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Abstract The increasingly use of wireless local area networks (WLANs) in public safety and 

emergency network services demands for a strict quality of service (QoS) guarantee especially a large 

number of users report an emergency for immediate channel access. Unfortunately, the traditional IEEE 

802.11e-based enhanced distributed channel access (EDCA) does not support a strict QoS guarantee for life 

saving emergency traffic under high loads. Previous studies have attempted to enhance the performance of 

EDCA called the Channel Preemtive EDCA (CP-EDCA) which is a promising idea to support emergency 

traffic in WLANs. However, CP-EDCA supports a single emergency traffic only (i.e. no emergency service 

differentiation) with high delays for increased traffic loads. To overcome this problem, we propose a class 

of EDCA protocol called Multiple Preemption EDCA (MP-EDCA) as a candidate to support multiple 

emergency traffics under high loads. Each MP-EDCA node can support up to four emergency traffics (life, 

health, property and environment) with different priorities in addition to support background (non-

emergency) traffic. The proposed protocol privileged the high priority life-saving emergency traffic to 

preempt the services of low priority ones without much starvation in the network to maintain a strict QoS 

guarantee. The paper evaluates the performance of MP-EDCA through an extensive analysis of simulation 

outcome. The results obtained show that MP-EDCA outperforms CP-EDCA in achieving lower medium 

access control and emergency node delays. 

Keywords Enhanced distributed channel access (EDCA), 802.11e, Medium access control, Quality 

of service (QoS) 

 

1 Introduction 

here has been a tremendous growth in the deployment of 802.11-based wireless local area networks T 



(WLANs) [1, 2]. At the same time, there is a significant growth in the use of wireless fidelity (Wi-Fi) for 

distributed emergency applications/services (e.g. disaster recovery, surveillance, and health monitoring) [3, 

4]. These emergency applications require a strict quality of service (QoS) guarantee with the provision of 

in-channel preemption (e.g. channel access priority on arrival). 

Fixed backbone or infrastructure based networks are highly affected by disasters such as earthquake, 

fire and flooding. In fact, the traditional networks such as General Packet Radio Service (GPRS), Global 

Systems for Mobile Communication (GSM), and other infrastructure based networks are not reliable for 

emergency communications (e.g. 9/11 disaster in the USA) as they quickly overloaded in the disaster 

affected areas even in a small urban area. However, distributed ad-hoc networks are becoming more 

popular for emergency networking solutions [5, 6]. 

The IEEE 802.11e working group enhanced 802.11 known as enhanced distributed channel access 

(EDCA) to support QoS for WLANs. The 802.11e uses EDCA mechanism to provide differentiated 

services to users in contention based methods. However, EDCA neither supports a strict QoS guarantee [7] 

nor emergency traffics [8]. 

To achieve a better QoS, many organizations have categorized emergency into four classes: emergency 

to life, health, property and environment [9, 10]. These services can be linked to various service priorities 

as emergencies do not require the same level of priority. For example, emergency to life has the highest 

priority because nothing is more important than human lives. This is followed by prioritization to health, 

property and environment.  

To support multiple emergency traffic and to provide a strict QoS guarantee especially to life saving 

emergency traffic, the traditional EDCA and its variants (e.g. CP-EDCA [11]) require improvement. Our 

contributions in this paper are highlighted next. 

 

1.1 Our contributions 

The main contribution and strength of this paper is the emphasis that emergency (traffic) service 

differentiation as well as multiple preemption to handle saturated emergencies (e.g. earthquake) where a 

large number of users demand for immediate channel access is crucial for an effective communication. This 

paper therefore proposes a multiple preemption EDCA (MP-EDCA) protocol, an in-channel multiple-



preemption enhancement to CP-EDCA allowing high priority emergency frames to interrupt and replace 

the channel access of lower-priority ones without much starvation in the network. Our design builds on CP-

EDCA on the assumption that emergency services/organisations may not have the same number of 

resources to support dense emergencies such as tsunami, earthquake, and man-made disasters (e.g. 9/11 

incident in New York) where a large number of users report emergencies. In such situations, organisations 

give priority to life saving traffic because nothing is more important than human life followed by health, 

property and environment. The most innovative aspect of this paper is the design, performance modelling, 

and implementation of MP-EDCA to be effective in providing a strict QoS guarantee to life saving 

emergencies in distributed networks. We implemented and tested MP-EDCA supporting four classes of 

emergency traffic (life, health, property and environment) per node with a total of 40 emergency nodes (10 

nodes for each type of emergency) in OPNET simulation environment [12]. We also implemented CP-

