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Abstract

The Organic Rankine Cycle (ORC) is one of the most efficient heat recovery tech-

nologies for low-temperature heat resources that are used in the geothermal power

plant industry and waste heat recovery systems. As such, ORC systems are proving

to be a sustainable technology that can help address some of the current concerns

surrounding global warming and environmental pollution from using non-renewable

resources. However, optimizing large and advanced systems can be a complex task

that involves various fields of many variables from the thermodynamics to the plant’s

topologies to the environmental regulations. Therefore, this thesis will focus on pro-

viding a systematic modelling framework that can be used to optimize ORC systems

efficiently.

Commonly in the literature, ORC systems are modelled using the sequential-

modular (SM) approach where the unit operation modules are connected in the order

of the plant’s process. This forms the flowsheet of the ORC system, which is then

solved using a nonlinear equation solver to converge to a feasible operating point.

Generally, the SM model is optimized by manually varying the plant parameters

or by using advanced optimization algorithms to maximize/minimize the objective

function. This is not an efficient approach and can lead to various optimization and

numerical issues, such as failure to converge to a solution and long execution times.

A more efficient method, but often more difficult to construct and troubleshoot,

is to model the ORC system using the equation-oriented (EO) approach where the

system is expressed as a set of equations. Provided the equations are algebraic

and twice differentiable, the optimization solvers can exploit the model structure,

the underlying equations and the relationship between the decision variables to

effectively optimize the ORC system. Generally, the equations are not algebraic and

consist of thermodynamic routines or external functions that are not differentiable

and incompatible with white-box solvers that can deterministically guarantee global

optimality. Therefore, this thesis will propose a modelling approach and provide

a set of tools to model an ORC system in order to tailor the model for derivative-

based and white-box solvers. This involves deriving the set of equations that describe

the ORC system and approximating the nonlinear terms that are not differentiable
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using regression tools. As a result, the optimization performance of the algebraic

EO model can be more than 29000x faster than the SM model.

The problem with any approximated model is to ensure that the model can accu-

rately represent the original system. While the accuracy of the model can sometimes

be improved by using highly nonlinear model fits, such as higher order polynomial

functions, they can contribute to the nonlinearity of the model and degrade the op-

timization performance. Therefore, this thesis will introduce a piecewise regression

approach to improve the accuracy of the approximated model and decrease the non-

linearity of the optimization problem. As a result, the performance of some solvers

can be significantly improved and, in some cases, more than 6x faster than using

the single fit approximations.

Building on the piecewise fit approximation work, the final study that was carried

out in this research focused on a mixed-integer linear programming (MILP) formula-

tion of the ORC model. This is to address the gap in the literature where the MILP

formulations of ORC models have not been extensively investigated, despite the

general view that nonlinear problems are harder to solve than linear problems. This

involves utilizing existing integer and linear programming techniques and piecewise

linear approximations. Consequently, the size of the optimization problem increases

considerably due to the auxiliary variables and constraints from the linearization

procedure, which can degrade the optimization performance.

This research provides an alternative approach to the SM model for modelling

large and complex ORC systems that are robust and efficient for optimization. The

proposed modelling framework will be implemented on three real-world geothermal

power plants that vary in size and topology. In addition, this research shows that

while decreasing the nonlinearity of the optimization problem can improve the per-

formance, it is not advisable to completely linearize the model as it can have an

adverse effect due to the large number of auxiliary variables and constraints that

are generated.

ii



Acknowledgements

I firstly wish to thank my academic supervisors, Associates Professor David I Wilson

and Dr Jonathan Currie, for their technical and emotional support with this research.

Their patience and guidance helped me through many difficult times during my PhD

study, especially within the fields of optimization and chemical engineering. I would

like to also pay my special regards to Dr Michael Gschwendtner for his help and

guidance in thermodynamics.

I want to give the greatest gratitude to my family, especially my parents, Lim

Chhorn Am and Voy Lee Ung, for their emotional and financial support throughout

my life and especially in my academic endeavours. I want to thank my brothers,

Vathnack Am and Sok Leng Am, for the countless times they have supported me

emotionally in every aspect of my life.

To my colleagues that I have met during my PhD study, I want to say thank you

for encouraging to maintain a positive outlook and keep working on my research even

when there were times it seemed impossible. Lastly, I want to thank the Auckland

University of Technology for the financial support in both my undergraduate and

postgraduate studies, which have given me the opportunity to pursue my university

education without any financial burden.

iii



List of Publications

V. Am, J. Currie, and D. I. Wilson, “A systematic approach to modeling organic

Rankine cycle systems for global optimization,” in 2017 6th International Sym-

posium on Advanced Control of Industrial Processes (AdCONIP), May 2017, pp.

487-492.

V. Am, J. Currie, and D. I. Wilson, “A Comparison between NLP and MILP Formu-

lations of Organic Rankine Cycle Systems for Optimization,” in 13th International

Symposium on Process Systems Engineering (PSE 2018), ser. Computer Aided

Chemical Engineering, M. R. Eden, M. G. Ierapetritou, and G. P. Towler, Eds.

Elsevier, 2018, vol. 44, pp. 991 - 996.

iv



Contents

1 Introduction 1

1.1 Organic Rankine Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modular-based Optimization Models . . . . . . . . . . . . . . . . . . 3

1.3 Equation-based Optimization Models . . . . . . . . . . . . . . . . . . 3

1.4 Optimization Formulation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Research Questions and The Thesis Contributions . . . . . . . . . . . 5

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Organic Rankine Cycle Process . . . . . . . . . . . . . . . . . . . 9

2.3 Organic Rankine Cycle Optimization . . . . . . . . . . . . . . . . . . 11

2.3.1 Steady-State Optimization . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Working Fluid Selection . . . . . . . . . . . . . . . . . . . . . 14

2.4 Classes of Optimization Problems . . . . . . . . . . . . . . . . . . . . 17

2.5 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Nonlinear Programming Algorithms . . . . . . . . . . . . . . . 20

2.5.2 Mixed-Integer Linear Programming Algorithms . . . . . . . . 21

2.5.3 Mixed-Integer Nonlinear Programming Algorithms . . . . . . 22

2.6 Optimization Modelling Environments . . . . . . . . . . . . . . . . . 23

2.6.1 Sequential-Modular Modelling . . . . . . . . . . . . . . . . . . 25

2.6.2 Equation-Oriented Modelling . . . . . . . . . . . . . . . . . . 26

2.7 Optimization Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Black-box Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.2 White-box Solvers . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Optimization Toolboxes . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 OPTI Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.2 Alternative Optimization Toolboxes . . . . . . . . . . . . . . . 31

2.9 The Importance of Accurate Derivatives . . . . . . . . . . . . . . . . 31

2.9.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . 32

2.9.2 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . 33

v



2.9.3 Symbolic Differentiation . . . . . . . . . . . . . . . . . . . . . 33

2.10 A Review of Shortcomings in the Literature . . . . . . . . . . . . . . 34

3 The Algebraic Equation-Oriented Formulation 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Algebraic Equation-Oriented Modelling Procedure . . . . . . . . . . . 39

3.2.1 Basic ORC System Description . . . . . . . . . . . . . . . . . 39

3.2.2 The Algebraic Equation-Oriented Model . . . . . . . . . . . . 45

3.2.3 Optimization Parameters and Settings . . . . . . . . . . . . . 61

3.2.4 Basaran ORC Optimized Results . . . . . . . . . . . . . . . . 62

3.2.5 Algebraic Equation-Oriented Model Validation . . . . . . . . . 64

3.2.6 Working Fluid Selection for the BORC System . . . . . . . . . 67

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Algebraic Equation-Oriented and Sequential-Modular Models: Case

Studies 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 DOE Pilot Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 DOEP Algebraic Equation-Oriented Model . . . . . . . . . . . 74

4.2.2 DOEP Sequential-Modular Model Validation . . . . . . . . . . 83

4.3 USGeo Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 USGP Algebraic Equation-Oriented Model . . . . . . . . . . . 86

4.3.2 USGP Sequential-Modular Model Validation . . . . . . . . . . 99

4.4 Magmamax Binary Power Plant . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 MBPP Algebraic Equation-Oriented Model . . . . . . . . . . . 102

4.4.2 MBPP Sequential-Modular Model Validation . . . . . . . . . . 114

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Optimization of the Organic Rankine Cycle System Case Studies 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 DOE Pilot Plant Optimization . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 DOEP Algebraic Equation-Oriented Model Optimization . . . 120

5.2.2 DOEP Sequential-Modular Model Optimization . . . . . . . . 123

5.3 USGeo Plant Optimization . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Magmamax Binary Power Plant Optimization . . . . . . . . . . . . . 130

5.5 Automating the Working Fluid Selection . . . . . . . . . . . . . . . . 137

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Model Improvement Using Piecewise Fit Approximation 139

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Piecewise Fit Approximation . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 The pwfit Algorithm . . . . . . . . . . . . . . . . . . . . . . . 140

vi



6.2.2 Subfunction Continuity Constraints . . . . . . . . . . . . . . . 142

6.2.3 Optimizing Breakpoint Allocations . . . . . . . . . . . . . . . 145

6.2.4 Limitations of the pwfit Algorithm . . . . . . . . . . . . . . . 148

6.3 Piecewise Function Optimization Formulation . . . . . . . . . . . . . 148

6.4 The Implementation of pwfit on ORC Systems . . . . . . . . . . . . 151

6.4.1 Improving the Accuracy of the Optimization Model . . . . . . 151

6.4.2 Reducing the Deleterious Effect of the Nonlinearity of the Op-

timization Model . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Investigating the Effect of the Working Fluid Mixtures . . . . . . . . 161

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Mixed-Integer Linear Programming Formulation 167

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Mixed-Integer Linear Programming Formulation Procedure . . . . . . 168

7.2.1 Nonlinear Term Approximations . . . . . . . . . . . . . . . . . 169

7.2.2 Bilinear Term Approximation . . . . . . . . . . . . . . . . . . 171

7.2.3 Fractional Objective Function . . . . . . . . . . . . . . . . . . 173

7.2.4 Automating the Conversion from NLP to MILP . . . . . . . . 175

7.3 The MILP Formulation of the Magmamax Binary Power Plant . . . . 178

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8 Conclusions and Future Work 187

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2.1 Algebraic Equation-Oriented Models . . . . . . . . . . . . . . 188

8.2.2 Global Optimality . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.3 Regression Accuracy and Optimization Performance Improve-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.4 Linearization of the Nonlinear Model . . . . . . . . . . . . . . 190

8.3 An Assessment of the Proposed Research Questions . . . . . . . . . . 191

8.4 Recommendation for Future Work . . . . . . . . . . . . . . . . . . . . 192

8.4.1 Binary Cycle Power Plant Optimization . . . . . . . . . . . . 193

8.4.2 Piecewise Approximation of Univariate and Bivariate Functions193

8.4.3 Optimization of the MILP Formulation . . . . . . . . . . . . . 194

Bibliography 195

A The Explicit Optimization Problem of Basaran ORC System 206

B Organic Rankine Cycle SymBuilder Models 208

B.1 DOEP SymBuilder Model . . . . . . . . . . . . . . . . . . . . . . . . 208

B.2 USGP SymBuilder Model . . . . . . . . . . . . . . . . . . . . . . . . 211

vii



B.3 MBPP SymBuilder Model . . . . . . . . . . . . . . . . . . . . . . . . 214

C The pwfit Model Library 217

D Optimization Solvers 218

E Working Fluids 219

F Attached Files 220

viii



Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of

my knowledge and belief, it contains no material previously published or written

by another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.

Vathna Am

ix





List of Figures

1.1 The energy conversion process of an Organic Rankine Cycle system. . 2

2.1 The process flow diagram of a basic Organic Rankine Cycle. . . . . . 9

2.2 Three different categories of working fluids: dry fluid (Pentane), wet

fluid (R32), and isentropic fluid (R245fa). Note the discontinuities

are due to JSteam’s limitations in calculating the saturated entropy

values at temperatures close to the critical point. . . . . . . . . . . . 15

2.3 Classes of optimization formulations. . . . . . . . . . . . . . . . . . . 17

2.4 The structure flow diagram of this research that illustrates the re-

lationship between the different optimization formulations and the

modelling approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 A sequential-modular model of a basic ORC system using the JSteam

Exel Add-In. Non-shaded cells are inputs and shaded cells are outputs. 38

3.2 The process flow diagram of a basic Organic Rankine Cycle system as

per [1] where the working fluid is R227ea. The plant was constructed

in JSteam Excel Add-In v3.20 software [2]. . . . . . . . . . . . . . . . 41

3.3 Turbine for organic Rankine cycle. . . . . . . . . . . . . . . . . . . . 42

3.4 Pump for organic Rankine cycle. . . . . . . . . . . . . . . . . . . . . . 43

3.5 Heat exchangers for organic Rankine cycle. . . . . . . . . . . . . . . . 44

3.6 Valve for organic Rankine cycle. . . . . . . . . . . . . . . . . . . . . . 45

3.7 The condenser of the ORC system presented in [1] with the state

properties obtained directly from Table 7 in [1], where the hot medium

is R227ea and the cold medium is water. . . . . . . . . . . . . . . . . 46

3.8 The condenser unit operation of [1] separated into two parts consist-

ing of a condenser and a desuperheater. The state properties were

obtained from Figure 3.7, where the hot medium is R227ea and the

cold medium is water. Note that the temperature at A2 is the sat-

uration vapour temperature at 2.78 bar, which is the same as the

saturation liquid temperature at A3. . . . . . . . . . . . . . . . . . . 46

3.9 The calculated state properties of the condenser and desuperheater

of Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



3.10 Diagram showing the heat exchange process between the cooling wa-

ter and the working fluid R227ea. The states refer to Figure 3.9. The

x-axis represents the path of the fluid flow in the heat exchanger. . . 48

3.11 The calculated state properties of the condenser and desuperheater

of Figure 3.8 when the outlet temperature of the cooling water was

decreased from 288K to 282K. . . . . . . . . . . . . . . . . . . . . . 48

3.12 Diagram showing the heat exchange process between the cooling wa-

ter and the working fluid R227ea when the temperature at CW3 was

decreased from 288K to 282K. The states refer to Figure 3.11. The

x-axis represents the path of the fluid flow in the heat exchanger. . . 49

3.13 The evaporator of the ORC system presented in [1] with the state

properties obtained directly from Table 10 in [1], where the hot medium

is geothermal brine (water) and the cold medium is R600. . . . . . . 50

3.14 The evaporator unit operation of [1] separated into two parts consist-

ing of a preheater and evaporator/superheater. The state properties

were obtained from Figure 3.13., where the hot medium is geothermal

brine (water) and the cold medium is R600. Note that the tempera-

ture at state A2 is the saturation liquid temperature at 10 bar. . . . . 50

3.15 The calculated state properties of the preheater and evaporator/su-

perheater of Figure 3.14. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.16 Diagram showing the heat exchange process between the geothermal

brine and the working fluid R600. The states refer to Figure 3.15.

The x-axis represents the path of the fluid flow in the heat exchanger. 51

3.17 The calculated state properties of the preheater and evaporator/su-

perheater of Figure 3.14 when the pressure of the working fluid (R600)

was decreased from 10 bar to 6.359 bar. . . . . . . . . . . . . . . . . . 51

3.18 Diagram showing the heat exchange process between the geothermal

brine and the working fluid R600 when the pressure of the working

fluid was decreased from 10 bar to 6.359 bar. The states refer to Fig-

ure 3.17. The x-axis represents the path of the fluid flow in the heat

exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.19 A diagram showing the temperature constraints to ensure that the

heat transfer only flow from the hot medium to the cold medium.

The indices correlate to the Figure 3.2. Note that this diagram is

for illustration purposes only, the entropy values for the brine (red)

and the cooling water (blue) would generally not be the same as the

working fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.20 The regression fit and error plot of the pump isentropic work as a

function of the outlet pressure. The black dots (top plot) are the

REFPROP thermodynamic calculations. . . . . . . . . . . . . . . . . 56

xii



3.21 The regression fit and error plot of the turbine isentropic work as a

function of the inlet enthalpy and pressure. The black dots (top plot)

and the grey dots (bottom plot) are the REFPROP thermodynamic

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.22 The feasible region of the turbine inlet condition. . . . . . . . . . . . 58

3.23 The regression curve regressions the turbine inlet enthalpy at the

lower- and upper-temperature limit as a function of the inlet pressure.

The black dots are the REFPROP thermodynamic calculations. . . . 58

3.24 The saturation liquid curve regressions for the BORC algebraic EO

model. The black dots are the REFPROP thermodynamic calculations. 59

3.25 The temperature regressions of the Basaran ORC system as shown

in Figure 3.2. The black dots are the REFPROP thermodynamic

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.26 The Ts diagram of the optimized algebraic EO model using BARON

and patternsearch, where the each solver converged to the same

operating point for both objective functions. . . . . . . . . . . . . . . 67

3.27 Diagrams showing the heat exchange process between the geothermal

brine/cooling water and the working fluid, where the net power of the

plant was optimized using BARON. The states refer to Figure 3.2.

The x-axis represents the path of the fluid flow in the heat exchanger. 67

3.28 Diagrams showing the heat exchange process between the geothermal

brine/cooling water and the working fluid, where the net power of

the plant was optimized using patternsearch. The states refer to

Figure 3.2. The x-axis represents the path of the fluid flow in the

heat exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.29 The validated optimal net output powers of the BORC system with

respect to different working fluids. . . . . . . . . . . . . . . . . . . . . 68

3.30 The validated optimized specific rotating machinery costs of the BORC

system with respect to different working fluids. . . . . . . . . . . . . . 70

4.1 The process flow diagram of the DOE Pilot Plant with R600a as

the working fluid. The state-point properties were obtained from the

solved SM model, see Section 4.2.2. . . . . . . . . . . . . . . . . . . . 74

4.2 The regression fit and error plot of the DOEP HP turbine isentropic

work as a function of the inlet pressure and enthalpy. The black

dots (top plot) and the grey dots (bottom plot) are the REFPROP

thermodynamic calculations. . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 The regression fit and error plot of the DOEP LP turbine isentropic

work as a function of the inlet pressure and enthalpy. The black

dots (top plot) and the grey dots (bottom plot) are the REFPROP

thermodynamic calculations. . . . . . . . . . . . . . . . . . . . . . . . 78

xiii



4.4 The regression fit and error plot of the DOEP pump isentropic work

as a function of the outlet pressure. The black dots (top plot) are the

REFPROP thermodynamic calculations. . . . . . . . . . . . . . . . . 78

4.5 The thermodynamic regressions for the operational constraints in

(4.5). The black dots are the REFPROP thermodynamic calcula-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 The temperature regressions at various stages of the DOE Pilot Plant.

The black dots are the REFPROP thermodynamic calculations. . . . 82

4.7 The Ts diagram of the DOE Pilot Plant’s sequential-modular model. 84

4.8 Diagrams showing the heat exchange between the geothermal brine/-

cooling water and the working fluid. The states refer to Figure 4.1.

The x-axis represents the path of the fluid flow in the heat exchanger. 86

4.9 The process flow diagram of the USGeo Plant with the R601a as

the working fluid. The state-point properties were obtained from the

solved SM model, see Section 4.3.2. . . . . . . . . . . . . . . . . . . . 88

4.10 The regression fit and error plot of the USGP HP turbine isentropic

work as a function of the inlet pressure and enthalpy. The black

dots (top plot) and the grey dots (bottom plot) are the REFPROP

thermodynamic calculations. . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 The regression fit and error plot of the USGP LP turbine isentropic

work as a function of the inlet pressure and enthalpy. The black

dots (top plot) and the grey dots (bottom plot) are the REFPROP

thermodynamic calculations. . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 The regression fit and error plot of the USGP HP pump isentropic

work as a function of the outlet pressure. The black dots (top plot)

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 92

4.13 The regression fit and error plot of the USGP LP pump isentropic

work as a function of the outlet pressure. The black dots (top plot)

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 93

4.14 The thermodynamic regressions for the operational constraints in

(4.16). The black dots are the REFPROP thermodynamic calculations. 94

4.15 The temperature regressions for the USGP HP cycle. The black dots

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 96

4.16 The temperature regressions for the USGP LP cycle and geothermal

brine. The black dots are the REFPROP thermodynamic calculations. 97

4.17 The Ts diagram of the USGeo Plant’s sequential-modular model. . . 100

4.18 Diagrams showing the heat exchange between the hot medium and

cold medium. The states refer to Figure 4.9. The x-axis represents

the path of the fluid flow in the heat exchanger. . . . . . . . . . . . . 101

xiv



4.19 The process flow diagram of the Magmamax Binary Power Plant with

R600a for the HP cycle and R290 for the LP cycle. The state-point

properties were obtained from the solved SM model, see Section 4.4.2. 103

4.20 The regression fit and error plot of the MBPP HP turbine isentropic

work as a function of the inlet pressure and enthalpy. The black

dots (top plot) and the grey dots (bottom plot) are the REFPROP

thermodynamic calculations. . . . . . . . . . . . . . . . . . . . . . . . 106

4.21 The regression fit and error plot of the MBPP LP turbine isentropic

work as a function of the inlet pressure and enthalpy. The black

dots (top plot) and the grey dots (bottom plot) are the REFPROP

thermodynamic calculations. . . . . . . . . . . . . . . . . . . . . . . . 107

4.22 The regression fit and error plot of the MBPP HP pump isentropic

work as a function of the outlet pressure. The black dots (top plot)

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 108

4.23 The regression fit and error plot of the MBPP LP pump isentropic

work as a function of the outlet pressure. The black dots (top plot)

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 108

4.24 The thermodynamic regressions for the operational constraints in

(4.28) and (4.29). The black dots are the REFPROP thermodynamic

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.25 The temperature regressions of the MBPP HP cycle. The black dots

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 111

4.26 The temperature regressions of the MBPP LP cycle. The black dots

are the REFPROP thermodynamic calculations. . . . . . . . . . . . . 112

4.27 The temperature regressions of the MBPP brine and cooling water.

The black dots are the REFPROP thermodynamic calculations. . . . 112

4.28 The Ts diagram of the Magmamax Binary Power Plant’s sequential-

modular model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.29 Diagrams showing the heat exchange between the hot medium and

cold medium. The states refer to Figure 4.19. The x-axis represents

the path of the fluid flow in the heat exchanger. . . . . . . . . . . . . 116

5.1 The comparison between BARON’s optimized net output powers and

the base case values of the DOE Pilot Plant. . . . . . . . . . . . . . . 121

5.2 The comparison between BARON’s optimized specific rotating ma-

chinery costs and the base case values of the DOE Pilot Plant. . . . . 123

5.3 Diagrams showing the heat exchange process between the geothermal

brine/cooling water and the working fluid (R600a) of the DOE Pilot

Plant, where the specific rotating machinery cost was optimized using

SCIP. The states refer to Figure 4.1. The x-axis represents the path

of the fluid flow in the heat exchanger . . . . . . . . . . . . . . . . . . 124

xv



5.4 The comparison between BARON’s optimized net output powers and

the base case values of the USGeo Plant. . . . . . . . . . . . . . . . . 128

5.5 The comparison between BARON’s optimized specific rotating ma-

chinery costs and the base case values of the USGeo Plant. . . . . . . 129

5.6 Diagrams showing the heat exchange between the hot medium and

cold medium, where the specific rotating machinery cost of the USGeo

Plant was optimized using SCIP. The states refer to Figure 4.9. The

x-axis represents the path of the fluid flow in the heat exchanger. . . 131

5.7 The comparison between the optimized net output powers and the

base case values of the Magmamax Binary Power Plant. . . . . . . . . 132

5.8 The comparison between the optimized specific rotating machinery

costs and the base case values of the Magmamax Binary Power Plant. 135

5.9 Diagrams showing the heat exchange between the hot medium and

cold medium, where the specific rotating machinery cost of the Mag-

mamax Binary Power Plant was optimized using SCIP. The states

refer to Figure 4.19. The x-axis represents the path of the fluid flow

in the heat exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Approximating y(x) = ex with pwfit using two quadratic polynomial

functions with a fixed breakpoint at 2. . . . . . . . . . . . . . . . . . 141

6.2 Approximating z(x, y) = −(sin y)2+ex with pwfit using two quadratic

polynomial surfaces (poly21) with a fixed breakpoint at 3.5. The

black dots are the input data and the red solid line is the breakpoint. 145

6.3 Approximating y(x) = ex with pwfit using two quadratic polynomial

functions with an optimized breakpoint location. . . . . . . . . . . . . 146

6.4 Approximating z(x, y) = −(sin y)2+ex with pwfit using two quadratic

polynomial surface (poly21) with an optimized breakpoint location.

The black dots are the input data and the red solid line is the break-

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Approximating the enthalpy of R227ea at P ∈ [11.97, 26.31] bar and

T = 369.72K using a single fit. The black dots are the REFPROP

data and the blue solid line (top plot) is the approximated cubic

polynomial fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Approximating the enthalpy of R227ea at P ∈ [11.97, 26.31] bar and

T = 369.72K using pwfit. The black dots are the REFPROP data

and the solid lines (top plot) are the approximated quadratic polyno-

mial fits. The error plot is using the same scale as Figure 6.5. . . . . 153

6.7 The Ts diagram of a mixture with 60% R600a and 40% R134a, where

the mixture evaporates and condenses at variable temperatures. . . . 162

xvi



6.8 The trendline of the optimized net output powers of the DOE Pilot

Plant subjected to different mixture composition ratios. The abscissa

indicates the percentage of the working fluid of that column. . . . . . 164

7.1 Approximating the turbine isentropic work of the Basaran ORC sys-

tem using the pwfit approach with linear surface fits, where the work-

ing fluid was R227ea. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 Approximating the turbine isentropic work of the Basaran ORC sys-

tem using the Triangle Method, where the working fluid was R227ea. 171

7.3 Piecewise linear approximation of R227ea enthalpy values at P ∈

[3.78, 10] bar and T = 363K. . . . . . . . . . . . . . . . . . . . . . . . 172

7.4 Piecewise linear approximation of y1
2 and y2

2 in (7.3) using the λ-

Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



List of Tables

1 Mathematical notations. . . . . . . . . . . . . . . . . . . . . . . . . . xxii

2 Thesis nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

3 Thesis subscripts and acronyms. . . . . . . . . . . . . . . . . . . . . . xxiii

2.1 The safety and environmental properties of different working fluids

(adapted from [3]). The ozone depletion potential (ODP) and the

global warming potential (GWP) are normalized at 1 for R12 and

carbon dioxide, respectively. . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Overview of the different optimization problems that are encountered

in process systems engineering (adapted from [4]). . . . . . . . . . . . 19

2.3 Process system modelling/optimization environments (adapted from

[5, 6]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 The colour scheme of the Organic Rankine Cycle unit operations and

process flow diagrams that are presented in this thesis. . . . . . . . . 40

3.2 The constant parameters of the Basaran ORC system (adapted from

[1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Constant parameters for calculating the cost of the turbine and pump. 54

3.4 The optimized net output powers and the solve times of the BORC

algebraic EO model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 The optimized specific rotating machinery costs and the solve times

of the BORC algebraic EO model. . . . . . . . . . . . . . . . . . . . . 63

3.6 The comparison between the original nominal design properties [1]

and the JSteam SM model. . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 The validated algebraic EO model for both objective functions. The

values in the square brackets show the relative error [%] between the

SM model and the algebraic EO model. . . . . . . . . . . . . . . . . . 66

3.8 The validated optimal net output powers [kW] that were optimized

using BARON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 The validated optimal specific rotating machinery costs [k$/MW] that

were optimized using BARON. . . . . . . . . . . . . . . . . . . . . . . 69

4.1 The DOEP nominal design state-point properties that were obtained

from [3]. Refer to Figure 4.1 for the state labels. . . . . . . . . . . . . 75

xviii



4.2 The DOE Pilot Plant constant parameters. . . . . . . . . . . . . . . . 76

4.3 A comparison between the DOEP nominal design [3] and the JSteam

SM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 The USGP nominal design state-point properties obtained from [3].

Refer to Figure 4.9 for the state labels. . . . . . . . . . . . . . . . . . 87

4.5 The USGeo Plant constant parameters. . . . . . . . . . . . . . . . . . 89

4.6 The USGeo Plant’s power analysis, mass flows, and specific rotating

machinery cost of the JSteam SM Model. . . . . . . . . . . . . . . . . 100

4.7 The MBPP design specifications obtained from [3, 7]. Refer to Fig-

ure 4.19 for the state labels. . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 The modified MBPP design specifications of Table 4.7. Refer to Fig-

ure 4.19 for the state labels. . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 The Magmamax Binary Power Plant constant parameters. . . . . . . 105

4.10 A comparison between the modified MBPP design specifications (nom-

inal design) and the JSteam SM Model. . . . . . . . . . . . . . . . . . 115

5.1 A comparison between the total number of variables and constraints

of the binary cycle power plants in Chapter 4. . . . . . . . . . . . . . 119

5.2 The optimized net output powers [kW] and the base case values of

the DOE Pilot Plant for all the NLP solvers. . . . . . . . . . . . . . . 121

5.3 The solve times [s] of Table 5.2. . . . . . . . . . . . . . . . . . . . . . 122

5.4 The optimized specific rotating machinery costs [k$/MW] and the

base case values of the DOE Pilot Plant for all the NLP solvers. . . . 122

5.5 The solve times [s] of Table 5.4. . . . . . . . . . . . . . . . . . . . . . 122

5.6 The optimized net output powers of the DOEP SM model, where J

is the objective function in [kW] and Time is the solve time in [s].

The relative and absolute convergence tolerances were set to 1×10−2.

FNS: Found No Solution. . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 The optimized specific rotating machinery costs of the DOEP SM

model, where J is the objective function in [k$/MW] and Time is

the solve time in [s]. The relative and absolute convergence tolerances

were set to 1× 10−2. FNS: Found No Solution. . . . . . . . . . . . . . 126

5.8 The average number of iterations that the black-box solvers took to

solve the SM model and the algebraic EO model of the DOE Pilot

Plant. This table only considers the working fluids that were solved

in both models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.9 The optimized net output powers [kW] and the base case values of

the USGeo Plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.10 The solve times [s] of Table 5.9. . . . . . . . . . . . . . . . . . . . . . 128

5.11 The optimized specific rotating machinery costs [k$/MW] and the

base case values of the USGeo Plant. . . . . . . . . . . . . . . . . . . 128

xix



5.12 The solve times [s] of Table 5.11. . . . . . . . . . . . . . . . . . . . . 129

5.13 The average number of iterations that the black-box solvers took to

solve the algebraic EO model of the USGeo Plant. . . . . . . . . . . . 130

5.14 The optimized net output powers [kW] of the Magmamax Binary

Power Plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.15 The solve times [s] of Table 5.14. . . . . . . . . . . . . . . . . . . . . 133

5.16 The optimized specific rotating machinery costs [k$/MW] of the Mag-

mamax Binary Power Plant. . . . . . . . . . . . . . . . . . . . . . . . 134

5.17 The solve times [s] of Table 5.16. MTR: Maximum Time Reached. . . 134

5.18 The average number of iterations of the black-box solvers for the

Magmamax Binary Power Plant. . . . . . . . . . . . . . . . . . . . . 134

5.19 The total computational optimization times of the algebraic EO mod-

els with respect to different working fluids using IPOPT, where the

net output power was optimized. . . . . . . . . . . . . . . . . . . . . 137

6.1 The optimized net output powers J [kW] and the solve times [s] of

the DOE Pilot Plant using piecewise approximations. . . . . . . . . . 154

6.2 The optimized specific rotating machinery costs J [k$/MW] and the

solve times [s] of the DOE Pilot Plant using piecewise approximations.155

6.3 The average number of nodes needed for the white-box solvers to

optimize the NLP and MINLP formulations of the DOE Pilot Plant. . 156

6.4 The average relative errors between the optimized algebraic EO model

and the SM model of the DOE Pilot Plant using the white-box solvers.156

6.5 The optimized net output powers J [kW] and the solve times [s] of

the USGeo Plant using piecewise approximations. . . . . . . . . . . . 157

6.6 The optimized specific rotating machinery costs J [k$/MW] and the

solve times [s] of the USGeo Plant using piecewise approximations. . . 157

6.7 The average number of nodes needed for the white-box solvers to

optimize the NLP and MINLP formulations of the USGeo Plant. . . . 158

6.8 The average relative errors between the optimized algebraic EO model

and the SM model of the USGeo Plant using the white-box solvers. . 158

6.9 The optimized net output powers [kW] of the Magmamax Binary

Power Plant using piecewise approximations. . . . . . . . . . . . . . . 159

6.10 The solve times [s] of Table 6.9. . . . . . . . . . . . . . . . . . . . . . 159

6.11 The optimized specific rotating machinery costs [k$/MW] of the Mag-

mamax Binary Power Plant using piecewise approximations. . . . . . 160

6.12 The solve times [s] of Table 6.11. . . . . . . . . . . . . . . . . . . . . 160

6.13 The average number of nodes needed for the white-box solvers to

optimize the NLP and MINLP formulations of the Magmamax Binary

Power Plant. This table only considers the working fluid pairs that

were solved in both formulations. . . . . . . . . . . . . . . . . . . . . 161

xx



6.14 The average relative errors between the optimized algebraic EO model

and the SM model of the Magmamax Binary Power Plant using the

white-box solvers. This table only considers the working fluid pairs

that are solved in both NLP and MINLP formulations. . . . . . . . . 161

6.15 The maximum optimal net output powers [kW] of the DOE Pilot

Plant that were obtained from varying the composition of the column

fluid from 0% to 100%, where the optimization problem was solved

using BARON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.16 The composition of each mixture that obtained the highest net output

power. The ratio number on the left and right associates with the row

and column fluid, respectively. For example 15%:85% means 15%

RC318 and 85% CF3I. . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1 The optimized net output powers [kW] of the Magmamax Binary

Power Plant’s MILP model. . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 The solve times [s] of Table 7.1. . . . . . . . . . . . . . . . . . . . . . 182

7.3 The optimized specific rotating machinery costs [k$/MW] of the Mag-

mamax Binary Power Plant’s MILP model. . . . . . . . . . . . . . . . 182

7.4 The average number of nodes needed for the local solvers to optimize

the Magmamax Binary Power Plant’s MILP formulation. . . . . . . . 183

7.5 The average number of nodes needed for the global solvers to optimize

the Magmamax Binary Power Plant’s MINLP and MILP formulations.184

7.6 The solve times [s] of Table 7.3. MTR: Maximum Time Reached. . . 184

7.7 The average relative errors between the optimized algebraic EO model

and the SM model of the Magmamax Binary Power Plant using SCIP. 185

C.1 Curve fitting models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

C.2 Surface fitting models. . . . . . . . . . . . . . . . . . . . . . . . . . . 217

D.1 The optimization solvers that were used in this research. NC: Non-

commercial; C: Commercial. . . . . . . . . . . . . . . . . . . . . . . . 218

E.1 Properties of the working fluids that were used in the thesis. . . . . . 219

F.1 Files included with the thesis. . . . . . . . . . . . . . . . . . . . . . . 220

xxi



Nomenclature

The thesis will use the following notations in Table 1 for mathematical equations.

Table 1: Mathematical notations.

Notation Description
X Matrix (bold and capitalized)
x Column vector (bold and lower case)
x Scalar (italic and lower case)
x̂ Approximation (hat operator)

The following list of nomenclatures in Table 2 will be used within this work.

Table 2: Thesis nomenclature.

Symbol Description Unit
ṁ Mass flow kg/s
h Enthalpy kJ/kg
s Entropy kJ/(kg K)
T Temperature K
P Pressure bar

Ẇ Mechanical work kW

Q̇ Heat duty kW
C Cost k$
η Efficiency %
J Objective function -
z Mass flow fraction -

Table 3 lists the abbreviations and acronyms that are frequently used in the

written texts or as subscripts in mathematical equations throughout this thesis.
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Table 3: Thesis subscripts and acronyms.

Symbol Description
pump Pump
turb Turbine
cond Condenser
desh Desuperheater
preh Preheater
evap Evaporator
suph Superheater
recu Recuperator
pp Pinch-point
WF Working Fluid
CW Cooling Water
BR Brine or Geofluid
CS Cold Side
HS Hot Side
DOE Department of Energy
ORC Organic Rankine Cycle
BCPP Binary Cycle Power Plant
BORC Basaran Organic Rankine Cycle
DOEP Department of Energy Pilot Plant
USGP USGeo Plant
MBPP Magmamax Binary Power Plant
LT Low Temperature
HP High Pressure
LP Low Pressure or Linear Program
NLP Nonlinear Program
MINLP Mixed-Integer Nonlinear Program
MIQCLP Mixed-Integer Quadratically Constrained Linear Program
MIQCQP Mixed-Integer Quadratically Constrained Quadratic Program
MILP Mixed-Integer Linear Program
EO Equation-oriented
SM Sequential-modular
is Isentropic Process
crit Critical
hx Heat Exchanger
bk Breakpoint
net Net Power
f Saturated liquid
g Saturated vapour
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Chapter 1

Introduction

1.1 Organic Rankine Cycle

With the increasing concerns surrounding the negative environmental impacts asso-

ciated with non-renewable resources and the growing pressure for the power gener-

ation sector to reduce greenhouse gases emission and pollutants, there is now much

more recognition and interest in the global benefits of renewable power generation

technologies. Through technological advances in geothermal exploration and well

drilling technology, geothermal energy is proving to be a reliable source of sustain-

able and renewable energy. According to the World Energy Council, there are 24

countries that have used geothermal energy for electricity generation as of 2014 [8].

In New Zealand, almost 20% of the electricity supply is produced from geothermal

energy [9]. Most of the geothermal resources in New Zealand are located in Taupo

Volcanic Zone and Ngawha (Northland) with temperatures varying from 70 ◦C to

>220 ◦C in some areas [10].

One of the most efficient ways to exploit the abundant low-temperature geother-

mal resources is via the Organic Rankine Cycle (ORC) systems. The energy con-

version process of an ORC system is very similar to a conventional steam cycle,

where the thermal energy is converted to kinetic energy that can subsequently be

used to generate electricity, as shown in Figure 1.1. In addition, the ORC systems

are not limited to geothermal energy but can be implemented using other thermal

resources, such as solar energy, thermal waste, or biomass energy, thus broadening

their applications in other industries. This can also help to reduce the amount of

waste heat that is lost to the environment and contributing to global warming.

For a basic ORC system, as shown in the middle of Figure 1.1, a heat source

is used to vaporize a working fluid in an evaporator before expanding through a
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Figure 1.1: The energy conversion process of an Organic Rankine Cycle system.

turbine. The vapour exits the turbine at a lower pressure and condenses back to its

liquid state before it is fed back to the evaporator via a pump. This basic design

forms the basis for many complex and innovative ORC systems that are designed

to improve the performance and reduce thermodynamic losses. These advanced

systems can consist of two or more ORC systems that operate at different pressure

levels with various inclusion of additional unit operations, such as a recuperative

heat exchanger, to help maximize the utilization of the heat source. A good overall

summary of different advanced ORC systems can be found in [3, 11].

Organic Rankine Cycle systems are predominantly used in the geothermal power

plant industry as Binary Cycle Power Plants (BCPP). Of all the geothermal power

plants (GPP), BCPPs are the most common type of GPP in the world with around

279 units according to [12], constituting to over 46% of all geothermal units. Given

that there are a large number of ORC systems ranging in various topologies around

the world and the potential for more low-temperature thermal resources to be ex-

ploited, there is a need for an efficient and robust approach to modelling and op-

timizing these systems. In addition, ORC systems inherently have a low thermal

efficiency due to the small temperature difference between the heat source and the

heat sink [3]. Therefore, even for an ORC with a 10% thermal efficiency, a 1% effi-

ciency increase would translate to a 10% improvement that can mean the difference

between an economically viable plant and one that is not.

Often these ORC plants are simulated using a modular-based approach in a

modelling software, such as Aspen Plus [13] or GateCycle [14]. The models then
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are subsequently optimized using heuristic methods or optimization algorithms, as

shown in [15, 16]. However, this approach is not the most robust or efficient for

optimization and can lead to various convergence and numerical issues, as detailed

below.

1.2 Modular-based Optimization Models

Organic Rankine Cycle systems are generally modelled as modular-based models

using the sequential-modular (SM) method, where the unit operation modules are

connected in the order of the plant’s process. Each module is solved in a sequential

order where the output of one module is computed from the output of the previ-

ous module in the flowsheet. This makes constructing the SM model of an ORC

system very institutive and simple to troubleshoot when the input stream at the

beginning of the plant’s process is known. However, there are some key limitations

associated with the SM approach, especially when dealing with large and complex

ORC optimization problems.

One of the major disadvantages with the SM model is often the restriction of

accurate derivative information due to the use of complex thermodynamics, inter-

nal/external unit operation modules, and a nonlinear equation solver. This can

degrade the performance of derivative-based optimization solvers, such as fmincon

(MATLAB’s solver) [17] or IPOPT [18], that require the first and second derivatives

of the objective function and constraints in order to find a solution. If the derivative

information is not provided to the solver, the derivatives are approximated using the

finite difference method that can result in various optimization issues, such as pre-

mature termination and long computation times [19]. Therefore, one should always

try to find a method that provides accurate Jacobian and Hessian information to

the solver in order to obtain efficient optimization performance. This will be further

discussed in Chapter 2. In addition, given the nonlinear nature and the rigidity

structure of the SM model, it is limited to black-box solvers that cannot guarantee

global optimality, which can be a disadvantage in today’s competitive market.

1.3 Equation-based Optimization Models

Alternatively, Organic Rankine Cycle systems can be modelled as equation-based

models using the equation-oriented (EO) approach, where systems are represented as

a set of equations that are solved simultaneously. The structure of the EO approach

allows standard optimization problems to be formulated efficiently, and the mass and
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energy balance equations are solved simultaneously with the optimization problem

[20]. However, unlike the SM approach where the model can typically be constructed

by connecting pre-built unit operation modules, the underlying equations of the EO

model generally must be manually derived. This can be very time consuming and

difficult to troubleshoot the model, especially for advanced ORC systems.

In addition, if all the equations in the EO model are algebraic and analytically

differentiable, this algebraic structure can be exploited to analytically calculate the

required derivatives and provide the matrix sparsity information to the solvers. This

means that the optimization issues associated with the SM approach mentioned

above can be bypassed or at least reduced. Furthermore, provided the equations

are limited to a set of certain functions that are supported by white-box solvers, the

model can be optimized using global solvers, such as SCIP [21] and BARON [22],

to deterministically find the global optimum of the plant.

1.4 Optimization Formulation

Optimizing an ORC model using a state-of-the-art optimization solver does not al-

ways guarantee an efficient and robust optimization. The formulation and structure

of the optimization problem also play a significant role in the overall performance of

the optimization. In operations research, there are many different chemical processes

that can be formulated into different optimization problems from linear program-

ming (LP) to mixed-integer nonlinear programming (MINLP) problems, which can

vary in complexity and size. In terms of the ORC systems, they are inherently

nonlinear problems due to the thermodynamic processes of the unit operations and

the thermodynamic properties of the working fluid. Consequently, the steady-state

models of ORC systems consist of nonlinear equations that generally give rise to

nonconvex problems with multiple local optimums [23] and are very hard to solve,

especially with large and complex models.

Often optimization problems can be reformulated using various integer and lin-

ear programming techniques, such as the Glover’s linearization scheme [24] and the

Charnes-Cooper transformation [25], which can help address some financial restric-

tions, time constraints, compatibility and availability issues with modelling software

and optimization solvers, and/or restrictions of establishing global optimality. His-

torically, nonlinear problems are reformulated to linear problems because LP solvers,

or even mixed-integer linear programming (MILP) solvers, were more computation-

ally efficient and readily available than the nonlinear programming (NLP) solvers.

However, it can be very tedious and time consuming for practitioners to reformulate

optimization problems. Furthermore, with the recent advancements in nonlinear
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solvers and improvements in optimization modelling platforms and techniques, as

well as computer hardware, it might now be redundant for practitioners to reformu-

late certain real-world NLP problems.

1.5 Research Questions and The Thesis Contri-

butions

In order to fully utilize the full potential of the ORC system and maximize the

usage of the available renewable resources efficiently, it is important that a reliable

and efficient modelling and optimization approach is available. However, while it is

widely acknowledged in the literature that an EO model is more efficient and robust

for optimization than an SM model, it is not extensively investigated or proposed

in the literature for large advanced ORC systems. Therefore, this research aims to

provide a modelling framework for an ORC system to reduce the issues associated

with the conventional SM optimization approach and to provide an efficient model

that is tailored for optimization. This will be significantly beneficial for certain

optimization problems that are computationally expensive, such as optimizing the

plant with respect to different working fluids and mixtures. In addition, given that

ORC systems typically have low thermal efficiencies and can vary in plant design

and operation conditions, there would generally be many possible local optimums

that can limit them from fully exploiting the thermal resources.

In order to tailor the ORC model to the derivative-based and white-box solvers,

the model can be approximated using regression analysis to reformulate the model

to an algebraic structure that can provide analytical derivative and matrix sparsity

information. However, it can be very difficult to accurately approximate the ORC

system given the complicated thermodynamic terms and processes in the steady-

state model. It is possible to use highly nonlinear model fits to increase the ac-

curacy, but this can also increase the nonlinearity of the model and degrade the

optimization performance. Therefore, this research investigates a more constructive

method of approximating the ORC model using piecewise fits, which can minimize

the deleterious effect of the nonlinearity of the approximated model but not at the

expense of its accuracy.

Generally, nonlinear problems are much harder to solve than linear problems, but

the linearization of an ORC model has not been widely investigated. This could be

due to the strenuous and tedious linearization procedure that involves introducing

piecewise linear approximations and other linearization techniques. Consequently,

the advantages and disadvantages of a linear ORC model would be hard to investi-
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gate without first providing an efficient method to linearize a nonlinear ORC model.

As such, this research aims to explore a systematic approach to convert a nonlinear

model to an equivalent mixed-integer linear programming model and compare the

optimization performance of both formulations.

The overall objective of this thesis is to provide a framework that can be used

to model large and complex ORC systems that are intended for industrial optimiza-

tion and to address the shortcomings highlighted above. To achieve this aim, the

following research questions are posed:

1. Can we formulate equation-orientated models of large and complex ORC sys-

tems that are algebraic in structure and tailored for efficient and robust opti-

mization?

2. Can the performance of some optimization solvers be improved by reducing the

deleterious effect of the nonlinearity of the optimization ORC model without

compromising, if not improving, on the accuracy of the approximated model?

3. Is it possible to reformulate the nonlinear algebraic EO model of an ORC

system into an equivalent mixed-integer linear programming model using lin-

ear/integer programming techniques? In addition, given the improvement in

nonlinear solver algorithms and the advancement in computer hardware, can

the mixed-integer linear model improve or match the performance of the non-

linear counterpart as traditionally concluded in the literature?

To undertake these research questions, this thesis will detail an algebraic EO

modelling approach on three real-world binary cycle power plants. Leveraging of the

algebraic structure of the EO model, three different formulations will be investigated,

namely, NLP, MINLP and MILP. A set of regression and modelling tools will be

discussed and used to reformulate the ORC model from one formulation to another.

The research questions will be critiqued later in Chapter 8.

