms and long corridors. The route travelled in this experiment is 

approx. 120m long, and the MFIS has been updated in 98 steps. Also the start and end 

points of the route connect, forming a loop.  

 

Figure 3.19: MFIS of large environment A 

 

 

Figure 3.20: Floor plan of large environment A 

 

The MFIS shown in Figure 3.19 captures the spatial layout of the environment quite 

well; there seems to be no error propagation whatsoever and the ends of the route 

match almost completely. However, similarly to the smaller environment described 

before, many small surfaces litter the MFIS. These are random obstacles – the rooms 

traversed were full of tables, chairs and cardboard boxes. Some duplicate surfaces can 

also be seen, showing that errors do exist, but they seem to have no impact on the 

overall shape of the map. The path of the robot is clear and not blocked at any point, 

thus resulting in a usable map. 

There was however one special situation during the experiment: as the robot was 

travelling along the straight corridor on the left, it could at one point not identify any 

common surfaces between successive views. This can be very dangerous, since the 

algorithm cannot add new surfaces – or locate itself – without a reference target. The 

cause of this can easily be identified when looking at Figure 3.21: 

R 
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Figure 3.21: Surfaces detected by laser sensor inside a corridor 

The robot has encountered the so-called corridor problem: inside a perfect corridor, 

one cannot identify any unique features by which to orient oneself. As can be seen in 

the image, the only things available are two walls – and if the corridor length exceeds 

the range of the sensor, then no information about their length or position is available 

whatsoever. From only this input it is thus impossible to determine how far along the 

corridor one has travelled already. 

When no reference target has been found, the robot would normally have to stop 

since it is lost. To be able to continue, it was instructed to transform the problematic 

view with odometer data (like in the traditional implementation in section 3.1). Luckily, 

after two more steps, the robot detected new surfaces near the exit of the corridor, 

providing it with a new reference target. Thus it was able to update the MFIS again. Of 

course this workaround is very limited, since the algorithm has to rely on its position 

estimate when travelling without a reference target. If this happens too often, then 

the errors observed in the traditional approach will be introduced and the map will get 

corrupted. In this experiment however the robot travelled only a very short distance 

like this, and thus the overall map retains its shape. But had it encountered heavy 

errors at this specific point then the map would have been rendered useless. 

 

Comparing the MFIS to the traditional approach 

The algorithm has also been tested in the same environment where as the traditional 

approach. The robot has been steered on the same path, and thus both algorithms 

have been tested with similar input. The length of the route traversed is approx. 90m, 

and the MFIS has been updated in 106 steps. Figure 3.22 shows the map obtained by 

the perceptual mapping algorithm: 

R 
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Figure 3.22: MFIS of large environment B

 

It can easily be seen that the MFIS has a good shape and that no duplicate surfaces are 

blocking the way of the robot. This stands in sharp contrast to the result obtained by 

the traditional approach

useless by the errors of the bad robot, the 

generate a useful map. Thus it can be considered superior in terms of mapping 

capability. At this point, the good robot is not 

unattractive for testing the merits of the algorithm. 

The only visible flaw is that the ends of the map do not completely connect; this can be 

seen when comparing the route with the floor plan. It shows that, although the MF

fairly accurate, it alone is not enough for reliable navigation. At some point there will 

always be errors – a spatial map can go only so far. As suspected in the algorithm 

description earlier, an ab

 

Generating ASRs 

While travelling, the algorithm does not only update the MFIS, but it also tries to 

detect exits and form ASRs from the environment. When the robot traversed the large 

environment “B”, it created a network of ASRs at the same time. 

separation of local spaces: 
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MFIS of large environment B Figure 3.23: Floor plan of large environment B

It can easily be seen that the MFIS has a good shape and that no duplicate surfaces are 

blocking the way of the robot. This stands in sharp contrast to the result obtained by 

the traditional approach (see section 3.1): while the traditional map

useless by the errors of the bad robot, the perceptual mapping approach can still 

generate a useful map. Thus it can be considered superior in terms of mapping 

capability. At this point, the good robot is not considered because its accuracy makes it 

unattractive for testing the merits of the algorithm.  

The only visible flaw is that the ends of the map do not completely connect; this can be 

seen when comparing the route with the floor plan. It shows that, although the MF

fairly accurate, it alone is not enough for reliable navigation. At some point there will 

a spatial map can go only so far. As suspected in the algorithm 

description earlier, an abstraction into ASRs is necessary. 