EDCA and EDCA for comparison purposes. We contributed in modifying OPNET code (written in C++) to 

create a new process model (Fig. 5) and an emergency node model (Fig. 6) supporting multiple emergency 

in WLANs. We use short inter-frame spacing (SIFS) and slot-time for traffic prioritisation for simplicity in 

operation and compatibility with the standard EDCA and its variant CP-EDCA. To the best of our 

knowledge, the proposed MP-EDCA is a first piece of work contributing to the body of knowledge in the 

field of strict QoS and multiple emergency traffics in distributed WLANs. 

 

1.2 The 802.11e (EDCA) and related work 

The 802.11e is an enhanced version of the 802.11 MAC protocol to support QoS. This standard introduced 

two coordination functions namely, Hybrid Coordination Function Control Channel Access (HCCA) and a 

mandatory Enhanced Distributed Channel Access (EDCA). HCCA is a centralized control method that can 

support a strict QoS but the system has not been implemented widely as a result of high system complexity 

and inefficiency for sporadic emergency traffics [13]. In contrast, EDCA provides a quicker channel access 

as well as scalable to operate in ad-hoc mode making an attractive solution for achieving QoS in distributed 

in WLANs. 



Preemption is a good strategy to guarantee an immediate channel access for emergency traffics. 

Recently IEEE 802.11u-2011 [8] working group introduced a new standard called 802.11u for interworking 

with external networks supporting emergency traffic and preemption over infrastructure-based WLANs.  

Conte et al. [14] investigated a centrally controlled admission control (AC) mechanism for 802.11e to 

enable emergency calls. However, it requires additional information to identify and differentiate the 

requests related to emergency calls. Two approaches are proposed; one to include an Emergency flag in the 

traffic specification field (TSpec) and the other to introduce a class of high priority emergency traffic called 

Traffic Stream Information (TSpec) with the source message.  

Lu-min et al. [15] evaluated the performance of EDCA by considering emergency traffic in congestion. 

The authors have proposed an admission control method for emergency traffic. High priority emergency 

traffic can access the channel on arrival. Sheu, et al. [16] proposed a centralized channel preemption 

technique which is not suitable for distributed ad-hoc networks. Eiager et al. [17] proposed another class of 

preemption called a latency-aware service opportunity (LASO) where a high-class traffic curtails the 

transmission duration of lower class traffic. However, LASO does not allow interruption once the channel 

is acquired for pre-allocated time duration.  

Balakrishnan et al. [11] introduced a class of preemptive channel access method called Channel 

Preemptive EDCA (CP-EDCA) to support emergency traffic. However, CP-EDCA does not support 

“multiple-emergency” traffic and is not suitable for application requiring dense emergency networking. 

This is because CP-EDCA treats all emergency traffic in a similar way (i.e. no emergency service 

differentiation) and therefore life-saving emergency traffic is highly affected. To overcome the limitations 

of CP-EDCA, we propose a class of EDCA protocol called Multiple-Preemptive EDCA (MP-EDCA) 

which is discussed in more details in Section 2. 

Figure 1 illustrates the key concept and design principle of four channel access methods namely, 

802.11 Distributed Coordination Function (DCF) [18], 802.11e (EDCA) [13], CP-EDCA [11], and our 

proposed MP-EDCA. It is obvious that the IEEE 802.11 (DCF) does not provide any service differentiation 

(i.e., no QoS) at all. The 802.11e (EDCA) supports voice, video, best effort, and background traffic through 

four queues as defined in the standard [19]. However, there is no provision for supporting emergency 

traffic in EDCA.  



 

 

Fig. 1 Illustrating the principle of operation of 802.11 (DCF), 802.11e (EDCA), CP-EDCA and MP-

EDCA [11, 20, 21] 

 

As shown in Fig. 1, CP-EDCA supports only one class of emergency traffic through a single queue in 

addition to serving routine traffic. The emergency traffic preempts the on-going routine traffic to acquire 

the channel. In contrast, the proposed MP-EDCA supports four classes (Class 1 to 4) of emergency traffic 

(per node) through four emergency priority queues. The background traffics are served through a separate 

queue. For instance, Class 1 (Risk to Life) emergency traffic stream may have the highest priority, 

followed by Class 2 (Risk to Health), Class 3 (Risk to Property), and Class 4 (Risk to Environment). Each 

high priority emergency traffic stream can preempt the low priority one in order to acquire the channel.  