1.6 Thesis Outline

In order to coherently address the research questions stated in the previous section,

this thesis is structured as follows:

Chapter 2 reviews existing studies of ORC modelling and optimization. This

chapter will highlight and review the advantages and disadvantages of the common

methodologies and tools. The shortcomings in the literature will be discussed in

more detail.
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Chapter 3 introduces the algebraic EO modelling approach. A detailed descrip-

tion of the modelling procedure is carried on a basic ORC system.

Chapter 4 applies the algebraic EO modelling approach to three large and com-

plex real-world ORC systems, namely, binary cycle power plants. In addition, the

equivalent SM model of each plant will also be presented and validated.

Chapter 5 optimizes the ORC models in Chapter 4 using both black-box solvers

and white-box solvers. Each algebraic EO model will be optimized with respect to

different working fluids and the optimization performance will be analysed.

Chapter 6 details the implementation of a piecewise fit algorithm that can help

to improve the performance of some optimization solvers without compromising on

the accuracy of the model.

Chapter 7 details the reformulation of the nonlinear optimization problem into

an equivalent mixed-integer linear programming problem. The MILP model will

be optimized with state-of-the-art MILP solvers and compared to the nonlinear

counterparts.

Chapter 8 concludes the thesis and highlights the key contributions of this work.

This is then followed by an assessment of the proposed research questions and rec-

ommendations for future developments and investigations.
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Chapter 2

Literature Review

This chapter will discuss the energy conversion process of an Organic Rankine Cy-

cle (ORC) system and look at the previous studies surrounding the modelling and

optimization of this system. The chapter will review the different classes of math-

ematical programming and the available modelling and optimization tools that are

used by practitioners on ORC systems. This is then followed by a discussion on the

advantages and disadvantages of the different optimization techniques and highlight-

ing the need for a robust and efficient optimization approach. Finally, the chapter

ends with a discussion on the shortcomings in the field of ORC optimization and

highlight the areas that will be addressed in this research.

2.1 Introduction

The world’s dependence on non-renewable energy has led to various environmental

issues that have a detrimental impact on the planet. More than 66% of the world’s

electricity is generated from fossil fuels according to [26]. Consequently, there has

been hard evidence to show the negative implications of utilizing fossil fuel, from the

rise in global temperature to environmental pollution. In response to the concerns

surrounding global warming and ambitious efforts to address climate change through

the Paris Agreement [27], there has been a great interest in renewable and sustain-

able energy resources in recent years. One of which is in the field of low-temperature

thermal resources.

There are a vast amount of low-temperature thermal resources, such as geother-

mal energy, industrial waste thermal energy, and solar energy, that are available to

be exploited and have the potential to help address some of the concerns surround-

ing the use of non-renewable resources. One of the most efficient and sustainable
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ways to utilize low-temperature thermal resources is through an Organic Rankine

Cycle (ORC) system. The energy conversion process of an ORC system is thermo-

dynamically very similar to that of other conventional thermal power plants, such

as a fossil fuel power plant and a nuclear power plant.

In order to effectively utilize the available low-temperature thermal resources,

ORC systems need to be modelled and optimized. Often they are simulated using

the sequential-modular approach, via modelling software such as Aspen Plus [13] or

GateCycle [14], and then are subsequently optimized using heuristic methods or op-

timization algorithms [15, 28]. However, one major concern with using this approach

lies in the robustness and efficiency of the model when it is used in optimization

problems. Therefore, this chapter will review the limitations of common practices

of optimizing ORC systems and propose a modelling approach that is tailored for

efficient optimization.

2.2 The Organic Rankine Cycle Process

One main difference between the ORC system and the Rankine cycle is the type

of working fluid that is used. Instead of utilizing water as the working fluid, ORC

systems generally use a hydrocarbon or a refrigerant that has a lower boiling point

than that of water. This is due to the low-temperature heat source to the system.

Figure 2.1 shows the process flow diagram of a basic ORC system, where the working

fluid is heated up and vaporized by the heat source (in this case a geofluid) inside

the preheater and evaporator, and then expands through the turbine to produce

mechanical work. Next, the exhaust vapour exits the turbine and is condensed to

a saturated liquid (or subcooled liquid) before it is fed back to the preheater and

evaporator via a feed pump.

Figure 2.1: The process flow diagram of a basic Organic Rankine Cycle.

The ORC systems are largely employed in the geothermal power industry due to

the vast amount of low-temperature thermal resources. A binary cycle power plant
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(BCPP) is a geothermal power plant that utilizes the ORC technology and makes

up the largest number of units out of all the geothermal power plants in the world.

In addition to high power geothermal ORC power plants, there are also micro ORC

systems that generate low power around 20-50 kW from low-temperature the heat

sources, such as solar energy, biomass and waste heat from various thermal utility

systems [29].

Although the ORC systems are proving to be one of the leading energy conversion

technologies for a low-temperature heat source, they generally have low thermal

efficiencies due to the small temperature difference between the heat sink and the

heat source [3]. Therefore, this can be a deterrent for many companies to invest in

the development of these plants if they are not optimized efficiently to fully utilize

the available heat source. In addition, given that every BCPP is unique and ranges

from various geothermal resources to the topology to the working fluid of the plant,

it is very unlikely that the optimized conditions of one plant can be applied to

another plant in a different location or with operating constraints. Therefore, there

is a need for an efficient and robust off-line optimization approach that is applicable

to a wide range of ORC systems and tailored for various optimization solvers.

While there are studies in the literature that address the performance and/or

economic optimization, such as described in [30, 31, 32, 33, 15, 34], they do not

normally focus on the modelling and optimization methodologies or formulations

that are specifically for the ORC systems. Generally, the study is focused on one

particular plant design where one or more different aspects of the plant are opti-

mized.

For instance, Astolfi et al. [30] optimized the thermal efficiency of an ORC sys-

tem with respect to the inlet pressure and temperature of the turbine and different

working fluids. The ORC model was constructed in MATLAB and optimized using

the fmincon optimization solver (Active-set algorithm), where the thermodynamic

properties of the working fluids were calculated using REFPROP [35] thermody-

namic package. Given that the model uses REFPROP explicitly, it can be difficult

to obtain accurate derivative information of the model, which can lead to long com-

putational time or failure to converge to a solution (see Section 2.9).

A study carried out by Ghasemi et al.[15] constructed a model of an existing ORC

system in Aspen Plus. The net output power of the plant was optimized with respect

to the ambient temperature using the built-in SQP optimizer in Aspen Plus. Their

results showed that the net output power is restricted by the capacity of the air-

cooled condensing system at high ambient temperatures. The disadvantage with this

approach is that it utilizes the sequential-modular (SM) method (see Section 2.6.1)

where the model was constructed using the built-in unit operation modules. The
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rigorous structure of this model makes obtaining accurate derivative information

very hard or impossible and, therefore, can result in the same optimization problems

as highlighted earlier with [30]. Furthermore, this modelling structure is generally

not compatible with white-box solvers (see Section 2.7.2) that can guarantee the

“best” optimal solution.

Conversely, a paper by Huster et al. [23] addresses the issues found in the

previous two papers by constructing two ORC models using two distinct methods.

The first model was constructed in the SM format but can provide accurate function

evaluations, gradients, and relaxations for their proposed global optimization frame-

work using customized functions. The second model was formulated in the GAMS

optimization environment where it is algebraic, differentiable and compatible with

a state-of-art white-box solver, namely BARON [22]. The aim of the paper was

to compare the performance between their proposed optimization framework and

BARON by optimizing the net output power and the levelized cost of electricity of

the system. While the results showed that their global optimization framework was

faster than BARON, the disadvantage with this approach is that the first model

is not compatible with other white-box solvers due to its SM structure. Also, the

thermodynamic functions that were used in the second model are highly nonlinear

and this can have a significant impact on the optimization performance, which might

explain the long computational time of BARON as shown in the paper.

Therefore, this research will provide a modelling framework and a set of tools

to address the shortcomings stated about the papers discussed above and aim to

illustrate the contributions using three real-world binary cycle power plants.

2.3 Organic Rankine Cycle Optimization

The term optimization can be defined from a practical standpoint as to obtain the

“best solution” to a given process within constraints [19]. This is a key aspect of

chemical engineering and one of the major quantitative tools in decision making.

The competitive advantage of being able to operate at the optimal performance for

process systems is pivotal to the economic viability of many businesses in various

industries, and thus drives the need for optimization strategies to be developed and

implemented.

Process optimization involves the task of deriving a quantitative scalar perfor-

mance index, or referred to as the objective function, to quantify the “best solution”.

This can be, but not limited to, the operational costs, the production yield, or the

system efficiency. The objective function is maximized/minimized by manipulating
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the values of the decision variables, which can represent the physical size of the

equipment, the plant parameters or the working fluid thermodynamic properties,

e.g., temperature, pressure, and enthalpy. Commonly, these decision variables must

be adjusted as so to comply with the system and process constraints, which are

typically translated to the physical limitations of the system, environmental regula-

tions, financial constraints and so forth. The following subsections will discuss some

of the most common areas of ORC system optimization in the literature.

2.3.1 Steady-State Optimization

A system or a process is said to be in a steady-state condition if the state vari-

ables, i.e., temperature, pressure, volume, enthalpy, entropy, etc., that describe the

behaviour or process of the system are unchanged with respect to time. The state

variables can change from point to point in the system, but they are stay fixed

at any one point during the entire process. Consequently, the term steady-state

optimization relates to obtaining the optimal steady-state operating point of the

system, such as maximizing net output power and thermal efficiency, minimizing

specific heat exchanger area, fuel consumption, gas production, etc.

Most of the studies in the literature on ORC system optimization are focused on

steady-state optimization, typically in process synthesis, retrofitting and operational

optimization, and economic analysis. Generally, an ORC system will be simulated

in a process simulator (see Section 2.6), such as Aspen Plus[13] or VMGSim[36],

that are subjected to a number of constraints set by the environmental regulations,

financial restrictions and equipment limitations. The simulated model will then be

optimized using a heuristic method or a mathematical algorithm that will attempt

to search for a better operating point within the allowable search space.

Process synthesis optimization is focused on a new plant flowsheet or design to

meet the specified engineering and financial goals. This is the early stages of the

plant development process where the decision on the plant’s topology and parameters

are determined. This can be a challenging task given the number of factors, such

as different BCPP designs, availability of working fluids, and different operating

conditions, that can profoundly affect the costs, efficiency, future maintenance and

scheduling operations of the plant. Examples of process synthesis optimization are

presented by [33, 37, 30, 34, 38, 39, 40].

In contrast, retrofitting and operational optimization deals with the inclusion

of new features/technologies or varying the operating conditions (i.e, temperature,

pressure, mass flow, etc.) of an existing plant or flowsheet in order to improve the

proposed objective function, such as efficiency, increase output, and reduce costs.
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An example can be observed in a study carried out by [15], where they optimized

the net output power of an existing BCPP by suggesting different optimal operation

strategies with respect to the ambient temperature of the plant. In contrast, research

by [41, 42, 43, 44] investigates the feasibility of introducing an ORC system to an

existing process system or flowsheet, such as a flash steam power plant and a waste

heat recovery system, in order to optimize the overall system.

Economic optimization investigates the costs associated with the construction,

maintenance, or the profits that can be generated from the plant. The economic

analysis is usually associated with the size of the main unit operations, i.e., heat

exchangers and turbine, as they are generally assumed to be a significant factor

in the cost of the plant. Consequently, the total area of the heat exchangers to

the net output is a common objective function, as proposed in [33, 45, 46]. The

investment cost of the plant can also be used as the objective function, i.e., the

ratio of the total cost of the plant (plus the maintenance and labour cost) to the

net output power, as is discussed in [47, 31]. The cost of each unit operation can

be calculated/estimated using fixed correlations that are a function of the plant’s

output power or surface area of the plant component. These unit operation costs

can then be used to calculate the payback period and the net present value that can

give more insight into the plant’s economics.

This research will focus on steady-state optimization because of the different ar-

eas that can be investigated in this field as demonstrated in the literature. Therefore,

we believe it would be significantly beneficial to investigate and provide a modelling

approach that is efficient and robust for off-line steady-state optimization.

2.3.2 Dynamic Optimization

The term dynamic optimization focuses the transient response and how the plant

behaves with respect to time in areas such as process stability, emergency scenar-

ios, the plant responsiveness to load change, shutdown and startup, and changes

in the heat source. Similar to steady-state models, the ORC systems are gener-

ally constructed in a process flowsheet simulator, such as VMGSim [36], Aspen

Plus Dynamics [48], Modelica [49]. Generally, these modelling environments allow

practitioners to construct their dynamic models using the built-in unit operation

modules/components that have been tested and validated, or from their own pre-

built or interfaced component modules. Examples of dynamic ORC models include

work by [50] that investigated a large commercial ORC power plant, and [51, 52]

that focused on small-scale ORC systems.

Given that the interest in steady-state behaviour is more dominant in the liter-
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ature, and also because BCPPs are base-load power plants that generally operate

in a state-state condition continuously for long periods of time, this research will

not focus on the dynamic behaviour of the plant. However, readers can refer to

references given above if they are keen on learning more about dynamic models and

optimization.

2.3.3 Working Fluid Selection

The performance, environmental and cost implications of an ORC system are heav-

ily influenced by the selection of the working fluid. While there are more than

50 working fluids that have been considered in the literature [53], there are some

restrictions that are associated with certain fluids due to their thermodynamic prop-

erties, environmental impact, health, safety, cost and availability. The selection of

the working fluid cannot just meet the thermodynamic properties but should also

be stable within the desired operating conditions and non-corrosive with materials

in contact. There is an extensive amount of studies in the literature on working

fluid selection and comparison among different operating conditions and ORC con-

figurations, such as described in [1, 46, 54, 53, 55], and more recently in [56, 57, 58].

Although there is a substantial amount of research on working fluid selection in

the literature, there is no one best working fluid that can meet all the criteria of every

ORC system and operating condition [53]. Given that each ORC system is unique

to where it is located and to how it is built and function, it would be problematic to

attempt to obtain an optimal solution of an ORC plant by extrapolating the optimal

results of another plant from a different country and operating condition. Thus, it

would be more beneficial is to provide a modelling approach to efficiently optimize

the plant with respect to all the possible pure working fluids and mixtures within

a reasonable time frame, especially for large and advanced ORC systems. This will

be addressed in Chapters 5 and 6.

2.3.3.1 Types of Working Fluids

The working fluids can be divided into three groups, namely, dry, wet and isentropic,

by examining the slope of the saturated vapour curve (dT/ds) on the T-s diagram,

as shown in Figure 2.2. Since the slope of the isentropic fluids is a vertical line

(or close to it), dT/ds will equal to infinity (or a very large number). Therefore, it

is more useful to use the inverse of the slope (ds/dT ), as discussed in [53, 59], to

classify the working fluids. This implies that for dry fluids ds/dT > 0, for isentropic

fluids ds/dT ≈ 0, and for wet fluid ds/dT < 0. Generally, dry and isentropic fluids
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are more appropriate for ORC systems because they are usually superheated after

an isentropic expansion, thus there will be no liquid droplets at the turbine output

that might cause blade corrosion [54, 58]. However, if ds/dT ≫ 0, this adds more

load to the condenser or the recovery system and can waste valuable energy [53].

Conversely, a wet fluid will put more burden on the superheating process to avoid

going into the two-phase region, but desuperheating the fluid after the expansion

will require less work [53].
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Figure 2.2: Three different categories of working fluids: dry fluid (Pentane), wet fluid
(R32), and isentropic fluid (R245fa). Note the discontinuities are due to JSteam’s
limitations in calculating the saturated entropy values at temperatures close to the
critical point.

In addition to pure working fluids, mixtures are also considered for the ORC

system, as described in [56, 60, 61]. There are potential advantages that can be

achieved by using mixtures. Unlike pure fluids that change phase at a constant tem-

perature, mixtures evaporate and condense at variable temperature [3]. Therefore,

they are sometimes a better match to the brine curves and, hence, can reduce the

thermodynamic losses in the heat exchangers [3].

2.3.3.2 Safety and Environmental Impact

The safety concerns need to be taken into account when selecting the type of working

fluid. Generally, fluids that are non-corrosive, non-flammable, non-toxic, and have

low global warming potential (GWP) and low ozone depletion potential (ODP) are

usually favoured, but these properties are typically mutually exclusive. Table 2.1

compares these properties for some of the working fluids and water for reference.

The risks associated with the flammability and toxicity of the working fluid can

be reduced or managed by introducing safety measures, such as eliminating ignition
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Table 2.1: The safety and environmental properties of different working fluids
(adapted from [3]). The ozone depletion potential (ODP) and the global warm-
ing potential (GWP) are normalized at 1 for R12 and carbon dioxide, respectively.

Fluid Toxicity Flammability ODP GWP

R12 Nontoxic Nonflammable 1 4500
R114 Nontoxic Nonflammable 0.7 5850
Propane Low Very high 0 3
i-Butane Low Very high 0 3
n-Butane Low Very high 0 3
i-Pentane Low Very high 0 3
n-Pentane Low Very high 0 3
R32 Low Low flammable 0 675
R134a Very low Nonflammable 0 1300
R245fa Very low Nonflammable 0 1020
Carbon dioxide Nontoxic Nonflammable 0 1
Ammonia Toxic Low 0 0
Water Nontoxic Nonflammable 0 -

sources or using air-tight equipment, in order to permit their use. In contrast, there

are a number of the refrigerants have been banned or phased out over the years

due to their negative impact on the environment based on their GWP, ODP and

atmospheric lifetime. Some of the fluids that have already been banned include

R11, R12, R113, R114, and R115, while other fluids such as R21, R22, R123, R124,

R142b are expected to be phased out in 2020 to 2030 [53].

2.3.3.3 Cost and Availability

The cost and availability of the working fluid can be a factor in the design of the

ORC system. Often some countries might ban or have strict regulations on certain

fluids and, thus, make them too expensive to be utilized. Generally, the cost of an

ORC system can be reduced by using low-cost hydrocarbons or fluids that are mass

produced. In addition, the selection of working fluid can directly affect the size of

the unit operations, which can contribute to the overall capital and maintenance

cost of the plant. As shown in [3, 62], the size of the turbine can be approximated

from the working fluid properties, which can be a factor in selecting the appropriate

working fluid.
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2.4 Classes of Optimization Problems

One of the oldest methods in process optimization is the trial and error approach.

This involves trialling different solutions to the optimization problem until the best

solution is achieved. Consequently, this approach can be very expensive and tedious

to execute and does not always guarantee an optimal result or meet all the required

constraints. However, due to the intuitive simplicity of this method, it is still im-

plemented in many applications, such as in [39, 38], or especially for processes that

cannot easily be modelled.

Alternatively, with the introduction of digital computers, industrial optimiza-

tion problems can be optimized more efficiently and systematically using mathe-

matical optimization algorithms and techniques. This is referred to as operations

research. The optimization problems discussed in the previous section can be formu-

lated into different classes of optimization problems based on the type of variables

and constraints. Figure 2.3 shows the general overall view of the common classes of

optimization problem formulations that are found in chemical engineering.

Figure 2.3: Classes of optimization formulations.

The most complex optimization problem formulation is the mixed-integer non-
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linear program of the form

min f(x, y)

s.t. hi(x, y) = 0,

gj(x, y) ≤ 0,

x ∈ R,

y ∈ Z,

i = {1, 2, 3, ..., n},

j = {1, 2, 3, ..., m},

(2.1)

where f(x, y) is the objective function that is subjected to equality constraint(s),

hi(x, y), and/or inequality constraint(s), gj(x, y). The continuous and discrete vari-

ables are represented as x and y, respectively. In some cases, the discrete variables

y in (2.1) can take on binary values to represent logical or discrete decisions, which

will be used in this research. The optimization problems presented in this thesis

will follow the minimization standard form specified in this section. Therefore, the

objective function will be negated for a maximization problem.

Provided that f(x, y), hi(x, y) and gj(x, y) are linear functions, this reduces (2.1)

to a mixed-integer linear program (MILP) of the form

min a⊤x+ b⊤y + c

s.t. Gx +Hy = k,

Geqx +Heqy ≤ keq,

x ∈ R,

y ∈ Z.

(2.2)

Moreover, an MILP is reduced to an integer program (IP) if there are only discrete

variables. Conversely, if (2.1) consists of only continuous variables, then it is reduced

to a nonlinear program (NLP) of the form

min f(x)

s.t. hi(x) = 0,

gj(x) ≤ 0,

x ∈ R,

i = {1, 2, 3, ..., n},

j = {1, 2, 3, ..., m}.

(2.3)

The NLP problem can be reduced to a quadratic program (QP) if f(x, y) is a

quadratic function and both hi(x, y) and gj(x, y) are all linear functions. Further-
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more, if all the functions in (2.3) are linear functions, then the NLP problem is

reduced to linear program (LP).

As shown in Table 2.2, different mathematical programming problems are en-

countered in various areas of process systems engineering, from process synthesis

and design to scheduling and planning to unit operation models. Generally, most

optimization problems in Table 2.2 are non-trivial and difficult to find the global

optimum solution as there can be many alternative solutions that can be directly

linked to complex economics and performance of the system. Furthermore, often

the optimal solution translates to large economic savings that can become a major

disadvantage if a suboptimal solution is selected. Therefore, optimization has be-

come and continues to be a powerful tool for various industries and companies to

remain competitive.

Table 2.2: Overview of the different optimization problems that are encountered in
process systems engineering (adapted from [4]).

LP MILP QP NLP MINLP

Process design and synthesis
Heat exchangers X X X X

Mass exchangers X X X X

Separations X X X

Reactors X X X

Flow sheeting X X

Process operations
Scheduling X X X

Supply chain X X X

Real-time optimization X X X X

While the optimization formulations that will be discussed in this thesis are NLP

(Chapter 3 and 4), MINLP (Chapter 6) and MILP (Chapter 7), the thesis is focused

on the integration between the formulation and the optimization solvers, and not

necessarily targeting the formulation to the optimization areas in Table 2.2.

There are many integer and linear techniques that can be implemented to refor-

mulate a nonlinear problem to other optimization formulations in order to achieve

various advantages, such as better performance, compatibility with certain optimiza-

tion solvers, and cope with financial limitations. In regards to ORC optimization,

they are naturally nonlinear problems, and fall either in the NLP or MINLP cate-

gory due to the direct use of thermodynamic and performance equations. The ORC

models are generally optimized as a nonlinear problem, especially for large systems,

and do not undergo any type of reformulation or linearization. This is a gap in the

literature that will be investigated in Chapters 6 and 7. As will be shown in those

chapters, it is possible to convert from an NLP problem to an MINLP or an MILP
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problem using integer/linear programming techniques in order to achieve a higher

model accuracy, a better optimization performance, and/or to tailor the model for

a specific group of optimization solvers.

There are a wide range of different optimization algorithms and techniques that

can be used to solve the optimization problems in Table 2.2. Some optimization

strategies are more suited for problems with a larger number of inequality con-

straints, such as the barrier (or interior point) method [63]. While other optimiza-

tion methods are more suitable for problems that are unconstrained and have non-

differentiable functions, such as derivative-free global algorithms [64]. Therefore,

in addition to the type of variables and constraints, as classified above, the opti-

mization algorithm is also selected based other characteristics of the optimization

problem, such as the number of inequality and/or equality constraints, convexity,

matrix sparsity information, differentiability of functions, and model structure. It is

not enough to only have state-of-the-art optimization algorithms for an efficient and

successful optimization, but it is also as important that the optimization model is

tightly integrated with the algorithms to work together in synergy. With the advent

of advanced optimization modelling environments, more attention can be focused

on formulating ORC optimization problems that are tailored for specific a group

of solvers. Some of these environments provide high-fidelity unit operation models,

regression tools and inbuilt optimization solvers that allow users to build a model

that can be solved within platform without the need for external interfaces to other

engineering models or optimization toolboxes.

2.5 Optimization Algorithms

With a better understanding of the advantages and disadvantages of different op-

timization algorithms, practitioners can now focus more on formulating well-posed

models that are tailored to specific solvers and improve the overall performance. De-

pending on the type of problem and the underlying equations and variables, different

algorithms are used to solve the optimization problem. The following subsections

will briefly describe some of the common algorithms implemented in different opti-

mization solvers.

2.5.1 Nonlinear Programming Algorithms

One of the main difficulties in solving NLP problems is dealing with inequality

constraints because they can either act as equality constraints or just strictly satisfies
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the inequality condition at the optimal solution. Most derivative-based NLP solvers,

like fmincon and IPOPT, are Newton-type algorithms and address this issue using

the active-set sequential quadratic programming (SQP) strategy or the interior point

(IP) method. In the active-set SQP approach [19, 64], the inequality constraints are

addressed by sequentially solving an approximated quadratic programming problem

of the original NLP problem with the Karush-Kuhn-Tucker (KKT) conditions using

the Newton steps. In contrast, the IP method [19, 64] attempts to solve NLP

problems by adding a penalty term to the objective function in order to address the

inequality constraints. The penalty term ensures that the solution at each iteration

is within the feasible region and thus will satisfy the constraints at the optimal

solution. Similar to the active-set SQP method, the penalized NLP problem with

the KKT conditions are solved using the Newton steps.

Alternatively, there are also a set derivative-free solvers do not require any deriva-

tive information and rely on the objective and constraint evaluations to solve the

optimization problem. These solvers are mostly based on the simplex and pattern

search methods, such as classical direct search algorithms [65], or based on the phys-

ical analogies of heuristics, such as genetic algorithms [66] that were derived from

the evolution of natural selection, and simulated annealing [67] that was inspired by

the process of annealing in metallurgy. As such, they can be applied to a variety of

optimization models and problems where the derivative information of the problem

is not available, inaccurate, or impossible to obtain. While it can be easy to apply

these solvers to a wide range of optimization models and problems, derivative-free

solvers do not scale well with the number of decision variables [63] and have diffi-

culties with complex constrained problems [68]. Therefore, they are more suitable

for optimization problems that are unconstrained or bound constrained and consist

no more than a few dozen variables [63].

Unless optimizing convex problems, these NLP algorithms can only ensure local

optimality and are dependent on a good starting point and accurate derivatives (for

derivative-based solvers). Modern NLP solvers are now significantly more reliable

and are widely adopted due to the development of the quasi-Newton method and

globalization strategies, and the more recent filter method [69], that helped to over-

come the difficulties in dealing with indefinite Hessians and poor starting points

[64, 19].

2.5.2 Mixed-Integer Linear Programming Algorithms

Most of the mixed-integer linear programming methods are derived from the branch

and bound algorithm, where the MILP problems are “branched” into subproblems,
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called nodes, and solved as relaxed LP problems at imposed bounds. The MILP

problem will continue to recursively split into nodes until the difference between

the upper bound (integer solution) and lower bound (LP solution) are within an

acceptable tolerance. Another well-known approach for solving MILP problems is

the cutting plane method. This approach works by relaxing the MILP problem to a

complementary LP problem and cuts parts of the relaxed continuous feasible region

until the solution search space only contains feasible solutions [64]. Therefore, this

will result in a convex hull reformulation of the MILP problem where an integer point

is at every extreme point of the feasible region. Once the convex hull formation of

the MILP is achieved, the optimal solution of the original problem can be found by

solving the LP relaxation.

Since the 1990s, there have been significant advancements in MILP methods,

such as better pre-processing techniques, more efficient LP codes, different heuristics,

better branching rules, and incorporating cutting planes to the branch and bound

method, which have greatly improve the performance of MILP solvers [70]. For

some perspective, based on a comparison test of the performance of the CPLEX

solver on 1,852 real-world examples of MILP problems, the 2007 version (11.0) of

CPLEX was on average 30,000x faster than the 1991 version (1.2) [70]. In other

words, the speed of the solver increased roughly twofold every year. In addition,

out of the all the problems that were tested, the 1991 version only managed to solve

15% of all the problems, while the 2007 version was able to solve 69% of all the

problems. Similarly, a performance test carried out internally by the commercial

solver GUROBI developers showed that the 2018 version (8.0) was about 53x faster

than the 2009 version (1.1)[71].

2.5.3 Mixed-Integer Nonlinear Programming Algorithms

The MINLP algorithms are often built by amalgamating other algorithms from

nonlinear programming, linear programming, and integer programming, and thus

MINLP solvers are generally not completely developed from the ground up [72].

In most cases, the basis of the MINLP algorithms is built on other LP, MIP and

NLP solvers, e.g., IPOPT, FilterSQP, CBC, and CPLEX. Therefore, some MINLP

solver will revert to the MIP and NLP solvers that are provided in the optimization

environment to solve the necessary subproblems.

One of the most common MINLP algorithms is the branch and bound method,

which is a direct extension of the MILP approach where NLP relaxation subproblems

are solved at each node, instead of LP relaxation subproblems [64]. The resulting

NLP relaxation is then solved by an NLP solver. Another common MINLP algo-
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rithm is the outer-approximation method [73, 74, 75] where instead of relaxing the

integrality restrictions and retaining the nonlinear constraints, the solver retains

the integrality constraints and relax the nonlinear functions [72]. As a result, the

algorithm uses gradient-based linearizations of the nonlinear functions to obtain a

relaxation at solution points of NLP subproblems. Subsequently, an MIP solver is

then used to solve the resulting MIP relaxation. Generally, MINLP problems are

much harder to solve than NLP and MILP problems, as they involve solving both

kinds of problems together and are solved iteratively multiple times.

2.6 Optimization Modelling Environments

Generally, large and complex chemical process systems are modelled and optimized

in advanced optimization modelling environments. Depending on the type of the

models and the capability of the modelling environments, the models can be simu-

lated in a dynamic or steady-state condition. These models should ideally provide an

accurate representation of the original process over a large range of operating condi-

tions to allow for optimization, and thus potentially give the systems a competitive

advantage over their current state.

During 1955-1959, simulations were limited to design calculations for single units

due to the slow speed and size of computers, and the limited availability of high-

level computer languages [76]. In 1958, the M.W. Kelloggs Corp introduced Flexible

Flowsheet that implemented the sequential-modular approach that solved each unit

module separately in a sequential order [76]. By the early 1960s, the development

of process modelling environments based on the sequential-modular approach was

growing in popularity. In addition to the sequential-modular approach, another

method called the equation-oriented approach was also developed during this period,

where models are represented as a set of mathematical equations and are solved

simultaneously. With the advent of powerful large-scale computers between 1965 and

1969, more flowsheet programs were becoming a reliable and cost-effective simulation

tool. Nowadays, most process simulators are usually written in C++ or Java using

an object-oriented approach [5] that have more capabilities to handle large and

complex system with more than 100,000 equations [77, 4] by providing built-in tools

to exploit the model structure and derivative information for an efficient modelling

and optimization. Table 2.3 shows some of the early and current process system

modelling/optimization environment.

The following subsections will discuss the two common modelling approaches,

namely, sequential-modular and equation-oriented approach, and highlight some of

the advantages and disadvantages of each method.
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Table 2.3: Process system modelling/optimization environments (adapted from [5, 6]).

Name Year Developer Type Application(s)

PACER 1963 Paul T. Shannon Sequential-modular Steady-state flowsheet [78]
PROCESS 1966 Simulation Sciences Sequential-modular Steady-state simulation
DESIGN 1969 ChemShare Sequential-modular For gas and oil applications
CHESS 1969 Univ.of Houston Sequential-modular Flowsheeting/sizing/costing
FLOWTRAN 1970 Monsanto, United States Sequential-modular Flowsheeting/sizing/costing
FLOWPACK II 1972 ICI Sequential-modular Flowsheeting
ASCEND 1970-1980 Carnegie Mellon Univ. Equation-oriented Dynamic simulation
Aspen Plus 1976 U.S. Dept. of Energy, MIT Sequential-modular All-purpose flowsheeting system
TISFLO 1970-1980 DSM, the Netherlands Equation-oriented Flowsheet simulation [79]
FLOWSIM Early 1980s Univ. of Connecticut Equation-oriented Chemical process flowsheet simulator [80]
SPEEDUP 1986 Imperial College Equation-oriented Dynamic simulation
ProSimPlus 1989 ProSim Sequential-modular Steady-state simulation
Quasilin Late 1980s CADCentre Equation-oriented Simulation/optimization
gPROMS 1997 [81] Imperial College; PSE Ltd. Equation-oriented Steady-state/dynamic modelling
COCO Simulator AmsterCHEM Sequential-modular Flowsheeting
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2.6.1 Sequential-Modular Modelling

One of the oldest approaches to flowsheeting and still the dominant method for

steady-state simulation is the sequential-modular (SM) approach [82]. This ap-

proach solves each unit module/unit operation in the order of the plant’s process,

thus the output stream of each module (plant equipment) is calculated from the

input stream with respect to the module’s parameters [83]. In many cases, the en-

vironments allow the user to “drag & drop” high-fidelity unit operations into the

flowsheet and connect them together. Therefore, the stream information, i.e., mass

flow, temperature, pressure, etc., will propagate from the beginning of the plant

process through to the end of the flowsheet.

Solving SM models can be as simple as a “once-through calculation” for processes

without recycles of material and/or energy, where each unit operation is solved sepa-

rately in a sequential order when all the input streams and unit operation parameters

are given or can be calculated. For recycle processes, like the ORC system, they

are solved using a nonlinear equation solver, such as MATLAB’s fsolve or Excel’s

built-in nonlinear solver, where a particular stream in the recycle is first estimated

and then the unit operations are solved iteratively in the loop until the stream

converges to an acceptable tolerance, e.g., the change in plant parameters between

iterations must be < 0.0001. Consequently, this method is not efficient for optimiza-

tion because the flowsheet needs to convergence to a new physically realisable point

at every optimization iteration, which can be expensive to execute, especially with

a large and complex system with multiple recycles.

Due to the intuitive and logical procedure of the sequential-modular approach,

it is generally preferred and implemented by commercial flowsheet tools and process

engineers [84, 83]. In addition, given that the flowsheet is a series of unit operations

connected together in the order of plant process, it relatively easy to troubleshoot

and debug the model, especially for small and simple systems. Generally, the SM

approach can produce high-fidelity models due to the use of rigorous unit operation

modules and thermodynamic routines, which are sometimes externally interfaced

to the modelling environment, that have been pre-built and validated extensively

by first or third-party users and developers. This means that the model is typi-

cally a good representation of the original system and can easily be modified to

accommodate various level of accuracy.

Some common SM-based modelling software include Aspen Plus [13], JSteam

Excel Add-In [2], and COCO [85].
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2.6.2 Equation-Oriented Modelling

The equation-oriented (EO) model represents a system as a set of equations that

are solved simultaneously; thus, this means that recycles can be treated as another

set of equations. Therefore, it is generally much more efficient and faster to solve

EO models than the SM-based counterparts by eliminating or reducing the need to

iterate and converge the system recycle(s). The EO approach can be dated back to

the 1960s [4] and was predominantly limited to the academic domain at this time

[86], hence why most of the early software packages were developed by universities

and not industrial companies.

Some of the early EO-based modelling platforms include SPEEDUP developed

by the Imperial College London in 1986 [6], Quasilin developed Cambridge Uni-

versity in 1988 and ASCEND (now known as Aspen Custom Modeler) developed

by Carnegie Mellon University in 1996 [87]. These modelling environments allow

practitioners to construct models by defining variables and writing equations to rep-

resent unit operations. Model flowsheets could then be built from these predefined

unit operations. Due to the limited memory and the slow speed of early generation

computers, these packages were not adequate to solve large and complex chemical

engineering problems. Therefore, in some cases, the complexity of the problems

was oversimplified and typically led to a misleading representation of the system

behaviour [6].

With the improvement of modern computer technology, software engineering,

and advanced optimization algorithms, we see the advent of powerful commercial

modelling environments that are capable of processing complex chemical processing

system. Some current EO-based modelling environments include AMPL [88] and

GAMS [89]. These environments take advantage of the EO model structure and

some offer tools that can supply first and second derivatives and matrix sparsity

information that can be beneficial to gradient-based solvers.

One major advantage of the EO approach is that it allows standard optimization

problems to be formulated relatively efficiently from the model structure, thus the

system of equations, i.e., mass and energy balance equations, are solved simulta-

neously with the optimization problem [20]. This bypasses the need to converge

the flowsheet at every optimization iteration. However, given that the system is

expressed as a set of mathematical equations, it can be harder to troubleshoot and

construct than the SM-based model, especially for large and complex systems that

consist of multiple recycles.
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2.7 Optimization Solvers

There are hundreds of optimization solvers that are available to academic researchers

and commercial users [90]. The selection of what type of solver to use depends on the

structure/format of the simulation model, as well as the optimization problem, which

can involve the type and number of variables and constraints, and the convexity and

the nonlinearity of the optimization problem. While it is possible to simply wrap a

solver around a simulation model, such as with the SM model, and allow the solver

to search for a better simulation solution, this can be very inefficient and lead to

a long execution time. Therefore, the difficulty that many researchers face is in

structuring the optimization problem in order for it to be suitable and tailored to

certain optimization solvers. More than often, this is not a trivial task as most

problems are very complex and there are certain limitations and requirements when

using some of the optimization solvers.

Due to the nonlinear mass and energy balance equations and the thermody-

namic correlations that are used in the steady-state model of an ORC system, the

optimization problems that are formulated from the model are generally noncon-

vex and have multiple local optima. While it is important to achieve robust and

efficient optimization, we believe that it is as important to obtain the global opti-

mal solution over the suboptimal solution because the difference could translate to

a large economic advantage. Therefore, the following subsections will discuss the

advantages and disadvantages of two types of optimization solvers, namely, black-

box and white-box solvers, and highlight certain types of global solvers that can

deterministically guarantee global optimality.

2.7.1 Black-box Solvers

When an optimizer cannot exploit the internals of the objective function and con-

straints of the optimization problem as they are generally supplied as function call-

backs, it is referred to as a black-box solver. This is common with the SM models

where the unit operation modules and external function calls make it difficult to

obtain accurate derivatives, the underlying equations, and the relationship between

the decision variables and the constraints or objective function. As a result, these

models are usually optimized using black-box solvers where the problem is entirely

or partially supplied as functions that accept in a decision variable vector and output

an objective value or a vector of constraint evaluations.

Black-box solvers can be classified into two main categories, namely, derivative-

based solvers and derivative-free solvers. The former category of solvers require the
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derivatives of the constraints and objective function in order to solve the problem.

Examples of these solvers are IPOPT [18], fmincon [17], FILTERSD [91], KNI-

TRO [92] and SNOPT [93]. The derivative information is obtained from a number

of methods, such as finite difference, automatic differentiation, or symbolic differen-

tiation, which are discussed in Section 2.9. Sometimes, obtaining these derivatives

can be troublesome and computationally expensive. For simple problems that can be

expressed using basic algebraic equations, such as linear and quadratic problems, the

derivatives can be calculated analytically (to numerical precision) and supplied to

the optimizers. However, for more complex nonlinear problems that require calling

external functions, such as REFPROP function routines, it can be computationally

expensive and difficult to obtain accurate derivative information.

As mention in Section 2.5.1, derivative-free solvers do not rely on the deriva-

tive information of the problem, but instead the function evaluations to find the

optimal solution. Many of derivative-free solvers are derived from heuristic strate-

gies, such as genetic algorithms, simulated annealing, and particle swarm algorithm,

and perform random search methods to find the solution. Therefore, derivative-free

solvers are suitable for dealing with black-box models/functions where the under-

lying equations are basically unknown to the solvers. Examples of derivative-free

solvers include ga [94], patternsearch [94], NOMAD [95], and PSWARM [96].

While some derivative-free solvers, such as patternsearch, genetic algorithm and

particle swarm, are often referred to as global optimization methods [68], it is impor-

tant to note that they cannot guarantee the global solution. This can be misleading

and different from certain white-box solvers in the next subsection that can deter-

ministically converge to the global solution.

2.7.2 White-box Solvers

When an optimizer can exploit the internals of the objective function and con-

straints, and has access to the structure of the underlying equations, the relation-

ship between the decision variables and the objective function or constraints, and

accurate derivative information, it is referred to as a white-box solver. Therefore,

this includes all (MI)LP/QP/QCQPs solvers because the entire optimization prob-

lem can be supplied as a series of vectors and matrices. In order to achieve the

same level of accessibility with nonlinear optimization problems and present the un-

derlying equations and correlations between decision variables and constraints, an

algebraic model needs to be provided to the solvers. This means that the optimiza-

tion model must meet certain requirements and cannot consist of stochastic terms

or conditional statements, and only consists of certain operations and functions,

such as log, power, and exp, that are permitted by the solvers. As a result, this
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allows the solvers to exploit the model structure of the problem and carry out pre-

process methods to reduce the search space, generate the derivative internally, and

identify the underlying relationships between the variables and constraints to imple-

ment relaxation methods and branching algorithms to efficiently solve the nonlinear

problems.

In addition, unlike the black-box solvers discussed in the previous subsection,

certain white-box solvers can leverage of the algebraic structure to deterministi-

cally guarantee the global solution for nonconvex optimization problems. This is

different from the stochastic methods, such as genetic algorithms, particle swarm,

pattern search, and simulation annealing, that are sometimes classified as global op-

timization methods but require infinite runtime to guarantee a global solution [23].

These white-box solvers are based on the spatial branch and bound method that

partitions the feasible region into subregions. Subsequently, at each subregion, the

lower bound is computed from the convex relaxation of the objective function and

constraints, and the upper bound is computed from the objective function of the

original nonconvex problem [63]. The algorithm compares and eliminates all subre-

gions that have infeasible constraint relaxations or lower bounds that are higher than

the lowest upper bound. This process repeats until the upper and lower bound con-

verge and is within an acceptable tolerance. Examples of white-box solvers include

ANTIGONE [97], BARON [22], SCIP [98], and COUENNE [99].

In contrast, some (MI)LP/QP/QCQPs solvers, such as CPLEX [100], can also

find the global solution for nonconvex problems by using the Boolean Quadric Poly-

tope (BQP) cuts that exploit a cutting plane technique to efficiently solve QP and

MIQP models to global optimality [101]. This feature can easily be invoked by set-

ting the solver’s optimality target parameter and solving the optimization problem

as usual. Unfortunately, the BQP cuts in CPLEX does not apply to mixed-integer

linear programs (MILP).

Given that most ORC models are constructed using rigorous and detailed unit

operations that are developed from complex semi-empirical correlations, experimen-

tal data, the equation of state, etc., they are usually restricted to black-box solvers,

as observed in studies by [30, 31, 102, 103, 104]. This can be a significant dis-

advantage for low thermal efficiency ORC systems where a small difference in the

capital cost, the performance and/or the investment returns can mean the differ-

ence between a viable plant and one that is not. In addition, since ORC systems

can typically operate up to 25+ years, these small improvements can add up and

significantly benefit the overall performance and longevity of the plant. Therefore,

it is important to achieve global optimality in order to ensure that the optimized

ORC system has a competitive advantage over other plants in the industry.
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2.8 Optimization Toolboxes

Developing a fully functioning state-of-the-art optimization solver and managing

its code can be a strenuous task and takes many years to build a reliable and ro-

bust solver. Therefore, process modelling environments, such as MATLAB, GAMS,

AMPL and AIMMS, typically will have some built-in optimization solvers and/or

provide interfaces to third-party solvers that are managed separately from the inte-

grated development environment (IDE). This allows a range of optimization solvers

to be available to the end users, albeit there might be some license terms and con-

ditions associated with each individual solver that can restrict their use. Generally,

commercial solvers will perform better than open-source solvers because they are

more frequently updated and typically better funded. In addition to the optimiza-

tion solvers, other functionalities and packages are sometimes included with the

toolbox/IDE to help build and formulate the optimization problem, such as ther-

modynamic property packages, symbolic toolboxes, and intuitive APIs, which can

significantly improve the overall optimization study. The following subsections will

detail the optimization toolbox that was used in this research and also highlight

other alternatives toolboxes.

2.8.1 OPTI Toolbox

For this research, the OPTimization Interface (OPTI) Toolbox [105] was used as the

main optimization solver supplier/interface. This optimization toolbox provides an

extensive set of commercial and open-source solvers for linear, nonlinear, continuous

and discrete optimization problems, including powerful solvers such as BARON [22],

CPLEX [100], IPOPT [18] and NOMAD [95], see [105] for the full list of solvers.

One of the main advantages of OPTI Toolbox is its compatibility with MAT-

LAB, which offers a huge standard library for scientific computing and a high-level

programming language that allows for object-oriented programming to make the

development and implementation of the proposed modelling framework relatively

simple. In addition, the figure plotting capability of MATLAB is significantly effi-

cient, simple to utilize and is compatible with other MATLAB toolboxes without

worrying about incompatible library packages. This is a valuable feature in this

research due to the need to visually analyse the regression fits in order to help im-

prove the ORC model approximations. In addition, OPTI Toolbox provides the

SymBuilder Framework that builds on MATLAB’s Symbolic Math Toolbox that

will automatically generate the required Jacobian and Hessian matrices from the

proposed algebraic optimization problem, thus allowing users to concentrate on the

model formulation.
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2.8.2 Alternative Optimization Toolboxes

Every optimization toolbox has their advantages and disadvantages, and the selec-

tion of which one to use can be based on many factors, such as the availability of

solvers, IDE compatibility, cost, usability and technical support. The MATLAB

Optimization Toolbox [94] provides a wide range of in-built optimization solvers for

LP, MILP, QP, and NLP problems, that handle most of the process engineering

problems in Table 2.2. However, the toolbox is not free with MATLAB and needs

to be purchased separately from the IDE. In addition, there are no solvers that can

handle MINLP problems and they are all restricted to only black-box optimization,

which is a limitation for some areas of this research.

The closest optimization toolbox to OPTI Toolbox is YALMIP [106], which con-

sists of 6 internal solvers and supports up to 59 external solvers. While YALMIP

contains white-box global solvers, they are generally intended for bilinear problems

where polynomial programs with high order polynomial functions are automatically

converted to bilinear programs by the interface [107]. This is not suitable for this

work since it centres around the formulations of the ORC models and their contri-

butions.

Another alternative toolbox is Google Optimization Tools (OR-Tools) [108],

which is an open-source software suite that is mainly aimed for linear programming

and mixed-integer programming problems. While the software is actively main-

tained, it is quite limited in the number of solvers available. Currently, there only

seven solvers, namely, CBC, CLP, GLOP, GLPK, GUROBI, CPLEX and SCIP,

which are mostly LP, MILP and MIQP solvers.

Newer frameworks such as PyOMO [109] and JuMP [110] are available for Python

and Julia, respectively, and they provide a wide range of solvers that can solve LP to

MINLP problems. However, given that MATLAB is the main IDE for this research,

both PyOMO and JuMP are currently not suitable for this research.

2.9 The Importance of Accurate Derivatives

It is widely acknowledged that providing an inaccurate gradient or Jacobian and

Hessian information can significantly degrade the performance of the optimizer

[19, 84]. Failure to obtain accurate gradients can lead to three issues. First, in-

accurate derivatives can lead to premature termination of the algorithm due to the

calculations of search directions that may not lead to descent directions. Second,

inaccurate gradients can lead to ill-conditioned Hessians (or approximations of the
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Hessians) that can result in poor search directions and more iterations. Third, the

optimization algorithm will not be able to confirm that the solution is an optimum

if the derivative information is not accurate, even if it has found the solution. Gen-

erally, derivative-based solvers will allow the user to enter the Jacobian and Hessian

information that can help reduce or bypass the issues mentioned above. If the

derivative information is not supplied to the solver manually, there are a number

of methods that derivative-based optimizers can implement in order to acquire the

necessary derivative information. The following subsections discuss the advantages

and disadvantages of the common methods, namely, the finite difference method,

the automatic differentiation and the analytical differentiation, that are used by

derivative-based solvers.