While travelling, the algorithm does not only update the MFIS, but it also tries to 

detect exits and form ASRs from the environment. When the robot traversed the large 

environment “B”, it created a network of ASRs at the same time. 

separation of local spaces:  
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Floor plan of large environment B 

It can easily be seen that the MFIS has a good shape and that no duplicate surfaces are 

blocking the way of the robot. This stands in sharp contrast to the result obtained by 

hile the traditional map is rendered 

mapping approach can still 

generate a useful map. Thus it can be considered superior in terms of mapping 

because its accuracy makes it 

The only visible flaw is that the ends of the map do not completely connect; this can be 

seen when comparing the route with the floor plan. It shows that, although the MFIS is 

fairly accurate, it alone is not enough for reliable navigation. At some point there will 

a spatial map can go only so far. As suspected in the algorithm 

While travelling, the algorithm does not only update the MFIS, but it also tries to 

detect exits and form ASRs from the environment. When the robot traversed the large 

environment “B”, it created a network of ASRs at the same time. Figure 3.24 shows the 



TESTING COGNITIVE MAPPING IDEAS ON A MOBILE ROBOT Implementations 

  
 44 

 

Figure 3.24: Large environment B separated into ASRs 

The image shows how the surfaces from the MFIS have been assigned to individual 

ASRs, where each colour denotes a different local space. Thus the figure shows 8 ASRs. 

The separation seems quite reasonable in most cases, for example ASR2 and ASR3 

might have been separated in the same way by human who is looking at the map. It 

seems a little strange to separate ASR5 and ASR6 in this manner though, as the exits 

shown are not quite the narrowest passages. This can be attributed to the exit finding 

technique used, which is quite simple, however it is not necessarily a bad thing. After 

all it is better to separate a very large space into several smaller ones – little can be 

gained if the whole map consists only of a single ASR.  

Figure 3.24 also shows the primary benefit of using an ASR network: the loop has been 

detected. The ends do not perfectly match in the MFIS; however they are still 

reasonably close. After exiting ASR8 to the north, the algorithm tries to create a new 

ASR. However, it then realizes that the new space mostly overlaps with ASR1. Thus it 

can simply reason that it has arrived in ASR1 again, and connect it to ASR8. In the 

picture produced by the implementation, this can be seen from the red-coloured 

ASR1 

ASR2 

ASR3 

ASR4 

ASR5 
ASR6 

ASR7 

ASR8 
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surfaces: both the start and the end of the path are contained in the same ASR. The 

robot has thus detected the loop and successfully connected the network. 

 

3.2.4 Discussion 

The algorithm produces maps that show a good spatial layout of the environment 

traversed, even though no error correction is being used. When compared to the 

traditional approach, the MFIS is much more accurate, even though extreme precision 

had not been the main aim.  

The problem of overlapping surfaces still remains: this happens because the surface 

matching technique employed cannot always identify the correct matches. This is also 

the cause of the corridor problem observed – even though the robot could recover 

from the situation. It should thus be stressed that more powerful methods for 

recognition are needed, for example using cameras, in order to unlock the full 

potential of the approach. 

It has been shown that a combination of MFIS and ASRs enables a mobile robot to 

recognize places it has already visited. In this manner the looping problem can be 

solved, and any global mapping errors - however small - become irrelevant. The prime 

advantage here is that, instead of having to change the MFIS to accommodate the 

loop, the algorithm can simply reason that the ASRs are the same. This seems to 

confirm the claim that that a topological abstraction of places is needed, especially to 

map larger environments. The ASR recognition algorithm is only expected to fail if the 

errors are so great that not even a rough similarity between local spaces can be 

observed anymore. This could be improved in the future: in this implementation, 

similar ASRs are determined by proximity alone. Ultimately though, an ASR could have 

many defining features, such as specific objects inside of it, or the shape of its 

boundary. If techniques are developed for recognizing such features, the algorithm can 

be expected to become even more resistant to mapping errors. 
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3.3 Making the robot go home 

Now that the robot is able to build a representation of its surroundings, the question 

is: how can this information be used to travel and navigate autonomously? The 

previous sections have shown experiments where the robot simply follows human 

instructions. This section, in contrast, will look at navigating automatically to a defined 

target, again employing human-inspired strategies as much as possible. 