The question may arise about four classes of emergency traffics in MP-EDCA; why not implement 

three or five classes. We consider four classes of emergency traffics based on published literature that most 

organizations have categorized emergency into four classes, namely life, health, property and environment 

[9, 10]. These four classes linked to services that have practical implications in real-life scenarios. For 

instance, life-saving emergency has the highest priority because nothing is more important than human 

lives. This is followed by service prioritization to health, property and environment.  

It should be noted that the proposed MP-EDCA cannot support unlimited priority classes due to SIFS 

and slot-time constraints. The MP-EDCA approach is discussed next. 



 

2 The MP-EDCA approach 

In this section we first discuss the motivation for designing MP-EDCA and then focus on protocol design 

strategy including the implementation aspect of process and emergency node models.  

 

2.1 Motivation for designer MP-EDCA 

Clearly, Balakrishnan’s CP-EDCA [11] has several limitations. Firstly, it lacks service differentiation for 

emergency traffic (i.e. all emergencies treated the same). Secondly, CP-EDCA does not support multiple 

preemptions in saturated emergency situation where a large number of users demand for concurrent 

channel access. Consequently, the performance of CP-EDCA degrades significantly for a network with 

large number of users report an emergency. The proposed MP-EDCA overcomes the above limitations of 

CP-EDCA. 

However, the main motivation for designing MP-EDCA protocol was to provide a certain QoS guarantees 

for all users in the network especially for life saving emergency nodes in dense emergency situation. Each 

MP-EDCA node supports up to four emergency traffics with different priorities in addition to support the 

routine/background (non-emergency) traffic without introducing starvation in the network. 

2.2 Protocol designer strategy 

MP-EDCA extends CP-EDCA by incorporating the key concept of in-channel multiple preemptions to 

support dense emergency traffic in distributed networks. It provides higher priority to life saving 

emergency than emergency to health, property and environment by carefully adjusting SIFS and slot-time 

in the emergency frames. Moreover, MP-EDCA employs prioritized queuing contention mechanism and 

contention free bursting (CFB) to allow contiguous transmission of multiple high priority emergency 

frames without contending the transmit opportunity (TXOP) period. Figure 2 illustrates MP-EDCA’s 

approach of implementing in-channel multiple preemptions operating in both normal (background) traffic 

(Fig. 2a) and emergency traffic modes (Fig. 2b). 
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Fig. 2 Channel TXOP multiple preemptions: (a) EDCA or normal operating mode; and (b) MP-EDCA 

emergency mode of operation 

 

A high priority emergency queue has privilege to interrupt on-going TXOP burst of other lower-

priority emergency (or non-emergency) queues. The interrupted queue backs off and contends after the 

high priority emergency bursting. The IFS and slot-time [21] of standard EDCA are modified to support 

multiple preemptions for the transmission of emergency frames. The MP-EDCA algorithm as well as 

timing sequences are highlighted for 802.11 radios next.  

1) Class 1 Priority: Risk to Life SIFS (RtoLSIFS) is set to 10µs similar to standard SIFS. This 

minimum duration is required for PHY/MAC processing and Rx/Tx turnaround time. In each Class 1 

frame burst, frames are separated by RtoLSIFS. Risk to Life (RtoL) frame burst is split by 

RtoLSlotTime that cannot be interrupted. 

2) RtoLSlotTime slot time (25µs) is a combined period of RtoLSIFS and a Clear Channel Assessment 

(CCA). The slot time for Risk to Life priority is shorter than all other slot times for priorities. A CCA 

period is required to detect the frame in the wireless medium after the transmission initiation by 

another node. In MP-EDCA, the AIFS [20] duration for life saving emergency priority is one 

RtoLSlotTime.  



3) Class 2 Priority: Risk to Health SIFS (RtoHSIFS) is set to 25 µs which is a combined period of 

RtoLSIFS and CCA. In RtoL TXOP frame burst, frames are separated by RtoHSIFS. A RtoHSIFS slot 

time is equivalent to RtoLSIFS allowing life-saving emergency traffic to interrupt on-going Risk to 

Health (RtoH) priority frame burst.  