2.9.1 Finite Difference Method

By default, most algorithms will use the finite difference method (FDM) to obtain

the required derivatives if the gradient information is not provided. One major

advantage of the FDM is that it will work on any smooth function, even if it is an

external function (such as thermodynamic property routines from REFPROP [35])

or a MATLAB based function. The general principle of the FDM is very simple,

the derivative is approximated by dividing the difference between two close points

on the function by the distance between the two points. Mathematically, this can

be expressed as

forward difference backward difference

f ′(x) ≈
f(x+ h)− f(x)

h
or f ′(x) ≈

f(x)− f(x− h)

h

(2.4)

for the forward difference and the backward difference formula for a univariate func-

tion, where f ′(x) is the approximate gradient at x, f(x) is the function evaluation

at x, f(x+h) is the function evaluation at x+h, and h is a finite small number but

not necessarily infinitesimally small. It is also possible to approximate by using the

centred difference that can yield a more accurate approximation, which is defined

as

f ′(x) ≈
f(x+ h)− f(x− h)

2h
. (2.5)

The FDM can be extended to find the higher-order derivatives and also for mul-

tivariable functions that are common in nonlinear optimization problems. However,

one major downside to the FDM is that it can only provide an estimate of the deriva-

tives and can lead to optimization problems mentioned in the Section 2.9. Further-

more, the accuracy of the approximation can significantly degrade for higher-order
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derivatives, especially if the forward or backward difference is used.

2.9.2 Automatic Differentiation

Automatic differentiation (AD), also known as computational differentiation or algo-

rithmic differentiation, is a standard method for most optimizing environments and

is an efficient way to compute derivatives to numerical precision. The benefit from

obtaining accurate first and second derivative information using the AD approach

allows the implementation of very efficient large-scale NLP algorithms that are able

to handle up to 100,000 variables and constraints [4], which is a significant advan-

tage over the FDM. The AD method builds on the idea that a computer consists of

primitive operations (such as addition, multiplication, and division) and functions

that can be overloaded with a derivative rule in conjunction with the function value.

Subsequently, the derivative of the complex function is then just a repeated imple-

mentation of the chain-rule to the composition of the primitive function sequence.

For further information on the AD method, refer to [111] for an excellent approach

on how to implement the AD method in MATLAB by utilizing the object-oriented

concept and overloading the original arithmetic operators and elementary functions

with a derivative rule alongside the function value. This allows the derivatives to be

calculated automatically when the user evaluates a mathematical expression. The

drawback of the AD method is that it will only work with the operators and func-

tions that have been overloaded, hence the derivatives of external functions cannot

be computed.

2.9.3 Symbolic Differentiation

Symbolic differentiation (SD), or analytical differentiation, calculates the derivatives

by implementing the differentiation rules, such as the product rule, the chain rule,

the inverse function rule, etc., to a symbolic mathematical equation. Generally,

this method is implemented using a symbolic mathematics toolbox, such as SymPy

in Python [112] and Symbolic Math Toolbox in MATLAB [113], that helps define

the variables and mathematical equations in order to symbolically differentiate and

generate the first and second order derivative expression. This means that the

method limited to the available differentiation rules and requires the functions to

be expressed symbolically. In addition, generating the analytical expressions can

be computationally expensive and take longer to execute, especially with second

derivatives and when there are a lot of variables and equations to differentiate.

However, the benefit of this approach is that the derivative expressions only need

to be derived once prior to the optimization process, and then they can be reused
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for any number of optimization studies. Furthermore, similar to the AD approach,

the accuracy of the computed derivatives is to numerical precision and thus can

significantly improve the performance and the computational time of the optimizer.

However, the SD method can be slower than the AD approach if the derivative

matrices are very dense.

2.10 A Review of Shortcomings in the Literature

This chapter focused on the literature review of the common practices and tools

that are associated with ORC system optimization. The review began with a brief

description of the ORC process as a binary cycle power plant and highlight the

significant potential of exploiting the abundant low-temperature resources around

the world and consequently reducing greenhouse gas emissions and pollutants. Given

the different range of topologies and operating conditions, the ORC system needs to

be modelled and optimized to ensure their economic viability and optimal operation.

Generally, in the literature, studies on ORC system optimization are focused

on the results of the optimization problem and not the efficiency or robustness

of the modelling and optimization procedure. Typically, an SM model of ORC

system will be constructed in a process modelling environment, such as Aspen Plus,

with an optimization solver wrapped around the model that aims to search for a

better simulation solution. While this can sometimes be acceptable for small “toy”

problems, it is not the most efficient way for optimization as it can restrict the

derivative information and require a nonlinear equation solver for converging the

system flowsheet and recycle(s). In addition, this approach limits the model to

black-box optimization and thus generally cannot ensure global optimality.

While it is acknowledged that the EO approach is a better alternative to the

SM approach, there is a lack of research on the EO formulation for the ORC sys-

tems, especially regarding large real-world ORC systems, that can provide accurate

derivative and matrix sparsity information to the solvers. Furthermore, solving op-

timization problems with fast and reliable optimization solvers is only one aspect

of achieving efficient optimization capabilities. There is a gap in the literature re-

garding the different optimization formulations of an ORC system, such as NLP,

MINLP and MILP, that can be reformulated using various integer and linear pro-

gramming techniques. There are advantages and disadvantages associated with each

formulation and investigating these attributes can help lead to better optimization

performance and/or model accuracy.

In order to address these shortcomings, this thesis will focus on the integration
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of the off-line steady state optimization models with state-of-the-art optimization

algorithms to achieve an optimization strategy that is robust and efficient. This

is addressed in three distinct parts. First, by providing a systematic modelling

approach for ORC systems that are robust and efficient for optimization and also

compatible with certain white-box solvers. Second, provide a regression tool to im-

prove the performance of the optimization by without compromising on the accuracy

of the model. Third, utilize the available linear/integer programming techniques to

formulate an equivalent MILP model to take advantage of the available MILP solvers

or when the NLP or MINLP models fail to converge. Figure 2.4 shows the general

flow diagram of the research structure and the proposed modelling framework.

Figure 2.4: The structure flow diagram of this research that illustrates the relation-
ship between the different optimization formulations and the modelling approaches.

The proposed model framework aims to address the optimization field concerning

the steady-state operational conditions and the working fluid selection, which are

common in the literature as presented in [1, 30, 23, 58]. Thus, this assumed that

there is an existing plant with sufficient plant data or a detailed schematic plant

diagram with a heat and mass balance analysis that can be used to construct a

model. Therefore, this research does not try to address the configuration, sizing and

design of the underlying equipment, as this is outside the scope of this study and

other methodologies might be more suitable, such as the Pinch Technology [114].
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This thesis will analyse three different advanced real-world ORC systems that

vary in size and configuration in order to illustrate the optimization flexibility and

efficiency of the proposed modelling framework. Two model types will be presented

for each ORC system, namely, the EO and SM model, as shown in Figure 2.4. The

purpose of the EO model is for optimization, whereas the SM model is intended

for validating the optimized results of the EO models. There will be three different

optimization formulations, i.e., NLP, MINLP, and MILP, that are derived from

applying regression analysis and integer/linear programming techniques to the EO

model, and they will be presented in the chapters highlighted in Figure 2.4. The

advantages and disadvantages of each optimization formulation, as well as their

research contributions, will be discussed in relation to the shortcomings mentioned

above.
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Chapter 3

The Algebraic Equation-Oriented

Formulation

This chapter will investigate an algebraic equation-oriented (EO) modelling ap-

proach that is robust and efficient for optimization and is also compatible with

white-box solvers. The modelling approach will be first implemented on a simple

ORC system to concisely provide an overview of the proposed modelling procedure.

Later, the same modelling approach will be applied to three real-world ORC sys-

tems in the next chapter. This chapter will begin with a discussion of the common

sequential-modular (SM) optimization methods and highlight the advantages and

disadvantages associated specifically with the ORC systems. This is then followed

by a full description of the algebraic EO model development and optimization using

both black-box and white-box solvers. Finally, an optimization performance of the

algebraic EO model will be presented, as well as a discussion on how to leverage the

high-fidelity feature of the SM model to validate the algebraic EO model.

3.1 Introduction

The formulation of the optimization model is one of the most important factors

for a successful optimization study [63]. Often an ORC system is simulated using

the SM approach, via modelling software such as Aspen Plus [13] or GateCycle

[14], where the unit operation modules are linked together and solved sequentially

in the direction of the plant’s process, see Figure 3.1. This makes the flowsheet

relatively straightforward and easy to solve and troubleshoot when the input stream

at the beginning of the plant’s process is known. In addition, the SM approach can

produce high fidelity models due to the rigorous unit operation modules that are

used to construct the models. Many SM tools offer a wide range of unit operation
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modules or allow external modules to be added to their extensive libraries that are

a close representation of the original unit operations. This is an important feature

that will be exploited later in this work to validate our algebraic EO models.

Figure 3.1: A sequential-modular model of a basic ORC system using the JSteam
Exel Add-In. Non-shaded cells are inputs and shaded cells are outputs.

Generally, the SM models are optimized using heuristic methods or optimization

algorithms as demonstrated in the work carried out by [15, 28]. For small optimiza-

tion problems with only a few variables and constraints, this approach can work

reasonably well; however, for large ORC systems or large optimization problems, it

can become very inefficient and can lead to various optimization issues. First, some

of the plant variables are not easily accessible for optimization due to the rigidity

of some of the plant’s component modules in the modelling simulator. Therefore,

either the practitioners develop a new module or find an alternative external module

that can be interfaced into the environment. Second, it is very difficult to obtain

accurate derivative information of the optimization problem, which is an important

input argument for the derivative-based solvers to efficiently optimize the problem.

In most cases, the solvers use the finite difference method to estimate the required

derivatives, which can lead to various convergence and termination issues. Third,

the optimization may be very slow or fail to converge due to difficulty in solving

the internal recycle processes at every optimization iteration. Fourth, the optimiza-

tion solvers that are compatible with the SM models generally cannot guarantee the

global solution.

An alternative method is to use the equation-oriented approach, where systems

are represented as a set of equations that are solved simultaneously. This opens

up the model and allows the practitioners access to more decision variables that

can be optimized. In contrast to the SM approach, EO approach allows standard

optimization problems to be formulated relatively efficiently from the model struc-

ture, and the mass and energy balance equations are solved concurrently with the
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optimization problem [20]. This means that recycles in the system are treated as

another set of equations and thus makes it significantly more efficient than the SM

optimization approach. However, similar to the SM approach, one major problem

about the EO approach is the difficulty of obtaining accurate derivatives from ther-

modynamic packages or complicated thermodynamic correlations that are used in

the underlying EO model equations [115]. Consequently, the optimization solver

will resort to using the finite difference method to estimate the derivatives, and this

can result in various convergence and termination issues. While it is possible to

use derivative-free solvers to avoid using or obtaining the derivative information,

these solvers are generally more suitable for unconstrained or bound optimization

problems, and they scale poorly with the number of variables [63]. In this research,

this problem will be addressed by using regression analysis to approximate the ther-

modynamic correlations using differentiable nonlinear/piecewise functions over an

acceptable range of temperatures and pressures that are applicable to the plant. The

contribution of this chapter is the application of the proposed modelling approach

to an ORC system to address the issues associated with the common optimization

methods as mentioned above.

3.2 Algebraic Equation-Oriented Modelling Pro-

cedure

The task of constructing an algebraic EO model amounts to deriving a set of de-

terministic algebraic equations that describe the process of the system and approx-

imating the output characteristic of the unit operations using regression and ther-

modynamic analysis. It will become apparent later in Chapter 4 that this modelling

approach is non-trivial and requires a good understanding of the simulation problem

so that the model accuracy is not over compromised in order to reduce the computa-

tional complexity of the optimization problem, especially with larger system models.

This section will fully discuss the optimization procedure of a basic ORC system,

as shown in Figure 3.2, to clearly present the proposed modelling approach. Later,

the modelling approach will be applied to three different real-world ORC systems

to highlight the contribution of the modelling approach.

3.2.1 Basic ORC System Description

The topology of a basic ORC system consists of a cycle that typically include a

turbine, a condenser, a feed pump, and an evaporator. This type of ORC system

has been analysed extensively in many academic papers [116, 38, 1] and in many
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standard thermodynamic textbooks such as [3, 117], thus it makes an excellent

simple model for this demonstration. Therefore, the ORC system described in [1]

was used for this research, which will be referred to as Basaran ORC (BORC) and

corresponds to the process flow diagram in Figure 3.2. In order to coherently and

clearly present the ORC system diagrams, the unit operations that are discussed

in the following subsections and the process flow diagrams that are presented in

this thesis will follow the colour scheme as described in Table 3.1. Furthermore,

the equations of the unit operations in the following subsections do not only apply

to Figure 3.2 but will also apply other ORC systems that will be discussed in this

thesis, hence the equation indices will be generalised and do not specifically correlate

to Figure 3.2.

Table 3.1: The colour scheme of the Organic Rankine Cycle unit operations and
process flow diagrams that are presented in this thesis.

Red Heat Source/Brine/Geofluid
Blue Heat Sink/Cooling Water
Green Working Fluid/ORC-A
Purple Working Fluid/ORC-B

The constant parameters that were used for the basic ORC system are shown

in Table 3.2, which were adapted from [1] to correspond with the original ORC

system. Please note that PA5 was calculated using REFPROP [35] to ensure that

the quality of the working fluid was at the saturated liquid point. Furthermore, the

outlet temperature of the cooling water was decreased from 288K to 282K to ensure

that the laws of thermodynamics are upheld, see Section 3.2.2.1.

Table 3.2: The constant parameters of the Basaran ORC system (adapted from [1]).

Plant Constant Value Unit
ṁBR 75 kg/s
TBR1 369 K
TBR3 334 K
PBR 5 bar
TCW1 280 K
TCW2 282 K
PCW 5 bar
ηturb 85 %
ηpump 75 %
TA5 283 K
PA5 Pf@TA5

bar

For the purpose of this research, the ORC system will follow the same assump-

tions as the journal paper. This means the system is a steady-state and steady-flow
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Figure 3.2: The process flow diagram of a basic Organic Rankine Cycle system as
per [1] where the working fluid is R227ea. The plant was constructed in JSteam
Excel Add-In v3.20 software [2].

.

process; whereby changes in kinetic and potential energy are neglected, and losses

induced by friction are neglected. The thermodynamic and transport properties of

the brine are treated as pure water, and any dissolved salts and non-condensible

gases are neglected. Furthermore, the pressure drops across heat exchangers and

pipelines are neglected. The following subsections will analyse the common unit

operations that are found in the ORC systems, and they will be used for the rest of

the thesis unless state otherwise. The simplifications and assumptions of the unit

operation analysis are based on how the ORC models are presented and analysed

in their respective references. Therefore, for a fair comparison and validation of the

models, the analysis of the unit operations are assumed to be under ideal operation.

However, it is possible to extend this modelling approach to account for a more re-

alistic model by using regression methods to approximate the output characteristics

of the unit operation model.

3.2.1.1 Turbine Analysis

The overall goal of the ORC system is to convert thermal energy into mechanical

energy that can be used to generate electricity. This mechanical energy is produced

when a high-pressure vapour expands through a turbine and causes a mechanical

shaft to rotate. The thermodynamic analysis of the ORC turbine, see Figure 3.3, is

familiar to that of a steam turbine.

Under the common assumption that the potential and kinetic energy are negli-
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Figure 3.3: Turbine for organic Rankine cycle.

gible with adiabatic and steady-state operation, the output work is expressed as

Ẇturb = ṁWF(hA1 − hA2) = ηturbṁWF(hA1 − his,A2), (3.1)

where ṁWF is the mass flow rate of the working fluid, h is the enthalpy (where

subscript is stands for the isentropic process), and ηturb is the isentropic turbine effi-

ciency. Due to the his,A2 term in (3.1), the output turbine work cannot be explicitly

be stated in the algebraic EO model because of the thermodynamic correlation of

the isentropic process, i.e., the input entropy must equal the output entropy. There-

fore, the output work will need to be approximated as an algebraic function, which

will be discussed in Section 3.2.2.4.

The turbine isentropic efficiency, ηturb, (as well as the feed pump in the next

subsection) will be considered as a constant parameter in this research to remain

consistent with what is stated in the original plant’s reference and to simplify the

ORC model. It is very common in the literature and in most textbooks that the

isentropic efficiency is assumed as a fixed parameter, as shown in [29, 30, 31, 39,

118, 34, 3]. Therefore, the turbine models that are presented in this research will

also use a constant isentropic efficiency.

However, it is possible to use a variable isentropic efficiency and incorporate it

into the algebraic EO models that are presented in this research, but the isentropic

efficiency must be expressed as an algebraic function that is compatible with the

white-box solvers. For example, a study carried out by [119] considers the turbine

isentropic efficiency as a function of the enthalpy drop, (hA1 − hA2), and the vol-

umetric flow rate at the turbine outlet. Therefore, the isentropic efficiency of the

turbine can be treated as a set of constraints and expressions in the algebraic EO

model.
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3.2.1.2 Feed Pump Analysis

In an ORC process, the feed pump (see Figure 3.4) is required to increase the pressure

of the working fluid and move the fluid to the heat exchanger(s) to be heated up by

the heat source.

Figure 3.4: Pump for organic Rankine cycle.

Using the same assumptions as the turbine and the same variable nomenclature,

the power imparted by the feed pump to the working fluid is

Ẇpump = ṁWF(hA2 − hA1) = ṁWF(his,A2 − hA1)/ηpump, (3.2)

where ηpump is the isentropic pump efficiency. Similar to the turbine analysis, the

feed pump work need to be approximated due to the his,A2 term in (3.2).

3.2.1.3 Heat Exchangers Analysis

The heat exchanger (see Figure 3.5) is the general term given to a unit operation

that enables the thermal energy from the hot medium to be transferred to the

cold medium. It is typical for the ORC system flowsheet to have a separate heat

exchanger for the different stages of the heating or cooling process to provide acces-

sibility to the pressures and temperatures at each point. Therefore, for the heating

process, this might involve a preheater (or economizer) that heats the fluid to the

saturated liquid point, an evaporator that vaporizes the fluid to the saturated vapour

curve, and a superheater that heats the fluid to the superheated region. Conversely,

for the cooling process, this might include a desuperheater that cools the fluid to the

saturated vapour curve, and a condenser that condenses the fluid to the saturated

liquid curve (or the subcooled region).

The thermodynamic analysis is the same for both the heater and cooler with the

assumption that they are well-insulated and that all the heat transfer is only between

the hot fluid and the cold fluid. It is also assumed that the heat exchanger operates

in a steady-flow process and that the changes in the kinetic and potential energy

are negligible. Under these assumptions, the governing equation for the heater as a

thermodynamic system is

ṁWF(hA2 − hA1) = ṁBR(hBR1 − hBR2), (3.3)
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(a) A heater with geofluid/brine (BR) (b) A cooler with cooling water (CW)

Figure 3.5: Heat exchangers for organic Rankine cycle.

and for the cooler is

ṁWF(hA1 − hA2) = ṁCW(hCW2 − hCW1), (3.4)

where both equations follow the same variable nomenclature as the previous unit

operation analysis.

For the sake of completeness, the heat transfer surface area of the heat exchanger

between the two fluids, A, can be calculated using the general heat transfer rela-

tionship:

Q̇hx = UA∆TLMTD, (3.5)

where the Q̇hx is the heat exchanger duty, U is the overall heat transfer coefficient,

and ∆TLMTD is the log-mean-temperature difference, which corresponds to

∆TLMTD =
(TBR1 − TA2)− (TBR2 − TA1)

ln

[

(TBR1−TA2)
(TBR2−TA1)

] (3.6)

for the heater in Figure 3.5a. The overall heat transfer coefficient U is a measure-

ment that quantifies the heat exchanger’s overall ability to transfer heat. A rough

approximated value of U for different scenarios can be found in [3]. For practi-

tioners who are concerned with capital cost optimization of the plant, it might be

cost-effective to minimise the area of the heat exchangers as they are a major factor

in the overall cost of the plant.

3.2.1.4 Throttle Valve Analysis

The valve unit operation (as shown in Figure 3.6) is a flow-restriction component

that decreases the pressure of the fluid. This is different from the turbine where
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there is no output work produced due to the pressure drop but can result in a large

drop in temperature.

Figure 3.6: Valve for organic Rankine cycle.

Since the valves are usually a small component, there not enough time or surface

area for the heat transfer to occur effectively, thus the process is usually assumed

to be adiabatic. In addition, any changes in kinetic and potential energy that may

occur are usually very small and thus are neglected. Consequently, for a steady-flow

single stream valve, the energy equation is reduced to

hA1 = hA2, (3.7)

where the inlet enthalpy is equal to the outlet enthalpy.

3.2.2 The Algebraic Equation-Oriented Model

The construction of an algebraic EO model begins by deriving the mass and energy

balance equations of the system. Some of the nonlinear terms that are present

in the mass and energy balance equations can be approximated using regression

analysis, namely, the input/output power of the pump and the turbine, to allow

for the analytical derivatives to be calculated. Subsequently, a set of operational

constraints of the ORC system needs to be derived to ensure a practical operation,

such as the turbine inlet temperature must not exceed the lower and upper limits,

and the turbine exhaust gas must be in the vapour region. Lastly, all the decision

variables will need to be bounded to reduce the size of the search region and improve

computational time. The following subsections will discuss the algebraic EO model

in more detail, and highlight the compromise between the accuracy of the model

and the computational complexity of the optimization problem.
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3.2.2.1 Temperature Profile of Heat Exchangers

At first glance, the model data presented in [1] seems to be accurate and thermo-

dynamically correct. However, after further investigation, it was found that the

data provided in [1] was violating the second law of thermodynamics. Figure 3.7

shows the state properties that were given about the condenser in Table 7 of [1],

where the working fluid was R227ea. This does not give enough information about

Figure 3.7: The condenser of the ORC system presented in [1] with the state prop-
erties obtained directly from Table 7 in [1], where the hot medium is R227ea and
the cold medium is water.

the temperature profile of the condenser and its pinch-point. Therefore, let’s break

the condenser unit operation into two components, i.e., the condenser (cond) and

desuperheater (desh) as shown in Figure 3.8, and carry out some thermodynamic

calculations to work out the temperature at every stage of the cooling process.

Figure 3.8: The condenser unit operation of [1] separated into two parts consisting
of a condenser and a desuperheater. The state properties were obtained from Fig-
ure 3.7, where the hot medium is R227ea and the cold medium is water. Note that
the temperature at A2 is the saturation vapour temperature at 2.78 bar, which is
the same as the saturation liquid temperature at A3.

The desuperheater cools the working fluid to a saturation vapour, and the con-
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denser cools the working fluid to a saturation liquid. If we calculate the duties of

the condenser and the desuperheater, we get

Q̇cond = ṁWF(hA2 − hA3) = 7.2546× 103 kW,

Q̇desh = ṁWF(hA1 − hA2) = 2.7658× 103 kW.
(3.8)

Assuming that the condenser is perfectly insulted, we get

Q̇cond = ṁCWcCW(TCW2 − TCW1) = ṁCW(4.1993)(TCW2 − 280),

Q̇desh = ṁCWcCW(TCW3 − TCW2) = ṁCW(4.1993)(288− TCW2),
(3.9)

where cCW is the constant specific heat of the cooling water that was calculated using

the inlet pressure and temperature value. Consequently, there are two unknowns,

namely, ṁCW and TCW2, and two equations; therefore, it possible to solve for the

unknown variables as follows:

[

Q̇cond

Q̇desh

]

=

[

cCW −cCWTCW1

−cCW cCWTCW3

][

ṁCWTCW2

ṁCW

]

(3.10)

This results in ṁCW = 298.3 kg/s and TCW2 = 285.8K. As shown in Figure 3.9,

the temperature at state CW2 is higher than A2, which violates the second law

of thermodynamics. The temperature of the cooling water should never be higher

Figure 3.9: The calculated state properties of the condenser and desuperheater of
Figure 3.8.

than the working fluid temperature at any point in the heat exchanger because this

means that heat transfer is reversed. This is more evident in Figure 3.10, which

shows the heat exchange process between the cooling water and the working fluid.

According to the second law of thermodynamics, heat transfer can only occur from

the hot medium to the cold medium; therefore, this implies that the data provided

in [1] is thermodynamically incorrect.

This problem can be solved if the outlet temperature of the cooling water (CW3)
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Figure 3.10: Diagram showing the heat exchange process between the cooling water
and the working fluid R227ea. The states refer to Figure 3.9. The x-axis represents
the path of the fluid flow in the heat exchanger.

is less than the outlet temperature of the working fluid (A3). To illustrate this

solution let’s make the outlet temperature of the cooling water 1K less than the

outlet working fluid and put no restriction on the mass flow rate of the cooling water,

and carrying out the calculation again. As shown Figure 3.11 and Figure 3.12, the

temperature at A2 is now higher than the temperature at CW2. However, this

resulted in a significant increase in the cooling water mass flow rate to compensate

for the decrease in the outlet temperature of the cooling water.

Figure 3.11: The calculated state properties of the condenser and desuperheater of
Figure 3.8 when the outlet temperature of the cooling water was decreased from
288K to 282K.

The same problem can also occur at the heater side of the ORC system, i.e., the

evaporator, as shown in Figure 3.13. In order to analyse the temperature profile,

the evaporator need to be separated into two parts, namely, the preheater and
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Figure 3.12: Diagram showing the heat exchange process between the cooling water
and the working fluid R227ea when the temperature at CW3 was decreased from
288K to 282K. The states refer to Figure 3.11. The x-axis represents the path of
the fluid flow in the heat exchanger.

evaporator/superheater, as shown in Figure 3.14. Assuming that the heat exchanger

is perfectly insulated, the heat transfer between the brine and the working fluid can

be written as

Q̇evap/suph = ṁBRcBR(TBR1 − TBR2) = ṁWF(hA3 − hA2),

Q̇preh = ṁBRcBR(TBR2 − TBR3) = ṁWF(hA2 − hA1),
(3.11)

where cBR = 4.2102 kJ/kgK (calculated using the inlet pressure and temperature

value). By substituting the known terms into (3.11), we get

(75)(4.2102)(369− TBR2) = ṁWF(719.83− 402.55),

(75)(4.2102)(TBR2 − 334) = ṁWF(402.55− 224.97).
(3.12)

With two equations and two unknown variables, namely, ṁWF and TBR2, the equa-

tions can be solved simultaneously.

[

ṁBRcBRTBR1

−ṁBRcBRTBR3

]

=

[

hA3 − hA2 ṁBRcBR

hA2 − hA1 −ṁBRcBR

][

ṁWF

TBR2

]

(3.13)

This results in ṁWF = 22.3 kg/s and TBR2 = 346.6K. As shown in Figure 3.15 and

Figure 3.16, the temperature at BR2 is less than the saturated liquid temperature at

A2, which again violates the second law of thermodynamics. One way to solve this

problem is to decrease the pressure of the working fluid and carry out the calculation

again. For this example, let decrease the pressure of the working fluid from 10 bar

to 6.359 bar so that the saturated temperature at A2 is 1K less than the outlet
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Figure 3.13: The evaporator of the ORC system presented in [1] with the state prop-
erties obtained directly from Table 10 in [1], where the hot medium is geothermal
brine (water) and the cold medium is R600.

Figure 3.14: The evaporator unit operation of [1] separated into two parts consisting
of a preheater and evaporator/superheater. The state properties were obtained from
Figure 3.13., where the hot medium is geothermal brine (water) and the cold medium
is R600. Note that the temperature at state A2 is the saturation liquid temperature
at 10 bar.

Figure 3.15: The calculated state properties of the preheater and evaporator/super-
heater of Figure 3.14.

50



Distance

280

290

300

310

320

330

340

350

360

370

T
e
m

p
e
ra

tu
re

 [
K

]

A1

A2

A3

BR3

BR2

BR1

Geothermal Brine

R600

Figure 3.16: Diagram showing the heat exchange process between the geothermal
brine and the working fluid R600. The states refer to Figure 3.15. The x-axis
represents the path of the fluid flow in the heat exchanger.

temperature of the brine. As shown in Figure 3.17 and Figure 3.18, this results in

the temperature at BR2 being higher than A2, but with a decrease in the working

fluid mass flow rate.

Figure 3.17: The calculated state properties of the preheater and evaporator/super-
heater of Figure 3.14 when the pressure of the working fluid (R600) was decreased
from 10 bar to 6.359 bar.

Therefore, to ensure that these anomalies do not occur in the proposed ORC

model, some temperature constraints need to be added to the optimization problem

as shown in Figure 3.19. Consequently, the temperature of the outlet cooling water

will be decreased below or equal to the temperature at the outlet of the condenser,

and allow the mass rate of the cooling water to increase respectively. In addition, if

the original system does not have a preheater unit operation, the heater will need

to be separated into two separate components, namely, into a preheater and an
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Figure 3.18: Diagram showing the heat exchange process between the geothermal
brine and the working fluid R600 when the pressure of the working fluid was de-
creased from 10 bar to 6.359 bar. The states refer to Figure 3.17. The x-axis repre-
sents the path of the fluid flow in the heat exchanger.

evaporator/superheater, to access the temperature at saturated liquid. This will

allow the temperature constraint to be added to the optimization model as shown

in Figure 3.19. Since the temperatures at the inlet of the cooling water and pump
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Figure 3.19: A diagram showing the temperature constraints to ensure that the heat
transfer only flow from the hot medium to the cold medium. The indices correlate to
the Figure 3.2. Note that this diagram is for illustration purposes only, the entropy
values for the brine (red) and the cooling water (blue) would generally not be the
same as the working fluid.

are fixed, there is no need for a temperature constraint as these temperatures will

not change during the optimization procedure. These constraints will be explicitly

written out for the Basaran ORC system in Section 3.2.2.5.
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3.2.2.2 Optimization Parameters

In order to formulate the optimization problem for the ORC system, there are some

optimization parameters that need to be stated. Since the pressure and temperature

at the turbine inlet are given as 10 bar and 363K in the reference paper [1], these

values were set as the upper bounds for these two variables. To avoid damaging

and degrading the performance of the turbine, the lower bound for the inlet turbine

temperature was set to the saturated vapour temperature at 10 bar.

To optimize the model with respect to different working fluids as per the refer-

ence, namely, R134a, R143a, R152a, R227ea, R236ea, R290, R600, and R600a, and

to show the flexibility of the proposed optimization approach, the lower bound of

inlet turbine pressure was set to 1 bar above the saturated liquid pressure at the

condenser outlet. Finally, the quality of the working fluid at the condenser outlet

was set to saturated liquid to comply with the general operation of an ORC system.

Note that the optimization problem described above proposed a system where the

pump outlet pressure can vary; however, this modelling approach does not restrict

to only this degree of freedom. As shown in [120], it is possible to formulate an

optimization problem where the pump inlet pressure is a decision variable, thus

highlighting the flexibility of this approach.

Two objective functions will be investigated for this optimization problem, namely,

maximizing the net output power and minimizing the specific rotating machinery

cost. The net output power is defined as

min J = −Ẇnet = −

( n
∑

i=1

Ẇturb,i −

m
∑

j=1

Ẇpump,j

)

, (3.14)

where Ẇturb is the turbine work, n is the number of turbines, Ẇpump is the pump

work, and m is the number of pump. While the specific rotating machinery cost is

defined as

min J =

∑n

i=1Cturb,i +
∑m

j=1Cpump,j

Ẇnet

, (3.15)

where C denotes the cost of the rotating machinery. Note that the objective function

follows the general standard of optimization format in Section 2.4, thus the objective

function is negated for a maximization problem. The cost C can be calculated using

the following cost correlation:

C = C0

(

W

W0

)a

, (3.16)

where W is the work of the unit operation, while C0, W0 and a are the constant

parameters that were derived from [121, 122, 31] for the turbine and pump, as shown
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in Table 3.3.

Table 3.3: Constant parameters for calculating the cost of the turbine and pump.

C0 [k$] W0 [kW] a

Turbine 950 3678 0.70
Pump 14 200 0.67

The algebraic EO models were constructed in MATLAB R2017a using OPTI

Toolbox v2.27 (utilizing the built-in SymBuilder framework) to efficiently use a

range of different solvers without the need to reformulate the problem for the dif-

ferent solver interfaces. The optimization problem will be optimized using various

NLP solvers, namely, IPOPT, fmincon, FILTERSD, BARON, SCIP, and pattern-

search, which were selected based on their availability for academic use and their

compatibility with OPTI and MATLAB.

3.2.2.3 Mass and Energy Balance

The mass and energy balance equations can be derived based on the first law of

thermodynamics. Referring to Figure 3.2 and the associated labels on the diagram,

the energy balance equations of the system can be expressed as follows:

ṁWFhA1 + ṁBRhBR2 − ṁWFhA2 − ṁBRhBR3 = 0,

ṁWFhA2 + ṁBRhBR1 − ṁWFhA3 − ṁBRhBR2 = 0,

ṁWFhA3 − Ẇturb − ṁWFhA4 = 0,

ṁWFhA4 + ṁCWhCW1 − ṁWFhA5 − ṁCWhCW2 = 0,

ṁWFhA5 + Ẇpump − ṁWFhA1 = 0,

(3.17)

where ṁWF is the mass flow rate, h is the enthalpy value, Ẇpump is the pump

input power, Ẇturb is the turbine output power, BR is the brine and CW is the

cooling water. From the fixed parameters mentioned in Table 3.2, some of the

terms in (3.17), namely, ṁBRhBR1, ṁBRhBR3, hCW1, hCW2, and hA5, can already be

calculated and substituted into the model. Note that the mass balance equations are

not needed for this cycle because the working fluid mass flow is constant throughout

the cycle and there are no losses or gains to the mass flow.

3.2.2.4 Unit Operation Approximations

In order to achieve an algebraic model structure, rigorous unit operation functions

cannot be used in the model due to the isentropic terms in (3.1) and (3.2). Therefore,
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the two work expressions in (3.17), namely, Ẇturb and Ẇpump, need to be approx-

imated as a function of enthalpy and/or pressure. This can be carried out using

a regression toolbox, such as optifit [105], MATLAB Curve Fitting Toolbox or

pwfit (see Section 6.2.1).

Based on the assumptions made in Section 3.2.2.2 that the state of the working

fluid is a saturated liquid at the pump inlet (see Table 3.2) and that there are no

pressure drops across the heat exchangers, i.e., PA1 = PA3 ∈ [PA5+1, 10] bar (where

10 bar is the turbine inlet pressure value from [1]), a set of isentropic pump work

values can be calculated at various input pressures. The correlation between isen-

tropic pump work and the outlet pressure can then be approximated via regression

analysis, as shown in Figure 3.20. The criteria to select the order of the regression

polynomial closely resemble that of the Akaike and Bayesian information criteria

as presented in [123], where there is a defined metric that penalises the order of

the polynomial (parameter) with respect to the SSE value (the goodness of the fit).

This concept was adopted in this thesis but in a more general sense by increasing the

polynomial order only if the regression error plots and the discrepancies between the

EO model and the SM model (where the optimized results are substituted into the

SM model) are too large. This approach seems to be sufficient for this research and

allows the user the flexibility to make their own compromise between the complexity

and accuracy of the polynomial regression. As a result, the pump input power now

becomes

Ẇpump =
∆ĥis,pumpṁWF

ηpump
, (3.18)

where

∆ĥis,pump = −1.02 ×−5 P 2
A1 + 0.0691PA1 − 0.192 (3.19)

is the approximated isentropic work. Note that the indices in (3.19) refer to Fig-

ure 3.2.

The turbine output power can be approximated using a similar approach but

with two independent variables, namely, the inlet pressure and enthalpy. Based on

the assumptions made in Section 3.2.2.2 that the inlet temperature can vary between

TA4 ∈ [Tg@10 bar, 363]K, the inlet pressure can vary between PA3 = PA1 ∈ [PA5+1,

10] bar, and the outlet pressure is equal to PA5, a set of isentropic turbine work values

can be calculated, as shown by the black dots (top plot) in Figure 3.21. Since there

are no explicit turbine temperature terms in (3.17), the respective inlet enthalpy

values were calculated for the inlet temperatures. This results in the following

turbine work expression:

Ẇturb = ∆ĥis,turbηturbṁWF, (3.20)
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Figure 3.20: The regression fit and error plot of the pump isentropic work as a
function of the outlet pressure. The black dots (top plot) are the REFPROP ther-
modynamic calculations.

where

∆ĥis,turb =0.0206P 3
A1 − 0.41P 2

A1 − 0.000552P 2
A1hA4+

0.0186PA1hA4 + 0.556PA1 − 0.0424hA4 − 0.174
(3.21)

is the approximated isentropic work of the turbine as a function of the inlet pressure

and enthalpy.

Note that the proposed modelling approach does not restrict the operating range

of the pump and turbine to what is stated above. They can be changed to suit other

optimization problems if the ORC system is required to operate under a different

operating condition.

3.2.2.5 Operational Constraints

For the ORC system to operate within practical limits, there are some operational

constraints that need to be considered. These are superheating/subcooling require-

ments, the pressure drop across heat exchangers, heat loss, etc. In compliance

with [1] specifications and assumptions, the turbine inlet conditions need to be con-

strained. Based on the optimization specifications in Section 3.2.2.2, the turbine

inlet temperature needs to be constrained between Tf@10bar and 363K, see Fig-
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Figure 3.21: The regression fit and error plot of the turbine isentropic work as a
function of the inlet enthalpy and pressure. The black dots (top plot) and the grey
dots (bottom plot) are the REFPROP thermodynamic calculations.

ure 3.22. Since there no explicit turbine temperature terms in the algebraic EO

model, the corresponding enthalpy values at both temperature limits were calcu-

lated using REFPROP and regressed. Therefore, the lower- and upper-temperature

limit can be constrained as

hA3 ≤ ĥ@369K,PA1∈[PA5+1,10] bar,

hA3 ≥ ĥ@Tg@10bar,PA1∈[PA5+1,10] bar,
(3.22)

where

ĥ@369K,PA1∈[PA5+1,10] bar = −0.000526P 3
A1 − 0.00574P 2

A1 − 0.839PA1 + 403,

ĥ@Tg@10bar,PA1∈[PA5+1,10] bar = −0.00432P 3
A1 + 0.0289P 2

A1 − 1.33PA1 + 372.
(3.23)

The regression plots of the lower- and upper-temperature limits are shown in Fig-

ure 3.23.

In addition, to ensure that state A2 operates at the saturated liquid point, the
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Figure 3.22: The feasible region of the turbine inlet condition.
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Figure 3.23: The regression curve regressions the turbine inlet enthalpy at the lower-
and upper-temperature limit as a function of the inlet pressure. The black dots are
the REFPROP thermodynamic calculations.

following constraint was added

hA2 = ĥf@PA1∈[PA5+1,10], (3.24)

where

ĥf@PA1∈[PA5+1,10] = 0.0297P 3
A1 − 0.94P 2

A1 + 15.2PA1 + 176. (3.25)

The approximation curve of (3.25) is shown in Figure 3.24.

Lastly, in order to ensure that the second law of thermodynamics is not vio-

lated (as discussed in Section 3.2.2.1), the following temperature constraints were
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Figure 3.24: The saturation liquid curve regressions for the BORC algebraic EO
model. The black dots are the REFPROP thermodynamic calculations.

introduced in the optimization problem:

TBR1 − T̂A3 ≥ 1,

T̂BR2 − T̂A2 ≥ 1,

TBR3 − T̂A1 ≥ 1,

T̂A4 − TCW2 ≥ 1,

(3.26)

where

T̂A1 = −0.0146PA1 + 0.88hA1 + 97.3,

T̂A2 = −0.312P 2
A1 + 9.72PA1 + 260,

T̂A3 = −3.77× 10−5h2
A3 − 0.0179PA1hA3 + 1.21hA3 + 8.12PA1 − 119,

T̂A4 = −0.000753h2
A4 + 1.7hA4 − 197,

T̂BR2 = 0.238hBR2 + 273.

(3.27)

While the last equation in (3.26) might seem excessive because the temperature of

the cooling water was set lower than the temperature at the outlet of the condenser,

this constraint was added to help troubleshoot the model if there is an error or if the

solver converge to a infeasible point, and to reinforce that temperature difference at

any point between the hot and cold medium is always positive. Figure 3.27 shows

the temperature regressions in (3.27). In some cases, in order to approximate all the

possible temperature values for some states, the temperatures were calculated using

the 2D grid coordinates of the pressure and enthalpy values that were generated using

MATLAB’s meshgrid function. Consequently, in some cases, a few temperatures

are replaced with the mean temperature of the corresponding row when they are in

the two-phase region due to the range of the pressure and enthalpy bounds. While

the constraints and bounds will restrict the ORC system from operating in the two-

phase region, the modification to the temperature matrix was made to achieve a

more accurate fit.
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(a) Temperature regression at state A1.
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(b) Temperature regression at state A2.

(c) Temperature regression at state A3.
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(d) Temperature regression at state A4.

260 280 300 320 340 360 380 400

Enthalpy [kJ/kg]

335

340

345

350

355

360

365

T
e

m
p

e
ra

tu
re

 [
K

] 
a

t 
5

 b
a

r

(e) Temperature regression for the brine.

Figure 3.25: The temperature regressions of the Basaran ORC system as shown in
Figure 3.2. The black dots are the REFPROP thermodynamic calculations.

3.2.2.6 Bounds

In order to reduce the search region and decrease the execution time, all the decision

variables need to be bounded within a sensible range. For this optimization prob-

lem, the bounds were calculated based on the thermodynamic approximations and

assumptions that were made about the ORC system. Therefore, the bounds for the

BORC system using R227ea as the working fluid were as follows for the enthalpy

values:

211.20 ≤ hA1 ≤ 211.77,

221.77 ≤ hA2 ≤ 263.74,

356.82 ≤ hA3 ≤ 399.59,

330.77 ≤ hA4 ≤ 395.72,

255.14 ≤ hBR ≤ 401.98,

(3.28)
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for the mass flow rates and pressure:

10.00 ≤ ṁWF ≤ 100.0,

1100.0 ≤ ṁCW ≤ 1300,

3.78 ≤ PA1 ≤ 10.00,

(3.29)

and for the rotating machinery works:

733.20 ≤ Ẇnet ≤ 1222.00,

30.17 ≤ Ẇpump ≤ 50.28,

763.37 ≤ Ẇturb ≤ 1272.28.

(3.30)

Note that since the ORC system will be subjected to various working fluids, the

mass flow bounds were set to accommodate for all the different fluids, whereas the

pressure and enthalpy bounds will change depending on the working fluid due to its

thermodynamic properties.

3.2.3 Optimization Parameters and Settings

Once all the mass and energy balance equations, constraints, and bounds have been

derived, the optimization problem can be formulated and should result in the general

nonlinear programming format that is shown in (2.3). Please refer to Appendix A

for the full explicit optimization problem of the Basaran ORC system. With the

optimization problem constructed using the SymBuilder framework, the following

model statistics were obtained:

SymBuilder Object
BUILT in 0.515s with:
- 11 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 15 constraint(s)
- 2 linear
- 8 quadratic
- 5 nonlinear

- 22 bound(s)
- 0 integer variable(s)

Utilizing the OPTI Toolbox, the optimization problem was optimized using NLP

solvers. Unless stated otherwise, all the optimization procedures were performed on

a 64bit Windows 3.1GHz Intel Core i5. The default OPTI settings for the all the
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solvers were used, except for the maximum number of nodes (5 × 106), maximum

number of iterations (5× 106), maximum number of function evaluations (5× 106)

and maximum execution time (3.6× 103).

3.2.4 Basaran ORC Optimized Results

The algebraic EO model was optimized with six NLP solvers, and the optimized net

output power results are shown in Table 3.4. Two interesting points can be made

Table 3.4: The optimized net output powers and the solve times of the BORC
algebraic EO model.

Solver J [kW] Time [s]
IPOPT 1018.13 0.018
fmincon 1018.13 0.045
FILTERSD 1018.13 0.004
BARON 1018.13 0.513
SCIP 1018.13 0.488
patternsearch 980.34 525.7

from the optimized results. First, not every solver converged to the same solution

and, therefore, this indicates that a local optimum was found. Second, the white-box

global solvers and the gradient-free solvers were slower than the derivative-based

solvers. This is expected as both the white-box global solver and the gradient-

free solver algorithms generally require more function evaluations, and hence will

contribute to longer execution times. In addition, the proposed formulation allows

the derivative and matrix sparsity information to be provided to the solvers, which

would have contributed to a more efficient performance and better computational

times for the derivative-based solvers.

The highest net output power was 1018.13 kW, and the lowest was 980.34 kW.

Both white-box solvers (SCIP and BARON) and all of the derivative-based solvers

(IPOPT, fmincon, and FILTERSD) found the global optimum. Whereas, pattern-

search converged to a suboptimal solution of 980.34 kW. This confirms that even

though some gradient-free solvers are classified as “global” solvers, they cannot

guarantee the global optimality, unlike the white-box global solvers. Unless the

optimization problem is convex, the black-box solvers cannot ensure that the solution

is the global optimum.

Comparing this proposed optimization formulation to a similar study by Huster

et al. [23] that utilised the EO approach to optimize the net output power of

a similar basic ORC system, the average solve time of BARON presented in this
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thesis is significantly faster by around 26x than the results shown in Table 1 of [23].

This could be due to the use of simple regression fits, i.e., polynomial functions,

compared to the nonlinear thermodynamic equations proposed in [23]. While the

journal paper focused on highlighting the performance of their global optimization

framework exceeding that of BARON, the results did give a rough indication of

the performance of optimizing an ORC system using BARON and the algebraic

EO approach outside this research, and also highlight the interest in the literature

surrounding global optimality. Therefore, this illustrates the need for this research

and the proposed modelling formulation.

Taking the optimization problem further and optimizing the specific rotating

machinery cost, the optimized results in Table 3.5 were obtained. Again, pattern-

search did not find the same solution as the white-box solvers and converged to a

local optimum of 399.87 k$/MW. Whereas all the derivative-based solvers and the

white-box solvers converged to a global optimum of 398.19 k$/MW.

Table 3.5: The optimized specific rotating machinery costs and the solve times of
the BORC algebraic EO model.

Solver J [k$/MW] Time [s]
IPOPT 398.19 0.016
fmincon 398.19 0.089
FILTERSD 398.19 0.006
BARON 398.19 0.741
SCIP 398.19 0.340
patternsearch 399.87 527.0

Similar to the previous objective function, all the derivative-based solvers con-

verged to a solution significantly faster than both the white-box solvers and pat-

ternsearch. In addition, all the solvers converged to the same operating point as

the previous objective function, which indicates the global optimum for the specific

rotating machinery cost is at the same operating point as the global optimum for

the net output power.

