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ABSTRACT 

Artificial neural networks are one of the most popular and promising approaches to modern 

machine learning applications. They are based on a mathematical abstraction of the intricate 

processing mechanisms in the human brain, remaining sufficiently simple for efficient 

processing in conventional computers. Despite efforts to mimic the capabilities of the brain, 

however, they are limited in their contextual understanding of concepts and behaviours. With 

the aim to explore ways to overcome these limitations, this thesis endeavours to investigate 

alternatives that are closer to the original biological systems, with a focus on processing 

auditory and visual signals. Inspired by the functioning of human hearing and vision and by 

the brain’s capabilities to dynamically integrate newly perceived information with previous 

experiences and knowledge, this thesis presents the hypothesis that mimicking these 

processes more closely could lead to an enhanced analysis of such signals. 

The framework that was developed to investigate this hypothesis consisted of three separate 

but connected projects that looked into biologically inspired computational processing of 

auditory, visual, and combined audio-visual signals, respectively. One aim of designing the 

framework was to largely preserve the spectral, spatial, and temporal characteristics of the 

original signals through tonotopic and retinotopic mapping. For the auditory processing 

system, an encoding and mapping method was developed that could transform sound signals 

into electrical impulses (“spikes”) by simulating the human cochlea, which were then fed into 

a brain-shaped three-dimensional spiking neural network at the location of the auditory 

cortices. For the visual system, the method was developed analogously, simulating the human 

retina and feeding the resulting spikes into the location of the visual cortex. A key advantage 

of this approach was that it facilitated a straightforward brain-like combination of input 

signals for the analysis of audio-visual stimuli during the third project. 

The approach was tested on two existing benchmark datasets and on one newly created New 

Zealand Sign Language dataset to explore its capabilities. While the sound processing system 

achieved good classification results on the chosen speech recognition dataset (91%) 

compared to existing methods in the same domain, the video processing system, which was 

tested on a gesture recognition dataset, did not perform as well (51%). The classification 

results for the combined audio-visual processing model were between those for the 

individual models (76.7%), and unique spike patterns for the five classes could be observed. 
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Even though the models created in this work did not exceed the statistical achievements of 

conventional machine learning methods, they demonstrated that systems inspired by 

biological and neural mechanisms are a promising pathway to investigate audio-visual data 

in computational systems. Increasing the biological plausibility of the models is expected to 

lead to better performance and could form a pathway to a more intuitive understanding of 

such data. To broaden the applicability of the model, it is suggested that future work include 

the addition of other sensory modalities or signals acquired through different brain recording 

and imaging methods and to perform further theoretical and statistical analysis of the 

relationship between model parameters and classification performance. 
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1 INTRODUCTION 

“I consider that a man’s brain originally is like a little empty attic, and you have to stock it with such 

furniture as you choose.” 

– Sherlock Holmes in A Study in Scarlet by Sir Arthur Conan Doyle

1.1 BACKGROUND AND SCOPE 

This thesis presents a computational model that attempted to process audio-visual 

information in a brain-inspired way. It structures and verbalises several years of research 

building and exploring the capabilities of a novel computational architecture that was based 

on the functioning of the human brain. The term brain-inspired in this context means that 

certain aspects of how the brain processes information were simulated in a computational 

model. This includes the translation of multimodal input stimuli into electrical signals and 

the principles of signal transmission, as well as the spatial arrangement and layout of the 

model, which facilitates anatomically plausible signal mapping. While this computational 

model is inspired by the functioning of the human brain, it is by no means trying to copy 

neurological processes entirely and should not be interpreted as such. Instead, it showcases 

and explores the capabilities of brain-inspired computational methods when applied to real-

world problems. 
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The research described in this thesis is based on the premise that the human brain is the 

most sophisticated “computer” in existence. The brain effortlessly consolidates a multitude 

of environmental stimuli, identifies and systematises central meaningful elements, and 

extracts knowledge to make decisions in real-time. Its shape and structure evolved over 

millions of years before it became the highly functional control organ that it is now. 

Containing over 86 billion neurons (Azevedo et al., 2009), its computing power is immense, 

and it has anecdotally been described as the only organ that studies itself.2 

The brain is exceptionally good at interpreting ambiguous behaviour and situations, making 

sense out of its unpredictable surroundings, and deriving a sufficiently appropriate response. 

Computers, on the other hand, excel at analysing numerical data, precisely storing and 

recalling information, and performing complex calculations. Both systems have been created 

and grown to perform different groups of tasks, and, hence, take a different approach to 

solve problems. While computers focus on precision, i.e., preserving all details of information 

exactly as they were presented, brains take a more pragmatic approach that focuses on 

understanding the meaning of information and its implications as a whole. 

Despite their differing functional paradigms, there have always been efforts to make 

computers solve human problems by creating some kind of Artificial Intelligence (AI), 

most famously first described by Marvin Minsky in 1961. Minsky formulated five problems 

that computers needed to be able to solve if they were to be considered intelligent: search, 

pattern recognition, learning, planning, and induction. Interestingly, he also noted that “in 

the long run, we must be prepared to discover profitable lines of heuristic programming 

which do not deliberately imitate human characteristics” (Minsky, 1961, p. 26). He argued 

that biologically inspired approaches such as the perceptron (Rosenblatt, 1958) were limited 

in their abilities and would thus not be required for the development of AI. 

Now, more than half a century later, tremendous improvements in transaction speed and 

computing power, as well as the development of new biologically inspired algorithms to solve 

computational problems, have seen the idea of using Neural Networks revived. Multi-

layered Artificial Neural Networks and Deep Learning architectures (LeCun, Bengio, & 

Hinton, 2015; Schmidhuber, 2015), that are based on how information is processed in the 

brain through neurons communicating with each other, have gained immense popularity due 

to their outstanding results in pattern recognition and machine learning competitions within 

the last decade (Schmidhuber, 2015). Deep learning approaches typically contain a multitude 

2 This statement is, of course, quite exaggerated, taking into consideration that all organs in the human body 
have to study themselves to monitor their state and try to uphold a certain level of functionality. The remarkable 
thing about the brain is, however, that it does so not just for operational purposes, but for enjoyment. 
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of interconnected layers of neurons arranged in a sequential layout (LeCun et al., 2015). In 

contrast to the von-Neumann architecture prevalent in conventional computers, procedures 

and data are not held separately but instead stored together in the connections between the 

neurons in the network. When signals are propagated through the network, the weights of 

the connections are modified based on certain learning rules which create distinctive, 

recognisable patterns that can be used to classify data or predict unknown relationships. 

Every change in the input signal causes specific changes in the network. An artificial neural 

network can, thus, be seen as a specialised way of data representation and computation. 

Despite their slow start caused by the shortcomings of early hardware, neural networks and 

deep learning are nowadays recognised as powerful tools that can be applied to almost every 

problem for which data exist. A few examples where the use of such models have attracted 

attention outside the AI community are: 

• large-scale image recognition such as the ImageNet dataset with over 14 million

images (J. Deng et al., 2009), for which a Convolutional Neural Network achieved

considerably better results than conventional methods (Krizhevsky, Sutskever, &

Hinton, 2012);

• recognising spoken words from a large corpus of sentences called TIMIT (Garofolo

et al., 1993), where a Deep Recurrent Neural Network achieved the lowest error rate

so far (Graves, Mohamed, & Hinton, 2013);

• structuring vast amounts of general trivia knowledge to create a sophisticated

question answering system called IBM Watson (Ferrucci, 2010); and

• mastering complex board and strategy games such as Go and StarCraft II using deep

reinforcement learning and repeatedly beating world-class players in real-life

tournaments (Čertický, Churchill, Kim, Čertický, & Kelly, 2019; Silver et al., 2016;

Silver et al., 2017).

All these case studies are specialised applications that show that neural networks can perform 

exceedingly well in their respective domain. However, they might not work equally well when 

applied to other “normal” human tasks, such as holding a coherent conversation. The 

algorithms could be too specialised to perform well on other or more general problems. 

This phenomenon was first described as the No Free Lunch Theorem by Wolpert and 

Macready (1997). Although the term was initially coined for optimisation problems, it applies 

to the majority of AI systems as well. The theorem states that increased performance on one 

type of problem is always counteracted by decreased performance on all other types of 
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problems. This also implies that a generalised approach would be just as good as a specialised 

one because on average, all algorithms perform equally well according to the theorem. 

The research presented in this thesis tries to advance existing efforts towards generalisable, 

brain-inspired AI. It employs a brain-inspired type of artificial neural networks called 

Spiking Neural Networks (SNN) and explores its applicability to audio-visual data. Since 

the brain comprehends such multimodal data with ease, the idea of mimicking some of the 

involved neurological processes and combining them into a computational model warrants 

investigation. This research is exploratory and focuses on the investigation of these ideas in 

breadth rather than in depth. It includes case studies on auditory data, visual data, and 

combined audio-visual data to assess the capabilities of the brain-inspired SNN framework. 

The thesis tracks the pathway from the idea to the final model. 

The remainder of this chapter explains the objectives of the research, derives the research 

questions, outlines the structure of the thesis, and discusses the main contributions of this 

work. 
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1.2 MOTIVATION AND OBJECTIVES 

Initially, this research was intended to investigate language processing in the brain, driven by 

a keen personal interest in foreign languages and observing the variations to which degree 

semantic concepts can or cannot be expressed in them. While phonetic components, 

grammar, sentence structure, and vocabulary of two languages can have no relation at all, 

their speakers are still able to express similar concepts. For example, the English phrase “My 

name is …” translates to “Ko … tōku ingoa” in Te Reo Māori, but neither the English verb 

to be nor the Māori particle ko has an equivalent in the other language. On the other end of 

the spectrum, languages that are closely related linguistically may not be able to convey the 

same meaning and might need to borrow words from each other, such as the German word 

Doppelgänger used in English to describe someone looking almost identical to a stranger. 

All languages solve the problem of communication, but their large number shows that it can 

be solved in many different ways. 

A recent study by Y. Yang, Wang, Bailer, Cherkassky, and Just (2016) suggests that concepts 

communicated in different languages by the same individual are stored in and retrieved from 

the same regions of the brain. In another study, it was found that distinct brain areas respond 

to certain high-level concepts such as relationship or shelter when presented with words from 

these categories (Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016). The authors 

concluded that it can be assumed that there is an underlying conceptual framework in the 

brain across individuals that allows us to connect, memorise, and communicate our 

experiences (Huth et al., 2016). In order to create a general-purpose AI as described in the 

previous section, this mental framework would have to be analysed and encoded in a suitable 

computer architecture that is capable of structuring and connecting semantic concepts. 

After an initial literature review, it soon became apparent that creating a brain-inspired 

computational model of multi-lingual comparative semantics was rather ambitious for the 

timeframe of a doctoral dissertation. Neither have the biological processes of how the brain 

comprehends and generates language been fully understood by neuroscientists, nor had 

research in the area of Natural Language Processing yielded any fruitful outcomes that were 

able to deal with pragmatics (Cambria & White, 2014). It was, therefore, found to be a more 

realistic approach to start with the “mechanics” of communication, like perceiving and 

processing audio-visual information, using a brain-inspired system that would subsequently 

be able to integrate more biological features of the involved processes such as new findings 

on semantics and memory as they become available. 
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The primary objective of this study was to create a computational model that could process 

audio-visual information in a brain-inspired way. The notion of being brain-inspired or brain-

like implied a secondary objective, namely, using a computational architecture that 

facilitates future integration of new findings about the workings of the brain to extend the 

model’s functionality. This required an understanding of neuro-biological concepts of 

information processing in the brain, as well as knowledge about similar previous 

computational approaches and their advantages and limitations. Applying the model to two 

different input modalities (auditory and visual) and finding a method to combine them to 

gain insights about the data emerged as a central component of the research, and the natural 

way of integrating these modalities would be to use a brain template to define the structure 

and shape of the network. 

Subsequently, another secondary objective was then to explore the capabilities of this 

model and its applicability to real-world scenarios and problems. Consistent with the focus 

on auditory and visual modalities, it was established that there were three components 

required to investigate the applicability of the model in breadth rather than in depth: The 

model should be able to process sound data, video data, and combined audio-visual data, 

and preferably these data should be dynamic, i.e., the signals change over time, to better 

simulate the kind of data that is handled by the brain. Sound waves are dynamic in their very 

nature of travelling through the air; however, for the visual part, it was determined that video 

data should be used instead of static images. For the analysis of combined audio-visual data, 

using language data was preferred, maintaining the original intent of the study. 

The final secondary objective was related to the implementation of the model and what 

characteristics it should possess. To support its applicability to different case studies and 

facilitate the exploratory nature of the research, the model was expected to be able to handle 

multiple standard audio and video formats such as WAV, MP3, AVI, and MP4 for the input 

data. From a computational point of view, possible future deployment on different hardware 

systems was considered in the development of the software architecture. For example, 

specialised biologically-inspired hardware platforms were available or under active 

development by other research groups that were envisioned to be potentially used later to 

transform the sound and video signals. The transformed signals could then be fed into an 

implementation of the neural network that was running on either a standard von-Neumann 

computer or on neuromorphic hardware. The transformation methods developed here were 

expected to interface easily with the existing and anticipated hardware. As a final 

consideration, the model was required to produce an interpretable form of output – contrary 

to the majority of existing deep learning algorithms, it should not be a black box. 
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Revisiting the scope as explained in the previous section, four items were not considered 

objectives of this study. They are briefly mentioned here to clarify expectations. Firstly, this 

study did not aim to discover new methods to understand the functionality of the brain. 

Instead, it shows a new method of analysing brain-related data in a brain-like way. Secondly, 

and related to that, it did not want to generate new insights into the areas of neuroscience or 

biology but rather utilise knowledge from those areas for the creation of the model. Thirdly, 

it was not expected to be able to form semantic concepts based on the audio-visual input 

data like the brain of an infant would do. This was due to the variety of other senses such as 

olfactory or haptic perception that were not considered here but are necessary to develop a 

full understanding of one’s environment. Adding these senses could form the basis for future 

investigation though, as suggested in Section 9.4. Lastly, the goal of the case studies was to 

illustrate the method, not to replace existing techniques that were based on mathematical 

models and specialised in a particular application area. Compared with those methods, it was 

expected that the more generalised approach presented here would achieve a lower accuracy 

on typical classification benchmarking datasets. However, as explained above, more general 

insights into the capabilities of the model were expected. 
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1.3 RESEARCH QUESTIONS 

Based on the objectives of this study as described in the previous section, one central research 

question had been developed along with three sub-questions that allowed a systematic 

solution approach. The overarching question for this research was: 

How can a computational model of audio-visual information processing be created 

that uses brain-inspired mechanisms to analyse those data, and what can be learned 

from such a model? 

Several sub-questions were derived that related to different aspects of the research question. 

These questions are revisited in Section 9.2 of the thesis. 

(1) Biological inspiration

a. How can the biological background of audio-visual information perception and

processing inform the design of an audio-visual computational model?

b. Can neurological pathways of audio-visual information that are observed in the

brain also emerge in a brain-inspired computational model?

c. What aspects of the human audio-visual processing system can enhance the analysis

of audio and video data?

(2) Design of an audio-visual spiking neural network

a. How can audio-visual data be transformed (encoded) into electrical impulses for

use in a spiking neural network?

b. What is a biologically plausible way to input (to map) sound and visual stimuli into

the model?

c. How can the use of both auditory and visual data in one combined model be

facilitated in a biologically plausible, yet computationally feasible way?

(3) System evaluation

a. How does the brain-inspired model perform on sound and video benchmark

datasets compared to conventional approaches?

b. What are the advantages and disadvantages of using biologically plausible encoding

and mapping approaches for processing audio-visual data?

c. Does the size of the neural network influence the learning processes and

performance of the model?
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1.4 STRUCTURE OF THE THESIS 

The very first chapter in this thesis following the introduction describes a pilot study that 

was conducted at the beginning of the candidate’s research journey. In this study, the 

candidate recorded her brain activity while viewing images of objects and listening to the 

objects’ names. She then built a model that tried to classify the data into object categories 

and to observe semantic concept formation, which was the original motivation and objective 

for the research (see Section 1.2). While not very fruitful in terms of research output, this 

study did provide valuable insights into the limitations of the model and largely informed 

and directed the work that followed. Chapter 2 explains the setup and outcome of this study 

in detail. 

After the learnings from the pilot study led to an adjustment in the research direction, the 

work carried out for this thesis was organised into three projects that looked at processing 

auditory, visual, and audio-visual signals, respectively. Both the auditory and the visual 

systems consist of separate models including encoding and mapping methods, while for the 

audio-visual system, their functionalities were combined into one model. All three systems 

were then tested on domain-specific datasets and the results were compared to existing 

methods found in the literature. Following the established procedure of presenting research 

in Computer Science, this thesis contains chapters on literature background (Chapters 3 and 

4), method and system design (Chapter 5), case studies, experiments, results, and discussion 

(Chapters 6, 7, and 8), and a conclusion (Chapter 9). The three projects are thematically 

organised across these chapters as shown in Figure 1-1. 

 

FIGURE 1-1: THEMATIC ORGANISATION OF THE THREE PROJECTS (AUDITORY, 

VISUAL, AUDIO-VISUAL) PRESENTED IN THIS THESIS. 
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Chapter 3 begins by exploring the biological background of human hearing and vision, and 

how multimodal information is processed in the brain. It describes what sound is, how the 

ear and more specifically the cochlea transform sound waves into electrical signals, and how 

these signals travel through the auditory pathway into the auditory cortices to be processed 

further. It analogously explains the mechanics of vision, how the eye and more specifically 

the retina and the ganglion cells transform and converge photons into electrical signals, and 

how these signals travel through the visual pathway into the visual cortex to be processed 

further. The chapter closes by summarising what is known about the brain’s capability to 

combine these two modalities and make sense of the received information. 

Chapter 4 gives an overview of existing computational methods for auditory, visual, and 

audio-visual information processing. It first outlines established machine learning methods 

for sound and image analysis, followed by a summary of brain-inspired methods that have 

been applied to audio-visual information processing tasks. The focus of this chapter is on 

algorithms that claim biological inspiration or plausibility. 

Chapter 5 describes the computational approach that was created to answer the majority of 

the formulated research questions. Following a general overview of the system architecture, 

three separate paradigms of the framework are introduced that relate to sound processing, 

video processing, and combining modalities, respectively. The section on sound processing 

describes the cochlear encoding and tonotopic mapping approaches with a focus on a newly 

developed data compression algorithm. The section on video processing describes the retinal 

encoding and retinotopic mapping approaches with a focus on a novel mechanism for 

realising colour recognition and modelling receptive fields. The final section of the chapter 

describes how both sound and video data were integrated into one model, how the brain-

shaped network enabled this integration, and how the signal times were synchronised. 

The following three chapters then report on the experimental results that were achieved with 

these three software frameworks. 

Chapter 6 presents a case study conducted with the sound processing system using a 

benchmark dataset in the domain of spoken digit recognition. The chapter highlights the 

peculiarities of the data, explains the experimental setup and parameters, and states both the 

qualitative and the quantitative results. It also discusses how the sound processing framework 

compared to other models using the described benchmark dataset. 

Chapter 7 presents a case study in which the video processing system was applied to a 

benchmark dataset for classifying a set of gestures from videos. This study followed the same 

outline as the sound processing study, describing the dataset, explaining the experimental 
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setup, reporting on the achieved results, and comparing it to previous work in the same 

domain. 

Chapter 8 presents the final case study, an application for the integrated audio-visual 

processing system that is based on New Zealand Sign Language. In this study, the model was 

used to learn the characteristics of five signs and their spoken English equivalents. Like the 

previous two chapters, this chapter includes a dataset description, information about the 

experimental setup, as well as results and conclusions about the knowledge gained from the 

experiment. 

Chapter 9 concludes the thesis by summarising its content and revisiting the research 

questions. It reflects on limitations that arose from model simplifications and generalisations. 

In the end, the chapter draws attention to possible future directions such as integrating brain 

data or other senses like olfactory and haptic perception. 

In the appendices, this thesis also includes a detailed glossary and list of abbreviations, as 

well as exemplary code snippets, more detailed results for the experiments, and copyright 

licenses for all third-party figures. 
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1.5 MAIN CONTRIBUTIONS OF THIS RESEARCH 

The work presented in this thesis introduces a novel method of audio-visual data processing 

that was inspired by the functioning of the human auditory and visual systems. As such, it is 

the first of its kind that combines biologically inspired data transformation (encoding) with 

tonotopic and retinotopic signal mapping into a brain-shaped neural network. The main 

contributions of this work are: 

• The conceptual design of the model that offers a new approach for data analysis with

a wide range of application areas;

• A retina-inspired encoding algorithm for visual data that includes colour vision

capabilities and a moving focal area;

• A network layout that facilitates straightforward, biologically plausible bimodal signal

integration with the option to add more modalities in the future, in 16 different sizes;

• Tonotopic and retinotopic signal mapping algorithms that can determine the

optimum number and location of input neurons in the network;

• Compression algorithms for auditory and visual data; and

• Results of the initial exploration of the model’s capabilities and limitations.
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2 DECODING OBJECTS FROM 

BRAIN DATA – A PILOT STUDY 

“It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit theories, 

instead of theories to suit facts.” 

– Sherlock Holmes in A Scandal in Bohemia

2.1 BACKGROUND AND MOTIVATION 

This chapter describes a preliminary study in which the author of this thesis attempted to 

classify electroencephalography (EEG) data recorded while a subject was presented with 

images and spoken and written representations of ten items. It was a first proof-of-concept 

study to gauge the possibilities and limitations of an originally proposed framework3 related 

to decoding the underlying meaning of perceived images and words across multiple 

languages. The results did not provide support for the study’s hypothesis that objects can be 

identified by analysing EEG data using a spiking neural network architecture. However, these 

findings informed the further design of the research presented in this thesis and provided an 

3 This framework is described in detail in this chapter, in Section 2.2. 
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important basis for all of the work included in the subsequent chapters. Therefore, a 

summary of this study is included here as an introductory chapter to serve as additional 

context and give an explanation of the inspiration for and development of the work 

presented in this thesis. 

The aim of this project was to investigate how language and concept formation, in 

particular, are processed in the brain, leading to the question as to whether concept formation 

can be detected by analysing brain data. Set in the area of Natural Language Processing 

(NLP), which deals with the computational analysis and generation of human languages, the 

project was motivated by a review paper that described the three different stages through 

which NLP research is currently evolving (Cambria & White, 2014). The authors of this 

review paper argue that while research into syntactic and also increasingly into semantic 

processing of words and word sequences by machines has made progress in finding feasible 

explanations of the underlying workings of language understanding, the pragmatics or 

contextual embedding of language particles is still poorly understood. 

Large, annotated word corpora such as the Penn Treebank (Marcus, Marcinkiewicz, & 

Santorini, 1993) have advanced through and with the syntactic analysis of language by 

providing ways to systematise the grammatical function of sentence components. The 

outcomes from this area form the foundation for semantic analysis, which looks at the 

meaning of words by putting them in relationship with each other, normally using a graph 

data structure. One of the earliest approaches to forming such a “relationship graph” 

between words is the WordNet database (Miller & Fellbaum, 2007), which at the time of 

writing contained more than 150,000 words and their semantic associations (Princeton 

University, n.d.). Cambria and White (2014) concluded that this development will eventually 

lead to a pragmatic, contextual understanding of written and spoken content that also 

takes factors like sensory, emotional and social knowledge into consideration and hence will 

be able to facilitate “natural” communication between humans and machines. 

In relation to the conclusions drawn by Cambria and White (2014), the research project 

presented in this chapter is positioned between the semantic and the pragmatic aspects of 

language analysis. By studying brain data to uncover the “semantic footprint” of a small set 

of words, the hope was to automatically incorporate pragmatic knowledge from the brain’s 

existing associations and acquired knowledge that would aid the classification and 

categorisation of objects. The hypothesis of this study was inspired by the, at that time 

recently published, first semantic brain atlas based on functional brain data (Huth et al., 

2016). This atlas let users interactively explore a three-dimensional model of the human brain 

and the semantic concepts most likely associated with specific brain regions. 
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Based on the findings by Huth et al., this study hypothesised that the meaning of objects 

can be retrieved from EEG data recorded while these objects were presented to a study 

subject. The following sections describe the data analysis framework and the experimental 

setup that were used to test this hypothesis, followed by the unfortunately rather dissatisfying 

results. This is followed by a discussion of why the outcomes were not as good as initially 

thought and what other research groups have done differently to achieve better results. The 

conclusion summarises the main findings of this work and discusses how it directed the 

research that encompasses this thesis. 
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2.2 DATA ANALYSIS FRAMEWORK 

The data analysis framework for this project was based on that of previous studies by 

KEDRI, the research group of which the author of this thesis was part during her PhD. It 

follows a novel technique for analysing EEG data reported by Kasabov and Capecci (2015) 

and by Doborjeh, Wang, Kasabov, Kydd, and Russell (2016). In this technique, EEG data 

are entered into a brain-shaped three-dimensional spiking neural network architecture called 

NeuCube (Kasabov, 2014). The EEG signals are fed into those neurons in the network that 

are spatially closest to their recording electrodes’ respective location on a human head. This 

preserves the spatio-temporal information in the data and enables an easily understandable 

visualisation of activity clusters. The NeuCube then learns the patterns in the data using the 

unsupervised spike-timing-dependent plasticity algorithm, which modifies the connections 

between the neurons as the signals are propagated through the network. After this training 

stage, the neural activity that is observed in the network when being presented with single 

samples is quantified using the supervised dynamic evolving SNN algorithm. Finally, these 

quantified “summaries” of the network activity are labelled using the k-nearest neighbour 

algorithm, so that samples that exhibit similar activity in the network are grouped together. 

A more detailed description of the NeuCube architecture can be found in Section 5.2 of this 

thesis. 

The EEG data were collected from the thesis author’s brain with the help of a senior lecturer 

from the university’s psychology department. Since this was a proof-of-concept study, one 

subject was considered sufficient to obtain a first insight into possible outcomes. The support 

of a senior staff member with a background in psychology who is familiar with the process 

of collecting EEG data was invaluable to the thesis author. Firstly, her support in designing 

the experiment minimised issues with the method of stimuli presentation. Secondly, during 

data collection, the expert ensured that the signals would be as free of interferences as 

possible by providing a sound-proof recording room that was free of electrical noise and by 

making sure the impedance levels of the electrodes were kept at a minimum level. 

For the presentation of stimuli to the subject, a software tool called Presentation 

(NeuroBehavioralSystems, n.d.) was used that can be connected to the data collection 

software and also to the MATLAB package that was used for pre-processing the data, 

EEGLAB (Delorme & Makeig, 2004). This meant that the start and finishing points of 

stimuli could be timed precisely and later be linked back together with the corresponding 

sections of the EEG signals to create epochs. 
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As stimuli, ten everyday objects and common living beings were presented to the study 

subject: ball, book, child, clock, dog, horse, house, shoe, table, and tree. In the five modes of 

the data collection process, these items were presented first as coloured images, then as 

spoken words in English and German, and finally as written words in English and German. 

In each mode, each of the ten items was presented ten times to the subject in a randomised 

order. For the mode with images, this included ten different images for each item, while for 

the spoken and written words, the same recording or text display of a word was used 

repeatedly throughout the respective segments. Since both the English and the German 

spoken words were downloaded from an online dictionary to provide a standardised 

pronunciation, there were two speakers, a male and a female, between whom each set of 

words was divided. The written text was shown in the Arial font with a font size of 48 in 

white colour on a black background. 

Between the visual stimuli, i.e., images and written words, a black screen was shown to 

create a clear segmentation between the items and, thus, also between the brain signals that 

were measured for them. The visual stimulus itself was shown for 300 milliseconds, followed 

by one second of the black screen. This was similar to the setup of a previous study that 

reported promising results (Simanova, van Gerven, Oostenveld, & Hagoort, 2010). The 

duration of 300 milliseconds was also chosen because findings from neuroscience literature 

suggest that the so-called P300 signal plays an important role in semantic categorisation 

(Azizian, Freitas, Watson, & Squires, 2006; Houlihan, Campbell, & Stelmack, 1994; 

Mecklinger & Ullsperger, 1993). The P300 component in the signals is evoked about 

300 milliseconds after stimulus presentation. The thesis author’s intention behind stopping 

the stimulus presentation after exactly that time was that noise from subsequent thoughts 

associated with the presented item would be minimised. 

For the spoken words, a white crosshair was presented during the recording that served as 

a visual anchoring point for the participant and, hence, helped with minimising the influence 

of artefacts created by eye movement. The sound files were cropped to 0.5 seconds in length 

and played over stereo headphones at a sampling rate of 44,100 Hertz. In contrast to the 

presentation time of visual stimuli for 300 milliseconds, a length of 500 milliseconds was 

chosen for the sound files because shortening them further would have made the endings of 

some words unintelligible. Between the sound stimuli, there was one second of silence to 

provide a clear break between signals, similar to the visual stimulus presentation. 

A cap with 64 gel-based electrodes was used to collect the EEG data. The baseline reference 

channel was the electrode at position Cz and the sampling rate was 1,000 Hertz. After re-

referencing the dataset, the signals were split into epochs corresponding to the stimuli 
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presentation times. They were then entered into 64 hand-selected input neurons of the neural 

network, which contained 1,471 neurons in total. The locations of the input neurons were 

chosen based on the locations of the EEG electrodes on the scalp. The parameters of the 

network were then adjusted based on the goals of the performed experiments as described 

in Section 2.3. 
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2.3 EXPERIMENTS AND RESULTS 

Several experiments were carried out with the pre-processed dataset, beginning with an 

analysis of the signals collected while the subject was presented with the images. For the 

first experiment, the 100 data samples were split into two groups of 50 randomly selected 

samples each, with one group being used as the training dataset and the other group being 

used for testing. The training samples were passed into the network model to modify the 

weights of the connections between neurons in the network and thus make the model “learn” 

the patterns that are specific to a particular category of items. The samples from the testing 

dataset were then classified into those categories using the trained model. 

All results presented in this section were based on the default system parameters that at 

the time were deemed most appropriate by the developers of the NeuCube software.4 For 

the encoding of EEG data into spikes, a threshold representation algorithm with a threshold 

of 0.5 was used; for the initialisation of the network connections, the small-world radius was 

set to 25; the spike-timing-dependent plasticity learning was performed with a learning rate 

of 0.01, a potential leak rate of 0.002, a firing threshold of 0.5, and a refractory time of 6; and 

for the dynamic evolving spiking neural network classifier, the parameters were set to a 

modulation factor of 0.8, a drift of 0.005, a K of 3 and a sigma of 1. 

Overall, only six of the testing samples were classified correctly (i.e., 12% classification 

accuracy), with half of the classes not having any correct matches at all. Figure 2-1 shows the 

detailed classification results. The red triangles indicate the expected class of a sample and 

the blue asterisks represent the class that was assigned to the sample by the model. Apart 

from three houses being misclassified as trees, there is no clear crossover between classes; 

rather, the classification seems somewhat random. Noticeably, only very few samples have 

been misclassified as shoe, child, or horse (only two samples each), while comparatively many 

have been misclassified as tree (nine samples), book (eight samples), or clock (six samples). 

4 A detailed explanation of the meaning of these parameters as well as the NeuCube architecture and its 
components is included in this thesis in Section 5.2. 
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FIGURE 2-1: OVERALL CLASSIFICATION RESULT FOR THE EEG DATA COLLECTED

WHILE PRESENTING IMAGES. 50% OF THE SAMPLES WERE USED FOR TRAINING AND

50% FOR TESTING. 

In an attempt to reduce any potential misclassification introduced by noise in the signals, the 

pre-processing stage was re-visited before conducting the second experiment and 20 of the 

100 samples that seemed to contain the most irregular features were removed based on visual 

inspection. The remaining 80 samples were then split into a training and a testing dataset, 

although unlike the first experiment, 65% of the samples (i.e., 52 randomly selected samples) 

were used for training the network and the remaining 35% (i.e., 28 samples) were used for 

testing. This slightly improved the classification accuracy and four out of 28 samples were 

correctly identified (i.e., 14.29%) as shown in Figure 2-2. 

Similar to the first experiment, the classifier seemed to behave somewhat randomly. By far 

the highest number of samples were classified as ball, which also made this the class with the 

highest accuracy and, at the same time, the highest number of misclassifications. No samples 

were classified as shoe or book, even though there was a large allocation of training samples 

for both these classes, as indicated by the small number of samples in the testing set (red 

triangles in Figure 2-2). Consequently, the learning process in the network should have been 

best for these classes. 



41 

FIGURE 2-2: OVERALL CLASSIFICATION RESULT FOR THE REDUCED EEG DATA

COLLECTED WHILE PRESENTING IMAGES. 65% OF THE SAMPLES WERE USED FOR

TRAINING AND 35% FOR TESTING. 

Based on these results, the third experiment looked at comparing only two classes, horse 

and table, to investigate if the network can discriminate between classes at all. The chosen 

classes had very little overlap in the first two experiments, so the hope was that they would 

be reasonably distinguishable. For this experiment, all 20 samples for horse and table from 

the original full dataset were used to avoid having too few samples when using the reduced 

dataset. Like in the first experiment, they were split into two groups of the same size, with 

samples randomly allocated to either the training or the testing group. The overall 

classification accuracy for this experiment was 50% with 20% of the horse samples and 80% 

of the table samples correctly classified. The majority of samples were classified as table, 

which means that the network did not learn to properly discriminate between the two classes. 

The detailed results for this experiment are shown in Figure 2-3. 
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FIGURE 2-3: OVERALL CLASSIFICATION RESULT FOR TWO CLASSES OF THE EEG

DATA COLLECTED WHILE PRESENTING IMAGES . 50% OF THE SAMPLES WERE USED

FOR TRAINING AND 50% FOR TESTING. 

The fourth and final experiment that was performed on the EEG data for the images 

looked at categorising the items into living beings and non-living objects. For this 

experiment, the reduced dataset with 80 samples was used because it had yielded better 

classification results in the second experiment and with only two target classes, “living 

beings” and “non-living objects”, the impact of missing samples was expected to only have 

a minor influence. The four items categorised as living beings were child, dog, horse, and 

tree, while ball, book, clock, house, shoe, and table were categorised as non-living objects. 

This selection led to a slightly imbalanced dataset with 33 samples for the living beings 

category and 47 samples for the non-living objects category. The samples were again split in 

half by randomly assigning them to either a test or training dataset. Due to a bug in the 

software implementation of the NeuCube, when calculating half of both numbers to split 

the training and test sets, the numbers for the training dataset were rounded down, leaving 

16 samples for the living beings and 23 samples for the non-living objects (39 training 

samples), and, hence, a total of 41 samples in the test dataset instead of the expected 40. 

The overall classification accuracy for this experiment was 65.85% with 23.5% of the living 

beings and 95.8% of the non-living objects correctly classified. As shown in Figure 2-4, 35 of 

the 41 samples were classified as non-living objects, which explains the large disparity 

between the classification results of the categories. As in the third experiment comparing two 

classes, the network did also not learn to discriminate between the two categories. 

FIGURE 2-4: OVERALL CLASSIFICATION RESULT FOR TWO CATEGORIES OF EEG

DATA COLLECTED WHILE PRESENTING IMAGES . 50% OF THE SAMPLES WERE USED

FOR TRAINING AND 50% FOR TESTING. 
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Despite the bad classification results for this experiment, it was still considered to be a useful 

first attempt at the semantic categorisation of the data. While it was expected that the two 

categories were sufficiently different to be discriminated, the model’s classifier did not 

manage to distinguish between them. This could, however, have been an issue with the 

classifier’s algorithm rather than being caused by the network not learning those semantic 

differences. Therefore, taking a deeper look at the connections created in the network 

seemed like a reasonable next step to gain an understanding of the data’s spatio-temporal 

characteristics. 

The trained network was visualised by displaying only the strongest 10% of the connections 

between the neurons. Figure 2-5 shows the network after being trained on all samples for 

the living beings, while Figure 2-6 shows the same for the non-living objects. The display 

angle for both figures is from the left rear side of the brain, which means the viewer looks 

towards the left temporal lobe and the occipital lobe. The blue lines mark the connections 

between neurons and the line thickness indicates the connection weight. The colours of the 

neurons correspond to their activation level, i.e., how many times they spiked during the 

training process: the lighter a neuron is, the more spikes it has emitted, while black neurons 

have emitted less than five spikes during the whole training process. 

The connections in both networks looked relatively similar, especially in the temporal lobes 

on both sides of the brain. The temporal lobe is generally associated with auditory processing 

(Amunts, Morosan, Hilbig, & Zilles, 2012), but has also been found to be involved in 

memory processing (Squire & Zola-Morgan, 1991) and in visual object recognition (Lech & 

Suchan, 2014; Rolls, 1996). In both networks, there is a noticeable absence of connections 

in the centre of the occipital lobe, which is generally known as the visual processing centre 

(Wandell, 1999), even though the task performed by the subject involved high visual 

attention and processing. 

Perhaps the two most prominent differences between the networks can be seen in the left 

superior temporal lobe and in the right lateral occipital lobe, where the number of 

connections for the non-living objects is larger than that for the living beings. In return, the 

network for the living beings exhibits connections in the right frontal lobe that are absent in 

the network for the non-living objects. In general, the connections in the network for the 

living beings seem to be more spread out than those for the non-living objects, which appear 

more clustered. 
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FIGURE 2-5: VISUALISATION OF THE STRONGEST 10% OF THE CONNECTIONS IN A

NEURAL NETWORK TRAINED ON EEG DATA RECORDED WHILE SEEING IMAGES OF

LIVING BEINGS. 

FIGURE 2-6: VISUALISATION OF THE STRONGEST 10% OF THE CONNECTIONS IN A

NEURAL NETWORK TRAINED ON EEG DATA RECORDED WHILE SEEING IMAGES OF

NON-LIVING OBJECTS. 
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After analysing the EEG data that were collected while the subject was presented with 

images, the next set of experiments was performed on the EEG data collected while the 

subject listened to the German words. In this instance, the German words were chosen first 

over the English words because German was the subject’s mother tongue and she was more 

proficient in it. 

Similar to the first experiment on the EEG dataset for images, the German spoken words 

dataset consisted of 100 samples that were collected while the ten stimuli were presented to 

the subject, in this case by listening to the spoken words while seeing a white crosshair on 

the otherwise black screen. In contrast to the image stimuli, however, there was only one 

recording for each of the ten classes, which was presented ten times. The resulting 

100 samples were again split into a training and a test dataset that each contained 

50 randomly selected samples. The training dataset was then used to train the network, while 

the test dataset was used to assess how well the trained network would classify the unseen 

samples. The overall classification accuracy was 10.0%, which is equivalent to assigning the 

samples to classes by chance. A detailed overview of the classification results is shown in 

Figure 2-7. 

 

FIGURE 2-7: OVERALL CLASSIFICATION RESULT FOR THE EEG DATA COLLECTED 

WHILE PRESENTING SPOKEN GERMAN WORDS. HALF OF THE SAMPLES WERE USED 

FOR TRAINING AND THE OTHER HALF FOR TESTING . 
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Overall, only five samples were classified correctly, which is likely not due to actual learning 

in the network but rather caused by the seemingly random assignment of samples to classes 

that matched by chance in these few cases. There is no clear crossover between classes and 

the samples are fairly evenly distributed across them. Noticeably, only a few samples were 

classified as a shoe or table (two samples each) or as a book (three samples), while 

comparatively many have been misclassified as child, tree, or dog (seven samples each). 

No further experiments were conducted with the EEG data for the spoken English or the 

written German and English words. Based on the results for the first two presentation 

modes, it was believed that the outcomes for the remaining datasets would not have been 

significantly better. Moreover, contrary to image and sound processing, identifying written 

words is a relatively recent cultural addition that the human brain had to handle in its 

evolution, which means that neural pathways are likely to be embedded into other processing 

stations and have to be explicitly formed through learning by each person instead of being 

acquired naturally based on existing neural pathways (Dehaene & Cohen, 2011; I. Y. 

Liberman, Shankweiler, & Liberman, 1989). This means that the resulting semantics of the 

written words will be even harder to detect. Studies on orthographic processing using EEG 

data have so far yielded insights into the temporal order in which the involved neural 

processing clusters perform visual word recognition (Carreiras, Armstrong, Perea, & Frost, 

2014). However, none have reported a semantic identification of the perceived words 

(Carreiras et al., 2014). 

A further planned experiment to analyse possible interactions across all five data acquisition 

modes was abandoned based on the results obtained from the first two sets of experiments. 

Even though such an investigation was the original motivation and goal for this study, 

pursuing this direction further did not seem fruitful enough to invest more time or resources. 

Another path that was explored in the experimentation stage was parameter optimisation 

as better parameters may have yielded improved results. A few attempts were made at using 

the software’s in-built parameter optimisation feature that was based on Genetic Algorithms. 

However, this did not lead to any usable outcomes because the system would run for several 

days only to be forcefully interrupted by memory errors. 

In summary, the network could not discriminate between all ten classes, between a selection 

of two classes, or between categories. This was consistent across the tested stimulus 

presentation modes. Overall, the results of this study strongly suggested an adjustment of 

the framework and research direction. The following section will discuss the possible causes 

of errors and compare the results to similar published studies. 
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2.4 ERROR ANALYSIS AND DISCUSSION 

This section analyses the results of the EEG experiments from a neuroscientific perspective 

and contextualises them in relation to other studies that have tried to achieve similar goals 

using different data analysis frameworks. While in hindsight, some issues with the presented 

method and experimental setup seem to have been avoidable at the time, it remains 

questionable if a significant improvement could have been achieved. And after all, the lessons 

learned from this preliminary study inspired the creative solution that became the foundation 

of the new data analysis framework presented in this thesis. 

It is likely that process errors influenced the unfavourable outcome of this study. Firstly, 

from a methodological point of view, the epoching of the signals at 300 milliseconds after 

stimulus onset was probably too short, despite the literature cited in Section 2.2 suggesting 

otherwise. More evidence from studies on event-related potentials (ERP) of EEG data 

consistently shows another distinctive feature in the signals at about 400 milliseconds after 

stimulus onset (Kutas & Federmeier, 2011). This so-called N400 component can usually be 

observed in tasks related to semantic processing regardless of the stimulus type and is, 

therefore, considered an important feature of any research related to decoding the meaning 

of words (Kutas & Federmeier, 2011). Secondly, another possible cause of error in the 

experimental setup was the use of a male and a female speaker for the recordings of the 

spoken English and German words. The difference in pitch between the genders (Pernet & 

Belin, 2012) might have led to slightly different processing locations due to the tonotopic 

organisation of the auditory cortex (Saenz & Langers, 2014), and, hence, facilitated a 

classification by speaker rather than by meaning. Lastly, there is a possibility that errors were 

introduced by the analysis method with NeuCube. The software implementation that was 

available to the thesis author at the time was based on a MATLAB prototype that was not 

fully tested and therefore, likely contained programming bugs or possibly even algorithmic 

errors (Scott, 2015, pp. 118-119, 132-139). This became apparent when trying to run an 

automated parameter optimisation based on Genetic Algorithms, which in all attempts 

forcefully ended in memory errors or other software crashes. 

Another possible source of errors was the thesis author’s limited familiarity with established 

methods of EEG data pre-processing and analysis at the time. This meant that she relied 

on the advice of an expert in the field. Literature on retrieving category knowledge of objects 

from participants’ EEG data had shown encouraging results. However, these could not be 

replicated with the proposed NeuCube framework. The following paragraphs look at 

previous studies from literature, their methodology, and results. 
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For example, Simanova et al. (2010) achieved up to 79% classification accuracy using a similar 

experimental framework to the one presented in this chapter. While Simanova et al. also 

looked at classifying EEG data that were collected while the participants saw images (in their 

case, line drawings) and read and heard word representations of their eight chosen stimuli, a 

significant difference in their data collection procedure was that they asked their participants 

to determine the semantic category of the stimulus, i.e., animals or tools. This evoked active 

thinking on the part of the participants, contrary to the passive presentation of stimuli 

described in the study presented in this chapter. Simanova et al. then applied Bayesian logistic 

regression with a multivariate Laplace prior to classify the data into the two categories. They 

employed five-fold cross-validation (instead of the 50-50 holdout method used in the study 

presented in this chapter) to validate their classifier and achieved 79% accuracy for the image 

stimuli, 61% for the spoken words and a modest 56% for the written words across all their 

20 study subjects. 

Similarly, a set of experiments described by B. Murphy et al. (2011) employed an experimental 

framework where participants were asked to silently name the animal or the tool that was 

shown to them as a greyscale image while their EEG data were being recorded. Murphy et 

al. then applied a time/frequency window search algorithm and a Support Vector Machine 

for classifying the data with five-fold cross-validation. Their classifier managed to 

discriminate between the two categories with on average 72% accuracy for single 

participants. Interestingly, Murphy et al. mention in their discussion that they tried to classify 

the objects that were presented to the participants, which were 30 land mammals and 30 

work tools, but achieved no significant results. They concluded that more advanced data 

mining techniques needed to be developed to achieve such fine-grained discrimination. 