4) RtoHSlotTime: This slot time (40 µs) is a combined period of RtoHSIFS and a CCA. The slot time 

for RtoH priority is different from RtoLSlotTime. The node with RtoH priority can sense the channel 

for the duration of RtoHSIFS as long as there is no on-going transmission of RtoL and the channel is 

idle for CCA to initiate the transmission. In MP-EDCA, the AIFS [20] duration for health saving 

emergency priority is one RtoHSlotTime. 

5) Class 3 Priority: Risk to Property SIFS (RtoPSIFS) (40 µs) is a combined period of RtoPSIFS and 

a CCA. The RtoHSIFS separates the frames in TXOP frame burst of Risk to Property (RtoP) node. As 

RtoPSIFS is identical to RtoHSlotTime, allowing the lifesaving and health saving emergency traffics 

to interrupt an on-going transmission of RtoP nodes. 

6) Risk to Property Slot Time (RtoPSlotTime): This slot time (55 µs) is the combined period of 

RtoPSIFS and CCA. RtoPSlotTime differs from RtoLSlotTime, RtoHSlotTime, and the normal 

priority slot times. The node with RtoP priority can sense the channel for the duration of RtoPSlotTime 

to initiate the transmission as long as there is no on-going transmission from RtoL and RtoH, and the 

channel is idle for a period of CCA. 

7) Class 4 Priority: Risk to Environment SIFS (RtoESIFS) is set to 55 µs which is a combination of 

RtoPSIFS and a CCA. The RtoESIFS separates the frames in TXOP frame burst of Risk to 

Environment (RtoE) node. The duration of RtoESIFS is identical to RtoPSlotTime, allowing RtoL, 

RtoH, and RtoP nodes to preempt the on-going transmission of RtoE nodes.  

8) Risk to Environment Slot Time (RtoESlotTime): This slot time (70) µs is a combined period of 

RtoESIFS and a CCA which is different from RtoLSlotTime, RtoHSlotTime, RtoPSlotTime, and a 

normal slot time. The node with a Class 4 priority can sense the channel for the duration of 

RtoESlottime to initiate transmissions as long as there is no on-going transmission from RtoL, RtoH, 

and RtoP and the channel is idle for a period of CCA. 



9) Normal Priority SIFS (NPSIFS): The 70µs period is a combined period of RtoESIFS and a CCA. 

Basically, RtoESIFS separates the frames in TXOP frame burst of normal priority (non-emergency) 

node. The NPSIFS is identical to RtoESlotTime, allowing RtoL, RtoH, RtoP, RtoE nodes to interrupt 

an on-going transmission of normal priority node. 

10) Normal Priority Slot Time (NPSlotTime): This slot time (85 µs) is a combined period of NPSIFS 

and a CCA. The nodes with no priority will sense the channel to initiate the transmission as long as the 

channel is not being used by any emergency nodes for the duration of a CCA period. This allows nodes 

to transmit background traffic in order to bring a level of fairness and thus avoiding a complete 

starvation in the network. This is one of the key features of MP-EDCA. 

The channel access timing including SIFS and slot-time format of MP-EDCA is shown in Fig. 3. The 

concept is similar to IFS of 802.11e (EDCA) that uses the waiting time to allow high priority traffic to 

access the channel. An on-going frame burst sequence (Data-Ack-Data) is managed by SIFS. The smaller 

SIFS is set for high priority traffic. However, in MP-EDCA, the highest priority emergency traffic controls 

the channel by interrupting the on-going lower priority traffic burst. 

RtoLifeSIFS

CCA

SIFS for RtoLife frame bursting

RtoLifeAIFS = AIFS[0] = RtoLifeSlotTime RtoLifeSIFS

RtoHealthSIFSSIFS for RtoHealth frame bursting

CCARtoHealthAIFS = AIFS[0] = RtoHealthSlotTime RtoHealthSIFS

RtoPropertySIFSSIFS for RtoProperty frame bursting

CCARtoPropertyAIFS = AIFS[0] = RtoPropertySlotTime RtoPropertySIFS

CCARtoPropertyAIFS = AIFS[0] = RtoPropertySlotTime RtoEnvironmentSIFS

RtoPropertySIFSSIFS for RtoEnvironment frame bursting

 

Fig. 3 MP-EDCA SIFS and slot-timing 

  



 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Example of MP-EDCA frame bursting for emergency (a to d) and non-emergency traffic (e) 

 

Figure 4 shows the MP-EDCA frame bursting for both emergency and normal/non-emergency traffic. 