For future optimization problems, patternsearch will no longer be investigated

as they are not suitable for large-scale and constrained problem [63]. In addition,

patternsearch cannot deterministically guarantee the global solution and cannot

fully take advantage of the algebraic structure of the proposed model formation,

namely, the derivative information, given that it is a derivative-free solver. Fur-

thermore, given the poor performance of patternsearch presented by this simple

optimization problem compared to the other solvers, it would be more sensible to

use derivative-based solvers that can achieve a much faster execution time.
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3.2.5 Algebraic Equation-Oriented Model Validation

As previously mentioned in Section 3.1, the SM models are not tailored for opti-

mization compared to the proposed EO model, especially for large ORC systems

(see Section 5.2.2). However, the SM model can be used to validate the algebraic

EO model since it provides a high fidelity model of the ORC system due to the use

of rigorous unit operations and thermodynamic packages. This is an important part

of the proposed modelling framework, as it will show the reliability and accuracy of

the approximated EO model to the original system.

The high fidelity SM model in this research was constructed using JSteam MAT-

LAB Interface v1.72 [124], which was considered as the “gold standard” for the pur-

pose of this study as it is the closest representation of the original system. This is

because the unit operation modules that are provided in JSteam are modelled using

explicit thermodynamic calculations and REFPROP routines, not via approxima-

tions, thus gives a very accurate model of the original plant. While it is possible

to use another simulation platform, such as Aspen Plus [13] and VMGSim [36], the

built-in MATLAB interface and its compatibility with OPTI Toolbox made JSteam

the most efficient choice for this research.

In addition to validating the algebraic model, once the SM model is constructed

and solved using the nominal plant data with a nonlinear system solver (such as

fsolve in MATLAB), it can be used as the initial guess for the optimization problem

for the algebraic EO model. Since different initialization values can result in a

different optimization time and solution, it is important that a sensible initial guess

is used for the optimization problem. Therefore, for this research, the initialization

values were taken from the SM model that was solved using the original plant

information to minimize the issues associated with a poor initial guess.

Table 3.6 shows the discrepancies between the original BORC system in [1] and

the JSteam SM model. The nominal design values were taken directly from [1] and

were substituted into the SM model, namely, PA1, TA2, and TA3, that corresponded

to 10 bar, 326.58K and 363K, respectively.

Due to the anomalies found in [1] regarding the heat exchangers as discussed

in Section 3.2.2.1, there were some modifications to the original ORC system. This

included decreasing the outlet temperature of the cooling water from 288K to 282K,

and adding a preheater unit operation to the ORC system to ensure the laws of

thermodynamics are being upheld. This consequently led to some large discrepancies

between the journal paper and the JSteam SM model, noticeably the flow rate of

the cooling water in Table 3.6. Furthermore, the pressure at the condenser outlet

was recalculated to ensure that the working fluid is at the right saturated point
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due to rounding errors. This means that the pressure values changed slightly from

2.7800 bar to 2.7823 bar. Consequently, this propagated along the cycle and affects

the enthalpy value at other stages of the system. As a result, this can also contribute

to the discrepancies between the journal paper and the JSteam SM model.

Given the numerous unforeseen errors found in [1], including the false calcula-

tions of the saturation temperatures of some of the working fluids (see Fig. 11 and

Fig. 12 in [1], where the saturation temperature at 10 bar for R290 and R600a should

be 26.9◦C and 79.5◦C, respectively, not 47◦C and 87◦C) and the thermodynamic vi-

olation in the heat exchangers (see Section 3.2.2.1), the optimized results will not

be compared to the journal paper as their results are thermodynamically invalid

and thus will not give a fair and reliable comparison. However, this paper offers a

great opportunity to illustrate some of the important checks and errors that can go

unnoticed when modelling ORC systems, and they need to be addressed to uphold

the laws of thermodynamics and conventions.

Table 3.6: The comparison between the original nominal design properties [1] and
the JSteam SM model.

Plant Nominal SM Model Error
Parameter Design (Base Case) [%]
Total Heat Duty Input, [kW] 11013 11013 0.00
Condenser Duty, [kW] 10021 10036 0.15
Turbine Power, [kW] 1030.7 1017.8 1.25
Pump Power, [kW] 38.8 40.22 3.66
Net Power, [kW] 991.91 977.6 1.44
Working Fluid, [kg/s] 60.63 60.64 0.02
Cooling Water, [kg/s] 298.77 1195.5 300.13
Thermal Efficiency, [%] 9.01 8.88 1.44
Specific Machinery Cost, [k$/MW] 397.82 400.26 0.61

In order to ensure that the thermodynamic approximations have not violated

any thermodynamic laws or give an inaccurate representation of the ORC system,

the optimized results will be substituted to the high fidelity SM model. Ideally,

the discrepancies between the two models should be as small as possible, which

will indicate that the approximated EO model is an accurate representation of the

original ORC system. As shown in Table 3.7, the errors between the two models are

less 1%, which is very favourable. For this ORC system, the solvers did converge to

the same operating point for both objective functions because there is little room

for improvement given the size/complexity of the basic ORC system. However, for

more complex ORC systems, such as the ones that will be presented in Chapter 4,

the solvers are less likely to converge to the same operating point.

Note that due to the thermodynamic approximations and the imposed con-

straints on the optimization problem, as well as the tolerances and stopping criteria
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Table 3.7: The validated algebraic EO model for both objective functions. The
values in the square brackets show the relative error [%] between the SM model and
the algebraic EO model.

IPOPT/fmincon/
Plant Parameter BARON/SCIP/ patternsearch

FILTERSD/
Total Heat Duty Input, [kW] 11013 [0.00%] 11013 [0.00%]
Condenser Duty, [kW] 10001 [0.06%] 10036 [0.03%]
Turbine Power, [kW] 1062.6 [0.55%] 1017.3 [0.32%]
Pump Power, [kW] 50.26 [0.04%] 40.18 [0.02%]
Net Power, [kW] 1012.4 [0.57%] 977.07 [0.33%]
Working Fluid, [kg/s] 75.85 [0.00%] 60.64 [0.00%]
Cooling Water, [kg/s] 1191.3 [0.06%] 1195.5 [0.03%]
Thermal Efficiency, [%] 9.19 [0.54%] 8.87 [0.34%]
Specific Machinery Cost, [k$/MW] 398.96 [0.19%] 400.32 [0.11%]

of the solvers, the optimal solution can render different from the “true” global opti-

mum. Thus, there will generally be some discrepancies between the SM model and

the approximated EO model. It is possible to reduce this error by using a higher

order fit or a piecewise fit, which will be addressed in Chapter 6. However, with any

approximation models, not just within this research, there will be some dependen-

cies between the original system and the model that can deviate from the optimum

solution. This is not a new problem in operations research, and practitioners need

to take into account the accuracy of the model when any approximations are carried

out and decide if the small difference in the optimal solution is acceptable for their

purpose.

Given that the ORC process can be analysed on a Ts diagram, an alternative

way to validate the algebraic EO model is to superimpose the different stages of the

ORC process onto the Ts diagram, as shown in Figure 3.26. The Ts diagram will

give a visual analysis of the optimized system and indicate if it is operating as an

ORC system and has not violated any thermodynamic constraints.

To an engineer, the general ORC process and configuration are generally known

prior to the optimization process, thus they can reasonably speculate where a fea-

sible operating point can be in order to comply with the thermodynamic laws and

mechanical constraints from the Ts diagram. This includes ensuring that the state

properties at the inlet and outlet of the turbine (A3 and A4) is not in the two-phase

region, the temperature of the condenser outlet (A5) is at the specified value and at

the saturated liquid or subcooled region, and the output pressure of the pump (A1)

is within the specified bounds.

Furthermore, to ensure that the thermodynamic violation does not occur in the

heat exchangers, the temperature profile of the preheater, evaporator/superheater,
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Figure 3.26: The Ts diagram of the optimized algebraic EO model using BARON
and patternsearch, where the each solver converged to the same operating point
for both objective functions.

and condenser can be plotted and analysed, as shown in Figure 3.27 and Figure 3.28.
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Figure 3.27: Diagrams showing the heat exchange process between the geothermal
brine/cooling water and the working fluid, where the net power of the plant was
optimized using BARON. The states refer to Figure 3.2. The x-axis represents the
path of the fluid flow in the heat exchanger.

With the temperature constraints in Figure 3.19 incorporated into the optimization

problem, the anomalies discussed in Section 3.2.2.1 did not occur in both of the

optimized scenarios and did not violate the second law of thermodynamics.

3.2.6 Working Fluid Selection for the BORC System

In addition to finding the optimal operating point for the ORC system, the opti-

mization model can be used to investigate various aspects of the plant, such as the

working fluid selection. For the BORC system, the eight pure working fluids that

were investigated in the original reference paper [1] were selected for this optimiza-
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Figure 3.28: Diagrams showing the heat exchange process between the geothermal
brine/cooling water and the working fluid, where the net power of the plant was op-
timized using patternsearch. The states refer to Figure 3.2. The x-axis represents
the path of the fluid flow in the heat exchanger.

tion problem. It is important to mention that optimizing the ORC system in regards

to the working fluid selection is an exhaustive optimization procedure that involves

having an outer iterative loop that goes through all the potential working fluids.

Trying to carry out this optimization procedure using the traditional SM approach

would be very inefficient and can lead to various optimization issues, as opposed to

the proposed algebraic EO model.

Optimizing the net output power of the ORC model using BARON with respect

to different working fluids yielded the optimized results in Figure 3.29.

Figure 3.29: The validated optimal net output powers of the BORC system with
respect to different working fluids.

Two interesting results can be observed from Table 3.8. First, R600 obtained

the highest net output power of 1325.4 kW and R143a obtained the lowest value
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Table 3.8: The validated optimal net output powers [kW] that were optimized using
BARON.

BARON Solve Time [s]

R134a 807.38 0.643
R143a 202.03 1.855
R152a 940.07 0.567
R227ea 1012.4 0.513
R236ea 1266.4 0.541
R290 499.64 0.643
R600 1325.4 0.654
R600a 1293.9 0.510

of 202.03 kW, which shows that the output net power of the plant can drastically

be influenced by the working fluid selection. Second, the average solve time of

BARON is less than 2 s for all of the working fluids. This is expected given the small

size of the optimization problem presented in this chapter. This highlights one of

the contributions for this optimization framework, which is that it can efficiently

optimize the plant with respect to different working fluids within a reasonable time

frame and can achieve global optimality for each working fluid using white-box

solvers.

Similarly, the same working fluids were optimized with respect to the specific

rotating machinery cost objective function using BARON, as shown in Table 3.9.

Figure 3.30 compares the optimized results of the different working fluids against

Table 3.9: The validated optimal specific rotating machinery costs [k$/MW] that
were optimized using BARON.

BARON Solve Time [s]

R134a 420.81 0.547
R143a 645.63 0.509
R152a 400.23 0.501
R227ea 398.96 0.741
R236ea 363.62 0.432
R290 489.76 0.508
R600 359.28 0.479
R600a 365.75 0.601

each other, which shows that R600 has the lowest specific rotating machinery cost

of 359.28 k$/MW and R143a has the highest value of 645.63 k$/MW.

Note that the optimization problem present in this research only focused on two

objective functions, but there are other aspects of the ORC system that can be opti-

mized, such as the specific heat exchanger area, the utilization efficiency, mass flow
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Figure 3.30: The validated optimized specific rotating machinery costs of the BORC
system with respect to different working fluids.

rates, and different operating conditions, that might be viewed more significant to

the viability of the plant. Therefore, although the optimized results presented in this

chapter was limited to two aspects of an ORC system, this should not undermine

the contributions of the proposed algebraic EO modelling approach. Compared to

most ORC models that are constructed using the SM approach, the proposed al-

gebraic model allows the analytical derivative information to be provided to the

solver and, thus, bypassing the issues associated with using the finite difference

method as discussed in Section 2.9. In addition, the algebraic structure also allows

global white-box solvers that can deterministically guarantee the global solution to

be used, which can be a major advantage in a competitive market. Furthermore,

the equation-oriented structure of the model allows the system recycle(s) to be effi-

ciently optimized and solved simultaneously without the need of solving an internal

flowsheet using a nonlinear equation solver. These attributes make the proposed

algebraic EO model efficient and robust for optimization and, hence, addressing the

main focus of this research.

3.3 Summary

This chapter has introduced an algebraic equation-oriented modelling approach for

an ORC system that is tailored for efficient optimization. This involves deriving

a set of algebraic equations that describes the ORC system using thermodynamic

and regression analysis. As such, a detailed description of the model formulation

and optimization procedure was given, which included deriving the energy balance

equations, approximating the unit operation processes and thermodynamic terms,

and validating the optimized results. Compared to the traditional SM model, this

proposed algebraic model structure can be exploited by the derivative-based solvers,

such as IPOPT, fmincon, FILTERSD, etc., and allows analytical derivatives (ac-
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curate to numerical precision) to be supplied and improve the overall optimization

performance of the solvers. In addition, this modelling approach also allows the

implementation of certain advanced white-box global solvers, namely, SCIP and

BARON, that ensure the global optimality of the optimization problem.

Both the white-box and black-box solvers were used to optimized the algebraic

EO model and were compared against each other. As expected, both white-box

solvers managed to find the global solution for the EO model, whereas pattern-

search converged to a local solution. Interestingly, some black-box solvers, namely,

IPOPT, fmincon, and FILTERSD, also managed to converge to the same solution

as the white-box solvers, but this is not always guaranteed. Furthermore, the ORC

model was optimized with respect to different working fluids in order to demonstrate

the proposed modelling approach in an exhaustive optimization search application.

The following chapter will implement the same modelling method on three real-

world ORC systems to highlight the flexibility and the scalability of the proposed

modelling approach.
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Chapter 4

Algebraic Equation-Oriented and

Sequential-Modular Models: Case

Studies

This chapter details the construction of the algebraic equation-oriented (EO) mod-

els of three real-world Organic Rankine Cycle systems, namely, industrial binary

cycle power plants. This builds on the modelling approach discussed in the previous

chapter and applying it to a larger and more complex system. These models will

form the basis of the other formulations that will be investigated in Chapter 6 and

Chapter 7. In addition, the validation of the sequential-modular (SM) models will

also be presented. The chapter is divided into three sections where each section is

dedicated to one of the three plants. Each section will start with a description of

the plant and provide a process flow diagram of the system. This is then followed by

a detailed description of the algebraic EO model and the thermodynamic approxi-

mations that were carried out. Finally, the equivalent SM model is presented and

validated against the original nominal design.

4.1 Introduction

The three ORC plants that will be presented as the case studies are the DOE Pilot

Plant [3], the USGeo Plant [3], and the Magmamax Binary Power Plant [3, 7]. These

three plants were selected based on their advanced configurations that represent a

wide range of ORC systems, as well as their freely available design and parameter

information that is sufficient enough to model the plant. In order to simplify the

modelling procedure and for a fair comparison between the original plant information

and the models, the following simplifications and assumptions were made: the plants
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are assumed to be a steady-state and a steady-flow process, changes in kinetic and

potential energy are negligible, losses induced by friction are negligible, and the

thermodynamic and transport properties of the brine and cooling water were treated

as pure water.

The three algebraic EO models were constructed in MATLAB using the Sym-

Builder framework via the OPTI Toolbox. This is to allow the Jacobian and Hessian

matrices, including the matrix sparsity information, to be automatically generated

and provided to the optimization solvers. These algebraic EO models are accom-

panied by an equivalent SM model that is constructed using the JSteam MATLAB

Interface for each of the plant, which will be used to validate the optimized results

of the algebraic EO model. In addition, both the algebraic EO models and the

SM models were constructed with flexibility in mind, thus the models can be sub-

jected to different working fluids that comply with the upper and lower limits of the

operating conditions.

4.2 DOE Pilot Plant

One way to minimize thermodynamic losses in the heat exchangers is to reduce

the temperature difference between the hot and cold fluid, e.g., the geofluid and the

working fluid. This can be achieved via a dual-pressure ORC system, where there is a

two-stage heating-boiling process that achieves a closer temperature match between

the working fluid and the geofluid than the conventional basic ORC system. The

United States Department of Energy Pilot Plant (DOEP) is a dual-pressure binary

cycle power plant, which consists of a high-pressure (HP) and a low-pressure (LP)

ORC element. The plant only has one circulating pump that is used to generate the

high-pressure fluid for the system. After exiting from the pump, the working fluid

is heated inside the low-temperature (LT) preheater before being separated into the

LP and HP elements. A portion of the working fluid enters the control valve and

the LP evaporator/superheater before expanding through the LP turbine. Whereas

the other portion of the working fluid continues to be heated by the HP preheater

and HP evaporator/superheater before expanding through the HP turbine. The

exhaust vapours from both turbines are mixed together before entering the water-

cooled condenser and the pump. Figure 4.1 shows the process flow diagram of the

DOEP that was modelled for this research. The following subsections will detail the

algebraic EO model of the DOEP and the validation of the SM model.
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Figure 4.1: The process flow diagram of the DOE Pilot Plant with R600a as the
working fluid. The state-point properties were obtained from the solved SM model,
see Section 4.2.2.

4.2.1 DOEP Algebraic Equation-Oriented Model

The algebraic EO model of the DOEP was based on the nominal design state-point

properties that were adapted from [3], as shown in Table 4.1. In an attempt to

maintain the design specifications of the plant when the model is optimized under

different operating conditions, the following constants listed in Table 4.2 were used

in the model. These constants were adapted and derived from the nominal design

state-point properties in Table 4.1 and from the reference text [3], such as the mass

flow fraction and the isentropic efficiencies of the pump. Note that in order to

optimize the model with respect to different working fluids, the pressure at state

A8 was recalculated at the saturation point using the condenser outlet temperature

and offset by 0.26 bar to account for the subcooling condition as per [3].

Using the process flow digram in Figure 4.1, the energy balance equations of the
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Table 4.1: The DOEP nominal design state-point properties that were obtained
from [3]. Refer to Figure 4.1 for the state labels.

State Temperature Pressure Entropy Enthalpy Mass Flow
label [K] [bar] [kJ/kgK] [kJ/kg] [kg/s]
BR1 416.48 43.30 1.76 603.83 131.04
BR2 394.26 - - 508.93 131.04
BR3 378.71 - - 442.87 131.04
BR4 360.93 - - 367.97 131.04
BR5 335.37 - - 260.74 131.04
A1 313.71 26.31 1.32 298.70 117.68
A2 355.37 26.31 1.66 410.38 117.68
A3 355.37 26.31 1.66 410.38 77.24
A4 388.71 26.31 1.95 519.98 77.24
A5 388.71 26.31 2.38 686.45 77.24
A6 - - - - -
A7 326.48 5.34 2.38 625.72 117.68
A8 311.48 5.34 1.31 292.26 117.68
A9 355.37 14.00 1.66 410.84 40.45
A10 355.37 14.00 2.37 659.93 40.45
A11 - - - - -
CW1 297.04 19.93 0.35 100.25 948.76
CW2 308.15 - - 146.77 948.76

algebraic EO model can be expressed as follows:

ṁWFhA8 + Ẇpump − ṁWFhA1 = 0,

ṁWFhA1 − ṁWFhA2 + ṁBRhBR4 − ṁBRhBR5 = 0,

zṁWFhA3 − zṁWFhA4 + ṁBRhBR2 − ṁBRhBR3 = 0,

youtuzṁWFhA4 − zṁWFhA5 + ṁBRhBR1 − ṁBRhBR2 = 0,

zṁWFhA5 − ẆturbHP − zṁWFhA6 = 0,

ṁWFhA7 − ṁWFhA8 + ṁCWhCW1 − ṁCWhCW2 = 0,

(1− z)ṁWFhA9 − (1− z)ṁWFhA10 + ṁBRhBR3 − ṁBRhBR4 = 0,

(1− z)ṁWFhA10 − ẆturbLP − (1− z)ṁWFhA11 = 0,

zṁWFhA6 + (1− z)ṁWFhA11 − ṁWFhA7 = 0,

(4.1)

where ṁ is the mass flow rate, z is the mass flow fraction, h is the enthalpy, and

Ẇ is the mechanical work. In order to simplify the algebraic EO model and allow

the model to be optimized with respect to different working fluids, it was assumed

that there were no changes in the pressure across the heat exchangers, the HP

turbine inlet temperature and pressure were set to TA5 ∈ [Tg@26.31 bar, 388.79]K and

PA5 = PA1 ∈ [PA8 + 5, 26.31] bar, and the LP turbine inlet temperature and pressure

were set to TA10 ∈ [Tg@14.00 bar, 355.37]K and PA10 ∈ [PA8 + 1, 14.00] bar. Note the

upper and lower limits of the variables were selected to closely match the operating
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Table 4.2: The DOE Pilot Plant constant parameters.

Plant Constants Value Unit
ṁBR 131.00 kg/s
TBR1 416.48 K
TBR5 335.37 K
PBR 43.30 bar
TCW1 297.04 K
TCW2 308.15 K
PCW 19.90 bar
ηturb 85.00 %
ηpump 60.54 %
TA8 311.48 K
PA8 Pf@TA8

+ 0.26 bar
zWF 77.24/117.68 -

conditions of the plant according to its reference for a fair comparison, and to allow

the plant to be optimized over a reasonable range of temperatures and pressures

without damaging/degrading the operation of plant’s components.

Since the original working fluid of the plant is isobutane (R600a), the upper and

lower limits of the HP and LP turbine inlet temperatures are approximately equal

to each other based on the assumption made above. This can cause some difficulties

when approximating the turbine isentropic work across the inlet temperature values.

Therefore, the upper-temperatures were offset by 1K to allow for a more appropriate

range between the upper and lower limits. To clearly present the regression fits over

a range of turbine temperature values, the following thermodynamic approximations

will be carried out using R134a as the working fluid of the plant.

Based on the assumptions stated above, the isentropic work of the HP turbine

can be calculated and approximated as a function of the inlet pressure and enthalpy,

as shown a Figure 4.2. Consequently, the HP turbine work can be expressed as

∆ĥis,turbHP =0.00128P 3
A5 − 0.088P 2

A5 − 5.52× 10−5P 2
A5hA5+

0.00876PA5hA5 + 0.0156PA5 − 0.0755hA5 + 5.07,

ẆturbHP =∆ĥis,turbHPṁWFzWFηturb,

(4.2)

where the isentropic work ∆ĥis,turbHP was fitted using a cubic polynomial surface.

For the LP turbine, the approximated expression of the output mechanical work can

be expressed as

∆ĥis,turbLP =0.00524P 3
A10 − 0.19P 2

A10 − 0.000218P 2
A10hA10+

0.0153PA10hA10 − 0.312PA10 − 0.131hA10 + 16.7,

ẆturbLP =∆ĥis,turbLPṁA(1− zWF)ηturb,

(4.3)
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Figure 4.2: The regression fit and error plot of the DOEP HP turbine isentropic
work as a function of the inlet pressure and enthalpy. The black dots (top plot) and
the grey dots (bottom plot) are the REFPROP thermodynamic calculations.

where the isentropic work ∆ĥis,turbLP was fitted using a cubic polynomial surface, as

shown in Figure 4.3.

Similarly, the isentropic pump work can be approximated as a function of the

outlet pressure using the same approach, as shown in Figure 4.4. This resulted in

the following expressions:

∆ĥis,pump =0.0866PA5 − 0.862,

Ẇpump =
∆ĥis,pumpṁWF

ηpump
,

(4.4)

where the isentropic work ∆ĥis,pump was fitted using a linear curve.

In order to ensure that the optimized model operates as an ORC system and

retains the original design specifications of the plant, some operational constraints
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Figure 4.3: The regression fit and error plot of the DOEP LP turbine isentropic
work as a function of the inlet pressure and enthalpy. The black dots (top plot) and
the grey dots (bottom plot) are the REFPROP thermodynamic calculations.
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Figure 4.4: The regression fit and error plot of the DOEP pump isentropic work
as a function of the outlet pressure. The black dots (top plot) are the REFPROP
thermodynamic calculations.
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were added to the optimization problem. This results in

hA5 ≤ ĥ@388.79+1K,PA5∈[PA8+5,26.31] bar,

hA5 ≥ ĥ@Tg@26.31 bar K,PA5∈[PA8+5,26.31] bar,

hA4 = ĥf@PA5∈[PA8+5,26.31] bar,

hA10 ≤ ĥ@355.37+1K,PA10∈[PA8+1,14.00] bar,

hA10 ≥ ĥ@Tg@14.00 bar K,PA10∈[PA8+1,14.00] bar,

hA9 = ĥf@PA10∈[PA8+1,14.00] bar,

hA3 = hA9,

hA2 = hA9

PA5 ≥ PA10,

(4.5)

for the HP and LP ORC elements, where the first two equations ensure that the

inlet state of the HP turbine does not operate outside the specified temperature

and pressure range, the third equation ensures that state A4 stays at the saturated

liquid point, the fourth and fifth equation ensure the inlet state of the LP turbine

does not operate outside the specified temperature and pressure range, the sixth

equation ensures that state A9 is at the saturated liquid point, the seventh and

eighth equation ensure the enthalpy values at state A3, A2, and A9 are equal,

and the ninth equation ensures that the inlet pressure of the HP turbine is higher

than (or equal to) the inlet pressure of the LP turbine. Furthermore, the following

constraints are also needed for the geofluid system:

hBR3 ≤ hBR2,

hBR4 ≤ hBR3.
(4.6)

The right-hand side thermodynamic terms of the first 6 constraints in (4.5) were

regressed as a function of pressure in order to be compatible with the white-box

solvers, as shown in Figure 4.5.

Furthermore, in order to ensure that temperature difference at the inlet and

outlet of each heat exchanger is greater than (or equal to) 1K to offset for the

thermodynamic approximations, and also to ensure that the heat is only transferred

from the hot fluid to the cold fluid, the inlet and outlet temperatures of each heat
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(b) ĥ@Tg@26.31 bar K,PA5∈[PA8+5,26.31] bar

16 18 20 22 24 26

Pressure [bar]

280

290

300

310

320

E
n

th
a

lp
y
 [

k
J
/k

g
] 

a
t 

Q
u

a
lit

y
 =

 0

(c) ĥf@PA5∈[PA8+5,26.31] bar

11 11.5 12 12.5 13 13.5 14

Pressure [bar]

461

462

463

464
E

n
th

a
lp

y
 [

k
J
/k

g
] 

a
t 

3
5

6
.3

7
 K

(d) ĥ@355.37+1K,PA10∈[PA8+1,14.00] bar

11 11.5 12 12.5 13 13.5 14

Pressure [bar]

425

426

427

428

429

430

431

E
n

th
a

lp
y
 [

k
J
/k

g
] 

a
t 

3
2

5
.5

8
 K
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Figure 4.5: The thermodynamic regressions for the operational constraints in (4.5).
The black dots are the REFPROP thermodynamic calculations.
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exchanger were constrained as follows:

T̂A7 − TCW2 ≥ 1,

T̂BR4 − T̂A2 ≥ 1,

TBR5 − T̂A1 ≥ 1,

T̂BR3 − T̂A10 ≥ 1,

T̂BR4 − T̂A9 ≥ 1,

T̂BR2 − T̂A4 ≥ 1,

T̂BR3 − T̂A2 ≥ 1,

TBR1 − T̂A5 ≥ 1.

(4.7)

The temperature terms in (4.7) can be approximated as a function of enthalpy

and/or pressure, as shown in Figure 4.6, where the approximated range (i.e., the

enthalpy and pressure range) can be obtained from the previous unit operation or

thermodynamic approximations in the operational constraints.

Lastly, in order to reduce the search space and improve on the computational

time, the decision variables were bounded within a suitable range based on the

assumptions and simplifications made at the beginning of this section, such as the

HP turbine inlet temperature must be TA5 ∈ [Tg@26.31 bar, 388.79]K and the pump

outlet pressure must be PA5 = PA1 ∈ [PA8 + 5, 26.31] bar. For the DOE Pilot Plant

described above, the bounds were

14.98 ≤ PA5 ≤ 26.31,

254.64 ≤ hA1 ≤ 256.26,

260.77 ≤ hA2 ≤ 275.40,

260.77 ≤ hA3 ≤ 275.40,

279.76 ≤ hA4 ≤ 322.32,

428.82 ≤ hA5 ≤ 495.53,

419.13 ≤ hA6 ≤ 487.40,

419.13 ≤ hA7 ≤ 487.40,

1930.86 ≤ ẆturbHP ≤ 3585.88

(4.8)
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Figure 4.6: The temperature regressions at various stages of the DOE Pilot Plant.
The black dots are the REFPROP thermodynamic calculations.
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for the HP elements;

10.98 ≤ PA10 ≤ 14.00,

260.77 ≤ hA9 ≤ 275.40,

424.31 ≤ hA10 ≤ 464.41,

419.13 ≤ hA11 ≤ 462.65,

344.76 ≤ ẆturbLP ≤ 640.26

(4.9)

for the LP elements; and

264.07 ≤ hBR ≤ 605.98,

100.00 ≤ ṁCW ≤ 1200.0,

50.00 ≤ ṁWF ≤ 500.0,

334.54 ≤ Ẇpump ≤ 621.28,

1941.1 ≤ Ẇnet ≤ 3604.9

(4.10)

for the brine, mass flow, pump work and the net power. Note that some of the bounds

will change depending on the working fluid due to the differences in thermodynamic

properties.

4.2.2 DOEP Sequential-Modular Model Validation

The DOEP SM model was constructed using the JSteam MATLAB Interface mod-

elling framework and adhered to the same specifications as the algebraic EO model

in Section 4.2.1. The SM model was built using the pre-built unit operation func-

tions in JSteam that were arranged in a sequential order of the plant process, where

the output of one function is the input argument of the proceeding function. The

purpose of this SM model is to validate the optimized results of the EO model and

also to check if the approximations made to the thermodynamic processes and prop-

erties are invalid or violate any thermodynamic laws. Therefore, if there is a large

discrepancy between the SM model and the EO model, the approximations or the

optimization constraints will need to be reviewed, as illustrated in Figure 2.4.

The nominal design state-point temperature and pressure values for DOEP from

Table 20.4 in [3] (adapted in Table 4.1 for this research) were used to validate the

SM model. Table 4.3 shows the comparison between the SM model and original

published results, where the power analysis and cooling water mass flow were cal-

culated using state-point properties of the working fluid in Table 4.1. Note that the

LP and HP turbine power outputs of the nominal design were calculated using (3.1)

and the isentropic efficiency in Table 4.2.
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The SM model was solved by substituting the nominal state-point properties

from [3] into the model, namely, TA2, TA4, TA5, TA10, P5 and P10, and using a

nonlinear solver fsolve to converge to a feasible operating point. Due to rounding

errors, the inlet temperatures of the HP turbine was recalculated at its corresponding

pressure to ensure that the model complies with the normal operation of an ORC

system, hence TA5 = 388.79K. When the model is subjected to different working

fluids, the temperature at state A4 and A9 (thus, also A2) are recalculated to ensure

that they are at the correct saturation point to adhere to the operating condition

of the plant. Figure 4.1 and Figure 4.7 show the process flow diagram and the Ts

diagram, respectively, of the solved SM model using the original isobutane (R600a)

working fluid.

1.4 1.6 1.8 2 2.2 2.4

Entropy [kJ/(kg.K)]

310

320

330

340

350

360

370

380

390

T
e
m

p
e
ra

tu
re

 [
K

]

Ts Diagram :  R600a & R600a

26.31 bar

A1

A2

A4 A5

5.34 bar

A6

A8

14 bar

A9 A10

A11

HP-ORC

   A1  -  Pump
out

   A2  -  LT-Preh
out

   A4  -  HP-Preh
out

   A5  -  HP-Evap
out

/Suph
out

   A6  -  HP-Turb
out

   A8  -  Cond
out

LP-ORC

   A1  -  Pump
out

   A2  -  LT-Preh
out

   A9  -  Valve
out

   A10  -  LP-Evap
out

/Suph
out

   A11  -  LP-Turb
out

   A8  -  Cond
out

Figure 4.7: The Ts diagram of the DOE Pilot Plant’s sequential-modular model.

The discrepancies between the original DOE nominal design state-point prop-

erties and the SM model is under 3%, which indicates that the SM model is an

accurate presentation of the DOE Pilot Plant. The small discrepancies could be due

to the rounding errors from the unit conversions and the difference in thermody-

namic packages.

Since the SM model was solved using the original operating point of the plant,

this solved SM model will be used as the base case for this research. The same will

also apply when the model is subjected to different working fluids.
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Table 4.3: A comparison between the DOEP nominal design [3] and the JSteam SM
model.

Plant Nominal SM Model Error
Parameter Design [3] (Base case) [%]
LT Preheater Duty, [kW] 13142 13203 0.47
LP Evap/Suph Duty, [kW] 10073 10167 0.93
HP Preheater Duty, [kW] 8465.7 8483.7 0.21
HP Evap/Suph Duty, [kW] 12859 12950 0.71
Condenser Duty, [kW] 39242 40262 2.60
Total Input Duty, [kW] 44539 44803 0.59
HP Turbine Power, [kW] 3975.2 3994.5 0.49
LP Turbine Power, [kW] 1303.5 1312.5 0.69
Total Turbine Power, [kW] 5278.6 5307 0.54
Pump Power, [kW] 758.23 765.51 0.96
Net Power, [kW] 4520.4 4541.4 0.47
Working Fluid, [kg/s] 117.68 118.35 0.57
Cooling Water, [kg/s] 843.54 868.02 2.90
Thermal Efficiency, [%] 10.15 10.14 0.10
Specific Machinery Cost, [k$/MW] 331.14 330.89 0.08

For further validation, the heat exchange process between the geothermal brine/-

cooling water and the working fluid can be plotted to check for any thermodynamic

violations in the heat exchangers, as discussed in Section 3.2.2.1. Evidently, from

analysing Figure 4.8, the temperature curves did not cross over each other during the

heat exchange process, which indicates that the model does not violate the second

law of thermodynamics.

4.3 USGeo Plant

The USGeo Plant (USGP) in southern Idaho, USA, consists of two separate ORC

systems operating at different pressure levels. Therefore, unlike the DOEP, the

working fluids of the HP and LP cycles are never mixed together. The configura-

tion of the LP cycle is similar to the basic ORC system, where the working fluid is

preheated and evaporated/superheated before expanding through the turbine, con-

densed and fed back to the heat exchangers. The HP cycle undergoes a similar

process but employs a recuperator unit to improve the overall performance of the

ORC system. This is achieved by exploiting the hot exhaust gas from the turbine

to preheat the cold condensed working fluid before it enters the preheater to reduce

the heat load on the condenser and increase the internal cycle efficiency. For the

geofluid system, the geofluid first flows through the HP and LP evaporators/super-

heaters before splitting equally into two streams to the LP and HP preheaters. In

contrast, the cooling water of the cooling system is divided before it goes through
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Figure 4.8: Diagrams showing the heat exchange between the geothermal brine/-
cooling water and the working fluid. The states refer to Figure 4.1. The x-axis
represents the path of the fluid flow in the heat exchanger.

the LP and HP condensers. For this research, the cooling system was simplified

into two separate streams to better address the temperature constraints discussed

in Section 3.2.2.1. Figure 4.9 shows the process flow diagram of the USGP that was

modelled for this research. The following subsections will detail the algebraic EO

model of the USGP and the validation of the SM model.

4.3.1 USGP Algebraic Equation-Oriented Model

The development of the algebraic EO model of the USGP was based on the nom-

inal design state-point properties obtained from [3], as shown in Table 4.4. From

analysing the state-point properties of the plant, it was noticed that the output

temperature of the HP preheater, A3, is higher than the brine input, BR5. This

should not happen as the temperature at A3 cannot exceed that of the heat source

temperature because then the heat transfer will be reversed. Therefore, in order to
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Table 4.4: The USGP nominal design state-point properties obtained from [3]. Refer
to Figure 4.9 for the state labels.

State Temperature Pressure Entropy Enthalpy Mass Flow
label [K] [bar] [kJ/kgK] [kJ/kg] [kg/s]
BR1 410.93 7.72 1.72 580.31 396.89
BR2 383.15 7.24 1.42 462.15 396.89
BR3 360.59 6.83 1.16 367.02 396.89
BR4 360.59 6.83 1.16 367.02 198.45
BR5 360.59 6.83 1.16 367.02 198.45
BR6 336.15 6.34 0.87 264.42 198.45
BR7 341.37 6.34 0.93 286.31 198.45
BR8 338.76 6.34 0.90 275.35 396.89
A1 293.59 9.48 -0.06 -16.05 139.32
A2 311.26 9.48 0.08 24.48 139.32
A3 386.26 9.48 0.63 217.74 139.32
A4 386.26 9.48 1.30 476.02 139.32
A5 335.54 0.90 1.35 405.65 139.32
A6 313.43 0.90 1.23 365.74 139.32
A7 293.04 0.90 -0.06 -18.02 139.32
B1 292.82 5.07 -0.06 -18.18 128.85
B2 357.43 5.07 0.42 138.68 128.85
B3 357.43 5.07 1.24 431.43 128.85
B4 321.32 0.88 1.27 379.84 128.85
B5 292.54 0.88 -0.06 -19.15 128.85
CW1 285.09 2.83 0.18 50.48 1465.99
CW2 285.09 2.83 0.18 50.48 1465.99
CW3 293.82 1.65 0.31 86.92 1465.99
CW4 293.48 1.65 0.30 85.52 1465.99
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Figure 4.9: The process flow diagram of the USGeo Plant with the R601a as the
working fluid. The state-point properties were obtained from the solved SM model,
see Section 4.3.2.

address this issue, the pressure at state A3 was decreased to 5.07 bar from 9.48 bar

and the saturated liquid temperature was recalculated at the new pressure level.

In order to retain some of the plant’s design characteristics in Table 4.4, the

plant’s constants listed in Table 4.5 were used in the model. Note that both PA7

and PB5 were recalculated at the saturated liquid points using the condensers’ outlet

temperatures and offset by 0.14 and 0.13 bar, respectively. This is to ensure the

subcooling conditions as per the plant’s design state-point properties and for when

the model is optimized with respect to different working fluids. The isentropic

efficiencies of the turbines and pumps were calculated using state-point properties

in Table 4.4. Furthermore, the outlet temperatures of the cooling water for the LP

and HP ORC have been decreased to 1K less than the outlet temperature of their

respective condenser. This is to ensure that the thermodynamic violation discussed

Section 3.2.2.1 does not occur.

Using the process flow diagram of the USGP in Figure 4.9, the energy balance
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Table 4.5: The USGeo Plant constant parameters.

Plant Constants Value Unit
ṁBR 396.89 kg/s
TBR1 410.93 K
TBR8 338.89 K
PBR 7.72 bar
zBR 0.50 -
ηturbA 80.38 %
ηturbB 81.88 %
ηpumpA 69.97 %
ηpumpB 70.02 %
TA7 293.04 K
PA7 Pf@TA7

+ 0.14 bar
TB5 292.54 K
PB5 Pf@TB5

+ 0.13 bar
TCW1 285.09 K
TCW2 285.09 K
TCW3 TA7-1 K
TCW4 TB5-1 K
PCW 2.83 bar

equations can be derived as follows:

hA1ṁA + hA5ṁA − hA2ṁA − hA6ṁA = 0,

hA6ṁA + hCW1ṁCWA − hA7ṁA − hCW3ṁCWA = 0,

hA7ṁA + ẆpumpA − hA1ṁA = 0,

hA2ṁA + hBR5(1− zBR)ṁBR − hA3ṁA − hBR7(1− zBR)ṁBR = 0,

hA3ṁA + hBR1ṁBR − hA4ṁA − hBR2ṁBR = 0,

hA4ṁA − ẆturbA − hA5ṁA = 0,

hB1ṁB + hBR4zBRṁBR − hB2ṁB − hBR6zBRṁBR = 0,

hB2ṁB + hBR2ṁBR − hB3ṁB − hBR3ṁBR = 0,

hB3ṁB − ẆturbB − hB4ṁB = 0,

hB4ṁB + hCW2ṁCWB − hB5ṁB − hCW4ṁCWB = 0,

hB5ṁB + ẆpumpB − hB1ṁB = 0,

(4.11)

where ṁ is the mass flow rate, h is the enthalpy, and Ẇ is the mechanical work.

For the purpose of optimizing the model with respect to different working fluids,

and in order to simplify the algebraic EO model, the following assumptions were

made: There were no changes in the pressure across the heat exchangers, the HP

turbine inlet temperature and pressure were set to TA4 ∈ [Tg@5.07 bar, 386.26]K and

PA4 = PA1 ∈ [PA7 + 1, 5.07] bar, the LP turbine inlet temperature and pressure

were set to TB3 ∈ [Tg@5.07 bar, 357.43]K and PB3 = PB1 ∈ [PB5 + 1, 5.07] bar, and the
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temperature difference ∆Trec,A6−A7 between TA6 and TA7 was set to 20.39K as per

[3]. Similar to the DOE Pilot Plant, the upper and lower limits of the variables

were selected to closely match the operating conditions of the plant according to

its reference for a fair comparison, and to allow the plant to be optimized over a

reasonable range of temperatures and pressures without damaging/degrading the

operation of plant’s components.

Since the original working fluid of the plant is isopentane (R601a), the upper

and lower limits of the LP turbine inlet temperature are approximately equal to

each other based on the assumption made above. Therefore, the upper-temperature

limit was increased by 1K to offset for the isentropic work approximation. In order

to clearly illustrate the development of the USGP model in this section and prop-

erly show the regression fits over a large temperature range, the thermodynamic

approximations will be carried out using R245ca.

Based on the assumptions made above, the isentropic work of the HP turbine

work was approximated as a function of the inlet pressures and enthalpy, as shown

in Figure 4.10. Subsequently, the HP turbine work can be expressed as

Figure 4.10: The regression fit and error plot of the USGP HP turbine isentropic
work as a function of the inlet pressure and enthalpy. The black dots (top plot) and
the grey dots (bottom plot) are the REFPROP thermodynamic calculations.
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∆ĥis,turbA =0.205P 3
A1 − 1.87P 2

A1 − 0.00256P 2
A1hA4+

0.0383PA1hA4 + 0.845PA1 − 0.0194hA4 − 3.67,

ẆturbA =ηturbAṁA∆ĥis,turbA,

(4.12)

where the isentropic work ∆ĥis,turbA was fitted using a cubic polynomial surface.

Similarly, the LP turbine’s isentropic work was calculated and approximated as a

function of the inlet pressure and enthalpy, as shown in Figure 4.11, which corre-

sponded to the following output work:

∆ĥis,turbB =0.2P 3
B1 − 1.84P 2

B1 − 0.00251P 2
B1hB3+

0.039PB1hB3 + 0.323PB1 − 0.0173hB3 − 3.85,

ẆturbB =ηturbBṁB∆ĥis,turbB,

(4.13)

where the isentropic work ∆ĥis,turbB was approximated using a cubic polynomial

surface.

Figure 4.11: The regression fit and error plot of the USGP LP turbine isentropic
work as a function of the inlet pressure and enthalpy. The black dots (top plot) and
the grey dots (bottom plot) are the REFPROP thermodynamic calculations.

The next two terms in (4.11) to be approximated are the HP and LP pump work,

which can be expressed as a function of the outlet pressure, as shown in Figure 4.12
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and Figure 4.13. This resulted in the following expressions:

∆ĥis,pumpA = 0.0714PA1 − 0.0685,

ẆpumpA = ṁA∆ĥis,pumpA/ηpumpA

(4.14)

for the HP pump work, and

∆ĥis,pumpB = 0.0713PB1 − 0.0663,

ẆpumpB = ṁB∆ĥis,pumpB/ηpumpB

(4.15)

for the LP pump work, where both isentropic works ∆his were fitted using a linear

curve.
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Figure 4.12: The regression fit and error plot of the USGP HP pump isentropic work
as a function of the outlet pressure. The black dots (top plot) are the REFPROP
thermodynamic calculations.

To ensure the model is operating as a binary cycle power plant and adhere to the

design characteristics of the original system, the operational constraints/limitations
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Figure 4.13: The regression fit and error plot of the USGP LP pump isentropic work
as a function of the outlet pressure. The black dots (top plot) are the REFPROP
thermodynamic calculations.

of the plant need to be enforced as follows:

hA4 ≤ ĥ@386.26K,PA1∈[PA7+1,5.07] bar,

hA4 ≥ ĥ@Tg@5.07 bar K,PA1∈[PA7+1,5.07] bar,

hA3 = ĥf@PA1∈[PA7+1,5.07] bar,

TA7 = T̂A6 −∆Trecu,A6−A7,

hB3 ≤ ĥ@357.43+1K,PB1∈[PB5+1,5.07] bar,

hB3 ≥ ĥ@Tg@5.07 bar K,PB1∈[PB5+1,5.07] bar,

hB2 = ĥf@PB1∈[PB5+1,5.07] bar,

hA1 ≤ hA2,

hA6 ≤ hA5,

(4.16)

where the terms on the right-hand side of (4.16), except the last two constraints,

were approximated as they include thermodynamic routines that cannot be used

with the white-box solvers, as shown in Figure 4.14 and Figure 4.15e.
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Figure 4.14: The thermodynamic regressions for the operational constraints in
(4.16). The black dots are the REFPROP thermodynamic calculations.
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In addition, the following constraints were introduced for the brine system:

hBR6 ≤ hBR4,

hBR7 ≤ hBR5,

hBR5 = hBR4,

hBR4 = hBR3,

hBR3 ≤ hBR2,

hBR8 = (hBR6 + hBR7)/2,

(4.17)

which did not require any thermodynamic regressions. Furthermore, in order to

ensure that temperature difference at the inlet and outlet of each heat exchanger is

greater than (or equal to) 1K to offset for the thermodynamic approximations, and

also to ensure that the heat is only transferred from hot fluid to the cold fluid, the

temperatures of the HP heat exchangers were constrained as follows:

T̂A6 − TCW3 ≥ 1,

T̂A5 − T̂A2 ≥ 1,

T̂A6 − T̂A1 ≥ 1,

T̂BR3 − T̂A3 ≥ 1,

T̂BR7 − T̂A2 ≥ 1,

TBR1 − T̂A4 ≥ 1,

T̂BR2 − T̂A3 ≥ 1,

(4.18)

where the HP cycle temperature regressions are shown in Figure 4.15 . Similarly,

the temperatures at the inlet and outlet of the LP heat exchangers were constrained

as follows:

T̂B4 − TCW4 ≥ 1,

T̂BR3 − T̂B2 ≥ 1,

T̂BR6 − T̂B1 ≥ 1,

T̂BR2 − T̂B3 ≥ 1,

(4.19)

where the LP cycle and geothermal brine temperature regressions are shown in

Figure 4.16. Lastly, all the decision variables were bounded to reduce the search

region, which were based on the assumptions stated above about the plant. As a
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(a) Temperature regression at state A1. (b) Temperature regression at state A2.
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(c) Saturated liquid temperature regres-
sion at state A3. (d) Temperature regression at state A4.
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(e) Temperature regression at state A5
and A6.

Figure 4.15: The temperature regressions for the USGP HP cycle. The black dots
are the REFPROP thermodynamic calculations.
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(a) Temperature regression at state B1.
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(b) Saturated liquid temperature regres-
sion at state B2.

(c) Temperature regression at state B3.
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(d) Temperature regression at state B4.
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(e) Temperature regression for the brine.