 

3.3.1 Motivation 

One basic problem typically described by researchers (Pfeifer, 1995; Wong, Schmidt, & 

Yeap, 2007) is having the platform find its way back home after exploring an unknown 

environment. At a first glance, the solution seems quite straightforward: shouldn't it 

be easy to just retrace the movement path and thus travel right back to the start? 

The answer is yes and no. Yes, because both the path and the environment are already 

known. No, however, because the world keeps changing, and thus one should not 

blindly trust one’s memory. If the robot simply follows a path from memory, it will 

quickly bump into things that weren't there before; or crash into doors that have been 

closed. That means the solution has to be more sophisticated: even while going home, 

the robot has to watch its surroundings and make spontaneous decisions based on 

what it sees.  

Such spontaneous decisions can be used for more than just obstacle avoidance. A skill 

at which humans excel is the identification and taking of shortcuts. Even while already 

following a path, the possibility of a shortcut should be explored if it presents itself. For 

this humans employ an intuitive sense of direction, quickly abandoning the old path 

when a promising opportunity arises - even if it means entering previously unexplored 

areas (Hochmair & Frank, 2000). So how would one go in equipping a robot with a 

sense of direction? 
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3.3.2 Deciding which way to go 

We start with a robot that has travelled into the unknown and wants to go back. It 

roughly knows the direction of its target (from memory) but has no idea how to get 

there. Although a possible route has already been explored on the way - and a map 

(MFIS) exists - it is not guaranteed that this route is the shortest one, or even still valid 

at all. As seen in section 3.2, there might also be inaccuracies in the map which would 

make it difficult to retrace the exact path. The algorithm described here will thus focus 

on exploring new, shorter ways to the target, and only fall back to the known path if 

absolutely necessary. 

The fundamental question for the robot is: “in which direction should I move?” To 

answer it, the current view is scanned and divided into a limited number of movement 

options. These are empty spaces where the robot can pass through, and it has to 

choose one of them. The number of such options can greatly vary - in a narrow indoor 

scenario there might be only 1-3 options, whereas in the outdoors (or a big room) a 

much greater range of movement is possible. Compare for example the figures below: 

a green line denotes a visible movement option, and a blue line is an assumed (but not 

necessarily correct) connection to the target. 

  

Figure 3.25: Movement options in a narrow environment 

 

Figure 3.26: Movement options in a wide 

environment 

Legend: 

 Geometry from MFIS memory   Movement choice 

 Movement options R Robot position 

 Estimated path to target T Assumed target position 

 

T 

T 
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From these options the algorithm must choose which one seems to be the most 

promising, hopefully yielding the shortest way to the target. Since much of the 

environment is unexplored, the choice may not be optimal. The robot tries to choose 

the most promising option, but upon exploring it might find out that it is a dead end. 

Consider Figure 3.27: the robot was about to move in direction of the target, only to 

realize the way is blocked. Now it has to turn back, and take a big detour to find a 

different path. The spaces to the left and to the bottom have no openings wide enough 

for the robot, thus the only viable movement options are to the top. 

 

Figure 3.27: Moving away from a dead end 

The chosen path consists of the part that we can see (movement option), and the part 

that we can't see but assume (connection to the target). That means it involves 

guesswork: if we follow the path up to where we can see, can we then reach the target 

from that position? This reasoning tries to mimic a human, planning around the next 

corner: “This direction leads away from my target, but in the distance I can see a turn, 

leading in the right direction again.” Such logic may seem quite simple, but there is 

good reason to believe that humans, intuitively following their sense of direction, 

make equally simple choices. An optimistic human will often just think up to the next 

corner, and if it turns in the right direction explore the option (Hochmair & Frank, 

2000). In the same way, the “sense of direction” algorithm uses no path planning at all, 

but rather navigates around corners on an otherwise direct way to the target. 

T 
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Coming back to Figure 3.27, it is evident that the blue lines (assumed path to target) 

cross impassable geometry of the MFIS. The data in question is quite old and has not 

been seen for some time, thus the robot simply ignores it for path planning – 

optimistically hoping it can find its way to the target. Of course - as will be observed in 

an experiment - once it does decide to move in that direction, it will see the obstacle 

again and then must plan a way around it. 