In a third study, this time on EEG data recorded while listening to spoken words in English 

and Dutch, a research group from the Netherlands looked at which time intervals of the 

signals after stimulus presentation are most significant when distinguishing between the 

words (Correia, Jansma, Hausfeld, Kikkert, & Bonte, 2015). Correia et al. presented their 

participants with ten spoken words, four animals and six inanimate objects, both in English 

and in Dutch, pronounced by three female speakers. The participants were asked to press a 

button whenever they heard an inanimate object, which sustained attention during the 

recording and evoked semantic categorisation of the words. Correia et al. then employed 

multivariate pattern analysis with a linear Support Vector Machine to discriminate between 

different words in the same language and generalise semantically similar words across 

languages. For the intra-language discrimination task, they performed a binary classification 

between word pairs, similar to the third experiment described in Section 2.3. Their training 
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data consisted of those two-thirds of the data that corresponded to two of the three speakers, 

while the test data were comprised of the data related to the third speaker. They also made 

use of a temporal-windows approach to segment the continuous EEG data into intervals 

that were then analysed separately. On average across all word pairs and time windows, 

Correia et al. achieved 53% accuracy for the inter-language discrimination of the words. For 

the intra-language generalisation, Correia et al. split the dataset in half, training on one 

language and testing on the other. This approach specifically assessed semantic concept 

formation and overlap across the two languages. On average across all world pairs and time 

windows, the classification accuracy for this task was 51%. 

Besides these approaches using EEG, the task of retrieving semantic meaning from brain 

signals has also been attempted using magnetoencephalography (MEG) (Sudre et al., 2012; 

Vartiainen, Parviainen, & Salmelin, 2009), a combination of EEG and MEG (Chan, Halgren, 

Marinkovic, & Cash, 2011; Hagoort, 2008; B. Murphy & Poesio, 2010), positron emission 

tomography (Martin, Wiggs, Ungerleider, & Haxby, 1996), and functional magnetic 

resonance imaging (fMRI) (Buchweitz, Shinkareva, Mason, Mitchell, & Just, 2012; Correia et 

al., 2014; S. J. Hanson, Matsuka, & Haxby, 2004; Haxby et al., 2001; Huth et al., 2016; 

Mitchell et al., 2008; Y. Yang et al., 2016), with varying but generally promising results. 

The study that was most intriguing to the author of this thesis and inspired her to pursue this 

research direction was an fMRI-based semantic brain atlas developed by Huth et al. 

(2016). While not strictly being a classification study, the researchers’ goal was to investigate 

semantic selectivity of brain regions across individuals. Huth et al. collected their participants’ 

brain data through fMRI for over two hours while the participants listened to stories. They 

then mapped the activity of the voxels to the meaning of the words in the stories, resulting 

in a semantically organised map across the whole brain that was remarkably consistent across 

the study participants. The map showed that semantically similar concepts elicit activity in 

spatially close areas in the brain. In a follow-up study by the same research group (Deniz, 

Nunez-Elizalde, Huth, & Gallant, 2019), the researchers confirmed that these findings hold 

for different modes of stimulus presentation, concretely, for both listening and reading. 

The semantic information that can therefore clearly be extracted by analysing brain data, was 

undetectable by the research framework employed by the study presented in this chapter. 

The great disparity between what was observed in literature and what was found here led to 

the conclusion that a radically different data analysis framework had to be developed to 

explore semantic concept formation in the brain. The following section briefly describes this 

new approach, which is the core of this thesis, and its motivation. 
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2.5 LEARNINGS AND CONCLUSIONS 

The purpose of the study reported in this chapter was to investigate if the meaning of objects 

could be retrieved by analysing EEG data that were collected while ten objects were 

presented to a participant in different stimulus modes. The approach that was chosen was 

largely based on conventional methods for EEG pre-processing and on a novel spiking 

neural network architecture called NeuCube (Kasabov, 2014), which performed very poorly 

on this task. However, while the model could not detect the semantic representations of words 

from brain data, the author of this thesis hypothesised that it would maybe be able to 

organically create such concepts if trained with the right data. These data would first have to 

be encoded into spikes and then mapped into the network in a biologically plausible way, 

which could help to facilitate the multi-sensory integration of data in the model and facilitate 

concept formation. Fascinated and inspired by the sophisticated processing mechanisms in 

the human auditory and visual pathways and the seemingly easy integration of audio-visual 

data in the brain to form these elusive semantic concepts, the thesis author decided to try 

and copy the key characteristics of those processes and use them to build a brain-inspired 

audio-visual information processing system. 

Instead of retrieving the semantic information from brain data, this new approach would 

start at the stage of stimulus perception and then let the model form its own conceptual 

representation of the data. This approach of bio-inspired perception and mapping differs 

from traditional methods of audio-visual data analysis in that it employs more biological 

processes in place of purely mathematical algorithms. The auditory processing pipeline 

should follow the auditory pathway from the sound transformation in the cochlea to the 

tonotopic mapping into the auditory cortex, while the visual processing pipeline should be 

based on the transformation of light in the retina and the retinotopic mapping into the visual 

cortex. Furthermore, the attempt to combine these two modalities should take inspiration 

from the integration of those two modalities in the brain. The biological background of these 

three processes is described in detail in Chapter 3. Choosing the location into which the 

signals will be mapped based on the stimulus mode and the actual location of the respective 

processing regions in the brain will facilitate a “natural” means of combining the data in the 

network. Since the locations of the auditory and visual cortices are known, they can be 

replicated in a brain-shaped neural network that employs mechanisms of brain-like neural 

communications. This novel method is presented in Chapter 5, and the results of a set of 

experiments that were performed to explore the capabilities of the new framework are 

reported in Chapters 6, 7, and 8. 
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Overall, it can be concluded that this temporary setback was unexpectedly beneficial for the 

thesis project as it motivated the development of an exciting and completely new approach 

to a currently popular aspect of data processing in neural networks. 
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3 BIOLOGICAL BACKGROUND 

“Always approach a case with an absolutely blank mind. It is always an advantage. Form no theories, just 

simply observe and draw inferences from your observations.” 

– Sherlock Holmes in The Adventure of the Cardboard Box

3.1 CHAPTER OVERVIEW 

The human body is a remarkable piece of natural engineering. Billions of cells work together 

as little building bricks that have unique functionalities and are able to communicate their 

respective needs to one another in order to function as a whole. Our senses are no exception 

to that. They enable us to gather information about noteworthy characteristics of our 

environment, to understand their significance, and to draw conclusions about possible 

reactions to external stimuli. Planning one’s movements based on seeing possible obstacles, 

listening and responding in a conversation, smelling and tasting food and deciding if it is 

likeable – nearly every situation in our daily lives involves sensory processing. This literature 

overview focuses on two of those senses, namely hearing and vision, and their integration in 

the brain, in line with the scope and motivation presented in Chapter 1. 
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Both sensory modalities, hearing and vision, are largely concerned with identifying objects 

and their respective locations. The ears and the auditory pathway in the brain do so by 

analysing the composition of air pressure waves at certain frequencies, while the eyes and the 

visual pathway can perceive and interpret electromagnetic radiation in a defined spectral 

range. Sound and light can be created or reflected by objects in one’s surroundings. The 

characteristics of these objects, when in focus, are captured in the auditory and visual signals 

as they interact physically and chemically with each other. These physiological and chemical 

reactions influence the properties of the stimuli, such as the pitch of a sound or the intensity 

of light, that reach the ears and eyes. Once perceived, the brain uses neural mechanisms to 

decode and comprehend these stimuli to create an appropriate response. 

This chapter sets the scene for the work described in this thesis by explaining the biological 

background of how humans perceive and process audio-visual information. It introduces the 

components and mechanisms that are involved in the auditory and visual perception of our 

surroundings, specifically the cochlea and the retina, and the auditory and the visual cortices. 

It starts with an overview of the hearing process and the auditory pathway, followed by the 

vision process and the visual pathway. A focus has been placed on the spectro- and spatio-

temporal aspects of sound and vision perception and processing because these play an 

essential role in the architecture of the computational model developed as part of this 

research. The chapter closes with a synopsis of what is known to date about how the 

perceived auditory and visual signals are combined and interpreted in the brain in order to 

extract meaningful information and learn from past experiences. 

The processes described in this chapter form the basis of the framework described in 

Chapter 5. The literature to which this chapter refers is predominantly sourced from biology 

and neuroscience textbooks (Amunts et al., 2012; Bruce, Georgeson, & Green, 2003; Goebel, 

Muckli, & Kim, 2012; Schnupp, Honey, & Willmore, 2013; Schnupp, Nelken, & King, 2011; 

Swanston & Wade, 2013) since these provide a comprehensive overview of all the major 

processes that need to be considered for the construction and design of the computational 

model. Rapid advancement in technologies for medical imaging and data analysis means that 

a wide range of active research is conducted in these areas; this research is mentioned where 

relevant to elaborate on and support the discussion. Consequently, this also means that the 

processes described here are based on the current understanding of the anatomy and 

physiology of the ears and eyes and the auditory and visual pathways. Since the focus of the 

work presented in this thesis lies on the development of computational models and not on 

the investigation of the underlying biological processes, this current understanding is 

assumed to be true and final for the purpose of this research. 
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3.2 THE HUMAN HEARING PROCESS 

Hearing is defined as “the process, function, or power of perceiving sound; specifically: the 

special sense by which noises and tones are received as stimuli” (Merriam-Webster, n.d.-a). 

In humans, this process is performed by the two ears, and it constitutes one of the five 

primary senses that allow us to perceive our environment. 

Sound is a combination of pressure waves created by the motion or the vibration of objects 

that is propagated through a medium, usually air, at different frequencies. Sound waves can 

be reflected or absorbed by surfaces in their path creating an auditory scene with a multitude 

of information (Schnupp et al., 2011, pp. 2-3). When sound waves enter the ear, they are 

transformed into electrical signals by the cochlea and sent to the brain, where they are 

processed to extract information about the characteristics and locations of sound sources. 

Our auditory apparatus has evolved over millions of years to decode and untangle these 

sound stimuli and is capable of gaining detailed knowledge from this process. 

This section describes the two main aspects of the hearing and understanding process, 

namely the perception of sound by the ear, and the processing of signals by the auditory 

cortex in the brain. The first subsection discusses the architecture and functioning of the 

inner ear and its intricate mechanical properties that can transform sound waves into 

electrical signals. The second subsection then discusses what happens to these signals along 

the auditory pathway and how they are further processed in and beyond the auditory cortex. 

The processes described here form the basis for the development of the sound processing 

system presented in Section 5.3. 

3.2.1 COCHLEA, BASILAR MEMBRANE, AND HAIR CELLS 

Our ears, and in particular the inner ear, perform the task of translating the physical 

properties of sound waves into mechanical and further into electrical energy to be processed 

by the brain. The level of detail that is preserved through this transformation is quite 

significant with regards to frequency composition, loudness, and spatial arrangement of 

sound sources. This is made possible by the specialised structure and physiognomy of the 

ear and its components as illustrated in Figure 3-1. From left to right, the diagram shows a 

cross-section of the outer and middle ears as well as the inner ear and the nerves that are 

connected to the brain. The dashed green line shows the pathway of the sound stimuli. 
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FIGURE 3-1. CROSS-SECTION OF THE HUMAN EAR AND ITS COMPONENTS.5 

When sound waves reach the eardrum, they create vibrations that activate three bones in the 

middle ear called the incus, malleus, and stapes after the Latin terms for their appearance as 

anvil, hammer, and stirrup, respectively (Schnupp et al., 2011, p. 51). These bones are 

connected to each other and pass on the incoming movements through the middle ear to 

stimulate the oval window, the entrance of the cochlea through which the vibrations are 

transferred into the cochlea’s lymphatic liquids. This process amplifies the sounds waves 

coming from the relatively sparse molecular arrangement of the air so that they can penetrate 

the relatively dense molecular arrangement of liquid in the cochlea. 

The processing steps inside the cochlea can be described as a bio-mechanical version of a 

Fourier transformation in that the sound waves are separated based on their frequency 

composition and sound intensity (Schnupp et al., 2011, pp. 14-15). This is made possible by 

the unique structure of the cochlea and its components as shown in Figure 3-2. 

The cochlea is a spiral-shaped organ that contains three tubes filled with lymphatic liquids. 

Between the two larger of these tubes, the scala vestibuli and the scala tympani, runs a bone-

like structure called the basilar membrane. This membrane is relatively narrow and stiff at 

the base of the cochlea and relatively wide and flexible towards its apex at the top (Schnupp 

et al., 2011, p. 55). 

5 Adapted from Chapter 36 – Auditory System by Amunts et al. (2012, p. 1271). Reproduced with permission. 
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FIGURE 3-2: CROSS-SECTION OF THE COCHLEA AND THE COCHLEAR NERVE.6 

On top and along the whole length of the basilar membrane sits the organ of Corti, which is 

responsible for transforming the vibrations of the sound waves into electrochemical signals. 

The electrical signals created by the cochlea are then sent to the brain through a large number 

of auditory nerve fibres, which together form the cochlear nerve. The process by which the 

organ of Corti does this transformation is made possible by the physical structure of the 

basilar membrane and the inertia of the lymphatic fluid that surrounds it. As one force 

influencing the equation, the basilar membrane is stiffer at the base of the cochlea than at its 

apex, which creates a certain amount of resistance in the membrane that is dependent on the 

distance from the cochlea’s base. The other force that is at play during the process of sound 

transformation is related to the amount of fluid that needs to be moved by the vibrations 

created by the sound waves, the force required increases towards the apex. The fluid also 

creates a certain amount of resistance that is dependent on the distance to the base of the 

cochlea, however, the gradient of the resistance is reversed when compared to that of the 

stiffness of the basilar membrane. Figure 3-3 shows this relationship schematically in a 

diagram. Increasing darkness levels of the green colour indicate increasing inertia of the 

lymphatic liquids, while lighter blue colour indicates less stiffness of the basilar membrane. 

6 From Gray’s Anatomy for Students by Drake, Vogl, and Mitchell (2020, Fig. 8.130). Reproduced with permission. 
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FIGURE 3-3: DIAGRAM OF SOUND WAVES TRAVELLING THROUGH THE COCHLEA AND 

BASILAR MEMBRANE. COLOUR GRADIENTS INDICATE FLUID INERTIA AND MEMBRANE 

STIFFNESS, RESPECTIVELY. 

The vibrational energy (pink line in Figure 3-3) entering the cochlea through the oval window 

must first travel through the fluid in the scala vestibuli, then cross through the basilar 

membrane at a particular point, then travel back to the base of the cochlea through the scala 

tympani, and finally leave the cochlea through the round window. The point at which the 

vibration crosses the basilar membrane is determined by the frequency of the sound:  

higher sound frequencies travel through a point that is closer to the base of the cochlea, while 

lower sound frequencies travel through a point that is closer to its apex. 

The reason for this kind of frequency-based mapping or tonotopic organisation is the 

relative amount of energy that is required to overcome the inertia of the fluid and the stiffness 

of the basilar membrane. The energy from the sound vibrations sets the lymphatic fluid in 

the scala vestibuli in motion – the higher the sound frequency, the faster the fluid needs to 

move. However, the fluid’s inertia creates a resistance, which means that vibrations with 

higher frequencies will not be able to travel very far through the scala vestibuli and rather 

cross the basilar membrane at an earlier stage. Low-frequency vibrations, on the other hand, 

will travel further down the tube until there is a point where they can physically overcome 

the resistance caused by the stiffness of the basilar membrane. At the lower end of the audible 

spectrum around and below 20 Hertz, the vibrations will not pass through the basilar 

membrane at all. Instead, these very low-frequency vibrations only pass through the 
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helicotrema in the apex of the cochlea, making this the lower cut-off frequency for the human 

hearing spectrum (Schnupp et al., 2011, pp. 55-56). 

Interestingly, but not surprising given the physical processes involved, lower-frequency 

sounds have the ability to mask higher-frequency sounds of the same intensity. As the lower-

frequency sound waves travel through the cochlea, their vibrations also excite earlier parts 

of the basilar membrane which interferes with vibrations from higher-frequency sounds 

perceived at the same time. This phenomenon is commonly known as the upward spread of 

masking and was first reported almost 100 years ago (Wegel & Lane, 1924). 

Once the signals have found their way through the cochlea they trigger an electrical impulse 

that can be sent to the brain. The part of the cochlea responsible for this so-called process 

of transduction is the organ of Corti. It is located on top of the basilar membrane in the 

cochlear duct and contains two sets of hair cells, different supportive cells, and auditory nerve 

fibres. Figure 3-4 shows a simplified schematic cross-section of the cochlear duct with the 

organ of Corti and its main components. 

FIGURE 3-4: SIMPLIFIED SCHEMATIC CROSS-SECTION OF THE COCHLEAR DUCT WITH

THE ORGAN OF CORTI AND ITS MAIN COMPONENTS. 

The hair cells are arranged in several rows along the length of the basilar membrane. Their 

name is derived from the 50 to 200 stereocilia located on the top of each of these cells that 

resemble hairs. When the basilar membrane starts to vibrate from the energy of the sound 

waves, the hair cells are moved up and down as well, which pushes the stereocilia into the 

tectorial membrane located above the organ of Corti. This opens up cation-selective ion 

channels in the hair cell’s membrane, leading to rapid depolarisation of the hair cell and thus 

creating an electrical impulse that is sent through the connected auditory nerve fibres to the 

brain (Schnupp et al., 2011, pp. 64-69). 
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There are about 3,500 inner hair cells running along the length of the cochlea in a single row, 

and approximately 8,500 outer hair cells forming three rows (Wright, Davis, Bredberg, 

Ulehlova, & Spencer, 1987). There are, equally, two types of auditory nerve fibres. Each 

inner hair cell is connected to several so-called Type I fibres, while several outer hair cells 

converge into single Type II fibres (Spoendlin & Schrott, 1989). It is generally assumed that 

the approximately 30,000 Type I fibres are more important for the transmission of auditory 

signals than the approximately 3,000 Type II fibres due to their comparatively larger number 

as well as being myelinated and thus having a faster transmission rate (Schnupp et al., 2011, 

pp. 75-76; Spoendlin & Schrott, 1989). The functionality of Type I fibres as the main 

transmission path for auditory signals has further been shown in several audiology studies 

(Goutman, Elgoyhen, & Gómez-Casati, 2015). Type II fibres, on the other hand, do not 

show sufficient firing activity to support the encoding of auditory signals (Weisz, Glowatzki, 

& Fuchs, 2009). While it is believed that they could be involved in detecting noise-induced 

damage (Flores et al., 2015), research is still ongoing to identify their exact functionality 

(Goutman et al., 2015; Heil & Peterson, 2015). 

3.2.2 AUDITORY PATHWAY AND AUDITORY CORTEX 

This section describes the stations along the primary auditory pathway from the cochleae to 

the auditory cortices. The electrical impulses that are created by the sound waves in the inner 

ear are sent along the primary auditory pathway to the auditory cortices located in the left 

and right temporal lobes of the brain, specifically on the transverse temporal gyri, also known 

as Heschl’s gyri (Da Costa et al., 2011). The primary auditory pathway involves a variety of 

brain regions that perform subcortical functions such as sound source recognition and 

localisation. Its most significant processing stations are shown in Figure 3-5. All neural 

processing units exist bilaterally with multiple cross-overs between the right and left 

hemispheres, but generally contralateral projection from the cochleae to the auditory cortices, 

i.e., what is heard by the cochlea in the right hemisphere will eventually be processed by the

auditory cortex in the left hemisphere, and vice versa (Langers, van Dijk, & Backes, 2005). 
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FIGURE 3-5: THE PRIMARY AUDITORY PATHWAY AND ITS PROCESSING STATIONS.7 

The auditory nerve fibres originating in the left and right cochleae project through the 

vestibulocochlear nerves into their respective ipsilateral cochlear nuclei, where the signals 

are processed by several different types of neurons that are specialised in certain aspects of 

sound processing such as extracting particular frequencies or determining exact signal timing 

(Schnupp et al., 2011, pp. 86-88). Depending on this specialisation, some signals are then 

transmitted directly to the inferior colliculus, while others pass through the superior olivary 

complex first before also reaching the inferior colliculus (Amunts et al., 2012, pp. 1273-1275). 

This step through the superior olivary complex is essential for sound localisation, as signals 

from both ears cross over for the first time (Brugge & Geisler, 1978). There are two methods 

 
7  From Posit Science brainHQ (https://www.brainhq.com/wp-content/uploads/2018/12/auditory-
pathways.jpg). Reproduced with permission. 

https://www.brainhq.com/wp-content/uploads/2018/12/auditory-pathways.jpg
https://www.brainhq.com/wp-content/uploads/2018/12/auditory-pathways.jpg
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by which the location of a sound source can be identified as shown in Figure 3-6. The lateral 

superior olives detect the interaural level difference of the primarily higher-frequency sound 

that is caused by the head casting a “sound shadow”. This means that sound waves reaching 

the ear that is closer to the sound source will perceive the sound as louder than the other ear. 

The neurons in the lateral superior olive can measure this difference in perceived loudness 

because they are excited by ipsilateral input and inhibited by contralateral input from the 

cochlear nuclei, which creates an algorithmically simple calculation between positive and 

negative voltage values (Grothe, Pecka, & McAlpine, 2010). On the other hand, the medial 

superior olives detect the interaural time difference of mainly lower-frequency sound that is 

caused by the distance between the ears and sound waves taking slightly longer to reach the 

ear that is further away from the sound source. The neurons in the medial superior olives are 

excited by both ipsilateral and contralateral input, and they are specialised in using this input 

to detect minuscule time differences in signal arrival times (Grothe et al., 2010). 

FIGURE 3-6: INTERAURAL LEVEL DIFFERENCE AND INTERAURAL TIME DIFFERENCE

FOR SOUND LOCALISATION.8 

The next step on the primary auditory pathway is through the inferior colliculi. These neural 

clusters are located in the midbrain and receive the majority of their incoming connections 

through a nerve bundle called the lateral lemniscus. The lateral lemniscus mainly serves as a 

connection point for ascending neural fibres and as a gateway to the inferior colliculi 

(Amunts et al., 2012, pp. 1278-1279). The signals arriving at the inferior colliculi are routed 

either directly from the cochlear nuclei or indirectly via the superior olivary complex as 

described before. Both the right and left inferior colliculi receive bilateral input, and they are 

densely interconnected with each other (Amunts et al., 2012, p. 1280). Although not fully 

8 Adapted from Mechanisms of Sound Localization in Mammals by Grothe et al. (2010). Reproduced with permission. 
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understood, they are probably involved in sound localisation (Grothe et al., 2010; Litovsky, 

Fligor, & Tramo, 2002) and integrating visual and other multisensory information with the 

sound signals on the subcortical level to enhance and complete sound information (Gruters 

& Groh, 2012). 9 

The signals from the inferior colliculi are then sent to the medial geniculate body, which 

is located in the thalamus (Amunts et al., 2012, p. 1280). It has three distinct parts called 

ventral, dorsal, and medial division based on their locations within the medial geniculate 

body. The three divisions mainly differ in their prevalent cell types, and only the ventral 

division is tonotopically organised (Amunts et al., 2012, pp. 1281-1282). Both the inferior 

colliculus and the medial geniculate body are probably involved in improving speech 

recognition by integrating visual cues from facial movements (von Kriegstein, Patterson, & 

Griffiths, 2008). The medial geniculate body is also believed to trigger subcortical emotional 

responses due to its connection to the amygdala (Sander & Scheich, 2001; Schnupp et al., 

2011, p. 90) and to be responsive to somatosensory input and pain intensity (Amunts et al., 

2012, p. 1282). 

Along the auditory pathway, auditory signals from both the left and right cochleae cross over 

at several stages (Amunts et al., 2012, pp. 1289-1290) before finally reaching their respective 

contralateral primary auditory cortices in the right and left temporal lobes (Langers et al., 

2005). These small but highly specialised processing centres are located in the transverse 

temporal gyri, also known as Heschl’s gyri, and are generally associated with Brodmann 

area 41 (Brodmann, 1909, pp. 144-145). 10  Based on cytoarchitectonic observations, the 

auditory cortex can be divided into three areas called Te1.0, Te1.1, and Te1.2, which are 

composed of different cell types and densities and are, therefore, assumed to fulfil different 

aspects of the hearing process (Morosan et al., 2001). Although the locations of specific 

functionalities are not yet satisfactorily identified, these different regions in the auditory 

cortex seem to be specialised in fulfilling different tasks of the hearing process (Read, Winer, 

& Schreiner, 2002; Semple & Scott, 2003). 

In addition to the discussed ascending auditory pathway from the cochleae to the auditory 

cortices, the auditory system has also developed descending pathways between several 

processing areas (Amunts et al., 2012, pp. 1290-1291). Although poorly understood, there is 

evidence that these enable higher-level processing areas to modify the behaviour of lower-

9 This is the first known biological cross-over of auditory and visual signals in the brain. With regards to the 
main topic of the thesis, the implications of this finding are discussed in detail in Section 3.4. 
10 Interestingly, however, Brodmann himself believed that “it is totally unthinkable that such an important 
cortical function like the hearing should be limited to such a small part of the whole cortex.” (Brodmann, 1909, 
p. 315), dismissing previous studies that had suggested otherwise (Flechsig, 1908). A detailed discussion of the
size and location of the auditory cortices can be found in Section 5.3.2.
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level areas. For example, the auditory cortex can influence how the neurons of the inferior 

colliculus respond to sound frequency, intensity, and location (King & Bajo, 2013). 

For higher-level signal interpretation, the auditory cortex has “where” and “what” 

processing streams to localise sound sources and to recognise objects and patterns, 

respectively (Rauschecker, 2013; Rauschecker & Tian, 2000). These pathways are shown in 

Figure 3-7. While the dorsal stream projecting through the parietal lobe helps to resolve 

spatial references and determine object movement, the ventral stream projecting through the 

temporal lobe is involved in object identification and spoken word recognition (DeWitt & 

Rauschecker, 2012). 

FIGURE 3-7: THE “WHAT” (VENTRAL, RED ARROWS) AND “WHERE” (DORSAL,

YELLOW ARROWS) PROCESSING STREAMS IN THE AUDITORY SYSTEM .11 

The auditory cortex and the areas to which it projects can identify auditory objects and their 

locations as sources of the perceived sounds based on characteristics such as frequency 

composition, loudness, and timing of the sound waves (Schnupp et al., 2013). Sounds created 

by auditory objects contain information about the object’s properties such as the size, weight, 

shape, material, movement, or mode of sound creation that are used in conjunction with the 

other senses to draw conclusions about the listener’s surroundings (Griffiths, Micheyl, & 

Overath, 2012; Kubovy & van Valkenburg, 2001; Schnupp et al., 2013). Several studies have 

also shown that emotional and contextual cues contribute to the perception and 

11 From Chapter 31 – The Auditory Central Nervous System by Oertel and Doupe (2013, p. 704). Reproduced with 
permission. PFC, prefrontal cortex; PP, posterior parietal cortex; PB, parabelt cortex; T2/T3, areas of 
temporal cortex. 
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interpretation of sounds (Asutay & Västfjäll, 2012; Pourtois, Schettino, & Vuilleumier, 2013; 

Stefanucci, Gagnon, & Lessard, 2011; Västfjäll, 2002). Furthermore, the auditory processing 

system has developed the ability to focus on only a subset of sound streams that are related 

to particular objects of interest (Schnupp et al., 2013), which is for example used to filter out 

speech in noisy environments (Mesgarani & Chang, 2012; Shinn-Cunningham, 2008). 

But how does the brain develop all these processing steps? Not much is known about the 

plasticity of the auditory cortex (Shepard, Kilgard, & Liu, 2013), except that diverse forms 

of Hebbian plasticity, such as spike-timing-dependent plasticity, could be observed 

(Tzounopoulos & Leão, 2012). There is considerable evidence from studies on rodents that 

the majority of neural responses to acoustic stimuli are shaped during infancy (de Villers-

Sidani, Chang, Bao, & Merzenich, 2007), although it has also been found that the auditory 

cortex of adult monkeys and humans can still learn or alter neural responses to sounds, 

depending on the significance of the stimuli as indicated by other sensory processing units 

(Dahmen & King, 2007). 

The functioning of the auditory system that was explored in this section informed the design 

of the sound processing model described in Section 5.3. In particular, the functioning of the 

hair cells and the auditory nerve fibres was considered highly relevant for the first step in the 

model, a cochlea-inspired sound signal transformation. This is described in Section 5.3.1. 

The transformed signals were then intended to be mapped into a neural network in a 

biologically plausible way. For this process, the size and location of the auditory cortices were 

determined as described in Sections 5.3.2 and 5.3.3 so that insights from tonotopy studies 

could be applied. The auditory pathway as a signal relay and integration station was not 

included in the sound processing model due to its many uncertain interactions with other 

areas of the brain that were not part of the model at this stage. However, a novel process of 

signal compression was developed that was intended to compensate for this omission. This 

process is described in Section 5.3.4. 
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3.3 THE HUMAN VISION PROCESS 

Vision is defined as “the special sense by which the qualities of an object […] constituting 

its appearance are perceived through a process in which light rays entering the eye are 

transformed by the retina into electrical signals that are transmitted to the brain via the optic 

nerve” (Merriam-Webster, n.d.-b). This summary encompasses all the essentials of the 

important sensory function that is described in more detail in the following sections. 

Within the context of this thesis, light is defined as electromagnetic radiation in the spectrum 

that can be perceived by the human eye, where it has a wavelength between about 390 and 

700 nanometres ranging from violet over blue, green, yellow and orange to red, respectively 

(Bruce et al., 2003, p. 4). Light can be created both naturally and artificially by a variety of 

means. For example, chemical reactions, like the sun burning millions of tons of gas, or other 

ways of releasing energy from atoms, like high temperatures (e.g., lava) or electricity for 

electric lamps, can create light varying in brightness and colour. This light then scatters 

through the air and can be reflected, absorbed, refracted or diffracted by objects that it meets 

or through which it passes (Bruce et al., 2003, p. 5). Thus, the light rays contain a multitude 

of information about the objects in one’s surroundings like their location and physical 

characteristics. This information is then perceived and decoded by the eye and the brain, 

which have evolved over millions of years to excel at this task and gain detailed knowledge 

from this process to elicit an appropriate response. 

This section is divided into two parts introducing two main aspects of the human vision 

process, namely the perception of light rays by the eyes and the processing of signals by the 

visual cortex in the brain. The first subsection discusses the architecture and functioning of 

the retina and its characteristic photoreceptor cells that can transform the energy from the 

light rays into electrical signals. The second subsection then explains what happens with these 

signals along the primary visual pathway and how they are further processed in the visual 

cortices. The aspects described here form the basis for the development of the video 

processing system described in Section 5.4. 

3.3.1 RETINA, PHOTORECEPTORS, AND BIPOLAR CELLS 

The ubiquity of light has caused almost all living beings to develop some sort of ability to 

perceive or make otherwise use of it. In bacteria, for example, light can trigger chemical 

reactions required for locomotion or nutritional processes, while plants use light energy to 

conduct photosynthesis, a major component and the base of their life cycle (Bruce et al., 
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2003, pp. 7-8). Many more applications exist in which light plays a central role in a being’s 

development and behaviours (Wolken, 1975). 

The focus of this section lies on vision and, in particular, on the human eye and how its 

components allow it to encode what it sees in a way that is fast, reliable and preserves as 

much information as possible. A cross-section overview of the eyeball and its most important 

parts is shown in Figure 3-8. 

FIGURE 3-8: CROSS-SECTION OF THE HUMAN EYE AND ITS COMPONENTS .12 

Before light reaches the retinal photoreceptor cells, it first passes through and is refracted by 

the cornea and the lens. This process adjusts the focal point of the light to be around 

17 millimetres behind the lens, which is about the diameter of the eyeball (Goebel et al., 

2012, p. 1302). While the cornea is responsible for most of the light refraction, the lens, due 

to its flexible shape, is able to finely adjust the focus of an image. Its surrounding ciliary 

muscles can move the lens’s annular ligaments and hence alter its shape and refractional 

properties (Goebel et al., 2012, pp. 1302-1303; Swanston & Wade, 2013, pp. 116-117). This 

way, light rays from objects on which the eye wants to focus can be directed to the most 

sensitive area of the retina, the fovea centralis, independent of the object’s distance from the 

viewer. Another set of muscles involved in pre-processing the image for optimal perception 

is located in the iris that sits between the cornea and the lens. The muscles in the iris control 

12 From Gray’s Anatomy for Students by Drake et al. (2020, Fig. 8.108). Reproduced with permission. 
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the brightness of an image by influencing the amount of light that can enter the pupil through 

dilation and constriction, supporting the brightness adaptation of the photoreceptor cells 

(Goebel et al., 2012, p. 1303; Swanston & Wade, 2013, p. 19). 

After the light has thus travelled through the pupil and the eyeball, it will reach the retina 

where it is transformed into neural signals. Figure 3-9 shows a cross-section of the retina’s 

cellular organisation. Unlike most other sensory organs, the retina is considered to be a part 

of the central nervous system, due to its synaptic structure and its formation during fetal 

development (Goebel et al., 2012, p. 1303). It contains several distinct neural layers that are 

involved in signal creation, amplification, and suppression based on incoming light with the 

final layer directly projecting into the mid-brain through long neural axons. The retina 

performs a certain amount of pre-processing of the incoming stimuli and their features, 

before passing the information on through the numerous fibres of the optic nerve (Goebel 

et al., 2012, p. 1303). The most important aspects of these pre-processing steps are described 

in the following paragraphs. 

FIGURE 3-9: THE CELLULAR ORGANISATION OF THE RETINA . LIGHT TRAVELS FROM

THE BOTTOM OF THE DIAGRAM TO THE TOP .13 

The aim of the refraction and focusing process conducted by the cornea and the lens is to 

direct the light rays of the object of interest towards the fovea in the centre of the retina. 

The fovea is the most sensitive part of the retina with the highest density of cone-shaped, 

colour-perceiving photoreceptor cells, while the more peripheral areas of the retina largely 

13 Adapted from Diabetes and retinal vascular disorders: role of the renin–angiotensin system by Wilkinson-Berka (2004, 
p. 6). Reproduced with permission.
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contain rod-shaped, brightness-perceiving photoreceptor cells (Swanston & Wade, 2013, p. 

133). The fovea is also the only area of the retina that contains just photoreceptors. In most 

parts of the retina, the light rays have to travel through several layers of supporting nerve 

cells before reaching the light-sensitive pigments of the photoreceptors as shown in 

Figure 3-9. However, the neural connections in the fovea are placed so that the nerve cells 

can be located around the photoreceptors instead of directly on top of them. This removes 

unwanted scattering of light rays and minimises information loss caused by the nerve cells 

accidentally absorbing photons (Swanston & Wade, 2013, pp. 132-133). 

The two types of photoreceptor cells are usually called rods and cones for short, based on 

the appearance of their light-sensitive outer segments as shown in Figure 3-10. 

FIGURE 3-10: SCHEMATIC DIAGRAM OF ROD AND CONE PHOTORECEPTORS .14 

The rods are very sensitive to low levels of brightness – absorbing only one photon of light 

might be enough to create an electrical impulse (Goebel et al., 2012, p. 1304). The cones, on 

the other hand, need quite bright light to function but can distinguish between colours. There 

are three types of cones in the human retina that respond to different wavelengths of light: 

S-cones (“S” standing for “short-wavelength”) have their peak absorption rate of photons at

14 From Photoreceptor Phosphodiesterase (PDE6): A G-Protein-Activated PDE Regulating Visual Excitation in Rod and 
Cone Photoreceptor Cells by Cote (2006, p. 167). Reproduced with permission. 
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a wavelength of around 420 nanometres, which corresponds to blue- and purple-coloured 

light; M-cones (“medium-wavelength”) have their peak absorption rate at around 

530 nanometres, which corresponds to green-blue light; and L-cones (“long-wavelength”) 

absorb most photons at a wavelength of around 560 nanometres, which corresponds to 

yellow-green light but also covers colours in the red-light spectrum (Bruce et al., 2003, pp. 

21-22; Swanston & Wade, 2013, p. 134). Combining the neural signals from the cones, the

brain is then able to determine which colour was perceived. When all three colours are 

perceived in the same location with the same intensity, the brain combines them to white 

light, which effectively means that the human visual system uses an additive colour mixing 

model, albeit arranged across several neural processing stages (Bruce et al., 2003, pp. 21-23; 

Swanston & Wade, 2013, p. 136). 

The transformation of photons from light rays into electrical signals is done by both rods 

and cones performing a process called phototransduction. The outer segments (see 

Figure 3-10) of the photoreceptors contain a visual pigment, either rhodopsin or one of three 

cone-opsins depending on the cell type, that consists of a protein called opsin and a photon-

sensitive molecule called retinal. In darkness, a molecule called cyclic guanosine 

monophosphate (cGMP) ensures that sodium channels in the photoreceptor’s membrane 

stay open, causing the cell to be in a resting state of depolarisation at around -40 millivolts. 

However, as soon as light photons reach the visual pigment, the retinal molecule changes its 

structure, which causes the opsin to trigger a series of chemical reactions that lead to a 

decrease of cGMP in the cell and, hence, to a closure of the sodium channels in the cell’s 

membrane. With the sodium channels closed but potassium channels in other parts of the 

photoreceptor’s membrane still open, the cell hyperpolarises – the first step to creating an 

electric impulse that can be sent to the brain (Bruce et al., 2003, pp. 12-13; Goebel et al., 

2012, p. 1304; Pugh & Cobbs, 1986). By binding to the retinal molecules one at a time, the 

number of perceived photons directly influences the number of closed sodium channels, 

which means that the intensity of the light is encoded gradually in the strength of the 

polarisation of the photoreceptor cell (Pugh & Cobbs, 1986). 

This process and, more importantly, its reversal to reset the photoreceptor to a state in which 

it can again react to photons, requires a high level of physiological maintenance, which is one 

of the reasons why the photoreceptors have to be attached directly to the epithelium and the 

retina appears to be structured backwards (Strauss, 2005). Minimising the negative impact of 

this inverted setup by for example unwanted scattering of light, special glial cells called Müller 

cells have been discovered to “guide” the photons to the visual pigments of the 

photoreceptors (Reichenbach, Agte, Francke, & Franze, 2014). 
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As shown in Figure 3-9, the photoreceptor cells are mainly connected to a layer of 

bipolar cells, as well as to a small number of horizontal cells. As long as the photoreceptors 

are depolarised during darkness, they release an inhibitory neurotransmitter called glutamate 

to this next neural layer. With increasing brightness and thus stronger polarisation of the 

photoreceptor cell, the release of glutamate is reduced proportionally. There are an estimated 

12 types of bipolar cells in the human retina (Masland, 2012). Two of those, called “on-

centre” and “off-centre” cells based on their polarity, have been found to have the ability to 

either turn the neurotransmitter signal from the photoreceptors around or pass it on directly 

to the next neural layer of ganglion cells, respectively. In consequence, this means that the 

“on-centre” bipolar cells emit more glutamate neurotransmitter to the ganglion cells when 

their photoreceptor cells are illuminated, while the “off-centre” bipolar cells are most excited 

when their photoreceptors are in darkness. While this mechanism is helpful to encode 

absolute responses to light intensities, its true significance becomes apparent when the 

bipolar cells are combined: when arranged next to each other in special formations called 

receptive fields, this provides the retina with a method to detect edges. The horizontal cells 

support this process by providing a way of lateral inhibition between nearby photoreceptors 

and their corresponding bipolar cells. This feedback loop helps to amplify and suppress 

signals and hence increase the contrast between more and less illuminated parts of the 

perceived image (Goebel et al., 2012, p. 1304). 

Rods and cones not only differ in their functionality and distribution across the retina but 

also in their connectivity to the optic nerve. In each eye, there are about 120 million rods 

and six million cones (Goebel et al., 2012, p. 1303). While each bipolar cell is typically 

connected to only one or two cones, many rods provide input into the same bipolar cell. 

This means that cones can provide a very high spatial resolution, while the rods’ ability to 

detect minimal amounts of light is supported by combining their signals (Bruce et al., 2003, 

p. 29). The bipolar cells are in turn connected to a total of about one million ganglion cells 

whose axons form the optic nerve for each eye. This kind of complex signal convergence 

through the neural layers of the retina is a characteristic feature of the human visual system 

(Goebel et al., 2012, p. 1305; Swanston & Wade, 2013, pp. 137-138). 

3.3.2 VISUAL PATHWAY AND VISUAL CORTEX 

The phototransduction and signal convergence in the retina create an abundant array of data 

representing the perceived visual stimuli. These data are then passed on to processing areas 

in the mid-brain through the axons of the ganglion cells that form the optic nerves. The first 
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major processing station on the primary visual pathway is the optic chiasm. Here, visual 

information from both eyes crosses over as shown in Figure 3-11. 

FIGURE 3-11: THE PRIMARY VISUAL PATHWAY AND ITS PROCESSING STATIONS .15 

When light is refracted upon entering the eye, the light rays are turned upside down and 

flipped horizontally, resulting in a mirrored inverted projection on the retina (Swanston & 

Wade, 2013, pp. 111-112). In the optic chiasm, the ganglial axons originating in the left 

nasal retina then cross over towards the right optic tract, while the axons originating in the 

right nasal retina cross over towards the left optic tract. In contrast, all axons from the 

temporal areas of the retina stay on their respective sides. As a result of combining the initial 

refraction in the eyeball and this cross-over mechanism, everything located on one side of 

the visual field will be contralaterally projected to the other side of the brain through the 

optic tract and towards the respective lateral geniculate nucleus. The large number of ganglial 

axons and their prominent placement in the brain facilitated an early discovery of this cross-

over mechanism almost 300 years ago (Swanston & Wade, 2013, p. 143). 

15  From Posit Science brainHQ (https://www.brainhq.com/wp-content/uploads/2018/12/visual-
pathway.jpg). Reproduced with permission. 

https://www.brainhq.com/wp-content/uploads/2018/12/visual-pathway.jpg
https://www.brainhq.com/wp-content/uploads/2018/12/visual-pathway.jpg
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The axons of the retinal ganglion cells then synapse onto cells in the two lateral geniculate 

nuclei. Each lateral geniculate nucleus has six well-defined layers that are organised very 

methodically – layers 1, 4, and 6 are connected to fibres from the contralateral eye, while 

layers 2, 3, and 5 are connected to fibres from the ipsilateral eye (Swanston & Wade, 2013, 

p. 144). Furthermore, layers 1 and 2 have distinctively larger cells than layers 3 to 6, and these

so-called magno- and parvocellular layers, respectively, are connected to only certain types 

of ganglion cells (Bruce et al., 2003, pp. 45-47). The axons of the neurons in the lateral 

geniculate nuclei then form the optic radiation, of which the majority directly project to the 

primary visual cortex (Goebel et al., 2012, p. 1307). The lateral geniculate nuclei thus serve 

as a major relay station on the primary visual pathway. However, they have also been found 

to provide straightforward access to the now neatly organised visual information to other 

neural processing areas such as those related to attention (Weyand, 2016). Furthermore, 

neurons in the lateral geniculate nuclei are involved in integrating information about eye 

movements and eye position, thus supporting the visual cortex in resolving egocentric spatial 

references (Weyand, 2016). 

The final station of the primary visual pathway and the destination of the neural projections 

from the lateral geniculate nucleus is the primary visual cortex. It is located in the calcarine 

fissure in the occipital lobe of the brain and also known as V1 or Brodmann area 17 

(Brodmann, 1909, pp. 140-142; Goebel et al., 2012, p. 1309). This is the location where, for 

the first time after being separated at the beginning of the visual pathway, the signals from 

both retinae are converged again. From here, they are further distributed to higher visual 

cortices responsible for extracting certain features from the perceived images. The primary 

visual cortex is, therefore, sometimes described as a gateway to more specialised visual 

processing areas (Goebel et al., 2012, p. 1309). 

V1 is commonly divided into six layers whose cell types and densities differ so visibly that it 

has also been called striate, or striped, cortex (Bruce et al., 2003, p. 47). Most connections 

from the lateral geniculate nucleus arrive in the fourth layer of V1 and from there are 

distributed further to the other layers (Goebel et al., 2012, p. 1310). The by far most common 

type of neurons in V1 are pyramidal cells, whose axons project to other cortical and 

subcortical brain regions and also to the “extrastriate” visual cortex containing processing 

areas V2 to V5 (Goebel et al., 2012, pp. 1309, 1313). These areas are specialised in extracting 

features from the visual information, such as colour composition, shape and orientation, or 

motion and direction (Goebel et al., 2012, pp. 1313-1316). 

These features are then combined again to form conclusions about perceived objects and 

their locations. Object recognition and localisation are two distinct aspects of visual 
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information processing that are performed by two separate processing streams shown in 

Figure 3-12: a ventral stream passing through the occipitotemporal regions of the brain 

determines the identity of an object, while a dorsal stream passing through the 

occipitoparietal regions of the brain determines the object’s location (Goebel et al., 2012, p. 

1317). In particular, the ventral stream is concerned with identifying an object based on its 

characteristics (“What” stream), whereas the dorsal stream is involved in resolving spatial 

relationships between the viewer and the objects (“Where” stream), which influences 

sensorimotor responses such as trying to grab the object (Goodale & Milner, 1992). 