Figure 4.16: The temperature regressions for the USGP LP cycle and geothermal
brine. The black dots are the REFPROP thermodynamic calculations.
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result, bounds were

1.96 ≤ PA1 ≤ 5.07,

227.14 ≤ hA1 ≤ 227.46,

227.14 ≤ hA2 ≤ 305.76,

260.49 ≤ hA3 ≤ 305.76,

479.12 ≤ hA4 ≤ 524.74,

437.47 ≤ hA5 ≤ 512.99,

437.47 ≤ hA6 ≤ 512.99,

10.00 ≤ ṁA ≤ 200.00,

2825.1 ≤ ẆturbA ≤ 5246.7,

40.78 ≤ ẆpumpA ≤ 75.73

(4.20)

for the HP cycle;

1.93 ≤ PB1 ≤ 5.07,

226.46 ≤ hB1 ≤ 226.78,

259.86 ≤ hB2 ≤ 305.75,

479.12 ≤ hB3 ≤ 495.32,

436.82 ≤ hB4 ≤ 483.08,

100.00 ≤ ṁB ≤ 800.00,

6212.1 ≤ ẆturbB ≤ 11536.8,

95.69 ≤ ẆpumpB ≤ 177.71

(4.21)

for the LP cycle; and

100.00 ≤ hBR ≤ 579.93,

100.00 ≤ ṁCWA ≤ 3000.0,

1000.0 ≤ ṁCWB ≤ 4000.0,

8900.8 ≤ Ẇnet ≤ 16530.0

(4.22)

for the brine, cooling water, and net power. Note that some of the bounds will change

with respect to the working fluid due to the differences in their thermodynamic

properties.
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4.3.2 USGP Sequential-Modular Model Validation

Similar to the DOEP, the USGP SM model was constructed using the JSteam MAT-

LAB Interface modelling framework and adhered to the same plant specifications

and assumptions as the algebraic EO model in Section 4.3.1. The SM model was

built using the pre-built unit operation functions in JSteam that were arranged in a

sequential order of the plant process, where the output of one function is the input

argument of the proceeding function.

The SM model was solved by substituting the nominal design state-point prop-

erties in Table 4.4, namely, TA3, TA4, TA6, TB2, TB3, mA, PB1, and PA1 (where PA1

was changed to 5.07 bar, and the saturated temperature at state A3 was recalculated

using the new pressure level), into the model and using MATLAB’s nonlinear solver

fsolve to converge to a feasible operating point. Due to rounding errors, some of

the temperature values from Table 4.4 (i.e., the original reference) do not coincide

with the right saturation point. Therefore, the temperature at state B3 and B2 were

recalculated to ensure that the states were at the correct saturation point for all the

simulations, which also applied to when the model is subjected to different working

fluids.

Given that the value of PA1 was changed to 5.07 bar in order to address the issue

that the working fluid temperature at the HP preheater outlet was higher than

the input heat source, the USGP SM model cannot be validated with the original

nominal design state-point properties. However, the Ts diagram of the plant can be

plotted and analysed to check if the SM model violated any laws of thermodynamics.

Figure 4.17 shows the Ts diagram of the solved SM model with the default isobutane

working fluid. From the Ts diagram, the energy conversion process of the USGP

SM model appears to follow the general operation of an ORC system and does not

show any anomalies. Therefore, the plant can still be used for this research despite

the modification made to the original nominal design state-point properties.

The solved SM model using the original working fluid, isopentane (R601a), was

entered into the PFD in Figure 4.9, and the corresponding plant’s power analysis,

mass flows, and specific rotating machinery cost are shown in Table 4.6.

Given that the SM model was solved using the original operating point of the

plant, this solved SM model will be used as the base case for this research. The

same will also apply when the model is subjected to different working fluids.

For additional validation, the heat exchange process of between the geothermal

brine/cooling water and the working fluid of the plant can be plotted to ensure

that there are no thermodynamic violations. As shown in Figure 4.18, there are no
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Figure 4.17: The Ts diagram of the USGeo Plant’s sequential-modular model.

Table 4.6: The USGeo Plant’s power analysis, mass flows, and specific rotating
machinery cost of the JSteam SM Model.

Plant SM Model
Parameter (Base case)
LP Preheater Duty, [kW] 20904
LP Evap/Suph Duty, [kW] 38999
LP Turbine Power, [kW] 6857.4
LP Condenser Duty, [kW] 53174
LP Pump Power, [kW] 128.18
LP Working Fluid, [kg/s] 133.31
LP Cooling Water, [kg/s] 1968.6
HP Preheater Duty, [kW] 11705
HP Evap/Suph Duty, [kW] 49300
HP Turbine Power, [kW] 7711.5
HP Recuperator Power, [kW] 9986
HP Condenser Duty, [kW] 53427
HP Pump Power, [kW] 133.53
HP Working Fluid, [kg/s] 139.32
HP Cooling Water, [kg/s] 1835.8
Total Condenser Duty, [kW] 106601
Total Input Duty, [kW] 120909
Net Power, [kW] 14307
Thermal Efficiency, [%] 11.83
Specific Machinery Cost, [k$/MW] 215.66
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anomalies that can be observed in the heat exchange process. Noticeably, some of
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Figure 4.18: Diagrams showing the heat exchange between the hot medium and cold
medium. The states refer to Figure 4.9. The x-axis represents the path of the fluid
flow in the heat exchanger.

the pinch-point temperature differences shown in Figure 4.18 are very small, but
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theoretically they do not violate the laws of thermodynamics and are satisfactory

for the purpose of this research to demonstrate the proposed modelling framework

and the performance of the solvers.

4.4 Magmamax Binary Power Plant

Similar to the dual-pressure ORC system, it is also possible to achieve a good tem-

perature match between the geofluid and the working fluid, and reduce the thermo-

dynamic losses in the exchangers by using a dual-fluid binary cycle. One particular

binary cycle power plant that employed this configuration was the Magmamax Bi-

nary Power Plant (MBPP), located at East Mesa, Imperial Valley, in California

USA. The dual-fluid binary cycle is a complex system that utilizes two different

working fluids in a coupled ORC system. The MBPP consisted of a high-pressure

(HP) supercritical cycle and a low-pressure (LP) subcritical cycle. The two ORC

systems were coupled by a heat exchanger that transfers the heat from the HP

turbine exhaust gas to the LP cycle.

The MBPP consisted of three main turbines that were used to generate electricity

and one auxiliary turbine for the feed pump. Given the limited information about

the plant, the auxiliary feed-pump-turbine circuitry was omitted, and the two HP

generator turbines were simplified into one turbine. Therefore, all the HP working

fluid expands through only one primary HP turbine. Once the working fluid leaves

the HP turbine, it goes through the recuperator system that was separated into two

heat exchangers for this research in order to set the necessary constraints discussed in

Section 3.2.2.1. After the recuperator system, the working fluid is condensed before

it is fed through a series of heat exchangers via a pump. While for the LP cycle, the

working fluid goes through a condenser and is fed through a set of heat exchangers

via a pump after existing from the LP turbine. Figure 4.19 shows the process flow

diagram of the MBPP that was modelled for this research. The following subsections

will detail the algebraic EO model of the MBPP and the validation of the SM model.

4.4.1 MBPP Algebraic Equation-Oriented Model

The Magmamax Binary Power Plant model was developed based on the design spec-

ifications obtained from [3, 7], as shown in Table 4.7. Given the limited information

about the plant, there were some assumptions that were made about the plant in

order to model and optimize the plant under various working fluids. It is assumed

that there are no changes to the pressure across the heat exchangers, the pump inlet
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Figure 4.19: The process flow diagram of the Magmamax Binary Power Plant with
R600a for the HP cycle and R290 for the LP cycle. The state-point properties were
obtained from the solved SM model, see Section 4.4.2.

Table 4.7: The MBPP design specifications obtained from [3, 7]. Refer to Figure 4.19
for the state labels.

State Temperature Pressure Entropy Enthalpy Mass Flow
label [K] [bar] [kJ/kgK] [kJ/kg] [kg/s]
BR1 455.37 18.62 2.16 773.41 179.72
BR2 - - - - -
BR3 - - - - -
BR4 - - - - -
BR5 355.37 - - - -
A1 447.04 34.47 2.71 835.77 129.90
A2 380.37 4.14 2.75 745.48 -
A2P - - - - -
A3 338.71 - - - -
A4 303.71 - - - -
A5 307.04 41.71 1.26 282.82 -
A6 408.15 - - - -
A7 - - - - -
B1 369.26 31.72 2.43 683.36 34.52
B2 319.26 8.89 2.50 644.97 -
B3 295.65 - - - -
B4 298.15 - - - -
B5P - - - - -
B5 353.71 - - - -
CW1 289.82 4.07 0.25 70.35 1577.26
CW2 291.76 - - - -
CW3 299.54 - - - -

103



pressures are equal to the saturated pressures at the condenser outlet temperatures,

the enthalpy at A7 is equal to the average enthalpy of A1 and A6, the temperature at

A6 is equal to the critical temperature, and the temperature difference ∆Trecu,A3−A4

between TA3 and TA4 is 35K as per [3]. Note that ∆Trecu,A3−A4 will be changed to

25K for the EO model to allow for a wider degree of freedom for the optimizer to

find a better solution. These assumptions resulted in the following modified design

specifications in Table 4.8, which was used as the basis of the algebraic EO model

and for the validation of the SM model.

Table 4.8: The modified MBPP design specifications of Table 4.7. Refer to Fig-
ure 4.19 for the state labels.

State Temperature Pressure Entropy Enthalpy Mass Flow
label [K] [bar] [kJ/kgK] [kJ/kg] [kg/s]
BR1 455.37 18.62 2.16 773.41 179.72
BR2 - 18.62 - - 179.72
BR3 - 18.62 - - 179.72
BR4 - 18.62 - - 179.72
BR5 355.37 18.62 1.10 345.77 179.72
A1 447.04 41.71 2.65 815.22 129.90
A2 380.37 4.12 2.75 745.51 129.90
A2P - 4.12 - - 129.90
A3 338.71 4.12 2.52 661.31 129.90
A4 303.71 4.12 1.25 272.63 129.90
A5 307.04 41.71 1.26 282.82 129.90
A6 407.81 41.71 2.10 585.27 129.90
A7 420.06 41.71 2.38 700.24 129.90
B1 369.26 31.72 2.43 683.34 34.52
B2 319.26 8.94 2.50 644.83 34.52
B3 295.65 8.94 1.20 258.34 34.52
B4 298.15 31.72 1.21 265.35 34.52
B5P 353.83 31.72 1.75 441.65 34.52
B5 353.83 31.72 2.28 628.36 34.52
CW1 289.82 4.07 0.25 70.35 1577.26
CW2 291.76 4.07 0.28 78.48 1577.26
CW3 299.54 4.07 0.39 111.01 1577.26

With the intention of keeping the plant model parameters as close to the original

plant design specifications when optimizing under various operating conditions, the

constants listed in Table 4.9 were used in both the algebraic EO model and the SM

model. Note that the outlet temperature of the cooling water was decreased to the

outlet temperature of the LP condenser (i.e., TB3) to ensure that the thermodynamic

violation discussed in the Section 3.2.2.1 does not occur in the condensers.

Since, the original working fluids of the plant were isobutane (for the HP cycle)

and propane (for the LP cycle), they will be used for the purpose of presenting the

development of the MBPP model in this section.
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Table 4.9: The Magmamax Binary Power Plant constant parameters.

Plant Constants Value Unit
ṁBR 179.72 kg/s
TBR1 455.37 K
TBR5 355.37 K
PBR 18.62 bar
ηturbA 63.97 %
ηturbB 61.88 %
ηpumpA 67.38 %
ηpumpB 61.76 %
TA4 303.71 K
PA4 Pf@TA4

bar
TB3 295.65 K
PB3 Pf@TB3

bar
TCW1 289.82 K
TCW3 TB3 K
PCW 4.07 bar

The algebraic EO model of the MBPP consists of the energy balance equations

that were derived from the process flow diagram in Figure 4.19, which resulted in

the following equations:

ṁAhA1 − ẆturbA − ṁAhA2 = 0,

ṁAhA2 − ṁAhA2P + ṁBhB5P − ṁBhB5 = 0,

ṁAhA2P − ṁAhA3 + ṁBhB4 − ṁBhB5P = 0,

ṁAhA3 − ṁAhA4 + ṁCWhCW2 − ṁCWhCW3 = 0,

ṁAhA4 + ẆpumpA − ṁAhA5 = 0,

ṁAhA5 − ṁAhA6 + ṁBRhBR4 − ṁBRhBR5 = 0,

ṁAhA6 − ṁAhA7 + ṁBRhBR2 − ṁBRhBR3 = 0,

ṁAhA7 − ṁAhA1 + ṁBRhBR1 − ṁBRhBR2 = 0,

ṁBhB1 − ẆturbB − ṁBhB2 = 0,

ṁBhB2 − ṁBhB3 + ṁCWhCW1 − ṁCWhCW2 = 0,

ṁBhB3 + ẆpumpB − ṁBhB4 = 0,

ṁBhB5 − ṁBhB1 + ṁBRhBR3 − ṁBRhBR4 = 0,

(4.23)

where ṁ is the mass flow rate, h is the enthalpy, Ẇ is the mechanical work. In

order for the model to be expressed algebraically, the turbine and pump work terms

need to be approximated as a function of enthalpy and/or pressure. Following the

assumptions made above and keeping in line with the design specifications, the isen-

tropic work of the HP was calculate and approximated at TA1 ∈ [Tcrit + 30, 447.04]K,

PA1 = PA5 ∈ [Pcrit + 2, 41.71] bar, and PA2 = PA4, as shown in Figure 4.20. Since
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the inlet temperature term is not explicitly used in (4.23), the corresponding inlet

enthalpy values were used for the approximation. This resulted in the following

expressions for the HP turbine work:

Figure 4.20: The regression fit and error plot of the MBPP HP turbine isentropic
work as a function of the inlet pressure and enthalpy. The black dots (top plot) and
the grey dots (bottom plot) are the REFPROP thermodynamic calculations.

∆ĥis,turbA =0.000365P 3
A1 − 0.0452P 2

A1 + 2.59× 10−5h2
A1−

1.75× 10−5P 2
A1hA1 − 5× 10−6PA1h

2
A1+

0.0122PA1hA1 − 2.79PA1 + 0.0104hA1,

ẆturbA =ηturbAṁA∆ĥis,turbA,

(4.24)

where the isentropic work ĥis,turbA was approximated using a cubic polynomial

surface. Similarly, the isentropic work of the LP turbine was calculated and ap-

proximated at TB1 ∈ [Tg@31.72 bar, 369.26]K, PB1 = PB4 ∈ [PB3 + 2, 31.72] bar, and

PB2 = PB3, as shown in Figure 4.21. This resulted in the following expressions for

the LP turbine:

∆ĥis,turbB =0.00311P 3
B1 − 0.259P 2

B1 − 2.71× 10−5P 2
B1hB1+

0.00836PB1hB1 + 3.98PB1 − 0.0605hB1 − 24.1,

ẆturbB =ηturbBṁB∆ĥis,turbB,

(4.25)
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Figure 4.21: The regression fit and error plot of the MBPP LP turbine isentropic
work as a function of the inlet pressure and enthalpy. The black dots (top plot) and
the grey dots (bottom plot) are the REFPROP thermodynamic calculations.

where ∆ĥis,turbB is the approximated isentropic work.

The HP and LP pump isentropic work can be approximated as a function of

the outlet pressure using the same regression procedure that was implemented on

the turbines. The isentropic work of the HP pump was calculated at PA4 and

PA1 = PA5 ∈ [Pcrit + 2, 41.71] bar, as shown in Figure 4.22. This corresponds to the

following expressions for the approximated HP pump work:

∆ĥis,pumpA = 0.182PA1 − 0.718,

ẆpumpA = ṁA∆ĥis,pumpA/ηpumpA,
(4.26)

where the approximated isentropic work ĥis,pumpA was fitted using a linear curve.

Similarly, the isentropic work of the LP pump was calculated at PB3 and PB1 =

PB4 ∈ [PB3 + 2, 31.72] bar, as shown in Figure 4.23. This resulted in the following

expressions for the LP pump work:

∆ĥis,pumpB = 0.201PB1 − 1.79,

ẆpumpB = ṁB∆ĥis,pumpB/ηpumpB,
(4.27)
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Figure 4.22: The regression fit and error plot of the MBPP HP pump isentropic work
as a function of the outlet pressure. The black dots (top plot) are the REFPROP
thermodynamic calculations.
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Figure 4.23: The regression fit and error plot of the MBPP LP pump isentropic work
as a function of the outlet pressure. The black dots (top plot) are the REFPROP
thermodynamic calculations.
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where the approximated isentropic work ĥis,pumpB was fitted using a linear curve.

In order for the MBPP model to operate as a feasible ORC system and comply

with the assumptions made about the plant at the beginning of this subsection, the

model was subjected to the following operational constraints:

hA7 = (hA6 + hA1)/2,

hA6 = ĥ@Tcrit, PA1∈[Pcrit+2, 41.71] bar,

hA1 ≤ ĥ@447.04K, PA1∈[Pcrit+2, 41.71] bar,

hA1 ≥ ĥ@Tcrit+30K, PA1∈[Pcrit+2, 41.71] bar,

TA4 = T̂A3 −∆Trecu,A3−A4

(4.28)

for the HP cycle;

hB5 = ĥg@PB1∈[PB3+2, 31.72] bar,

hB5P = ĥf@PB1∈[PB3+2, 31.72] bar,

hB1 ≤ ĥ@369.26K, PB1∈[PB3+2, 31.72] bar,

hB1 ≥ ĥ@Tg@31.72 bar, PB1∈[PB3+2, 31.72] bar,

(hB1 − hB5)ṁB ≥ 0.02(hA2 − hA3)ṁA

(4.29)

for the LP cycle; and

hBR3 ≤ hBR2,

hBR4 ≤ hBR3

(4.30)

for the brine system. Note that some of the thermodynamic terms on the right-

hand side of (4.28) and (4.29) were approximated and are shown in Figure 4.24 and

Figure 4.25b.

In order to ensure that the heat exchangers transfer heat from the hot fluid to the

cold fluid, the HP cycle temperatures at the inlet and outlet of each heat exchanger
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Figure 4.24: The thermodynamic regressions for the operational constraints in (4.28)
and (4.29). The black dots are the REFPROP thermodynamic calculations.
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were constrained as

T̂A3 − TCW3 ≥ 1,

TA4 − T̂CW2 ≥ 1,

T̂A2 − T̂B5 ≥ 1,

T̂A2P − T̂B5P ≥ 1,

T̂A3 − T̂B4 ≥ 1,

TBR1 − T̂A1 ≥ 1,

T̂BR2 − T̂A7 ≥ 1,

T̂BR3 − TA6 ≥ 1,

T̂BR4 − TA6 ≥ 1,

TBR5 − T̂A5 ≥ 1,

(4.31)

where the temperature regressions are shown in Figure 4.25 and Figure 4.27. Simi-

(a) Temperature regression at state A1.
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(b) Temperature regression at state A2
and A3.

(c) Temperature regression at state A5. (d) Temperature regression at state A7.

Figure 4.25: The temperature regressions of the MBPP HP cycle. The black dots
are the REFPROP thermodynamic calculations.

larly, the LP cycle temperatures at the inlet and outlet of each heat exchanger were

constrained as

T̂B2 − T̂CW2 ≥ 1,

T̂BR3 − T̂B1 ≥ 1,

T̂BR4 − T̂B5 ≥ 1,

(4.32)
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where the temperature regressions are shown in Figure 4.26 and Figure 4.27.

(a) Temperature regression at state B1.
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(b) Temperature regression at state B2.

(c) Temperature regression at state B4.
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(d) Temperature regression at state B5P
and B5.

Figure 4.26: The temperature regressions of the MBPP LP cycle. The black dots
are the REFPROP thermodynamic calculations.
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(a) Temperature regression of the brine.
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(b) Temperature regression of the cool-
ing water.

Figure 4.27: The temperature regressions of the MBPP brine and cooling water.
The black dots are the REFPROP thermodynamic calculations.

Lastly, in order to reduce the search space of the region, all the decision variables
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were bounded within a reasonable range as

38.29 ≤ PA1 ≤ 41.71,

783.82 ≤ hA1 ≤ 825.44,

595.41 ≤ hA2 ≤ 759.67,

595.41 ≤ hA2P ≤ 759.67,

595.41 ≤ hA3 ≤ 759.67,

281.91 ≤ hA5 ≤ 282.83,

585.27 ≤ hA6 ≤ 594.17,

645.31 ≤ hA7 ≤ 765.39,

100.00 ≤ ṁA ≤ 400.00,

6890.9 ≤ ẆturbA ≤ 12797,

1007.1 ≤ ẆpumpA ≤ 1870.36

(4.33)

for the HP cycle;

10.94 ≤ PB1 ≤ 31.72,

628.36 ≤ hB1 ≤ 741.74,

598.47 ≤ hB2 ≤ 734.22,

259.00 ≤ hB4 ≤ 265.75,

280.39 ≤ hB5P ≤ 441.65,

606.05 ≤ hB5 ≤ 630.51,

10.00 ≤ ṁB ≤ 200.00,

874.48 ≤ ẆturbB ≤ 1624.0,

169.29 ≤ ẆpumpB ≤ 314.39

(4.34)

for the LP cycle; and

345.77 ≤ hBR ≤ 773.27,

70.36 ≤ hCW2 ≤ 94.75,

2000.0 ≤ ṁCW ≤ 3000.0,

6588.9 ≤ Ẇnet ≤ 12237

(4.35)

for the brine, cooling water, and the net output power. These bounds were derived

based on the plant’s approximations and the general operation of an ORC system.

Note that the bounds are for the default working fluids, namely, isobutane and

propane, and thus they are subjected to change if a different set of working fluids is

to be used.
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4.4.2 MBPP Sequential-Modular Model Validation

The SM model of the MBPP was constructed using the JSteam MATLAB Interface

modelling framework that complied with the same model specifications as the alge-

braic EO model detailed in Section 4.4.1. The same two references, namely [3, 7],

that formed the modified design specifications in Table 4.8 were used to construct

the SM model. The pre-built unit operation functions in JSteam were used to con-

struct the SM model and were arranged in a sequential order of the plant process,

where the output of one function is the input argument of the proceeding function.

The state-point properties of the working fluids in Table 4.8 were entered into

the SM model, namely, PA1, PB1, TA1, TA3, TA7, TB1, TB5P, and TB5, and solved to a

feasible operating point using MATLAB’s nonlinear equation solver fsolve. Note

that some of the temperature or pressure values taken from the reference papers do

not coincide with the right saturation point when different working fluids were used.

Therefore, the temperature at state B5P and B5 was recalculated to ensure that

the state is at the correct liquid/vapour saturation point for all simulations. The

process flow diagram in Figure 4.19 shows the state-point properties of the solved

SM model using the original working fluid pair, i.e., isobutane (HP) and propane

(LP).

Table 4.10 shows the comparison between the modified MBPP design specifica-

tions and the SM model. The discrepancies between the design specifications and

the SM model were expected due to the simplifications and assumptions that were

made about the plant. Given the limited information about the plant and the de-

crease in the outlet temperature of the cooling water, the errors are relatively larger

than the DOEP model. However, the overall accuracy of model is satisfactory for

the purpose of this research because the model still retains the characteristics of

a dual-fluid ORC system as indicated by the Ts diagram in Figure 4.28 and as

described in [3].

Similar to the previous two plants, this solved SM model will be used as the

base case for the optimization problem given that it was solved using the original

operating point of the plant. The same approach will also apply when the model is

subjected to different working fluid pairs.

Furthermore, to check that there are no violations of the second law of thermody-

namics as discussed in Section 3.2.2.1, the temperature profile of the heat exchangers

can be plotted and examined. As shown in Figure 4.29, the heat exchangers do not

show any thermodynamic violations during the heat exchanging process.
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Table 4.10: A comparison between the modified MBPP design specifications (nom-
inal design) and the JSteam SM Model.

Plant Nominal SM Model Error
Parameter Design (Base case) [%]
LP Preh/Evap Duty, [kW] 10938 11847 8.31
LP Superheater Duty, [kW] 1898.1 1796.5 5.36
LP Turbine Power, [kW] 1329.6 1249.2 6.04
LP Condenser Duty, [kW] 13342 12636 5.29
LP Pump Power, [kW] 241.89 241.84 0.02
LP Working Fluid, [kg/s] 34.52 32.67 5.36
HP Preheater Duty, [kW] 39288 42626 8.49
HP Evaporator Duty, [kW] 14935 16204 8.50
HP Superheater Duty, [kW] 14935 16204 8.50
HP Turbine Power, [kW] 9054.4 9844.1 8.72
HP Recuperator Power, [kW] 10938 11847 8.31
HP Condenser Duty, [kW] 50490 54781 8.50
HP Pump Power, [kW] 1324.6 1438.7 8.61
HP Working Fluid, [kg/s] 129.9 140.94 8.50
Cooling Water, [kg/s] 1577.3 2764.2 75.25
Total Condenser Duty, [kW] 63831 67418 5.62
Total Input Duty, [kW] 71056 76830 8.13
Net Power, [kW] 8817.4 9412.8 6.75
Thermal Efficiency, [%] 12.41 12.25 1.29
Specific Machinery Cost, [k$/MW] 262.71 255.71 2.66
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Figure 4.29: Diagrams showing the heat exchange between the hot medium and cold
medium. The states refer to Figure 4.19. The x-axis represents the path of the fluid
flow in the heat exchanger.
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4.5 Summary

This chapter details the algebraic EO models of three real-world ORC systems. The

modelling process is similar to what is described in Chapter 3, where the models

are expressed as a set of equations with the thermodynamic properties and unit

operations approximated using regression analysis. The models were constructed

using the SymBuilder framework via the OPTI toolbox to leverage of the algebraic

structure and automatically generate the required Jacobian and Hessian matrices,

as well as the sparsity information, for the optimization solvers. Each plant model

was constructed with flexibility in mind, thus they can be subjected to different

working fluids without having to do any major modifications to the models.

In addition, the SM models of all three ORC systems were also constructed

using the JSteam MATLAB Interface. The SM models were validated against the

original nominal design information that was taken directly from the corresponding

references of each plant. The discrepancies between the nominal design and the SM

model were adequate for the purpose of this research given the assumptions that

were made about the plant due to the insufficient information available for some

of the plants. Furthermore, the thermodynamic process of each plant model was

analysed by plotting the Ts diagram of the ORC system. From this analysis, the Ts

diagrams indicated that the SM models are functioning as feasible ORC systems and

do not violate any thermodynamic laws. This information is very important for this

research given that the SM models are used to validate the algebraic EO models.

Therefore, it is necessary to ensure that the SM models are a good representation

of the original plants.

The next chapter will analyse the optimized results of the three algebraic EO

models and examine the optimization performance of each model.
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Chapter 5

Optimization of the Organic

Rankine Cycle System Case

Studies

In order to effectively illustrate the benefits of the proposed algebraic equation-

oriented modelling approach, the three real-world binary cycle power plants de-

scribed in Chapter 4 will be optimized in this chapter. The first three sections

of the chapter will be focused on the optimization results and performance of the

three plants, where the solve times and the global optimality of the solution will be

analysed. The optimized results will be compared against each other and to their

base-case scenarios that were derived from their respective literature where possible.

The plant models will be optimized with different working fluids and two objective

functions to examine any possible improvement to the plant. The last section of the

chapter will highlight the automating optimization procedure of selecting the opti-

mal working fluid for an ORC system using the proposed algebraic EO modelling

approach.

5.1 Introduction

Once the algebraic EO models in Chapter 4 are constructed and formulated into

an optimization problem, each plant will subsequently result in a different number

of variables and constraints, as shown in Table 5.1. These dissimilarities between

the plant models highlight the level of nonlinearity that can result from modelling

complex ORC systems using the proposed algebraic EO modelling approach. Similar

to Chapter 3, two objective functions will be investigated, namely, the net output

power and the specific rotating machinery cost. While it is acknowledged that
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it might seem not applicable to optimize the specific rotating machinery cost of

existing ORC systems given that the components have already been purchased,

the optimization problem is aimed to investigate the future replacement of existing

pumps and turbines that are damaged or in need of an upgrade. Also, both objective

functions can be a reference for future greenfield optimizations that have a similar

construction to the three presented binary cycle power plants. It is important to

note that the proposed algebraic EO model does not restrict the objective functions

presented in this research, and they can be modified to adhere to the different

optimization problems.

Table 5.1: A comparison between the total number of variables and constraints of
the binary cycle power plants in Chapter 4.

DOEP USGP MBPP

Variables 21 27 26
Constraints 32 42 42

Linear 11 9 7
Quadratic 15 31 26
Nonlinear 6 2 9

All three plants were optimized with respect to different working fluids that

were selected based on their availability via JSteam, frequent use in the literature,

and their compatibility with the plant’s design specifications and assumptions that

were stated in Chapter 4. These can involve ensuring that condenser pressure is

not higher than the inlet turbine pressure, the critical pressure and temperature

are not higher than the upper pressure and temperature limits, the inlet turbine

saturation temperature is not higher than the upper-temperature limit, etc. Refer

to the appropriate sections in Chapter 4 for the process flow diagram and more

information about the individual plant.

5.2 DOE Pilot Plant Optimization

For the DOE Pilot Plant, both the algebraic EO model and the SM model will be

optimized in order to compare the differences in the optimization performance. This

is aimed to highlight the issues associated with the optimization of SM models and

show the significant contributions of this research. The algebraic EO model will be

optimized using NLP solvers with both black-box and white-box solvers. Whereas,

the equivalent SM model will be optimized with the black-box NLP solvers, but not

the white-box solvers, due to its non-algebraic structure.
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5.2.1 DOEP Algebraic Equation-Oriented Model Optimiza-

tion

The algebraic EO model of the DOEP that was discussed in Section 4.2.1 was

constructed using the SymBuilder framework. The MATLAB code of the algebraic

EO model can be found in Appendix B.1. As a result, the built SymBuilder object

of the DOEP reported the following model statistics:

SymBuilder Object
BUILT in 0.778s with:
- 21 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 32 constraint(s)
- 11 linear
- 15 quadratic
- 6 nonlinear

- 42 bound(s)
- 0 integer variable(s)

Note that there are more variables and constraints than the basic ORC system pre-

sented in Chapter 3. Overall, the optimization problem consists of only continuous

variables and constraints that are made up of linear, quadratic and nonlinear terms,

thus resulting in an NLP problem.

The net output power of the DOEP was optimized with respect to different

working fluids using NLP solvers and then substituted into the SM model. The

optimized results and the base case values are shown in Table 5.2. Interestingly, all

the black-box solvers managed to converge to the same solution as the white-box

solver. Note that the base case for each working fluid was obtained from solving the

SM model using the original state-point properties as discussed in Section 4.2.2.

The comparison between the optimized results and the base case values are

shown in Figure 5.1. Analysing the optimized results, the working fluid with the

best net output power of 4554.2 kW was R600a, whereas R218 yielded the worst

output power of 1703.3 kW. However, in terms of the biggest improvement from the

base case, R218 had the highest increase of 9.64% from the base case, while RC318

had the lowest increase of only 0.14%.

The average solve time of each solver is shown in Table 5.3. One observation

that is very noticeable in Table 5.3 is that all the black-box solvers converged to a

solution significantly faster than the white-box solvers. The fastest solve time was

obtained by FILTERSD with only 0.009s, while the longest time was obtained by
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Table 5.2: The optimized net output powers [kW] and the base case values of the
DOE Pilot Plant for all the NLP solvers.

Relative
Base Case Optimized Improvement

R600a 4541.5 4554.2 0.28%
R134a 2773.0 2844.7 2.59%
R152a 3314.6 3350.2 1.07%
R218 1553.5 1703.3 9.64%
R227ea 3314.0 3360.3 1.40%
RC270 3038.5 3096.3 1.90%
RC318 3889.0 3894.4 0.14%
CF3I 4019.1 4028.6 0.24%

Figure 5.1: The comparison between BARON’s optimized net output powers and
the base case values of the DOE Pilot Plant.

BARON with 10.43s. This is a significant difference from the solve time for the

basic ORC system examined in Chapter 3 where the highest value for the white-box

solver was only 0.5s. This shows the complexity of this system is relatively harder

to solve compared to the basic ORC system.

Taking the optimization problem further and minimizing the specific rotating

machinery cost of the plant, which converts the objective function into a nonlinear

expression, the solutions of all the solvers can be summarised in Table 5.4 and Fig-

ure 5.2. Similarly, all NLP solvers converged to the same solution for each working

fluid, where R218 showed the biggest improvement of 3.5% from the base case, and

CF3I had the smallest change of 0.66%.

Analysing the solve times for this second objective function in Table 5.5, the

solvers on average took longer converging to a solution than the net output power

objective function. As expected, the black-box solvers were much faster than the
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Table 5.3: The solve times [s] of Table 5.2.

IPOPT fmincon FILTERSD BARON SCIP

R600a 0.020 0.041 0.009 5.82 3.39
R134a 0.020 0.043 0.011 0.59 0.71
R152a 0.020 0.037 0.011 2.34 0.99
R218 0.020 0.043 0.011 0.49 0.68
R227ea 0.019 0.035 0.010 1.00 1.07
RC270 0.019 0.032 0.011 0.61 0.98
RC318 0.019 0.038 0.010 10.43 4.87
CF3I 0.019 0.040 0.011 2.31 1.41

Table 5.4: The optimized specific rotating machinery costs [k$/MW] and the base
case values of the DOE Pilot Plant for all the NLP solvers.

Relative
Base Case Optimized Improvement

R600a 330.89 325.84 1.53%
R134a 373.00 367.71 1.42%
R152a 348.99 346.19 0.80%
R218 495.51 478.15 3.50%
R227ea 372.41 368.22 1.13%
RC270 352.18 347.73 1.26%
RC318 357.08 348.12 2.51%
CF3I 342.27 340.01 0.66%

white-box solvers, with the shortest time of 0.011s by FILTERSD. The solve times

for the white-box solvers were noticeably longer than in Table 5.3, with the longest

time of 31.63s by SCIP. This could be due to the nonlinearity of the second objective

function being more difficult to solve than the former objective function.

Table 5.5: The solve times [s] of Table 5.4.

IPOPT fmincon FILTERSD BARON SCIP

R600a 0.026 0.116 0.013 7.08 31.63
R134a 0.021 0.051 0.012 0.79 2.86
R152a 0.021 0.042 0.011 2.02 3.44
R218 0.021 0.171 0.012 0.67 4.50
R227ea 0.020 0.042 0.011 1.90 9.44
RC270 0.019 0.041 0.011 0.92 4.18
RC318 0.021 0.049 0.013 1.65 12.23
CF3I 0.019 0.042 0.012 6.74 9.29

Furthermore, comparing the relative error of the optimized algebraic EO model

and the SM model, the average discrepancies are no more than 0.4% for each of the

solvers and both objective functions. This is a good indication that the algebraic EO

model is an accurate representation of the rigorous simulation model over a range
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Figure 5.2: The comparison between BARON’s optimized specific rotating machin-
ery costs and the base case values of the DOE Pilot Plant.

of different operating points and working fluids.

For additional thermodynamic validation, the heat exchange process of the op-

timized DOE Pilot Plant can be plotted and analysed to ensure that the laws of

thermodynamics and conventions are not being violated. The temperature profile

between the geothermal brine/cooling water and the working fluid in Figure 5.3

shows that there are no thermodynamic violations during the heat exchange pro-

cess, hence indicates that this ORC model does not show any anomalies discussed

in Section 3.2.2.1.

5.2.2 DOEP Sequential-Modular Model Optimization

In order to illustrate the inefficiency of the SM model for optimization, especially

for large and complex systems, the DOEP SM model was optimized with respect

to different working fluids and subjected to the same two objective functions as

in the previous section. The SM model and optimization parameters adhered to

the same assumptions and simplifications as stated in Section 4.2.1. This resulted

in 6 variables and 21 nonlinear constraints for the optimization problem, which

was solved using IPOPT, fmincon and FILTERSD with the relative and absolute

convergence tolerances reduced to 1× 10−2.

The tolerances were relaxed after noticing that the solvers were failing to find

a solution and taking a significantly long time to solve the optimization problem.

From observing the iterations of the solvers, the objective function evaluations were

constantly fluctuating around the optimal point, which indicated that the solvers

did not recognize that it has found a minimum as they could not satisfy the small
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Figure 5.3: Diagrams showing the heat exchange process between the geothermal
brine/cooling water and the working fluid (R600a) of the DOE Pilot Plant, where
the specific rotating machinery cost was optimized using SCIP. The states refer to
Figure 4.1. The x-axis represents the path of the fluid flow in the heat exchanger

.

tolerances.

Table 5.6 shows the optimized results of the net output power objective function.

As can be seen, the performances of the black-box solvers were significantly worse

than the performance of the algebraic EO model in Section 5.2.1. In some cases, the

solvers had difficulties converging to a feasible solution and terminated prematurely.

This is very prominent with FILTERSD where it was unable to find a solution for

all of the working fluids, whereas IPOPT and fmincon were more successful but still

did not find a solution for all the working fluids.

In addition to failing to converge to a solution for all the working fluids, for those

instances where the solver did succeed, the solve times were considerably longer

than the algebraic EO model (see Table 5.3). On average, it took IPOPT more

than 6800x longer to optimize the SM model than the algebraic EO model. While
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Table 5.6: The optimized net output powers of the DOEP SM model, where J is
the objective function in [kW] and Time is the solve time in [s]. The relative and
absolute convergence tolerances were set to 1× 10−2. FNS: Found No Solution.

IPOPT fmincon FILTERSD

J Time J Time J Time

R600a FNS - 4550.1 15.53 FNS -
R134a 2844.3 31.76 2844.2 28.20 FNS -
R152a 3349.8 423.80 3349.7 43.11 FNS -
R218 1702.6 217.52 FNS - FNS -
R227ea 3359.9 79.29 FNS - FNS -
RC270 3095.9 46.66 3095.9 35.73 FNS -
RC318 3893.1 94.37 FNS - FNS -
CF3I 4028.1 11.22 FNS - FNS -

fmincon took more than 800x longer on average to optimize the SM model. This is

a major drawback for the SM model in regards to optimization, especially dealing

with an exhaustive optimization that consists of the same number of variables and

constraints but different equation coefficients and constants.

Taking the optimization further and minimizing the specific rotating machin-

ery cost, the black-box solvers yielded the same poor, if not worse, optimization

performance. As shown in Table 5.7, IPOPT managed to successfully converge to

a solution for all the working fluids, but the average solve time was longer than

maximizing the net output power by around 4x for all the solved instances for both

objective functions. Unlike the first objective function, fmincon did not manage to

solve for R152a and the average solve time was slower by more than 2x. Compared

to the algebraic EO model counterpart and only considering all the instances that

were solved in both models, the average solve time increased by more than 29000x

for IPOPT, more than 860x for fmincon, and more than 2500x for FILTERSD to

optimize the SM model.

Table 5.8 shows the average number of iterations needed to optimize the SM

model and the algebraic EO model, which shows that all the black-box solvers

required more iterations to optimize the SM model than the algebraic EO model.

The biggest difference is observed with the IPOPT solver that can require up to 62x

more iterations to optimize the SM model. Therefore, this would have contributed

to the longer execution times shown in Tables 5.6 and Table 5.7.

The poor optimization performance of the SM model was due to the direct im-

plementation of the external thermodynamic routines (REFPROP) and the unit

operation functions that prevented the analytical gradient and Hessian information

to be supplied to the solver. Consequently, this resulted in the use of the finite
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Table 5.7: The optimized specific rotating machinery costs of the DOEP SM model,
where J is the objective function in [k$/MW] and Time is the solve time in [s]. The
relative and absolute convergence tolerances were set to 1 × 10−2. FNS: Found No
Solution.

IPOPT fmincon FILTERSD

J Time J Time J Time

R600a 325.88 1322.4 326.27 89.69 330.08 32.88
R134a 367.76 26.50 367.97 40.01 FNS -
R152a 346.22 24.06 FNS - FNS -
R218 478.32 2225.4 FNS - FNS -
R227ea 368.26 265.26 FNS - FNS -
RC270 347.77 47.96 347.98 49.77 FNS -
RC318 348.19 605.40 FNS - FNS -
CF3I 340.02 362.77 FNS - FNS -

Table 5.8: The average number of iterations that the black-box solvers took to solve
the SM model and the algebraic EO model of the DOE Pilot Plant. This table only
considers the working fluids that were solved in both models.

IPOPT fmincon FILTERSD

EO SM EO SM EO SM

Net Output Power 13 183 11 22 - -
Specific Rotating Machinery Cost 14 878 13 39 9 31

difference method to obtain the required derivative information that led to various

convergence issues, such as premature termination and more iterations, as discussed

in Section 2.9. Furthermore, the implementation of a nonlinear equation solver,

fsolve, which was needed to solve the ORC system recycles at each optimization

iteration, is another factor that contributed the poor optimization performance.

This nonlinear equation solver added extra complexity to the SM optimization prob-

lem that resulted in a slower and less efficient performance, despite having a lower

number of decision variables and constraints than the algebraic EO model.

The optimization performance of the SM model presented in this subsection il-

lustrates the major optimization issues associated with the SM model and highlight

the importance and contributions of the proposed algebraic EO model. From com-

paring the optimization performance between the SM model and the algebraic EO

model, it is evident that the formulation of the ORC model plays a significant role in

the overall performance and solution of the optimization problem. Therefore, given

the poor performance presented in this subsection, the SM models of the next two

plants will be not optimized but will be used to validate the algebraic EO models.
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5.3 USGeo Plant Optimization

The algebraic EO model of the USGP that was discussed in Section 4.3.1 was con-

structed using the SymBuilder framework. The MATLAB code of the algebraic EO

model can be found in Appendix B.2. As a result, the built SymBuilder object of

the USGP reported the following model statistics:

SymBuilder Object
BUILT in 1.329s with:
- 27 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 42 constraint(s)
- 9 linear
- 31 quadratic
- 2 nonlinear

- 54 bound(s)
- 0 integer variable(s)

Similar to the DOEP, the algebraic EO model was optimized with respect to

different working fluids, namely, R601a, R245ca, R245fa, and C5F12, that complied

with the model specifications discussed Section 4.3.1. When optimizing the net

output power of the plant, all the NLP solvers managed to converge to the same

solution for each working fluid, as shown in Table 5.9 and Figure 5.4. The working

fluid that had the highest improvement in the net output power of 1.58% was C5F12,

whereas R601a did not show any significant improvement and converged to the base

case operating point as this was already the optimal solution. The small discrepancy

between the optimized result and the base case for R601a is due to the approximation

made to the algebraic EO model that rendered the two results different.

Table 5.9: The optimized net output powers [kW] and the base case values of the
USGeo Plant.

Relative
Base Case Optimized Improvement

R601a 14307.2 14311.3 0.03%
R245ca 12715.4 12842.9 1.00%
R245fa 10713.1 10853.1 1.31%
C5F12 11448.3 11629.4 1.58%

Analysing the solve times for the net power optimization problem in Table 5.10,

the average execution times for the black-box solvers were faster than the white-box

solvers and exhibit a similar performance as the DOEP model.
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Figure 5.4: The comparison between BARON’s optimized net output powers and
the base case values of the USGeo Plant.

Table 5.10: The solve times [s] of Table 5.9.

IPOPT fmincon FILTERSD BARON SCIP

R601a 0.029 0.219 0.017 9.83 28.16
R245ca 0.023 0.065 0.013 0.64 3.14
R245fa 0.022 0.058 0.012 8.51 3.66
C5F12 0.021 0.044 0.014 0.69 3.18

Taking the optimization problem further and changing the objective function to

the specific rotating machinery cost, the following optimized results in Table 5.11

were obtained. Again, the black-box solvers managed to find the same global solution

as the white-box solvers. The comparison between the global solutions and the base

case values is shown in Figure 5.5. Similar to the previous objective function, C5F12

yielded the best result with an improvement of 2.11% from the base case, whereas

R601a only had a small improvement of 0.86%.

Table 5.11: The optimized specific rotating machinery costs [k$/MW] and the base
case values of the USGeo Plant.

Relative
Base Case Optimized Improvement

R601a 215.66 213.80 0.86%
R245ca 219.47 215.37 1.87%
R245fa 230.93 226.71 1.83%
C5F12 220.85 216.18 2.11%

When analysing the solve times of the optimized specific rotating machinery

cost, it took fmincon significantly longer to solve the model than the other black-
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Figure 5.5: The comparison between BARON’s optimized specific rotating machin-
ery costs and the base case values of the USGeo Plant.

box solvers. As shown in Table 5.12, fmincon took on average 0.395s to solve the

optimization problem, while IPOPT and FILTERSD took around 0.025s and 0.015s,

respectively. The long execution time of fmincon compared to other black-box

solvers could be due to a number of factors, including the supplied initial guess, the

complexity of the problem, the number of variables and constraints, or the algorithm

convergence criteria, and it can be very difficult to narrow down the actual causes as

it can be a combination of factors that affect the overall performance of the solver.

Furthermore, for interior-point algorithms (which is used in fmincon), can set the

initial points to the midpoint of the finite bounds if they are outside the supplied

bounds or the algorithm can attempt to find a “central path” (the path that the

algorithm takes to find the optimal solution) midpoint between the finite bounds

[125]. This can result in the solver using an initial point or a central path that is

further away from the optimum point and take more iterations to converge to a

solution, as shown in Table 5.13.

Table 5.12: The solve times [s] of Table 5.11.

IPOPT fmincon FILTERSD BARON SCIP

R601a 0.024 0.192 0.015 1.67 13.85
R245ca 0.024 0.227 0.014 0.63 3.72
R245fa 0.026 0.921 0.015 1.93 6.22
C5F12 0.025 0.240 0.016 0.53 2.71

Despite the long execution times of the fmincon solver, the average discrepancies

between the optimized algebraic EO model and the SM model were less than 0.15%

for each of the solvers and both objective functions. This shows that the algebraic

EO model of the USGP is an accurate representation of the rigorous simulation

129



Table 5.13: The average number of iterations that the black-box solvers took to
solve the algebraic EO model of the USGeo Plant.

IPOPT fmincon FILTERSD

Net Output Power 19 19 8
Specific Rotating Machinery Cost 20 72 9

model over a range of different operating points and working fluids.

For an additional validation check, the heat exchange process of the optimized

USGeo Plant can be plotted and analysed to ensure that the laws of thermody-

namics and conventions are not being violated. The temperature profile between

the geothermal brine/cooling water and the working fluid in Figure 5.6 shows that

there are no thermodynamic violations during the heat exchange process, hence in-

dicates that this ORC model does not show any anomalies that were discussed in

Section 3.2.2.1.

5.4 Magmamax Binary Power Plant Optimization

The algebraic EO model of MBPP that was discussed in Section 4.4.1 was con-

structed using the SymBuilder framework. The MATLAB code of the algebraic EO

model can be found in Appendix B.3. As a result, the built SymBuilder object of

the MBPP reported the following model statistics:

SymBuilder Object
BUILT in 1.592s with:
- 26 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 42 constraint(s)
- 7 linear
- 26 quadratic
- 9 nonlinear

- 52 bound(s)
- 0 integer variable(s)

Given that the plant uses two different working fluids, the model will be sub-

jected to two sets of working fluids, namely, R600a, R236ea, R236fa and RC318 for

the HP cycle, and R290, R32 and R143a for the LP cycle. These working fluids

were selected based on their availability via JSteam and their thermodynamic prop-

erties complying with the model specifications that were discussed in Section 4.4.1.