The burst for Risk to Life frames is shown in Fig. 4(a) where each frame is separated by RtoLSIFS. The 

frame bursts for risk to health, property, and environment are shown in Figs. 4(b), 4(c), and 4(d), 

respectively. Each emergency frame is identified by its own SIFS. The frame burst for a normal priority 

(non-emergency) is shown in Fig. 4(e). 

The Risk to Life emergency TXOP burst has the highest priority (RtoLifeAIFS) followed by Risk to 

Health emergency, Risk to Property, and Risk to Environment frame burst. Each IFS time is separated by a 

CCA period, which is the minimum time required to detect a new transmission on the channel. The IFS and 

slot prioritization mechanisms are exclusively used in providing multiple preemption privileges to various 

emergency traffics. Thus, all priorities other than emergency will fall in the normal/routine category in the 
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context of channel preemptions. However, prioritized channel access still exists between all traffic 

categories because MP-EDCA adopts the same contention mechanism as the standard EDCA. This feature 

allows MP-EDCA to avoid complete starvation in supporting multiple emergency traffics in the network. 

 

2.3 Process and emergency node models 

Figure 5 shows the MP-EDCA process model which is developed by modifying the existing wireless LAN 

(WLAN) process model in OPNET Modeler 16.0 (www.opnet.com). The timing modules and preemption 

algorithms are also implemented in OPNET. The MP-EDCA emergency node model is shown in Fig. 6, 

enabling immediate channel access for Risk to Life emergency traffic throughout TXOP period. So, no 

preemptions are allowed during life-saving emergency prioritized by the shortest waiting time. The 

emergency attribute has values ranging from 1 to 5 to identify the various priorities. For example, ‘1’ is for 

risk to life priority, ‘2’ for risk to health, ‘3’ for risk to property, ‘4’ for risk to environment, and ‘5’ for 

normal (non-emergency) priority. 

New Risk to Life emergency frames are transmitted if the channel is sensed idle for a period of 

EPAIFS/RtoLSlotTime which is the smallest time slot. Similarly, high priority emergency frames are 

transmitted if the channel is sensed idle for a SlotTime. A high priority emergency frame has smaller 

SlotTime than the low priority emergency ones; therefore high priority emergency frames can break the on-

going lower-priority emergency transmissions on arrival. On the next round, high priority emergency 

frames wait for a shorter period (slot-time) to access the channel. The low priority emergency frames back 

off and contend the channel until the high priority emergency burst finished transmission. 

Network allocation vector (NAV) is used to protect the entire burst of frames subject to the TXOP 

limit [20]. The MP-EDCA complies with 802.11e standard by allowing multiple-preemptions even though 

NAV is set. However, NAV duration is set to protect a single frame with immediate acknowledgement 

only. 

 



 

Fig. 5 MP-EDCA Process model 

 

 



 

Fig. 6 MP-EDCA Emergency node model 

 

 

The proposed MP-EDCA achieves both in-node and inter-node multiple preemptions (i.e. multiple 

interruptions of lower-priority TXOP of other nodes) by allowing IFS and slot-times of all priority queues 

of each node on the network. We use the standard 802.11e (EDCA) contention procedure and priority 

queuing (channel bursting) mechanisms to make compatible with the existing EDCA protocol and it’s 

variants [20].  

3 Performance study and simulation setup 

To study the performance of the proposed MP-EDCA and to compare it with the standard EDCA [20] and 

Balakrishnan’s CP-EDCA [11], we developed OPNET-based simulation models [22]. The OPNET 

simulation tool was chosen due to its popularity and credibility [23].  



 

Fig. 7 OPNET represntation of fully connected MP-EDCA network with N = 40 emergency nodes  

Figure 7 shows the MP-EDCA network model with N = 40 emergency nodes. It consists of 4 sub 

models with identical configuration (10 emergency nodes per model). For example, Fig. 7(a) represents 

risk to life emergency (Class 1). The risk to health (Class 2), risk to property (Class 3), and risk to 

environment (Class 4) are shown in Fig. 7(b), (c), and (d), respectively. Each MP-EDCA node supports up 

to four classes (Class 1 to 4) of emergency traffic with different priorities (uniform node distribution).  