Interestingly, a similar distinction of processing streams has been found in the auditory 

system as described in Section 3.2.2. The implications of this similarity are discussed in more 

detail when talking about audio-visual stimulus integration in Section 3.4. 

 

FIGURE 3-12: THE “WHAT” (VENTRAL, RED ARROWS) AND “WHERE” (DORSAL, BLUE 

ARROWS) PROCESSING STREAMS IN THE VISUAL SYSTEM .16 

Despite the neural reorganisation along the primary visual pathway, stimuli located next to 

each other in the original visual scene will still be projected to the primary visual cortex in 

their original surroundings to preserve important contextual information (Goebel et al., 2012, 

p. 1316). These arrangements are called retinotopic maps (Bruce et al., 2003, p. 43). Studies 

using functional brain imaging have shown that the primary visual cortex is organised in a 

way that accurately represents the spatial layout of the original image, albeit with slightly 

 
16 From Chapter 25 – The Constructive Nature of Visual Processing by Gilbert (2013, p. 563). Reproduced with 
permission. PF, prefrontal cortex; PMd/PMv, dorsal/ventral premotor cortex; FEF, frontal eye field; 
MIP/LIP/VIP/AIP; medial/lateral/ventral/anterior intraparietal area; MT/MST, middle temporal area; IT, 
inferior temporal cortex; TEO, area of inferior temporal cortex. 
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distorted features (Dougherty et al., 2003; Polimeni, Fischl, Greve, & Wald, 2010). This 

means that the primary visual pathway, like its auditory counterpart, tries to retain as much 

of the original input as possible so that the perceived information can be analysed in full. 

Apart from the inversion caused by the corneal refraction, the image is also subject to cortical 

magnification – signals from the foveal regions of the retina are processed in a proportionally 

larger region of the visual cortex than those of the more peripheral regions (Dougherty et al., 

2003; Polimeni et al., 2010). The particularities of retinotopy play a considerable role in the 

design of the visual processing system presented in this thesis and are described in more 

detail in Section 5.4.4. 

Not all visual signals from the retinae arrive in the lateral geniculate nuclei or the primary 

visual cortex. Some connections branch off after the optic chiasm to other brain regions, for 

example, to regulate the circadian rhythm (i.e., sleep-wake-cycle) or to be combined with 

other sensory information to control the muscle movements of the eyeball (Goebel et al., 

2012, p. 1307). In the context of this thesis, an especially interesting aspect is the integration 

of signals from the auditory system in the visual pathway. Functional brain imaging revealed 

that auditory information influences activity in the primary visual cortex even if participants 

were blindfolded (Vetter, Smith, & Muckli, 2014). This suggests that auditory information 

supports visual perception on an abstract level. The integration of auditory and visual 

modalities during perception in the brain is discussed in more detail in Section 3.4. 

 

 

The functioning of the visual system that was briefly described in this section informed the 

design of the video processing model introduced in Section 5.4. In particular, the functioning 

of the photoreceptors and the ganglion cells was considered highly relevant for the first step 

in the model, a retina-inspired video signal transformation. For the rod photoreceptors and 

peripheral greyscale vision, this is described in Section 5.4.1, while for the cone 

photoreceptors and foveal colour vision, this is described in Section 5.4.2. The transformed 

signals were then intended to be mapped into a neural network in a biologically plausible 

way. For this process, the size and location of the visual cortex were determined as described 

in Sections 5.4.3 and 5.4.4 so that insights from retinotopy studies could be applied. The 

visual pathway, which was found to function mainly as a relay station, was not included in 

the video processing model at this stage for computational simplicity. However, any signal 

distortions that occurred were captured and modelled. Finally, a novel process of signal 

compression was developed based on the theory of receptive fields. This is described in 

Section 5.4.5.  
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3.4 AUDIO-VISUAL PROCESSING AND INTEGRATION 

Multimodal integration is a vital part of different processing stages in the brain in order to 

fully assess one’s surroundings and plan appropriate responses. This section looks at both 

subcortical and cortical combination of different sensory inputs with a focus on how auditory 

and visual signals influence each other. While some more general principles discussed below 

have been well established in the neuroscientific research community, the majority of how 

these processes function is still under active investigation. The content presented in this 

section has, therefore, been chosen to illustrate certain aspects in more detail than others, as 

was deemed necessary to provide a comprehensive background for the work presented in 

this thesis. The computational framework that was developed based on these findings is 

presented in detail in Section 5.5. 

It is generally assumed that both the auditory and the visual pathway enhance their processing 

capabilities by incorporating information from other sensory modalities before they arrive at 

their respective cortices (A. K. C. Lee & Wallace, 2019). For the auditory pathway, it has 

repeatedly been shown that nonauditory signals like visual or somatosensory inputs influence 

auditory responses in all processing stations from the cochlea to the primary auditory cortex 

(Atilgan et al., 2018; King, Hammond-Kenny, & Nodal, 2019). Especially the inferior 

colliculus in the midbrain has been found to be involved in the integration of other sensory 

modalities like sensorimotor or visual cues (Gruters & Groh, 2012; von Kriegstein, 

Patterson, et al., 2008). On the other hand, recent evidence suggests that visual cues are in 

fact not integrated at subcortical levels of the auditory pathway, and that measurement results 

indicating otherwise may reflect the neural activity of descending pathways (Caron-

Desrochers, Schönwiesner, Focke, & Lehmann, 2018). The exact mechanisms of subcortical 

audio-visual integration are hence still actively debated. 

From a more applied research perspective, studies in the area of speech processing have 

shown that spoken word recognition is enhanced by visual signals related to facial cues such 

as lip movement (Campbell, 2008; I. R. Olson, Gatenby, & Gore, 2002). This enhancement 

even stays in effect when the visual signals are not perceived anymore, indicating that the 

visual information belonging to an auditory stimulus is learned at some point (Bruns & 

Röder, 2019; von Kriegstein, Dogan, et al., 2008). Visual cues can also help a listener to better 

focus on an auditory object of interest (A. K. C. Lee, Maddox, & Bizley, 2019). In sign 

language users, this cross-modal crossover is even more pronounced. Brain imaging studies 

with deaf participants showed neural activity in their auditory cortices when presented with 

visual stimuli in general (Finney, Fine, & Dobkins, 2001) and sign language in particular 
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(Lambertz, Gizewski, de Greiff, & Forsting, 2005). These findings suggest a certain level of 

cross-modal cortical reorganisation that differs from person to person, to the extent that it 

impedes some deaf people’s ability to use cochlear implants (Doucet, Bergeron, Lassonde, 

Ferron, & Lepore, 2006). 

For visual processing, several studies have shown that the primary visual cortex (V1) 

receives abstract auditory information that enhances the visual perception of stimuli (Vetter 

et al., 2014; Vroomen & Gelder, 2000). Activation of V1 could even be shown in participants 

who were blindfolded and listened to sound that they learned to associate with a visual 

stimulus beforehand (Petro, Paton, & Muckli, 2017). This indicates that the learning process 

of visual information described for the auditory pathway applies equivalently to the 

presentation of auditory stimuli to the visual pathway. It has further been found that visual 

size perception can be influenced by varying auditory stimuli (Tonelli, Cuturi, & Gori, 2017). 

But how does this cross-modal signal integration work, given that the ways in which auditory 

and visual stimuli are transformed into neural activity by the cochlea and the retina are so 

different? While auditory spatial cues are encoded in a head-centred reference frame or 

coordinate system, visual spatial information is based on an eye-centred frame. As a result, 

the brain has to combine these reference frames into a new common “hybrid” frame by 

taking into account the relative position of the eyes and the head (Willett, Groh, & Maddox, 

2019). Over 30 years ago, experiments showed that both auditory and visual signals must be 

transformed into a common coordinate system in or before the superior colliculus which in 

the visual pathway is responsible for creating saccadic eye movements (Jay & Sparks, 1987). 

More recently, it has been suggested that a potential location in the auditory pathway for this 

reference frame resolution could be the inferior colliculus, based on evidence in monkeys 

that showed that auditory responses in this region were influenced by eye position (Groh, 

Trause, Underhill, Clark, & Inati, 2001). However, it has also been found that the posterior 

parietal cortex, which is organised with respect to action planning, can resolve different 

reference frames of visual eye-centred and auditory head-centred signals into a common 

coordinate frame (Andersen, Snyder, Batista, Buneo, & Cohen, 1998). According to the latest 

review, it is most likely that several processing stations along both pathways are involved in 

reference frame resolution (Willett et al., 2019). 

The underlying reason for the reference framework mismatches lies in the transformation of 

the representational format of signals from different modalities. While the visual and 

somatosensory senses can quite accurately represent locations and position information in 

their environment using maps, the auditory pathway has to compute this information in the 

superior olivary complex as described in Section 3.2.2 (Porter & Groh, 2006). This means 
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that the visual, somatosensory, and motor cortex are based on a representation using spatial 

and receptive fields, while the auditory cortex uses a neural rate coding in which the firing 

rates of the neurons are proportional to the azimuth of a stimulus (J. Lee & Groh, 2014). 

Moreover, the sensory inputs from both auditory and visual sensory inputs have been shown 

to be “weighted” by the brain based on their expected value for identifying certain aspects 

of a stimulus, since the auditory system has a better temporal resolution and the visual system 

has a better spatial resolution (Alais & Burr, 2019). For the work presented in this thesis, this 

means that a similar way of overcoming the differences in the representational format of the 

signals has to be found. This is formulated and discussed in detail in Section 5.5. 

Another aspect that has to be considered when integrating signals from different modalities 

is the timing of the stimuli. Since stimuli that are in close spatial and temporal proximity can 

generally be considered connected or even originating from the same source, the brain needs 

to process these stimuli in correspondence. It has been found that perceiving such stimuli 

that are close to each other results in enhanced neural responses (A. K. C. Lee & Wallace, 

2019). In processing these stimuli, the brain is thought to perform a temporal alignment 

of signals that compensates for sound waves travelling more slowly than light rays (Burr 

& Alais, 2006). In contrast to the stimulus presentation times, auditory signals are in fact 

processed faster than visual information. Based on a study with three epilepsy patients who 

had electrodes implanted into their superior parietal lobule, a response to auditory stimuli 

was measured at around 30 milliseconds after stimulus onset, while a response to visual 

stimuli was measured at around 75 milliseconds after stimulus onset (Molholm et al., 2006). 

In the same study, the integration of audio-visual signals was measured at between 120 and 

160 milliseconds after stimulus onset. This indicates that the brain matches the timing of 

different sensory stimuli to gain the best possible knowledge from the signals. A discussion 

of how these timing issues influenced the development of the audio-visual model can be 

found in Section 5.5.2. In particular, these findings informed stimulus presentation times and 

temporal alignment of different signal sampling rates for sound and frame rates for videos. 

Going beyond the subcortical processing of sensory stimuli, the signals are sent from their 

respective cortices to higher, more conceptual processing areas. As mentioned in both 

Section 3.2.2 and Section 3.3.2 when describing the workings of the auditory and visual 

cortices, respectively, the brain has developed two distinct cortical processing streams to 

extract different types of information. In particular, a ventral stream through the temporal 

lobes is responsible for object recognition, while a dorsal stream through the parietal lobe 

has been identified to determine the location of perceived objects. This phenomenon was 

first described for the visual modality by Goodale and Milner (1992), who at the time called 
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these the streams for perception and action, respectively. The authors later revisited their 

hypothesis and found that a large amount of evidence had amassed supporting their theory 

(Milner & Goodale, 2008), for example from brain imaging studies using positron emission 

tomography to localise these streams (Ungerleider & Haxby, 1994). Similar findings have 

been made for the auditory system, for example by examining the brains of monkeys 

(Rauschecker & Tian, 2000), but also more recently in humans (Rauschecker, 2015). 

Figure 3-13 shows the two processing streams in a diagram. The neural signals originate in 

the sensory processing areas, which in this diagram are the auditory, visual, and 

somatosensory cortices, from where they split up to travel to either the temporal or the 

parietal association cortices. They are then sent to the prefrontal association cortex, where 

they are for example combined with emotional responses and create an active thought 

process (C. R. Olson & Colby, 2013). 

FIGURE 3-13: THE "WHAT" (THROUGH TEMPORAL CORTEX) AND "WHERE"

(THROUGH PARIETAL CORTEX) PROCESSING STREAMS IN THE BRAIN.17 

It has been found that some neurons in the prefrontal cortex, especially in its ventrolateral 

segment, respond to multisensory stimuli to improve communication (Romanski, 2007) and 

that the frontal lobes converge audio-visual inputs to combine face and vocalisation stimuli 

for the same reason (Plakke & Romanski, 2019). In general, evidence from a large number 

of brain-imaging studies shows that signal processing is more concrete and feature-based 

17 From Chapter 18 – The Organization of Cognition by C. R. Olson and Colby (2013, p. 397). Reproduced with 
permission. 
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near those brain regions that perform stimulus input and transformation and more abstract 

and concept-based in higher cortical levels (Taylor, Hobbs, Burroni, & Siegelmann, 2015). 

This applies to all modalities – auditory, visual somatosensory, gustatory, olfactory, and 

interoceptive. 

The following paragraphs detail the two processing streams, with a focus on where and how 

audio-visual integration might happen along them. 

The ventral processing stream is concerned with the recognition of objects from all 

sensory modalities and hence contains information about the “objecthood” of a perceived 

item (Kubovy & van Valkenburg, 2001). Several studies, usually employing brain-imaging 

methods like fMRI, have attempted to pinpoint the exact locations of sensory integration in 

the ventral processing stream. For example, one study by Spitsyna, Warren, Scott, 

Turkheimer, and Wise (2006) looked at auditory and visual signals during a language 

comprehension task of spoken and written narratives and found a common neural activation 

in the left anterior temporal cortex as well as at the junction of the temporal, occipital, and 

parietal cortices. Another fMRI study attempted to identify the conceptual representation of 

two categories of objects (animals and tools) and showed an integration site in the posterior 

superior temporal sulcus and the middle temporal gyrus for both within and across auditory 

and visual modalities (Beauchamp, Lee, Argall, & Martin, 2004). A third study that measured 

cross-modal integration identified the left superior temporal sulcus as a major processing 

area (Calvert, Campbell, & Brammer, 2000). Thus, strong evidence exists about the location 

and purpose of this processing stream, being mindful of the fact that language seems to have 

an inherent tendency to be processed mainly in the left temporal lobe (Wilson, Bautista, & 

McCarron, 2018). 

The dorsal processing stream is concerned with the localisation of objects in space and in 

relation to the observer to potentially generate movement, which is facilitated by it passing 

through the sensorimotor cortex in the parietal lobe (Rauschecker, 2015, 2018). As with the 

ventral processing stream, several brain imaging and behavioural studies have revealed how 

the dorsal stream processes information. For example, fMRI data recorded during a motion 

discrimination task with auditory and visual stimuli showed neural responses in the 

intraparietal sulcus of the parietal cortex and that both modalities can enhance and suppress 

each other’s activity (Lewis, Beauchamp, & DeYoe, 2000). A recent review by Chaplin, Rosa, 

and Lui (2018) compiled a wealth of evidence that the integration of auditory and visual 

signals related to movement and location is processed in the posterior parietal cortex and – 

interestingly – in the superior temporal sulcus, which is usually ascribed to the realm of the 

ventral processing stream. However, as mentioned at the beginning of this chapter, this topic 
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is an active area of research, so some inconsistencies can be expected. Independent of the 

processing region but related to spatial processing, it has also been found that combined 

audio-visual stimuli improve the relative localisation of objects over unisensory auditory or 

visual perception (Freeman, Wood, & Bizley, 2018). The evidence further suggests that vision 

is seen as more reliable by the brain than other senses when it comes to object localisation, 

as is shown by its dominance over auditory spatial information (Witten & Knudsen, 2005) 

and during motor reaching tasks (Glazebrook, Welsh, & Tremblay, 2016). 

The integration of multisensory signals with a focus on auditory and visual information 

informs the design of the combined audio-visual processing system described in Section 5.5. 

In particular, Section 5.5.1 looks at how both sensory modalities were both entered into a 

single brain-shaped neural network using the learnings from the unisensory auditory and 

visual models. Section 5.5.2 focuses on signal timing to ensure a biologically plausible 

combination of presented stimuli. While the two cortical processing streams were not directly 

implemented in the model, it was an interesting area of exploration to investigate if the 

general connectivity in the brain-inspired network had the ability to form specialised 

processing streams. 
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3.5 CHAPTER SUMMARY 

This chapter explained how the human eyes and ears collect and translate information about 

their surroundings, and how the brain channels and interprets these signals to extract useful 

information. These findings form the basis of the biologically inspired computational model 

presented in this thesis and support answering some of the research questions raised in 

Section 1.3. While the highly specialised biological processes include a myriad of intricate 

steps and components, it was impossible for the work presented in this thesis to cover this 

amount of detail. Prior theoretical knowledge that could support the choice of which 

biological processes to model in the proposed computational system was scarce as described 

in Chapter 4. The purpose of Chapter 3 was, therefore, not only to provide a background on 

the relevant biology, but also to assess which aspects might be a useful starting point for the 

system design. 

Considering that, computationally, spiking neural networks were a focus of the work 

presented in this thesis, the two aspects that were deemed a good starting point for this work 

were the transformation of real-world data into spikes and the mapping of these spikes into 

the network architecture. Chapter 5 explains in detail the employed methods of cochlear and 

retinal encoding that created signals similar to those present in the brain. In nature, these 

signals are then propagated through the brain into highly specialised processing areas. 

Information perceived by the ears is primarily processed in the auditory cortices, which are 

located in both temporal lobes of the brain, and signals from the eye are mainly processed 

by the visual cortex, which is located in the occipital lobe of the brain. In the computational 

model developed here, this process is simulated using tonotopic and retinotopic maps to 

enter the signals in a neurologically plausible way into their equivalent locations in a three-

dimensional brain-shaped artificial neural network. In the biological brain, the signals then 

travel through two designated cortical processing streams that combine multimodal 

information to extract the identity and the location of a perceived object, respectively. From 

there, they are further propagated to the frontal cortex or other regions of the brain 

depending on the nature of the environmental stimuli. The result of this sophisticated 

procedure defines our thoughts, emotions, conclusions, ideas, and creativity. Since the 

computational model is in the early stages of system design and very much exploring 

boundaries, it can not promise such things as of yet. However, it is hoped that by applying it 

to several different real-world problems (as in Chapters 6, 7, and 8) a potential for further 

development can be shown. 
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4 EXISTING 

COMPUTATIONAL METHODS 

“Crime is common. Logic is rare. Therefore, it is upon logic rather than upon the crime that you should 

dwell.” 

– Sherlock Holmes in The Adventure of the Copper Beeches

4.1 CHAPTER OVERVIEW 

This chapter presents an overview of existing brain-inspired computational methods that can 

be used for auditory and visual processing. While seminal works of more “traditional” 

approaches are also mentioned briefly, the focus of the selected literature was on methods 

that simulated neural mechanisms or claimed biological plausibility. Therefore, this review 

does not cover in depth currently popular machine learning and deep learning methods such 

as convolutional neural networks, in favour of emphasising the more biologically plausible 

group of spiking neural networks. Due to their proximity to the brain as a blueprint for a 

“supercomputer”, brain-inspired methods can be expected to enhance the processing 

capabilities of computational architectures, as has, for example, been argued by Hassabis, 

Kumaran, Summerfield, and Botvinick (2017). A variety of biologically inspired “cognitive 
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architectures” has been developed in the past few decades, many of which consist of several 

sub-systems with distinct tasks that are working together like the processing units of the 

brain (Goertzel, Lian, Arel, de Garis, & Chen, 2010). 

In 2021, researchers can choose from a range of software packages for brain simulations that 

can be used for neural modelling and computational analysis (Tikidji-Hamburyan, Narayana, 

Bozkus, & El-Ghazawi, 2017). Artificial neural networks as novel machine learning methods 

and their arguably most brain-like variant, the SNN (Maass, 1997), provide a versatile (Hong 

et al., 2020) and promising (Fong, Scheirer, & Cox, 2018) approach to guide computational 

data analysis. These developments together with the thesis author’s intrinsic motivation to 

unlock the secrets of the brain for novel computational processing approaches spurred the 

direction of this chapter towards a focus on nature-inspired and biologically plausible 

methods. 

The overview of the computational background given in this chapter informed the design of 

the system presented in this thesis. Thematically, Section 4.2 looks at methods for sound 

processing, Section 4.3 looks at video processing approaches, and Section 4.4 explores 

architectures that combine auditory and visual data. Within this context, the aim of this 

chapter was to provide an overview of methods irrespective of specific datasets and 

applications. Literature related to the tasks of speech and video gesture processing is 

discussed in detail in Chapters 6 and 7, respectively. 
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4.2 SOUND PROCESSING 

The field of sound processing, as it is understood in the context of this thesis, encompasses 

problems involving auditory data, such as speech recognition, environmental sound 

classification, music analysis, and sound source separation. Since sound stimuli consist of a 

mixture of sound waves, processing methods typically look at and try to interpret spectral 

information. Conventionally, using Mel-frequency cepstral coefficients (MFCC), sound 

signals can be decomposed into separate frequencies based on perceptual features (Zheng, 

Zhang, & Song, 2001), which can then be analysed individually, for example for speech 

(Vergin, O'Shaughnessy, & Farhat, 1999) and speaker recognition (Sahidullah & Saha, 2012) 

or musical genre classification (Tzanetakis & Cook, 2002). With the advent of Deep Learning 

and Convolutional Neural Networks (CNN) (LeCun et al., 2015; Schmidhuber, 2015), 

another means of interpreting sound data through spectrograms became feasible (Costa, 

Oliveira, & Silla, 2017; Dörfler, Bammer, & Grill, 2017; Ren et al., 2018; Tjandra et al., 2015; 

H. Zhang, McLoughlin, & Song, 2015). In this approach, a sound is first converted to an

image representation of its spectral and temporal components and then classified using 

established image recognition algorithms. Other methods to prepare sound files for 

classification include linear transformation (Gales, 1998), adaptive segmentation (J. X. 

Zhang, Brooks, & Whalley, 2009) or stochastic mapping (Afify, Cui, & Gao, 2009). 

A variety of algorithms (Hinton et al., 2012) can then be used to analyse the pre-processed 

sound files for their respective application task. Historically, Hidden Markov Models 

(HMM) (Gales & Young, 2008; Rabiner, Wilpon, & Soong, 1989; Wilpon, Rabiner, Lee, & 

Goldman, 1990) and Support Vector Machines (SVM) (Ganapathiraju, Hamaker, & 

Picone, 2004; Lu, Zhang, & Li, 2003; Wan & Campbell, 2000) were commonly used for 

speech and speaker recognition. More recently, methods involving Deep Learning and 

CNN have shown promising results for speech and speaker recognition (Abdel-Hamid et 

al., 2014; L. Deng, Hinton, & Kingsbury, 2013; Sainath et al., 2015; Sainath, Mohamed, 

Kingsbury, & Ramabhadran, 2013; H. Zhang et al., 2015), and also for environmental sounds 

(Boddapati, Petef, Rasmusson, & Lundberg, 2017; Çakır, Adavanne, Parascandolo, Drossos, 

& Virtanen, 2017; Piczak, 2015; Salamon & Bello, 2017; Tokozume & Harada, 2017) and 

music classification (Choi, Fazekas, Sandler, & Cho, 2017; Costa et al., 2017). 

Most noteworthy within the context of this thesis are algorithms and models that claim 

biological inspiration and plausibility. Therefore, the remainder of this section will look 

at (1) algorithms for sound transformation that are based on the functioning of the cochlea 

and (2) computational sound processing systems that make use of an SNN or its derivates. 
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The first computational model that was based on the functioning of the cochlea and received 

wide acclaim was developed about 40 years ago (Lyon, 1982). The Lyon model tries to 

simulate the physiological behaviour of the cochlea by employing a half-wave detection 

function in combination with a compression algorithm that is based on automatic gain 

control used in electronic systems. It focuses on mimicking biological behaviour instead of 

modelling biological processes (Lyon, Rehn, Bengio, Walters, & Chechik, 2010). In later 

work, Lyon and Dyer (1986) thoroughly evaluated this model and investigated its biological 

plausibility, its properties and optimum parameters. The model is still used in speech 

recognition systems today (Schrauwen, D' Haene, Verstraeten, & Van Campenhout, 2007; 

Verstraeten, Schrauwen, Stroobandt, & Van Campenhout, 2005; Yong Zhang, Li, Jin, & 

Choe, 2015). More recently, Reimann (2011) also presented a way to formalise cochlear 

equations; this work put more emphasis on simulating the functioning of the cochlea’s 

components. Although Reimann’s work remained largely theoretical, it is directly based on 

biological processes and confirms Greenwood’s (1990) experimental observations of 

stimulus-response measurements in mammalian cochleae. 

However, these models can not be used directly for biologically inspired machine learning 

applications since they do not output their results in a spike-based format. Modelled after 

how neurons communicate in the brain, spikes are the most brain-like form of information 

transmission in computational systems and it has been shown that a combination of spike 

count and mean response times capture auditory stimulus information very well (Nelken, 

Chechik, Mrsic-Flogel, King, & Schnupp, 2005). Three such models that can transform 

sound into spikes to be entered into an SNN are compared by Rudnicki, Schoppe, Isik, 

Völk, and Hemmert (2015): the Holmberg, Gelbart, and Hemmert (2007) model, the Meddis 

et al. (2013) model, and the Zilany, Bruce, and Carney (2014) model. While the three models 

differ in the amount of emphasis they put on certain details of their cochlear models, they all 

modelled the auditory periphery reasonably closely to what is observed in humans. 

Furthermore, through the wrapper module provided by Rudnicki et al. (2015), these models 

are easily accessible through a unified interface that converts given sound files to spike files, 

which can be processed further by an SNN. Another auditory model that interfaces with an 

existing neural computation paradigm is the Brian Hears module (Fontaine, Goodman, 

Benichoux, & Brette, 2011) which interfaces with the well-known Brian SNN simulator 

(Goodman & Brette, 2008). This module is optimised for speed and parallelisation while 

trying to remain biologically plausible. It makes use of vectorisation and filter banks to 

facilitate these optimisations and mainly aims at providing algorithms to simulate cochlear 

and auditory models. 
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The last set of models for sound transformation that are related to the work presented in this 

thesis are biologically inspired hardware systems. These silicon cochlea chips capture 

sounds through microphones and produce spike-based output that can, for example, be 

entered into neuromorphic hardware. Examples for this category are the AEREAR binaural 

silicon cochlea (S.-C. Liu, van Schaik, Minch, & Delbrück, 2014; M. Yang, Chien, Delbrück, 

& Liu, 2016) or the binaural neuromorphic auditory sensor for Field-Programmable Gate 

Arrays (Jiménez-Fernández et al., 2017). Both approaches employ pulse-frequency 

modulation to capture the sounds and then create spikes as output using the Address Event 

Representation (AER) format. AER is a communication protocol commonly used in 

neuromorphic systems where each processing unit is identified by a unique address from 

which it notifies all other units when it observes an event. The most notable difference 

between these hardware architectures and the algorithms introduced earlier in this section is 

that spikes are emitted asynchronously as events happen and that hardware systems are 

optimised for speed and low energy consumption. Neuromorphic auditory chips have been 

used widely in systems where real-time processing is required, typically providing input to 

other neuromorphic processing boards (Dominguez-Morales et al., 2016) and SNN 

architectures derived from such boards (Dominguez-Morales, Liu, et al., 2018) but also to 

SVM (Abdollahi & Liu, 2011) and CNN (Dominguez-Morales, Jiménez-Fernández, 

Domínguez-Morales, & Jiménez-Moreno, 2018) systems. 

Apart from inspiring how to encode auditory stimuli in a biologically meaningful way, the 

mechanisms with which the brain and the auditory cortices handle sound can also be 

incorporated into other parts of computational sound processing architectures. Similar 

to more general brain-inspired methods, it has been suggested that the design of such 

architectures could benefit from mimicking observations from biology (Klein, König, & 

Körding, 2003). One example where SNN have been successfully applied due to their special 

architecture is the field of sound localisation (Glackin, Wall, McGinnity, Maguire, & McDaid, 

2010; Goodman & Brette, 2010; J. Liu, Perez-Gonzalez, Rees, Erwin, & Wermter, 2010; 

Voutsas & Adamy, 2007; Wall, McDaid, Maguire, & McGinnity, 2012). The asynchronous 

occurrence of the spikes facilitates precise time-based calculations, which are also used by 

the brain to determine the location of an auditory stimulus (Grothe et al., 2010). More 

generally, the asynchronous nature of SNN makes them particularly well-suited to process 

inherently dynamic sound data since they can capture temporal relationships in the signals 

(Tavanaei & Maida, 2017b; Voutsas, Langner, Adamy, & Ochse, 2005; Jibin Wu, Chua, & Li, 

2018; Jibin Wu, Chua, Zhang, Li, & Tan, 2018; Jibin Wu, Yılmaz, Zhang, Li, & Tan, 2020). 

However, not much is mentioned in contemporary literature about how exactly the features 

extracted from sound stimuli are entered into the respective network. It seems that, usually, 
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the data is simply vectorised and then fed into a one-dimensional input layer of the network. 

Relevant papers do not seem to devote much critique (or words) to this process. 

The seeming absence of research activity in this area sparked the question as to whether there 

was a more biologically plausible way to map the data into the network. One 

preliminary piece of work in this area (Saraceno, 2017, p. 39) used a mapping approach that 

rudimentarily followed the principle of tonotopic mapping in the auditory cortices. 

Developed under the supervision of the thesis author, this approach sees input neurons 

arranged in the same region of the network where Brodmann areas 41, 42, and 22 (primary 

auditory cortex) would be in the brain. The locations for the input neurons were manually 

selected based on the frequency to which they were tuned, with lower frequencies in the 

more frontal parts and higher frequencies in the more occipital regions of the “auditory 

cortex”. There were 20 input neurons for each side of the network, enabling bilateral 

processing. The first experiments on classifying parts of three musical pieces showed 

promising results. This work served as an inspiration for the development of the sound 

processing system presented in Section 5.3. 
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4.3 VIDEO PROCESSING 

The field of video processing, as it is understood in the context of this thesis, encompasses 

problems involving dynamic visual data, such as video labelling, event detection, or gesture 

and action recognition. Computational visual object recognition has been a prolific research 

field for over half a century (Andreopoulos & Tsotsos, 2013). CNN have seemingly become 

the method of choice for visual processing in the last decade (Ji, Xu, Yang, & Yu, 2013; 

Kriegeskorte, 2015; Rawat & Wang, 2017), spurred by the surprising success of such a 

network in a popular image recognition challenge (Krizhevsky et al., 2012). With the growing 

popularity of SNN, a myriad of papers have also looked at processing images, i.e., static 

visual data, with various SNN architectures and report impressive results (Beyeler, Dutt, & 

Krichmar, 2013; Iakymchuk, Rosado-Muñoz, Guerrero-Martínez, Bataller-Mompeán, & 

Francés-Víllora, 2015; Kerr, McGinnity, Coleman, & Clogenson, 2015; Kheradpisheh, 

Ganjtabesh, Thorpe, & Masquelier, 2018; C. Lee, Srinivasan, Panda, & Roy, 2019; Q. Yu, 

Tang, Tan, & Li, 2013; Y. Zeng, Zhang, & Xu, 2017). However, both the nature of the 

spiking behaviour and the feature detection mechanisms found in biological retinae are 

inherently dynamic. Therefore, this overview of related literature focused on systems that 

used dynamic data in a more biologically plausible way. 

Dynamic visual data are comprised of a collection of changing light rays, which can be 

captured and transformed into spikes for computational analysis and feature detection. 

Several approaches attempted to perform this transformation by mimicking and modelling 

the retina’s functionality and behaviour. For example, Wohrer and Kornprobst (2009) 

propose a retinal simulation software that aims to be biologically accurate. Their system 

transforms video sequences into spike trains by modelling the functional behaviour of retinal 

ganglion cells. An extension of this work (Cessac et al., 2017) enhances this algorithm by 

adding lateral connectivity between these ganglion cells, which simulates the behaviour of 

amacrine cells, and also provides a graphical user interface for the earlier command-line tool. 

A similar, but less detailed approach to modelling retinal ganglion cells was also suggested by 

Vance et al. (2018). By comparing their resulting spike trains to measurement data from 

experiments with human and mammal retinae, the authors of these studies found that their 

algorithms provided a biologically plausible output for the given stimuli. 

Other biologically inspired video encoding algorithms tended to focus on one select aspect 

of retinal processing. For example, Gütig, Gollisch, Sompolinsky, and Meister (2013) 

experimented with varying spike times and found that most of the information about the 

stimulus was encoded in the precise temporal patterns of the spikes. This finding further 
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supported the assumption that computational visual processing systems must retain the 

dynamic aspects of the input data to become more biologically plausible. Another 

interesting finding in this regard was the work of Akbas and Eckstein (2017), who showed 

that a system with a moving foveal area with high spatial resolution and surrounding areas 

with lower resolution can match the performance of a system in which the whole visual field 

is sampled with high spatial accuracy. However, the former system, like the eye, is more 

energy-efficient. Interestingly, most works found in the literature do not seem to devote 

specific attention to the colours of the observed light rays, but instead mainly look at changes 

in light intensity within the visual field (to detect edges) and over time (to detect movement). 

One exception to this observation was the work by Rafegas and Vanrell (2018), who 

described a multi-layered CNN that was trained to detect features in coloured images of 

objects. Layer by layer, the network’s neurons developed a selectivity to colour axes, 

characteristically coloured objects or backgrounds, and contrasted colours of objects and 

backgrounds. These findings in combination with its importance in human vision (Gerl & 

Morris, 2008) suggest that colour can be assumed to also play an important role in 

computational object recognition systems. 

The third category of biologically plausible systems for transforming visual data into spikes 

shifted their attention to later stages of the visual pathway by modelling the functionality 

of the primary visual cortex, V1. For example, Lian, Grayden, Kameneva, Meffin, and Burkitt 

(2019) created a biologically inspired model of the pathway itself, modelling the interactions 

between V1 and its preceding station (the lateral geniculate nucleus). The authors evaluated 

their system on image data and observed the emergence of receptive fields and orientation 

tuning within their neural representation. In another study, H. Liu, Shu, Tang, and Zhang 

(2018) used a layered SNN to mimic the behaviour of V1 in conjunction with the middle 

temporal cortex for motion detection to create feature vectors representing human actions. 

These feature vectors were then classified using an SVM. As part of their work, the 

researchers also presented a biologically inspired approach for modelling surround 

suppression, which is an important feature of retinal ganglion cells and V1 that has been 

observed in nature. Other works in this category have made use of the cognitive processes 

in the visual apparatus as a blueprint for semantic feature extraction and concept formation 

(Yin et al., 2018) or mimicked the hierarchical organisation of V1 to increase the efficiency 

of their system when learning new visual concepts (Rule & Riesenhuber, 2021).  

Finally, visual data can be transformed into spikes using specialised neuromorphic 

hardware. One of the systems that received widespread attention in this area was the 

Dynamic Vision Sensor (DVS) developed by Lichtsteiner, Posch, and Delbrück (2008). This 
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event-based camera does not capture a visual scene frame by frame like a conventional 

camera would, but instead detects changes in brightness in the visual field over time and 

transforms them into spikes using the AER format. This means that the origin of the 

“brightness change” event can be traced back to a unique location on the sensor and, hence, 

in the visual field. Further development of these sensors means that they are nowadays also 

capable of colour (Berner & Delbrück, 2011) and stereo vision (Domínguez-Morales et al., 

2019). 

The described algorithms and systems can transform visual data into spikes using biologically 

inspired approaches. Therefore, the next logical step would be to process these spikes 

further in a biologically plausible way. However, the majority of the works mentioned so far 

in this section do not employ such methods but rather input their spikes into more static 

architectures like SVMs or layer-based CNN. Notable exceptions to this practice are the 

architectures by Hadjiivanov (2016) and Hopkins, Pineda-García, Bogdan, and Furber 

(2018). The system presented by Hadjiivanov (2016) includes a new encoding algorithm that 

mimics retinal ganglion cells and Gaussian receptive fields, and the resulting spikes are then 

also processed in a simple SNN to evaluate the algorithm’s performance. As a second 

example, Hopkins et al. (2018) proposed a fully integrated hardware setup where spikes 

from an event-based camera are processed with a neuromorphic SNN architecture, the 

SpiNNaker chip (Furber, Galluppi, Temple, & Plana, 2014). Several papers have also 

described software-based simulations of DVS cameras where the spikes are then entered 

into an SNN, with varying application data but generally good results (George, Banerjee, 

Dey, Mukherjee, & Balamurali, 2020; D. Liu, Bellotto, & Yue, 2020; Q. Liu et al., 2020; J. 

Shen, Zhao, Liu, & Wang, 2020). Of these models, Q. Liu et al. (2020) further propose a new 

biologically inspired feature extraction algorithm that is based on the functioning of V1. 

These features are then entered into the SNN for classification. 

However, like for the sound processing systems described in Section 4.2, exactly how the 

signals are mapped into the network is rarely presented as a matter of thorough 

investigation. In the majority of the works, the extracted features and spikes are simply 

entered into the first layer of the network as a linear feature vector. One contrary example is 

the architecture presented by Ge, Liang, Yuan, and Thalmann (2019). In their experiments, 

the researchers analysed hand poses by spatially mapping the captured depth data of those 

hand poses into a three-dimensional CNN. They then extracted features from the modified 

network states to estimate the original hand pose, with good results. Another example is the 

work by Paulun et al. (2018), which employs a retinotopic mapping approach into a three-

dimensional SNN architecture that is shaped like V1. Developed under the supervision of 
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the thesis author, this mapping approach arranges the input neurons that receive visual 

stimuli from a DVS simulator in the same way in which visual signals are mapped in the 

brain. The mapping also follows the mirroring and distortion of these signals along the visual 

pathway based on the origin point of a signal in the visual field. As part of the research 

presented in this thesis, the Paulun approach was studied and improved further, as presented 

in Section 5.4. 
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4.4 COMBINING AUDITORY AND VISUAL DATA 

This section explores biologically inspired computational architectures in which auditory and 

visual data were combined and analysed together. As explained in Section 3.4, observations 

from neuroscience suggest that the brain integrates these modalities (and those perceived by 

other senses) along two main processing streams that look at object identification and 

localisation. Furthermore, an increased recognition rate was observed in the brain when 

multiple modalities were combined. This raises the question as to whether the same can be 

expected for computational systems that follow a similar data combination approach. 

Several approaches to signal fusion have emerged in the space of audio-visual signal 

processing architectures, with varying success (Abdelaziz, 2018). In the feature fusion 

approach, extracted features are simply concatenated and then fed into a processing unit 

together. One early example of this approach is the work by Roy and Pentland (2002), who 

estimated the probability of a sound representing a certain phoneme using recurrent neural 

networks and then combined these probabilities with histograms representing visual features. 

In more recent literature, Arandjelovic and Zisserman (2017) introduce a large-scale 

unsupervised learning method that receives input from concatenated vectors in fusion 

networks. Features from corresponding sound and video data were first extracted separately 

each using a CNN, where the sound was converted to spectrograms and videos were divided 

into frames. Another example of feature fusion is the work on audio-visual speech detection 

by Thermos and Potamianos (2016). Sound signals are first processed with the MFCC 

algorithm and the resulting features are then combined with depth data from videos in an 

SVM. 

A second approach of merging modalities is decision fusion, in which the pre-processing 

methods typically contain multiple steps that are assessed and compared for their 

informational value before a decision is made about which predicted label should be retained. 

For example, Cruz, Parisi, Twiefel, and Wermter (2016) combine speech and gesture data in 

this way to train robots with a neural network-based associative architecture and 

reinforcement learning. Their network grows dynamically with each input that it receives 

from the pre-processing streams. In another example, Poria, Cambria, Howard, Huang, and 

Hussain (2016) apply a mixture of feature and decision fusion to the task of extracting 

sentiments from multimodal web videos, with large improvements in classification accuracy 

when compared to existing methods. 

While these two fusion methods performed well in the past and remain popular, a recent 

benchmarking study found that another approach, the multi-stream HMM, achieve even 
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better recognition rates (Abdelaziz, 2018). First described in detail by Dupont and Luettin 

(2000), multi-stream HMM contain several input streams that can work independently and 

in parallel up to a pre-defined point where the signals are synchronised and combined. The 

input streams can then automatically align their internal temporal characteristics to match 

this pre-defined anchor point. This method has, for example, been successfully applied by 

Noda, Yamaguchi, Nakadai, Okuno, and Ogata (2015) to the problem of spoken word 

recognition where the speakers were also filmed. In their architecture, sound signals are 

processed using a deep denoising autoencoder, while visual features are extracted by a CNN. 

Their two encoding systems were trained and optimised separately and then integrated in a 

multi-stream HMM for analysis and classification. 

More recently developed methods for combing auditory and visual signals typically involve 

architectures that are inspired by neural processing. For example, Huang and Kingsbury 

(2013) introduced a novel feature fusion method that is based on deep belief networks, which 

are composed of several simple learning modules containing layers of neurons (Hinton, 

2009). The researchers show that their system outperforms existing fusion methods such as 

multi-stream HMM but requires more training data. This was also observed in a second 

approach (S. Zhang, Zhang, Huang, Gao, & Tian, 2018) that used deep belief networks to 

combine features extracted from CNN for emotion recognition. In this work, sound features 

were extracted using a standard CNN, while video data were processed in a three-

dimensional CNN. After being combined by the deep belief network, the stimuli were 

classified with an SVM with promising results. 

Further to these examples of neural-network-based methods, several approaches for audio-

visual processing have been developed from biological inspiration. Early work in this area 

(Kasabov, Postma, & van den Herik, 2000) attempted to simulate the hierarchical nature of 

the biological auditory and visual pathways in separate subsystems. In this architecture, each 

pathway draws its own conclusions about the correct label for a given sample of a person 

authentication task. An overarching conceptual subsystem assesses and combines the results 

of the pathways in a decision fusion process and arrives at a final conclusion. An extension 

of this work (Wysoski, Benuskova, & Kasabov, 2010) employs similar hierarchical 

subsystems for separate pre-processing of sound and video stimuli using MFCC and rank 

order coding, respectively. The conceptual subsystem that combines both streams is now 

based on an SNN that enables interaction between the unimodal processing layers so that 

they can inform each other’s decisions. Like its predecessor, this method can again be 

categorised as a decision fusion approach. 
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A final piece of work that shall be mentioned in this section is based on neuromorphic 

hardware (Neil & Liu, 2016). As mentioned in Sections 4.2 and 4.3, specialised sensors have 

been developed that can transform sound and light into spikes in a fast and biologically 

plausible way, mimicking the behaviour of the ears and eyes. Those signals can then be 

combined using “sensor fusion” and serve as input for a neural network architecture. Neil 

and Liu (2016) used the AEREAR and DVS hardware sensors to create spikes from auditory 

and visual stimuli, respectively. The spikes were then combined using a software-based deep 

fusion network consisting of deep CNN and recurrent neural networks, which analysed and 

classified the data. However, the researchers reported no experiments on SNN hardware, 

even though this would seemingly be the next logical step. More recently, a novel approach 

based on neuromorphic hardware was introduced that draws heavily on findings from 

neurobiology for their system design. Oess, Löhr, Schmid, Ernst, and Neumann (2020) 

present a neurophysiologically plausible model of multisensory integration that is then 

deployed on the neuromorphic TrueNorth chip (Cassidy et al., 2014). The model simulates 

several concepts of neural interaction and behaviour. Another very recent publication (Rathi 

& Roy, 2021) employed an SNN to combine speech and video data. While the sound files 

are encoded using the Lyon model (Lyon, 1982), the video files are transformed into Poisson 

spike trains that are extracted from pixel intensity. Each modality contains several SNN layers 

with cross-modal connections formed between them that are modified using the brain-

inspired spike-timing-dependent plasticity algorithm. It is encouraging to see the direction 

and findings of these works and hopefully more research interest will arise in the future 

While the presented methods differed greatly in their chosen techniques, all papers that 

reported results for comparing unimodal versus multimodal systems found that the latter 

outperformed the former, sometimes considerably. Similar observations can also be made in 

the brain. Both biological and computational systems can benefit from diversified sources of 

information about their environment as it allows them to supplement missing data from one 

modality with information extracted by the other. However, this requires the system to be 

able to connect the knowledge gained from these separate sources in a meaningful and logical 

way. For example, temporal misalignment between semantically connected signals has been 

found to adversely influence the system’s recognition rate, to an even greater extent than 

fully omitting the signals from one modality (Rao, 2016). 