Table 5.14 shows the optimized net output powers of the algebraic EO model with
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Figure 5.6: Diagrams showing the heat exchange between the hot medium and
cold medium, where the specific rotating machinery cost of the USGeo Plant was
optimized using SCIP. The states refer to Figure 4.9. The x-axis represents the path
of the fluid flow in the heat exchanger.
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respect to the different working fluid pairs using the NLP solvers. In this case, all the

black-box solvers managed to converge to the same global solution as the white-box

solvers.

Table 5.14: The optimized net output powers [kW] of the Magmamax Binary Power
Plant.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le R600a 9625.7 9157.0 9272.9

R236ea 9641.8 9205.0 9314.4
R236fa 9282.6 8766.3 8894.7
RC318 8553.9 7854.5 8031.3

The comparison between the optimized results and the base case values is shown

in Figure 5.7. From the optimized results, the pair of working fluids that gave the

highest net output power of 9641.8 kW is R236ea for the HP cycle and R290 for the

LP cycle, which is higher than the optimized original plant working fluids (namely,

R600a for the HP cycle and R290 for the LP cycle) by 0.17%. The pair of working

fluids that yielded the biggest improvement from the base case by 3.23% is RC318

for the HP cycle and R143a for the LP cycle. For this optimization problem, the

average discrepancy between the optimal results and the base case values is around

0.05%, which indicates that the algebraic EO model is good representation of the

original system.

Figure 5.7: The comparison between the optimized net output powers and the base
case values of the Magmamax Binary Power Plant.

Collectively the black-box solvers managed to converge to a solution within an

average solve time of 0.032s for all the working fluid pairs, as shown in Table 5.15.

While both of the white-box solvers on average took 87s to converge to a solution,

which is significantly longer than the black-box solvers. The poor performance could
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be due to the larger number of nonlinear constraints compared to the previous two

binary cycle power plants. Given that the algorithm of the white-box solvers is the

spatial branch-and-bound method that requires solving a convex relaxed problem

and the original nonconvex problem repeatedly, it can be very computationally

expensive to solve highly nonlinear problems and can result in a long execution

time.

Table 5.15: The solve times [s] of Table 5.14.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le

B
A
R
O
N R600a 17.2 71.6 24.3

R236ea 40.4 210.1 90.9
R236fa 57.8 296.0 217.5
RC318 348.6 234.4 106.0

S
C
IP

R600a 5.6 7.4 20.5
R236ea 47.2 13.6 24.8
R236fa 40.3 17.9 20.0
RC318 78.6 22.3 76.2

IP
O
P

R600a 0.031 0.022 0.024
R236ea 0.023 0.022 0.019
R236fa 0.019 0.019 0.019
RC318 0.023 0.023 0.025

f
m
i
n
c
o
n R600a 0.207 0.057 0.058

R236ea 0.050 0.046 0.054
R236fa 0.040 0.038 0.043
RC318 0.042 0.038 0.043

F
IL
T
E
R
S
D R600a 0.023 0.014 0.018

R236ea 0.014 0.018 0.013
R236fa 0.015 0.012 0.011
RC318 0.012 0.018 0.014

Taking the optimization problem further and minimizing the specific rotating

machinery cost of the plant, a similar outcome can be observed in the optimized

results. The black-box solvers managed to converged to the same global solution as

SCIP, as shown in Table 5.16. However, in this case, BARON was not able to find a

solution to all working fluid pairs and terminated after reaching the maximum solve

time limit of 1 hour.

Collectively, on average, it took white-box solvers around 515s to solve the opti-

mization problem. Whereas, the black-box solvers managed to converge to a solution

for all the working fluid pairs within an average solve time of 0.156s, as shown in

Table 5.17, which is about 5x slower than the net output power objective func-

tion. Consequently, the solvers required more number of iterations to optimize the

problem compared to the first objective function, as shown in Table 5.18.
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Table 5.16: The optimized specific rotating machinery costs [k$/MW] of the Mag-
mamax Binary Power Plant.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le R600a 253.00 247.08 252.99

R236ea 247.66 241.22 247.42
R236fa 257.25 251.20 257.69*
RC318 276.89* 273.10 280.05

*BARON: Maximum Time Reached

Table 5.17: The solve times [s] of Table 5.16. MTR: Maximum Time Reached.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le

B
A
R
O
N R600a 22.2 8.7 24.5

R236ea 106.1 9.4 951.5
R236fa 895.4 464.2 MTR
RC318 MTR 337.1 1328.7

S
C
IP

R600a 46.5 17.0 50.1
R236ea 104.4 14.0 47.4
R236fa 784.8 157.4 2804.5
RC318 541.1 320.1 2303.4

IP
O
P
T

R600a 0.033 0.022 0.029
R236ea 0.034 0.028 0.023
R236fa 0.039 0.028 0.031
RC318 0.052 0.024 0.027

f
m
i
n
c
o
n R600a 1.062 0.132 0.173

R236ea 0.866 0.159 0.641
R236fa 0.353 0.150 0.789
RC318 0.298 0.144 0.260

F
IL
T
E
R
S
D R600a 0.021 0.016 0.018

R236ea 0.019 0.020 0.020
R236fa 0.016 0.025 0.016
RC318 0.017 0.013 0.019

Table 5.18: The average number of iterations of the black-box solvers for the Mag-
mamax Binary Power Plant.

IPOPT fmincon FILTERSD

Net Output Power 18 14 9
Specific Rotating Machinery Cost 26 75 12

Analysing the comparison between the optimized results and the base case values

in Figure 5.8, the highest improvement of 2.84% from the base case was obtained

with RC318 for the HP cycle and R143a for the LP cycle. While the lowest im-

provement of 1.06% was obtained with R600a for the HP cycle and R290 for the
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LP cycle. The lowest specific rotating machinery cost of 241.22 k$/MW was ob-

tained with R236ea for the HP cycle and R32 for the LP cycle, which is a 4.66%

improvement from the original working fluid pair.

Figure 5.8: The comparison between the optimized specific rotating machinery costs
and the base case values of the Magmamax Binary Power Plant.

To ensure that the thermodynamic violation discussed in Section 3.2.2.1 does not

occur, the temperature profiles of the heat exchangers can be plotted and analysed.

As shown in Figure 5.9, there are no anomalies during the heat exchange process

that indicate the second law of thermodynamics is violated.

Despite the poor performance of the white-box solvers, the average discrepancy

between the optimized algebraic EO model and the SM model for the specific ro-

tating machinery cost was <0.01% for each of the solvers. This indicates that the

thermodynamic approximations did not deviate the algebraic EO model drastically

from its SM model counterpart over a range of different operating points and working

fluids.

It is widely acknowledged that nonlinear problems are hard to solve and reducing

the nonlinearity of the problem can help improve the performance of the solver.

Often practitioners applied various linear and integer techniques, see [126, 127, 24],

to the nonlinear problem in order to reduce the complexity and result in a more

favourable outcome. However, some of these techniques can reduce the accuracy of

the model by using linear approximations on the nonlinear terms, which can be a

drawback if the accuracy is of high importance. In the next chapter, we will address

this issue by implementing piecewise fit approximations to reduce the nonlinearity

of the optimization problem without compromising on the accuracy of the model.
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Figure 5.9: Diagrams showing the heat exchange between the hot medium and
cold medium, where the specific rotating machinery cost of the Magmamax Binary
Power Plant was optimized using SCIP. The states refer to Figure 4.19. The x-axis
represents the path of the fluid flow in the heat exchanger.
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5.5 Automating the Working Fluid Selection

While in the literature there are extensive analysis and comparisons between differ-

ent working fluids on various ORC systems, there is no one best working fluid that

can meet all the thermodynamic constraints, environmental regulations, cost limi-

tations and different heat source temperatures of every ORC system [53]. Also, the

best working fluid that generates the highest efficiency for one ORC system may not

have the same outcome under different operating conditions, plant configurations,

and working fluids. There will always be compromises that need to be considered

when selecting a working fluid. However, leveraging off the proposed algebraic EO

model structure, the optimization problem can be integrated with an outer loop

statement to automatically and efficiently select the optimum working fluid from a

set of working fluids.

Constructing an outer loop around the ORC optimization problem amounts to

gathering the potential working fluids and optimizing the model with respect to each

working fluid. At the end of each iteration, the optimized result will be compared

to the previous result and replaced if the new working fluid offers a more superior

outcome. As a result, the optimum working fluid will be automatically selected from

a set of fluids for the ORC system.

Table 5.19 shows the total computational optimization times of the construc-

tion and optimization of the algebraic EO models. Evidently, the total solve times

are reasonably fast despite solving the optimization problem multiple times. Sup-

Table 5.19: The total computational optimization times of the algebraic EO models
with respect to different working fluids using IPOPT, where the net output power
was optimized.

DOEP USGP MBPP

Build Time 6.224s 5.316s 19.10s
Solve Time 0.136s 0.095s 0.269s

Total 6.360s 5.411s 19.37s

pose the same optimization procedure was to be implemented using an SM model,

the optimization times would be significantly longer and, in some cases, have is-

sues converging to a solution (as shown in Section 5.2.2). The construction of the

optimization problem (i.e., SymBuilder object) took significantly longer than the op-

timization time. This is mainly due to the construction of the Jacobian and Hessian

matrices using the MATLAB’s Symbolic Math Toolbox and, thus, will subsequently

take much longer to build for larger problems. Therefore, it might be beneficial

for future work to consider optimizing the code of the SymBuilder framework or
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investigate in other alternative modelling platforms, such as GAMS or AMPL, and

explore if they can offer a faster approach at constructing the optimization model.

5.6 Summary

This chapter detailed the optimized results and performance of three real-world

ORC systems using the algebraic EO formulation discussed in Chapter 4. Each

ORC model was optimized with respect to different working fluids and two objective

functions, namely, the net output power and the specific rotating machinery cost.

Overall, the black-box solvers were relatively faster than the white-box solvers and

converged to the same global optimum.

In addition, this chapter also highlighted the optimization inefficiency of the

SM model compared to the proposed algebraic EO model, especially for large and

complex systems, by optimizing the SM model of the DOE Pilot Plant using NLP

black-box solvers. The results showed that the optimization performance of the SM

model was poor and resulted in long solve times and convergence issues. This is

due to the use of the finite difference method and the requirement of a nonlinear

equation solver to converge the ORC flowsheet at each optimization iteration.

While the overall performance of the black-box solvers and accuracy of the alge-

braic EO models were very favourable, the white-box solvers did not perform as well

in some cases, especially with the Magmamax Binary Power Plant. The following

chapter will explore the implementation of piecewise functions for approximating

the thermodynamics and unit operations in order to reduce the nonlinearity of the

problem without compromising on the accuracy. This alternative approach is ben-

eficial for when both the accuracy of the model and the optimization performance

are of high importance, but also want to retain the same algebraic characteristic

that is differentiable and compatible with the white-box solvers.
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Chapter 6

Model Improvement Using

Piecewise Fit Approximation

This chapter will introduce a piecewise fit formulation to approximate univariate

and bivariate functions for global optimization. The first section will present a

description of the piecewise fit approximation algorithm with a simple univariate

and bivariate function as an example. This is then followed by the discussion on

how the accuracy of the approximation can be further improved by optimizing the

allocation of the piecewise fit breakpoints. Lastly, the advantages and limitations of

the presented piecewise fit approach will also be highlighted, and the chapter will

conclude with the implementation of the piecewise fit on the ORC systems.

6.1 Introduction

In the algebraic EO models presented thus far, some of the operational constraints

and the isentropic work of the turbine and pump were approximated using only a

single curve or surface fit. This approach allows an algebraic EO model of an ORC

system to be formulated and globally optimized to a reasonable level of accuracy.

However, utilizing a single surface/curve fit might not always provide the level of

accuracy that is adequate for different working fluids, chemical processes, or highly

nonlinear thermodynamic properties. While it is possible to increase the accuracy of

the fit by using a more nonlinear fit or increase the order of the polynomial function,

the improvement in accuracy might not be sufficient and can increase the nonlin-

earity of the optimization problem that can lead to poor optimization performance.

An alternative approach is to use a piecewise fit and formulate an algebraic mixed

integer nonlinear programming (MINLP) model that consists of low-level nonlinear

fits with better regression accuracy. Leveraging the modelling approach presented
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in the Chapter 3 and Chapter 4, the proposed piecewise fit formulation will not

compromise on the algebraic structure of the optimization problem and will still be

compatible with the white-box solvers.

6.2 Piecewise Fit Approximation

This section will present the piecewise fit algorithm that was developed to increase

the accuracy of the approximations of univariate and bivariate functions. Unlike

other piecewise fit approximation in [128, 127], this approach is not limited to lin-

ear approximations, but allows higher order polynomial approximations to achieve

better accuracy without increasing the number of breakpoints. In addition, this ap-

proach can easily be implemented to both univariate and bivariate functions and re-

quires fewer binary variables and a simpler special ordered set (SOS) type constraint.

This method was developed in MATLAB using the object-oriented approach, where

the name of the MATLAB class is called pwfit.

6.2.1 The pwfit Algorithm

The algorithm of pwfit utilizes the lsqlin MATLAB function [129], which solves

constrained least-squares curve fitting problems of the form

min
1

2
||Cx− d||22

s.t. Ax ≤ b,

Aeqxeq = beq.

(6.1)

In this case, the linear constraints are associated with the piecewise subfunction

continuity constraints, i.e., the gradient and function evaluation of the adjacent

subfunctions must be the same at the breakpoint, which will be discussed next in

Section 6.2.2.

For illustration purposes, the data in (6.2) will be used to explain the pwfit

algorithm, which was generated from a basic exponential function y(x) = ex. Fig-

ure. 6.1 shows the data as black dots and the two quadratic polynomial fits separated

by the breakpoint. The breakpoint for this example was fixed at 2, thus dividing

the number of data points evenly. Note the location of the breakpoint was selected

arbitrarily for this example, but it will be optimized later in Section 6.2.3 to further

improve the accuracy of the regression fit.
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Figure 6.1: Approximating y(x) = ex with pwfit using two quadratic polynomial
functions with a fixed breakpoint at 2.

The constant vector d is equal to the ydata, whereas the multiplier matrix C can

be constructed as a set of Vandermonde matrices for the xdata that are arranged

diagonally in a matrix as

C =













V1,1 0 · · · 0

0 V2,2 · · · 0
...

...
. . .

...

0 0 · · · Vm,n













. (6.3)

Each Vandermonde matrix Vm,n is associated to one of the polynomial curves/sur-
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faces of the piecewise fit and is defined as

Vm,n =


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




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xN
data1

xN−1
data1

· · · x0
data1
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, (6.4)

where N is the degree of the polynomial function fit. The dimension of each Vander-

monde matrix depends on the location of the breakpoints and the number of data

points between two adjacent breakpoints. Therefore, the value of the multiplier

matrix C and the constant vector d for (6.2) are given as
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6.2.2 Subfunction Continuity Constraints

In order to meet the function continuity constraints, the gradient and the function

evaluation of two adjacent subfunctions must be equal at their conjoining breakpoint.

This involves deriving a set of linear equality constraints that equate the geometric

progression terms of the two adjacent subfunctions and their gradients. This results

in the following general matrix and vector:
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, (6.6)

142



where i is the number of curves/surfaces, j is the number of breakpoints, vi,j =

[xN
bkj

, xN−1
bkj

, ..., x0
bkj

] is the geometric progression terms of the piecewise subfunction

at xbkj breakpoint, v
′
i,j = [NxN−1

bkj
, (N−1)x

(N−1)−1
bkj

, ..., 0] is the geometric progression

terms of the piecewise subfunction gradient at xbkj breakpoint, and N is the degree

of the polynomial function fit. Every odd row of (6.6) deals with the function

evaluation continuity, and every even row deals with the gradient continuity. Note

that for a linear approximation, all the even rows of Aeq that deal with gradient

continuity are omitted because it will result in a straight line, and the sum of squared

errors (SSE) will be very large for highly nonlinear approximations.

Applying (6.6) to the example data in (6.2) where the location of the breakpoint

is at 2, the geometric progression terms of the polynomial subfunctions and their

corresponding gradients can be written as

Aeq =

[

4 2 1 −4 −2 −1

4 1 0 −4 −1 0

]

and beq =

[

0

0

]

. (6.7)

Once C, d, Aeq, and beq are derived and entered into the lsqlin function, the

coefficients of the quadratic polynomial subfunctions x can be solved for the piece-

wise function. For the example data in (6.2), this results in the following piecewise

function:

ŷ(x) =







2.13x2 − 1.76x+ 2.35 : 0 ≤ x ≤ 2

5.90x2 − 16.80x+ 17.40 : 2 < x ≤ 3
(6.8)

that can be used to approximate the correlation between xdata and ydata in (6.2).

In order to automate the piecewise fit discussed above, the algorithm was devel-

oped using the object-oriented approach in MATLAB, where the user only requires

to enter the data (xdata, ydata), type of fit model, and the breakpoint allocations as

follows:

pwfitobj = pwfit(xdata,ydata,‘poly2’,[1,2,3]);

The single line of code above will automatically generate the C, d, Aeq, and beq

matrices that are specific to the input arguments. The pwfit function will then

output an object that contains properties of the piecewise function, such as the

polynomial coefficients and the sum of squared errors. The pwfit object can be

passed to one of the pwfit methods, namely, feval, print, and plot, to evaluate

the piecewise function at a specified point, to print the piecewise fit subfunctions,

and to plot the piecewise fit (see Figure 6.1). For instance, the user can type the

following lines in the command window:
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>> feval(pwfitobj,2.2)

ans =

8.9400

>> print(pwfitobj,‘%0.3g’)

ans =

2x1 cell array

‘2.13*xd^2 + -1.76*xd + 2.35’
‘5.9*xd^2 + -16.8*xd + 17.4’

>> plot(pwfitobj)

The same pwfit algorithm described above can also be implemented to bivariate

functions using polynomial surface fit models, as shown Figure 6.2. However, unlike

univariate functions, the input data must be supplied to pwfit as matrices, not

vectors, thus the user must enter the data as follows:

pwfitobj = pwfit(Xdata,{Ydata,Zdata},‘poly21’,[2,3.5,5]);

The MATLAB code above will generate all the required matrices for the lsqlin

function and output the following piecewise function:

ẑ(x, y) =







6.26x2 − 17.8x+ 2.7y + 6.85 : 2 ≤ x ≤ 3.5

33.6x2 − 209x+ 2.7y + 342 : 3.5 ≤ x ≤ 5
(6.9)

that corresponds to Figure 6.2. The current pwfit algorithm can only divide the

bivariate function along the x-axis, thus the breakpoints specify the locations on the

x-axis where two subfunctions meet. Consequently, the Vandermonde matrices in

(6.3) are derived based on where the breakpoints divide the Xdata matrix.

For the example in Figure 6.2, the pwfit algorithm automatically converts Xdata

matrix into a single column vector xdata using the colon operator in MATLAB and

divides it into two equal sets of data because the breakpoints are evenly spaced.

Subsequently, theYdata is also converted into a single column vector and is divided at

the same position as where the xdata vector was divided. The two column vectors are

then used to generate the Vandermonde matrices similar to the univariate function

example described above. For the function continuity constraints, the Aeq matrix

and the beq vector are derived using the breakpoint, i.e., 3.5 in this case, and the

values from the first column of the Ydata matrix. Lastly, the d vector in (6.1) is

derived by converting the Zdata matrix into single column vector. These generated
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Figure 6.2: Approximating z(x, y) = −(sin y)2 + ex with pwfit using two quadratic
polynomial surfaces (poly21) with a fixed breakpoint at 3.5. The black dots are the
input data and the red solid line is the breakpoint.

vectors and matrices are subsequently entered into lsqlin function and solved for

the coefficients of the piecewise function.

6.2.3 Optimizing Breakpoint Allocations

The accuracy of the regression can be improved by optimizing the location of the

breakpoints, which differs from the arbitrarily fixed locations in Section 6.2.1. This

is done by formulating an outer optimization problem to allocate the breakpoints in

order to minimize the sum of all the SSE of each subfunction. Given that lsqlin

output the squared 2-norm of the residuals, which is equivalent to the SSE value,

and is defined as

resnorm = ||Cx− d||22, (6.10)

this value can be used as part of the objective function for the outer optimization

problem. In addition, in order to penalize the distance between two adjacent break-

points from being too close to one another, the product of the sum of the inverse

difference between two adjacent breakpoints and a weighted constant was added to

the objective function. Therefore the pwfit breakpoint objective function becomes

J = resnorm + wbk

n−1
∑

i=1

1

xbki − xbki+

, (6.11)
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where resnorm is the squared 2-norm of the residuals (or the SSE value) from the

lsqlin, xbki is the breakpoint, wbk is the weighted constant (0.01 by default but

can be changed by the user), and n is the number of breakpoints including the

minimum and maximum values of the xdata, i.e., the breakpoint vector consists of

xbk = [xdatamin
, . . . , xdatamax

].

Each xbki is bounded using the minimum and maximum xdata value and is sub-

jected to an inequality constraint to ensure that they are not greater than the

following breakpoint, which can be expressed as

xbki ≤ xbki+
. (6.12)

The breakpoint optimization problem is solve using the optimizer NLopt [130] (al-

gorithm: AUGLAG, subalgorithm: LN COBYLA), which can be invoked by intro-

ducing a fifth input argument, i.e., ‘optimized’, to the pwfit function, as shown

below:

pwfitobj = pwfit(xdata,ydata,‘poly2’,[1,2,3],‘optimized’);

Using the data points in (6.2) as an example, pwfit will generate the required ma-

trices for the lsqlin function, formulate the breakpoint optimization problem and

use the fixed point, i.e., [1,2,3], as the initial point for the optimization. Figure 6.3

shows the piecewise fit of the example data in (6.2) with the optimized location of

the breakpoint.
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Figure 6.3: Approximating y(x) = ex with pwfit using two quadratic polynomial
functions with an optimized breakpoint location.
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By optimizing the breakpoint location from 2 to 2.14, the SSE value has de-

creased from 0.0285 to 0.0149 without increasing the complexity of the piecewise

function. As a result, the piecewise approximation for the example data in (6.2) can

now be expressed as

ŷ(x) =







2.51x2 − 2.83x+ 3.08 : 0 ≤ x ≤ 2.14

6.50x2 − 19.90x+ 21.40 : 2.14 ≤ x ≤ 3
(6.13)

using the same quadratic polynomial fit functions.

The same optimization problem can also be used to optimize the breakpoint

allocation along the x-axis of a bivariate function to improve its accuracy. Using the

bivariate function example in Figure 6.2, the SSE of the regression decreased from

239.01 to 162.22 by optimizing the location of the breakpoint. This resulted in a

piecewise function that can be expressed as

ẑ(x, y) =







10.2x2 − 38.6x+ 2.7y + 33.7 : 2 ≤ x ≤ 3.8

41.4x2 − 278x+ 2.7y + 494 : 3.8 ≤ x ≤ 5
(6.14)

with the breakpoint optimized from 3.5 to 3.8, as shown in Figure 6.4.

Figure 6.4: Approximating z(x, y) = −(sin y)2 + ex with pwfit using two quadratic
polynomial surface (poly21) with an optimized breakpoint location. The black dots
are the input data and the red solid line is the breakpoint.

By optimizing the locations of the breakpoints, the accuracy of the piecewise fit

can be improved without increasing the number of fitting curves/surfaces. This can

very beneficial when dealing with a large optimization problem that requires many
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regressions because it reduces the number of auxiliary variables and constraints

needed to implement the piecewise fit.

6.2.4 Limitations of the pwfit Algorithm

There are some limitations to the current pwfit algorithm. First, the subfunc-

tion can only be a polynomial function (see Appendix C), and not exponential,

power, or trigonometric functions, because it is not possible to construct the Van-

dermonde Matrix for non-polynomial functions that are not linear in the parameters.

While it is acknowledged that there might be problems outside this research where

non-polynomial functions could be beneficial, the proposed ORC systems can be

approximated quite sufficiently with only polynomial functions. However, it will be

on the agenda for future work to incorporate other nonlinear functions. Second, the

order/degree of the polynomial model fit has to be same for every subfunction. This

means that some parts of the regression might be overcompensated by the high order

nonlinear model fit, which can add extra complexity to the optimization problem

when a linear fit might suffice. Third, for bivariate functions, the current pwfit

algorithm can only divide the piecewise function along one of the axes. Therefore,

increasing the number of breakpoints might not always improve the accuracy of the

regression in some cases.

For this research, the current pwfit algorithm is more than sufficient to ap-

proximate the thermodynamic properties of the working fluids over the proposed

optimization range. The REFPROP thermodynamic data that was generated in

Chapter 3 and Chapter 4 did not present extreme cases of nonlinearity or disconti-

nuity that were impossible to approximate using polynomial functions. Furthermore,

the bivariate function approximations in this research did not exhibit high nonlin-

earity along the y-axis (i.e., looking at the plot from the Y-Z view) and thus there

was no need to divide the piecewise function along the y-axis.

6.3 Piecewise Function Optimization Formulation

In order to utilize the piecewise fit approximation, it needs to be introduced to

the optimization problem via integer programming techniques. A simple way to

incorporate the piecewise fit is to make the piecewise function equal to the sum of

the product of the subfunction and binary variable, and set all the binary variables as
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special order set type 1 (SOS1) variables. This will result in the following constraints:

f̂ =

n
∑

i=1

gibi,

n
∑

i=1

bi = 1,

bi ∈ {0, 1},

(6.15)

where f̂(x) is the approximated piecewise function, gi is the subfunction, and bi is

the binary variable. Since only one binary variable can equal to 1, this will equate

f̂(x) to only one of the subfunctions and set all the others to zero. While this

approach can be easily implemented, it is inefficient to multiply a binary variable

with another variable because it introduces extra nonlinearity into the optimization

problem, as noted by [127].

An alternative method is to use a slightly modified integer programming tech-

nique from AIMMS modelling guide (in Section 7.7) [127], also known as the Glover’s

linearization scheme [24]. This involves introducing a new variable v and enforcing

it to take the value of gibi using the following linear constraints for each of the

subfunctions:

vi ≤ uibi,

vi ≤ gi +M(1 − bi),

vi ≥ gi −M(1 − bi),

vi ≥ libi,

(6.16)

where ui and li are the upper and lower bounds of the corresponding subfunction gi,

M is the “big-M” constant (a constant that has a large value) and bi is the binary

variable. When bi = 0, this implies

vi ≤ 0

vi ≤ gi +M

vi ≥ gi −M

vi ≥ 0



























⇒ vi = 0, (6.17)

and when bi = 1, it implies

vi ≤ u

vi ≤ gi

vi ≥ gi

vi ≥ l



























⇒ vi = gi. (6.18)
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Consequently, the piecewise function now becomes

f̂ =
n

∑

i=1

vi, (6.19)

where n is the number of subfunctions. Since only one subfunction can be selected,

this can be enforced as follows

x ≥
n

∑

i=1

xbkibi,

x ≤

n
∑

i=1

xbki+
bi,

n
∑

i=1

bi = 1,

(6.20)

where x is the x-axis variable of the subfunction, xbki is the breakpoint value

(including the minimum and maximum values of xdata, i.e, xbk = xdatamin
and

xbkn+
= xdatamax

), and n is the number of subfunctions.

Applying (6.16), (6.19) and (6.20) to the piecewise function example in (6.13),

the first subfunction results in

v1 ≤ 8.5b1,

v1 ≤ (2.51x2 − 2.83x+ 3.08) + 20.1(1− b1),

v1 ≥ (2.51x2 − 2.83x+ 3.08)− 20.1(1− b1),

v1 ≥ 2.7b1,

(6.21)

and the second subfunction results in

v2 ≤ 20.1b2,

v2 ≤ (6.50x2 − 19.90x+ 21.40) + 20.1(1− b2),

v2 ≥ (6.50x2 − 19.90x+ 21.40)− 20.1(1− b2),

v2 ≥ 8.5b2.

(6.22)

In this case, the ui and li are equal to the maximum and minimum subfunction

evaluations, and M is equal to the maximum piecewise function evaluation (but it

can be a larger value). Consequently, the piecewise function can be expressed as

f̂ = v1 + v2, (6.23)
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and the piecewise function conditions can be formulated as

x ≥ 1.00b1 + 2.14b2,

x ≤ 2.14b1 + 3.00b2,

b1 + b2 = 1.

(6.24)

The bivariate piecewise functions can be implemented into an optimization problem

in the same matter as illustrated above.

6.4 The Implementation of pwfit on ORC Sys-

tems

This section will reformulate the three ORC models presented in Chapter 4 using the

pwfit function to highlight two contributions of the proposed piecewise fit approxi-

mation. First, the accuracy of the thermodynamic approximation can be improved

by using a piecewise fit instead of a single fit. Second, the performance of certain

white-box solvers can be improved by using pwfit to decrease the deleterious effect

of the nonlinearity of the optimization problem.

6.4.1 Improving the Accuracy of the Optimization Model

In order to demonstrate the first contribution, the enthalpy values of R227ea were

calculated over a range of pressures, i.e., P ∈ [11.97, 26.31] bar at T = 369.72K,

which is one of the operating constraints of the DOE Pilot Plant model. Figure 6.5

shows the regression fit and error plot of the enthalpy values using a cubic function.

As such, the enthalpy can be approximated using

ĥ = −0.00942P 3 + 0.443P 2 − 8.18P + 449, (6.25)

where P is the pressure value. Alternatively, the same enthalpy can be approximated

using pwfit, as shown in Figure 6.6. As a result, the enthalpy can be approximated

using in the following piecewise function:

ĥ =







−0.0549P 2 + 0.392P + 401 : 11.97 ≤ PA1 ≤ 23.14

−0.542P 2 + 22.9P + 140 : 23.14 ≤ PA1 ≤ 26.31
(6.26)

that has two quadratic polynomial fits.

Comparing the two regression fits, the piecewise fit achieved a lower maximum
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Figure 6.5: Approximating the enthalpy of R227ea at P ∈ [11.97, 26.31] bar and
T = 369.72K using a single fit. The black dots are the REFPROP data and the
blue solid line (top plot) is the approximated cubic polynomial fit.

error than the single fit as observed in the two error plots. Also, by calculating the

SSE of both regressions, the piecewise fit obtained a lower value of 0.37 compared to

the single fit that yielded an SSE of 1.95. This shows that by using a piecewise fit, it

is possible to achieve a more accurate approximation than using a single fit, despite

using a lower order polynomial fit. This has an important useful implication for

problems with multiple regressions that are coupled together by constraints, as will

be shown in Section 6.4.2. If the regressions are not accurate and highly nonlinear,

they can lead to an unreliable solution, poor optimization performance or, in some

cases, can render the optimization problem infeasible.

6.4.2 Reducing the Deleterious Effect of the Nonlinearity of

the Optimization Model

From the previous subsection, the accuracy of the regression fit can be improved by

using a piecewise fit that has a lower order polynomial fit. This attribute can be

used to reduce the deleterious effect of the nonlinearity of the optimization problem

without compensating on the accuracy of the model. As will be presented in this

subsection, this can improve the performance of some optimization solvers. In order

to highlight this contribution, all three case studies in Chapter 5 will be reformulated

using piecewise fit approximations.
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Figure 6.6: Approximating the enthalpy of R227ea at P ∈ [11.97, 26.31] bar and
T = 369.72K using pwfit. The black dots are the REFPROP data and the solid
lines (top plot) are the approximated quadratic polynomial fits. The error plot is
using the same scale as Figure 6.5.

6.4.2.1 DOE Pilot Plant

For the DOE Pilot Plant, all the single cubic polynomial approximations were re-

placed with piecewise quadratic approximations, which resulted in the following

SymBuilder object:

SymBuilder Object
BUILT in 2.858s with:
- 45 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 98 constraint(s)
- 57 linear
- 41 quadratic
- 0 nonlinear

- 90 bound(s)
- 12 integer variable(s)

- 0 integer
- 12 binary

As can be seen, the number of nonlinear constraints has decreased from 6 to 0, but

on the other hand, the total number of variables and constraints have increased.

Compared to the NLP model in Chapter 5, the number of variables has increased

by 24, including 12 binary variables, and the number of constraints increased by

66. While the optimization formulation is technically a mixed-integer quadrati-
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cally constrained linear program (MIQCLP), it does consist of equality quadratic

constraints that are not supported by the mixed-integer quadratically constrained

quadratic programming (MIQCQP) solvers, like CPLEX and GUROBI. Therefore,

an MINLP solver will need to be used to solve this optimization problem. In addi-

tion, given that the model will also be optimized with respect to the specific rotating

machinery cost, which is a nonlinear function, this optimization formulation will be

solved as a mixed-integer nonlinear program.

Optimizing the net output power of the new reformulated algebraic EO model

using three MINLP solvers, namely, BARON, SCIP and BONMIN, yielded the opti-

mized results shown in Table 6.1. All three solvers managed to solve the optimization

Table 6.1: The optimized net output powers J [kW] and the solve times [s] of the
DOE Pilot Plant using piecewise approximations.

BARON SCIP BONMIN*

J Time J Time J Time

R600a 4555.4 1.34 4555.4 0.81 4555.4 0.069
R134a 2844.7 1.35 2844.7 0.95 2844.7 0.085
R152a 3350.2 1.24 3350.2 0.83 3350.2 0.084
R218 1697.9 1.44 1697.9 1.17 1625.7 0.099
R227ea 3360.3 1.42 3360.3 1.85 3217.9 0.082
RC270 3096.3 1.27 3096.3 0.86 3096.3 0.079
RC318 3891.8 2.38 3891.8 2.09 3852.0 0.075
CF3I 4028.6 1.25 4028.6 0.74 4028.6 0.087

*Obtained using outer approximation algorithm.

problem under a reasonable time of 2.4s, despite the larger number of variables and

constraints. On average, it took BARON around 1.46s and SCIP around 1.16s to

find a solution. Comparing these average solve times to their NLP counterparts

in Table 5.3, where on average BARON took around 2.95s and SCIP took around

1.76s, it was observed that BARON and SCIP are 2x and 1.5x faster, respectively.

In contrast, BONMIN did not manage to solve faster than the black-box NLP

solvers. On average, it took BONMIN 0.083s to find a solution, whereas it took

the NLP solvers (IPOPT, fmincon, and FILTERSD) collectively around 0.023s.

While this might seem unfavourable for the MINLP formulation, it is important to

note that the MINLP and NLP solvers use different strategies to find the optimal

solution. Therefore, it is quite hard to compare the solvers’ performance when

they are fundamentally different in terms of the underlying algorithm, as one can

be innately more computationally expensive than the other even when solving the

same optimization problem. This is different from the white-box solvers that use

the spatial branch and bound algorithm in both formulations. It would be more

appropriate to optimize the two formulations with several numbers of solvers of
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various algorithms and take the average solve time, instead of one MINLP solver

(BONMIN) in this case. Furthermore, since the solve times are very small, it would

be more ideal to also solve larger and more complex ORC problems to reduce the

influence of the solvers’ initial non-deterministic setup procedures to the overall

solve time. As such, these additional adjustments would give a better view of the

optimization performance collectively. However, given the limited number of MINLP

solvers available in the OPTI Toolbox and the time and financial constraints to

develop OPTI interfaces to other MINLP solvers, this investigation was unable to

be carried out but will be left for future work. Therefore, for the remainder of

this chapter, BONMIN will only be presented to give the reader a rough idea of the

optimization performance and solution of the MINLP formulations using a black-box

solver, but it will not be assessed against the NLP solvers.

Taking the problem further and optimizing the plant with respect to the spe-

cific rotating machinery cost, the MINLP solvers obtained the following optimized

results shown in Table 6.2. As can be seen again, all the solvers managed to con-

verge to a solution with a reasonable solve time of less than 2.6s. On average, it

took BARON around 1.32s and SCIP around 1.80s to find a solution. Compared

to the NLP formulation in Table 5.5, the average solve time of BARON and SCIP

were around 2.72s and 9.70s, respectively, which corresponds to about 2.1x and 5.4x

slower than this proposed MINLP formulation. In addition to the improvement in

Table 6.2: The optimized specific rotating machinery costs J [k$/MW] and the
solve times [s] of the DOE Pilot Plant using piecewise approximations.

BARON SCIP BONMIN

J Time J Time J Time [s]

R600a 325.83 1.48 325.83 2.55 325.83 1.03
R134a 367.71 1.05 367.71 1.47 367.71 0.83
R152a 346.19 1.12 346.19 1.93 346.19 0.78
R218 478.16 1.48 478.16 1.97 478.60 0.91
R227ea 368.22 1.77 368.22 1.89 368.22 1.40
RC270 347.73 0.95 347.73 1.62 347.73 0.73
RC318 348.14 1.00 348.14 1.35 348.14 1.02
CF3I 340.00 1.72 340.00 1.60 340.00 1.23

the computational times, the average number of nodes needed to solve the MINLP

formulation using the white-box solvers was significantly less than the NLP formu-

lation in Chapter 5, as shown in Table 6.3. This illustrates that the MINLP model

with only linear and quadratic constraints can be much more efficient and faster to

solve using white-box solvers than its equivalent NLP counterpart that has nonlinear

constraints.

Note that some of the optimized solutions in both Table 6.1 and Table 6.2 are
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Table 6.3: The average number of nodes needed for the white-box solvers to optimize
the NLP and MINLP formulations of the DOE Pilot Plant.

BARON SCIP

NLP MINLP NLP MINLP

Net Output Power 788 2 255 106
Specific Rotating Machinery Cost 867 6 1654 472

slightly different from their NLP solution counterparts due to the implementation of

the pwfit approximations, instead of the single fit approximations. As a result, the

average discrepancies between the SM model and the optimized algebraic EO model

had slightly improved by around 0.02 percentage point, as shown in Table 6.4.

Table 6.4: The average relative errors between the optimized algebraic EO model
and the SM model of the DOE Pilot Plant using the white-box solvers.

NLP MINLP

Net Output Power 0.40% 0.38%
Specific Rotating Machinery Cost 0.17% 0.15%

6.4.2.2 USGeo Plant

For the USGeo Plant, only the turbine regressions were replaced with the piecewise

fit approximations. This resulted in the following SymBuilder object:

SymBuilder Object
BUILT in 1.957s with:
- 37 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 68 constraint(s)
- 25 linear
- 43 quadratic
- 0 nonlinear

- 74 bound(s)
- 5 integer variable(s)

- 0 integer
- 5 binary

Similar to the DOEP model, the new USGP formulation has no nonlinear constraints

but a higher number of variables and constraints than the NLP formulation. In total,

the number of variables has increased by 10 with 5 of them being binary variables,

and the number of constraints has increased by 26.
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Optimizing the net output power of the new USGP formulation, the MINLP

solvers obtained the following solutions and solve times shown in Table 6.5. As can

Table 6.5: The optimized net output powers J [kW] and the solve times [s] of the
USGeo Plant using piecewise approximations.

BARON SCIP BONMIN

J Time J Time J Time

R601a 14311.1 1.45 14311.1 2.23 14311.1 0.46
R245ca 12842.9 1.19 12842.9 1.59 12842.9 0.38
R245fa 10852.9 1.42 10852.9 1.09 10852.9 0.39
C5F12 11629.4 1.08 11629.4 0.96 11629.4 0.42

be observed, all the solvers managed to converged a solution within 3s for all the

working fluids. On average, it took BARON around 1.28s and SCIP around 1.47s

to find a solution. This is about 3.8x and 6.5x faster than the NLP formulation,

where the average solve time of BARON and SCIP were around 4.92s and 9.53s,

respectively.

The same conclusion can also be observed from optimizing the specific rotating

machinery cost of the plant. As shown in Table 6.6, the average solve time of

BARON was around 0.80s and SCIP was around 0.85s. Consequently, this is about

1.5x and 7.8x faster than the NLP formulation, where the average solve time of

BARON and SCIP were around 1.19s and 6.62s, respectively.

Table 6.6: The optimized specific rotating machinery costs J [k$/MW] and the
solve times [s] of the USGeo Plant using piecewise approximations.

BARON SCIP BONMIN

J Time J Time J Time

R601a 213.80 0.94 213.80 0.94 213.80 0.29
R245ca 215.37 0.62 215.37 0.83 215.37 0.24
R245fa 226.71 0.96 226.71 0.98 226.71 0.16
C5F12 216.19 0.66 216.19 0.66 216.19 0.25

In addition, similar to the DOE Pilot Plant, the average number of nodes needed

to solve the MINLP formulation was significantly smaller than the NLP counter-

part in Chapter 5, as shown in Table 6.7. Furthermore, along with improving the

performance of the optimization, the accuracy of the algebraic EO model was not

compromised and improved slightly by up to 0.11 percentage point, as shown in

Table 6.8.
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Table 6.7: The average number of nodes needed for the white-box solvers to optimize
the NLP and MINLP formulations of the USGeo Plant.

BARON SCIP

NLP MINLP NLP MINLP

Net Output Power 875 5 7324 138
Specific Rotating Machinery Cost 14 4 1548 244

Table 6.8: The average relative errors between the optimized algebraic EO model
and the SM model of the USGeo Plant using the white-box solvers.

NLP MINLP

Net Output Power 0.15% 0.04%
Specific Rotating Machinery Cost 0.03% 0.03%

6.4.2.3 Magmamax Binary Power Plant

The Magmamax Binary Power Plant had the most nonlinear constraints out of all

the ORC plants, thus this resulted in a higher number of variables and constraints

than the previous two plants when the piecewise fit approximations were imple-

mented. Using the SymBuilder framework, the new MBPP formulation resulted in

the following object:

SymBuilder Object
BUILT in 4.817s with:
- 68 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 153 constraint(s)
- 83 linear
- 70 quadratic
- 0 nonlinear

- 136 bound(s)
- 21 integer variable(s)

- 0 integer
- 21 binary

where the number of nonlinear constraints has decreased from 9 to 0, but the total

number of variables and constraints have increased by 42 and 111, respectively.

Optimizing the net output power of the plant using the new formulation, the

MINLP solvers obtained the following optimized results shown in Table 6.9. Similar

to the NLP formulation, both BARON and SCIP managed to find a solution for all

the working fluid pairs within the solve time limit of 1 hour. Likewise, BONMIN also
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managed to solve for all the working fluid pairs but converged to a local optimum

for one of the cases.

Table 6.9: The optimized net output powers [kW] of the Magmamax Binary Power
Plant using piecewise approximations.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le R600a 9625.3 9157.3 9268.9

R236ea 9641.8 9205.3 9310.9*
R236fa 9282.5 8766.6 8890.4
RC318 8553.8 7854.8 8027.1

*BONMIN: 9308.2 kW

As shown in Table 6.10, it took BARON and SCIP on average around 5.34s and

11.43s, respectively, to find a solution, which is around 27x and 3x faster than using

the NLP formulation. This is a significant improvement in the performance for the

white-box solvers.

Table 6.10: The solve times [s] of Table 6.9.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le

B
A
R
O
N R600a 4.84 3.30 7.51

R236ea 4.19 5.19 8.70
R236fa 3.85 3.85 7.39
RC318 5.45 3.22 6.59

S
C
IP

R600a 4.61 6.38 8.35
R236ea 22.61 6.48 11.46
R236fa 6.45 21.26 10.36
RC318 24.93 4.47 9.77

B
O
N
M
IN

R600a 7.44 5.03 7.18
R236ea 7.08 4.53 8.95
R236fa 7.68 5.30 6.39
RC318 8.01 5.48 6.58

Taking the optimization problem further and optimizing the specific rotating

machinery cost of the plant, the MINLP solvers obtained the following optimized

results in Table 6.11 and the solve times in Table 6.12. Both white-box solvers

managed to converge to a solution for all the working fluid pairs within the maximum

solve time limit of 1 hour, as opposed to the NLP formulation. The optimization

time of BARON and SCIP is on average 5.96s and 7.02s, respectively, which is

around 70x and 85x faster than the NLP formulation. In addition, they required

less number of nodes to solve the MINLP formulation than the NLP formulation

for both objective functions, as shown in Table 6.13. Furthermore, for the second
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objective function, BONMIN also managed to converge the same solution as the

white-box solver for all the working fluid pairs.

Table 6.11: The optimized specific rotating machinery costs [k$/MW] of the Mag-
mamax Binary Power Plant using piecewise approximations.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le R600a 252.99 247.02 252.96

R236ea 247.66 241.15 247.36
R236fa 257.24 251.13 257.67
RC318 276.88 273.05 280.02

Generally speaking, it is possible for an optimization problem to have more than

one global optimum, i.e., the ORC can output the same global solution at two or

more different operating points. Therefore, it is not impossible for both BARON

and SCIP to find a global solution but at a different operating point from each

other, such as at a different enthalpy and pressure level. Consequently, when the

optimized solutions of the algebraic EO model are entered into the SM model, there

is a possibility that there could be a slight difference between the global solutions

because the errors of the regressions are not constant over the approximated range.

Table 6.12: The solve times [s] of Table 6.11.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le

B
A
R
O
N R600a 5.29 2.20 3.99

R236ea 5.97 1.85 4.20
R236fa 15.77 5.35 11.82
RC318 9.31 4.73 10.28

S
C
IP

R600a 4.09 3.36 6.07
R236ea 4.35 2.51 4.63
R236fa 18.80 7.77 9.17
RC318 6.74 8.78 7.92

B
O
N
M
IN

R600a 3.18 2.36 4.43
R236ea 2.39 2.89 2.62
R236fa 4.62 5.86 6.32
RC318 4.37 3.76 5.25

Given that the accuracy of the NLP formulation of the MBPP is already con-

siderably small due to the use of high order polynomial function fits, there is not

a significant improvement in the accuracy of the MINLP formulation, as shown

in Table 6.14. However, this illustrates that the piecewise fit approximation can

significantly improve the optimization performance without compromising on the

accuracy of the model.
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Table 6.13: The average number of nodes needed for the white-box solvers to opti-
mize the NLP and MINLP formulations of the Magmamax Binary Power Plant. This
table only considers the working fluid pairs that were solved in both formulations.

BARON SCIP

NLP MINLP NLP MINLP

Net Output Power 23927 22 11066 3286
Specific Rotating Machinery Cost 54270 165 443728 2121

Table 6.14: The average relative errors between the optimized algebraic EO model
and the SM model of the Magmamax Binary Power Plant using the white-box
solvers. This table only considers the working fluid pairs that are solved in both
NLP and MINLP formulations.

BARON SCIP

NLP MINLP NLP MINLP

Net Output Power 0.05% 0.04% 0.05% 0.04%
Specific Rotating Machinery Cost <0.01% 0.01% <0.01% 0.01%

6.5 Investigating the Effect of the Working Fluid

Mixtures

In addition to optimizing the ORC system with respect to pure working fluids, the

algebraic EO model can be used to investigate the effect of the working fluid mixtures

and the composition ratio that will output the best performance. This investigation

illustrates one of the contributions of the proposed modelling approach where the

optimization problem can be extended further to efficiently exploit the existing ther-

modynamic data of different mixtures that are readily available in REFPROP and

other thermodynamic packages. This adds another dimension to the optimization

problem and allows the practitioners to explore this non-trivial mixture analysis of

the ORC system without making any major changes to the model.