These movement options are the heart of the algorithm. Of all identified options, it is 

decided which one seems the most direct. And since the robot tries to follow a simple 

sense of direction, it is the one forming the straightest line to the target promising 

(highlighted with an arrow in Figure 3.28). Here it should also be noted that the 

platform does not necessarily have to travel the full length of this option. As it moves, 

there might be new, better options emerging and the robot will thus keep scanning 

and re-evaluating its decision while travelling. 

 

Figure 3.28: The most promising option 

 

3.3.3 Using the MFIS while travelling 

While trying to find its way home, the robot has to keep updating its MFIS at every 

step. Otherwise it would lack the “vision” to properly recognize new movement 

options as it travels. But how could one use this geometry information? Since the MFIS 

R 
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is built while travelling, it is highly incomplete. Traditional, mathematical, path 

planning can be very difficult to use with such a map: after all, it is highly improbable 

that the robot will explore the environment thoroughly enough for such a calculation. 

It has also been shown in section 3.2 that, although the MFIS can be reasonably 

accurate, individual surfaces might be heavily displaced. That means that even if 

geometry information about a distant place exists, it is probably not accurate enough.  

For this reason, the robot can only trust what it recently saw and should thus only 

remember a small number of old views. In this manner it knows little more than its 

immediate surroundings – not much, but enough to start moving. In the same way, a 

human would forget the smaller details of a past journey and not take them into 

account when intuitively deciding whether to go left or right (Wang & Spelke, 2002).  

 

 

 

Figure 3.29: Forgetting old geometry while moving 

 

R 

R 
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Figure 3.29 shows the robot R forgetting old geometry (green colour) while it is moving 

to the right. The old data is removed if sufficiently far away from the platform, and if it 

has not been seen in several previous scans. There are, of course, some special 

situations to be accounted for. What happens if the robot gets stuck and can’t figure 

out any movement option at all? This can occur sometimes, for example when the 

pathway is very narrow, or when a wrongly recognized MFIS surface appears to block 

the way (Figure 3.30). So if there are truly no more promising movement options, what 

failsafe mechanism will allow the platform to escape this “trap”? 

 

Figure 3.30: Robot gets stuck through inaccurate MFIS 

In addition to this – as old geometry is quickly forgotten - the robot runs the danger of 

making the same choices twice. While trying to find to the target it will make many 

decisions that lead to bad situations, like dead ends. There has to be a mechanism that 

makes sure it doesn't pick the same - bad - option again. At all times, the robot should 

know where it came from, or else it could get caught in an infinite loop – exploring and 

subsequently forgetting the same places time and time again. Consider the following 

example: Figure 3.31 shows the platform moving away from a dead end. Several steps 

later, after old geometry has been forgotten, the algorithm wants to move back since 

it is the most direct connection to the target (Figure 3.32). Since the dead end is 

continuously re-explored and then forgotten, the situation results in an infinite loop. 

R 
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Figure 3.31: Moving away from a dead end 

 

Figure 3.32: Exploring the dead end again 

  

To counter this, there has to be at least a rough representation of the way already 

travelled, or else the robot might truly get lost. If all newly explored paths fail, it will 

still be possible to follow the route in memory back home. Of course, humans can also 

get lost if the environment is sufficiently complex. Getting lost however is hardly the 

aim of this research and thus - as a simple facility to recover from problematic 

situations - the robot retains an account of paths travelled in the past.  

 

3.3.4 Following a known path from memory 

If indeed the robot cannot find a way to travel in direction of the target, it has to trace 

back the remembered path. Since old MFIS data has been mostly forgotten, the only 

thing remembered is the route travelled which, in turn, can be generalized into major 

waypoints. When following, a movement option is picked which points in direction of 

the next waypoint, and the path is fitted on top of the (newly created) MFIS.  

Naturally these waypoints have to be placed in such a way that the movement from 

one point to the next is trivial. When following the route, the robot will aim for the 

next waypoint on the path - again using its automatic direction-following system to get 

there. As a side effect of this, it will also be able to evade small obstacles when 

encountered. Such objects may randomly appear along the way, for example in the 

form of humans walking around, or even surfaces wrongly placed in the MFIS. Again 

this approach tries to imitate humans, as they will easily move around small obstacles 

in their way if the rest of the path is clear.  

T T R 
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An example of such a path can be seen in Figure 3.33 below: the robot R wants to 

return to the target T, and the known route has been simplified and divided into 

waypoints. Though visible in the picture, most of the older MFIS surfaces have been 

forgotten and the robot merely knows the rough position of the next waypoint. As can 

be seen from the picture, there are indeed some minor obstacles between one point 

and the next. However, this is of no further consequence since to the algorithm 

obstacles appear as surfaces and are thus treated the same way corners: the robot 

simply navigates around them.  