While this problem of temporal data stream synchronisation between different modalities 

has been addressed particularly by those systems employing multi-stream HMM, another 

aspect of integration is the spatial arrangement of merged input signals. To the best of 

the thesis author’s knowledge, this topic has not been commented on in published works to 
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date. However, spatial signal integration is arguably a fundamental concept of audio-visual 

information processing in the brain, as described in Section 3.4. Therefore, this topic is 

investigated in detail in the work presented in this thesis. 
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4.5 CHAPTER SUMMARY 

This chapter summarised and introduced seminal works in the area of sound, video, and 

audio-visual processing, followed by a more detailed description of approaches that aimed 

to be more biologically plausible. While conventional machine learning methods achieved 

impressive results in several domain areas, they still lack the ability to understand context and 

more fluid concepts like mood and social behaviour. The brain, on the other hand, struggles 

with fast, precise calculations (of which there are many in more traditional approaches) but 

shines at scene understanding and knowledge integration. The work presented in this thesis 

explored some of these bio-inspired approaches further by taking inspiration from how the 

human hearing and vision systems process sound and video data. It aims to fill the gaps that 

were identified particularly in the area of signal mapping. 
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5 SYSTEM DESIGN 

AND ARCHITECTURE 

“One’s ideas must be as broad as nature, if they are to interpret nature.” 

– Sherlock Holmes in A Study in Scarlet

5.1 CHAPTER OVERVIEW 

The main objectives of the research presented in this thesis were to build a biologically 

inspired model for audio-visual data processing and to evaluate its capabilities in order to 

assess the potential of such an approach. This chapter describes how the model was built, 

how decisions were made on which biological mechanisms to include, and how the model’s 

parameters were informed by their natural counterparts. Chapters 6, 7, and 8 then describe 

the experimental setups to evaluate the model and its parts. The entirety of this chapter and 

the presented bio-inspired approach form a reply to Research Question 1a that was raised in 

Section 1.3 about how the biological background can inform the design of the computational 

model. 

Irrespective of the modality of the input data, the modelling process always followed the 

same four steps shown in Figure 5-1. However, the modality influences how these steps were 
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performed so that a satisfactory biological plausibility could be achieved, as indicated by the 

blocks and icons in the figure. The numbers in the figure denote the section of this thesis in 

which the steps are explained in detail. Those sections highlighted in bold red font denote 

novel contributions of the work presented in this thesis, while italic blue font marks sections 

that were largely based on existing work that was reused and adapted. A summary of the 

original and adapted contributions of this work is given in Section 5.6. 

FIGURE 5-1: THE FOUR STEPS OF THE MODELLING PROCESS . SECTIONS IN BOLD

RED FONT MARK NOVEL CONTRIBUTIONS, WHILE SECTIONS IN ITALIC BLUE FONT

WERE BASED ON EXISTING WORK. 

The following paragraphs give a general overview of the purpose of the steps and outline 

what they entail with respect to the two stimulus types. 

Step 1. Encoding. The raw signals – WAV sound files for the auditory model and MP4 

video files for the visual model – were transformed into spikes in a process that 

aimed to resemble the transformation of sound and light into brain signals by the 

cochlea and retina, respectively. This process answers Research Question 2a that 

was asked in Section 1.3. For the cochlear encoding, described in Section 5.3.1, an 

existing model was adapted and used. In contrast, the retinal encoding algorithm 

was a novel development that was based on how event-based cameras process video 

data. It contains two parts, peripheral greyscale vision described in Section 5.4.1 

and foveal colour vision described in Section 5.4.2. 

Step 2. Mapping. This step answers Research Question 2b that was asked in Section 1.3. 

The encoded signals are entered into the neural network in cortically plausible 

locations based on their data type. Since the network was created to be three-

dimensional and brain-shaped, these input locations could be chosen based on the 

position of the auditory and visual cortices in the brain. The sets of input 
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coordinates required for this step were developed from scratch and based on 

relevant brain imaging data that had been acquired and made available by 

neuroscientists. The process of deriving the tonotopic maps for the auditory input 

signals is described in Section 5.3.3 and the process of creating the retinotopic 

mapping for the visual input signals can be found in Section 5.4.4. Furthermore, 

since several different network sizes were developed as part of this research (see 

Section 5.2.3), not just the location but also the number of input neurons had to be 

determined so that the voluminal ratio between the size of the functional cortical 

area and the whole brain could be preserved. How these figures were calculated for 

the sound processing system is described in Section 5.3.2 and for the video 

processing system in Section 5.4.3. Moreover, the data created in the encoding step 

had to be compressed to a certain degree to fit into these calculated available 

numbers of input locations. A novel, flexible method for compressing auditory data 

was developed for the sound processing system and is described in Section 5.3.4, 

while for the video processing system, an existing method of splitting frames into 

meaningful sections was revised and enhanced as described in Section 5.4.5. 

Step 3. Learning. In this step, a brain-inspired SNN architecture called NeuCube, which 

is equipped with unsupervised and supervised learning algorithms, was used to 

recognise patterns in the encoded data that are connected to specific events in the 

original stimuli. The neural network had a three-dimensional, brain-shaped layout 

that facilitated the mapping of the input signals in the Mapping step. For the models 

developed here, a NeuCube implementation in the Java programming language was 

used, called JNeuCube to distinguish it from the earlier MATLAB implementation 

that had been used for the pilot study in Chapter 2. The characteristics and features 

of the learning process are described in detail in Section 5.2. Another aspect of the 

learning step was the possibility to integrate different input modalities, as was asked 

in Research Question 2c in Section 1.3. In this research, auditory and visual signals 

were combined based on the location-dependent and temporally aligned 

connection of different modalities in the brain. The process for this integration is 

described in Section 5.5. 

Step 4. Analysis. Making use of both the unsupervised and the supervised learning modes 

in the JNeuCube, the analysis step included traditional classification of benchmark 

data (shown in Chapters 6 and 7) as well as an unusual, yet potentially insightful 

means of visualisation (shown in Chapter 8). In this novel visualisation, the 

connections between the neurons that were modified during the unsupervised 

learning process could be visualised in the brain-shaped network and provide clues 
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as to which areas of the network were most active when being presented with 

particular stimuli. 

Contrary to what might intuitively be expected by the reader, the structure of this chapter 

does in fact not follow the order of the steps from 1 to 4, but rather the order in which the 

software and data that were necessary to perform these steps were developed and acquired. 

While the steps as shown in Figure 5-1 are more easily explainable from a top-down, systemic 

point of view, the amount of detail and explanation in the remaining sections of this chapter 

warrants a more topical bottom-up approach that follows the functional aspects of the model 

rather than its chronological parts. With this in mind, the outline of the chapter is as 

follows: 

Section 5.2 introduces the NeuCube architecture that was used in Steps 3 and 4 of the 

modelling process. The section explains the design of the system and how the neural network 

was adapted and utilised for this research. This section also includes an explanation of the 

parameters that could be specified for the JNeuCube implementation as well as an overview 

of the different network sizes that were developed for this research. Section 5.3 describes all 

parts of the model that were specifically related to sound processing, including the cochlear 

encoding for Step 1 and the tonotopic mapping for Step 2. Analogously, Section 5.4 describes 

all those parts of the model that were used for processing visual stimuli, including the retinal 

encoding for Step 1 and the retinotopic mapping for Step 2. Section 5.5 then goes on to 

discuss the two key aspects of data integration, namely the spatial arrangement of the input 

data in the network and the temporal synchronisation of events, which became relevant in 

the Learning step of the model after both the auditory and the visual stimuli had been 

encoded and mapped using their respective processing pipelines. Finally, Section 5.6 

concludes the chapter and summarises its contributions. 
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5.2 A BRAIN-INSPIRED SPIKING NEURAL NETWORK 

This section describes the theoretical background of the neural network architecture that was 

used to process the encoded stimulus data. It then focuses on an implementation of this 

architecture in the Java programming language, called JNeuCube, its parameters, and what is 

known about how these influence the model’s performance. The section closes with a 

description of the different network sizes that were created to be used for this research. 

5.2.1 SYSTEM ARCHITECTURE 

The human brain contains about 86 billion neurons (Azevedo et al., 2009). Each of these 

neurons is connected to numerous other neurons through its axon and dendrites, creating 

trillions of synaptic communication links that facilitate the brain’s abilities to evaluate, reason, 

and create. In line with this research’s objective to create a brain-inspired model, the 

characteristics of this “biological neural network” were taken into consideration when 

designing the features of the audio-visual processing system. Therefore, an artificial neural 

network (ANN) was chosen to be the central processing and learning unit for the system, 

specifically, a spiking neural network (SNN). 

SNNs are considered the third generation of ANNs (Maass, 1997). Their main improvement 

over first- and second-generation ANNs is that SNNs do not just consider the strength of 

the signals as determined by the weight of the neural connections, but also their temporal 

characteristics, which represent events in the original stimuli. While in traditional ANNs, 

signals are systematically propagated through the network layer by layer, effectively forcing 

the neurons to send signals at fixed time steps, the firing time of a spiking neuron is 

dependent on its post-synaptic potential being built up by incoming signals until it reaches a 

defined threshold, a process which is not bound by synchronised time intervals (Pfeiffer & 

Pfeil, 2018). Naturally, this feature is expected to improve their ability to recognise patterns 

in data that are dynamic, where information is captured in temporal relationships in addition 

to possibly existing spatial or spectral components. Since this research focused on analysing 

spectro-temporal auditory data and spatio-temporal visual data, which are inherently 

dynamic, using a specialised SNN for this task was considered a promising approach. 

The specific SNN architecture used for this research was the so-called NeuCube (Kasabov, 

2014). This architecture consists of a “reservoir” of spiking neurons that are arranged in 

three-dimensional space and connected to each other, whereby the patterns of the incoming 

signals are captured in the weights of these connections by specialised learning algorithms. 

NeuCube employs four stages with multiple adjustable parameters in its data processing 
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pipeline.18  In the first stage, the network is initialised. Neurons are positioned in the 

reservoir using coordinates specified by a location file and then connected to some of their 

neighbours by a small-world connectivity algorithm with randomly chosen connection 

weights. Some of these neurons are designated as input nodes that receive incoming signals; 

these are also specified by a location file with coordinates. 

The second stage is the unsupervised learning of the incoming data using spike-timing-

dependent plasticity (STDP; Sjöström & Gerstner, 2010). In this process, the pre- and post-

synaptic weights of the neural connections are modified as the input signals are propagated 

through the network, leading to long-term potentiation and long-term depression effects. 

Temporal associations between neurons are learned by adjusting the weights of connections 

based on the firing order of pre- and post-synaptic neurons. If the pre-synaptic neuron fires 

just before its post-synaptic neuron fires as well, the weight of their connection is increased. 

Likewise, the weights of connections where this firing order is reversed are decreased. The 

degree to which these adjustments are performed is determined by a learning function 

(Sjöström & Gerstner, 2010). 

The third stage of NeuCube’s data processing pipeline is the supervised learning of the 

trained network using the so-called dynamic evolving SNN algorithm (deSNN; Kasabov, 

Dhoble, Nuntalid, & Indiveri, 2013). This algorithm classifies the now modified connections 

in the network by connecting every active neuron in the reservoir to a single, newly created 

output neuron that represents the sample on which the network has just been trained. Only 

neurons that spiked at least once during the unsupervised learning stage are connected to an 

output neuron since inactive neurons would not produce any meaningful signals. The weight 

of the connections to the single output neuron is always initialised with the same value but 

is then modified based on the spikes that are generated by the reservoir neurons when 

processing the input sample. The presence of spikes increases the weight of the output 

connection, while their absence decreases it. 

In the fourth and final stage, the weights of these output connections are associated with the 

labels of the original input samples using the k-Nearest Neighbour algorithm (kNN). The 

weights of the connections to the output neuron for a sample are compared to the output 

connection weights of other samples and the best match is chosen. This approach is based 

on the assumption that samples representing the same original stimulus will create similar 

patterns in the network and hence similar output connection weights (Kasabov et al., 2013). 

 
18 For better readability, this section only gives a general overview of the processing pipeline. A detailed list of 
all available parameters is provided in Section 5.2.2 
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The originally proposed NeuCube architecture also included several algorithms for data 

encoding that could transform the input data into spikes with varying level of detail 

(Kasabov, 2014; Petró, Kasabov, & Kiss, 2020). However, this feature was not used for this 

research. Instead, specialised encoding algorithms that were based on biological cochlear and 

retinal functionality were developed and are an original contribution of this thesis. Likewise, 

the mapping algorithms included in NeuCube (Tu, Kasabov, & Yang, 2017) were replaced 

by those developed as part of this research, These new mapping algorithms were based on 

tonotopy for the auditory signals and retinotopy for the visual signals. 

The final architecture that was used for this research is depicted in Figure 5-2. Stimulus 

data in the form of sound and video files were transformed into spikes by the cochlear and 

retinal encoding algorithms, respectively. These spikes were then mapped into the network 

at the locations of the primary auditory and visual cortices. The STDP algorithm adjusted 

the connections in the brain-shaped reservoir based on the incoming signals as they were 

propagated through the network. After that, the deSNN algorithm connected the whole 

network to single output neurons, which were then associated with a class label by the kNN 

algorithm based on their connection weights. A similar architecture to the one described here 

was used successfully by Vanarse, Espinosa-Ramos, Osseiran, Rassau, and Kasabov (2020) 

for odour data classification. 

FIGURE 5-2: THE ADAPTED NEUCUBE ARCHITECTURE THAT WAS USED IN THIS

RESEARCH. 

Note that while the two stimulus types could be presented to the model at the same time, 

there was no obligation to do so. Both the sound and the video processing system could 

operate independently from one another. However, due to the biologically inspired mapping 
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algorithm, audio-visual data could be combined easily, and it was one objective of this 

research to investigate if their combination could improve the performance of the model. 

The NeuCube architecture was already briefly introduced in Chapter 2, where it was used to 

analyse and classify brain data collected through an electroencephalograph while a study 

subject was presented with written and spoken words and images of ten objects and living 

beings. One conclusion of this study was that in future projects, a more reliable, flexible, and 

accurate implementation of the NeuCube should be used to achieve better and more robust 

results. The implementation that was used for the models presented here is the JNeuCube. 

This Java-based version of the NeuCube supports the automated execution of experimental 

setups for large datasets as well as several algorithms for parameter optimisation. The 

following section explains the parameters of the JNeuCube in detail. 

5.2.2 SYSTEM PARAMETERS 

The JNeuCube implementation includes several parameters that could be configured to set 

up and run experiments on the raw data. The values for these parameters were passed into 

the system in a text file with the “properties” extension. They can be broadly classified into 

two categories, administrative, i.e., folder and file names, and algorithmic, i.e., any values that 

were used in the functions and formulas. This section focuses on the algorithmic parameters 

as these could directly influence the learning and classification performance of the model. 

The rationale behind choices for or against certain configurations for the models developed 

for this research is explained where relevant and the listing of the parameters below follows 

the order of the modelling stages described in Section 5.2.1. 

The following four parameters are high-level parameters for the JNeuCube that were relevant 

to the general configuration of the system and needed for subsequently performing the 

processing steps described in Section 5.2.1. 

Problem type – Describes the kind of problem that was being investigated. This could be 

set to classification or regression, depending on the desired result. For the research described in 

this thesis, it was always set to classification. 

Standard directory – The folder containing the data. Each data sample in this folder should 

be a comma-separated text file and be prefixed with samX where X is the incremental sample 

count. Maintaining the order of the samples was important as their labels were recorded in a 

separate “target file”. 

Standard target class label file – If the file with the data labels was not included in the 

standard directory with the prefix tar_class, its location and name could be specified here. 
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Is Encoded Data – A flag indicating if the data in the standard directory had already been 

encoded, i.e., transformed from raw data into spikes. For the experiments conducted as part 

of this research, this parameter was always set to true since the cochlear and retinal encoding 

algorithms were not part of the JNeuCube framework. All data were encoded beforehand 

and then made available to the system. Therefore, all parameters related to the encoding step 

are omitted from the explanation provided here and instead included in the relevant sections 

on cochlear (Section 5.3.1) and retinal encoding (Sections 5.4.1 and 5.4.2). 

The following 19 parameters were relevant in the initialisation stage of the network including 

layout specification and description of the neuron properties. Parameters that were not 

relevant for the models developed in this research are omitted from this list. 

Mapping mode – Set to auto or file, this parameter determined how the neurons in the 

reservoir would be laid out. Note that despite its name, this parameter was not related to the 

Mapping step but instead described the positions of the non-input neurons in the reservoir. 

In auto mode, they would be arranged in a cuboid grid for which the user could specify the 

number of neurons in each of the three dimensions, whereas for the file option the user could 

specify a file location with the exact coordinates. For this research, the file option was used 

so that the customised network sizes described in Section 5.2.3 could be evaluated. 

Mapping coordinates file name – The location and name of the file that contained the 

coordinates of the neurons in the reservoir. Note that despite its name, this parameter was 

not related to the Mapping step but rather to the arrangement of the non-input neurons in 

the network. 

Reservoir builder – This parameter defines the general behaviour of the neurons. For the 

research described in this thesis, it was set to neucube_reservoir, which meant that all neurons 

were excitatory neurons. Positive and negative values could then be assigned to the synapses 

of these neurons to simulate excitatory and inhibitory behaviour. 

Input mapping – With the options of algorithm, file, or image, this parameter defines how the 

input neurons were selected. For this research, only the file input mapping was relevant as 

the locations of the input coordinates were developed in a separate process using tonotopic 

(see Section 5.3.3) and retinotopic data (see Section 5.4.4). 

Input coordinates file name – The location and name of the file that contained the 

coordinates of the input neurons. 

Allow inhibitory input neurons – Specifies whether incoming spikes could be negative 

(inhibitory) or not. Due to the nature of the encoding mechanisms used for this research, the 
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spikes entered into the network were always positive (excitatory), so this parameter was set 

to false. 

Spiking neuron type – This parameter could be set to excitatory or inhibitory and describes 

the behaviour of the neurons in the reservoir. Like the behaviour chosen for the input 

neurons, this parameter was set to excitatory because the network would only process positive 

spikes. 

Core name – The neuron model that was used for all neurons in the network. Unlike the 

neuronal structure of the brain, which is shaped by numerous as of yet poorly understood 

cell types (H. Zeng & Sanes, 2017), all neurons in the JNeuCube exhibited the same 

behaviour to decrease the computational complexity of the system. The available options in 

the JNeuCube were leaky integrate-and-fire (LIF) neurons, which were first described more 

than one hundred years ago (Brunel & van Rossum, 2007); a simplified LIF model that was 

used in the MATLAB implementation of the NeuCube; the neuron models described by 

Izhikevich (2004); and probabilistic neurons (Kasabov, 2010). Only the original LIF and the 

Izhikevich neurons were considered for building the models described in this thesis. 

According to a comparative study by Izhikevich (2004), LIF neurons were not as biologically 

plausible as Izhikevich neurons, but about two-and-a-half times as computationally efficient. 

Some results from the body of literature suggest that using Izhikevich neurons can decrease 

the performance of the system (Tavanaei, Masquelier, & Maida, 2016). It is not yet 

understood if this also applies to the JNeuCube, so these two neuron models were deemed 

a good selection for the experiments presented in this thesis. The simplified LIF neurons 

and the probabilistic neurons did not have a sufficient literature base to warrant further 

investigation as part of this research. Therefore, these two neuron types were not considered 

here. The neurons’ behaviour could be configured further with the parameters below. 

LIF threshold voltage – When using the LIF neuron model, the energy of all incoming 

spikes during the unsupervised learning stage was added to the neuron’s post-synaptic 

potential (PSP). If the neuron’s PSP reached the voltage threshold specified here, it emitted 

a spike as well. This parameter was expected to contribute significantly to the classification 

accuracy of the system (J. H. Lee, Delbrück, & Pfeiffer, 2016), which is why it was chosen as 

a parameter for optimisation and not fixed at this stage. 

LIF reset voltage – The PSP of the LIF neuron was reset to this value after the neuron had 

emitted a spike. 
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LIF threshold refractory time – After emitting a spike, the LIF neuron would not spike 

again for a fixed number of time steps. This so-called refractory time is also present in 

biological neurons (Purves et al., 2017, pp. 55-56). 

LIF resistance – In each time step, a neuron loses a small amount of its voltage potential. 

This “leakage” is described by the resistance parameter. 

LIF capacitance – When integrating the incoming spikes with the existing electric potential 

of the neuron, the capacitance determined the degree of this integration. 

Izhikevich behaviour – This parameter labelled the behaviour exhibited by the neurons 

based on the features described by Izhikevich (2004). Since this was expected to significantly 

influence the performance of the model, this parameter was not fixed at this stage but rather 

chosen as a parameter for optimisation in the experiments described in Chapters 6 and 7. 

Connection algorithm name – With the locations and the behaviour of the neurons being 

defined, the JNeuCube offered three algorithms with which initial connections between them 

could be formed: the small-world connectivity (SWC) algorithm, an SWC variant for images 

of topographic maps, and an SWC variant for the “EPUSSS” algorithm. In the standard 

SWC algorithm, neurons were connected to a random subset of their spatially close 

neighbours whereby the weights of these connections were randomly chosen within a 

defined range. The specialised SWC for map data was seen as not suitable for this research 

due to its different application area, and the EPUSSS algorithm is still under development 

and was hence not studied as part of this research. Consequently, for the models presented 

here, the standard SWC algorithm was used. 

Minimum weight value – The lower boundary of the range with which the random SWC 

connections were initialised. This could be a negative number, indicating an inhibitory 

connection. 

Maximum weight value – The upper boundary of the range with which the random SWC 

connections were initialised. 

Small world radius – This number defined the maximum distance that two neurons were 

allowed to have to be considered “neighbours” by the SWC algorithm. Only neighbouring 

neurons were randomly connected by the algorithm, disregarding the proven functional 

importance of long-distance connections (Knösche & Tittgemeyer, 2011) for model 

simplification and computational efficiency. The value of this parameter was dependent on 

the coordinate system that was used and hence scaled according to the size of the network 

from a base value of 2.5 distance units. 
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Small world positivity rate – The fraction of all connections created by the SWC in this 

step that were assigned positive weights and hence became excitatory connections. Research 

by Hendry, Schwark, Jones, and Yan (1987) showed that about 70% of neurons in monkeys’ 

brains are excitatory,19 which is why this value was left at 0.7 for all models presented here. 

The next processing stage in the JNeuCube was the learning stage where the connection 

weights of the neurons were first adjusted by an unsupervised learning algorithm to capture 

the patterns in the data. Following the unsupervised learning, the JNeuCube passed the 

network’s connection weights through a supervised learning algorithm. The following 

13 parameters were relevant in this stage. 

Unsupervised learning algorithm name – In addition to the “basic” STDP algorithm 

(Sjöström & Gerstner, 2010) that was briefly explained in Section 5.2.1, the JNeuCube 

offered three variations of STDP as well as two other learning algorithms that could adjust 

the connection weights in the network. Since the plasticity mechanisms of the brain vary 

widely across regions and are also influenced by neuromodulators and other factors 

(Sjöström & Gerstner, 2010), it is a difficult and as of yet unsolved problem to find an 

artificial algorithm that can fully mimic this level of detail and still be computationally 

efficient. While the research in this thesis aimed to be biologically plausible, the experiments 

that were run to evaluate the model had to be run on conventional von-Neumann hardware. 

Therefore, the basic STDP algorithm was chosen for its biological inspiration and its 

computational efficiency. The basic STDP function that was used by the JNeuCube to adjust 

the weights was: 

𝑊(𝑥) = {
𝐴𝑝𝑜𝑠 ∗ 𝑒

−𝑥
𝜏𝑝𝑜𝑠 , 𝑥 > 0

𝐴𝑛𝑒𝑔 ∗ 𝑒
𝑥

𝜏𝑛𝑒𝑔 , 𝑥 < 0

 

The four parameters for this function (A positive, A negative, τ positive, τ negative) could 

be specified in the properties file. While the A values determined the rate at which the 

weights were changed, the τ values effectively defined the time window over which this 

change was calculated. In addition, an upper bound and a lower bound for the connection 

weights could be set. These two parameters restrict the connection weights to a specified 

range, mimicking the limited voltage range of biological neurons (Sjöström & Gerstner, 

2010). All six parameters were left at fixed values for all the models presented in this thesis 

based on suggestions by the lead developer of the JNeuCube software. Both A positive and 

 
19 Unfortunately, these kinds of measurements are rather invasive, so no data for humans were available at this 
stage. 
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A negative were set to 0.001 and both τ positive and τ negative were set to 10. The boundaries 

for the weight range were chosen to be -2 and +2. Within the limited time and scope of this 

research, it was considered more valuable to first investigate the capabilities of the newly 

developed methods for encoding and mapping before trying to improve the performance of 

the JNeuCube reservoir, which is why these parameters were left at their default values. 

Training rounds – Determines how many times the input data were passed through the 

network. With very few or short stimulus data, this could increase the pattern recognition 

ability of the network, since significant events in the data were repeated and the patterns that 

could be captured by the weights would be reinforced. For the data that were used with the 

models presented here, one training round was considered a sufficient starting point. 

Saving weights mode – If this parameter was set to true, all connection weights of the 

network would be saved at every step of the learning process. While this feature could be 

used to analyse the evolution of the connections that the stimulus patterns imprinted into 

the reservoir, it was not considered essential for this research and hence left at false. The 

insights from this additional analysis were not expected to be significant enough to warrant 

the required increased training time and storage space. 

Supervised learning algorithm name – There were two supervised learning algorithms 

implemented in the JNeuCube, which were both based on the deSNN algorithm. For all 

models in this research, the standard deSNN algorithm described by Kasabov et al. (2013) 

was used. With this algorithm, the spiking activity of the reservoir was captured by 

connecting all neurons that had spiked at least once during the unsupervised learning to a 

single output neuron per sample. 

Modulation factor – This parameter was used to calculate the connection weights for the 

connections to the output neurons. The weights were determined by calculating the 

modulation factor to the power of the order of the spike. Since this factor has to be smaller 

than 1, the order of the spikes thus determines their significance for the connection. 

Positive drift – If a spike was sent through one of the output connections, this parameter 

determined by how much its weight was increased. 

Negative drift – If no spike was sent through an output connection in a given time step, its 

connection weight was decreased by this factor. 

The final stage of the learning in the NeuCube was the classification of the data. More 

precisely, a class label was assigned to the single output neuron’s connection weights based 

on their similarity to the connections of other samples’ output neurons. In combination with 

those parameters that were needed for the general setup of the system to form an 
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experimental setup that could produce reliably correct results, this section contains the 

following seven parameters: 

Classifier name – In the JNeuCube implementation, there were two classifiers available, the 

kNN algorithm and a weighted kNN. In the default kNN algorithm, samples were classified 

by identifying a specified number k of their spatially closest neighbours and then being 

assigned the most common label among them. This required knowledge of the correct labels 

of all samples in the dataset, which is why the kNN algorithm is categorised as a supervised 

learning method. In the weighted kNN, the labels are not simply counted to determine the 

majority but also weighted based on the distance between the to-be-classified sample and its 

neighbours – the smaller their distance, the more weight is given to a neighbour’s label and 

vice versa. For the research presented here, the simple kNN algorithm was used because this 

step does not have a sufficient biological base from which to draw conclusions and thus the 

computationally less complex method was favoured. 

kNN k – The number of neighbours that were considered for the kNN algorithm. This is 

typically an odd number to avoid a stalemate situation when voting on the majority label. 

Classifier distance – The method with which the distances between a sample and its 

neighbours were calculated. In the JNeuCube implementation, Euclidian and Gaussian 

distance calculations were available. For the models developed here, Euclidian distance was 

used since it was the most straightforward option. The Euclidian distance is calculated by 

computing the square root of the sum of the differences of all the samples’ features in the 

feature space. 

Cross-validation method name – The JNeuCube offered two methods for cross-validating 

the models, k-fold and Monte Carlo. For this research, the k-fold cross-validation method 

was chosen due to its lower complexity. In k-fold cross-validation, the dataset was split into 

a defined number of folds, of which all but one were used to train the model while the 

remaining fold was used to test the model. This was repeated until all folds had been used as 

test fold once. The overall classification accuracy of the model was then determined by 

calculating the arithmetic mean of all fold-models’ accuracies. 

Num folds – The number of folds that were used for the k-fold cross-validation method. 

Training rate – Described the fraction of the total number of samples that were used for 

training the model, for example, 0.7 for 70% of the samples (the value used in this research). 

The remaining samples were used for validating the model. This split occurred before the data 

were further split into folds for the cross-validation, as shown in Figure 5-3. The network 

models that were created during all six runs (five cross-validation runs and one final 
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validation run) were always initialised with the same connection weights and then processed 

the different sample populations (varying combinations of four folds for the cross-validation 

and all five folds for the final run). While the cross-validation runs provided an insight into 

how well the model could classify the existing data, labelling the validation samples tested its 

generalisability. This procedure ensured that the model’s reliability could be verified with 

completely unseen test samples, which increased the reliability of the results. 

 

FIGURE 5-3: DATA SPLITTING APPROACH FOR TEST AND VALIDATION . 

Number of experiments – While not an explicit parameter in the properties file, this 

number still had to be determined before executing the JNeuCube software to build the 

models. Due to the randomised initialisation of the neural connections, both favourable and 

unfavourable configurations could occur. By running each experimental setup 30 times and 

then reporting the algorithmic mean of the achieved classification accuracies as the final 

result for the experiment, it was expected that extreme variants would be smoothed out and 

that the validity of the results would be further improved. 

The majority of the parameters described in this section were left at their default values that 

had been chosen by the lead developer of the JNeuCube implementation. Since only limited 

theoretical work had been done on optimum parameter settings for SNN in general and the 

NeuCube architecture in particular, and it was expected that the nature of the data would 

influence to what extent the parameters would affect the model’s performance, finding the 

best configuration was a difficult endeavour. The values chosen by the lead developer reflect 

anecdotal evidence from previous work on the same system, where they had led to 

satisfactory results. Furthermore, by using the same parameters as for other research projects, 

it was hoped that a comparative data basis could be created in the future to better inform 

these choices. 

5.2.3 NETWORK TEMPLATE SIZES 

A secondary objective of this research was to investigate if and how the size of the neural 

network influenced the model’s performance, where performance is measured by 

classification accuracy. As described in Section 5.2.2, the layout and hence the size of the 

neural reservoir of the JNeuCube could be specified through a list of three-dimensional 

coordinates. If these coordinates resembled the brain and were provided at different scales, 
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varying network sizes could be modelled easily. However, since no suitable dataset with such 

scaled coordinates was publicly available, it had to be developed first as part of this research. 

The most suitable source for a “base template” that could then be scaled in size was thought 

to be research involving brain imaging data. However, trying to create a biologically plausible 

set of points that resembled the brain turned out to be not as straightforward as initially 

thought. There is a huge range of diversity in how brains are shaped and where functional 

regions are located (Brett, Johnsrude, & Owen, 2002). While some landmarks, like Heschl’s 

gyrus as the location of the primary auditory cortex and the calcarine fissure as the location 

of the primary visual cortex, can be found reliably well in every brain, other areas, for example 

along the temporal lobe, can show large discrepancies between individuals (Brett et al., 2002). 

This meant that any network templates based on brain imaging technology were effectively 

limited in their resolution, and hence their biological plausibility since a common set of 

coordinates could not be as precise as individual brain data. However, the standardisation of 

brain volumes does create advantages for the neuroscientific research community in terms 

of comparability and reproducibility of their work, so attempts have been made by these 

researchers to create such a template despite its anticipated shortcomings. 

The first such template was developed by Talairach and Tournoux (1988). It was based on a 

single brain exemplar and has been widely used in brain imaging studies. The Talairach 

template was however limited in its generalisability due to underlying neurological conditions 

of the brain donor. This limitation prompted the development of a more generalised 

template by the Montreal Neurological Institute (MNI). The MNI template was based on 

several hundred brain scans that were averaged into a common template (Evans et al., 1993). 

Since then, the MNI template has increasingly replaced the Talairach template in brain 

research, however, both brain atlases are still used widely today (Laird et al., 2010). Therefore, 

these two well-recognised and widely adopted brain templates were chosen as the basis to 

develop the different network coordinates for the models in this thesis. The anatomical 

inaccuracies existing in these templates were not expected to limit the performance of the 

models because the locations of the two regions most relevant for this research – primary 

auditory and visual cortex – had already been determined as being reliably identifiable across 

individuals (Brett et al., 2002). 

The original Talairach template was downloaded from www.talairach.org where it was 

available as an annotated NIfTI file (Lancaster et al., 1997; Lancaster et al., 2000). Files in 

NIfTI format contain a three-dimensional matrix with meaningful values, which in this case 

were anatomic labels that described the hemisphere, lobe, gyrus, tissue type, and cell type of 

each element. With dimensions of 141*172*110 elements, the NIfTI matrix contained a total 

http://www.talairach.org/
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of 2,667,720 data points, of which 1,527,747 were annotated with a label indicating their 

position in the brain. Therefore, these 1,527,747 elements were chosen as the basis for a 

Talairach coordinate template that was adapted to the needs of the work presented in this 

thesis. The NIfTI file also contained metadata specifying a matrix transform function with 

which the elements of the index-based matrix could be converted to coordinates. While the 

indices in the NIfTI matrix must be positive for computational reasons, the anatomical 

coordinates of both the Talairach and the MNI template typically contain negative values 

because their coordinate origin is located in the centre of the brain. The transform function 

could thus be used to align the NIfTI matrix back to the original coordinates, moving the 

anterior, inferior, and left parts of the brain into negative coordinate space. 

The MNI template was downloaded from www.alivelearn.net/xjview/download-link/ 

where it was available as part of the xjView toolbox in the form of a database that contained 

a list of coordinates for each brain label. According to the toolbox’s documentation (X. Cui, 

n.d.), the database was obtained from a third party who had taken the Talairach coordinates

and brain labels described above and applied a non-linear transformation (Laird et al., 2010; 

Lancaster et al., 2007) to convert them into MNI space (Pakhomov, 2014). The xjView 

database contained 268 lists of coordinates, one for each anatomical feature of the brain such 

as hemisphere, cell type, lobe, and Brodmann area. Since one neuron coordinate can naturally 

be part of several of these lists,20 duplicates had to be removed and the final MNI template 

created for this research contained 241,606 coordinates. 

Besides the obvious discrepancy between the numbers of coordinates, the templates also 

looked noticeably different, as shown in Figure 5-4. In this figure, the blue dots represent 

the coordinates from the Talairach template, and the orange dots represent those from the 

MNI template. The first difference can be observed in the size of the networks. As expected 

from the origin of the templates, the Talairach template was smaller than the MNI template. 

The size discrepancy seemed to be especially pronounced in the extreme superior and 

anterior regions of the brain and is visible in the view from the left (left tile of the figure) and 

the back (middle tile). Another noticeable variation was the difference in density. This was 

also expected since there were a lot more coordinates available for the Talairach template 

than for the MNI template. However, it was also evident that both templates were aligned 

to the same coordinate origin point and that they were using the same scale. Based on the 

information provided with the Talairach NIfTI metadata, each coordinate point represented 

a brain volume of one cubic millimetre. 

20 A neuron in Brodmann area 17 will also be located in the occipital lobe, for example, and additionally be part 
of a hemisphere and of grey matter. 

http://www.alivelearn.net/xjview/download-link/
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FIGURE 5-4: VISUAL COMPARISON OF THE COORDINATES FOR THE TALAIRACH 

(BLUE) AND MNI (ORANGE) BRAIN TEMPLATES. 

Coming back to the objective mentioned at the beginning of this section, these two “original” 

brain templates had to be scaled to create several different network sizes that could be used 

to build the models for this research. This was done by performing a stepwise selection of 

neurons from the templates based on their three-dimensional structure: along each of the 

three dimensions, only every nth neuron was selected to remain in the template while all 

others were discarded, as shown in Figure 5-5. The example in the figure shows a scaling 

factor of two, where only every second neuron remained in the network. This stepwise 

selection was applied to both the Talairach and MNI templates until a low four-digit number 

of remaining neurons was attained for each. Smaller templates would not have been viable 

when performing the biologically plausible mapping since the number of input neurons was 

going to be dependent on the voluminal ratio between functional cortex and brain. If the 

brain template would become too small, the number of input neurons would sink to fractions 

of neurons and hence not be representable anymore. 

 

FIGURE 5-5: VISUALISATION OF THE STEPWISE SELECTION OF NEURONS IN EACH 

DIMENSION TO CREATE THE SCALED BRAIN TEMPLATES. 
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The final number of neurons for each scaled template is shown for the Talairach atlas in 

Table 5-1 and the MNI atlas in Table 5-2. A scaling factor of n indicates that every nth neuron 

in each dimension was kept in the network while all remaining neurons were removed. The 

template names were used throughout this research to refer to these specific sets of 

coordinates. Furthermore, since the original MNI template contained only even numbers, 

one additional enlarged MNI template was created by filling in the absent odd coordinates. 

TABLE 5-1: NEURON COORDINATE NUMBERS OF THE BRAIN TEMPLATES THAT WERE 

CREATED FOR THIS RESEARCH BASED ON THE TALAIRACH ATLAS. 

Template name Number of neurons Scaling factor 

TAL_orig 1,527,747 1 

TAL_by_2 192,600 2 

TAL_by_3 56,770 3 

TAL_by_4 23,550 4 

TAL_by_5 12,150 5 

TAL_by_6 7,199 6 

TAL_by_7 4,452 7 

TAL_by_8 2,960 8 

TAL_by_9 2,086 9 

TAL_by_10 1,525 10 

 

TABLE 5-2: NEURON COORDINATE NUMBERS OF THE BRAIN TEMPLATES THAT WERE 

CREATED FOR THIS RESEARCH BASED ON THE MNI ATLAS. 

Template name Number of neurons Scaling factor 

MNI_times_2 1,932,848 ½ 

MNI_orig 241,606 1 

MNI_by_2 30,182 2 

MNI_by_3 8,907 3 

MNI_by_4 3,747 4 

MNI_by_5 1,939 5 
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While this downscaling approach decreased the number of neurons in the network, it did 

not alter the network’s shape or dimensions. Smaller templates still resembled their original 

sources visually, albeit with lower neuron density. Figure 5-6 shows this for both the 

Talairach (top row) and the MNI (bottom row) templates. The left column (blue) shows the 

original templates, the middle column (orange) shows a medium-sized template (TAL_by_5 

and MNI_by_3), and the right column (green) shows the smallest available template for each 

atlas (TAL_by_10 and MNI_by_5). 

 

FIGURE 5-6: VISUALISATION OF DIFFERENCES BETWEEN TEMPLATE SIZES . NOTE 

THAT WHILE THE NEURON DENSITY DECREASES , THE OVERALL SHAPE IS RETAINED. 

The two templates that were obtained by converting brain imaging data found in literature 

and the further 14 templates that were developed from them as part of this research form an 

important foundation for the models presented in this thesis. The final lists of coordinates 

for the different network sizes constitute an original contribution of this research that serves 

as an intermediate step to answering Research Question 3c, which in Section 1.3 asked if the 

size of the neural network influences its performance. 
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5.3 SOUND PROCESSING SYSTEM 

This section describes the design of a biologically inspired sound processing model that is 

based on the human auditory system. It focuses on four areas: 

• the transformation of sound waves into electrical signals based on the functionality

of the cochlea,

• the position and size of the auditory cortices within the brain,

• the frequency-based (tonotopic) mapping of the electrical signals into the primary

auditory cortices, and

• the merging of these signals along the primary auditory pathway.

These four focus areas were identified as a suitable starting point for the design of a 

computational system after studying the relevant literature, which showed that they were 

comparatively well researched and understood by hearing scientists.21 Since they were found 

to play key roles in the hearing process, the computational system developed as part of this 

research largely follows their functionality, albeit with some simplifications. Related literature 

from biology and neuroscience informed the design of the model and is discussed where 

applicable. The performance of the developed model was then evaluated using benchmark 

data, the results of which are reported and compared to existing systems in the same domain 

in Chapter 6. 

5.3.1 COCHLEAR ENCODING 

This section describes how the sound data were converted into spikes by the sound 

processing model developed in this research. As described in detail in Section 3.2.1 and 

illustrated in Figure 3-3 and Figure 3-4, the cochlea has the remarkable ability to transform 

mechanical sound waves into electrical brain signals. Due to its unique structural mechanics, 

the basilar membrane running inside the cochlea starts to vibrate at a point that is directly 

related to the frequency of the sound stimulus. So-called hair cells located on top of the 

basilar membrane are depolarised as their “hairs” (stereocilia) are pushed into the tectorial 

membrane located above them by these vibrations. This leads to rapid depolarisation of the 

hair cells, creating electrical signals that are transmitted via auditory nerve fibres to the next 

processing stages along the auditory pathway. This process of cochlear encoding is simulated 

in the sound processing model described in this chapter. 

21 An introductory explanation of the human auditory system can be found in Section 3.2. 
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In any mammalian cochlea, the locations where the sound vibrations cross the basilar 

membrane and excite the hair cells can be calculated using the Greenwood function 

(Greenwood, 1961). This function expresses the relationship between specific frequencies 

and positions in the cochlea: 

𝑓 = ∫ Δ𝑓𝑐𝑏

𝑥

0

= 𝐴(10𝑎𝑥 − 𝑘) 

where f is the frequency of the sound, A, a, and k are species-specific constants, and x is the 

distance between the apex and the point of interest on the basilar membrane. The three 

species-specific constants can be determined through experimentation by observing the 

reaction of hair cells on the basilar membrane when playing tones of known frequencies. For 

the human cochlea, which has to be studied on deceased subjects typically no longer than a 

few hours after death (Greenwood, 1990), the following values are suggested: 

𝑓 = 165.4(102.1𝑥 − 0.88) 

assuming that x is given as a fraction of the length of the cochlea (Greenwood, 1990). Since 

a typical human cochlea is about 34 millimetres in length (Wright et al., 1987), the value for 

a changes to 0.06 if x is given in millimetres. With this information, the Greenwood function 

can be used to calculate the sound frequency to which a given location on the basilar 

membrane responds and vice versa. 

The discovery of the Greenwood function was an important prerequisite for the 

development of applications that rely on a biologically plausible cochleotopic mapping of 

frequencies in the inner ear. For example, it is commonly applied in artificial cochlear devices 

for the hearing-impaired (Stakhovskaya, Sridhar, Bonham, & Leake, 2007). The Greenwood 

function is a fundamental part of the sound processing system presented in this chapter as it 

provides an algorithm for signal transformation in the very first step of the model. 

The second neuroscientific finding that has to be considered in the development of the signal 

transformation and encoding step of the model is related to the auditory nerve fibres that 

are connected to the inner hair cells of the cochlea, the so-called Type I fibres. M. C. Liberman 

(1978) discovered that there are three types of Type I fibres, based on their spontaneous 

firing rates. The spontaneous firing rate indicates how many signals are created by auditory 

nerve fibres that are not a direct result of an auditory stimulus. In terms of electromechanical 

properties, spontaneous firing rates facilitate a distinction between different levels of 

loudness. Fibres with high spontaneous firing rates emit more than 18 spikes per second and 

are very sensitive to quiet sounds because they are easily excited. However, due to the 

recovery time needed between spikes, these fibres will saturate more quickly than those with 
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low or medium spontaneous firing rates, and hence, temporarily cease to function effectively 

in louder environments. In contrast, fibres with medium (between 0.5 and 18 spikes per 

second) and low (less than 0.5 spikes per second) spontaneous firing rates mainly react to 

louder sounds and saturate less quickly, allowing a broader spectrum of loudness perception. 

While there is limited22 research on auditory nerve fibres of humans, Liberman’s extensive 

experiments on cats have shown a distribution of fibres with high, medium, and low 

spontaneous firing rates of about 61%, 23%, and 16%, respectively (M. C. Liberman, 1978). 

Since the auditory nerves of cats seem to share several characteristics with the human 

auditory nerve, it is generally assumed that this distribution would be similar in humans 

(Nadol, 1988). Therefore, these figures were applied to the development of the sound 

processing system presented in this chapter. 

The next step was then to decide how many hair cells and auditory nerve fibres to include in 

the model. Fortunately, several quantification studies of the inner ear have been performed, 

and it was found that there are approximately 3,500 inner hair cells along the human cochlea 

(Wright et al., 1987) that are connected to about 30,000 Type I auditory nerve fibres 

(Spoendlin & Schrott, 1989). This means that, on average, each inner hair cell is connected 

to approximately 8.57 auditory nerve fibres. Furthermore, considering Liberman’s 

distribution of spontaneous firing rates, there should be 18,300 high-spontaneous, 6,900 

medium-spontaneous, and 4,800 low-spontaneous Type I fibres in total, or approximately 

five, two, and one per hair cell, respectively (M. C. Liberman, 1978). 

This is, of course, a very simplified assumption to build the computational model described 

here. The different kinds of nerve fibres are, in fact, not evenly distributed between the hair 

cells (M. C. Liberman, 1978), and the number of hair cells along the cochlea as well as the 

number of auditory nerve fibres per hair cell varies widely between speech-relevant and non-

speech-relevant frequencies (Spoendlin & Schrott, 1989). However, some level of 

simplification is necessary at this step for the model to be computationally feasible and 

hence potentially usable in real-world applications. Therefore, the sound processing system 

developed in this research modelled 3,500 hair cells per ear that are each connected to five 

auditory nerve fibres with high, two fibres with medium, and one fibre with low simulated 

spontaneous firing rates. 