This study can be carried out very efficiently using the MINLP formulation

given the improvement in the optimization performance from utilizing piecewise fit

approximations. In order to demonstrate this contribution, the DOE Pilot Plant was

used as an example to show the effect of different mixtures and their compositions on

the net output power. As will be shown later in this section, the proposed MINLP

model presented in this chapter allows a large ORC system to be optimized 215

times within a reasonable computational time frame. The investigation presented

in this section exclusively considers the effect of the working fluid mixtures on the

plant’s net output power, and not the cost, environmental impact, safety, and other

aspects of the working fluid mixtures as they are outside the scope of this research
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and are subjective to the location and build of the plant.

For this optimization problem, the selected working fluid mixtures consisted of

two working fluids where the composition ratio was increased by 5% increments

from 0% to 100%, and the optimization problem was solved at every increment us-

ing BARON. Given that mixtures change phase at variable temperatures, different

from the pure fluids that condense and evaporate at a constant temperature, the

pressure value at the condenser’s outlet was calculated using the saturated enthalpy

and entropy value at 311.48K. This is to address the issue with JSteam that out-

puts the saturated vapour pressure value by default (see Figure 6.7), instead of the

saturated liquid pressure, when the temperature value is used directly in the ther-

modynamic routine (i.e, JSteamMEX(‘PsatmT’,mixture,311.48)). Consequently,

the optimized results for the pure fluids in the tables below will be slightly different

from what is stated in the previous section as there is a slight difference between

the condenser’s outlet pressure.
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Figure 6.7: The Ts diagram of a mixture with 60% R600a and 40% R134a, where
the mixture evaporates and condenses at variable temperatures.

Table 6.15 shows the maximum optimal net output powers of the DOEP for

different mixtures, where the composition of one of the fluids, namely, the ones

stated in the column, was changed from 0% to 100%. The composition of each

mixture that corresponds to the highest net output power is shown in Table 6.16.

Interestingly, most of the mixtures did not obtain a higher net output power than

the pure fluid. While the composition of the mixtures did affect the net output

power of the plant, the highest net output power for most mixtures was obtained

when the composition of one of the fluids was either 0% or 100%. Out of all the 10

mixtures that were investigated, only one yielded a higher net output power than

its pure fluid components, namely, RC318 and CF3I.
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Table 6.15: The maximum optimal net output powers [kW] of the DOE Pilot Plant
that were obtained from varying the composition of the column fluid from 0% to
100%, where the optimization problem was solved using BARON.

R600a R134a RC270 RC318 CF3I

R600a 4541.31 4541.31 4541.31 4541.31 4541.31
R134a 2831.00 3090.13 3863.23 3993.12
RC270 3090.13 3863.23 3993.12
RC318 3863.23 4004.22
CF3I 3993.12

Table 6.16: The composition of each mixture that obtained the highest net output
power. The ratio number on the left and right associates with the row and column
fluid, respectively. For example 15%:85% means 15% RC318 and 85% CF3I.

R600a R134a RC270 RC318 CF3I

R600a 100% 100%:0% 100%:0% 100%:0% 100%:0%
R134a 100% 0%:100% 0%:100% 0%:100%
RC270 100% 0%:100% 0%:100%
RC318 100% 15%:85%
CF3I 100%

Figure 6.8 shows the trendline of the optimized net output powers as the com-

position of one fluid in the mixture changes from 0% to 100%. Evidently, a different

composition ratio results in a different output power, and the trendline is not the

same for every mixture. There are two types of correlations that can be observed

from changing the composition of the mixtures. First, some of the trendlines re-

semble a linear correlation, as shown by R600a:RC270, and RC270:CF3I, where the

net output power either decreases or increases as the mixture composition changes

from 0% to 100%. Second, some of the trendlines resemble a concave correlation, as

shown by R600a:R134a and RC318:CF3I, where there is a minimum or maximum

net output power at a specific composition ratio as the mixture shift from one pure

fluid to another.

The total build time for this optimization problem was 300.09s and the total

solve time was 287.73s. This is very impressive given that in total there were 215

optimization problems that were solved, where 210 were for mixtures and 5 were

for pure fluids. Furthermore, the optimization problems were solved using BARON,

thus the overall solve time would be even faster if a derivative-based MINLP solver

was used.

A major limitation associated with this study depends on the accuracy and un-

certainty of REFPROP to reliably calculate the thermodynamic properties of the

working fluid mixtures. While REFPROP is developed by the National Institute of

163



Figure 6.8: The trendline of the optimized net output powers of the DOE Pilot Plant subjected to different mixture composition ratios. The
abscissa indicates the percentage of the working fluid of that column.
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Standards and Technology (NIST), and based on the most accurate models available

for pure fluids and mixtures, it is not perfect and can cause issues for the optimiza-

tion problem. It is stated in the REFPROP manual (version 9.1) that “certain

calculations, especially saturation calculations, may fail without generating warn-

ings” [35], thus in some cases the optimization problem might fail as the enthalpy or

pressure cannot be calculated. This is the reason why the number of working fluids

for the DOEP was reduced from 9 to 5 because REFPROP failed to calculate the

required thermodynamic properties for the corresponding mixtures.

It is important to again highlight that there is no one best working fluid that

can meet all the criteria of an ORC system and some compromises have to be

made, and this undoubtedly extends to mixtures. Furthermore, given the possible

number of fluids that can be used in a mixture and the variation in the composition,

selecting the optimal mixture is not a trivial task and will have to rely on an efficient

optimization approach, like the one proposed in this thesis, to investigate different

combinations within a manageable time frame.

6.6 Summary

This chapter details the implementation of the piecewise fit approximation in or-

der to improve the accuracy of the algebraic EO model and the performance of

certain white-box solvers. The piecewise fit algorithm pwfit and the optimization

formulation were discussed and implemented in MATLAB using the object-oriented

approach. With the proposed pwfit class, both univariate and bivariate functions

can be approximated using generic polynomial functions. The available fit models

are listed in Appendix C. In order to further improve the accuracy of the regression,

the breakpoints can be specified manually by the user or they can be optimized us-

ing a built-in feature that aims to minimize the total SSE value. Thus, this can

help reduce the order of the polynomial fits, reduce the overall number of curve/-

surface fits, and decrease the complexity of the optimization problem by lowering

the number of auxiliary variables and constraints.

All three ORC systems in Chapter 5 were reformulated using the piecewise fit

approximation and optimized using three MINLP solvers, namely, BARON, SCIP,

and BONMIN. As a result, this converted the optimization problem from an NLP

problem to an MINLP problem due to the introduction of binary variables. While

the new formulations had more variables and constraints, the overall nonlinearity

of the optimization problem was decreased by using a lower order polynomial fit

without compromising on the accuracy of the model. From the optimized results, it

was found that the performance of the white-box solvers had improved significantly
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from the NLP formulation counterparts, especially for the Magmamax Binary Power

Plant. Leveraging off the excellent performance of the white-box solvers using this

formulation, the model of the DOE Pilot Plant was optimized with respect to dif-

ferent mixtures and compositions using BARON. The results showed that in most

cases the pure fluids yielded a better result than the mixtures. Furthermore, some

mixtures had a linear correlation between the composition ratio and the optimal

solution, while others resembled a concave correlation.

The following chapter will build on the implementation of the piecewise fit ap-

proximation and extend it to consider piecewise linear fit approximation. The in-

centive is to investigate if the performance of the white-box solvers can be further

improved by using a mixed-integer linear programming (MILP) formulation. In ad-

dition, there are more MILP solvers than there are MINLP solvers, thus providing

an alternative method and the tools to model the ORC systems or other optimiza-

tion problems outside this research would be beneficial for cases when the NLP or

MINLP solvers fail.
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Chapter 7

Mixed-Integer Linear

Programming Formulation

This chapter will discuss the implementation of various linear and integer program-

ming techniques that converts a nonlinear programming (NLP) model into an equiv-

alent mixed-integer linear programming (MILP) model. The key incentive of this

chapter is to investigate the performance of the MILP formulation compared to the

NLP and MINLP formulation, and also to provide an alternative modelling approach

for ORC systems that can exploit the availability of MILP solvers. The chapter will

start with a detailed description of the MILP formulation modelling procedure that

implements piecewise linear approximations and different linear and integer pro-

gramming techniques. This will be applied first to a simple optimization problem

and then later to the Magmamax Binary Power Plant of Section 4.4.1. Lastly,

the complexity and the optimized results of the MILP model will be discussed and

compared to the NLP and MINLP counterpart in Chapters 5 and 6.

7.1 Introduction

Often one type of optimization formulation can be more advantageous than the oth-

ers due to financial constraints, compatibility issues with the modelling software,

the availability of optimization solvers and/or the importance of establishing global

optimality. Therefore, practitioners invest a considerable amount of time reformu-

lating their optimization problem into another equivalent formulation in order to

achieve better practical or optimization performance, as shown in [131, 132]. His-

torically, the availability and computational efficiency of linear programming (LP)

solvers, or even mixed-integer linear programming solvers, were significantly better

than some nonlinear programming solvers, which was a key incentive to reformulate
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nonlinear optimization problems to LPs or MILPs.

In general, it can be very difficult to predict if the nonlinear solver will converge

to a solution, especially with highly nonlinear and complex problems. This is evi-

dent in Section 5.4 where the global solvers (namely, BARON and SCIP) failed to

find a solution for most the MBPP’s working fluid pairs within the optimization

time limit of one hour. Therefore, it would be beneficial to provide an alterna-

tive modelling approach for ORC systems in replacement of the NLP and MINLP

models and potentially improve the optimization performance. However, given the

recent advancement in nonlinear optimization algorithms and the improvement in

optimization modelling platforms and computational performance of desktop hard-

ware, it is questionable if there are now sufficient compelling advantages for certain

real-world nonlinear chemical process systems to be completely reformulated into

LPs or MILPs.

In order to formulate the MILP model, the thermodynamic properties, the unit

operations and the bilinear terms in the energy balance equations need to be re-

gressed using piecewise linear approximations in conjunction with linear and integer

programming techniques. This inevitably will introduce additional auxiliary binary

and continuous variables and constraints that will need to be incorporated into the

optimization problem. This chapter also aims to compare the computational advan-

tages and disadvantages of linear and nonlinear formulations, and indicate if it is

advisable to formulate linear models for real-world ORC systems.

7.2 Mixed-Integer Linear Programming Formula-

tion Procedure

The following subsections will discuss the implementation of linear and integer pro-

gramming techniques in order to convert the NLP model into an equivalent MILP

model. This assumes that the NLP model is formulated using the modelling ap-

proach discussed in Chapter 3. While this chapter focuses on the conversion from

NLP to MILP model, the same concept would also be applicable to the MINLP

models in Chapter 6. In addition, all the functions in this proposed MILP formula-

tion are algebraic and provided explicitly to the solvers, thus they will be compatible

with global solvers that can deterministically find the global solution. However, it

is important to note the accuracy of the MILP will likely to be compromised due to

the linear approximations. While the accuracy can be improved by increasing the

number of piecewise breakpoints, this can add extra complexity by introducing more

additional auxiliary variables and constraints that can make the problem difficult
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to solve and troubleshoot.

7.2.1 Nonlinear Term Approximations

All the nonlinear terms in the NLP model will need to be identified and approx-

imated using linear approximations. For this research, these nonlinear terms are

mainly the thermodynamic routines, unit operation processes, and cost functions.

While it is possible to use a piecewise linear fit to approximate the thermodynamics

and unit operations via pwfit, the errors can become too large in some cases for

bivariate functions and cause a degrading concern to the model’s accuracy. This

is because pwfit can only divide the breakpoints of the piecewise function along

one of the axis and not both at the same time. Therefore, in order to address this

issue, an alternative method is needed for the MILP formulation. One of the best

piecewise linear approximations is the Triangle Method described in [128].

A comparison between the pwfit method and the Triangle Method shows that

the errors are significantly less for the Triangle Method, as shown in the error plots of

Figure 7.1 and Figure 7.2. In addition, the sum of squared errors (SSE) has decreased

from 22.9 to 13.2 from implementing the Triangle Method. However, the drawback

with the Triangle Method is the number of auxiliary variables (both binary and

continuous) and constraints are higher than the pwfit method for the same number

of breakpoints along the x-axis. Therefore, the Triangle Method will only be used

to approximate the nonlinear terms that cannot be accurately approximated using

the pwfit approach.

The Triangle Method can be incorporated into the optimization problem using

the following formulation:

n
∑

i=1

m
∑

j=1

αijf(xi, yj) = f̂ ,

n
∑

i=1

m
∑

j=1

αijxi = x,

n
∑

i=1

m
∑

j=1

αijyj = y,

n
∑

i=1

m
∑

j=1

αij = 1, αij ∈ [0, 1],

(7.1)

where αij is the auxiliary variable associated with each breakpoint (i.e., the 16 black

dots in the top plot of Figure 7.2), xi is the fixed breakpoint value along the x-axis,

yj is the fixed breakpoint value along the y-axis, f̂ is the approximated value of
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Figure 7.1: Approximating the turbine isentropic work of the Basaran ORC sys-
tem using the pwfit approach with linear surface fits, where the working fluid was
R227ea.

the nonlinear function evaluation at point x and y, and f(xi, yj) is the function

evaluation at the breakpoints xi and yj . For the above formulation to work, the αij

variables need to be defined as special order set type 3 (SOS3) variables, thus at

most three adjacent αij variables can be nonzero. This can be enforced using the

following constraints:

n−1
∑

i=1

m−1
∑

j=1

(buij + blij) = 1,

αij ≤ buij + blij + bui,j−1 + bli−1,j−1 + bui−1,j−1 + bli−1,j,

i = {1, 2, 3, ..., n},

j = {1, 2, 3, ..., m},

(7.2)

where buij and blij are the binary variables associated with the upper and lower tri-

angle, respectively, and the variables b∗0∗, b
∗
∗0, b

∗
n∗, and b∗∗m are set to zero.

Conversely, for the nonlinear univariate functions, such as the thermodynamic

properties of the working fluid shown in Figure 7.3, they will be approximated using

the pwfit method. This is because the accuracy of the approximations is generally
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Figure 7.2: Approximating the turbine isentropic work of the Basaran ORC system
using the Triangle Method, where the working fluid was R227ea.

sufficient for the purpose of this research.

7.2.2 Bilinear Term Approximation

Once all the nonlinear functions have been approximated using the Triangle Method

or the pwfit approach, there will be bilinear terms remaining in the optimization

problems that are mainly the products of the mass and enthalpy term in the energy

balance equations. Since some of the bilinear terms are nonseparable functions, they

need to be converted into a separable function as follows:

mA1hA1 = y1
2 − y2

2, (7.3)

where

y1 =
1

2
(mA1 + hA1),

y2 =
1

2
(mA1 − hA1).

(7.4)
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Figure 7.3: Piecewise linear approximation of R227ea enthalpy values at P ∈ [3.78,
10] bar and T = 363K.

If lmA1
≤ mA1 ≤ umA1

and lhA1
≤ hA1 ≤ uhA1

, both y1 and y2 are bounded as

1

2
(lmA1

+ lhA1
) ≤ y1 ≤

1

2
(umA1

+ uhA1
),

1

2
(lmA1

− uhA1
) ≤ y2 ≤

1

2
(umA1

− lhA1
).

(7.5)

Once the bilinear term is converted into the form shown in (7.3), the separable

terms (i.e., y1
2 and y2

2) can be approximated using the λ-Formulation [127, 128]

(see Figure 7.4) as follows:

n
∑

i=1

λif(xi) = f̂ ,

n
∑

i=1

λixi = x,

n
∑

i=1

λi = 1, λi ∈ [0, 1],

(7.6)

where f̂ is the approximated value of the separable term evaluation at x, f(xi) is

the separable term function evaluation at the breakpoint xi, and λi is the auxiliary

variable that need to defined as a special order set type 2 (SOS2). This can be
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enforced as follows:

n−1
∑

i=1

bi = 1,

λi ≤ bi−1 + bi, i = {1, 2, 3, ..., n},

(7.7)

where bi is the binary variable associated with the interval between two adjacent

breakpoints, and the variables b0 and bn are set to zero. The λ-Formulation (7.6) can

be viewed as the two-dimensional space of the Triangle Method formulation given

the similarities between the two formulations.

130 135 140 145 150

y
1

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

y
1

2

10
4

-85 -80 -75 -70 -65

y
2

4000

4500

5000

5500

6000

6500

7000

y
2

2

Figure 7.4: Piecewise linear approximation of y1
2 and y2

2 in (7.3) using the λ-
Formulation.

In general, a product of two variables can be replaced with one variable by equat-

ing/constraining the two approximated separable terms to a new single variable, i.e.,

x = f̂1 − f̂2 ≈ y1
2 − y2

2, thus this methodology can easily be extended to products

of more than two terms. However, it is important to note that the accuracy of the

overall approximation will decrease as the number of variables increases.

7.2.3 Fractional Objective Function

For optimization problems dealing with the rate of return, productivity ratios, and

economic analysis, the objective function is usually a fractional term, which is a

nonlinear function even if it is a ratio of two linear terms. In order to convert the

model into a regular linear model, the Charnes-Cooper transformation [25] can be

implemented, provided that both the numerator, denominator, and constraints are
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all linear terms. However, since there are binary variables in the proposed ORC

models due to the piecewise fit approximations, the Glover’s linearization scheme

[24] needs to also be incorporated into the optimization problem.

If all the nonlinear terms have been linearized up to this point, the optimization

problem should be

min
a⊤x + b⊤y + c

d⊤x + e⊤y + f

s.t. Gx +Hy ≤ k,

Geqx+Heqy = keq,

x ∈ R,

y ∈ {0, 1},

(7.8)

where d⊤x+ e⊤y + f > 0. If a new variable t is introduced and equated to

t =
1

d⊤x + e⊤y + f
, (7.9)

the fractional linear optimization problem in (7.8) can be written in terms of t as

min a⊤xt+ b⊤yt + ct

s.t. Gxt+Hyt ≤ kt,

Geqxt +Heqyt = keqt,

d⊤xt+ e⊤yt+ ft = 1,

xt ∈ R,

y ∈ {0, 1},

(7.10)

to eliminate the fractional term. If xt can be rewritten as z = xt, and yt can be

linearized using the Glover’s linearization scheme for each binary variable as

vi ≤ uyi,

vi ≤ t,

vi ≥ t− u(1− yi),

vi ≥ 0,

(7.11)
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the optimization problem in (7.10) can be reformulated as

min a⊤z+ b⊤v + ct

s.t. Gz+Hv ≤ kt,

Geqz+Heqv = keqt,

d⊤z+ e⊤v + ft = 1,

vi ≤ uyi,

vi ≤ t,

vi ≥ t− u(1− yi),

vi ≥ 0,

z ∈ R,

y ∈ {0, 1},

i = {1, 2, 3, ..., n},

(7.12)

where v = [v1, v2, ..., vn]
⊤, u is the upper bound of t, and n is the number of binary

variables.

This MILP formulation was implemented in [133] that had the following the

objective function:

J =
Ẇnet

ṁCW +
∑n

i=1 ṁWF,i
, (7.13)

where Ẇnet is the net output power of the plant, i.e., total turbine work minus total

pump work, ṁCW is the cooling water mass flow, and ṁWF is the working fluid mass

flow.

7.2.4 Automating the Conversion from NLP to MILP

The linearization formulations described in the previous subsections can be very

tedious and time-consuming to implement on large and complex ORC systems. Thus

it is more efficient to automate the procedure and build the MILP model from an

existing NLP model. As a result, a function called conv2milp was constructed in

MATLAB to automatically convert a SymBuilder NLP model into an equivalent

MILP model. The conv2milp algorithm that was developed for this research is

given in Algorithm 1.
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Algorithm 1: The algorithm of the conv2milp function that automatically

converts an NLP SymBuilder object to an equivalent MILP SymBuilder

object.

Check that the user entered an NLP SymBuilder object.

Extract and store the required NLP information, such as constraints,

expressions, objective function, etc.

Create a new SymBuilder object/template for the MILP model.

if user entered piecewise linear fit approximations then
replace the equivalent nonlinear functions with the piecewise linear fit

approximations.

for all the constraints and objective function terms do
identify and replace bilinear terms with their equivalent linear

approximations.

Add the old and new linear constraints, expressions, objective function

terms, constants, and bounds to the new SymBuilder object.

Build the new SymBuilder object.

if the new SymBuilder model has a fractional objective function then
apply the Charne-Cooper transformation and the Glover’s linearization

scheme. Rebuilt the new SymBuilder object.

Output the MILP SymBuilder object.

For a simple example, consider the following nonlinear program:

min 0.5x2
1 + 0.5x2

2 + 0.5x2
3 − 2x1 − 3x2 − x3

s.t. x1 + ex2 + x3 + x4 ≤ 2,

3x1 − 2x2 − 3x3
3 ≤ 1,

x1 − 3x2 + 2x2 ≤ 1,

0 ≤ x ≤ 2,

(7.14)

which has a quadratic objective function that is subjected to two nonlinear inequality

constraints and one linear inequality constraint. The problem can be built using the

SymBuilder framework as follows:

% New SymBuilder object
nlp = SymBuilder();

% Add objective
nlp.AddObj(‘0.5*x1^2 + 0.5*x2^2 + 0.5*x3^2 - 2*x1 - 3*x2 - x3’);

% Nonlinear expressions
nlp.AddExpression(‘fx3 = x3^3’);
nlp.AddExpression(‘fx2 = exp(x2)’);

% Add constraints
nlp.AddCon(‘x1 + fx2 + x3 + x4 <= 2’);
nlp.AddCon(‘3*x1 - 2*x2 - 3*fx3 <= 1’);
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nlp.AddCon(‘x1 - 3*x2 + 2*x2 <= 1’);

% Add bounds
nlp.AddBound(‘0 <= x <= 2’);

% Build SymBuilder object
Build(nlp)

This resulted in the following model statistics:

SymBuilder Object
BUILT in 0.068s with:
- 4 variables
- 1 objective

- 0 linear
- 1 quadratic
- 0 nonlinear

- 3 constraint(s)
- 1 linear
- 0 quadratic
- 2 nonlinear

- 8 bound(s)
- 0 integer variable(s)

Solving the NLP formulation of (7.14) using SCIP, the solver converged to -2.0196

for the objective function within 0.0234s that resulted in x1 = 0.4079, x2 = 0.4651,

x3 = 0, and x4 = 0. Leveraging off the SymBuilder framework, the NLP formulation

can be converted into an equivalent MILP formulation as follows:

%% MILP model
% Approximating the nonlinear expressions using piecewise linear fit
x = linspace(0,2,20);
fx2Fit = pwfit(x,exp(x),‘poly1’,linspace(0,2,5),‘optimized’);
fx3Fit = pwfit(x,x.^3,‘poly1’,linspace(0,2,5),‘optimized’);

% Compiling the piecewise linear fit objects
pwfitObj = {‘fx2(x2)’,fx2Fit;‘fx3(x3)’,fx3Fit};

% Bilinear term approximation settings
pwOptions = pwset(‘allTerms’,... %apply to all bilinear terms
‘drawPlot’,‘off’,... %don’t plot regression
‘numBreakpoint’,5); %number of breakpoints

% Convert NLP to MILP
milp = conv2milp(nlp,‘pwfitObj’,pwfitObj,‘pwsetOpts’,pwOptions);

where the two nonlinear terms (i.e., x3
3 and ex2) need to be explicitly approximated

using piecewise linear fit before it can be entered into conv2milp. As a result, the

SymBuilder object of the MILP formulation reported the following statistics:

SymBuilder Object
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BUILT in 1.319s with:
- 50 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 68 constraint(s)
- 68 linear
- 0 quadratic
- 0 nonlinear

- 100 bound(s)
- 20 integer variable(s)

- 0 integer
- 20 binary

Noticeably, the number of variables and constraints of the MILP formulation in-

creased dramatically from the NLP counterpart due to the implementation of linear

and integer programming techniques discussed in the previous subsections. Opti-

mizing the MILP formulation using SCIP, the solver converged to -2.0561 for the

objective function within 0.036s that resulted in x1 = 0.3978, x2 = 0.4945, x3 = 0

and x4 = 0. Evidently, the optimal result of the MILP formulation is close to the

NLP result with minor differences due to the approximations made to the nonlinear

and bilinear terms.

7.3 The MILP Formulation of the Magmamax Bi-

nary Power Plant

From the previous chapter, the Magamax Binary Power Plant MINLP model had

the highest average solve time out of all three ORC systems. Therefore, the MBPP

model was used as the case study for this chapter to see if a reformulation would help

improve the optimization performance. Utilizing the SymBuilder framework struc-

ture of the NLP formulation, the MILP formulation of the MBPP was constructed

as follows:

%% Building the MILP formulation of the Magmamax Binary Power Plant
% Compiling the piecewise linear fit objects
pwfitObj = {...
‘turbAIsenWork(PA,hA1)’,linTurbAIsenWorkFit;
‘turbBIsenWork(PB,hB1)’,linTurbBIsenWorkFit;
‘HmPTcA(PA)’,linHmTcAFit;
‘HmPTA1UbA(PA)’,linHmPTA1UbAFit;
‘HmPTA1LbA(PA)’,linHmPTA1LbAFit;
‘HsatVapB(PB)’,linHsatVapBFit;
‘HsatLiqB(PB)’,linHsatLiqBFit;
‘HmPTB1UbB(PB)’,linHmPTB1UbBFit;
‘HmPTB1LbB(PB)’,linHmPTB1LbBFit;
‘TA1(PA,hA1)’,linTA1Fit;
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‘TA2(hA2)’,linTA2A3Fit;
‘TA2P(hA2P)’,linTA2A3Fit;
‘TA3(hA3)’,linTA2A3Fit;
‘TA5(PA,hA5)’,linTA5Fit;
‘TA7(PA,hA7)’,linTA7Fit;
‘TB1(PB,hB1)’,linTB1Fit;
‘TB2(hB2)’,linTB2Fit;
‘TB4(PB,hB4)’,linTB4Fit;
‘TB5(PB)’,linTB5Fit;
‘TB5P(PB)’,linTB5Fit;
‘CturbA(WturbA)’,CturbAFit;
‘CturbB(WturbB)’,CturbBFit;
‘CpumpA(WpumpA)’,CpumpAFit;
‘CpumpB(WpumpB)’,CpumpBFit};

% Bilinear term approximation settings
pwOptions = pwset(‘allTerms’,... %apply to all bilinear terms
‘drawPlot’,‘off’,... %don’t plot regressions
‘numBreakpoint’,10); %number of breakpoints

% Convert NLP to MILP
milpMBPP = conv2milp(eoMBPP,‘pwfitObj’,pwfitObj,‘pwsetOpts’,pwOptions);

where the objective function was the net output power. This resulted a linear

optimization problem as a SymBuilder object that consisted of

SymBuilder Object
BUILT in 281.574s with:
- 1064 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 999 constraint(s)
- 999 linear
- 0 quadratic
- 0 nonlinear

- 2128 bound(s)
- 498 integer variable(s)

- 0 integer
- 498 binary

Evidently, compared to the MINLP formulation, the number of binary variables had

increased significantly from 21 to 498 due to the implementation of the piecewise

linear approximation on both the nonlinear and bilinear terms. Consequently, this

resulted in an increase in the total number of variables and constraints by 996 and

846, respectively.

The optimized net output powers of the MILP model using BARON, SCIP,

CPLEX, intlinprog, and GUROBI are shown in Table 7.1. These solvers were

selected based on their availability for academic use and their compatibility with

OPTI and MATLAB. One noticeable observation is that all the solvers converged
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successfully to a solution for every working fluid combination. Please refer to Ta-

ble 5.14 for the optimized net output powers of the NLP formulation, and Table 6.9

for the optimized net output powers of the MINLP formulation.

Table 7.1: The optimized net output powers [kW] of the Magmamax Binary Power
Plant’s MILP model.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le R600a 9616.3 9153.5 9270.6

R236ea 9645.0b 9199.1 9312.3a

R236fa 9259.9 8767.1 8893.3
RC318 8545.4 7834.8 8027.3

aintlinprog: 9311.7 kW
bCPLEX and intlinprog: 9644.8 kW

In two scenarios, the black-box solvers, namely, intlinprog and CPLEX, found

a local optimum as opposed to the global optimum, which is sometimes expected as

they cannot guarantee the global solution.

Analysing the solve times of the solvers in Table 7.2 showed that the local solvers

(namely, GUROBI and CPLEX) were on average faster than the global solvers.

CPLEX had the fastest average solve time of 11.8s, followed by GUROBI, BARON,

SCIP and intlinprog, respectively. Compared to the MINLP formulation, the av-

erage solve time of BARON and SCIP were 4.8x and 4.2x times slower, respectively,

for the MILP formulation. In addition, the performance of the MILP local solvers

were inferior to both the NLP and MINLP solver counterparts. It took the MILP

local solvers collectively (CPLEX, GUROBI, and intlinprog) on average 41.74s to

solve the problem, while it took the NLP local solvers (black-box) 0.032s and the

MINLP local solver (BONMIN) 6.64s. This does not support the initial assumption

that the MILP formulation can match or outperform the nonlinear formulations, de-

spite the use of advanced state-of-the-art MILP solvers like CPLEX and GUROBI.

This could be due to the adverse effect of the larger number of variables and con-

straints that increased the complexity of the MILP formulation [134] compared to

the nonlinear counterparts.

Reformulating the MILP model to minimize the specific rotating machinery cost,

the new model resulted in the following SymBuilder object:

SymBuilder Object
BUILT in 967.611s with:
- 1563 variables
- 1 objective

- 1 linear
- 0 quadratic
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- 0 nonlinear
- 3044 constraint(s)

- 3044 linear
- 0 quadratic
- 0 nonlinear

- 3126 bound(s)
- 498 integer variable(s)

- 0 integer
- 498 binary

Due to the fractional term of the objective function, the number of variables and

constraints had increased drastically from the net output power objective. While

the number of binary variables remained the same at 498, the total number of

variables and constraints had increased by 499 and 2045, respectively. The optimized

results of the plant’s specific rotating machinery cost are shown in Table 7.3. Please

refer to Table 5.16 for the optimized specific rotating machinery costs of the NLP

formulation, and Table 6.11 for the optimized results of the MINLP formulation.

In one of the cases, the optimized result of intlinprog was slightly better than

the global solvers’ solution. This is due to the inaccuracy of the linear approxima-

tions rendering the global optimum of the algebraic EO model different from the

SM model. For instance, the optimized result of R236fa:R32 for the algebraic EO

model using intlinprog was 251.38 k$/MW, and the optimized result of BARON

was 251.37 k$/MW, which shows that BARON did find a better solution. However,

when these optimal results were substituted into the SM model, the specific rotat-

ing machinery costs were different due to the linear approximations, hence why the

optimized result of intlinprog is slightly better than BARON in Table 7.3. Given

that the accuracy of the MILP model is compromised over the linearity of the model,

unlike the MINLP model in the previous chapter (see Table 7.7), there is a higher

possibility of having a different global optimum between the algebraic EO model

and the SM model. It is possible to address this issue by increasing the number of

breakpoints of the piecewise fit, but this can introduce more auxiliary variables and

constraints that can make the optimization even harder to solve.

With the additional increase of variables and constraints, both the local and

global solvers performed poorer than the former objective function. It took GUROBI,

intlinprog, and CPLEX about 6.7x, 13.3x, and 5.5x longer, respectively, to opti-

mize the problem and corresponds to a higher average number of nodes, as shown in

Table 7.4. In regard to the global solvers, it took BARON and SCIP about 9.0x and

9.1x longer, respectively, to optimize the second objective function. Similarly, the

average number of nodes for the global solvers had also increased from the previous

objective function, as shown in Table 7.5.

While most of the MILP solvers were successful in finding a solution for every
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Table 7.2: The solve times [s] of Table 7.1.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le

B
A
R
O
N R600a 28.7 23.6 16.1

R236ea 15.8 21.7 18.9
R236fa 34.3 27.5 36.4
RC318 26.1 27.6 30.2

S
C
IP

R600a 29.1 47.2 30.1
R236ea 30.5 70.7 43.9
R236fa 53.2 55.1 69.4
RC318 51.2 46.5 48.8

C
P
L
E
X R600a 7.4 7.5 6.9

R236ea 16.8 12.0 14.3
R236fa 13.6 11.5 10.8
RC318 8.1 17.7 14.6

in
tl
in
p
ro
g R600a 24.1 103.1 68.3

R236ea 112.3 171.5 52.2
R236fa 60.7 88.1 77.0
RC318 167.4 163.8 114.9

G
U
R
O
B
I R600a 3.9 4.0 4.9

R236ea 4.6 3.8 5.0
R236fa 4.5 59.1 52.3
RC318 3.5 7.4 4.6

Table 7.3: The optimized specific rotating machinery costs [k$/MW] of the Mag-
mamax Binary Power Plant’s MILP model.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le R600a 253.0 247.2 253.0

R236ea 247.6 241.3 247.3a

R236fa 257.4 251.4b 257.8
RC318 277.1 273.1c 280.1

aintlinprog: Maximum Time Reached
bintlinprog: 251.3 k$/MW
cintlinprog: 273.2 k$/MW
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working fluid pairs, the performance of the solvers was still inferior to the MINLP

formulation, as shown by the solve times in Table 7.6. On average, the solve times

of BARON and SCIP were 38.7x and 62.0x slower, respectively, when optimizing

the MILP formulation. This is also evident in Table 7.5 where the number of nodes

needed to solve the MILP formulation using the global solvers is on average higher

than the MINLP formulation. However, the BARON was able to converge to a

solution for all the working fluid pairs, which is significantly better than the NLP

counterpart.

Furthermore, the local MILP solvers again did not perform better than the non-

linear counterparts. On average, it took the local MILP solvers (CPLEX, intlin-

prog, and GUROBI) 488.4s to solve the problem, while it took the NLP solvers

(black-box solvers) 0.16s and the MINLP solver (BONMIN) 4.0s. As previously

discussed in Section 6.4.2.1, the average solve time comparison between the local

solvers would be more appropriate and reliable if more solvers were used, especially

in regards to the MINLP solvers, given that local solvers have different underlying

algorithms that can also result in different computational performance. Therefore,

the comparison between the local solvers presented in this chapter is a preliminary

assessment of the solvers’ performance.

The average relative errors between the algebraic EO model and the SM model

were larger with the MILP formulation than the MINLP counterpart, as shown

in Table 7.7. This highlights one of the disadvantages of the linearization proce-

dure. With the attempt to achieve an MILP model, the accuracy of the model was

compromised due to the linear approximations of the nonlinear and bilinear terms.

Inevitably, given the nonlinearity of the thermodynamic properties of the working

fluids, it is difficult to accurately model the ORC system using linear functions.

Generally, there is a possibility that MILP solvers can run into a time limitation

with a large number of binary variables, especially if there is a large difference

between the feasible solution and the optimal relaxed LP solution [64]. In addition,

given that MILP problems are NP-hard, there is no known algorithm that can solve

the problem in polynomial time. This means that it is much harder to solve large

MILP problems as the size of the problem increases. While the number of binary

variables can be reduced by decreasing the number of breakpoints of the piecewise

Table 7.4: The average number of nodes needed for the local solvers to optimize the
Magmamax Binary Power Plant’s MILP formulation.

CPLEX intlinprog GUROBI

Net Output Power 365204 112716 1689
Specific Rotating Machinery Cost 1392052 584738 32605
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Table 7.5: The average number of nodes needed for the global solvers to optimize
the Magmamax Binary Power Plant’s MINLP and MILP formulations.

BARON SCIP

MINLP MILP MINLP MILP

Net Output Power 22 107 3286 3199
Specific Rotating Machinery Cost 165 315 2121 35276

Table 7.6: The solve times [s] of Table 7.3. MTR: Maximum Time Reached.

LP Cycle
R290 R32 R143a

H
P

C
y
c
le

B
A
R
O
N R600a 168.1 90.9 274.2

R236ea 271.7 202.5 259.8
R236fa 238.1 156.3 321.8
RC318 200.3 186.5 397.7

S
C
IP

R600a 154.4 152.1 187.2
R236ea 356.0 109.1 444.0
R236fa 423.5 739.8 1043.4
RC318 514.5 306.8 792.4

C
P
L
E
X R600a 79.1 32.4 26.1

R236ea 117.7 39.1 50.7
R236fa 76.9 69.8 85.8
RC318 39.5 38.5 121.7

in
tl
in
p
ro
g R600a 1735.7 2968.6 730.9

R236ea 2633.6 1019.0 MTR
R236fa 958.7 712.0 3431.8
RC318 449.5 489.8 136.2

G
U
R
O
B
I R600a 47.6 22.8 88.8

R236ea 116.3 67.0 155.6
R236fa 85.6 89.7 132.9
RC318 68.1 86.9 89.1
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approximation, it might not be sensible as it could render the MILP model infeasible

or give an inaccurate representation of the ORC system. Furthermore, unlike NLP

solvers, supplying a good initial guess to MILP solvers does not always improve the

performance because all the MILP solvers in this research can automatically handle

this internally [135, 100]. Consequently, having a large number of variables would

require more effort from the solver to finding a feasible starting point and likely

leads to a longer CPU time. For the NLP and MINLP solvers, they benefited more

from the algebraic model structure; therefore, their short computational time can

be attributed to the availability of accurate derivatives and bypassing the use of the

finite difference method.

Table 7.7: The average relative errors between the optimized algebraic EO model
and the SM model of the Magmamax Binary Power Plant using SCIP.

MILP MINLP

Net Output Power 0.15% 0.04%
Specific Rotating Machinery Cost 0.10% 0.01%

Evidently, the performance of the MILP formulation cannot justify the effort to

linearize the nonlinear ORC formulation. However, the framework was developed

with flexibility in mind and, thus, can be implemented to other NLP problems

outside this research that can benefit from the MILP formulation. In addition,

given that NLP and MINLP problems generally require the user to enter a good

initial point, it might be beneficial to supply the initial point obtained from the

MILP model to the NLP model where the initial guess is hard to obtain. This

might potentially improve the performance and optimality of the solution.

7.4 Summary

This chapter discussed the MILP formulation of an ORC system, specifically the

Magmamax Binary Power Plant, using piecewise linear approximations and lin-

ear/integer programming techniques. Leveraging off the algebraic structure of NLP

model in Chapter 5, the equivalent MILP model was constructed using an auto-

mated approach through a MATLAB function conv2milp that was developed for

this research. This open up the ORC optimization problem to a whole set of MILP

solvers that can be utilized. In addition, the MILP formulation still retains the

algebraic structure as the NLP formulation and, thus, it is compatible with global

solvers that can deterministically guarantee the global optimal solution.

Due to the implementation of the piecewise linear approximations and the lin-

earization programming techniques, the number of variables and constraints in-
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creased significantly compared to the nonlinear counterparts. Consequently, this

had an adverse effect on the solvers’ performance despite the decrease in the non-

linearity of the optimization problem. While the results of the optimized MILP

formulation showed that most of the solvers managed to converge to a solution for

all the different working fluid pairs, the performance of the local solvers was inferior

to the NLP and MINLP counterparts. Similarly, the global solvers were also able

to find a solution for all the working fluid pairs using the MILP formulation, which

is significantly better than the NLP formulation, but their performance was inferior

to the MINLP counterpart. Therefore, based on this study, it is not advisable to

reformulation the nonlinear ORC model into an MILP model if the MINLP model

is obtainable.
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Chapter 8

Conclusions and Future Work

This chapter will conclude and review the work in this thesis. A summary of key

contributions and a critique of the research questions will be presented. This is then

followed by a discussion on the recommendations for future work.

8.1 Conclusion

This thesis has described different optimization formulations of ORC systems that

aim to provide an efficient and robust optimization approach to address some of

the common issues associated with sequential-modular optimization. Three differ-

ent real-world ORC systems that operated as industrial binary cycle power plants

were modelled and optimized in order to highlight the flexibility of the modelling

framework. These plants represent a number of advanced binary cycles that are

aimed to reduce thermodynamic losses, thus they provide a range of innovations in

the topology and complexity that can exist in an ORC design. Each plant was sub-

jected to a number of different working fluids that were compatible with the design

specifications of the plant. Two objective functions were investigated, namely, the

net output power and the specific rotating machinery cost, in order to illustrate a

linear and nonlinear objective function in this research.

The proposed optimization model is an algebraic equation-oriented model that

was derived using thermodynamic and regression analysis. The optimization results

showed that the algebraic EO model performed significantly better than the common

SM approach, which supports the existing literature. Furthermore, leveraging off

the algebraic structure of the EO model, a piecewise fit algorithm was developed to

reduce the nonlinearity of the model but further improve the accuracy of the model

and the optimization performance. Subsequently, this led to the final investigation
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of this research where the nonlinearity of the model was reduced down to only linear

terms, namely, in the form of a mixed-integer linear programming model.

8.2 Key Contributions

The following subsections highlight the key contributions of this thesis. The first

two contributions address the issues associated with the conventional optimization

for ORC systems, which is mainly due to the use of the SM approach. This is

achieved by formulating an algebraic EO model and attempt to strategically make

careful approximations to better suit the optimizers. The third contribution reviews

the implementation of the pwfit algorithm to improve the regressions’ accuracy and

reduce the nonlinearity of the model, which consequently enhance the overall opti-

mization performance. Finally, the last contribution reviews the equivalent MILP

formulation of one of the ORC models that was constructed using an automatic

conversion algorithm, conv2milp, and highlights the advantages and disadvantages

compared to its nonlinear counterparts.

8.2.1 Algebraic Equation-Oriented Models

Most optimization problems in the literature focus on the improvements of the op-

timized results, and not on the efficiency or optimality of the optimization problem.

Traditionally, process systems are modelled and optimized using the SM method due

to its intuitive approach to modelling. This is evident in the literature, where most

of the ORC systems are modelled and optimized using SM models. This is widely

acknowledged that this can be inefficient and lead to various optimization issues,

such as convergence issues, long execution time, and poor performance, compared

to the EO models. This thesis proposed an algebraic EO modelling approach for

ORC systems that is tailored for efficient and robust optimization, which have not

been extensively investigated in the literature, especially for large industrial ORC

systems. This involves deriving a set of equations that describe the process of the

system using thermodynamic and regression analysis.

From the optimization studies carried out in this research, the algebraic EO

approach significantly outperformed the SM approach as expected. Utilizing the

derivative-based black-box solvers, the algebraic EO models of the ORC systems can

be optimized within a few seconds. This was carried out on three real-world ORC

systems that cover a wide range of different configurations and operating conditions.

The structure of the algebraic model allows for analytical derivative information to
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be obtained and supplied to the solver, which resulted in a more robust optimization

and faster computational time. In addition, there is no need for a nonlinear equation

solver to converge the system cycle(s) as the EO model structure allows the cycle(s)

to be treated as any other equation.

In order to illustrate the inefficiency of the SM model for optimization, one of

the ORC plants was optimized using the SM approach. Consequently, even with a

smaller number of variables and constraints, and reduced optimality tolerances, the

derivative-based solvers still took significantly longer to converge to a solution and,

in some cases, were unsuccessful to find an optimal solution. This is due to the use

of the finite difference method that can only give an approximation of the derivative

information, which can lead to an infeasible point that causes the solver to fail or

terminate prematurely.

8.2.2 Global Optimality

In addition to achieving efficient and robust optimization, the algebraic EO model

is compatible with certain white-box solvers that can deterministically guarantee

the global optimum of the optimization problem. This is a major advantage in

optimization as it can translate to a large difference in the overall financial cost and

performance of the plant, which can be the deciding factor between a viable system

and one that is not. In addition, this study also helped to reinforce the fundamental

interest in the literature surrounding global optimality and the development of global

solvers. There is a need from practitioners for these solvers to exist, and hence it

is important to highlight the different applications where they can be implemented

and/or improved.

While the differences between the local and global results presented in this re-

search are small, this does not hinder the significant importance of achieving global

optimality for an ORC system. Given that ORC systems have low thermal efficien-

cies and a long operation life span of 25+ years, even a small difference can have

a significant competitive advantage. In addition, this research only considered two

objective functions, however, there are many other aspects of the ORC system that

can be optimized and analysed that can lead to a larger difference between the local

and global optimality. Therefore, providing a modelling approach that this tailored

for global optimization is a very advantageous contribution.
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8.2.3 Regression Accuracy and Optimization Performance

Improvement

In order for the ORC model to be explicitly algebraic and analytically differentiable,

the thermodynamic routines and unit operation processes need to be approximated

using regression analysis. In some cases, the nonlinearity of the thermodynamics or

nonlinear functions cannot be accurately approximated using a single curve/surface

fit, which can lead to an inaccurate model. While it might be possible to increase

the order of the polynomial fit to obtain better accuracy, this can increase the non-

linearity of the model and might have an adverse effect on the performance of the

optimization solver. In order to address this issue, a piecewise fit algorithm, called

pwfit, was developed in MATLAB to approximate nonlinear univariate and bivari-

ate functions. Unlike other piecewise fit approximation proposed in the literature,

pwfit is not limited to linear approximations and allows higher order polynomial

functions to be used. This inherently offers more level of flexibility and accuracy

for the overall regression. As shown in Chapter 6, the accuracy of the regression fit

can often be improved by using the proposed piecewise fit approximation instead of

the single fit approximation. Furthermore, the location of the breakpoints can also

be allocated manually by the user or optimized automatically in order to further

improve the accuracy of the regression.

In addition to improving the accuracy of the model, the performance of the solver

can also be improved by reducing the nonlinearity of the optimization problem.

Leveraging off the piecewise fit algorithm, the order of the polynomial fits can be

decreased in some cases without compromising on the accuracy of the model. As

shown in Chapter 6, the performance of the white-box solvers improved significantly

from decreasing all the constraints to only quadratic and linear functions. This was

clearly prominent with the Magmamax Binary Power Plant model, whereby the

BARON was able to find a solution for all the working fluids pairs as opposed to

the NLP model counterpart.

8.2.4 Linearization of the Nonlinear Model

A nonlinear ORC model was successfully converted into an equivalent MILP prob-

lem using an algorithm developed for this research, which involved implementing

a combination of piecewise linear approximations and linear/integer programming

techniques, such as the Glover’s linearization scheme and the Charnes-Cooper trans-

formation. While the linear structure was perceived as the ideal formulation for op-

timization, the adverse effect of the substantial increase in the number of auxiliary

variables and constraints due to the piecewise linear approximations and lineariza-
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tion techniques resulted in an inferior computational performance compared to the

nonlinear counterparts.

The implication of the MILP optimized results and performance highlighted that

it is not necessarily advantageous to linearize the nonlinear ORC model. In some

cases, it is enough to linearize and/or reduce the order of some nonlinear terms

to achieve a more favourable optimization performance. While the thesis mainly

focused on modelling and optimizing ORC systems, the framework was developed

with flexibility in mind and can be applied to other nonlinear problems outside this

research. Therefore, the proposed MILP formulation can be used as an alternative

approach for when the nonlinear optimization fails. In addition, the MILP model

can exploit the available MILP solvers that could potentially help improve the per-

formance of some nonlinear solvers by generating the initial points that are hard to

obtain.