 

Figure 3.33: Waypoints for the path home  

It should be noted though that, even when following a known path, if suddenly a new 

and promising movement option appears, the robot should stop retracing the old path 

and explore this direction, hoping to make a shortcut. Consider the path shown in 

Figure 3.34. In this example, the robot R wants to find back to its home and target T. 

While travelling along the already known route, it will find two points where a shortcut 

seems possible. Since the direction looks promising, the platform will explore these 

new options. 

R 
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Figure 3.34: Shortcuts in a path 

Naturally the decision of whether to explore or discard a new path has to be based on 

something. One could argue that it is a risk-vs.-reward situation: the possible reward is 

a shorter route; the risk is encountering a dead end and having to turn back. For the 

sake of simplicity, the algorithm will always try and take a shortcut if it points in 

direction of the target. In this manner, it tries to mimic an optimistic and curious 

human.  

And finally, it should be mentioned that remembering an old path through path points 

may not be a human-like approach. There is evidence to suggest that humans rarely 

remember locations in a geometric sense, but rather by identifying objects and 

landmarks in these places (Golledge, 1999). Since this algorithm strives to make 

decisions similar to a human, this is a setback – but a necessary sacrifice because 

object recognition is very difficult with a simple laser rangefinder. Thus the robot has 

to “cheat” by remembering geometric data of old paths. Of course it would be 

preferable to employ object-recognition techniques in order to identify places, 

probably using cameras. This is a topic that can be expanded on and could be the focus 

of further research in the area. 

   (Unexplored) 
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3.3.5 Experimental results  

In this section, a laboratory robot is run through a number of different environments in 

order to see how well it can find home. In each case the platform starts off travelling 

into the unknown, manually controlled by human input, until the “Go Home” 

command is given. From this point on, the robot acts autonomously. Forgetting most 

of its old MFIS memory it tries to explore paths that might possibly lead back to the 

starting point, using the known route only if seems to be the shortest option. The 

platform then travels until it is roughly near the starting position. As mentioned above, 

the algorithm does not include feature detection to recognize the exact starting point, 

thus a rough proximity to the target will be counted as success. 

 

Finding home around a corner 

The first experiment is rather simple: the laboratory robot is deployed in an office 

environment and steered around a corner – manually controlled by a human. After 

travelling a distance of roughly 10 metres, the “Go Home” command is given, 

instructing it to find its way back to the start autonomously.  

Figure 3.35 is a plot of the route travelled by the robot, with the original path 

superimposed on the image. As can be seen, the platform successfully finds home, 

performing a U-turn around the corner. It should be noted that for this experiment the 

old, known, path was not used by the algorithm. The route is only similar because 

there are no shorter options.  
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Figure 3.35: Robot travelling home around a corner 

Legend:  

 MFIS geometry 

 Original path, manually controlled by human  

 Path taken autonomously by robot to find back to the start 

Go Home Point where the “Go Home” command is given 

 

There is one rather curious phenomenon though: why is the green line not straight, 

but rather follows a zigzag pattern at the start? And why does the robot sometimes 

travel towards the wall, where there path is definitely blocked? The reason for this lies 

in the MFIS update mechanism. Since the obstacle in the middle is fairly complex, only 

parts of it have been seen by the robot. Thus the map may contain holes, and the 

algorithm will try to move towards those. Consider the figures below, showing the first 

decision after receiving the “Go Home” command. While travelling along the blue 

path, the machine can scan only what is in front of it, and thus the surfaces marked in 

orange have not been seen. In this particular case, the algorithm concludes there may 

be an opening in the wall and a valid movement option passes through it. Since this 

would be the shortest path to the target by far, the robot naturally decides to take it. 

Start 

Go Home 

Finish 
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Figure 3.36: Visibility of MFIS geometry 

 

 

Figure 3.37: A valid movement option? 

Of course, once the first step is taken, the platform turns towards the target and a new 

scan reveals the hidden surface. Now a movement in this direction is no longer 

feasible, and so the robot has no choice but to navigate around the corner, and find 

the correct way back to the start. 

The experiment shows that the algorithm is able to handle simple obstacles, while it 

can also be seen that the robot will often drastically change its direction of travel as 

MFIS updates bring up new movement options. It is however able to travel back to the 

start, so the intended goal has been reached. 