Based on the aforementioned studies and several other discoveries in the field of hearing 

science, numerous research groups have developed detailed computational models of the 

 
22 After all, while the ethics committee of the 1970’s might have considered it acceptable to dissect and study 
“A litter of four cats, born and raised in a soundproofed chamber” (M. C. Liberman, 1978, p. 442), attempting 
this experimental setup on humans would have, then and now in 2021, raised ethical concerns. 
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inner ear, each focusing on different aspects that mimic human hearing (Clark, Brown, 

Jürgens, & Meddis, 2012; Holmberg et al., 2007; Meddis et al., 2013; Sumner, Lopez-Poveda, 

O'Mard, & Meddis, 2002; Verhulst, Dau, & Shera, 2012; Zeddies & Siegel, 2004; Zilany et 

al., 2014). In a recent review paper (Rudnicki et al., 2015), the authors systematically 

compared some of these models and found that in terms of biological accuracy and signal 

coding, the model developed by Zilany et al. (2014) performed best in their experimental 

setup. This 2014 model is an improved version of a previous model developed by the same 

group (Zilany, Bruce, Nelson, & Carney, 2009) that was based on observations of the 

auditory periphery. The authors also published the source code of their experiments on the 

online code repository GitHub as a module for the Python programming language (Rudnicki 

& Hemmert, 2016), making it easily available and reusable for other researchers. 

Since it was not the intent of this thesis to develop and assess novel models of the inner ear, 

the recommendations by Rudnicki et al. (2015) were followed and the published 

implementation of the 2014 Zilany model was used as a basis for the auditory processing 

system presented in this thesis. The encoding software was downloaded from GitHub and 

customised to the needs of the model (see Appendix A, Listing II). The following 

parameters were used: 

• Sound. A vector containing one channel of sound data.

• Fs. The sampling rate of the sound. For computational reasons, the model limited

the sound frequency to between 100,000 and 500,000 Hertz. Since most available

benchmark sound datasets used a lower sampling rate and it was unclear how

resampling would affect the computational model, it was decided to fix this

parameter at the lowest available value of 100,000 Hertz.

• Anf_num. This parameter contained the number of auditory nerve fibres per

characteristic frequency grouped by their spontaneous firing rate (high, medium,

low). Taking into consideration the quantification studies by M. C. Liberman (1978)

in combination with the findings by Spoendlin and Schrott (1989), eight auditory

nerve fibres were used, of which five were assumed to have a high spontaneous firing

rate, two to have a medium spontaneous firing rate, and one to have a low

spontaneous firing rate.

• Cf. This parameter contained the number and range of characteristic frequencies to

which the auditory nerve fibres responded. Based on the work by Wright et al. (1987),

3,500 characteristic frequencies per cochlea were assumed to be biologically

plausible. The frequencies were chosen to be in the range of 125 and 8,000 Hertz so

they would match the frequency range covered by Langers, Sanchez-Panchuelo,
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Francis, Krumbholz, and Hall (2014). Their work became relevant in the later steps 

of mapping and data compression described in Sections 5.3.3 and 5.3.4. 

• Species. This parameter provides different options to simulate the species-specific size 

of the cochlea. This parameter was set to ‘human’. 

• Seed. Since there was no documentation for this parameter, it was left at its default 

value of 0. Presumably, this is used to initialise the randomisation of the spontaneous 

firing of the auditory nerve fibres. 

The two model parameters that needed the most attention from a research perspective were 

the number of auditory nerve fibres and their characteristic frequencies. While the former was covered 

reasonably well by the literature in this section, the latter required a more detailed 

consideration of the overall network configuration for the final models. The following 

sections discuss in detail the relationship between the network size and the number of input 

neurons as well as their spatial arrangement and tonotopic distribution. 

5.3.2 NUMBER OF AUDITORY INPUT NEURONS 

The auditory cortices in the human brain take up a certain amount of space within the overall 

brain matter. Since the number of neurons in the neural network model is freely definable 

and is, in fact, a parameter for model optimisation, the size of the signal input region has to 

be kept proportional to the overall network size in order to retain biological plausibility. 

Therefore, this section looks at neurological evidence for the size of the auditory cortices. 

A short excursion into the beginnings of neuroscientific research shows that the early 

20th century saw a surging research interest in the structure and functionality of the human 

brain. Probably most well-known is the work of German neurologist Korbinian Brodmann 

who developed a brain atlas by identifying areas in the cortex of the brain based on their 

cytoarchitectonic (cell structure) characteristics. Brodmann’s atlas is still widely used today. 

Other schools of thought developed at that time, such as myelinogenesis (studying the 

development of myelin in different fetal stages), which was pioneered by German neurologist 

Paul Flechsig and investigated the structure and composition of the brain from other 

perspectives, with somewhat different conclusions and considerable debate.23 With regards 

to the auditory cortices, for example, Brodmann acknowledges that the area he identified as 

area 41 in his atlas was the previously discovered Heschl gyrus (Brodmann, 1909, p. 145). 

However, Brodmann was convinced that auditory processing is such an important feature of 

human consciousness that it can not be restricted to such a small area and must instead be 

 
23 While researching this section, I had the pleasure of reading the original papers by Brodmann and Flechsig 
in German, which contained an entertaining hint of rivalry. 
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distributed across the temporal lobe (Brodmann, 1909, pp. 313-315). This area 41 has now 

been verified as the location of the main auditory processing centre (Morosan et al., 2001). 

Interestingly, Flechsig through his myolegenetic studies had already discovered that auditory 

functionality is contained in the Sylvian fissure he called “Hörrinde” (German for “hearing 

cortex”). He first calculated that the auditory processing centres made up around two per 

cent of the overall surface area of the cortex (Flechsig, 1905). Later, he wrote that the regions 

he described as auditory cortices, which are also known as temporal anterior transverse gyri, had 

a total surface area of approximately two square centimetres (Flechsig, 1908). He also 

discovered that these gyri are a projection area for the cochlear nerves by looking at the 

pathways the nerve fibres take in the brain, and he noted that they seem much more 

complicated and tangled than the comparatively orderly arranged nerve fibres extending 

from the retina to the visual cortex (Flechsig, 1908). 

Since the last century has seen immense advancements in available research methods, the 

feud between Brodmann and Flechsig could finally be scientifically settled using modern 

medical imaging technology. Morosan et al. (2001) in combination with Rademacher et al. 

(2001) used magnetic resonance imaging to study the brains of ten people and identify the 

size and location of their auditory cortices, specifically an area they called Te1. Area Te1 is 

nowadays considered the location of the primary auditory cortex as identified by 

cytoarchitectonic characteristics in combination with functional imaging technologies 

(Morosan et al., 2001). By averaging the sizes of the identified auditory cortices in their study 

subjects, Rademacher et al. (2001) determined that area Te1 has a volume of 1,683 mm3 in 

the left hemisphere and a volume of 1,581 mm3 in the right hemisphere of the brain.24 

Anecdotally, this difference between left and right had already been mentioned by Flechsig 

(1908). However, his observation that it was reversed in a left-handed person and that both 

cortices were of the same size in three musicians’ brains he analysed could not be confirmed 

by more recent studies. 

The computational neural network model described in Section 5.2 assumed that the overall 

network reservoir covers the whole brain. Just like the auditory cortices are part of the whole 

brain, their size had to be put into relation to the whole brain volume. Like the studies 

described above that determined the volume of area Te1, modern medical imaging 

technology has equally facilitated accurate whole-brain measurements. A notable paper by 

Allen, Damasio, and Grabowski (2002) describes how the authors studied the size and shape 

of the brains of 46 subjects using magnetic resonance imaging to investigate volume 

differences between the sexes. They found that male brains had an average volume of 

 
24 For better mental visualisation, these numbers are roughly between the cubes of 11 and 12 mm. 
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1,273.6 cm3, while female brains had an average volume of 1,131.1 cm3. Since a distinction 

between male and female is not relevant for the development of the computational sound 

processing system presented here, the arithmetic mean of both figures – 1,202.35 cm3. – was 

used when designing the system. 

In order to develop a biologically plausible model, the number of input neurons was 

determined using the following formula that preserves their proportions: 

𝑣𝑜𝑙 𝑇𝑒1 (𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟)

𝑣𝑜𝑙 𝐵𝑟𝑎𝑖𝑛 (𝐴𝑙𝑙𝑒𝑛)
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
 

Area Te1 makes up about 0.27% of the total brain volume, of which roughly 0.14% belong 

to the left hemisphere and roughly 0.13% belong to the right hemisphere. Combining these 

figures with the different network sizes that were generated for this research as described in 

Section 5.2.3 results in concrete numbers for input neurons shown in Table 5-3 and 

Table 5-4. These were the figures that were used later to determine the locations of the input 

neurons, which could then be supplied to the JNeuCube system as input coordinates that 

would match with the varying network sizes. This setup facilitated investigating Research 

Question 3c that asked if the size of the network influenced the model’s performance. 

TABLE 5-3: NUMBER OF AUDITORY INPUT NEURONS DEPENDING ON THE SIZE OF 

THE BRAIN TEMPLATE FOR THE TALAIRACH ATLAS. 

Brain template 
Number of 

reservoir neurons 

Number of input neurons 

Left side       Right side 

TAL_orig 1,527,747 2,138 2,009 

TAL_by_2 192,600 270 253 

TAL_by_3 56,770 79 75 

TAL_by_4 23,550 33 31 

TAL_by_5 12,150 17 16 

TAL_by_6 7,199 10 9 

TAL_by_7 4,452 6 6 

TAL_by_8 2,960 4 4 

TAL_by_9 2,086 3 3 

TAL_by_10 1,525 2 2 

 



124 

TABLE 5-4: NUMBER OF AUDITORY INPUT NEURONS DEPENDING ON THE SIZE OF 

THE BRAIN TEMPLATE FOR THE MNI ATLAS. 

Brain template 
Number of 

reservoir neurons 

Number of input neurons 

Left side       Right side 

MNI_times_2 1,932,848 2,706 2,542 

MNI_orig 241,606 338 318 

MNI_by_2 30,182 42 40 

MNI_by_3 8,907 12 12 

MNI_by_4 3,747 5 5 

MNI_by_5 1,939 3 3 

 

Naturally, the volume differences between the left and right sides only came into play for the 

larger network sizes. For smaller networks, fractional numbers had to be rounded because 

only entire neurons could be represented in the network. This caused inconsistencies like the 

discrepancy between the “TAL_by_6” and the “MNI_by_3” models. Even though 

“MNI_by_3” was larger, it was assigned the same number of input neurons for both the left 

and right sides because the calculated values were 12.47 and 11.58, respectively, both of 

which were rounded to 12. 

After the number of input neurons in the network had been determined, their exact locations 

also had to be found. The next section describes this tonotopic mapping process. 

5.3.3 TONOTOPIC MAPPING – LOCATION OF AUDITORY INPUT NEURONS 

The previous section discussed how the number of input neurons was identified depending 

on the size of the neural network. Based on those numbers, this section reports on the 

investigation of the spatial distribution and location of these input neurons. The same 

literature that talked about the volume of the primary auditory cortices also discussed their 

location in the brain and found that it differed from person to person within a certain range 

(Rademacher et al., 2001). The difficulty when applying these data to a computational model 

was in converting the often inaccurate and inconsistent biological locations into exact 

computer-usable coordinates. The efforts described in this section present an attempt to 

solve this problem in a scientifically sound manner. 
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Tonotopy describes the relationship between sound frequencies and their corresponding 

processing regions in the primary auditory cortex. Sound stimulus frequencies that are close 

to each other are processed in neighbouring areas, and this overall spectro-spatial 

arrangement of the auditory cortex was found to be similar across humans (Saenz & Langers, 

2014). This also means that signals created by the cochlea as a reaction to a specific frequency 

band will likely take the same path through the brain and terminate in the same neural cluster. 

Because the basilar membrane located in the cochlea will only vibrate in an area that 

correlates to the perceived sound frequency, its hair cells will only emit electrochemical 

signals in that particular area.25 It has been shown that the signals transmitted to the auditory 

cortices by the auditory nerves are directly spatially and temporally related to the frequencies 

perceived by the Corti (Delgutte, 1997). This means that detailed information about the 

frequency composition of the sound stimulus is captured and preserved along the auditory 

pathway until it arrives in the auditory cortices. While the brain templates that were used to 

build the different network sizes described in Section 5.2.3 did provide labels for their 

coordinates that indicated their anatomical region, this information was too broad to define 

the frequency-dependent locations of the input coordinates. Therefore, this research again 

looked at employing data directly derived from neuroscience when determining these 

locations. 

As shown in Figure 5-7, most parts of the auditory pathway are tonotopically organised, 

meaning that the anatomical locations of the neurons are directly related to their 

characteristic frequencies (Saenz & Langers, 2014). Thus, the spatial (frequency-dependent) 

and temporal (time-dependent) characteristics of the original sound waves are preserved, 

which means they can be mapped to their corresponding neurons on the cortical frequency 

map of the auditory cortex (Dahmen & King, 2007). 

The abbreviations used in the diagram identify neural processing clusters along the primary 

auditory pathway. These neural processing clusters and their functionality are described in 

detail in Section 3.2.2. For the purpose of designing the computational sound processing 

model described in this chapter, the most important finding is that the signals arrive at their 

destination, the primary auditory cortices, in a tonotopically organised fashion that can be 

observed in most humans. This finding has to be preserved in the model. 

 
25 A detailed description of this process can be found in Section 3.2.1. 
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FIGURE 5-7: TONOTOPIC MAPPING OF FREQUENCIES ALONG THE PRIMARY

AUDITORY PATHWAY.26 

Tonotopic mapping has been studied using several different paradigms for measuring 

responses to auditory stimuli with functional imaging technologies. Langers et al. (2014) 

investigated how three different research protocols – continuous, clustered, and sparse signal 

collection – influenced the quality of the tonotopic maps. During their experimentation, the 

authors created several tonotopic maps, one of which they generously agreed to share with 

the author of this thesis so she could use it as the base for her tonotopic mapping approach. 

The data created by Langers et al. consisted of a list of 26,988 three-dimensional coordinates 

in the MNI space (14,527 coordinates in the left hemisphere and 12,461 coordinates in the 

right hemisphere) and their corresponding “response phase values”. These phase values 

roughly indicate which frequencies were presented to the study subject when the 

corresponding brain area exhibited neural activation. The study paradigm used by Langers et 

26  From Tonotopic mapping of human auditory cortex by Saenz and Langers (2014, p. 43). Reproduced with 
permission. RT, rostro-temporal area; R, rostral area; A1, auditory area 1 (primary auditory cortex); MGN, 
medial geniculate nucleus; IC, inferior colliculus; SOC, superior olivary complex; CN, cochlear nucleus. 
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al. to create this map is explained below Figure 5-8, which shows a visualisation of the 

tonotopic map. Red colours represent smaller phase values, while blue colours represent 

larger phase values. Areas coloured yellow are prominent because they cover the frequency 

range of normal human speech and thus activate a disproportionally large number of 

receptive neurons.  

 

FIGURE 5-8: A VISUALISATION OF THE TONOTOPIC DATA THAT WERE USED TO MAP 

FREQUENCY RESPONSES INTO THE NEURAL NETWORK MODEL .27 

The dataset was created by Langers et al. using fMRI with a sparse paradigm of collecting 

data points while seven participants were listening to a sweep-stimulus ranging from 125 to 

8,000 Hertz. The authors found that, while all three collection protocols produced 

qualitatively similar tonotopic maps, the sparse data collection protocol was preferable over 

the other two studied methods because “it best avoids the obvious frequency-specific 

interference from [Acoustic Scanner Noise]” (Langers et al., 2014, p. 672). Since acoustic 

scanner noise has a substantial impact when measuring exact responses to sound frequencies, 

its exclusion during data collection is desirable. 

Due to the difficulties in mapping concrete frequency stimuli to specific responses, 

Langers et al. employed a data acquisition technique in which the neural activation level 

caused by amplitude and frequency tuning is reflected in response phases. These response 

phases indicated at what time of the stimulus presentation a neural area was activated. Since 

the frequency composition of the stimulus was known, the phase values could be roughly 

traced back to some frequency values, even though no direct association was possible. The 

phase-frequency value pairs that were mentioned throughout the original paper are 

summarised in Table 5-5. 

 
27 Adapted from Neuroimaging paradigms for tonotopic mapping (II): The influence of acquisition protocol by Langers et al. 
(2014, p. 668). Reproduced with permission. 
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TABLE 5-5: APPROXIMATE MAPPING OF AUDITORY RESPONSE PHASES TO SOUND 

FREQUENCIES BASED ON THE DATA PROVIDED BY LANGERS ET AL. (2014). 

Phase degree Approximate frequency 

0° 125 Hertz 

90° 300 Hertz 

120° 500 Hertz 

150° 700 Hertz 

220° 1,600 Hertz 

240° 2,100 Hertz 

270° 3,400 Hertz 

360° 8,000 Hertz 

 

For the computational sound processing system described in this chapter, concrete frequency 

values were needed to cover the whole sound range that was created during the cochlear 

encoding step. The given value pairs were, therefore, fitted to an exponential equation using 

the MATLAB Curve Fitting Toolbox (The MathWorks Inc., 2019a) so that the missing 

values could be approximated. An exponential equation was chosen because it became clear 

after some experimentation that it provided the best fitting characteristics when compared 

to, for example, linear or polynomial equations. The resulting formula is as follows: 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  158.2 ∗ 𝑒0.01092 ∗ 𝑝ℎ𝑎𝑠𝑒 

Further to transforming the data points to frequency values, they were visually analysed using 

Virtual Reality technology and compared to the original data shown in Figure 5-8.28 Since the 

neural coordinates were located in a three-dimensional space, they were difficult to visualise 

on a flat computer screen. Therefore, a specialised visualisation tool was used that included 

Virtual Reality goggles for a fully immersive experience (Marks, 2017) to gain a better 

understanding of the spatial distribution of points and their values. As a result of this analysis, 

it was found that the given coordinates matched very well with the areas identified as the 

primary auditory cortices and with Heschl’s gyri described earlier (Morosan et al., 2001). The 

phase/frequency values were also distributed as expected from the literature (Saenz & 

Langers, 2014). 

 
28 The resulting video can be found at https://youtu.be/nXuqib3B838. 

https://youtu.be/nXuqib3B838
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The output of the tonotopic mapping step described in this section was a dataset with 

26,988 coordinates in the three-dimensional space of a brain-shaped neural network model 

combined with sound frequency values to which the neurons in these locations are likely 

to respond. The next section describes how this mapping was combined with the findings 

on the volume of the auditory cortex so that it could be adapted to different network sizes. 

5.3.4 COMPRESSION OF SIGNALS 

After the sound data were encoded into electrical signals as described in Section 5.3.1, they 

had to be compressed to account for the inflated time scale introduced by the computational 

requirements of the cochlear encoding module and to match them with the desired number 

of input channels identified in Section 5.3.2. In its biological original, the auditory system 

does not need such an explicit signal compression – there are many more signal-receiving 

neurons in the auditory cortices than there are signal-producing hair cells. However, due to 

the setup of the computational model presented here, a mechanism was needed to flexibly 

reduce the amount of data being processed. The compression was performed in two 

dimensions, namely frequency range and time. Since the compression by frequency range 

required a more complex approach, this section begins by explaining time compression first. 

A requirement for using the cochlear encoding module described in Section 5.3.1 was to 

resample all sound files to a sampling rate of 100,000 Hertz. This meant that for every second 

of data, there were 100,000 data points that had to be considered by the cochlear encoding 

module. Initial experiments with these data showed that training the neural network with 

that many data points led to extremely long training times (almost a whole week for the 

smallest network template, which was expected to be the fastest) and frequent over-

saturation of the network, which decreased the meaningfulness of the model. It was, 

therefore, decided to downsample the encoded data to facilitate the computation of larger 

network sizes and to speed up the training time of the model. This was done by merging 

every 100 time points into one, effectively downsampling the encoded data to a sampling 

rate of 1,000 Hertz. The scaling factor of 100 was expected to facilitate viable computation 

times while not losing too much information from the data. Since no literature could be 

found that had investigated the trade-off between sampling rate, computation time, and 

model performance, this factor may be revised if the experimental results were not 

satisfactory. 

The compression by frequency range was not as straightforward as the compression by time. 

The outcomes of the previous three sections provided varying figures for the number of 

channels that were involved in the signal transformation: 
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• The cochlear module described in Section 5.3.1 defined 3,500 data streams per ear,

one for each characteristic frequency, as the most biologically plausible output of the

cochlear encoding, while

• the volume model described in Section 5.3.2 defined different amounts of desired

input neurons ranging from four to 5,248 depending on the network size, and

• the tonotopic model described in Section 5.3.3 could map up to 26,988 data points

into specific locations in the network. Using all 26,988 points as an input for the

neural network would imply that the corresponding neural reservoir would need to

contain almost ten million neurons to retain a biologically plausible volume ratio.

Simulating a network of these dimensions was not just computationally challenging

but also conflicted with the other two given figures.

Since the design of the computational sound processing system did not include a detailed 

model of the auditory pathway, which in nature would take care of such numerical 

discrepancies, a computational way had to be found that could reduce the data size to the 

desired amounts without losing too much information. As the hair cells typically project into 

a larger number of auditory nerve fibres and an even larger number of neurons in the auditory 

cortex, this challenge does not occur in nature. Therefore, a novel computational 

mechanism was developed as part of this research that could group and merge the signals 

to reduce their number for correct mapping into the defined cortical input neurons. This 

mechanism drew heavily on the distribution of characteristic frequencies of the 26,988 data 

points provided with the tonotopic dataset that was created by Langers et al. (2014). 

The first step in this approach was to sort the data points of the tonotopic dataset by their 

phase values, which corresponded to sound frequencies so that values that were close to each 

other could be grouped and later merged. Visualising the sorted data points as in Figure 5-9 

showed their uneven distribution across frequency bands. When trying to select uniformly 

distributed points (marked in orange in Figure 5-9) so that all frequency bands were 

reasonably evenly covered, two choices emerged: on one hand, neurons could be uniformly 

distributed based on their phase value; on the other hand, they could be uniformly distributed 

based on their position in the ordered dataset. 
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FIGURE 5-9: VISUALISATION OF THE TONOTOPIC DATASET WHERE VOXELS WERE 

SORTED BY PHASE VALUE. ORANGE DOTS REPRESENT VOXELS THAT WERE SELECTED 

WITH UNIFORM DISTRIBUTION EITHER BASED ON THEIR PHASE VALUE (LEFT PANEL) 

OR THEIR POSITION IN THE SORTED DATASET (RIGHT PANEL). 

The second step was to decide which of these two choices was the better one. One advantage 

of selecting by phase value was that the distances between the values were similar, which 

meant they were covered evenly (see Figure 5-10 bottom panel). However, it was debatable 

whether this approach was biologically plausible. After all, the tonotopic dataset suggested 

that the number of neurons reacting to the frequency bands did not seem to be distributed 

evenly since the majority of the voxels had phase values between 0.35 and 0.5, which 

corresponded roughly to a frequency range between 626 and 1,129 Hertz. This coincided 

with other findings from the literature that suggested a larger representation of neurons were 

tuned to the frequency bands in the range of normal human speech (Delgutte, 1997). An 

even distribution by neuron order, and not by phase value, was, therefore, expected to be 

more biologically accurate. Figure 5-10 visualises how the dataset can be distributed evenly 

into nine sections. It can be seen that the two approaches covered the centre and the edges 

of the dataset to different extents. While the top panel (containing the distribution by neuron 

order) shows more groups in the centre and only a few larger groups in the periphery, the 

bottom panel (with the distribution by phase value) had one prominent group in the centre 

and the remaining sections were split roughly between the other eight groups. 
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FIGURE 5-10: TWO WAYS OF DIVIDING THE TONOTOPIC DATASET INTO NINE 

SIMILAR SECTIONS. GREEN LINES SHOW UNIFORM DISTRIBUTION BY ORDER OF 

NEURONS (TOP PANEL) OR BY PHASE VALUE (BOTTOM PANEL). 

Taking into consideration that most of the neurons fell into the central categories, it became 

apparent that the first option provided what appears to be a more biologically realistic 

distribution. By first ordering the voxels by their corresponding phase value and then 

grouping them evenly based on their order, this approach ensured that there was always the 

same number of processing neurons in one group. All signals emitted by the neurons in a 

group were then summarised so they could be used in future steps of the sound processing 

system that required fewer input channels than were provided by the encoded sample created 

by the cochlear encoding module. 

But how was this approach applied to the data? Figure 5-11 shows an example of a stereo 

sound file of the spoken digit “zero”. For better visibility, only the input of the channels 

from the left ear is shown (however, the input from the right ear looked similar), and the 

data had already been compressed along the time dimension with a scaling factor of 100. 

Each black dot represents a spike or electrical impulse created by a hair cell in the 
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computationally simulated cochlea. Point columns corresponded to time, where the first time 

point of the sound sample was the column on the left of the diagram and the last time point 

was the column on the right. Rows corresponded to the frequencies, with the lowest 

frequencies at the top and the highest frequencies at the bottom. The red lines show the 

borders between the nine groups that were identified earlier in this section and shown in the 

top panel of Figure 5-10 to be compressed based on neuron order. 

FIGURE 5-11: VISUALISATION OF DATA COMPRESSION IN A SOUND SAMPLE THAT WAS

DIVIDED INTO NINE GROUPS BASED ON NEURON ORDER. RED LINES SHOW BORDERS

BETWEEN THE GROUPS. 

The result of this example compression would be a grid of nine rows and as many columns 

as there were in the original time-compressed sample, again containing black dots that would 

show the presence of an electrical impulse at a particular time point within the defined 

frequency range. When then entering these data into the neural network model, the nine 

input locations for these groups were chosen to represent the median of the frequencies 

covered within one group’s range. The corresponding coordinates could be found easily by 

referring back to the original dataset by Langers et al. (2014). 

For the example described above that illustrated the compression method, the number of 

nine groups was chosen mainly to facilitate visualisation. As described in Section 5.3.2 when 

discussing the most suitable number of input neurons depending on the number of neurons 

in the whole network, there were different sizes for brain templates available, and, hence, 

different numbers of input neurons were required. While the data shown in Figure 5-11 

were based on the original MNI template with a total of 241,606 neurons, which used 
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338 input channels for the left ear and 318 input channels for the right ear, Figure 5-12 shows 

the same data compressed down to a network with 30,182 neurons that used 42 input 

channels for the left ear (top panel) and 40 input channels for the right ear (bottom panel). 

So, if instead of identifying nine groups as in the example above, the speech sample had been 

divided into 42 sections, the top panel of Figure 5-12 would be the result of this 

compression.29 

 

FIGURE 5-12: SOUND SAMPLE AFTER ENCODING AND COMPRESSION DOWN TO FIT 

THE “MNI_BY_2” TEMPLATE WITH 42 INPUTS INTO THE LEFT EAR (TOP PANEL) AND 

40 INPUTS INTO THE RIGHT EAR (BOTTOM PANEL). 

A first visual comparison of both figures showed that the general shape of the signals was 

retained, albeit with less detail. This phenomenon was also observed when scaling down 

further as shown in Figure 5-13. The target template for this figure was “MNI_by_3”, which 

contained 8,907 neurons in the reservoir and hence needed 12 input neurons for each 

hemisphere. 

 

FIGURE 5-13: SOUND SAMPLE AFTER ENCODING AND COMPRESSION DOWN TO FIT 

THE “MNI_BY_3” TEMPLATE WITH 12 INPUTS INTO THE LEFT EAR (TOP PANEL) AND 

12 INPUTS INTO THE RIGHT EAR (BOTTOM PANEL). 

In practice, the time aspect of the merging process was combined with the frequency aspect 

so that the merging could be performed in one pass. Figure 5-14 shows an example of how 

the two dimensions were merged in an encoded sample of the spoken digit “zero”. While 

the actual number of groups in this figure was arbitrarily chosen for this illustrative purpose, 

the process remained the same for all combinations of time/frequency pairs, with all spikes 

contained in a rectangle being merged into one data point of the final training sample.  

 
29 Since the uncompressed example presented above showed only the input into the left ear, it would be 
compressed using the number corresponding to the left side of the smaller template. 
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A rectangle of data would create a spike if its average spike rate was at least twice the average 

spike rate of the whole original sample, with a distinction being made between spike rates in 

the right and left channels of the data. This introduction of a threshold meant that regions 

with higher than average spike activity would always be preserved, while regions with lower 

than average spike activity would be filtered out, effectively performing noise cancelling on 

the data. The factor of twice the average spike rate was chosen because it quickly became 

apparent through visual inspection of the data that the threshold for creating a spike should 

be dependent on the spike characteristics of the original encoded sample, and it was found 

by visual comparison of the uncompressed and compressed sound samples that the factor 

two helped to preserve the characteristics of the original data. Unfortunately, no previous 

research results were available on this topic, so this value was chosen as a starting point for 

exploration and should be investigated further in future work. 

 

FIGURE 5-14: VISUALISATION OF THE MERGING PROCESS COMBINING TIME 

COMPRESSION AND FREQUENCY COMPRESSION . RED LINES SHOW BORDERS 

BETWEEN GROUPS. 

As a final remark, an overlap of groups at their borders was considered but postponed at this 

stage, because the compression approach was first intended to be tested in its general 

functionality. Fine-tuning the algorithm by including more inspirations from nature will be 

the topic of future research. 
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5.3.5 SECTION SUMMARY AND CONTRIBUTIONS 

This section presented the design of a biologically inspired sound processing system that 

replicated four aspects of the primary auditory pathway: 

1. Cochlear encoding. Using the implementation of an established cochlear model,

designing this part involved careful parameter selection. Based on a survey of related

literature, it was found that 3,500 characteristic frequencies per cochlea ranging from

125 Hertz to 8,000 Hertz could be assumed. It was also found that using eight

auditory nerve fibres per characteristic frequency with five having a high, two having

a medium and one having a low spontaneous firing rate would be a computationally

feasible, yet biologically plausible simplification.

2. Number of input neurons. It was explained that a biologically defined ratio of input

to normal processing neurons had to be preserved to retain biological plausibility.

This ratio was found by putting measured volumes of the auditory cortices into

relation to the overall brain size. Concrete figures for the left and right hemispheres

were calculated for the different network templates that had been developed for the

computational model in Section 5.2.3.

3. Location of input neurons. A dataset containing information about neural

responses to tones in a tonotopic map with 26,988 data points was obtained and

transformed into a format that could be used to provide biologically plausible

locations for the auditory signals. Virtual reality tools were employed to analyse the

dataset and create a three-dimensional visualisation of regions in the auditory cortices

that were mapped to specific frequencies.

4. Compression of signals. In order to overcome the differences in signal numbers

created by the first three steps, this aspect focused on simulating a way of grouping

and merging signals along the auditory pathway based on their response to certain

frequency bands. A novel way of signal summarisation was developed that could

flexibly compress input spikes with limited loss of information.

As a result of these efforts, auditory signals sent into the cochlear encoding module could 

then be mapped into defined locations of the computational neural network model in a 

biologically plausible way. The algorithms and methods presented here partly answer 

Research Questions 2a and 2b that were asked in Section 1.3 about signal transformation 

and mapping of auditory and visual data. Detailed information and results of experiments 

conducted with the sound processing system can be found in Chapter 6. 
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5.4 VIDEO PROCESSING SYSTEM 

This section describes the design of a biologically inspired video processing model that was 

based on the human visual system. It focuses on five areas: 

• the transformation of changes in light intensity into electrical signals based on the

functionality of the rod photoreceptors in the retina, modelling peripheral greyscale

vision;

• the transformation of changes in colour appearance into electrical signals based on

the functionality of the cone photoreceptors in the retina, modelling foveal colour

vision;

• the position and size of the primary visual cortex in the brain;

• the location-based (retinotopic) mapping of the electrical signals into the primary

visual cortex; and

• the merging of these signals based on the organisation of photoreceptors and retinal

nerve cells into visual receptive fields.

These five focus areas were identified as a suitable starting point for the design of a 

computational system after studying the relevant literature, which showed that they were 

comparatively well researched and understood by vision scientists. 30 Since they were found 

to play key roles in the vision process, the computational system developed as part of this 

research largely follows their functionality, albeit with some simplifications. Related literature 

from biology and neuroscience informed the design of the model and is discussed where 

applicable. The performance of the developed model was evaluated using benchmark data, 

the results of which are reported in Chapter 7. 

Sections 5.4.1 and 5.4.2 explain the functioning of the retinal encoding module that was 

developed for the video processing system as part of this research. This module was based 

on the behaviour of the photoreceptors (rods and cones) in the human retina, where the rods 

perceive the presence of light photons and the cones perceive the presence of specific 

wavelengths of light depending on the type of cone. Unlike the cochlear encoding in the 

sound processing system, which made use of an existing computational model of the cochlea, 

the retinal encoding module for the video processing system was developed as an original 

part of this research to include colour vision capabilities (explained in detail in Section 5.4.2) 

and to explore a new approach of simulating receptive fields (explained in detail in 

Section 5.4.5). The peripheral encoding algorithm and the receptive field approach originally 

30 An introductory explanation of the human visual system can be found in Section 3.3. 
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introduced by Paulun et al. (2018)31 were enhanced and refined for the research presented in 

this thesis. These modifications enabled greater flexibility to study different network 

configurations and incorporated more design decisions for the revised system that were 

based on biological observations. 

5.4.1 RETINAL ENCODING 

This section explains how the retinal encoding module transformed differences between 

subsequent frames of a video file into electrical impulses. It begins with an overview of the 

biological mechanisms that were considered during the design and implementation of the 

module and then outlines the process from pixels to spikes. After presenting the general 

encoding algorithm, this section focuses more specifically on peripheral greyscale vision, 

while Section 5.4.2 describes foveal colour vision. 

As detailed in Section 3.3.1, in the eye, light is transformed into electrical impulses by the 

photoreceptors on the retina in a process called phototransduction. Named after their 

appearance, the photoreceptors reacting to the presence and absence of light are called rods, 

while those reacting to different colours are called cones. The biological inspiration for the 

peripheral greyscale encoding developed in this thesis lay in the functioning of the brightness-

sensitive rods in combination with the layers of retinal neural cells to which they are 

connected. When light photons enter the eye, they activate a molecule in the outer segments 

of the rods called retinal. Through a cascade of chemical reactions brought on by the modified 

retinal molecules, the rod cell rapidly hyperpolarises, creating an electrical impulse. In 

darkness, the activated retinal molecules revert back to their inactive state and the rod cell 

depolarises again. The electrical impulses created by the rod cells are passed on through 

several layers of retinal neurons, including bipolar, horizontal, amacrine, and retinal ganglion 

cells, among others. These specialised neurons perform the task of meaningfully modifying 

the raw photoreceptor signals by summarising the output of neighbouring rods arranged into 

receptive fields and intensifying certain signal combinations while weakening others. This 

constitutes an early preprocessing step of visual signals before they are passed on through 

the axons of the ganglion cells. These form the optic nerve that relays the signals into the 

visual cortex, where they are processed further. 

Due to the complexity of the interaction between photoreceptors and retinal neural cells, 

and as-of-yet unknown aspects of this interaction, the biological process could only serve as 

an inspiration for the visual encoding algorithm developed in this research. Furthermore, one 

31 The work published by Paulun et al. (2018) was based on a collaboration under the supervision of the thesis 
author. 
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original intention of the research presented in this thesis was to provide the opportunity to 

later port the developed systems to biologically inspired hardware. Since at the time of system 

conception, a biologically inspired cochlea chip was not yet available, the auditory processing 

system presented in this thesis made use of a biologically inspired software package that was 

unrelated to any hardware. For the visual system, however, such a hardware system was 

available in so-called event-based cameras. Specifically, the Dynamic Vision Sensor (DVS) 

developed by Lichtsteiner et al. (2008) was used as an inspiration when designing the retinal 

encoding mechanism for this research. 

Event-based cameras like the DVS focus on high processing speed and hence take a less 

computationally expensive approach in their capture of events in a scene compared to 

standard frame-based cameras: Only those parts of a frame that differ from the previous frame 

by more than a defined threshold are recorded. This enables the DVS to achieve a very high 

temporal resolution and also operate reliably under varying light conditions while arguably 

capturing the most important parts of a scene (Lichtsteiner et al., 2008). This adaptability 

combined with the fast processing speed and focus on movement can also be found in the 

behaviour of the eye (Bergua, 2017). Furthermore, event-based cameras were designed to 

interface easily with pixel-based video formats while outputting spike data. Therefore, the 

functioning of the DVS system formed the base for the retinal encoding module presented 

here. This meant that instead of processing the absolute brightness and colour of the 

incoming light, spikes were created based on changes of brightness and colour in subsequent 

pixels in a video frame. For the computational system presented here, this process was 

further enhanced by the introduction of a block-based summarisation algorithm. The 

common steps of both the peripheral and the foveal encoding process were as follows: 

Step 1. Processing all frames of the video in sequence, the differences of pixels in two 

successive frames were quantified. For peripheral vision, this was calculated based 

on brightness, while for foveal vision, a specialised colour difference formula was 

used. Each frame change reflected a “time step” in the output spike file. 

Step 2. If the difference exceeded a predefined “pixel threshold”, a “pixel spike” was 

created for this pixel. 

Step 3. Pixel spikes that were located close to each other were then summarised into 

“blocks” modelled after visual fields. If the number of spikes in a block exceeded a 

predefined “block threshold”, a spike was created for the block and recorded in the 

output file for the current time step. 

Step 4. The block with the highest activity was set as the new focal centre of the frame as 

described in Section 5.4.5. 
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The expected input for the encoding module were videos consisting of two or more frames 

in any standard pixel-based format.32 The final output file for the video was a matrix with 

m × n entries, where m was the number of time steps, i.e., frame changes, and n was the 

number of blocks. The pixel spikes were only relevant as an intermediate step and not 

recorded in the output file.  

The encoding module was implemented in the Python programming language using the 

OpenCV package for video and image processing (Bradski, 2000) and the NumPy package 

for general data handling (Harris et al., 2020). This code can be found in Appendix A, Listing 

V. The code includes both greyscale and colour processing as well as the blocking mechanism 

since these were all performed at the same time for each video sample. 

After this general description of the encoding process, the following paragraphs detail how 

they were applied to the aspect of peripheral greyscale vision. 

Since rod photoreceptors can only process differences in brightness independent of colour, 

the whole image frame was first converted to greyscale using OpenCV’s inbuilt functions. 

This process translated the three byte-based values for red, green, and blue, which each 

ranged from 0 to 255, into one value representing the brightness of the pixel, again in the 

range of 0 and 255. The following equation was used: 

𝑔(𝑝) = 0.299 ∗ 𝑝𝑅 + 0.587 ∗ 𝑝𝐺 + 0.114 ∗ 𝑝𝐵 

where g is the greyscale value of the pixel and pR, pG, and pB represent the red, green, and blue 

values of the pixel, respectively. After that, the absolute difference between the brightness of 

all the pixels of the two subsequent frames was calculated. One alteration between this 

method and the one previously described by Paulun et al. (2018) was that here, the greyscale 

values were not converted to a logarithmic scale before the comparison, but rather left at 

their absolute values. This conversion would have enhanced the processing of pixels with 

lower brightness and in return condensed those with higher levels of brightness. However, 

the human eye can adapt well to both low and bright light (Barlow, 1972; Rose, 1948), so 

this conversion was not applied here. The following equation was used to create pixel spikes: 

𝑠𝑝(𝑓) = {
1, 𝑔(𝑓𝑡+1) − 𝑔(𝑓𝑡) > 𝜃𝑝

0, 𝑔(𝑓𝑡+1) − 𝑔(𝑓𝑡) ≤ 𝜃𝑝
 

where sp is the pixel spike, f is the frame, g is the greyscale conversion equation, t is the time 

step, and θp is the pixel threshold. 

 
32 Any sounds contained in the video file should be encoded and processed separately by the sound processing 
system described in Section 5.3 and then merged back with the encoded video data using the approach 
described in Section 5.5. 



141 

With respect to the creation of pixel spikes, another modification to the Paulun approach 

was that here, no “negative spikes” were generated. While negative spikes were initially 

considered based on the encoding mechanism in the DVS camera, they are not biologically 

plausible and were hence not implemented in the final version of the encoding module. 

Although the retina does react differently to changes from darkness to light than vice versa, 

this is coded in varying spike rates rather than in the polarity of the spikes (Kuffler, 1953). 

Negative spikes do not have a biological equivalent and were also not used in the auditory 

processing system developed for this research, so it seemed a more fruitful and consistent 

approach to work with only positive spikes at this point. 

One open question for the retinal encoding module was which value to use for the pixel 

threshold θp. A change in brightness needs to be significant enough to trigger a reaction. This 

significance had to be quantified with respect to the 256 grey levels that existed in the video 

frames. However, the eye is capable of perceiving continuous levels of grey, so fixing this 

value based on discrete levels is challenging and the figures reported in the literature are 

considerably wide-ranging. For example, the earliest calculations by König (1895) resulted in 

660 different levels of brightness, although he noted that this was dependent on the hue. 

More recent literature stems largely from the field of medical imaging, where the grey level 

resolution of the screen can influence how well the images can be analysed by a physician. 

The numbers of identified perceivable grey levels range from 8 (Dambrosio, Amy, & 

Colombo, 1995) over 80 (Okkalides, 1996) to 720 (Kimpe & Tuytschaever, 2007). A formula 

to calculate the number of grey levels (Fetterly, Blume, Flynn, & Samei, 2008) resulted in 557 

different perceivable shades of grey using the specifications of the LCD screen available to 

the thesis author.33 On the other hand, two commonly reported figures are 30 and 50 (Berg, 

1996; Fukui, 2001; Kreit et al., 2013). However, these could not be verified by reliable 

sources. Eventually, one paper was found that was deemed most relevant to the problem at 

hand: X. Yu, Dou, and Li (2018) studied the same 256 grey levels that were available per 

pixel in the encoding module presented here. The researchers changed the values at small 

intervals and asked 100 volunteers to indicate when they perceived a difference. X. Yu et al. 

(2018) found that around 85 levels of grey could be perceived. With 256 available levels of 

grey, these results indicated that a peripheral pixel threshold of 3 would be a reasonable 

value to be used in the encoding module of the visual processing system developed in this 

thesis. 

33 https://www.philips.co.nz/c-p/241B4LPYCB_75/brilliance-lcd-monitor-led-backlight-with-powersensor 

https://www.philips.co.nz/c-p/241B4LPYCB_75/brilliance-lcd-monitor-led-backlight-with-powersensor


142 

5.4.2 SIMULATING COLOUR VISION 

Within the context of the video processing system introduced here, the area in the focal 

centre of the video frames was processed using a novel computational model that was 

inspired by the functioning of the human fovea and developed as part of this research. In its 

biological counterpart, the photoreceptors in the foveal region of the retina are mainly cones, 

which react to changes in colour or, more precisely, to combinations of specific wavelengths 

of incoming light. Based on this mechanism, a computational model that simulated human 

colour vision was developed here that could encode colour changes of the pixels in the focal 

centre of subsequent video frames into spikes.34 As explained in detail in Section 5.4.5, the 

location of the focal centre was updated after each frame comparison so it was centred in 

the periphery block that exhibited the most spike activity during the previous time step. The 

foveal colour encoding was only applied to the area around the focal centre, and the resulting 

spikes were eventually combined with those created by the peripheral greyscale encoding 

algorithm to form the encoded dataset. 

This section explains the aspects that were considered during the development of the foveal 

encoding module. It first outlines contemporary understandings of how visual inputs are 

processed by the fovea. Conceptual colour models are then explored and their implications 

on the computational model developed in this research are described. 

The human colour vision system has fascinated scientists for centuries. German physicist 

Hermann von Helmholtz first proved a previously hypothesised theory that wavelengths of 

light can be combined to create the impression of different colours (von Helmholtz, 1852). 

He further showed that there must be three types of nerve fibres in the human eye that are 

sensitive to red-, green-, and indigo-coloured light, respectively, with their combined 

perception making up all visible colours (von Helmholtz, 1867, pp. 291-294). In computing 

terms, the eye, therefore, uses an additive colour system, in which white light is created by 

the simultaneous presence of all three base colours. This is facilitated by three types of cone 

photoreceptors in the human retina that react to the three colours identified by 

von Helmholtz (Brown & Wald, 1964; A. R. Hanson, 2012). The exact wavelengths also 

influenced the naming of the cones (Merbs & Nathans, 1992): 

• S-cones react most to light rays with a short wavelength of 426 nm (blue light) 

• M-cones react most to light rays with a medium wavelength of 530 nm (green light) 

• L-cones react most to light rays with a long wavelength of 552 and 557 nm (red light) 

 
34 A detailed explanation of how the photoreceptors transform light waves into electrical impulses can be found 
in Section 3.3.1. 
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The electrical impulses created by the three types of cones are combined at the retinal level 

to form a distinguishable impression of the perceived colour (Schmidt, Neitz, & Neitz, 2014). 

The signals are then further processed in the visual cortex, where they are combined with 

information about the object’s location and movement (Gegenfurtner, 2003; Solomon & 

Lennie, 2007). While the neural encoding of colour perception at the level of the retina is 

well understood, the exact mechanisms of colour processing in the cortex are still a mystery. 