  



Table 1 MAC parameters used in simulation 

General parameters: 
Data rate = 11 Mbit/s  

Protocol = IEEE 802.11b  

Number of nodes: 1 to 40 

Application = Voice 

TXOP limit = 3 ms 

 

Contention parameters: 
 

a) MP-EDCA 

Risk to Life  Risk to Health  Risk to Property  Risk to Environment  

RtoLSIFS = 10 

RtoLSlotTime = 25  

AIFS [0] = 1 slot 

WMin[0] = 2 slots 

WMax[8] = 8 slots 

RtoHSIFS = 25 

RtoHSlotTime = 40 

AIFS [0] = 1 slot 

WMin[0] = 2 slots 

WMax[8] = 8 slots 

RtoPSIFS = 40 

RtoSIFS = 55 

AIFS [0] = 1 slot 

WMin[0] = 2 slots 

WMax[8] = 8 slots 

RtoPSIFS = 55 

RtoESlotTime = 70 

AIFS [0] = 1 slot 

WMin[0] = 2 slots 

WMax[8] = 8 slots 

b) CP-EDCA 

Class 0 (Emergency Priority) Class 1 (Normal Priority) 

EPSIFS = 10 

EPSlotTime = 25 

AIFS [0] = 1 slot 

WMin[0] = 2 slots 

WMax[8] = 8 slots 

NPSIFS = 40 

NPSlotTime = 55 

AIFS[1] = 4 slots 

WMin[1] = 8 slots 

WMax [1] = 64 slots 

c) EDCA 

SIFS = 10 µs for all priorities 

Slot Time = 20 µs (default) for all priorities 

AIFS  [2]  

Wmin [0] = 2 slots 

WMax = 8 slots 

 

 

Table 1 lists MAC parameters used in simulation. In MP-EDCA, Class 1 nodes use RtoLSIFS and 

RtoLSlotTime, Class 2 nodes use RtoHSIFS and RtoHSlotTime, Class 3 category nodes use RtoPSIFS and 

RtoPSlotTime, and the Class 4 nodes use RtoESIFS and RtoESlotTime. In CP-EDCA, all emergency nodes 

use a single emergency priority and therefore we use emergency priority EPSIFS and EPSlotTime as 

specified in CP-EDCA [11]. In EDCA [20], all nodes use default SIFS and SlotTime because EDCA does 

not support any emergency traffic. Apart from SIFS and SlotTime all other parameters are set to EDCA 

default values.  

 



4 Results and comparison 

We present the results of investigation for four emergency classes namely, Risk to Life (“Class 1”), Risk to 

Health (“Class 2”), Risk to Property (“Class 3”), and Risk to Environment (“Class 4”). The performance of 

MP-EDCA is evaluated by extensive simulation experiments under high traffic loads. We simulated 30 

Scenarios; 10 for each of EDCA, CP-EDCA and MP-EDCA. The simulation results report the steady-state 

behavior of the network and have been obtained with the relative error of < 1%, at the 99% confidence 

level. 

The MAC packet delay (network-wide as well as individual node) is one of the key performance 

metrics we consider in this paper. The delay is measured (in sec) from the moment a frame is queued at the 

MAC-layer until the frame is successfully transmitted. This includes channel contention, queuing, and 

frame transmission time. 

Figure 8 shows the average MAC delay of MP-EDCA, EDCA and CP-EDCA with varying node density 

for N = 4 to 40 nodes. The MAC delays are similar for all three schemes (MP-EDCA, EDCA and CP-

EDCA) for N = 4 to 16 nodes. However, the average delays for both EDCA and CP-EDCA rise sharply for 

N = 16 to 40 nodes. One can observe that MP-EDCA offers lower packet delays than both EDCA and CP-

EDCA for N > 16 nodes. For instance, for N= 40 nodes, the network-wide MAC delays for MP-EDCA, 

EDCA, and CP-EDCA are 3.4 sec, 8.7 sec, and 8.5 sec, respectively. We found that MP-EDCA achieves 

about 60% lower packet delays than CP-EDCA. Considering 11 Mbit/s channel, about 5 sec reduction in 

one-hop MAC delay per emergency frame can be achieved using MP-EDCA, is a significant improvement. 