8.3 An Assessment of the Proposed Research Ques-

tions

To conclude the contributions of this research, the research questions in Section 1.5

will be assessed below:

1. Can we formulate equation-orientated models of large and complex ORC sys-

tems that are algebraic in structure and tailored for efficient and robust opti-

mization?

Three large and complex ORC systems were successfully modelled using an

equation-oriented approach. By approximating the thermodynamic routines

and the unit operation process using polynomial functions, the model can be

expressed algebraically that can be exploited by the optimization solvers. The

algebraic structure allows the solvers to obtain accurate derivatives and matrix

sparsity information that lead to efficient and robust optimization. In addition,

the algebraic structure consists of functions that are compatible with certain

white-box solvers, thus the global optimum of the optimization problem can

be found using solvers such as SCIP and BARON.

2. Can the performance of some optimization solvers be improved by reducing the

deleterious effect of the nonlinearity of the optimization ORC model without

compromising, if not improving, on the accuracy of the approximated model?
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The number of nonlinear constraints of the algebraic EO model can be reduced

by using piecewise regressions to approximate the nonlinear model. Conse-

quently, the optimization performance of the white-box solvers was improved

by decreasing the nonlinearity of the model, despite having more variables and

constraints from implementing the piecewise fit approximations. In addition,

the accuracy of the ORC models was not compromised but was improved by

using quadratic polynomial piecewise fits, instead of the common piecewise lin-

ear fit approximation methods proposed in the literature, and optimizing the

allocation of the breakpoints. These piecewise fit features were incorporated

into the pwfit algorithm that was developed specifically for this research.

3. Is it possible to reformulate the nonlinear algebraic EO model of an ORC

system into an equivalent mixed-integer linear programming model using lin-

ear/integer programming techniques? In addition, given the improvement in

nonlinear solver algorithms and the advancement in computer hardware, can

the mixed-integer linear model improve or match the performance of the non-

linear counterpart as traditionally concluded in the literature?

Leveraging off the algebraic EO model structure of the ORC model and us-

ing the linear/integer programming techniques and piecewise linear approx-

imations, the nonlinear model was successfully converted into an equivalent

mixed-integer linear programming model. This linearization process was auto-

mated using a MATLAB function called conv2milp that was developed specif-

ically for this research. Given the significant amount of auxiliary variables and

constraints that were introduced to the optimization problem due to the lin-

earization methods, the performance of the MILP model was inferior to the

nonlinear model counterparts that were presented in thesis research.

8.4 Recommendation for Future Work

There are several areas that can be further developed and investigated as a natural

extension to this research or as a possible application for the proposed modelling

framework. However, given the time and financial constraints, it was not possible to

include them in this research. However, they are highlighted below for future work

and for researchers that are interested in further work in this area.
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8.4.1 Binary Cycle Power Plant Optimization

The plant models presented in this thesis were assumed to operate in ideal condi-

tions, e.g., there are no pressure drops or heat loss across the exchangers, which is

common in the literature. While this might be suitable for most preliminary design

and optimization studies, it would be more practical to investigate plant models that

are not ideal. This might involve obtaining real operating data from existing plants,

power companies, or plant suppliers over a significant period of time. However, this

can be difficult given that usually this information is confidential and cannot be

published.

A simpler alternative is to model the plant using more realistic unit operation

modules/models from existing chemical modelling platforms, such as Aspen Plus and

VMGSim, that were developed from empirical and test data. This will also include

using the real thermodynamic properties of the brine and its compositions, instead

of pure water. These unit operation models and thermodynamic properties will then

be approximated using the same procedures discussed in this thesis to obtain the

algebraic EO model and then optimized. It would be interesting to compare the

optimal results between an ideal and a realistic model to see if there is a significant

difference to raise a concern surrounding the use of ideal models.

In addition, it would be worthwhile to investigate other objective functions,

such as a multi-objective function that is associated with the system’s cost, yield

and profit combined. This will help to further test the limitation and flexibility of

the proposed framework and indicate which areas need to be improved or if they

are not applicable to this work. Furthermore, the plant models should be optimized

with several numbers of solvers that vary in different algorithms for each of the

optimization problems to provide a more reliable performance comparison across

the different formulations.

8.4.2 Piecewise Approximation of Univariate and Bivariate

Functions

The current pwfit algorithm has some limitations that can be addressed to improve

the accuracy of the regression fit. Given that the proposed modelling framework

in thesis relies heavily on an accurate and flexible regression toolbox, it would be

significantly beneficial for the overall performance and accuracy of the ORC model

if the pwfit algorithm can be further improved.

First, the current algorithm only allows the breakpoints to be allocated along the
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x-axis for bivariate functions, which can limit the use of some nonlinear functions

and result in poor regression accuracy. Therefore, to accommodate a wider range of

other nonlinear functions, the algorithm should also allow the user to specify and

optimize the allocations of the breakpoints along the y-axis.

Second, the current algorithm does not allow each subfunction to have a different

polynomial function from one another. This means that some parts of the regres-

sion can be overcompensated by the high order nonlinear fit model, which can add

unnecessary complexity to the optimization problem. It would be more sensible to

allow the user to select the fit model for each subfunction or automate the selection

process to get the best fit possible with the lowest order and number of polynomial

fits.

Third, the pwfit algorithm should incorporate other nonlinear functions, such as

the exponential functions, logarithmic functions, trigonometric functions, etc., that

are currently not available and also allow the users to enter their own fit model. This

might be difficult to implement, given that the algorithm requires the Vandermonde

matrix to be derived, which is not possible with non-polynomial functions that

are not linear in the parameters. Therefore, another alternative approach will be

required to incorporate the non-polynomial functions with the current algorithm.

8.4.3 Optimization of the MILP Formulation

The poor performance of the mixed-integer linear programming formulation was due

to the substantial increase in the number of binary variables, which subsequently

resulted in more auxiliary decision variables and constraints. Therefore, investigat-

ing ways to reduce the number of binary variables in the MILP model (and also in

the MINLP model) will improve the optimization performance and lead to a shorter

solve time. It might also be possible to utilize the built-in special order set type

feature in some of the optimization solvers to reduce the number of binary variables

and constraints.

While the optimization performance of the MILP model presented in this re-

search did not perform better than their nonlinear counterparts. It would be worth-

while to implement the functionality of the conv2milp function to other optimization

problems outside this research. Given that most of the process engineering prob-

lems (see Table 2.2) are NLP and MINLP problems, there might be cases where the

MILP formulation is more beneficial.
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Appendix A

The Explicit Optimization

Problem of Basaran ORC System

The following optimization problem is detailed in Section 3.2. It is assumed that

the objective function is the net output power of the plant and the working fluid is

R227ea.

min − Ẇnet

s.t. ṁWFhA1 + ṁBRhBR2 − ṁWFhA2 − ṁBRhBR3 = 0,

ṁWFhA2 + ṁBRhBR1 − ṁWFhA3 − ṁBRhBR2 = 0,

ṁWFhA3 − Ẇturb − ṁWFhA4 = 0,

ṁWFhA4 + ṁCWhCW1 − ṁWFhA5 − ṁCWhCW2 = 0,

ṁWFhA5 + Ẇpump − ṁWFhA1 = 0,

Ẇpump =
∆ĥis,pumpṁWF

ηpump
,

Ẇturb = ∆ĥis,turbηturbṁWF,

hA3 ≤ ĥ@369K,PA1∈[PA5+1,10] bar,

hA3 ≥ ĥ@Tg@10bar,PA1∈[PA5+1,10] bar,

hA2 = ĥf@PA1∈[PA5+1,10],

TBR1 − T̂A3 ≥ 1,

T̂BR2 − T̂A2 ≥ 1,

TBR3 − T̂A1 ≥ 1,

T̂A4 − TCW2 ≥ 1,

Ẇnet = Ẇturb − Ẇpump,

(A.1)
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where

∆ĥis,turb = 0.0206P 3
A1 − 0.41P 2

A1 − 0.000552P 2
A1hA4+

0.0186PA1hA4 + 0.556PA1 − 0.0424hA4 − 0.174,

∆ĥis,pump = − 1.02×−5 P 2
A1 + 0.0691PA1 − 0.192,

ĥ@369K,PA1∈[PA5+1,10] bar = − 0.000526P 3
A1 − 0.00574P 2

A1 − 0.839PA1 + 403,

ĥ@Tg@10bar,PA1∈[PA5+1,10] bar = − 0.00432P 3
A1 + 0.0289P 2

A1 − 1.33PA1 + 372,

ĥf@PA1∈[PA5+1,10] = 0.0297P 3
A1 − 0.94P 2

A1 + 15.2PA1 + 176,

T̂A1 = − 0.0146PA1 + 0.88hA1 + 97.3,

T̂A2 = − 0.312P 2
A1 + 9.72PA1 + 260,

T̂A3 = − 3.77× 10−5h2
A3 − 0.0179PA1hA3+

1.21hA3 + 8.12PA1 − 119,

T̂A4 = − 0.000753h2
A4 + 1.7hA4 − 197,

T̂BR2 = 0.238hBR2 + 273,

(A.2)

and the bounds of the decision variables are

211.20 ≤ hA1 ≤ 211.77,

221.77 ≤ hA2 ≤ 263.74,

356.82 ≤ hA3 ≤ 399.59,

330.77 ≤ hA4 ≤ 395.72,

255.14 ≤ hBR ≤ 401.98,

10.00 ≤ ṁWF ≤ 100.0,

1100.0 ≤ ṁCW ≤ 1300,

3.78 ≤ PA1 ≤ 10.00,

733.20 ≤ Ẇnet ≤ 1222.00,

30.17 ≤ Ẇpump ≤ 50.28,

763.37 ≤ Ẇturb ≤ 1272.28.

(A.3)

The remaining variables that are not listed in (A.3) are constants and can be

found or calculated from Table 3.2.
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Appendix B

Organic Rankine Cycle

SymBuilder Models

This appendix details the MATLAB models of the three binary cycle power plants

that are described in Chapter 4. Refer to the corresponding sections in Chapter 4 for

the process flow diagram and more information about the individual plant. These

models were constructed using the SymBuilder framework via the OPTI Toolbox.

To run these models, the reader should refer to the attached files that consist of all

the different optimization formulations of each individual model.

B.1 DOEP SymBuilder Model

The SymBuilder model of the DOE Pilot Plant is shown below, which is as per to

the assumptions and specifications described in Section 4.2.1. The full simulation

file and the thermodynamic approximations are provided in the attachment under

the DOE Pilot Plant folder.

%% Building the algebraic EO NLP/MINLP model
eoDOEP = SymBuilder();

% Brine constants
eoDOEP.AddConstant(‘mBR’,mBR);
eoDOEP.AddConstant(‘hBR1’,hBR1);
eoDOEP.AddConstant(‘hBR5’,hBR5);
eoDOEP.AddConstant(‘TBR1’,TBR1);
eoDOEP.AddConstant(‘TBR5’,TBR5);
% Cooling water constants
eoDOEP.AddConstant(‘hCW1’,hCW1);
eoDOEP.AddConstant(‘hCW2’,hCW2);
eoDOEP.AddConstant(‘TCW1’,TCW1);
eoDOEP.AddConstant(‘TCW2’,TCW2);
% ORC constants
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eoDOEP.AddConstant(‘nt’,TURB_EFF);
eoDOEP.AddConstant(‘np’,PUMP_EFF);
eoDOEP.AddConstant(‘h8’,h8);
eoDOEP.AddConstant(‘T8’,T8);
eoDOEP.AddConstant(‘z’,z);
% Cost constants
eoDOEP.AddConstant(‘C0turb’,C0turb);
eoDOEP.AddConstant(‘W0turb’,W0turb);
eoDOEP.AddConstant(‘a0turb’,a0turb);
eoDOEP.AddConstant(‘C0pump’,C0pump);
eoDOEP.AddConstant(‘W0pump’,W0pump);
eoDOEP.AddConstant(‘a0pump’,a0pump);

% Energy balance equations
eoDOEP.AddCon(‘mWF*h8 + Wpump - mWF*h1 = 0’);
eoDOEP.AddCon(‘mWF*h1 - mWF*h2 + mBR*hBR4 - mBR*hBR5 = 0’);
eoDOEP.AddCon(‘z*mWF*h3 - z*mWF*h4 + mBR*hBR2 - mBR*hBR3 = 0’);
eoDOEP.AddCon(‘z*mWF*h4 - z*mWF*h5 + mBR*hBR1 - mBR*hBR2 = 0’);
eoDOEP.AddCon(‘z*mWF*h5 - WturbHP - z*mWF*h6 = 0’);
eoDOEP.AddCon(‘mWF*h7 - mWF*h8 + mCW*hCW1 - mCW*hCW2 = 0’);
eoDOEP.AddCon(‘(1-z)*mWF*h9 - (1-z)*mWF*h10 + mBR*hBR3 - mBR*hBR4 = 0’);
eoDOEP.AddCon(‘(1-z)*mWF*h10 - WturbLP - (1-z)*mWF*h11 = 0’);
eoDOEP.AddCon(‘z*mWF*h6 + (1-z)*mWF*h11 - mWF*h7 = 0’);

% Valve constraints
eoDOEP.AddCon(‘h3 = h9’);
eoDOEP.AddCon(‘h2 = h9’);

% Turbine and pump works
eoDOEP.AddCon(‘WturbHP = hpTurbIsen*nt*mWF*z’);
eoDOEP.AddCon(‘WturbLP = lpTurbIsen*nt*mWF*(1-z)’);
eoDOEP.AddCon(‘Wpump = pumpIsen*mWF/np’);
% Net output power
eoDOEP.AddCon(‘Wnet = WturbHP+WturbLP-Wpump’);
% Costs
eoDOEP.AddExpression(‘CturbLP = C0turb*((WturbLP)/W0turb)^a0turb’);
eoDOEP.AddExpression(‘CturbHP = C0turb*((WturbHP)/W0turb)^a0turb’);
eoDOEP.AddExpression(‘Cpump = C0pump*((Wpump)/W0pump)^a0pump’);

% Adding approximations
AddPwFit(‘hpTurbIsen(P5,h5)’,hpTurbIsenWorkFit,eoDOEP);
AddPwFit(‘lpTurbIsen(P10,h10)’,lpTurbIsenWorkFit,eoDOEP);
AddPwFit(‘pumpIsen(P5)’,pumpIsenWorkFit,eoDOEP);
AddPwFit(‘hpHmPT5Ub(P5)’,hpHmPT5UbFit,eoDOEP);
AddPwFit(‘hpHmPT5Lb(P5)’,hpHmPT5LbFit,eoDOEP);
AddPwFit(‘hpSatLiq(P5)’,hpSatLiqFit,eoDOEP);
AddPwFit(‘lpHmPT10Ub(P10)’,lpHmPT10UbFit,eoDOEP);
AddPwFit(‘lpHmPT10Lb(P10)’,lpHmPT10LbFit,eoDOEP);
AddPwFit(‘lpSatLiq(P10)’,lpSatLiqFit,eoDOEP);
AddPwFit(‘T7(h7)’,T7Fit,eoDOEP);
AddPwFit(‘T1(P5,h1)’,T1Fit,eoDOEP);
AddPwFit(‘T2(P5,h2)’,T2Fit,eoDOEP);
AddPwFit(‘TBR4(hBR4)’,TBRFit,eoDOEP);
AddPwFit(‘T9(h9)’,T9Fit,eoDOEP);
AddPwFit(‘T10(P10,h10)’,T10Fit,eoDOEP);
AddPwFit(‘TBR3(hBR3)’,TBRFit,eoDOEP);
AddPwFit(‘T4(h4)’,T4Fit,eoDOEP);
AddPwFit(‘TBR2(hBR2)’,TBRFit,eoDOEP);
AddPwFit(‘T5(P5,h5)’,T5Fit,eoDOEP);

% ORC constraints
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eoDOEP.AddCon(‘hpSatLiq = h4’);
eoDOEP.AddCon(‘h5 <= hpHmPT5Ub’);
eoDOEP.AddCon(‘hpHmPT5Lb <= h5’);
eoDOEP.AddCon(‘lpSatLiq = h9’);
eoDOEP.AddCon(‘h10 <= lpHmPT10Ub’);
eoDOEP.AddCon(‘lpHmPT10Lb <= h10’);
eoDOEP.AddCon(‘P10 <= P5’);
eoDOEP.AddCon(‘1 <= (TBR4-T2)’);
eoDOEP.AddCon(‘1 <= (TBR5-T1)’);
eoDOEP.AddCon(‘1 <= (T7-TCW2)’);
eoDOEP.AddCon(‘1 <= (TBR3-T10)’);
eoDOEP.AddCon(‘1 <= (TBR4-T9)’);
eoDOEP.AddCon(‘1 <= (TBR2-T4)’);
eoDOEP.AddCon(‘1 <= (TBR3-T2)’);
eoDOEP.AddCon(‘1 <= (TBR1-T5)’);
% Brine constraints
eoDOEP.AddCon(‘hBR3 <= hBR2’);
eoDOEP.AddCon(‘hBR4 <= hBR3’);

% ORC Bounds
eoDOEP.AddBounds(sym(‘h1’),h1Lb,h1Ub);
eoDOEP.AddBounds(sym(‘h2’),h9Lb,h9Ub);
eoDOEP.AddBounds(sym(‘h3’),h9Lb,h9Ub);
eoDOEP.AddBounds(sym(‘h4’),h4Lb,h4Ub);
eoDOEP.AddBounds(sym(‘h5’),h5Lb,h5Ub);
eoDOEP.AddBounds(sym(‘h6’),h7Lb,h6Ub);
eoDOEP.AddBounds(sym(‘h7’),h7Lb,h7Ub);
eoDOEP.AddBounds(sym(‘h9’),h9Lb,h9Ub);
eoDOEP.AddBounds(sym(‘h10’),h10Lb,h10Ub);
eoDOEP.AddBounds(sym(‘h11’),h7Lb,h11Ub);
eoDOEP.AddBounds(sym(‘P5’),P5Lb,P5Ub);
eoDOEP.AddBounds(sym(‘P10’),P10Lb,P10Ub);
eoDOEP.AddBounds(sym(‘mWF’),mWFLb,mWFUb);
eoDOEP.AddBounds(sym(‘Wpump’),WpumpLb,WpumpUb);
eoDOEP.AddBounds(sym(‘WturbLP’),WturbLPLb,WturbLPUb);
eoDOEP.AddBounds(sym(‘WturbHP’),WturbHPLb,WturbHPUb);
% Brine and cooling water bounds
eoDOEP.AddBounds(sym(‘hBR’),hBR5,hBR1);
eoDOEP.AddBounds(sym(‘mCW’),mCWLb,mCWUb);
% Net output power bound
eoDOEP.AddBounds(sym(‘Wnet’),WnetLb,WnetUb);

%Objective function
switch (1)

case 1 % Net power
eoDOEP.AddObj(‘-(Wnet)’);

case 2 % Specific rotating machinery cost
eoDOEP.AddObj(‘(CturbLP+CturbHP+Cpump)/(Wnet*1e-3)’);

end

%Building the optimization problem
Build(eoDOEP)
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B.2 USGP SymBuilder Model

The SymBuilder model of the USGeo Plant is shown below, which is as per to the

assumptions and specifications described in Section 4.3.1. The full simulation file

and the thermodynamic approximations are provided in the attachment under the

USGeo Plant folder.

%% Building the algebraic EO NLP/MINLP model
eoUSGP = SymBuilder();

% Brine constants
eoUSGP.AddConstant(‘mBR’,mBR);
eoUSGP.AddConstant(‘hBR1’,hBR1);
eoUSGP.AddConstant(‘hBR8’,hBR8);
eoUSGP.AddConstant(‘TBR1’,TBR1);
eoUSGP.AddConstant(‘TBR8’,TBR8);
eoUSGP.AddConstant(‘zBR’,zBR);
eoUSGP.AddConstant(‘hBRLb’,hBRLb); % The lowest brine enthalpy
% Cooling water constants
eoUSGP.AddConstant(‘TCW3’,TCW3);
eoUSGP.AddConstant(‘TCW4’,TCW4);
eoUSGP.AddConstant(‘hCW1’,hCW1);
eoUSGP.AddConstant(‘hCW2’,hCW2);
eoUSGP.AddConstant(‘hCW3’,hCW3);
eoUSGP.AddConstant(‘hCW4’,hCW4);

% ORC-A constants
eoUSGP.AddConstant(‘hA7’,hA7);
eoUSGP.AddConstant(‘TA7’,TA7);
eoUSGP.AddConstant(‘ntA’,TURBA_EFF);
eoUSGP.AddConstant(‘npA’,PUMPA_EFF);
eoUSGP.AddConstant(‘dTrec’,dTrec);
% ORC-B constants
eoUSGP.AddConstant(‘hB5’,hB5);
eoUSGP.AddConstant(‘TB5’,TB5);
eoUSGP.AddConstant(‘ntB’,TURBB_EFF);
eoUSGP.AddConstant(‘npB’,PUMPB_EFF);
% Cost constants
eoUSGP.AddConstant(‘C0turb’,C0turb);
eoUSGP.AddConstant(‘W0turb’,W0turb);
eoUSGP.AddConstant(‘a0turb’,a0turb);
eoUSGP.AddConstant(‘C0pump’,C0pump);
eoUSGP.AddConstant(‘W0pump’,W0pump);
eoUSGP.AddConstant(‘a0pump’,a0pump);

% Energy balance of ORC-A
eoUSGP.AddCon(‘hA1*mA + hA5*mA - hA2*mA - hA6*mA = 0’);
eoUSGP.AddCon(‘hA6*mA + hCW1*mCWA - hA7*mA - hCW3*mCWA = 0’);
eoUSGP.AddCon(‘hA7*mA + WpumpA - hA1*mA = 0’);
eoUSGP.AddCon(‘hA2*mA + hBR5*(1-zBR)*mBR - hA3*mA - hBR7*(1-zBR)*mBR = 0’);
eoUSGP.AddCon(‘hA3*mA + hBR1*mBR - hA4*mA - hBR2*mBR = 0’);
eoUSGP.AddCon(‘hA4*mA - WturbA - hA5*mA = 0’);

% Energy balance of ORC-B
eoUSGP.AddCon(‘hB1*mB + hBR4*zBR*mBR - hB2*mB - hBR6*zBR*mBR = 0’);
eoUSGP.AddCon(‘hB2*mB + hBR2*mBR - hB3*mB - hBR3*mBR = 0’);
eoUSGP.AddCon(‘hB3*mB - WturbB - hB4*mB = 0’);
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eoUSGP.AddCon(‘hB4*mB + hCW2*mCWB - hB5*mB - hCW4*mCWB = 0’);
eoUSGP.AddCon(‘hB5*mB + WpumpB - hB1*mB = 0’);

% Turbine and pump works
eoUSGP.AddCon(‘WturbA = mA*ntA*turbAIsenWork’);
eoUSGP.AddCon(‘WturbB = mB*ntB*turbBIsenWork’);
eoUSGP.AddCon(‘WpumpA = mA*pumpAIsenWork/npA’);
eoUSGP.AddCon(‘WpumpB = mB*pumpBIsenWork/npB’);
% Net output power
eoUSGP.AddCon(‘Wnet = WturbA+WturbB-WpumpA-WpumpB’);

% Costs
eoUSGP.AddExpression(‘CturbA = C0turb*(WturbA/W0turb)^a0turb’);
eoUSGP.AddExpression(‘CturbB = C0turb*(WturbB/W0turb)^a0turb’);
eoUSGP.AddExpression(‘CpumpA = C0pump*(WpumpA/W0pump)^a0pump’);
eoUSGP.AddExpression(‘CpumpB = C0pump*(WpumpB/W0pump)^a0pump’);

% ORC-A approximations
AddPwFit(‘turbAIsenWork(PA,hA4)’,nlTurbAIsenWorkFit,eoUSGP);
AddPwFit(‘pumpAIsenWork(PA)’,nlPumpAIsenWorkFit,eoUSGP);
AddPwFit(‘HmPTA4UbA(PA)’,nlHmPTA4UbFit,eoUSGP);
AddPwFit(‘HmPTA4LbA(PA)’,nlHmPTA4LbFit,eoUSGP);
AddPwFit(‘satLiqA(PA)’,nlSatLiqHFitA,eoUSGP);
AddPwFit(‘TA1(PA,hA1)’,TA1Fit,eoUSGP);
AddPwFit(‘TA2(PA,hA2)’,TA2Fit,eoUSGP);
AddPwFit(‘TA3(hA3)’,TA3Fit,eoUSGP);
AddPwFit(‘TA4(PA,hA4)’,TA4Fit,eoUSGP);
AddPwFit(‘TA5(hA5)’,TA5A6Fit,eoUSGP);
AddPwFit(‘TA6(hA6)’,TA5A6Fit,eoUSGP);
% ORC-B approximations
AddPwFit(‘turbBIsenWork(PB,hB3)’,nlTurbBIsenWorkFit,eoUSGP);
AddPwFit(‘pumpBIsenWork(PB)’,nlPumpBIsenWorkFit,eoUSGP);
AddPwFit(‘HmPTB3Ub(PB)’,nlHmPTB3UbFit,eoUSGP);
AddPwFit(‘HmPTB3Lb(PB)’,nlHmPTB3LbFit,eoUSGP);
AddPwFit(‘satLiqB(PB)’,nlSatLiqHFitB,eoUSGP);
AddPwFit(‘TB1(PB,hB1)’,TB1Fit,eoUSGP);
AddPwFit(‘TB2(hB2)’,TB2Fit,eoUSGP);
AddPwFit(‘TB3(PB,hB3)’,TB3Fit,eoUSGP);
AddPwFit(‘TB4(hB4)’,TB4Fit,eoUSGP);
% Brine approximations
AddPwFit(‘TBR2(hBR2)’,TBRFit,eoUSGP);
AddPwFit(‘TBR3(hBR3)’,TBRFit,eoUSGP); % Same as TBR5
AddPwFit(‘TBR6(hBR6)’,TBRFit,eoUSGP);
AddPwFit(‘TBR7(hBR7)’,TBRFit,eoUSGP);

% ORC-A constraints
eoUSGP.AddCon(‘hA4 <= HmPTA4UbA’);
eoUSGP.AddCon(‘HmPTA4LbA <= hA4’);
eoUSGP.AddCon(‘hA3 = satLiqA’);
eoUSGP.AddCon(‘TA6 = TA7 + dTrec’);
eoUSGP.AddCon(‘hA1 <= hA2’);
eoUSGP.AddCon(‘hA6 <= hA5’);
eoUSGP.AddCon(‘1 <= (TA6-TCW3)’);
eoUSGP.AddCon(‘1 <= (TA5-TA2)’);
eoUSGP.AddCon(‘1 <= (TA6-TA1)’);
eoUSGP.AddCon(‘1 <= (TBR3-TA3)’);
eoUSGP.AddCon(‘1 <= (TBR7-TA2)’);
eoUSGP.AddCon(‘1 <= (TBR1-TA4)’);
eoUSGP.AddCon(‘1 <= (TBR2-TA3)’);
% ORC-B constraints
eoUSGP.AddCon(‘hB3 <= HmPTB3Ub’);
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eoUSGP.AddCon(‘HmPTB3Lb <= hB3’);
eoUSGP.AddCon(‘hB2 = satLiqB’);
eoUSGP.AddCon(‘1 <= (TB4-TCW4)’);
eoUSGP.AddCon(‘1 <= (TBR3-TB2)’);
eoUSGP.AddCon(‘1 <= (TBR6-TB1)’);
eoUSGP.AddCon(‘1 <= (TBR2-TB3)’);
% Brine constraints
eoUSGP.AddCon(‘hBR6 <= hBR4’);
eoUSGP.AddCon(‘hBR7 <= hBR5’);
eoUSGP.AddCon(‘hBR5 = hBR4’);
eoUSGP.AddCon(‘hBR4 = hBR3’);
eoUSGP.AddCon(‘hBR3 <= hBR2’);
eoUSGP.AddCon(‘hBR8 = (hBR6+hBR7)/2’);

% ORC-A bounds
eoUSGP.AddBounds(sym(‘hA1’),hA1Lb,hA1Ub);
eoUSGP.AddBounds(sym(‘hA2’),hA1Lb,hA3Ub);
eoUSGP.AddBounds(sym(‘hA3’),hA3Lb,hA3Ub);
eoUSGP.AddBounds(sym(‘hA4’),hA4Lb,hA4Ub);
eoUSGP.AddBounds(sym(‘hA5’),hA5Lb,hA5Ub);
eoUSGP.AddBounds(sym(‘hA6’),hA5Lb,hA5Ub);
eoUSGP.AddBounds(sym(‘mA’),mALb,mAUb);
eoUSGP.AddBounds(sym(‘PA’),PA4Lb,PA4Ub);
eoUSGP.AddBounds(sym(‘WturbA’),min(WturbALbUb),max(WturbALbUb));
eoUSGP.AddBounds(sym(‘WpumpA’),min(WpumpALbUb),max(WpumpALbUb));

% ORC-B bounds
eoUSGP.AddBounds(sym(‘hB1’),hB1Lb,hB1Ub);
eoUSGP.AddBounds(sym(‘hB2’),hB2Lb,hB2Ub);
eoUSGP.AddBounds(sym(‘hB3’),hB3Lb,hB3Ub);
eoUSGP.AddBounds(sym(‘hB4’),hB4Lb,hB4Ub);
eoUSGP.AddBounds(sym(‘mB’),mBLb,mBUb);
eoUSGP.AddBounds(sym(‘PB’),PB3Lb,PB3Ub);
eoUSGP.AddBounds(sym(‘WturbB’),min(WturbBLbUb),max(WturbBLbUb));
eoUSGP.AddBounds(sym(‘WpumpB’),min(WpumpBLbUb),max(WpumpBLbUb));

% Brine and cooling water bounds
eoUSGP.AddBounds(sym(‘hBR’),hBRLb,hBR1);
eoUSGP.AddBounds(sym(‘mCWA’),mCWALb,mCWAUb);
eoUSGP.AddBounds(sym(‘mCWB’),mCWBLb,mCWBUb);
% Net output power bound
eoUSGP.AddBounds(sym(‘Wnet’),min(WnetLbUb),max(WnetLbUb));

% Objective function
switch (1)

case 1 % Net power
eoUSGP.AddObj(‘-(Wnet)’);

case 2 % Specific rotating machinery cost
eoUSGP.AddObj(‘(CturbA+CturbB+CpumpA+CpumpB)/(Wnet*1e-3)’);

end

%Building the optimization problem
Build(eoUSGP)
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B.3 MBPP SymBuilder Model

The SymBuilder model of the Magmamax Binary Power Plant is shown below,

which is as per to the assumptions and specifications described in Section 4.4.1.

The full simulation file and the thermodynamic approximations are provided in the

attachment under the Magmamax Binary Power Plant folder.

%% Building the algebraic EO NLP/MINLP model
eoMBPP = SymBuilder(); %Initializing SymBuilder object

% ORC-A constants
eoMBPP.AddConstant(‘TA4’,TA4);
eoMBPP.AddConstant(‘TA6’,TA6);
eoMBPP.AddConstant(‘hA4’,hA4);
eoMBPP.AddConstant(‘dTrec’,dTrec);
eoMBPP.AddConstant(‘turbAEff’,TURBA_EFF);
eoMBPP.AddConstant(‘pumpAEff’,PUMPA_EFF);
% ORC-B constants
eoMBPP.AddConstant(‘hB3’,hB3);
eoMBPP.AddConstant(‘TB3’,TB3);
eoMBPP.AddConstant(‘turbBEff’,TURBB_EFF);
eoMBPP.AddConstant(‘pumpBEff’,PUMPB_EFF);
% Brine constants
eoMBPP.AddConstant(‘mBR’,mBR);
eoMBPP.AddConstant(‘hBR1’,hBR1);
eoMBPP.AddConstant(‘hBR5’,hBR5);
eoMBPP.AddConstant(‘TBR1’,TBR1);
eoMBPP.AddConstant(‘TBR5’,TBR5);
% Cooling water constants
eoMBPP.AddConstant(‘hCW1’,hCW1);
eoMBPP.AddConstant(‘hCW3’,hCW3);
eoMBPP.AddConstant(‘TCW1’,TCW1);
eoMBPP.AddConstant(‘TCW3’,TCW3);
% Cost constants
eoMBPP.AddConstant(‘C0turb’,C0turb);
eoMBPP.AddConstant(‘W0turb’,W0turb);
eoMBPP.AddConstant(‘a0turb’,a0turb);
eoMBPP.AddConstant(‘C0pump’,C0pump);
eoMBPP.AddConstant(‘W0pump’,W0pump);
eoMBPP.AddConstant(‘a0pump’,a0pump);

% Energy balance equation of ORC-A
eoMBPP.AddCon(‘mA*hA1 - WturbA - mA*hA2 = 0’);
eoMBPP.AddCon(‘mA*hA2 - mA*hA2P + mB*hB5P - mB*hB5 = 0’);
eoMBPP.AddCon(‘mA*hA2P - mA*hA3 + mB*hB4 - mB*hB5P = 0’);
eoMBPP.AddCon(‘mA*hA3 - mA*hA4 + mCW*hCW2 - mCW*hCW3 = 0’);
eoMBPP.AddCon(‘mA*hA4 + WpumpA - mA*hA5 = 0’);
eoMBPP.AddCon(‘mA*hA5 - mA*hA6 + mBR*hBR4 - mBR*hBR5 = 0’);
eoMBPP.AddCon(‘mA*hA6 - mA*hA7 + mBR*hBR2 - mBR*hBR3 = 0’);
eoMBPP.AddCon(‘mA*hA7 - mA*hA1 + mBR*hBR1 - mBR*hBR2 = 0’);
% Energy balance equation of ORC-B
eoMBPP.AddCon(‘mB*hB1 - WturbB - mB*hB2 = 0’);
eoMBPP.AddCon(‘mB*hB2 - mB*hB3 + mCW*hCW1 - mCW*hCW2 = 0’);
eoMBPP.AddCon(‘mB*hB3 + WpumpB - mB*hB4 = 0’);
eoMBPP.AddCon(‘mB*hB5 - mB*hB1 + mBR*hBR3 - mBR*hBR4 = 0’);

% Turbine and pump works
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eoMBPP.AddCon(‘WturbA = mA*turbAEff*turbAIsenWork’);
eoMBPP.AddCon(‘WturbB = mB*turbBEff*turbBIsenWork’);
eoMBPP.AddCon(‘WpumpA = mA*pumpAIsenWork/pumpAEff’);
eoMBPP.AddCon(‘WpumpB = mB*pumpBIsenWork/pumpBEff’);
% Net output power
eoMBPP.AddCon(‘Wnet = WturbA+WturbB-WpumpA-WpumpB’);
% Costs
eoMBPP.AddExpression(‘CturbA = C0turb*(WturbA/W0turb)^a0turb’);
eoMBPP.AddExpression(‘CturbB = C0turb*(WturbB/W0turb)^a0turb’);
eoMBPP.AddExpression(‘CpumpA = C0pump*(WpumpA/W0pump)^a0pump’);
eoMBPP.AddExpression(‘CpumpB = C0pump*(WpumpB/W0pump)^a0pump’);

% ORC-A approximations
AddPwFit(‘turbAIsenWork(PA,hA1)’,nlTurbAIsenWorkFit,eoMBPP);
AddPwFit(‘pumpAIsenWork(PA)’,nlPumpAIsenWorkFit,eoMBPP);
AddPwFit(‘HmPTcA(PA)’,nlHmTcAFit,eoMBPP);
AddPwFit(‘HmPTA1UbA(PA)’,nlHmPTA1UbAFit,eoMBPP);
AddPwFit(‘HmPTA1LbA(PA)’,nlHmPTA1LbAFit,eoMBPP);
AddPwFit(‘TA1(PA,hA1)’,TA1Fit,eoMBPP);
AddPwFit(‘TA2(hA2)’,TA2A3Fit,eoMBPP);
AddPwFit(‘TA2P(hA2P)’,TA2A3Fit,eoMBPP);
AddPwFit(‘TA3(hA3)’,TA2A3Fit,eoMBPP);
AddPwFit(‘TA5(PA,hA5)’,TA5Fit,eoMBPP);
AddPwFit(‘TA7(PA,hA7)’,TA7Fit,eoMBPP);
% ORC-B approximations
AddPwFit(‘turbBIsenWork(PB,hB1)’,nlTurbBIsenWorkFit,eoMBPP);
AddPwFit(‘pumpBIsenWork(PB)’,nlPumpBIsenWorkFit,eoMBPP);
AddPwFit(‘HsatVapB(PB)’,nlHsatVapBFit,eoMBPP);
AddPwFit(‘HsatLiqB(PB)’,nlHsatLiqBFit,eoMBPP);
AddPwFit(‘HmPTB1UbB(PB)’,nlHmPTB1UbBFit,eoMBPP);
AddPwFit(‘HmPTB1LbB(PB)’,nlHmPTB1LbBFit,eoMBPP);
AddPwFit(‘TB1(PB,hB1)’,TB1Fit,eoMBPP);
AddPwFit(‘TB2(hB2)’,TB2Fit,eoMBPP);
AddPwFit(‘TB4(PB,hB4)’,TB4Fit,eoMBPP);
AddPwFit(‘TB5(PB)’,TB5Fit,eoMBPP);
AddPwFit(‘TB5P(PB)’,TB5Fit,eoMBPP);
% Brine approximations
AddPwFit(‘TBR2(hBR2)’,TBRFit,eoMBPP);
AddPwFit(‘TBR3(hBR3)’,TBRFit,eoMBPP);
AddPwFit(‘TBR4(hBR4)’,TBRFit,eoMBPP);
% Cooling water approximations
AddPwFit(‘TCW2(hCW2)’,TCWFit,eoMBPP);

% ORC-A constraints
eoMBPP.AddCon(‘hA7 = (hA6 + hA1)/2’);
eoMBPP.AddCon(‘hA6 = HmPTcA’);
eoMBPP.AddCon(‘hA1 <= HmPTA1UbA’);
eoMBPP.AddCon(‘HmPTA1LbA <= hA1’);
eoMBPP.AddCon(‘TA3 = TA4 + dTrec’);
eoMBPP.AddCon(‘1 <= (TA3-TCW3)’);
eoMBPP.AddCon(‘1 <= (TA4-TCW2)’);
eoMBPP.AddCon(‘1 <= (TA2-TB5)’);
eoMBPP.AddCon(‘1 <= (TA2P-TB5P)’);
eoMBPP.AddCon(‘1 <= (TA3-TB4)’);
eoMBPP.AddCon(‘1 <= (TBR1-TA1)’);
eoMBPP.AddCon(‘1 <= (TBR2-TA7)’);
eoMBPP.AddCon(‘1 <= (TBR3-TA6)’);
eoMBPP.AddCon(‘1 <= (TBR4-TA6)’);
eoMBPP.AddCon(‘1 <= (TBR5-TA5)’);
% ORC-B constraints
eoMBPP.AddCon(‘hB5 = HsatVapB’);
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eoMBPP.AddCon(‘hB5P = HsatLiqB’);
eoMBPP.AddCon(‘hB1 <= HmPTB1UbB’);
eoMBPP.AddCon(‘HmPTB1LbB <= hB1’);
eoMBPP.AddCon(‘(hA2-hA3)*mA*0.02 <= (hB1-hB5)*mB’);
eoMBPP.AddCon(‘1 <= (TB2-TCW2)’);
eoMBPP.AddCon(‘1 <= (TBR3-TB1)’);
eoMBPP.AddCon(‘1 <= (TBR4-TB5)’);
% Brine constraints
eoMBPP.AddCon(‘hBR3 <= hBR2’);
eoMBPP.AddCon(‘hBR4 <= hBR3’);

% ORC-A bounds
eoMBPP.AddBounds(sym(‘hA1’),hA1Lb,hA1Ub);
eoMBPP.AddBounds(sym(‘hA2’),hA2Lb,hA2Ub);
eoMBPP.AddBounds(sym(‘hA2P’),hA2Lb,hA2Ub);
eoMBPP.AddBounds(sym(‘hA3’),hA2Lb,hA2Ub);
eoMBPP.AddBounds(sym(‘hA5’),hA5Lb,hA5Ub);
eoMBPP.AddBounds(sym(‘hA6’),hA6Lb,hA6Ub);
eoMBPP.AddBounds(sym(‘hA7’),hA7Lb,hA7Ub);
eoMBPP.AddBounds(sym(‘mA’),mALb,mAUb);
eoMBPP.AddBounds(sym(‘PA’),PA1Lb,PA1Ub);
eoMBPP.AddBounds(sym(‘WturbA’),min(WturbALbUb),max(WturbALbUb));
eoMBPP.AddBounds(sym(‘WpumpA’),min(WpumpALbUb),max(WpumpALbUb));
% ORC-B bounds
eoMBPP.AddBounds(sym(‘hB1’),hB1Lb,hB1Ub);
eoMBPP.AddBounds(sym(‘hB2’),hB2Lb,hB2Ub);
eoMBPP.AddBounds(sym(‘hB4’),hB4Lb,hB4Ub);
eoMBPP.AddBounds(sym(‘hB5P’),hB5PLb,hB5PUb);
eoMBPP.AddBounds(sym(‘hB5’),hB5Lb,hB5Ub);
eoMBPP.AddBounds(sym(‘mB’),mBLb,mBUb);
eoMBPP.AddBounds(sym(‘PB’),PB1Lb,PB1Ub);
eoMBPP.AddBounds(sym(‘WturbB’),min(WturbBLbUb),max(WturbBLbUb));
eoMBPP.AddBounds(sym(‘WpumpB’),min(WpumpBLbUb),max(WpumpBLbUb));
% Brine and cooling water bounds
eoMBPP.AddBounds(sym(‘hBR’),hBR5,hBR1);
eoMBPP.AddBounds(sym(‘hCW’),hCW1,hCW3);
eoMBPP.AddBounds(sym(‘mCW’),mCWLb,mCWUb);
% Net output power bound
eoMBPP.AddBounds(sym(‘Wnet’),min(WnetLbUb),max(WnetLbUb));

% Objective function
switch (1)

case 1 % Net power
eoMBPP.AddObj(‘-Wnet’);

case 2 % Specific rotating machinery cost
eoMBPP.AddObj(‘(CturbA+CturbB+CpumpA+CpumpB)/(Wnet*1e-3)’);

end

% Building the optimization problem
Build(eoMBPP)
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Appendix C

The pwfit Model Library

Table C.1 and Table C.2 list the univariate and bivariate polynomial function models

that are available in pwfit.

Table C.1: Curve fitting models.

poly1 t1x+ t2
poly2 t1x

2 + t2x+ t3
poly3 t1x

3 + t2x
2 + t3x+ t4

poly4 t1x
4 + t2x

3 + t3x
2 + t4x+ t5

poly5 t1x
5 + t2x

4 + t3x
3 + t4x

2 + t5x+ t6

Table C.2: Surface fitting models.

poly11 t1x+ t2y + t3
poly12 t1y

2 + t2xy + t3x+ t4y + t5
poly13 t1y

3 + t2y
2 + t3xy

2 + t4xy + t5x+ t6y + t7
poly21 t1x

2 + t2xy + t3x+ t4y + t5
poly22 t1x

2 + t2y
2 + t3xy + t4x+ t5y + t6

poly23 t1y
3 + t2x

2 + t3y
2 + t4x

2y + t5xy
2 + t6xy + t7x+ t8y + t9

poly31 t1x
3 + t2x

2 + t3x
2y + t4xy + t5x+ t6y + t7

poly32 t1x
3 + t2x

2 + t3y
2 + t4x

2y + t5xy
2 + t6xy + t7x+ t8y + t9

poly33 t1x
3 + t2y

3 + t3x
2 + t4y

2 + t5x
2y + t6xy

2 + t7xy + t8x+ t9y + t10

217



Appendix D

Optimization Solvers

The optimization solvers, and their respective release version, that were used in this

research are listed in Table D.1.

Table D.1: The optimization solvers that were used in this research. NC: Noncom-
mercial; C: Commercial.

Solver Developer Version License Ref.

IPOPT A. Wachter and L. T. Biegler 3.12.9 NC [18]
FILTERSD Roger Fletcher 1.0 NC [91]
fmincon MathWorks 7.6 C [17]
pattersearch MathWorks 3.4.2 C [136]
CPLEX IBM 12.8.0.0 NC/C [100]
GUROBI Gurobi Optimization 7.5.2 NC/C [135]
intlinprog MathWorks 7.6 C [137]
BARON Nick Sahinidis 18.8.23 C [22]
SCIP Tobias Achterberg et al. 5.0.1 NC/C [21]
BONMIN Pierre Bonami et al. 1.8.6 NC [138]
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Appendix E

Working Fluids

Table E.1 lists some of the properties of the working fluids that are used in the

thesis. These working fluids were selected based on their availability in JSteam (and

REFPROP) and for being thermodynamically suitable with the plant specifications

discussed in Chapter 3 and Chapter 4.

Table E.1: Properties of the working fluids that were used in the thesis.

Working Fluid Name Tcrit [K] Pcrit [bar]
Molecular

Weight

R134a 1,1,1,2-Tetrafluoroethane 374.2 40.59 102.0
R143a 1,1,1-Trifluoroethane 345.9 37.61 84.04
R152a 1,1-Difluoroethane 386.4 45.17 66.05
R218 Octafluoropropane 345.0 26.40 188.0
R227ea 1,1,1,2,3,3,3-Heptafluoropropane 374.9 29.25 170.0
R236ea 1,1,1,2,3,3-Hexafluoropropane 412.4 34.20 152.0
R236fa 1,1,1,3,3,3-Hexafluoropropane 398.1 32.00 152.0
R245ca 1,1,2,2,3-Pentafluoropropane 447.6 39.41 134.0
R245fa 1,1,1,3,3-Pentafluoropropane 427.2 36.51 134.0
R290 Propane 369.9 42.51 44.10
R32 Difluoromethane 351.3 57.82 52.02
R600 n-Butane 425.1 37.96 58.12
R600a IsoButane 407.8 36.29 58.12
R601a IsoPentane 460.4 33.78 72.15
RC270 Cyclopropane 398.3 55.80 42.08
RC318 Octafluorocyclobutane 388.4 27.78 200.0
C5F12 PerFluoroPentane 420.6 20.45 288.0
CF3I Trifluoroiodomethane 396.4 39.53 195.9
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Appendix F

Attached Files

Table F.1 lists the files that are included with this thesis. These files are provided

to support the work presented in this thesis. The files can be downloaded from:

https://1drv.ms/f/s!Avj6NgoXKYyRgchKNsDIuswfO6XDmw

Table F.1: Files included with the thesis.

Folder Description

EO Toolbox The latest version of optimization tools and linearization
functions discussed in the thesis. Requires JSteam and
OPTI installed.

Basaran ORC The SM and algebraic EO models of the Basran ORC
system.

DOE Pilot Plant The SM and algebraic EO models of the DOE Pilot
Plant. Also includes the mixture study.

USGeo Plant The SM and algebraic EO models of the USGeo Plant.

Magmamax Binary
Power Plant

The SM and algebraic EO models of the Magmamax
Binary Power Plant.

JSteam The JSteam MATLAB Interface v1.72 and JSteam Ex-
cel Add-In v3.20 that were used in this research.

OPTI Toolbox The OPTI Toolbox v2.28 that was used in this research.
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