This is mainly due to colour perception being a highly subjective sensation that is shaped by 

past experiences, but also because the eyes are the only sensory organ that can perceive 

specific wavelengths, making a more objective assessment difficult (Zaidi & Conway, 2019). 

The first implementation of the foveal colour vision model developed for this research was 

based on the RGB colour space. RGB stands for Red, Green, and Blue and this scheme is 

based on the three colours that are perceptible by the cone photoreceptors in the human eye. 

Pixels in modern computer screens normally consist of three light-emitting diodes producing 

these colours, whereby each of the diodes can be dimmed or brightened independently. Their 

brightness values typically range from 0 to 255, which facilitates the display of more than 

16.7 million possible colours per pixel. Due to its prevalence, it first seemed an obvious 

choice to use the RGB colour space for the computational model developed here. Similar to 

the peripheral encoding module, spikes would be created by simply comparing the 

differences of the RGB values of subsequent pixels to a set threshold. However, this 

approach was found to be not very biologically accurate, since the RGB colour space is not 

perceptually uniform. This meant that colour pairs with the same numerical difference could 

be perceived by a human observer as being more or less similar depending on their position 

in the colour space, a phenomenon that is caused by the different sensitivity levels of the 

three cone types (Gagin et al., 2014; Rabin, Gooch, & Ivan, 2011). Basing the implementation 

of the foveal encoding module on a colour space that did not address these non-uniform 

cone responses was, therefore, considered unfavourable. 

While humans have three types of cones in our eyes, we can generally distinguish between 

four main hues – red, green, blue, and yellow (Neitz & Neitz, 2008). This discrepancy can be 

observed from early childhood and can be explained in part by higher-level processing in the 

lateral geniculate nucleus (Stoughton & Conway, 2008). The consideration of four main hues 

provides the neurological basis for several colour spaces that have been developed as an 

alternative to the RGB colour space with the explicit intention of being perceptually uniform 

(Ortiz-Jaramillo, Kumcu, Platisa, & Philips, 2019). One well-studied colour space is the 

CIE L* a* b* colour space that was developed in 1976 by the International Commission 

on Illumination (CIE). Like RGB, it is a three-dimensional colour space; however, it uses 
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two axes (a* and b*) for describing the hue while the third axis corresponds to lightness (L*) 

as shown in Figure 5-15. The values on the a* axis are defined by the CIE standard to range 

from red on the positive end to green on the negative end, while the values on the b* axis 

range from yellow on the positive end to blue on the negative end. With increasing distance 

from zero, the represented colours become more saturated. The L* axis commonly ranges 

from 0 to 100, with 0 standing for absolute black (the absence of light) and 100 

corresponding to the brightest white (Sharma, 2003). 

FIGURE 5-15: DIAGRAM OF THE CIE L* A* B* COLOUR SPACE. 

The difference between colours, more formally described as colour distance, is the 

magnitude and character by which two colours can be distinguished under specified 

conditions. It is formalised as ΔE, or Delta E, where the letter E stands for the German word 

Empfindung, meaning sensation. The CIE L* a* b* colour space defined in 1976 was 

intended to be perceptually uniform, which meant that the ΔE between two colours in this 

space could be computed by simply calculating the Euclidian distance between the pair’s 

colour coordinates. However, it was subsequently found that this colour space did not 

completely agree with human perception, particularly in the blue regions (Sharma, 2003). As 

a consequence, the CIE revised the colour distance formula (but not the colour space), once 

in 1994 and, after discovering further minor inaccuracies, again in 2000. This latest formula, 

called CIEDE 2000 (Luo, Cui, & Rigg, 2001), employs several scaling parameters to address 

the identified non-uniformity issues. 

The challenges in finding an appropriate representation of colour were mainly caused by the 

subjectiveness of colour perception, making it a hard problem to solve objectively (Ortiz-

Jaramillo, Kumcu, & Philips, 2016). Besides the initiatives by the CIE, other organisations 

with an interest in standardised colour representations such as the Colour Measurement 

Committee of the Society of Dyers and Colourists (CMC) have attempted to create more 
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suitable colour spaces within the last few decades (Sharma, 2003). Another colour space that 

is little known internationally, but widely used in Germany is the DIN9935 colour space (G. 

Cui, Luo, Rigg, Roesler, & Witt, 2002). However, the by far most studied colour spaces and 

colour difference formulas are those published by the CIE (Ortiz-Jaramillo et al., 2016). 

Several research groups have investigated the accuracy of the formulas in comparative studies 

with human participants that were asked to judge colour differences. The experience of the 

participants varied widely from laypeople to professionals involved in judging colours. While 

the CIEDE2000 formula still has unaddressed shortcomings (Kuehni, 2002; Luo, Cui, & 

Rigg, 2002), most comparative analyses conclude that it performs comparatively well or 

better than other colour distance metrics in most cases (Habekost, 2013; J.-G. Kim, Yu, & 

Lee, 2009; Luo, Minchew, Kenyon, & Cui, 2004; Ortiz-Jaramillo et al., 2016; S. Shen & Berns, 

2011). Therefore, the implementation of the retinal encoding module of the visual processing 

system developed in this thesis made use of the CIEDE2000 formula to calculate the colour 

difference between two subsequent pixels in the foveal region of the video frame. 

In the implementation of the retinal encoding module, this comparison consisted of two 

steps: firstly, transforming the pixels from their native RGB colour space into the 

CIE L* a* b* colour space and secondly, determining the colour distance using the 

CIEDE2000 formula. Due to the prevalence of the CIE L* a* b* colour space and its 

associated colour distance formulas among researchers, implementations of both were 

available as open-source Python modules. The OpenCV package that was used for handling 

the video data natively supported conversions from the RGB colour space into the 

CIE L* a* b* colour space and vice versa (Bradski, 2000). Furthermore, the Colour-Science 

module (Mansencal et al., 2020) provided implementations of the most commonly used 

colour distance metrics such as the CIEDE2000, CMC, and DIN99 formulas. The 

correctness of the CIEDE2000 implementation in the Colour-Science module was verified 

using the test data provided by Sharma, Wu, and Dalal (2005). The resulting code for these 

two steps can be found in the function get_fovea_spikes in Appendix A, Listing V and the 

following equation formalises this process: 

𝑠𝑝(𝑓) = {
1, 𝐶𝐼𝐸𝐷𝐸2000(𝑐(𝑓𝑡+1), 𝑐(𝑓𝑡)) > 𝜃𝑝

0, 𝐶𝐼𝐸𝐷𝐸2000(𝑐(𝑓𝑡+1), 𝑐(𝑓𝑡)) ≤ 𝜃𝑝

where sp is the pixel spike, f is the focal area of the frame, c is the colour space conversion 

equation36, t is the time step, and θp is the pixel threshold. 

35 DIN is an abbreviation for Deutsche Industrienorm, or German Industrial Standard. 
36  This formula involves multiple steps and was hence not included here. It can be found at 
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html#color_convert_rgb_lab  

https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html#color_convert_rgb_lab
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Having thus defined the metric by which the subsequent pixels would be compared left open 

the question of setting an appropriate and meaningful pixel threshold θp that would prompt 

the creation of a spike. The original CIE standard developed in 1976 defined a ΔE value 

of 1 as the just noticeable difference (JND) between two colours (Habekost, 2013). The 

JND and its implications on vision have been studied for more than a century, with 

contemporary applications for example in the area of hidden watermarking of images (Lin, 

2016; Tan et al., 2019; Thongkor, Amornraksa, & Delp, 2018; J. Wang, Wan, Li, Sun, & 

Zhang, 2020). König (1895) first defined the JND as the difference between two colours that 

makes them distinguishable. Analogous to the subjectiveness of colour perception in general, 

the JND is dependent on the observer and especially on the observer’s surroundings. A 

phenomenon called simultaneous cone contrast describes the influence that colours can have 

on each other based on their proximity (Chevreul, 1855). This phenomenon implicated that 

some very similar colours could only be distinguished if they were placed next to each other 

but not otherwise, making it difficult to define an exact and universally applicable threshold. 

The challenge of determining a fixed threshold for the computational video processing 

system from theoretical knowledge alone sparked an unorthodox diversion in the design of 

the foveal encoding: A very practical application of assessing the JND could be found in the 

area of dentistry, where the colour of dental prostheses has to match the surrounding teeth.37 

Studies in this area have tried to quantify a JND based on different ΔE metrics. Dentists and 

chemists who were professionally involved in producing dental prosthesis were asked to 

assess pre-calculated colour differences to determine perceptibility and acceptability 

thresholds (Douglas & Brewer, 1998; Ruyter, Nilner, & Möller, 1987). The perceptibility 

threshold was defined as the difference between two colours that could be seen by the 

observer and the acceptability threshold was the value at which the observer would reject a 

prosthesis because its colour difference to the existing teeth was too large. While the 

acceptability threshold was found to be a ΔE of up to 3.3 colour difference units, the 

perceptibility threshold was much lower at around 0.4, which is seemingly in disagreement 

with the original definition of the JND representing a ΔE of 1. However, it should be 

considered that the human observers in these studies were experts who were highly trained 

in the area of colour difference detection and that the lighting during the study was optimised 

for best observation (Douglas & Brewer, 1998). Furthermore, the colours that were relevant 

in this application area were naturally inclined to be mainly in the yellow hue spectrum. 

Therefore, certain shortcomings of the discussed colour spaces in the blue hue spectrum 

37 Judging by the amount of available literature, matching the correct colour of dental prostheses is a very 
prolific research field. 
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were not applicable here, so that, for example, all three CIE formulas were considered 

equivalent in this research field (J.-G. Kim et al., 2009; Y.-K. Lee, 2005). In consequence, the 

thresholds reported by the dental professionals in these experiments could be assumed to be 

smaller than those of an untrained observer in a more general context. 

Since the foveal encoding system developed in this research should, however, be based on 

the “average” human observer, the threshold that was used here was based on the dentists’ 

acceptability threshold of 3.3 colour difference units and then increased slightly to account for 

the untrained eye. The acceptability threshold was chosen because it was assumed that the 

experts would only judge those differences as “acceptable” that they would deem to be not 

perceivable by a member of the public when interacting with a person wearing the dental 

prosthesis. For these reasons, a ΔE value of 5 colour difference units was chosen as the 

foveal pixel threshold. This threshold determined if the colour difference between the 

pixels in the foveal region of two subsequent frames was large enough to create a spike. 

5.4.3 NUMBER OF VISUAL INPUT NEURONS 

The pixel differences recorded by the retinal encoding module described in the previous two 

sections were entered into the neural network using a newly developed approach of signal 

mapping. For this, both the number and the locations of dedicated input neurons had to be 

defined in a biologically plausible way that made use of the characteristics of the visual 

processing mechanisms in the human brain. Most notably, the primary visual cortex (V1), 

also known as Brodmann Area 17 (Brodmann, 1909, pp. 140-142), has been described as the 

“gateway” to the visual system because it serves as the first entry point for the signals arriving 

from the retinae (Goebel et al., 2012, p. 1309). This area was, therefore, chosen as a reference 

region for the input of signals into the computational model, while preserving the voluminal 

relationship between the input region and the overall brain template to achieve higher 

biological plausibility. Like in the auditory system, the proportion between the volume of V1 

and the volume of the whole brain should be preserved to increase the biological plausibility 

of the model developed here. Since the number of neurons in the full-brain templates38 used 

in this research varied widely between a few thousand and a few million, the number of input 

neurons for the visual computational model had to be scaled accordingly. 

This section looks at the size of V1 in relation to total brain volume, while Section 5.4.4 

describes how their locations were derived. The number of input neurons in the 

computational model was scaled proportionally to the total number of neurons in the 

 
38 A detailed explanation of different brain template sizes is provided in Section 5.2.3. 
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network, based on the characteristics of its biological counterpart. While most studies 

investigating the volume of V1 also estimated the number of neurons in this area, these 

estimates were usually based on cell densities, which were not considered in the model 

developed here. Instead, all neurons in the SNN model were evenly spaced apart for 

computational simplification. To circumvent complications arising from varying cell 

densities in different regions of the brain, which could influence neuron numbers, this 

section looks at volume measurements in relation to the overall brain volume, rather than 

using neuron numbers and putting these in relation to the estimated number of neurons in 

the brain. 

Several studies have attempted to measure the volume of V1 in cohorts with varying 

numbers of human subjects. While some researchers investigated differences between age 

groups (Bush & Allman, 2004; Klekamp, Riedel, Harper, & Kretschmann, 1991; Leuba & 

Kraftsik, 1994a; G. M. Murphy, 1985), genders (Amunts et al., 2007), or healthy people 

versus patients with neurological disorders (Dorph-Petersen, Pierri, Wu, Sampson, & Lewis, 

2007; Leuba & Kraftsik, 1994b), others tried to relate the size of the visual cortex to brain 

structure and cognitive ability (Andrews, Halpern, & Purves, 1997; Bergmann, Genç, Kohler, 

Singer, & Pearson, 2014; de Sousa et al., 2010). Most of these researchers reported the results 

of their volume measurement in detail in their papers, and five of these papers were chosen 

as the base for the volume estimation. Table 5-6 shows an overview of their resulting figures 

and a short description of the underlying cohort for each study. Where this information was 

available, only data for neurologically healthy adults were selected here. 

Further literature reporting on the size of V1 was not included in this overview because it 

either reused data from previously published papers that were already considered here (de 

Sousa et al., 2010; Leuba & Kraftsik, 1994b), did not correct for shrinkage caused by post-

mortem dehydration (G. M. Murphy, 1985), or provided inconclusive information on the 

origin and characteristics of the subjects (Bergmann et al., 2014; Bush & Allman, 2004). 

The overall volume for each hemisphere was calculated as the simple arithmetic mean of all 

figures reported for that hemisphere, regardless of the number of study subjects. This 

approach was chosen because the preparation and measurement techniques varied between 

studies, so calculating a weighted mean using the number of study subjects would have given 

more significance to a particular methodology that happened to have more data. 
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TABLE 5-6: OVERVIEW OF MEASURED VOLUMES OF THE HUMAN PRIMARY VISUAL 

CORTEX (BRODMANN AREA 17) IN LITERATURE. 

Source 
Volume of V1 

in cm3 
Data basis 

Klekamp et al. (1991, 

Table 2) 
6.53 

Mean volume for the right hemisphere of 

19 subjects 

Leuba and Kraftsik 

(1994a, Table 1) 
5.645 

Mean volume for the right hemisphere of 

18 subjects older than 16 years 

Andrews et al. (1997, 

Table 2) 
5.69278 

Mean volume for the right hemisphere of 

15 subjects 

Andrews et al. (1997, 

Table 2) 
5.11955 

Mean volume for the left hemisphere of 

14 subjects 

Amunts et al. (2007, 

Table 1) 
7.591 

Mean volume for the right hemisphere of 

10 subjects 

Amunts et al. (2007, 

Table 1) 
7.653 

Mean volume for the left hemisphere of 

10 subjects 

Dorph-Petersen et al. 

(2007, Table 2) 
5.99 

Mean volume for the left hemisphere of 

10 healthy subjects 

 
6.364695 

6.254183 

Mean volume of right hemispheres 

Mean volume of left hemispheres 

 

Results were usually reported separately for the left and right hemispheres due to a small but 

noticeable size difference. Although the computational model developed in this doctoral 

research did not distinguish between left and right visual cortex, they were kept separate for 

the calculation of the number of input neurons. Unlike the auditory system, the biological 

counterpart for the visual system employed a location-based mapping, which meant that the 

location of the stimulus in the visual field determined where in V1 it was processed. 39 Hence, 

a distinction between hemispheres was not necessary at this level. The algorithmic mean of 

the measured volumes in the five studies was about 6.254 cm3 for volumes measured in the 

left hemisphere and about 6.365 cm3 for the right hemisphere, totalling a volume of about 

12.619 cm3 for V1. This cross-study mean was based on the brains of 72 neurologically 

healthy subjects between 17 and 93 years of age. 

 
39 This is explained in detail in Section 5.4.4. 
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The layout of the neural network that was used for the computational model presented in 

this thesis was based on the full human brain. Therefore, the volume of V1 as the input 

region was considered in relation to the whole brain volume to calculate the number of 

input neurons. Similar to the studies mentioned above that determined the volume of V1, 

whole-brain measurements have also been undertaken by neuroscientists. For example, Allen 

et al. (2002) describe studying 46 brains using magnetic resonance imaging to investigate 

volume differences between the sexes. They found that, on average, their studied brains had 

a volume of 1,202.35 cm3. This figure was used in the design of the visual system presented 

here after it had also been used for the auditory system described in Section 5.3.2. 

In order to calculate the number of input neurons for the different brain templates developed 

for this research, the overall brain volume was scaled in proportion to the mean volume of 

V1 using the following formula: 

𝑣𝑜𝑙 𝑉1 (𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑛)

𝑣𝑜𝑙 𝐵𝑟𝑎𝑖𝑛 (𝐴𝑙𝑙𝑒𝑛)
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

In total, V1 was found to make up about 1.05% of the total brain volume. Combining this 

figure with the different network sizes generated for this research, as described in 

Section 5.2.3, resulted in concrete numbers for input neurons which are summarised in 

Table 5-7. The table contains the numbers of all standard processing “reservoir” neurons for 

the respective templates and then three figures for the number of input neurons, where the 

total number had to be split into two categories to distinguish between foveal and peripheral 

neurons based on the origin of their respective signals – greyscale encoding for the periphery 

and colour encoding for the fovea. 

TABLE 5-7: NUMBER OF VISUAL INPUT NEURONS DEPENDING ON THE SIZE OF THE

BRAIN TEMPLATE FOR THE MNI ATLAS. 

Brain template 
Number of 

reservoir neurons 

Number of input neurons 

Total  Foveal Peripheral 

MNI_times_2 1,932,848 20,286 10,176 10,110 

MNI_orig 241,606 2,536 1,292 1,244 

MNI_by_2 30,182 317 156 161 

MNI_by_3 8,907 93 42 51 

MNI_by_4 3,747 39 20 19 

MNI_by_5 1,939 20 12 8 
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TABLE 5-8: NUMBER OF VISUAL INPUT NEURONS DEPENDING ON THE SIZE OF THE 

BRAIN TEMPLATE FOR THE TALAIRACH ATLAS. 

Brain template 
Number of 

reservoir neurons 

Number of input neurons 

Total  Foveal Peripheral 

TAL_orig 1,527,747 16,034 7,990 8,044 

TAL_by_2 192,600 2,021 1,020 1,001 

TAL_by_3 56,770 596 288 308 

TAL_by_4 23,550 247 132 115 

TAL_by_5 12,150 128 64 64 

TAL_by_6 7,199 76 36 40 

TAL_by_7 4,452 47 25 22 

TAL_by_8 2,960 31 16 15 

TAL_by_9 2,086 22 12 10 

TAL_by_10 1,525 16 9 7 

 

While the total number of neurons was calculated using the ratio formula, the figures for 

foveal and peripheral neurons were derived when developing the block summarisation 

described in Section 5.4.5. In general, however, the numbers for foveal and peripheral 

neurons were based on the principle of cortical magnification (Wässle, Grünert, 

Röhrenbeck, & Boycott, 1989). This phenomenon describes a characteristic of the spatial 

organisation of the visual cortex that was discovered through brain imaging studies: Signals 

from the fovea, which is very small but the most sensitive area of the retina, are processed 

by a relatively large portion of the neurons in V1 in the posterior region of the calcarine 

sulcus. In contrast, the larger, more peripheral areas of the retina are processed in 

progressively smaller and more anterior regions of the calcarine sulcus. In a retinotopy study 

that investigated a large spatial extent of the visual field, the authors concluded that the 

central ten degrees of the visual field are mapped into around 50% of the surface of the 

primary visual cortex (Jinglong Wu, Yan, Zhang, Jin, & Guo, 2012). Their findings are 

visualised in Figure 5-16. 
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FIGURE 5-16: CORTICAL MAGNIFICATION IN HUMAN PRIMARY VISUAL CORTEX .40 

Taking the principle of cortical magnification into account for determining the numbers of 

input neurons per template, about half of the calculated input neurons were designated as 

foveal input neurons processing the signals from the colour encoding module, while the 

remaining half were used to process the output of the greyscale encoding module. These 

figures are shown in the two right columns of Table 5-7. The slight discrepancies between 

the given numbers and what would be the actual half were caused by the design of the blocks 

that were used for signal summarisation as described in Section 5.4.5. 

After the number of input neurons in the network had thus been determined, their exact 

locations also had to be found. The next section describes this process. 

5.4.4 RETINOTOPIC MAPPING – LOCATION OF VISUAL INPUT NEURONS 

While the previous section talked about how many neurons should function as input neurons 

in the neural network model, this section describes where they should be located. Like for the 

auditory system, where tonotopy determined which sound frequencies were processed in 

which regions of the auditory cortex, the term retinotopy describes the mapping of signals 

from specific regions of the visual field into distinct areas of V1 and further into higher visual 

processing areas (Goebel et al., 2012, p. 1309). However, the different levels of visual cortex 

differ in their spatial tuning – while V1 is clearly retinotopically organised, this structure is 

not as well defined in higher visual cortical areas (Henriksson, Karvonen, Salminen-

Vaparanta, Railo, & Vanni, 2012). Therefore, the focus of the retinotopic mapping developed 

for this research lay on V1. 

The first systematic observations between the location of objects in the visual field and their 

projection into cortical areas were made in the early 20th century by examining soldiers with 

40 From Retinotopic mapping of the peripheral visual field to human visual cortex by functional magnetic resonance imaging by 
Jinglong Wu et al. (2012, p. 1738). Reproduced with permission. 
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brain injuries. For example, Inouye (1909) studied 30 Japanese soldiers that had been 

wounded in the Boxer Rebellion and the Russo-Japanese War. Inouye systematically aligned 

regions in the soldiers’ brains that had been affected by bullet wounds with impairments in 

their visual field. Similarly, Holmes (1918) analysed 16 British soldiers that had suffered head 

injuries in World War I and lost vision in parts of their visual field. Both researchers 

concluded that there must be a spatial relationship between a location observed in the visual 

field and the corresponding processing area in the brain. About 80 years later, their 

hypothesis was verified by Engel et al. (1994) using fMRI. Since then, brain imaging 

techniques have been used in a myriad of studies to further refine the resolution of these 

retinotopic maps and to extend them to areas beyond V1 (Wandell & Winawer, 2011). 

Based on the original experiments by Engel et al. (1994), the acquisition paradigm for 

retinotopy data typically involves two moving visual stimuli with checkerboard patterns that 

are presented to a study participant while measuring their brain activity (Wandell & Winawer, 

2011). One stimulus is an “expanding ring” that increases and decreases its size around the 

centre of the presented screen, while the second stimulus is a “rotating wedge” that moves 

either clockwise or anticlockwise around the central point. Because both the position of the 

presented stimuli and the location of the activated neural clusters are known, they can then 

be temporally aligned to create the retinotopic map. This process is illustrated in Figure 5-17. 

 

FIGURE 5-17: RETINOTOPIC MAPPING PARADIGM AND ITS RELATION TO THE VISUAL 

FIELD.41 

The top part of the figure shows the mapping of the eccentricity of stimuli, i.e. how far away 

from the centre they are located, while the bottom part of the figure shows their polar angle, 

 
41 From fMRI of Human Visual Pathways by DeYoe et al. (2012, p. 487). Reproduced with permission. 
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i.e., their circular distance from a fixed axis in the visual field. With respect to the polar angle, 

the arrangement of objects in the visual field is both flipped from left to right and turned 

upside down. Thus, objects appearing in the left top corner of the visual field are processed 

in the right inferior area of V1. Likewise, the eccentricity processing is “inverted”, meaning 

that the smaller areas in the centre of the visual field take up relatively more volume in V1 

than the larger peripheral areas, as shown in the Brain Maps column in Figure 5-17. 

When designing the video processing system presented in this thesis, the findings from 

retinotopy studies were taken into consideration for the spatial arrangement of the input 

neurons. This way, the signals created by the retinal encoding module could be retinotopically 

mapped into the network model. However, the distortions occurring in biological retinotopic 

maps due to factors such as cortical magnification were found to be quite significant, so to 

increase the biological plausibility of the overall model, it was decided that they had to be 

preserved as accurately as possible. For the research presented in this thesis, both the pixel 

locations of the input video data and the coordinate locations of the neurons in the network 

were known at this point because they had already been developed. The next step was thus 

finding a method to connect these two sets of location data in a meaningful way and pick 

those neurons that would serve as input neurons. While there were algorithms available to 

determine the relationship between visual field and V1 (Benson, Butt, Brainard, & Aguirre, 

2014), an approach employing brain imaging data was deemed the more fruitful approach. 

Not only would this help to eliminate any potential geometric inaccuracies, but it also seemed 

more straightforward to tap into the myriad of available retinotopy data from previous 

research to build a mapping for the model presented here. 

The retinotopy data that were used to create the mapping between video pixel positions and 

visual input coordinates were collected as part of the Human Connectome Project (HCP)42. 

A sub-group of 181 HCP study participants were scanned using very high resolution fMRI 

equipment while viewing a retinotopy paradigm (Benson et al., 2018b). Besides the previously 

described “expanding ring” and “rotating wedge” stimuli, the researchers collecting the data 

also used a “moving bar” stimulus where a rectangular block moved diagonally through the 

visual field of the study participant. Benson et al. then analysed the data of the 181 

participants using a population receptive field approach to build a retinotopic mapping 

dataset, which for each participant contained values for the polar angle, eccentricity, and 

receptive field size, among others. Benson et al. also created three sets of grouped data where 

two groups were averaged across one half each of the participants and the third group was 

 
42 https://www.humanconnectome.org/study/hcp-young-adult 

https://www.humanconnectome.org/study/hcp-young-adult
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averaged across all 181 participants. Furthermore, Benson et al. created three “model fits” 

that covered either the first half, the second half, or all of the recorded fMRI data. 

For the visual processing model developed here, the retinotopic map from Benson et al. 

(2018b) that was averaged across all participants and covered the whole data collection was 

used as a base to determine the best locations for the input neurons. This map contained 

91,282 so-called grayordinates located across the brain and their corresponding values for 

polar angle and eccentricity to which they showed the highest level of neural activation. 

Grayordinates describe points on the surface layers of the grey matter in the brain (Glasser 

et al., 2013). They were introduced as a concept by HCP researchers to decrease the storage 

space of the data compared to conventional formats such as NIfTI files and to provide a 

more accurate way of comparing brain data from different people. Since everyone’s brain is 

shaped slightly differently, aligning cortical locations across individuals would otherwise be 

difficult (Brett et al., 2002). However, due to their definition as surface points, grayordinates 

do not intrinsically hold information on volumetric coordinates unless they are associated 

with a projection area provided in a separate file. Therefore, the same grayordinate data can 

be displayed in different volumetric spaces, such as an averaged brain, an inflated brain, or a 

sphere. In the research presented here, a volumetric projection area representing the cortical 

white matter averaged over all participants and aligned to the MNI atlas was used to assign 

three-dimensional coordinates to the grayordinates. This meant that the resulting coordinates 

could be easily aligned with the network templates created to study the influence of neural 

network size.43 From the resulting list of coordinates and corresponding polar angle and 

eccentricity data, only those entries were selected where the grayordinate had been labelled 

as being located in the primary visual cortex. This selection was based on an atlas developed 

by L. Wang, Mruczek, Arcaro, and Kastner (2015). The code for this alignment and selection 

is provided in Appendix A, Listing VI. The data and their values for the coordinates are 

visualised in Figure 5-18. 

 
43 This process is described in Section 5.2.3. 
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FIGURE 5-18: THE COORDINATES USED FOR THE RETINOTOPIC MAPPING AND THEIR 

CORRESPONDING VALUES FOR POLAR ANGLE AND ECCENTRICITY . BOTH BRAINS ARE 

SHOWN FROM THE BACK VIEW. 

The values for the polar angle were given in degrees ranging from 0 to 360 and the starting 

point for this measurement was the positive x-axis with values increasing in an anticlockwise 

direction. The eccentricity values were given in degrees of the visual field, where 8 degrees 

corresponded to 100 pixels of the originally presented stimulus (Benson et al., 2018a). Using 

these two values and the principles of trigonometry, an exact pixel position could be 

calculated for each pair of polar angle and eccentricity. The code for this calculation can be 

found in Appendix A, Listing VII. 

Analysing the now pixel-based data showed that the origin points of the visual stimuli were 

not distributed evenly across the visual field, as shown in Figure 5-19. Most notably, there is 

an absence of points in the vertical centre of the visual field, and the density of the points 

decreases with increasing distance from the centre. The reason for this is that while the 

grayordinates were uniformly distributed across the cortical surface, the phenomenon of 

cortical magnification introduced a distortion of the visual field. Moreover, as can be seen in 

Figure 5-18, the interhemispheric gap of the grayordinates is quite pronounced, creating an 

absence of data for the central vertical axis of the visual field. 
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FIGURE 5-19: ORIGIN POINTS OF THE STIMULI IN THE VISUAL FIELD FOR THE

RETINOTOPIC MAPPING DATASET . 

As a result of the work presented in this section, the signals that were created by the retinal 

encoding module for specific pixels of the video frames could be mapped into the best 

matching input coordinate of the JNeuCube. This formalised relationship between pixels and 

coordinates is a major component of the visual processing system that was developed as part 

of this research. 

5.4.5 RECEPTIVE FIELDS – BLOCK SUMMARISATION 

Since the output of the basic retinal encoding algorithm presented in Sections 5.4.1 and 5.4.2 

was based on pixel-wise frame comparison, the network model would need to be equipped 

with one input channel per pixel in the frame to handle the encoded signals. However, in 

accordance with the different network template sizes introduced in Section 5.2.3, these pixel-

based signals had to be compressed to facilitate their entry into network models with reduced 

numbers of visual input neurons as described in Section 5.4.3. The approach for signal 

reduction that was used for the work presented in this thesis was inspired by visual receptive 

fields (VRF) found in the retina. This section introduces the biological background of VRF 

and the neural connectivity in the retina that forms them. It then explains how “blocks”, 

which in this work represent the biological VRF, were defined and arranged on the video 

frames and the pixel-based data to effectively summarise the spikes based on their spatial 

organisation. 
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In general, receptive fields describe areas of perception that are processed in union by 

specialised areas in the brain (Wandell & Winawer, 2015). VRF, more specifically, are 

established through the arrangement of groups of neurons in the visual cortex processing 

light stimuli from a specific area in the visual field (Wandell & Winawer, 2015) as shown in 

Figure 5-20. The areas covered in the visual field are generally circular and while their size 

increases towards the periphery, their number decreases (Smith, Singh, Williams, & Greenlee, 

2001). This phenomenon applies not only to the signal processing in the primary but also in 

higher visual cortices (Wandell & Winawer, 2015). 

 

FIGURE 5-20: RECEPTIVE FIELDS IN DIFFERENT LEVELS OF THE VISUAL CORTEX.44 

The principles of VRF were applied to the research described in this thesis in the form of 

“blocks” that summarised the signals created by the retinal encoding module, with some 

simplifications. The inverse relationship between the number and size of VRF/blocks with 

the increasing eccentricity of the visual field was kept as an integral part of the block design. 

The blocks were arranged in layers where the outermost layer covered the whole video frame, 

while subsequent layers covered successively less of it. At the same time, the number of 

blocks per layer increased with decreasing eccentricity. One introduced simplification was 

that, while VRF were generally found to be circular, the blocks created for this research were 

approximated as squares. Since the input video frames would be rectangular and blocks were 

not designed to overlap at this stage, a square shape ensured that all areas of the frame were 

covered by at least one block at all times. 

Figure 5-21 shows an example of the block arrangement overlaid over a background frame 

image. The three outermost layers (blue, green, and yellow) represent the periphery, for 

which the block system was designed based on squared VRF. In order to retain the square 

shapes of the blocks, the ratio of the numbers of columns to rows was aligned with the ratio 

of the width to the height of the video frame. Note that each block was assigned a unique 

 
44 Adapted from Population Receptive Field Size Estimates in 3 Human Retinotopic Maps by Winawer and Horiguchi 
(2015). Reproduced with permission. V3, tertiary visual cortex; hV4, human quaternary visual cortex. 
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number for easier identification of the signal source in the later mapping step, where the 

location of the block in the visual field was important. 

FIGURE 5-21: ARRANGEMENT OF THE RECEPTIVE FIELD BLOCKS OVER AN

EXEMPLARY FRAME. THE INNERMOST LAYER OF BLOCKS (RED) REPRESENTS THE

FOVEA, WHILE THE OTHER THREE LAYERS REPRESENT THE PERIPHERY . 

The smallest block layer in Figure 5-21, shaded in red, marks the fovea. The blocks in this 

layer were purposefully not modelled as squares but instead attempted to mimic the ellipsoid 

shape of the fovea (Scheibe et al., 2014). Although the exact shape of the fovea varies widely 

(Wagner-Schuman et al., 2011), there is a noticeable length difference between its horizontal 

and vertical diameters. For example, Tick et al. (2011) compared 110 eyes and found that the 

diameter of the foveal pit was about 11% larger horizontally than vertically, while Bradley, 

Applegate, Zeffren, and van Heuven (1992) found this difference to be 17% for the 24 eyes 

they studied. Therefore, the blocks in the foveal layer were designed as oblong rectangles, 

with a width-to-height ratio of 1 to 0.9. This ratio was calculated as the weighted average of 

the two figures found in the literature. 

At the same time as modelling VRF, the block approach for signal summarisation developed 

here was also founded on the biological principle of signal convergence across the neural 

layers of the retina. As described in Section 3.3.1, the connectivity of photoreceptors in the 

retina to subsequent layers of retinal neurons facilitates significant convergence (Hoon, 
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Okawa, Della Santina, & Wong, 2014), with signals from around 120 million rods and 

six million cones feeding into about one million ganglion cells whose axons form the optic 

nerve (Goebel et al., 2012, pp. 1303-1305). In this process, the numbers of rods and cones 

converging into their respective ganglion cells differ by magnitudes. For example, in the very 

centre of the foveal dip, as few as only one of the here prominent colour-sensitive cones can 

be connected to a single ganglion cell, facilitating a very high spatial resolution in the centre 

of the visual field (Grünert & Martin, 2020; Kolb, 2012). Outside of this area, a ganglion cell 

typically receives input from multiple cones, although these numbers are still low (Curcio & 

Allen, 1990; Sterling, Freed, & Smith, 1988). On the other hand, the principle of rod 

convergence is that combining the signals of multiple rods into one ganglion cell leads to 

higher brightness sensitivity and facilitates edge and motion detection (Bruce et al., 2003, p. 

29; Kolb, 2011a). Typically, several hundred rods feed into single ganglion cells via layers of 

bipolar and amacrine cells (Kolb, 2011a; S. C. S. Lee, Martin, & Grünert, 2019; Sterling et al., 

1988). 

The biological convergence of rods and cones was modelled in the block summarisation 

method presented here by designing the peripheral “rod blocks” to cover larger parts of the 

frame than the foveal “cone blocks”. For computational simplification, the divergence of 

signals that is present in the biological eye was not included here. In this process, the 

information from rods and cones is decomposed into functional components, which are 

transmitted separately to several bipolar cells and then on to ganglion cells that process them 

in parallel (Kolb, 2011a; Masland, 2012; Sterling et al., 1988). However, since the data from 

the retinal encoding module had to be reduced instead of amplified, a divergence of signals 

was not included in the block summarisation module at this stage. 

Using the general design principles of convergence and visual fields, the number of blocks 

per layer was dependent on the number of input neurons that had been identified as 

described in Section 5.4.3. There, it was found that the foveal blocks should contribute about 

half of the input signals, while in this section, their most biologically plausible shape was 

identified to be a rectangle with a width-to-height ratio of 1 to 0.9. When choosing the 

numbers of foveal block rows and columns, it was attempted to satisfy these two conditions, 

dubbed “half” and “ratio”, as well as possible. For example, for the TAL_by_5 template with 

its 128 input neurons, 64 neurons were assigned to the foveal block level, which then 

contained eight columns and eight rows. While these did not meet the exact desired “ratio” 

condition, choosing slightly different numbers would impede the “half” condition to a 

greater extent than what would be gained by the improved ratio. 
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The conditions for choosing the numbers of blocks for the peripheral layers differed slightly. 

While the “half” condition was also expected to be met, the “ratio” condition set the desired 

width-to-height ratio to match that of the video frame in the input data to create square-

shaped blocks. For the dataset that was used to evaluate the model, described in Chapter 7, 

this ratio was 16 to 9 with a width of 176 pixels and a height of 100 pixels in the frame. 

Overarching over both the foveal and the peripheral block design was another condition, 

namely, to exactly match the calculated number of total input neurons. Meeting this target 

was considered most important, so slight adjustments to the other conditions were deemed 

acceptable. For example, for the MNI_by_3 template with its 93 input neurons, 42 were 

assigned to the foveal layer with seven columns and six rows, while the remaining 51 neurons 

were split between three peripheral layers. More exact matches for the “half” conditions of 

both the fovea and the periphery would have led to much worse ratios and also to a 

mismatched total number of required input neurons. 

Finally, a plausible number of block levels had to found for each template. This was based 

on the number of input neurons. The smallest templates with less than 35 input neurons had 

two peripheral layers, those with up to 135 had three, those with up to 1,000 had four, those 

with up to 10,000 had five, and the largest templates had six peripheral layers. The final 

numbers for the blocks for each template are shown in Table 5-9. 
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TABLE 5-9: NUMBER OF BLOCKS IN EACH LAYER PER TEMPLATE . LAYER DIMENSIONS ARE GIVEN AS NUMBER OF ROWS BY NUMBER OF COLUMNS . 

Template name Total input Foveal Layer 0 Peripheral Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

TAL_orig 16,034 7,990 85 × 94 8,044 56 × 84 36 × 55 23 × 35 15 × 23 10 × 15 6 × 10 

TAL_by_2 2,021 1,020 30 × 34 1,001 20 × 30 13 × 17 9 × 12 6 ×   8 4 ×   6  

TAL_by_3 596 288 16 × 18 308 12 × 16 7 × 10 5 ×   6 4 ×   4   

TAL_by_4 247 132 11 × 12 115 7 ×   9 5 ×   6 4 ×   4 2 ×   3   

TAL_by_5 128 64 8 ×   8 64 5 ×   7 4 ×   5 3 ×   3    

TAL_by_6 76 36 6 ×   6 40 4 ×   6 3 ×   4 2 ×   2    

TAL_by_7 47 25 5 ×   5 22 3 ×   4 2 ×   3 2 ×   2    

TAL_by_8 31 16 4 ×   4 15 3 ×   3 2 ×   3     

TAL_by_9 22 12 3 ×   4 10 2 ×   3 2 ×   2     

TAL_by_10 16 9 3 ×   3 7 2 ×   2 1 ×   3     

MNI_times_2 20,286 10,176 96 × 106 10,110 66 × 95 37 × 64 25 × 36 16 × 23 10 × 15 6 ×   9 

MNI_orig 2,536 1,292 34 ×   38 1,244 22 × 33 15 × 21 9 × 15 6 ×   8 4 ×   5  

MNI_by_2 317 156 12 ×   13 161 8 × 12 5 ×   7 4 ×   6 2 ×   3   

MNI_by_3 93 42 6 ×     7 51 5 ×   6 3 ×   5 2 ×   3    

MNI_by_4 39 20 4 ×     5 19 3 ×   3 2 ×   3 2 ×   2    

MNI_by_5 20 12 3 ×     4 8 2 ×   2 2 ×   2     
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Following the idea that blocks represent visual receptive fields, the size difference between 

subsequent block layers was also determined in a biologically plausible way. This was based 

on the phenomenon of cortical magnification that already informed the number of input 

neurons for the different brain templates.45 Besides the fixture that the foveal block layer 

should make up around ten degrees of the visual field based on the research by Jinglong Wu 

et al. (2012), it was also reported in the literature that cortical magnification is not linear but 

that it, instead, exhibits exponential size differences, which are larger for neighbouring areas 

further out in the periphery than for those closer to the centre of the visual field (Schira, 

Wade, & Tyler, 2007). This principle was applied in the development of the block 

summarisation method presented here. A “block scaling factor” was calculated as the nth 

root of 4, where n was the number of block levels minus 1. 

𝑏𝑙𝑜𝑐𝑘 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = √4
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑣𝑒𝑙𝑠−1)

 

Counting from the outermost layer beginning with zero as the “block level”, the overall size 

of a block layer was then calculated depending on the block scaling factor, the frame size, 

and the number of blocks in the block layer: 

𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑑𝑡ℎ =
𝑓𝑟𝑎𝑚𝑒 𝑤𝑖𝑑𝑡ℎ

𝑏𝑙𝑜𝑐𝑘 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑣𝑒𝑙 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟
 

and 

𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑓𝑟𝑎𝑚𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

𝑏𝑙𝑜𝑐𝑘 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑣𝑒𝑙 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟
 

which effectively led to 

𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑑𝑡ℎ =
𝑓𝑟𝑎𝑚𝑒 𝑤𝑖𝑑𝑡ℎ

4
𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑣𝑒𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑙𝑎𝑦𝑒𝑟𝑠−1 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟

 

and 

𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑓𝑟𝑎𝑚𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

4
𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑣𝑒𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑙𝑎𝑦𝑒𝑟𝑠−1 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟

 

as equations to determine the size of each block level. The number 4 was chosen to emulate 

the exponential growth identified in cortical magnification, so it was set to the square of two 

since the frame is two-dimensional. Figure 5-22 shows an example of the block levels being 

applied to a video frame. There were three peripheral block layers (blue, green, yellow) and 

one foveal block layer (red). The size differences between the layers vary distinctly, with the 

 
45 These numbers can be found in Table 5-7 on page 150. 
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largest difference shown between the blue and the green layer and the smallest between the 

yellow and the red layer. 

FIGURE 5-22: EXAMPLE OF FINAL BLOCK LAYERS APPLIED TO A VIDEO FRAME. 

Contrary to what might be expected based on Figure 5-21, the foveal block in Figure 5-22 is 

not located in the centre of the visual field. This is because the focal processing centre moved 

towards the most active part of the frame after each frame change. The most active part of 

the frame was defined as the block with the highest activity, which was measured by 

calculating the block’s spike rate, i.e., the number of spikes divided by the number of pixels 

in the block. The centre coordinate of the most active block was then used as the focus of the 

frame for the next frame comparison, around which all block levels were arranged. This 

moving frame focus was based on the biological principle of saccades, which are minuscule 

eye movements that direct the focus of the eye to a region of interest (Swanston & Wade, 

2013, pp. 233-234). 

The purpose of the block summarisation was to provide a method with which signals could 

be logically fed into the available retinotopic mapping data so that their position on the 

visual field determined the location of their corresponding input neuron. From the 

retinotopy data obtained and prepared as described in Section 5.4.4, the pixel coordinates of 

available retinotopy data were calculated and plotted into the visual field. The centres of the 

blocks were then overlaid over these data points and the spatially closest retinotopy point 

was found for each block centre. This process is visualised in Figure 5-23 and the 

corresponding source code can be found in Appendix A, Listing VIII. The best matching 

input coordinates for each block were found by calculating the Euclidian distance between 

the initial block centres and the available retinotopy coordinates. It is important to note that 

while the locations of the blocks moved due to the shift of the focus towards the most active 

part of the frame, the input neurons to which the blocks sent their signals stayed the same 

throughout the whole modelling process. This is because the JNeuCube implementation that 

was used for the research presented here allowed only fixed input neuron coordinates that 
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had to be set up during the initialisation step of the model. For the same reason, all the videos 

that were chosen as input data had to have the same frame size. Changing frame sizes of 

video samples would influence the locations of the block centres, which would lead to 

different coordinates on the visual field and thus for the input coordinates in the network. 

The dynamic mapping of signals across V1 that is present in the human brain could hence 

not be modelled in the video processing system developed here, due to the restriction of the 

architecture that input neurons could not change their location in the network. 

FIGURE 5-23: EXAMPLE OF THREE BY FOUR BLOCKS (GREEN) AND THEIR 12 CENTRES

(RED) OVERLAID OVER THE POINTS OF THE VISUAL FIELD FOR WHICH RETINOTOPY

COORDINATES WERE AVAILABLE. 

The final design consideration for the block summarisation module was finding the optimum 

block threshold. This parameter describes the minimum spike rate that was required to 

create a spike for the block that would then be sent to its corresponding input neuron in the 

network. Just like cones and rods in the eye have different detection thresholds for incoming 

light stimuli, which resulted in separately chosen pixel thresholds as described in Sections 

5.4.1 and 5.4.2, their connectivity to retinal ganglion cells differs widely (Grünert & Martin, 

2020; Kolb, 2011b, 2012; S. C. S. Lee et al., 2019). This variety was reflected in the block 

summarisation method presented here by selecting different thresholds for the foveal and 

peripheral blocks. Further to the pixel thresholds that described by how much two pixels in 

the same location of subsequent frames had to differ to be recorded as a spike, the block 

threshold introduced another level of filtering that was inspired by the connectivity of the 

retinal neural layers (Masland, 2012). A similar block threshold had also been proposed for 
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the auditory processing system in Section 5.3.4. For the auditory system, the block threshold 

was set to a value that was double the spike rate of the whole sample. Due to the architecture 

of the visual encoding, the overall spike rate of the sample was not available before the blocks 

were applied to each frame. Therefore, the threshold value was set to double the overall pixel 

spike rate of each frame. 