Now let us focus on the performance of MP-EDCA for N = 16 to 40 emergency nodes. The question 

may arise about the lowest MAC delays for nodes 28 and 32 in the network. For example, the network-

wide average MAC delays for N = 28 and 32 emergency nodes are 1.1 sec and 1.09 sec, respectively. 

Recall that each MP-EDCA node can support up to four emergency traffics with different priorities. 

Perhaps serving more high priority emergency traffics (e.g. risk to life) at nodes 28 and 32, contributed to 

lower average MAC delays. 

The main conclusion is that (Fig. 8) the network-wide MP-EDCA’s MAC delay is significantly better 

(i.e. smaller) than that of CP-EDCA, especially under medium-to-high traffic loads. 



 

Fig. 8 Network-wide MAC delay of EDCA, CP-EDCA and MP-EDCA 

 

An average MAC delay might not be an accurate measures for Class 1 (Risk to Life) node because the 

low priority emergency traffic may experience slightly higher delays compared to high priority emergency 

traffics.  

To analyse the complete delay characteristics, we plot a single node average MAC delay against node 

density in Fig. 9. We observe that the MAC delay of MP-EDCA Class 1 emergency node is significantly 

better (i.e. lower) than the single emergency node of CP-EDCA and a single node (non-emergency) delay 

of EDCA for N > 12 nodes.  

By comparing EDCA and CP-EDCA we observe that EDCA performs slightly better than CP-EDCA 

in terms of achieving lower MAC delays for N>12 nodes. This is not a surprising result because we are 

basically comparing a single node MAC delay for two different things; an emergency node in CP-EDCA 

and a non-emergency node in EDCA. However, the increased MAC delays for CP-EDCA could be due to 

protocol strategy where an emergency traffic is supported at the price of increased delays. 



 

Fig. 9 MAC delay for a Class 1 (Risk to Life) emergency node 

 

 

Fig. 10 The average MAC delay of MP-EDCA for Class 1 emergency node 

To quantify the performance gain of MP-EDCA, a single Class 1 node MAC delay is redrawn in Fig. 

10. We observe that the average MAC delays for MP-EDCA is less than 1.5 ms for up to 32 emergency 

nodes. A slight increase in MAC delay is observed for N > 32 nodes, but this increase is not very 
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significant. In fact, MP-EDCA achieves just below 4 ms at N = 40 nodes. For example, one Risk to Life 

node MAC delay of MP-EDCA, one emergency node delay of CP-EDCA (as all emergencies are treated 

equally) and a single node delay of EDCA (non-emergency traffic) are 3.6 ms, 9.31 sec, and 9.19 sec, 

respectively at N = 40 nodes. 

The main conclusion is that (Figs. 8 and 9) MP-EDCA outperforms both EDCA and CP-EDCA for 

medium to high traffic loads, especially N > 12 nodes. One can observe that the Class 1 emergency node of 

MP-EDCA achieved about 99.9% lower delays than CP-EDCA. The lowest possible channel access delays 

for risk to life emergency traffic in dense emergency is a significant achievement offered by MP-EDCA. 

 

5 Conclusion and future work 

In this paper we proposed an in-channel multiple service preemptions protocol called MP-EDCA to provide 

immediate channel access privileges to high priority emergency traffic in distributed networks. MP-EDCA 

provides exclusive medium access precedence for high priority emergency traffic in saturated emergency 

without much starvation in the network which is a significant QoS improvement to 802.11e (EDCA) and its 

variants CP-EDCA. The performance of MP-EDCA is evaluated by extensive simulation. Results have 

shown that the proposed MP-EDCA outperforms both Balakrishnan’s CP-EDCA [11] and the existing 

EDCA. For instance, MP-EDCA achieved up to 60% lower MAC delays (network-wide) and about 99% 

lower delays for a single emergency node than CP-EDCA. The proposed MP-EDCA can provide QoS 

guarantees to emergency nodes under high traffic conditions more effectively. Furthermore, immediate 

channel access for life saving emergency traffic is guaranteed even in saturated emergency for nodes with 

emergency exist. However, when all nodes are in ‘risk to life’ (an unusual case), MP-EDCA performs as 

good as the CP-EDCA. The performance of MP-EDCA in noisy channel is suggested as an extension of the 

work presented here. 
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