 

Taking a shortcut 

Again, the robot is deployed in an office environment. It starts off manually controlled 

by a human and is then positioned in such a way that it can take a shortcut home. The 

path for the shortcut is quite easy, and one might say that it appears obvious – for a 

human at least. Thus the aim of the experiment is to show that the algorithm can take 

those easy shortcuts. The environment is also larger than the first one: the length of 

the route travelled in this run is about 30 metres. 

180° scan 

�� 

�� �� 
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Figure 3.38: Robot travelling home and taking a simple shortcut 

As can be seen in the picture, the robot manages to find back to the starting point, 

taking the simple shortcut by following its sense of direction. Note that the green path 

is significantly shorter than the blue one. Also - similar to the first experiment - in the 

first step the platform tries to move through an assumed gap in the wall, only to find it 

closed. The rest of the path is quite straightforward since the target is already in sight. 

One thing that particularly strikes the eye is that the start and finish point do not 

match – by a distance of more than one metre! This is caused by inaccuracies in the 

MFIS, bringing back the issue of loop closing (see section 3.2). The shape of the map is 

not completely straight in this area. That in itself is not a problem, since the MFIS is not 

designed to be precise, but through this it becomes impossible to exactly identify the 

starting point. 

The platform finishes in rough proximity to the starting point, so the basic goal of the 

experiment has been reached. It shows that the robot can take shortcuts – at least 

simple ones – but not being able to properly identify the target can cause problems, 

especially in larger environments. 

Start 

Go Home 

Finish 
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A narrow obstacle course 

As in the experiments before, the robot is once more used in an office environment. 

This time however the travelled route is significantly longer (approx. 50m), and the 

only path to the target snakes its way through a collection of obstacles.  

 

Figure 3.39: Robot travelling home around obstacles 

Figure 3.39 shows the route travelled by the robot. While it seems correct at first sight, 

the direction-finding algorithm was actually unable to find the route on its own. In the 

problematic area, which is encircled in the picture, the robot was unable to plan a path 

through the dense collection of obstacles (which consists of cardboard boxes). Figure 

3.40 shows this in greater detail: 

Start Finish 

Problem area 
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Figure 3.40: Dense collection of obstacles 

It can easily be seen that there is no way to escape this situation by planning a path in 

a straight line. Since the area is quite small, all surfaces have been recently seen and 

have thus not yet been forgotten in the MFIS. Thus the algorithm believes it is blocked 

in all directions and cannot determine a movement option. This shows that the linear 

“around-a-corner” path planning is not very successful when confronted with a narrow 

obstacle course. This being said, how did the robot still manage to find back home? 

If it cannot use its direction-following algorithm anymore, the robot switches to the 

fail-safe mechanism: it starts following the recorded route which it has taken to get 

here in the first place. By employing this strategy, it managed to escape the situation. 

This is also the reason why, in Figure 3.39, the paths almost overlap in the problem 

area. Once the robot had left the obstacles behind, it started to deviate from the 

known path again. The reason is simply that it could at this point detect new 

movement options and subsequently did not need to rely on the known route 

anymore. 

It can thus be said that the algorithm is overwhelmed by a narrow and complex 

environment. While it can still recover from the situation, this is only made possible by 

retracing its steps. Once however the robot is out in the open again, it can reliably find 

to the target even over a longer distance. 
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3.3.6 Discussion 

The experiments highlight several strengths and weaknesses in the approach. The 

robot has been shown to find simple paths through unknown environments, but once 

its surroundings are sufficiently complex it gets confused. Especially narrow turns are a 

problem, as could be expected, because straight lines are used to plan a path. Dead 

ends are also frequently encountered since the robot is very optimistic about exploring 

potential – but still unknown – routes. Often it can be seen to move in a certain 

direction, only to find out one step later that the way is actually blocked.   

However it has been shown that the robot can recover from such dead ends and keep 

moving by following an old, known, path and escape from the problematic location. In 

such occasions, where it fails to find a new path by itself, the robot will simply take the 

same way back which it took on the way there. This is very important because, by 

doing so, it can always continue moving. The experiments show that there is rarely a 

situation where the robot has to stop because it truly cannot figure out what to do, 

requiring user intervention. 