Applying benchmark data to the video processing system (reported in Chapter 7) showed, 

however, that this initial threshold might not be the ideal choice. The search for optimum 

block threshold parameters is described in Chapter 7. 

5.4.6 SECTION SUMMARY AND CONTRIBUTIONS 

This section presented the design of a biologically inspired video processing system that 

replicated five aspects of the primary visual pathway: 

1. Peripheral greyscale encoding. Based on the functioning of event-based cameras, 

this part of the encoding module compared the brightness levels of subsequent pixels 

in video frames. After converting the RGB values of the frame to a scale with 

256 levels of grey, a minimum difference of 3 was set as the threshold that evoked 

the creation of a spike for the pixels in the frame. 

2. Foveal colour encoding. Again looking at the differences of subsequent pixels in 

video frames, this module was a novel contribution that created additional spikes for 

the smaller focal area of the frame. After converting the RGB values to the more 

perceptually uniform CIE L* a* b* colour space, the colour difference between two 

pixels was quantified using the CIEDE2000 formula. A threshold of 5 colour 

difference units was set as the minimum difference that had to be reached before a 

spike would be created for the pixel. 

3. Number of input neurons. It was explained that a biologically defined ratio of input 

to normal processing neurons had to be preserved to retain biological plausibility. 

This ratio was found by putting measured volumes of the visual cortex into relation 

to the overall brain size. Concrete figures for both hemispheres were calculated for 

the different network templates that had been developed for the computational 

model in Section 5.2.3. 

4. Location of input neurons. A retinotopy dataset containing information about 

neural responses to visual stimuli of 181 people was obtained and transformed into 

a format that could be used to provide biologically plausible input locations for the 

visual signals. The relationship between the location of a pixel in the visual field and 

the location of the corresponding input neuron was formalised. 
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5. Block summarisation. In order to overcome the differences in signal numbers 

created by the encoding and the mapping steps, this aspect focused on simulating a 

novel way of grouping and merging signals based on visual receptive fields. An 

extension of previous work, the idea of a moving focal area was introduced. Block 

levels with foveal and peripheral blocks were defined for each of the neural template 

sizes depending on the number of input neurons. 

As a result of these efforts, visual signals sent into the retinal encoding module could then 

be mapped into defined locations of the computational SNN model in a biologically plausible 

way. The algorithms and methods presented here partly answer Research Questions 2a and 

2b that were asked in Section 1.3 about signal transformation and mapping of auditory and 

visual data. Detailed information and results of experiments conducted with this video 

processing system can be found in Chapter 7. 
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5.5 AUDIO-VISUAL PROCESSING SYSTEM 

The final part of the system that was developed as part of this thesis was concerned with the 

combination of the auditory and visual processing pipelines, as was asked in Research 

Question 2c in Section 1.3. While sound and video data were encoded separately, their brain-

inspired mapping into the same set of neural network templates facilitated a straightforward 

spatial integration of signals.46 On the other hand, the temporal integration of the signals had 

to address differences in signal sampling rates, which meant that the encoded sound samples 

were much longer than their corresponding video samples and they had to be temporally 

aligned.47 The audio-visual system was then evaluated using a newly created dataset that 

consisted of five signs from New Zealand Sign Language. The results of this evaluation are 

presented in Chapter 8. 

5.5.1 SPATIAL INTEGRATION OF AUDIO-VISUAL DATA 

The human brain is capable of combining information from multiple modalities effortlessly, 

although the processes of integrating these signals are very complex. As described in 

Section 3.4, signals from the auditory and visual pathway cross over multiple times before 

arriving at their respective cortices. Once there, both modalities follow a ventral and dorsal 

processing stream for object recognition and localisation, respectively. These multimodal 

interactions improve the brain’s ability to interpret the signals from its surrounding 

environment in a holistic manner compared to only receiving input from a single modality 

(A. K. C. Lee & Wallace, 2019). Adding further complexity, the brain uses different neural 

coding schemes for auditory and visual data: while visual data are based on receptive fields 

and spatial encoding, auditory data are provided in a rate coding format that represents the 

characteristics of the sound in different firing rates (J. Lee & Groh, 2014). So-called cortical 

field maps then enable the brain to combine the information in a structured manner (Brewer 

& Barton, 2016). 

For the audio-visual processing system developed as part of this research, the subcortical 

integration of signals along the auditory and visual pathways was not modelled at this stage 

since neither the unimodal auditory nor the visual processing system included a simulation 

of their respective pathways. This simplification was introduced because one objective of the 

research was to investigate concept formation, which in the human brain mainly happens 

46 This is described in detail in Section 5.5.1. 
47 An approach to overcome this discrepancy is described in Section 5.5.2. 
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after the signals have arrived at their cortical locations. The signal integration modelled in 

this research focused, therefore, on merging data at the cortical level. 

The input signals were first encoded separately with their respective auditory and visual 

encoding modules and then fed into the same network at the same time.48 It was hoped that 

by transforming the two signal types into the same spike-based format, any issues related to 

different coding schemes of stimulus characteristics could be averted. Since the neural 

network model that was used as a base for both the auditory and the visual processing models 

resembled the shape of the human brain, each modality could be mapped into their 

corresponding cortical location. While the locations of the input coordinates for both 

systems were based on separate tonotopic and retinotopic mapping datasets, the underlying 

network templates were derived from a common source, namely the Talairach and MNI 

templates as described in Section 5.2.3. This meant that in order to perform the spatial 

integration, both auditory and visual encoded signals simply had to be mapped into the 

same network template as shown in Figure 5-24. In the figure, grey dots represent the 

normal processing neurons in the reservoir, while orange and blue dots represent auditory 

and visual input neurons, respectively. 

 

FIGURE 5-24: THE THREE-DIMENSIONAL NEURAL NETWORK WITH BOTH AUDITORY 

(ORANGE) AND VISUAL (BLUE) PROCESSING REGIONS FOR SIGNAL INPUT. 

 
48 The temporal aspect of this process is discussed in detail in Section 5.5.2. 
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In the human brain, the signals that have arrived at their respective cortices are passed on 

into the prefrontal cortex through two distinct processing streams, which are the ventral 

stream through the temporal lobes for object detection and the dorsal stream through the 

parietal lobe for object localisation (Milner & Goodale, 2008; Rauschecker, 2015). While 

these streams were not explicitly modelled here,49 it was expected that by combining the two 

sets of input data into one model, they would form distinctive patterns in the network’s 

connection weights. Investigating if these patterns resembled the biological processing 

streams to some degree was then seen as an interesting area of exploration for this research 

that was trialled on audio-visual data in Chapter 8. 

5.5.2 EVENT TIME SYNCHRONISATION 

Compared to the reasonably straightforward spatial combination of auditory and visual 

signals, their temporal alignment faced the challenge of overcoming large discrepancies 

between sampling rates of the two modalities. The cochlear encoding module required a 

sampling rate of 100,000 Hertz for the sound files, which was then compressed down to 

1,000 Hertz by the summarisation approach described in Section 5.3.4. For a sound file with 

a length of one second, the encoded data file would contain 1,000 time points. The retinal 

encoding module, on the other hand, looked at differences between subsequent video 

frames, which meant it effectively replicated the frame sampling rate of the video files. For 

a video file with 30 frames per second and a length of one second, the encoded data file 

would contain 29 time points. The length of the encoded samples, therefore, differed by a 

factor of about 33. 

In the brain, the auditory and visual pathways account for any temporal misalignments that 

are caused by sound waves travelling more slowly than light rays (Burr & Alais, 2006). Due 

to the different mechanisms by which the ears and eyes transform the stimuli into electrical 

signals, further discrepancies are introduced, and auditory signals are generally processed two 

to three times as fast as visual signals (Molholm et al., 2006). Stimuli that are temporally 

aligned by the brain are processed in connection with each other since close temporal 

proximity typically indicates a semantic relationship. The most important goal of the 

approach for audio-visual integration developed as part of this research was thus transferring 

this relationship to the network. 

One way to overcome the timing discrepancies faced by the audio-visual processing system 

was to ensure their semantic connection was evident to the network model. This was 

 
49 An approach for modelling these streams would be to pre-train the network connections when initialising 
the model; this is briefly discussed as future work in Section 9.4. 
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achieved by combining each pair of auditory and visual encoded samples into a new audio-

visual sample file. The code for this merging process is shown in Appendix A, Listing IX. 

Since the JNeuCube model processed each combined sample as one entity, the semantic 

relationship of both the auditory and the visual data in the sample was thus known to the 

network. However, the sample had to be provided in the shape of a rectangular matrix, which 

means that the length differences of the sound-video pairs had to be addressed. 

Since the video samples were much shorter than the audio samples, several approaches were 

considered to shrink the audio sample size while at the same time increasing the video 

information length. First, all leading and trailing rows of zeros were removed from the audio 

files, since these represented time points at both ends of the file that did not contain any 

information. For the dataset that was used for the case study presented in Chapter 8, this 

process managed to reduce the average length of the audio sample files by about 30%. 

However, a visual inspection of the files from the dataset used in Chapter 8 showed that 

even after this step, a considerable number of files still contained leading and trailing empty 

rows that were not deleted due to occasional single spikes at the beginning and end of the 

sample. These spikes were considered irrelevant noise, so the algorithm was slightly altered 

to also remove rows with data that were immediately followed by an empty row. This process 

managed to reduce the average length of the audio files for the dataset described in Chapter 8 

by a further 8.5%. While this process was also applied to the video files, it did not make any 

difference to their appearance since they contained very few or no empty rows. 

Tackling the issue of the length discrepancies from another angle, three options of 

prolonging the video samples were also explored. The simplest way of increasing their 

length was to pad them with zeros. However, this approach was not ideal from a 

computational point of view. Given the still large length discrepancies between audio and 

video samples, the majority of the neurons in the network that were allocated to process the 

incoming video data would have received zeros for most of the time. This meant that instead 

of learning meaningful patterns, they would have learned that they were largely not needed 

and therefore produced only very weak connections. A second approach to “fill” the video 

file with meaningful data was to duplicate the whole sample and thus present the video signals 

to the network several times while the audio data would have been presented only once. This 

approach was rejected for being too biologically implausible since the brain would typically 

not receive duplicate visual input per singular audio stimulus.50 The final approach that was 

considered was stretching the video data by a certain factor. Based on the observation by 

 
50 The work presented in this thesis generally assumed a sober and neurologically healthy brain for all biological 
comparisons. 
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neuroscientists that visual stimuli are about two to three times slower than auditory stimuli 

in eliciting a processing response in the brain (Molholm et al., 2006), this approach was 

deemed most promising. As a starting point for the experiments described in Chapter 8, the 

stretching factor was set to 3. This meant that every time point in the visual sample was 

repeated three times, essentially slowing down the videos while still maintaining their 

characteristic dynamic patterns. The stretching process of the video samples in combination 

with the removal of empty rows for the sound samples significantly improved the file length 

ratio for the dataset that was used in the case study presented in Chapter 8. Before the 

modifications, the audio files were on average about 14 times as long as the video files, while 

now, they were only about three times as long. The remaining two-thirds of the file were 

then filled with zeros. While this still introduced the semantic bias towards recognising zeros 

instead of patterns, the impact of this misalignment was less pronounced. 
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5.6 CHAPTER SUMMARY 

This chapter described a novel computational architecture to model audio-visual data in a 

biologically plausible way. The design of the systems was informed by literature on biological 

and neurological processes, some of which were attempted to be modelled as part of this 

research. The system architecture followed four steps, encoding, mapping, learning, and 

analysis, of which the first three were explained in detail in this chapter. While the encoding 

and mapping steps were developed separately for auditory and visual data, the learning step 

involved data modelling and integration for both modalities. Finally, the analysis of the 

developed models was performed using benchmark datasets. These experiments are 

described in Chapters 6, 7, and 8. 

The contributions of this chapter are: 

1. Encoding. A set of biologically plausible parameters was found for an existing

cochlear encoding module. A retinal encoding module was developed based on the

functionality of existing hardware and enhanced by adding colour vision capabilities.

2. Mapping. For both the auditory and the visual system, the optimum number of

input neurons was found depending on the size of the neural network. Furthermore,

biologically plausible locations of these input neurons were determined based on

tonotopy and retinotopy datasets. Finally, a novel compression algorithm for the

encoded sound data was developed and an existing algorithm for the visual data was

enhanced by adding a moving focal area and providing flexible summarisation

boundaries.

3. Learning. An existing architecture for an SNN was used. A set of 16 brain-shaped

network templates was developed based on existing brain atlases. A novel method

for spatial and temporal integration of audio-visual data was introduced.
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6 BENCHMARKING 

THE SOUND PROCESSING SYSTEM 

“There is nothing like first-hand evidence.” 

– Sherlock Holmes in A Study in Scarlet

6.1 CHAPTER OVERVIEW 

This chapter describes how the sound processing model introduced in Section 5.3 was 

applied to a standard benchmark dataset in the domain of speech recognition. The performed 

experiments aimed to evaluate the capabilities of the proposed model and to gain insight into 

potentially suitable model parameter configurations by comparing different setups using the 

same benchmark data and computer hardware. The chapter first describes the origin, 

content, and structure of the dataset, followed by a detailed explanation of how the dataset 

was analysed with the model. Subsequently, the results of the experiments are presented, and 

conclusions are made about the model and its optimal configuration. The chapter closes with 

a short discussion of the advantages and shortcomings of the model compared to other 

published work using the same or comparable datasets, in an effort to answer Research 

Question 3a that was asked in Section 1.3. 
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6.2 DATASET DESCRIPTION 

Contemporary research into automated speech recognition began almost 70 years ago with 

the development of a “digit recogniser” by three then-employees of Bell Telephone 

Laboratories (Davis, Biddulph, & Balashek, 1952). While this circuit-based device had to be 

adjusted to individual speakers before it was fully functional, it could reach impressive 

recognition accuracies of up to 99%. The domain of spoken digit recognition has since been 

used widely as a study field for prototyping computational auditory and speech processing 

systems. Unlike trying to identify spoken phrases or sentences, where countless combinations 

of utterances can exist and contextual meaning might influence perception, digit recognition 

offers a well-defined set of words that can be represented as independent samples and 

transferred to any language where a counting system is known. For these reasons, it was 

decided to evaluate the auditory processing system described in this thesis on such a dataset. 

The benchmark dataset used for this experiment was the Free Spoken Digits Dataset (FSDD) 

which originated as a GitHub project and was filled with content in a community effort 

(Jackson, Hereman, Walker, & Weveler, 2016). The raw sound files were published in WAV 

format and were downloaded from the GitHub repository on 17th October 2019 for the 

experiment described in this chapter. Contrary to the popular 51  proprietary TIDIGITS 

dataset, which was created as a benchmark dataset for spoken digit recognition (Leonard, 

1984), the FSDD can be used by anyone for any purpose free of charge. 

Like other spoken-digits datasets, the FSDD covers all ten digits from 0 to 9. Four speakers 

of English, who were identified in the dataset as Jackson, Nicolas, Theo, and Yweveler, 

recorded themselves pronouncing each of the ten digits 50 times each, creating 500 speech 

samples per speaker and 2,000 speech samples in total. Jackson and Theo were identified as 

speaking with a North American English accent, while Nicolas had a French accent and 

Yweveler had a German one. The samples were recorded at a sampling rate of 8,000 Hertz 

and were monophonic. They were between 0.14 and 2.28 seconds long, with an average 

length of 0.42 seconds. There was minimal background noise and all samples were clearly 

audible, although no information on the recording devices was available. 

In this experiment, only the samples recorded by Jackson were used. This was expected to 

facilitate the classification of content rather than speaker voice and intonation. This 

pragmatic approach was considered sufficient for this initial testing of the sound processing 

model. Cross-speaker classification is a topic that should be considered in future research. 

51 According to the IEEE, the original paper describing the TIDIGITS dataset has been cited well over 200 
times (https://ieeexplore.ieee.org/abstract/document/1172716/citations#citations). 

https://ieeexplore.ieee.org/abstract/document/1172716/citations#citations
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6.3 EXPERIMENTAL SETUP 

The goal of this experiment was to find the best parameter configuration for the model. 

Since the model’s architecture offered a variety of parameters that were all to some extent 

related to each other and influenced the model’s performance, it first had to be decided which 

of them to optimise based on the amount of knowledge that could be gained from studying 

them. This section first discusses the three steps required to enter the data into the model, 

followed by the parameters for the neural network itself and finally the experiment’s training 

and testing procedure. 

6.3.1 DATA PREPARATION 

Preparing the sound data to be entered into the neural model required three steps that were 

discussed in detail in Section 5.3. The following paragraphs describe how these steps were 

applied in practice for this experiment. 

In the first step, converting the sound data to electrical impulses, all parameters for the 

cochlear encoding module were determined based on findings from neurology research as 

described in Section 5.3.1. Since these parameters were founded on biological observations, 

they were assumed to be in their most biologically plausible state and left unchanged for this 

experiment. However, the software that was used to perform this step required all samples 

to have a sampling rate of 100,000 Hertz. This meant that the FSDD data had to be 

upsampled from their original sampling rate of 8,000 Hertz before any further processing 

could occur. Upsampling was performed using the resample function from MATLAB’s Signal 

Processing Toolbox (The MathWorks Inc., 2019b), which was applied directly to the WAV 

files from the dataset. The code for this pre-processing is shown in Appendix A, Listing I. 

The resampled sound files were then converted to spike matrices using the cochlea.py Python 

software module by Zilany et al. (2014) with the parameters identified in Section 5.3.1. The 

code for the encoding step is shown in Appendix A, Listing II. 

The second step, mapping these spikes into the brain-shaped model, was concerned with 

finding a biologically plausible way to insert the spikes into the network. This step covered 

two aspects, number and location of neurons. While the appropriate locations could be 

determined by looking into research results from tonotopy studies, as described in 

Section 5.3.3, the number of input neurons was set to be dependent on the total size of the 

neural network. All 16 network configurations described in Section 5.2.3 were used in this 

experiment with their respective number of auditory input neurons that was calculated as 

described in Section 5.3.2. Since the influence of the network size on the performance of the 
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neural network model was found to be not very well understood in existing literature, it was 

chosen as a parameter for optimisation to be investigated in the research presented here. The 

available network configurations were based on two different brain atlases (MNI and 

Talairach) and contained between 1,525 and 1,932,848 neurons. For the varying numbers of 

input neurons, the frequency ranges to which the single neurons would respond had to be 

identified. This was done by uniformly selecting points from a list of available neurons for 

which frequency and coordinate information were known, as described in Section 5.3.4. 

While this selection process was technically part of the third step (compression), it was 

relevant here to set up the model. The code for this selection algorithm is shown in Appendix 

A, Listing III. The lists of frequency values that were created by this script were then copy-

pasted into the parameter configuration of the Cochlea encoding module shown in Appendix 

A, Listing II. 

In the third step, compressing the data along its two dimensions, mainly the time dimension 

had to be considered since the frequency dimension had already been determined by the 

configuration of input neurons for each model. As described in the previous paragraph, the 

number of channels in the encoded data was defined to match the number of input neurons 

in the studied template sizes. For the time dimension, a fixed compression rate of 100 was 

used for each model and tested as part of this experiment. This effectively created a final 

sampling rate of 1,000 Hertz for the data. Since this model is a first of its kind, no previous 

research existed that had investigated optimal values for this scaling factor. The factor of 100 

was chosen because it provided a convenient way of scaling down the data to a manageable 

size while not losing too much information. The code for this compression step is part of 

the code shown in Appendix A, Listing II in the function called scale_down. 

The three steps described above are mainly related to data encoding and input into the model. 

Equally important is the configuration of the network, which also had to be specified before 

the experiment could be run. The model parameters of the network are described in the 

following section. 

6.3.2 NETWORK MODEL PARAMETERS 

Apart from the network size that was considered as a variable in the experimental setup 

described here, several more parameters could be altered in JNeuCube. While a detailed 

discussion of the available parameters and their purpose is provided in Section 5.2.2, this 

section focuses on the specific values used for this experiment. 
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Firstly, the neuron type is an important factor to consider when designing the network. One 

of the most popular types of neurons is the LIF neuron. This very simplistic model has 

traded biological plausibility for computational efficiency, enabling larger networks with 

shorter training times (Izhikevich, 2004). Another rather simple neuron model that promises 

more biological plausibility than the LIF model was introduced by Izhikevich (2003). These 

two neuron models, LIF and Izhikevich, were taken into consideration for this experiment 

since they promised fast computation times, which was essential for the larger network sizes 

that were to be tested. 

Although Izhikevich claims52 that his 2004 models have a high level of biological plausibility 

due to them matching several biological features (Izhikevich, 2004), a set of preliminary 

experiments on the dataset studied here resulted in about 5 to 10% lower classification 

accuracy when compared to using the LIF neurons. These preliminary experiments were 

similar to the main experiment in terms of data preparation, network parameters and the 

model training and testing procedure, with the exception that only the smallest network 

template (TAL_by_10 with 1,525 neurons) was used and each configuration was run only 

ten times to reduce the computation time needed at this stage. While experiments using the 

20 different neuron properties described by Izhikevich (2004) achieved between 52 and 64% 

classification accuracy, the LIF neurons tested with a set of firing voltage thresholds between 

0.01 and 2 achieved between 64 and 68% classification accuracy53. Based on these results, it 

was decided to only investigate the LIF neurons further for the main experiment. 

As a consequence of the findings of the preliminary neuron model experiments, the LIF 

firing threshold was chosen as a second dimension for parameter optimisation in the main 

experiment (besides the network template size). The values that were studied for the LIF 

firing threshold ranged from 0.01 to 0.5 with smaller distances between smaller values and 

larger distances between larger values. Previous experiments with similar experimental setups 

had shown that optimum LIF threshold values tended to be at the lower end of this range 

(Kasabov et al., 2016), so the step size between threshold values was chosen to be smaller 

for smaller threshold values and larger for larger threshold values. The following 18 threshold 

values were used: 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

As explained in detail in Section 5.2.2, the JNeuCube implementation contains more 

parameters than just the neuron type and the neural firing threshold. In order to decrease the 

 
52 See Section 5.2.2 for a more in-depth discussion of this claim. 
53 The detailed results of these experiments can be found in Appendix B, Table B-1 and Table B-2. 
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model’s complexity for this experiment, however, the rest of the parameters were set to 

values that had proven successful in prior studies with the same system setup (Kasabov et 

al., 2016). An overview of these values is provided in Table 6-1, while an explanation of their 

meaning and rationale for default values can be found in the general description of the 

network parameters in Section 5.2.2. 

TABLE 6-1: NETWORK MODEL PARAMETERS FOR THE EXPERIMENT ON SPOKEN

DIGIT RECOGNITION. 

Category Parameter name Value 

N
eu

ro
n

 m
o

d
el

 LIF reset voltage 0 (simulating a full neural discharge) 

LIF refractory time 4 

LIF resistance 1 

LIF capacitance 10 

N
et

w
o

rk
 

in
it

ia
lis

at
io

n
 SWC weight range Minimum -0.1 and maximum +0.1 

SWC radius 2.5 times the network size scaling factor54 

SWC positivity rate 0.755

S
T

D
P

 

A positive/A negative 0.001 

τ positive/τ negative 10 

Weight boundaries Upper bound +2 and lower bound -2 

d
eS

N
N

 Modulation factor 0.8 

Drift positive/negative 0.005 

C
la

ss
if

ic
at

io
n

 kNN k 3 

Number of folds 5 

Training rate 0.7 

54 For example, in the standard MNI template this would be set to 2.5, while in the “MNI_by_3” template it 
would be set to 2.5 × 3 = 7.5. 
55 Research by Hendry et al. (1987) showed that about 70% of neurons in monkeys’ brains are excitatory. 
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6.3.3 MODEL TRAINING AND TESTING PROCEDURE 

Besides the parameter configuration, the general setup of the experiments can greatly 

influence their outcomes. The procedure chosen here was intended to create a robust and 

replicable result by observing best-practice methods from applied machine learning 

(Brownlee, 2020). 

First, the dataset was split into training and test data, with 70% of the samples randomly 

chosen from each class for the training subset and the remaining 30% being held back as the 

test subset. The purpose of this split was to provide an unbiased evaluation. While the 

training subset was used to find the best parameters for the model, the test subset was then 

applied only to the model with the best configuration. The classification accuracy of this final 

test run was then used to compare the model to other algorithms. 

The training subset was further split into training and validation data during a five-fold cross-

validation process. Using this approach, performance measures for the current model 

configuration could be acquired and compared with each other to assess the quality of the 

current set of parameters. Each of the five models built during the cross-validation process 

used four of the five folds to train the model and the remaining fold to validate the model 

by passing the unseen samples through the trained model and predicting their labels. For 

better comparability, all five models were initialised with the same connections created by 

the SWC algorithm. The average of the five results was then reported as the overall result 

for the current model configuration and set of parameters. 

For each set of parameters, this cross-validation process was performed 30 times. Since the 

connections in the network were initialised randomly by the SWC algorithm, each of these 

30 runs had a slightly different network setup. By calculating and reporting the algorithmic 

mean of all 30 runs, it was hoped to minimise the impact of outlier configurations that could 

occur in single runs. With five folds per run and 30 runs, the “averaged overall result” for 

each set of parameters was consequently based on the performance of a total of 150 models. 

The averaged overall results for the different sets of parameters were then compared to each 

other. The configuration that had achieved the highest classification accuracy was chosen to 

perform a final experiment with the test dataset that had been held back until this point. For 

this, the model was trained on the whole training subset and then used to predict the labels 

for the unseen test subset. Like the validation process, this evaluation was also performed 

30 times to create a reliable result. For better reproducibility, the 30 randomly initialised 

networks from the validation step were reused for the evaluation. The algorithmic mean of 

the classification accuracies of these 30 runs was then reported as the final overall result for 



181 

the sound processing system introduced in this thesis. The result was then compared to the 

accuracies of existing models as described in the literature. 

The execution times for each model configuration were also monitored as a performance 

metric. For completeness, and to enable future research, the following information should 

be noted: All experiments were run on a standard PC with an Intel® Core™ i7-8700 CPU 

with 3.20 GHz clock speed, 16 GB RAM, and the Windows 10 64-bit operating system. The 

JNeuCube software was run using the Apache NetBeans IDE 11.3. 
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6.4 RESULTS 

The outcome of the experimental setup described in Section 6.3 were several sets of results 

for the different stages of the modelling process. Firstly, the overall average results of the 

30 runs for the five-fold cross-validation were acquired. These are shown in Table 6-2 and 

visualised in Figure 6-1. The detailed results of the 30 runs for the different network sizes 

can be found in Appendix B, Table B-3 to Table B-10. 

The result of the cross-validation process informed the choice of the best set of parameters 

for the model. Since the experiments described here could only provide an initial evaluation 

of the newly developed sound processing system, only two parameters were considered for 

the optimisation process at this stage. The first parameter was the network size, for which 

16 templates were available, and the second parameter was the LIF threshold, for which 

18 discrete values were chosen. These two parameter dimensions appear as columns and 

rows in Table 6-2. The last column and row show the average classification accuracy for the 

respective parameter. Cell background colours indicate how the values compare to each 

other, with green indicating better performance, yellow indicating average performance, and 

red indicating worse performance. 

Figure 6-1 visualises the numbers from Table 6-2 in a line diagram. As is noticeable from 

both the table and the figure, the values for the classification accuracies range from about 

75% to about 90%. The worst performing template size was “TAL_by_10”, followed by 

“TAL_by_9” and “MNI_by_5”. These were the smallest available template sizes. One 

possible explanation for their comparatively bad performance could be that the number of 

input neurons for these template sizes was also very low, which makes it likely that too much 

information was lost during the data compression step so that the meaningful features of the 

samples were not distinguishable anymore. 

All the larger templates performed at a comparable level between 85 and 90% for LIF 

thresholds greater than 0.9. However, bigger discrepancies existed for lower LIF values. 

Notably, there was a steep increase in classification accuracy of about 7% for the MNI 

templates between the LIF thresholds 0.01 and 0.02, while a similar surge could be observed 

for the Talairach templates between the LIF values 0.05 and 0.06. Behaviourally, very low 

LIF thresholds would typically lead to more spiking activity in the network, since less 

postsynaptic potential has to be built up by incoming spikes before the neuron would fire. 

This “over-activity” could potentially reduce the distinguishability of the patterns that can be 

detected by the network. If all samples create an abundance of spikes, the significance of 

each of these spikes to identify an individual sample decreases. 
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The highest value for overall classification accuracy that was achieved during the parameter 

optimisation process was 89.79% for the “TAL_by_6” template with a LIF threshold of 0.3. 

However, the best-performing template overall was “MNI_by_3” with an average 

classification accuracy of 88.39% and the best-performing LIF threshold was 0.15 with an 

average accuracy of 86.02%. Since the purpose of the optimisation process was to identify 

the best model configuration, and the best accuracies were found to be very similar, it was 

decided to run the test dataset on the five best models instead of just on the best one. The 

five chosen values, as well as the best average values for the two parameter dimensions, are 

highlighted in bold font and with a cell border in Table 6-2. The classification results for 

these five model configurations using the test dataset are shown in Table 6-3. 

TABLE 6-2: CLASSIFICATION RESULTS FOR THE EXPERIMENT ON THE SPOKEN DIGIT 

RECOGNITION DATASET. ALL VALUES ARE GIVEN IN %. 

Size MNI Talairach Ø 

LIF by 3 by 4 by 5 by 6 by 7 by 8 by 9 by 10  

0.01 80.03 79.89 83.96 76.97 78.05 78.36 76.98 78.05 79.04 

0.02 87.75 86.69 85.06 79.51 79.07 78.62 76.56 75.62 81.11 

0.03 88.85 87.11 84.93 77.65 77.60 78.89 77.46 80.41 81.61 

0.04 89.25 87.11 85.33 79.01 77.58 79.17 75.57 82.52 81.94 

0.05 88.46 87.62 85.53 78.71 81.45 81.21 82.28 78.92 83.02 

0.06 88.63 86.92 85.78 84.74 85.88 84.64 85.52 77.88 85.00 

0.07 89.12 87.45 85.47 86.09 85.06 86.12 85.81 78.39 85.44 

0.08 88.98 88.14 85.33 86.44 85.95 86.72 85.14 79.00 85.71 

0.09 88.69 88.56 85.11 87.64 86.60 87.34 82.28 80.07 85.79 

0.10 88.30 88.65 84.45 87.42 86.84 86.75 81.22 79.55 85.40 

0.15 89.65 87.79 84.17 88.25 87.60 89.11 84.36 77.22 86.02 

0.20 89.45 87.31 83.67 88.33 89.72 88.47 83.50 76.44 85.86 

0.25 89.34 87.19 83.51 89.33 88.55 87.36 83.45 75.37 85.51 

0.30 89.10 86.70 83.41 89.79 87.46 87.15 83.64 75.53 85.35 

0.35 88.67 87.22 83.66 89.19 87.49 87.78 83.17 76.00 85.40 

0.40 89.12 86.53 83.56 88.91 87.46 87.33 83.46 75.33 85.21 

0.45 88.80 86.52 83.52 88.72 87.49 87.43 83.68 75.36 85.19 

0.50 88.76 86.73 83.43 88.90 87.08 87.25 83.56 75.09 85.10 

Ø 88.39 86.90 84.44 85.31 84.83 84.98 82.09 77.60 84.32 
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FIGURE 6-1: CLASSIFICATION RESULTS FOR THE EXPERIMENT ON THE SPOKEN DIGITS DATASET. 
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TABLE 6-3: CLASSIFICATION ACCURACIES FOR THE FIVE BEST SOUND PROCESSING

MODELS ON VALIDATION AND TEST DATA. 

Template name LIF threshold Validation accuracy Test accuracy 

MNI_by_3 0.15 89.65% 90.52% 

MNI_by_3 0.2 89.45% 89.86% 

MNI_by_3 0.25 89.34% 90.04% 

TAL_by_6 0.3 89.79% 89.77% 

TAL_by_7 0.2 89.72% 90.03% 

Interestingly, the classification results for the test dataset were slightly better than those for 

the cross-validation. The reason for this could be that more training data were available for 

this final test of the model since 70% of the samples were used for training instead of just 

4/5 of these 70% during the cross-validation. The best accuracy that could be achieved for 

the sound processing model was 90.52% for the “MNI_by_3” template with a LIF threshold 

of 0.15. 

Besides the reported classification results, it is also evident from both Table 6-2 and 

Figure 6-1 that the results for the largest template sizes are missing. This is because running 

the respective experiments on the available hardware resulted in memory errors – there was 

simply not enough RAM space for the network data to be processed. Table 6-4 summarises 

the execution times for all experiments and notes which template sizes could not be run. The 

execution times are summarised by template size because batch processing the experiments 

meant that runtimes for single LIF values were not recorded. However, it was anecdotally 

noted that lower LIF values seemed to have an increased execution time. One explanation 

for this observation could be that lower thresholds led to increased spiking activity since 

fewer signals were needed to excite the neurons sufficiently to fire. This increased activity 

required more computational processing steps and hence more time. 

As an additional note, the runtime for the cochlear encoding was, on average, 25 minutes 

and 7 seconds per sample. The encoding involved many calculations and thus required 

considerable CPU capacity so it was parallelised across the available four CPU cores to speed 

up the process. In contrast, the classification experiments required large memory capacity to 

store the current state of the network, which is why 16 GB RAM were not enough to run 

the larger templates even though encoded data were available for them. 
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TABLE 6-4: RUNTIMES OF EXPERIMENTS ON SPOKEN DIGITS DATASET BY BRAIN

TEMPLATE. 

Brain template Number of neurons Runtime 

TAL_orig 1,527,747 Memory error 

TAL_by_2 192,600 Memory error 

TAL_by_3 56,770 Memory error 

TAL_by_4 23,550 Memory error 

TAL_by_5 12,150 Memory error 

TAL_by_6 7,199 12 d 16 h 35 m 22 s 

TAL_by_7 4,452 6 d   7 h   5 m 51 s 

TAL_by_8 2,960 3 d 16 h 44 m 41 s 

TAL_by_9 2,086 2 d   3 h 42 m 25 s 

TAL_by_10 1,525 1 d   6 h 34 m 59 s 

MNI_times_2 1,932,848 Memory error 

MNI_orig 241,606 Memory error 

MNI_by_2 30,182 Memory error 

MNI_by_3 8,907 6 d 13 h 36 m 18 s 

MNI_by_4 3,747 2 d   6 h 12 m 37 s 

MNI_by_5 1,939 1 d   3 h 37 m 13 s 

The execution times for the models were also considered when choosing and recommending 

the best model configuration. While larger templates generally performed better, they also 

required considerably more training time. Depending on the application area, slightly lower 

accuracies could be acceptable as a trade-off for much faster execution times. 

Interestingly, the Talairach templates were much slower than the MNI templates, even if the 

number of neurons in the network was comparable. No feasible explanation for this 

discrepancy could be found so investigating this further was identified as a topic for future 

research. 
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6.5 DISCUSSION 

In this section, the results of prior works in the field of sound recognition are compared to 

the results of the sound processing system presented in this thesis. Automated sound 

recognition encompasses a wide array of problems, from environmental sound classification 

over music recognition and speaker identification to transcribing continuous speech, to name 

a few. The sub-field of speech recognition, even if narrowed down to just spoken digit 

recognition, has been extensively researched and a vast amount of literature with reports of 

systems and results is available. This discussion, therefore, focused on only those works that 

were thematically close to the sound processing system presented here. This means that for 

the purpose of this discussion, papers had to: 

• Use a biologically inspired algorithm and, preferably, an SNN; 

• Report results on either the FSDD, the TIDIGITS dataset, or a comparable dataset; 

and 

• Employ a similar experimental setup with separate validation and test data to ensure 

the reliability of the results; 

to be considered for comparison with the work presented here. The restriction to focus on 

biologically inspired methods stemmed from the observation that a large amount of work 

had been done on more conventional methods like Hidden Markov Models (Afify et al., 

2009; Rabiner et al., 1989; Spille, Kollmeier, & Meyer, 2017; Stowell, Benetos, & Gill, 2017), 

time series classification (Gee, Garcia-Olano, Ghosh, & Paydarfar, 2019), or Convolutional 

and Deep Neural Networks (Çakır, Parascandolo, Heittola, Huttunen, & Virtanen, 2017; 

Harshita & Adiga, 2018; Hinton et al., 2012; McLoughlin, Zhang, Xie, Song, & Xiao, 2015; 

Ren et al., 2018; Sharmin, Rahut, & Huq, 2020; Sinha, Awasthi, & Ajmera, 2020; C.-Y. Wang 

et al., 2020). These methods generally focused on achieving high classification accuracies and 

optimal parameter tuning. In contrast, the objective of the work presented in this thesis was 

to mimic parts of the biological hearing process and to assess if such a system was feasible, 

so a comparison with work that had similar objectives was considered more meaningful. 

Furthermore, several comparable algorithms and methods were identified that had been 

evaluated on datasets from domains other than spoken digit recognition (Cerezuela-

Escudero et al., 2016; Graves et al., 2013; Higgins, Stringer, & Schnupp, 2018; Holmberg et 

al., 2007; Lyon, Ponte, & Chechik, 2011; Näger, Storck, & Deco, 2002; Namarvar, Liaw, & 

Berger, 2001; Storck, Jäkel, & Deco, 2001; Jibin Wu et al., 2020; Xiao & Weibei, 2016) or on 

only a subset of the digits (Higgins, Stringer, & Schnupp, 2017). While these methods were 

biologically inspired and thus fit the first criterion, it was difficult to draw conclusions from 
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comparisons with application areas where the data differed greatly. Lastly, the classification 

approach described in the papers had to satisfy the minimum criterion of using separate 

training and test data. Encouragingly, no peer-reviewed papers were found that did not meet 

this requirement. 

In total, 15 papers were identified that matched the three criteria outlined above. These 

papers are summarised in Table 6-5, which also contains a brief statement about the methods 

and datasets that were used in those works and what accuracies were achieved. Since only 

very few papers could be found that evaluated their methods on the FSDD, three more 

datasets were considered here that also contained spoken utterances of ten or eleven56 digits: 

TIDIGITS (Leonard, 1984), the digits subset of the TI-46 dataset (Doddington & Schalk, 

1981), and Aurora-2 (Hirsch & Pearce, 2000). 

All of the included papers describe biologically inspired signal processing methods that were 

used to some extent to classify the spoken digit datasets. Some of these works used encoding 

methods that were inspired by the functioning of the cochlea. For example, three research 

groups used a passive ear model developed by Lyon (1982), while two used a silicon cochlea 

sensor that was developed as a piece of hardware simulating the cochlea (S.-C. Liu et al., 

2014). However, none of the works used the cochlear model by Zilany et al. (2014) that was 

used in the sound processing system presented in this thesis. 

Furthermore, none of the identified literature made use of a tonotopic mapping approach. 

The majority of the identified works described novel, biologically inspired signal 

classification methods that were based on the functioning of SNN or similar methods like 

Liquid State Machines (Maass, Natschläger, & Markram, 2002). In contrast, as an extension 

of conventional SNN, the architecture presented in this thesis was designed to be three-

dimensional and brain-shaped to enable a signal mapping procedure that was based on 

tonotopy. The system, therefore, evaluated a unique approach for processing auditory 

signals. 

With regards to the performance of the system presented here, its accuracy of 90.52% 

compares well with that of the papers in Table 6-5, although it is at the lower end of the 

range. While this approach could not outperform other methods in the domain of speech 

processing, its merit lies in its ability to easily integrate other modalities like visual signals as 

described in Chapter 8. The system’s good performance on the FSDD data is an added 

benefit and a promising sign for an expected good performance of the combined audio-

visual system.  

56 Datasets with eleven digits contain both “oh” and “zero” for the digit 0. 
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TABLE 6-5: OVERVIEW OF WORKS FROM THE LITERATURE THAT ARE COMPARABLE TO THE SOUND PROCESSING SYSTEM . 

Reference Method Dataset Accuracy 

Dibazar, Song, Yamada, and Berger (2004) Dynamic synapse neural network TIDIGITS 85.10% 

Graves, Eck, Beringer, and Schmidhuber (2004) Long short-term memory recurrent neural network 
TIDIGITS 

TI-46 digits 

98.90% 

98.00% 

Verstraeten et al. (2005) Lyon passive ear model and Liquid State Machine TI-46 digits 99.50% 

Schrauwen et al. (2007) Lyon passive ear model and Liquid State Machine TI-46 digits 95.00% 

Wade, McDaid, Santos, and Sayers (2010) SNN with LIF neurons TI-46 digits 95.25% 

Abdollahi and Liu (2011) Silicon cochlea sensor and Support Vector Machine TIDIGITS 95.58% 

Schafer and Jin (2014) Spike-based feature detector and Support Vector Machine Aurora-2 ~95% 

Y. Zhang et al. (2015) Lyon passive ear model and Liquid State Machine TI-46 digits 99.79% 

Tavanaei and Maida (2017a) Multi-layer SNN with LIF neurons Aurora-2 96.00% 

Tavanaei and Maida (2017b) SNN with Izhikevich neurons Aurora-2 90.80% 

Anumula, Neil, Delbrück, and Liu (2018) Silicon cochlea sensor and Phased Liquid State Machine TIDIGITS 91.25% 

Dong, Huang, and Xu (2018) SNN with LIF neurons and Support Vector Machine TIDIGITS 97.50% 

Li and Príncipe (2018) LIF-based spike generator and Reproducing Kernel Hilbert Space TI-46 digits 95.23% 

Jibin Wu, Chua, Zhang, et al. (2018) Self-organising map with SNN TIDIGITS 97.40% 

Iranmehr, Shouraki, Faraji, Bagheri, and Linares-Barranco (2019) SNN with ionic liquid space FSDD ~74 % 
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Interestingly, Y. Zhang et al. (2015) also investigated the influence of network size on the 

classification performance and found that larger networks achieved higher accuracies. While 

their network design was different from the one presented in this thesis, it is encouraging 

that the same trend could be identified in the experiments described in this chapter. 

Another noteworthy finding of this brief literature review was that about half of the papers 

were published in the last five years. This indicates that the topic of using biologically inspired 

methods for sound processing systems is gaining traction and more development can be 

expected in the near future. 
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6.6 CHAPTER SUMMARY 

This chapter presented an experiment on a novel biologically inspired sound processing 

system using the Free Spoken Digits Dataset for spoken digit recognition. Two parameters 

of the system were optimised during the experiment, LIF threshold and network size. The 

best performance was achieved on the “MNI_by_3” template with a LIF threshold of 0.15, 

which classified 90.52% of the test samples correctly. With regards to Research Question 3a 

in Section 1.3, which asked about the comparative performance of the model, it was found 

that more specialised sound processing typically performed only slightly better than the 

model tested here. Furthermore, Research Question 3c, which asked about the influence of 

network size on system performance, can be answered affirmatively. While it was found that 

templates with more neurons generally performed better than those with fewer neurons, they 

also required more processing time. This trade-off between accuracy and required 

computational resources must be considered when choosing the best processing system for 

the desired application.  

 

In future work, one way to improve the system’s classification accuracy could be to widen 

the parameter search and find a better configuration for the model. The two parameters that 

were optimised here, LIF threshold and network size, only formed a starting point for an 

initial evaluation of the model, and to the best of the thesis author’s knowledge, no structured 

analysis has been performed on how the parameters of the JNeuCube influence its 

performance. It would then also be an interesting question to investigate if the model 

generalises well to datasets from other domains since the configuration that was found here 

might only be optimal for the FSDD. 

Another means of improving the sound processing model in the future could be to include 

some form of simulation of the auditory pathway in the system. Higgins et al. (2018) found 

that for their setup, including the auditory pathway significantly improved their results. Since 

this step was skipped in the sound processing model presented here, it might also be a 

worthwhile aspect of future research. 

From a computational standpoint, the system could be improved in the future by adding a 

perceptual filter before the encoding step. The chosen filter would also have to be based on 

relevant biological features so that it would add tangible value to the architecture. 
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7 BENCHMARKING 

THE VIDEO PROCESSING SYSTEM 

 

“There should be no combination of events for which the wit of man cannot conceive an explanation.” 

– Sherlock Holmes in The Valley of Fear 

 

7.1 CHAPTER OVERVIEW 

This chapter describes how the video processing model introduced in Section 5.4 was applied 

to a benchmark dataset in the domain of gesture recognition. The performed experiment 

aimed to evaluate the capabilities of the proposed model and to gain insight into potentially 

suitable model parameter configurations by comparing different setups using the same 

benchmark data and computer hardware. The chapter first describes the criteria which were 

applied when choosing the dataset. This is followed by a detailed explanation of how the 

dataset was analysed with the model. Subsequently, the results of the experiments are 

presented, and conclusions are made about the model and its optimal configuration. The 

chapter closes with a short discussion of the advantages and shortcomings of the model 

compared to other published work using the same or similar datasets, in an effort to answer 

Research Question 3a that was asked in Section 1.3. 