Finally, it has to be noted that the robot will often travel in zigzag patterns and take 

detours by trying to explore paths that are later found to be invalid. Trying to explore 

every option uses a lot of time – one might argue that just following the old path can 

sometimes be much quicker. At this point a more complex decision system should be 

designed which dynamically chooses whether or not to explore a movement option. 

There should be additional factors in determining just how promising a certain option 

is, and if the robot should really explore certain paths. There is good reason to believe 

that humans do not judge by their sense of direction alone, but make much more 

complex decisions in order to find to their target (Golledge, 1999). Such behaviour 

should be researched further, so that more powerful navigation algorithms can be 

developed, again employing human-inspired way finding techniques. 
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4 Conclusion 

This thesis shows the implementation of Yeap’s theory of perceptual mapping using a 

mobile robot with laser sensors. The algorithm is inspired by human behaviour and the 

experimental results that have been obtained support important claims of the theory, 

such as a robot’s ability to map and navigate its surroundings without having to using a 

metrically accurate map. To test the implementation, a robot has been used which 

experiences a high amount of errors in sensory input. This is important since human 

perception is also known to be fragmented and inaccurate. Even though the algorithm 

is designed to work with an imprecise map, it has been shown that the global map of 

the MFIS preserves a much better layout of the environment than the one produced 

with a traditional error-corrected approach - especially when confronted with heavy 

errors. The implemented solution is also able to generate a network of ASRs and close 

loops in the environment.  

Furthermore it has been shown that autonomous navigation with the map generated 

from the algorithm is possible - and that a mobile robot can find its way home in a 

range of scenarios. The navigation approach which has been implemented is also 

successful in finding basic shortcuts through unknown areas of the environment, and 

does not rely on the known path home unless it gets stuck.  It has thus been shown 

that navigation with the algorithm for cognitive maps is indeed possible, and this topic 

could be explored more in further research. 

Ultimately, it can be said that the results obtained in this thesis support Yeap’s theory 

of perceptual mapping, and that it could serve as a platform for further research into 

human cognition, as well as robot navigation in the future. 

 

Future work 

Since the heart of the algorithm is its ability to track objects across subsequent views, 

it is important to have powerful recognition capabilities. Two-dimensional surfaces 

generated by a laser sensor have been found to be unreliable for this, and virtually all 

mapping problems encountered have been caused by insufficient recognition. Future 
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research should thus look at different sensors, such as cameras, in order to detect 

additional features in the environment. 

Furthermore, all experiments have been carried out in indoor office environments. It 

should be interesting to see how surfaces are integrated in an outdoor environment, 

which poses several additional challenges. For example, open spaces are much larger 

than rooms inside an office. How could an outdoor environment be divided into local 

spaces? Depending on the sensors employed, there may be many objects and surfaces 

that are too far away. This means the robot has much less information for creating the 

map. It also might be confronted with uneven terrain and slopes, which could result in 

orientation problems and even greater errors. Thus, being able to map such an 

environment would further demonstrate the power of the theory. 

Finally, the navigation experiments carried out were quite rudimentary, and served 

only as a demonstration that navigation with an imprecise map is possible – but the 

particular implementation in this thesis showed several flaws, such as an inability to 

cope with narrow groups of obstacles, and an overoptimistic exploration strategy. 

Further work should be conducted on navigation strategies which can be implemented 

to use the cognitive map. Since Yeap’s theory of cognitive mapping is inspired by 

human behaviour, future research in the area should also look at how humans use 

their cognitive map, not just at how they build it. 
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6 Glossary 

ASR Abstract Space Representation. A representation of a local space, 

which one has visited or is currently in. 

  

Cognitive map 

 

A complex representation of the environment experienced. It 

includes both perceptual and conceptual information. 

 

Exit 

 

The spatial connection between two ASRs. Usually a pathway 

leading from one local space to the next. 

 

Local space The limited part of the environment which the individual currently 

resides in.  

 

MFIS Memory For Immediate Surroundings. A global, spatial map 

representing the environment experienced recently. 

 

Perceptual map 

 

An initial spatial representation of the environment, which is 

directly obtained from one’s perception. 

 

Reference target A common object (surface) recognized between two different 

views of the same environment. New surfaces are inserted into the 

map relative to its position. 

 

Surface 

 

A two-dimensional line, representing geometry of the 

environment in the map. 

  

View The robot’s view of the environment. It consists of surfaces, with 

their position relative to the robot. 

 

  

 