193 

7.2 DATASET SELECTION AND DESCRIPTION 

The dataset used for the experiments on the video processing model was carefully selected 

to provide the best possible evaluation of the model’s capabilities with respect to the 

objectives of this thesis. There are hundreds of video datasets available in the public domain 

that cover different tasks, topic areas, collection modalities, and purposes. Therefore, the 

search was very quickly narrowed down using several criteria. 

Firstly, the domain to which the dataset belonged should reflect natural processes that could 

easily be integrated with audio data. Since the dataset for the combined audio-visual system 

had already been chosen at this point and contained five sign language signs and their 

equivalent spoken words, a dataset for the visual experiments that resembled signed words 

or hand gestures was desirable. Secondly, to fully assess the capabilities of the model, the 

selected data should be both dynamic and in colour. Since the retinal encoding module 

transformed the differences of two subsequent frames into spikes, a dataset consisting of 

only static images, or videos with hardly any movement, would not be suitable here. Videos 

in colour instead of greyscale were also preferable so that the newly developed colour 

encoding algorithm could be evaluated. Finally, from a computational standpoint, the dataset 

should be usable for a benchmarking and classification task so that the results achieved with 

the video processing system presented in this thesis could be compared with other 

architectures and models from published works. Further to this point, it would be favourable 

if the dataset had been used in several previous studies to facilitate this comparison. 

Applying all of these criteria meant that well-known, highly-cited datasets (Chaquet, 

Carmona, & Fernández-Caballero, 2013) like Weizmann, KTH, or CAVIAR could not be 

used for this experiment because they lacked critical features. For example, the Weizmann 

dataset (Gorelick, Blank, Shechtman, Irani, & Basri, 2007) shows full-body shots of people 

performing different actions, which was not deemed useful for studying hand gestures. The 

KTH dataset (Laptev, 2004) was rejected for this experiment because the videos were 

recorded in greyscale, and the CAVIAR dataset (Fisher, Santos-Victor, & Crowley, 2005) 

showed multiple people in the same frame, which also made it unsuitable for the experiments 

performed here. 

Narrowing down the search to “video hand gesture recognition datasets” yielded far fewer 

potentially suitable dataset candidates. Table 7-1 shows the name, reference, special feature, 

number of samples, and number of classes of five datasets that were considered for the 

experiment presented in this chapter. They were shortlisted because they had received 
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comparatively high numbers of citations (Ruffieux, Lalanne, Mugellini, & Abou Khaled, 

2014) or seemed prominent in search results on Google Scholar and Scopus. 

TABLE 7-1: OVERVIEW OF SHORTLISTED GESTURE RECOGNITION DATASETS. 

Name Reference Special feature Samples Classes 

ChaLearn 
Guyon, Athitsos, Jangyodsuk, 

and Escalante (2014) 

One-shot learning 

task 
54,000 8-12 

Cambridge 
T.-K. Kim, Wong, and 

Cipolla (2007) 

Varying 

illumination 
900 9 

EgoGesture 
Yifan Zhang, Cao, Cheng, 

and Lu (2018) 

First-person 

(egocentric) view 
24,000 50 

JESTER 
Materzynska, Berger, Bax, 

and Memisevic (2019) 
Crowd-sourced 150,000 27 

Keck Jiang, Lin, and Davis (2012) Military gestures 294 14 

 

The dataset that was identified as being most suitable for the experiment conducted on the 

video processing system was the JESTER dataset because it was expected to present a bigger 

challenge than the other four datasets. The JESTER dataset contains almost 150,000 videos 

of 25 gestures and two non-gesture classes that were collected by over 1,300 different crowd-

sourced actors in their homes, resulting in a huge diversity of people and video backgrounds. 

According to its creators, this makes it the largest freely available gesture recognition dataset 

to date (Materzynska et al., 2019). The files were published as a series of JPG images that 

represented the frames of the collected videos. Therefore, they had to be reassembled into 

MP4 video files by the thesis author before they could be entered into the retinal encoding 

module. With a frame rate of 12 fps, each video was roughly three seconds long and 

contained about 35 frames. The files were downloaded from the project website 

(https://20bn.com/datasets/jester/v1) on 23rd June 2020 for the experiments described in 

this chapter. 

In this experiment, only five of the available 25 gestures were used. Exemplary still images 

of each class are shown in Figure 7-1. These classes were selected because they most closely 

resembled signed words from New Zealand Sign Language, which was the study subject of 

the combined audio-visual experiment described in Chapter 8. The five gestures chosen here 

visually matched the five sign language words that were used in Chapter 8. The “drumming 

fingers” class of the JESTER dataset closely resembled the sign for “who”, the “stop sign” 

https://20bn.com/datasets/jester/v1
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class the sign for “stop”, the “thumb up” class the sign for “up”, the “thumb down” class 

the sign for “down”, and the “zooming out with two fingers” class the sign for “bird”. The 

intent behind this selection was to provide a task from which plausible predictions could be 

inferred for the combined audio-visual model and to reduce the computational complexity 

of the experiments. 

FIGURE 7-1: EXEMPLARY STILL IMAGES OF THE FIVE CLASSES FROM THE JESTER

DATASET THAT WERE USED FOR THE EXPERIMENT . 

Furthermore, only 100 samples were randomly chosen for each class to reduce the required 

computational effort and to create a more biologically realistic challenge for this initial 

evaluation of the video processing system. In nature, the human brain would not typically 

expect several thousand samples of the same gesture before being able to reliably recognise 

this gesture. However, the creators of the JESTER dataset noted that the classification 

accuracy for their model plummeted when the number of training samples was greatly 

reduced (Materzynska et al., 2019). This meant that the classification accuracy for the 

experiments described in this chapter was expected to be lower than that of comparable 

models reported in the literature that had used more training samples. On the other hand, a 

better-than-expected result would support the hypothesis that the computational model 

described in this thesis might exhibit biological, brain-like characteristics. In any case, the 

reduced computational complexity resulting from these constraints was expected to be 

beneficial in the search for the best parameter configuration of the model, since more 

experiments with different settings could be performed on the available hardware. 
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7.3 EXPERIMENTAL SETUP 

As for the experiments with the sound processing system, the goal of this experiment was to 

find an optimum parameter configuration for the model so that the best results could be 

compared to other models that had used the same dataset. Since the model’s architecture 

offered a variety of parameters that were all to some extent related to each other and 

influenced the model’s performance, it first had to be decided which of them to optimise 

based on the amount of knowledge that could be gained from studying them. This section 

first discusses the three steps required to enter the data into the model, followed by the 

parameters for the neural network itself and finally the experiment’s training and testing 

procedure. 

7.3.1 DATA PREPARATION 

Preparing the video data before it could be entered into the neural model required three steps 

that were discussed in detail in Section 5.4. The following paragraphs describe how these 

steps were applied in practice for this experiment. 

In the first step, converting the video data to spikes, the retinal encoding module compared 

the pixel properties of two subsequent frames and tried to capture the video’s dynamic 

characteristics in spike sequences. Figure 7-2 shows an example of the encoding module on 

a sample of the “drumming fingers” class. The code for the retinal encoding module can be 

found in Appendix A, Listing V. The frames were processed by a peripheral greyscale 

encoding algorithm (function get_frame_diff_as_spikes in the code) and the focal centres of the 

frames were also processed by a foveal colour encoding algorithm (function get_fovea_spikes). 

This focal centre was moved to the most active region of the frame after each frame change 

(as part of the function get_block_spikes). 

The two algorithms first quantified the differences between the pixels in the two frames and 

then used a thresholding function to determine if a so-called “pixel spike” should be created. 

The pixel spikes were then summarised into blocks that were systematically arranged across 

the frame. Again using a thresholding function, a “block spike” was created for each block 

that had more spikes per pixel in its area than there were pixel spikes per pixels in the whole 

frame (functions get_block_spikes and get_block_fovea). This concept of a dynamic block 

threshold was adapted from the sound processing system, where it had led to good model 

performance. However, the results from the first set of experiments with the video 

processing system were not as good as expected (45% accuracy – for more details see 
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Section 7.4). Therefore, it was decided that a range of fixed block threshold values should 

also be tested, with separate parameters for the periphery and the fovea. 

FIGURE 7-2: EXAMPLE SCREENSHOT OF THE ENCODING MODULE WITH A SAMPLE OF

THE “DRUMMING FINGERS” CLASS. LEFT: THE ORIGINAL VIDEO WITH OVERLAID

BLOCK BOUNDARIES. CENTRE: THE PIXEL SPIKES CREATED BY THE FOVEAL COLOUR

ENCODING. RIGHT: THE PIXEL SPIKES CREATED BY THE PERIPHERAL GREYSCALE

ENCODING. 

An additional but minor computational restriction that stemmed from the arrangement of 

blocks across the frame was that all videos had to have the same frame ratio. Since all videos 

had a height of 100 pixels (Materzynska et al., 2019), and the majority of the videos had a 

width of 176 pixels, the desired frame ratio was fixed at 16:9. When selecting the 500 sample 

videos for the experiments described here, videos that did not match this ratio were discarded 

and a different video was randomly selected instead. The finally selected videos were then 

converted into spike matrices using the encoding module in Appendix A, Listing V. 

In the second step of the data preparation, the mapping phase, these spikes were entered 

into the brain-shaped network model in a biologically plausible way based on data from 

retinotopy studies. This step covered two aspects, number and location of neurons. While the 

locations could be determined using the retinotopy data as described in Section 5.4.4, the 

number of neurons was dependent on the size of the SNN. All 16 template sizes described 

in Section 5.2.3 were used in this experiment with the required numbers of visual input 

neurons that were calculated as described in Section 5.4.3. As for the sound processing 

system, an examination of the relevant literature showed that the influence of network size 

on the performance of the SNN model is not very well understood. Therefore, network size 

was chosen as a parameter for optimisation for the experiments described in this chapter. 

The available network configurations were based on two different brain atlases, MNI and 

Talairach, and contained between 1,525 and 1,932,848 neurons. For the varying numbers of 

input neurons, their locations were generated by combining the retinotopy data with the 
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block summarisation algorithm as shown in the code in Appendix A, Listing VIII. The aim 

of this process was to map pixel coordinates in the video frames to the locations of 

processing neurons in the network. 

The block summarisation algorithm was part of the third step, compressing the encoded 

spike data. This step was described in detail in Section 5.4.5 and was performed on the video 

dataset used in this experiment because the 100 × 176 pixels in the data could not be fed 

directly into the varying numbers of input neurons in the network templates. The block 

numbers and sizes that were defined for each template were, however, based on the frame 

ratio of the videos in this dataset. During this step, it was found that for the largest five 

template sizes, there were more block levels defined than could be applied to the videos in 

the dataset. Since the size of the blocks decreased towards the centre of the frame by the 

scaling factor described in Section 5.4.5, the final block levels contained blocks that were 

calculated to be smaller than one pixel in width or height. Therefore, no data could be 

encoded for the TAL_orig, TAL_by_2, TAL_by_3, MNI_times_2, and MNI_orig 

templates. However, based on the experience from Chapter 6, where it was found that the 

larger networks could not be simulated with the available hardware, this limitation was not 

anticipated to influence the outcome of the experiments described in this chapter. 

The three steps described above are mainly related to data encoding and input into the model. 

Equally important is the configuration of the network, which also had to be specified before 

the experiment could be run. The model parameters of the network are described in the 

following section. 

7.3.2 NETWORK MODEL PARAMETERS 

In addition to the network size and the two block threshold values used for the encoding, 

which were already identified as variable parameters for the visual processing model, the 

JNeuCube software contained several more settings that could be altered to modify the 

model’s behaviour. A detailed discussion of the available parameters and their purpose is 

provided in Section 5.2.2, while this section focuses on the values that were optimised here. 

The first factor that was explored when designing the network was the neuron type and its 

properties. As for the sound processing system, the two types of neurons that were 

considered for the experiment here were LIF neurons (Brunel & van Rossum, 2007) and 

Izhikevich neurons (Izhikevich, 2003). For the LIF threshold, the same 18 values were used 

as for the experiments described in Chapter 6 for better comparability: 
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

For the Izhikevich neurons, only the “F” property, which was described as being found in 

the “most common type of excitatory neuron in mammalian neocortex” (Izhikevich, 2004, 

p. 1064), was used for the experiments here. Since all types of Izhikevich neurons had

performed poorly in the sound experiments, and the architecture and general setup of the 

experiments on the video data were very similar to those of the sound data, Izhikevich 

neurons were not expected to achieve very good results here either. Therefore, the 

experiments focused on exploring the LIF thresholds in addition to the network sizes. 

Further to optimising the neuron type and properties that were used for the network, the 

video experiments had the added complexity of having to identify optimum values for the 

block threshold parameters in the retinal encoding module. These optimisation experiments 

were largely performed on only the MNI_by_5 template to reduce the computation times 

needed for these experiments. Based on the findings from the experiments on sound data 

described in Chapter 6, larger networks performed better than smaller networks when all 

other parameters were left unchanged, and it was hoped that this improvement could also 

be observed here. The MNI_by_5 template was chosen because, for the sound experiments, 

the group of MNI templates had achieved higher classification accuracies than the Talairach 

templates while only needing about half the training time for the same number of neurons. 

The first set of experiments on the video processing system used a dynamic threshold for 

the two block threshold parameters of the retinal encoding module, based on a concept that 

was created for the signal compression step in the sound processing model. Further to this 

approach, ten fixed values were also tested for each of the two block thresholds: 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

As for the sound experiments, the rest of the model parameters that mainly concerned the 

network architecture were set to values that had proven successful in prior studies with the 

same system setup (Kasabov et al., 2016). This also facilitated better comparability of the two 

models. An overview of the chosen values is provided in Table 7-2, while an explanation of 

their meaning and rationale for default values can be found in the general description of the 

network parameters in Section 5.2.2. 
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TABLE 7-2: NETWORK MODEL PARAMETERS FOR THE EXPERIMENT ON GESTURE 

RECOGNITION. 

Category Parameter name Value 

N
eu

ro
n

 m
o

d
el

 LIF reset voltage 0 (simulating a full neural discharge) 

LIF refractory time 4 

LIF resistance 1 

LIF capacitance 10 

N
et

w
o

rk
 

in
it

ia
lis

at
io

n
 SWC weight range Minimum -0.1 and maximum +0.1 

SWC radius 2.5 times the network size scaling factor 

SWC positivity rate 0.7 

S
T

D
P

 

A positive/A negative 0.001 

τ positive/τ negative 10 

Weight boundaries Upper bound +2 and lower bound -2 

d
eS

N
N

 Modulation factor 0.8 

Drift positive/negative 0.005 

C
la

ss
if

ic
at

io
n

 kNN k 3 

Number of folds 5 

Training rate 0.7 

 

7.3.3 MODEL TRAINING AND TESTING PROCEDURE 

The experimental procedure of the experiments using the video data largely followed that of 

the sound data, with the exception that additional experiments were performed on only the 

smallest network templates to find an optimal set of block threshold parameters for the 

retinal encoding. The employed procedure followed best-practice methods from applied 

machine learning research (Brownlee, 2020), with separate training, validation, and test data. 

Thirty per cent of the video samples were randomly chosen and held back as the final test 

data, while the remaining 70% were used to train and optimise the model using the five-fold 

cross-validation method. The best-performing model configurations were then used to 

classify the test data. 
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As for the sound experiments, all five models that were built for one run of the cross-

validation were initialised with the same randomly created connections (but then fed samples 

from the varying four folds that were used for training). That way, the model results could 

be more easily averaged and compared. This cross-validation process was then performed 

30 times for each set of parameters, where each of the 30 runs used a new arrangement of 

randomly created initial network connections so that the effects of outlier configurations 

could be minimised. The reported averaged cross-validation results were thus based on 

150 different models. 

There were five stages of experimentation for finding the optimum set of parameters, 

mainly focused on the retinal encoding module. Since there was no theoretical knowledge 

available on the newly developed algorithms and how their parameters would affect the 

performance of the model, it was one objective of the experiments described in this chapter 

to explore this area further. In the first stage of the experimentation, the initial configuration 

of the retinal encoding as described in Sections 5.4.1 and 5.4.2 was used. After these had not 

produced satisfactory results, in the second stage another set of parameters was tested, 

which was based on trying to match the spike rates that were found by Paulun et al. (2018) 

to achieve good results in their experiments. Since the system architecture by Paulun et al. 

was similar to the one proposed in this thesis, it was hoped that matching their system 

behaviour would improve the model’s performance. The values chosen for the peripheral 

and foveal pixel thresholds were 25 and 5, respectively, while the two block thresholds were 

left at 0.0. While this did improve the performance of the model on the JESTER dataset 

studied here, the results were still lower than expected. Therefore, in the third stage of the 

experimentation, it was decided to reset the two pixel thresholds to the values that were 

originally identified as being most biologically plausible in Sections 5.4.1 and 5.4.2. A grid-

search-like process was then employed to test a series of values for the two block threshold 

parameters since these could not be based on biological observations. During this stage, 

experiments were only performed on the smallest template size, MNI_by_5, to reduce the 

required hardware capacity and computation time. The third stage of experiments showed 

that there was likely no universally applicable best set of parameters that could be used going 

forward. The results (see Section 7.4) did not show a clear winner and the performance 

differences were not statistically significant. A compromise was found by selecting final 

parameters that were both biologically plausible and achieved comparatively good results. 

These values, 0.3 for the peripheral block threshold and 0.5 for the foveal block threshold, 

were then used in the final two stages of the experimentation. In the fourth stage, the 

encoded data were passed into network models that had been initialised with the Izhikevich 

Type F neurons as described in Section 7.3.2. For these experiments, all 16 network template 
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sizes were used. The purpose of this set of experiments was to explore if any improvements 

could be achieved by changing the neuron type since all previous experiments had been 

performed on LIF neurons. However, this was not found to be the case. Therefore, the fifth 

stage again focused on experimenting with LIF neurons. In combination with the data 

encoded using the identified threshold parameters for the retinal encoding, all 16 network 

sizes were tested in this stage in an effort to investigate if the improvements seen with 

increasing network size in the sound experiment could be replicated with the video data. 

While the results were still not as good as had been hoped, the experimentation and 

parameter search were finalised at this point. Based on the extensive, yet ultimately 

unsuccessful procedure, it was expected that significant performance improvements could 

only be achieved through major redevelopments of the retinal encoding module that included 

more biologically plausible mechanisms. 

The experiments from the final stage again followed the cross-validation procedure that had 

been used for the sound experiments described in Chapter 6. The five best-performing 

models were then chosen to be tested on the unseen 30% of the samples that had been held 

back from the beginning. For both the cross-validation and the final test, 30 experiments 

were run for each model configuration based on LIF threshold and network size. The results 

of this classification (and of those of the other stages of experimentation) are reported in 

Section 7.4. 

As for the sound processing system, the execution times for each model configuration were 

monitored as a performance metric. All experiments were run on a standard PC with an 

Intel® Core™ i7-8700 CPU with 3.20 GHz clock speed, 16 GB RAM, and the Windows 10 

64-bit operating system. The JNeuCube software was run using the Apache NetBeans

IDE 11.3. 
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7.4 RESULTS 

This section presents the results of the experiments on the JESTER gesture recognition 

dataset. While the focus here lies on the outcome of the five stages of experimentation and 

the overall averaged cross-validation accuracies, the detailed results for each of the models 

can be found in Appendix B, Table B-11 to Table B-60. As for the sound processing model, 

the experimental results in the diagrams and tables are usually shown dependent on the 

network template size and the LIF threshold. One exception to this are the experiments in 

the third stage, where only the MNI_by_5 template was used for optimisation and the results 

depended on a retinal encoding parameter. The second exception in the diagram layout is 

the set of experiments using the Izhikevich neurons, which were only performed on one type 

of neuron with no variable neuron parameters and, thus, only depended on the network size. 

All result diagrams used the same scale for the accuracy values for better comparability. 

Since the retinal encoding module is an original contribution of this thesis, its behaviour with 

different sets of parameters was explored in detail during the experiments on the JESTER 

dataset. In the first set of experiments, the data samples were encoded using the pixel 

thresholds determined in Sections 5.4.1 and 5.4.2 in combination with dynamic block 

thresholds, copying an approach that had shown promising results in the sound processing 

model. However, as can be seen in Figure 7-3, the performance of this model was poor, with 

classification accuracies ranging from about 35 to about 45%.57 With five classes of samples, 

this equates to roughly twice the accuracy of a by-chance selection. The best-performing 

model was TAL_by_5 with a LIF threshold of 0.5, which achieved 44.47% accuracy. Both 

TAL_by_5 and the threshold of 0.5 were also best-performing on average. However, the 

differences to the other network templates and thresholds were minimal. The distinguishably 

worst-performing template was MNI_by_3, but unlike what had been found in the sound 

experiments, no clear relationship between size and outcome could be identified. There was 

also no statistically significant difference between the accuracies of the LIF thresholds, as 

calculated using a t-test with p = 0.05. 

57 The detailed results of all experiments performed with these parameters can be found in Appendix B, 
Table B-11 to Table B-19. 
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FIGURE 7-3: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON THE GESTURE RECOGNITION DATASET USING DYNAMIC RETINAL BLOCK 

THRESHOLDS. 
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In an effort to replicate the promising results that had been achieved by Paulun et al. (2018) 

using a similar system architecture, the thesis author decided to consider the spike rates of 

the retinal encoding module when choosing parameters. In the Paulun paper, the spike rates 

of the encoding module were reported to be directly related to the classification accuracy, 

with the best performance achieved when the spike rate was around 32% and the block 

threshold was set to 0. In both the Paulun system and the system developed here, a block 

threshold of 0 causes any spiking pixel in the block to also create a spike for the whole block 

in that time step. Therefore, in the second stage of experimentation on the JESTER dataset 

with the system presented in this thesis, this spiking behaviour was replicated to test if this 

would improve the performance of the model. 

The two block thresholds were set to 0 and the peripheral pixel threshold was increased from 

its initial value of 3 to 25 to reduce the spike rate to an average of 41.2%. The foveal pixel 

threshold was left at 5, which produced an average spike rate of 54.2%. An overview of the 

spike rates, results, and the number of block levels per template size is shown in Figure 7-4.58 

The grey bars show the number of block levels in the retinal encoding for each template; 

their corresponding axis is on the right side of the diagram. The blue diamonds and orange 

circles show the peripheral and foveal spike rates, respectively, while the green triangles show 

the overall averaged classification accuracy for each template. Result values were not available 

for the largest three template sizes because these could not be modelled using the available 

hardware. However, the samples could be encoded into spike files so spike rates for these 

templates were included in the diagram. Since the retinal encoding algorithm presented in 

this thesis did not contain randomised variables, the spike rates would only change if the 

dataset was changed. 

Interestingly, both the peripheral and the foveal spike rate increased when the number of 

block levels decreased. This was likely caused by the circumstance that with fewer block 

levels, the blocks were also larger and thus contained more pixels, which in combination with 

a block threshold of 0 meant that each pixel spike would directly create a block spike and 

less filtering was applied. At the same time, there was also a slight decrease in classification 

accuracy with increasing spike rate. This means that the dependencies found by Paulun et al. 

(2018) could not be confirmed in this experiment. 

58 The exact values can be found in Appendix B, Table B-20. 
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FIGURE 7-4: SPIKE RATES AND RESULTS FOR THE VIDEO PROCESSING SYSTEM WHEN

TRYING TO REPLICATE THE BEHAVIOUR OF A SIMILAR SYSTEM . THE RIGHT AXIS

APPLIES TO THE NUMBER OF BLOCK LEVELS AND THE LEFT AXIS APPLIES TO THE 

OTHER THREE DATA SERIES. 

The averaged results per template and LIF threshold are shown in Figure 7-5 and the detailed 

results can be found in Appendix B, Table B-21 to Table B-29. As with the first set of 

experiments using the dynamic block thresholds, the accuracy differences between the 

models were not statistically significant (calculated using a t-test with p = 0.05). However, 

they were slightly better than the experiments using the dynamic thresholds, with most 

accuracy values ranging from 41% to 46%. The best-performing model was TAL_by_5 with 

a LIF threshold of 0.06, which achieved 48.78% accuracy. TAL_by_5 was also the best-

performing network template on average, whereas the best-performing LIF threshold was 

0.07. As for the sound experiments using the dynamic block threshold, the differences 

between network templates and LIF thresholds were minimal and not statistically significant 

(again using a t-test with p = 0.05). However, a slight downwards trend could be noticed in 

the lower threshold range that was also found in the sound experiments. 
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FIGURE 7-5: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON THE GESTURE RECOGNITION DATASET USING RETINAL ENCODING 

THRESHOLDS THAT ATTEMPTED TO MATCH THE SPIKING BEHAVIOUR OF THE SYSTEM INTRODUCED BY PAULUN ET AL. (2018).
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As these results were still not as good as expected, the next stage of experimentation aimed 

at finding an optimum pair of block threshold values. A simple grid search mechanism was 

employed for this explorative search that looked at ten different values each for the 

peripheral and the foveal block thresholds. However, changing the peripheral block 

threshold did not yield noticeable performance improvements, so the initial plan of a full 

exploration of the quadratic parameter space was abandoned. Instead, both parameters were 

tested separately. In all experiments performed during this stage, the peripheral and foveal 

pixel thresholds were fixed at 3 and 5, respectively. These two values were identified in 

Sections 5.4.1 and 5.4.2 as being most biologically plausible. Setting biologically inspired 

parameters to values that were derived from neurological observations had already proven 

to be a good approach for the cochlear encoding as part of the sound processing system. 

Therefore, this principle was also followed here since no other source was available that 

could inform the choice of parameters for the video processing system. 

The results of the two sets of block threshold experiments are shown in Figure 7-6 and 

Figure 7-7. Since all experiments were performed on the same network template, MNI_by_5, 

the data series in the diagram show the threshold values and not the template sizes. When 

optimising the peripheral block threshold, the foveal block threshold was fixed at 0.0, while 

for the foveal optimisation, the peripheral block threshold was fixed at 0.3. Detailed results 

for these experiments can be found in Appendix B, Table B-30 to Table B-50. 

Looking at Figure 7-6, it becomes apparent that, unfortunately, the peripheral block 

threshold does not seem to have a big influence on the classification accuracy of the model. 

Most values range between 38% and 45%, with no statistically significant outliers (calculated 

using a t-test with p = 0.05). While the best-performing individual model with 45.23% 

classification accuracy had a peripheral block threshold of 0.7 and a LIF threshold of 0.5, the 

on average best-performing block threshold was 0.3 and the best LIF threshold was 0.3. 

Although the differences between peripheral block thresholds were minimal, it was decided 

to use the value 0.3 for further experimental exploration. No previous theoretical work could 

inform the choice of this parameter, so the anecdotally highest value was chosen. 

The next set of experiments aimed at finding a good foveal block threshold. The results of 

these experiments are shown in Figure 7-7. They look slightly more promising than those of 

the peripheral optimisation, with most classification accuracies ranging from 40% to 50%. 

The best accuracy of 51.45% was achieved with a foveal block threshold of 0.9 and a LIF 

threshold of 0.35. On average, the highest accuracies could be seen for a foveal block 

threshold of 0.9 and a LIF threshold of 0.3. However, a t-test with p = 0.05 showed that 

there was no statistically significant difference between the accuracies of these experiments. 
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Interestingly, the highest value that was tested for the foveal block threshold performed best 

in this experiment. This indicated that higher accuracies could be achieved if most of the 

foveal pixel spikes were removed. This unexpected observation sparked the question about 

the usefulness of the colour encoding mechanism in the retinal encoding module. As an 

attempt to introduce more biological plausibility, does it also manage to improve the 

performance of the model? This question was answered with a set of experiments where the 

foveal encoding mechanism was deactivated in the source code of the retinal encoding. 

Samples were thus only transformed into spikes using the peripheral greyscale encoding. The 

models that were then trained on these new samples performed better than most other 

models where the samples had been encoded with the foveal colour encoding mechanism. 

The results of these new models are shown as a pink line in Figure 7-7. Their average 

classification accuracy was 48.80%. 

Although a t-test showed that this result was not significantly (p = 0.05) better than that of 

the models including the foveal colour encoding, it does provide an anecdotal indication that 

the retinal encoding mechanism as it is used in the system presented in this thesis might work 

better if it only operated on greyscale videos. Including the foveal colour encoding when 

transforming the video samples does not improve the classification abilities of the final 

system. The findings of these two sets of experiments also indicated that the algorithms in 

the retinal encoding module would need to be reconsidered in future work, preferably by 

including more biologically plausible mechanisms. While tweaking the block threshold 

parameters could not achieve the expected performance improvements, revising the 

algorithm might. 

For the last two stages of experimentation, a value of 0.5 was used for the foveal block 

threshold. This value had achieved the second-highest classification accuracy of 49.00%, 

after the accuracy of 49.06% for a threshold of 0.9. It was decided to keep the foveal 

encoding in the system at this point because it was a novel contribution of this thesis and 

further investigation intended to provide a more robust conclusion on its capabilities. 
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FIGURE 7-6: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON THE GESTURE RECOGNITION DATASET USING ONLY THE SMALLEST TEMPLATE

SIZE AND DIFFERENT VALUES FOR THE PERIPHERAL BLOCK THRESHOLD . 
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FIGURE 7-7: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON THE GESTURE RECOGNITION DATASET USING ONLY THE SMALLEST TEMPLATE

SIZE AND DIFFERENT VALUES FOR THE FOVEAL BLOCK THRESHOLD .
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Drawing from the findings in the previous experiments, the fourth stage of experimentation 

then deviated in the network’s neuron type. Instead of using LIF neurons, the models in 

these experiments were created using Izhikevich neurons with the property labelled “F” by 

Izhikevich (2004). The four previously identified retinal encoding parameters were used as 

fixed values and models were built using all available network template sizes. The 

summarised results of these experiments are shown in Figure 7-8 and the detailed values can 

be found in Appendix B, Table B-51. They range from about 41% to about 47% and are 

hence similar to those achieved in the previous experiments using the LIF neurons. However, 

unlike the results of the first two stages of experimentation, it could be observed that smaller 

templates like MNI_by_5, TAL_by_8, and TAL_by_10 performed slightly but significantly 

(t-test with p = 0.05) better than their larger counterparts. This finding could indicate slight 

overfitting of retinal encoding parameters to smaller network sizes since they were optimised 

on only the MNI_by_5 template. Based on these findings in combination with what had 

been observed in the sound experiments described in Chapter 6, it was decided not to 

investigate the Izhikevich neurons further. 
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FIGURE 7-8: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON THE GESTURE RECOGNITION DATASET USING IZHIKEVICH NEURONS. 
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The final stage of experimentation tested if the optimisation results that were achieved on 

the MNI_by_5 template could be transferred to other template sizes. The data samples were 

encoded using the identified retinal threshold parameters: 3 and 5 for the peripheral and 

foveal pixel thresholds, respectively, and 0.3 and 0.5 for their respective block thresholds. 

The neurons in the models were again LIF neurons, so different firing thresholds were tested 

for the models in addition to all available template sizes. Figure 7-9 visualises the averaged 

cross-validation results of these experiments, which are also shown in Table 7-3. The detailed 

results of the 30 runs for each model configuration can be found in Appendix B, Table B-52 

to Table B-60. The columns and rows in Table 7-3 show the template size and LIF threshold, 

respectively, with the last column and row containing the average classification accuracy for 

the respective parameter. Cell background colours show how the values compare to each 

other, with green indicating better performance, yellow indicating average performance, and 

red indicating worse performance. 

Similar to the experiments using the Izhikevich neurons, it was observed that smaller 

templates performed slightly better than their larger counterparts. This behaviour, which 

stands in contrast to what was found in the sound experiments described in Chapter 6, could 

be caused by overfitting the “optimised” retinal encoding parameters to smaller template 

sizes. Furthermore, the issue of too few input neurons for smaller template sizes, which was 

found in the sound processing model, was not as pronounced in the video processing system, 

since the numbers of input neurons were much higher here. In general, however, the 

differences between template sizes were much smaller than those found in the sound 

experiments. Most accuracy values range from about 45% to 50%. 

One similarity to the results of the sound experiments was that lower LIF thresholds seemed 

to be related to lower classification accuracy, at least for the Talairach templates in the 

experiments performed here. Furthermore, it was observed that the training times of these 

models were longer than those with higher LIF thresholds. One possible explanation for this 

could be that lower LIF thresholds lead to an “over-activity” in the network, which impeded 

the neural network’s ability to extract meaningful information from single spikes and 

extended the required computational processing time. 
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FIGURE 7-9: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON THE GESTURE RECOGNITION DATASET USING THE OPTIMISED RETINAL BLOCK

THRESHOLDS. 
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TABLE 7-3: CLASSIFICATION RESULTS FOR THE FINAL EXPERIMENT ON THE GESTURE 

RECOGNITION DATASET. ALL VALUES ARE GIVEN IN %. 

Size MNI Talairach Ø 

LIF by 3 by 4 by 5 by 5 by 6 by 7 by 8 by 9 by 10  

0.01 41.53 43.53 47.28 39.79 40.73 39.55 41.07 38.62 42.51 41.62 

0.02 45.33 44.80 46.32 40.08 40.66 41.92 40.79 39.64 42.36 42.43 

0.03 45.88 45.90 47.00 42.06 44.07 44.06 46.00 40.40 45.97 44.59 

0.04 44.69 47.44 47.45 44.65 45.29 45.36 46.10 42.99 46.63 45.62 

0.05 45.94 47.64 47.61 45.38 46.27 46.88 46.55 45.19 46.74 46.47 

0.06 45.45 48.45 48.84 45.80 47.13 46.93 46.53 46.08 48.05 47.03 

0.07 46.12 48.49 47.87 45.97 46.84 47.95 48.12 46.19 48.33 47.32 

0.08 46.15 46.94 48.61 45.98 47.40 48.03 49.26 46.68 46.99 47.34 

0.09 45.80 48.91 49.16 46.41 46.55 47.62 48.39 47.29 48.02 47.57 

0.10 46.41 47.85 48.62 47.92 46.07 48.18 49.41 47.17 48.11 47.75 

0.15 44.45 47.15 49.64 48.20 45.02 48.37 49.31 48.25 47.63 47.56 

0.20 44.56 48.00 50.16 46.85 45.21 48.80 48.79 48.61 48.56 47.73 

0.25 44.66 47.50 50.29 47.30 46.76 49.60 48.59 49.08 48.92 48.08 

0.30 43.94 47.95 49.93 46.50 46.63 49.57 50.31 48.81 50.68 48.26 

0.35 44.87 48.02 50.22 48.07 46.41 50.55 50.07 50.08 51.35 48.85 

0.40 44.60 47.90 49.41 47.38 45.80 49.75 49.42 49.32 49.69 48.14 

0.45 44.34 48.32 48.76 46.38 46.67 49.65 48.83 48.50 50.46 47.99 

0.50 44.32 48.79 49.47 47.10 45.97 50.15 49.70 48.08 49.65 48.14 

Ø 44.95 47.42 48.70 45.66 45.53 47.38 47.63 46.17 47.81 46.80 

 

All results of the five stages of experimentation described in this section were based on a 

five-fold cross-validation procedure, which provided an initial indication of the models’ 

performance with a chosen set of parameters. As a next step, the best-performing models 

were then used to label the unseen samples that had been held back from the beginning. 

Since the results of the cross-validation were very similar, the best five models were chosen 

instead of just the best one. The accuracy values of the five chosen models, as well as the 

best average values for the two parameter dimensions, are highlighted in bold font and with 

cell borders in Table 7-3. The classification results that were achieved on the test dataset by 

these five models are shown in Table 7-4. 
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TABLE 7-4: CLASSIFICATION ACCURACIES FOR THE FIVE BEST VIDEO PROCESSING

MODELS ON VALIDATION AND TEST DATA . 

Template name LIF threshold Validation accuracy Test accuracy 

TAL_by_7 0.35 50.55% 49.17% 

TAL_by_8 0.3 50.31% 49.35% 

TAL_by_10 0.3 50.68% 49.33% 

TAL_by_10 0.35 51.35% 49.42% 

TAL_by_10 0.45 50.46% 50.48% 

The best accuracy that could be achieved for the video processing model was 50.48% for the 

“TAL_by_10” template with a LIF threshold of 0.45. For all models except the last one, the 

classification results for the test data were slightly worse than those achieved during the 

cross-validation process. One possible explanation for this could be overfitting to the 

training data and, thus, limited generalisability of the models. 

Running the retinal encoding software was substantially faster than the cochlear encoding 

process. Transforming all 500 samples for one template size took about five minutes. This 

circumstance facilitated and encouraged the parameter search process for the retinal 

encoding module. In contrast, the training times for the video models were about twice as 

long as that of the sound models, with larger network templates taking longer than smaller 

ones. However, no detailed runtimes were recorded since the video experiments were run in 

batches that were not separated and timed. 

As for the sound experiments, the models based on the larger template sizes could not be 

run on the available hardware due to restrictions in RAM space, which resulted in memory 

errors. 16 GB were not enough to execute the current Java implementation of the NeuCube 

on network templates with more than 12,150 neurons. However, in contrast to the sound 

processing system, the video experiments could be run for the TAL_by_5 template, which 

added a set of models to the experiments. 

The results for the video processing system were worse than expected and no best model 

configuration could be recommended at this stage. Instead, the results suggest that further 

work needs to be done to make the retinal encoding more robust and find better values for 

its parameters. 
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7.5 DISCUSSION 

This section critically evaluates the results that were achieved with the visual processing 

system developed in this research on the selected JESTER gesture recognition dataset. It 

first gives an overview of works from the literature that used the same dataset to evaluate 

their models and then discusses briefly approaches for improving the system presented here 

in the future. 

The JESTER dataset was set up as a benchmark by its creators, who made an effort to 

provide an easily accessible infrastructure to keep track of achieved results. On their website 

(https://20bn.com/datasets/jester/v1) anyone who has trained a model on the available 

data using the provided training and validation sets can upload their labels for specially 

provided test data. These labels are then assessed automatically and the results are published 

on the JESTER website. Some of the earlier benchmark attempts by other researchers were 

already included in the original publication by Materzynska et al. (2019). While the website 

has proven to be very useful in providing verified third-party results, detailed information 

about the employed system architectures is, unfortunately, only included in a minority of 

entries. Further published results on the JESTER dataset were identified by searching for 

works that had cited the paper by Materzynska et al. (2019). Pre-prints were excluded from 

this search because they were not peer-reviewed. Table 7-5 summarises the nine models that 

were found, ordered by ascending accuracy. Entries in the Accuracy column that are written 

in italics were self-reported by the respective authors but not verified by the tool on the 

JESTER website. 

All works made use of some form of neural network to classify the JESTER data and the 

majority of these were convolutional neural networks. One group used a Residual Network 

(ResNet), first introduced by He, Zhang, Ren, and Sun (2016), which is an architecture that 

facilitates the creation and improves the efficiency of very deep neural networks. An 

extension of this architecture, ResNeXt (Xie, Girshick, Dollár, Tu, & He, 2017) was used in 

another of the identified benchmark papers. According to the system design descriptions of 

the selected works, all but one of them focused on capturing the dynamic features of the 

data in their respective system architecture. The exception was the method used by the 

authors of the original paper that introduced the dataset. In this, the authors ran some initial 

experiments using a standard three-dimensional convolutional neural network to set a 

benchmark for other researchers. Three of the identified works created a data encoding 

algorithm that focused on capturing movements. For the remaining six, feature extraction 

https://20bn.com/datasets/jester/v1
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and data interpretation were executed jointly. Three papers specifically mentioned using a 

three-dimensional network architecture.  

TABLE 7-5: OVERVIEW OF WORKS FROM THE LITERATURE THAT REPORTED RESULTS

ON THE JESTER DATASET. 

Reference Method Accuracy 

Materzynska et al. (2019) 
Three-dimensional (3D) convolutional 

neural network (CNN) 
93.87% 

Zhou, Andonian, Oliva, and 

Torralba (2018) 
Temporal relation network 94.78% 

K. Yang et al. (2018) Temporal pyramid relation network 95.34% 

B. Yu, Luo, Wu, and Li (2020) Attentive feature fusion framework 95.77% 

M. Lee, Lee, Son, Park, and Kwak

(2018) 

Motion feature network for encoding 

and ResNet CNN for classification 
96.22% 

Köpüklü, Köse, and Rigoll (2018) 
Motion fused frames for encoding and 

deep CNN for classification  
96.28% 

Jingran Zhang, Shen, Xu, and 

Shen (2020) 
Temporal reasoning graph 96.9% 

Köpüklü, Gunduz, Kose, and 

Rigoll (2020) 

ResNeXt-101 3D CNN with specialised 

feature detector 
96.99% 

Y. Zhang et al. (2020) Deformable ResNeXt 3D CNN 97.1% 

All reported accuracy values were well above 90%, which is a remarkably high correct 

classification rate given the difficulty of the data. However, the highest three reported values 

were not verified by the JESTER website. Still, these values show that the problem presented 

by the dataset is solvable, which naturally raises the question of why the system presented in 

this thesis performed so poorly. 

As the creators of the JESTER dataset, Materzynska et al. (2019) ran a series of experiments 

in which they investigated the relationship between the number of training samples and the 

achieved classification accuracy. They found a direct causality and noted that when they 

reduced the number of training samples to 100 samples per class, their accuracy dropped by 

about a third to 62.4%. Their explanation for this finding was that the huge diversity of video 

backgrounds made it hard for their CNN to generalise from the data and extract the most 
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important features. This means that by reducing the number of training samples in the 

experiments described in this chapter, the difficulty for the classification system was 

inadvertently increased, even though the number of gesture classes was reduced at the same 

time. Therefore, one simple solution that would probably lead to a better performance of 

the system introduced here could be to increase the number of training samples. 

But would this setup still be considered biologically plausible, as was the original goal of the 

work presented in this thesis? In nature, the human brain tends to require low numbers of 

“training samples” before being able to grasp the meaning of a presented stimulus and then 

generalise from those few examples. Arguably, a human would be able to classify all samples 

in the JESTER test dataset correctly after seeing only a handful of videos from the training 

data. The models listed in Table 7-5, although displaying some biologically inspired 

properties like a 3D network design, did not have the declared aim of being biologically 

plausible. It is hence only of limited use to draw inspiration from those systems. Instead, the 

promising but initial characteristics of the video processing architecture presented in this 

thesis should be improved in future work. 

The greatest leverage for this kind of improvement can be expected from modifying and 

enhancing the retinal encoding algorithm for both the signal transformation (modelled after 

the biological process of phototransduction) and the grouping of signals into blocks 

(modelled after receptive fields). Looking at the spikes that were created by the encoding 

module provided a hint as to why the SNN could not classify the encoded data well. From 

visual inspection, there seems to be a lot of “noise” in the spikes, i.e., surplus spikes that are 

likely not directly related to meaningful information in the stimulus, even when using the 

optimised encoding parameters. This can be seen in Figure 7-10, where four spike samples 

are visualised. Black dots in the images represent spikes. The samples were created for the 

TAL_by_5 template and hence contain 128 columns for the input neurons. The first 64 

columns were filled by the peripheral greyscale encoding and the remaining 64 columns were 

filled by the foveal colour encoding. This distinction is highlighted by the red line. The time 

points of the samples are shown as rows in the images. 

While the top two samples belong to the “Drumming Fingers” class (Class 1), the bottom 

two samples belong to the “Stop” class (Class 2). From visual inspection of the classes, it 

seems that there are no obvious commonalities between samples of one class and no 

distinctive variations between samples of different classes. This absence of discriminative 

features in the spike patterns likely impacted the performance of the video processing model. 

The SNN simply could not find patterns because there existed none or only very weak ones 
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in the encoded data, even if they did exist in the original stimuli, as is evident by the 

benchmark results reported in the literature. 

 

FIGURE 7-10: VISUALISATION OF THE SPIKES THAT WERE CREATED BY THE RETINAL 

ENCODING MODULE FROM FOUR SAMPLES OF THE JESTER DATASET FOR THE 

TAL_BY_5 TEMPLATE. 

As identified above, one possible way to address the shortcomings of the model’s 

performance could be to increase the biological plausibility of the encoding and blocking 

algorithms. If the spikes captured the discriminative features of the videos better, a higher 

classification accuracy could be expected. The current retinal encoding module draws on the 

functionality of the Dynamic Vision Sensor, which detects and encodes temporal changes of 
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brightness. However, this is just one property of the multiple functionalities that have been 

observed in retinal ganglion cells (Goebel et al., 2012, p. 1305; Swanston & Wade, 2013, pp. 

137-138).59 For example, the algorithm presented in this thesis does not distinguish between 

magno and parvo retinal cells, even though they play an important role in spatial processing 

(Bruce et al., 2003, pp. 45-47). Furthermore, the encoding algorithm used here has no 

equivalent to the centre-surround receptive fields observed in the retina (Kuffler, 1953). 

Although the blocking algorithm attempted to summarise spatially close signals, the 

distinctive patterns that are created by this mechanism in biology could not be replicated 

here. Lastly, the dynamic nature of the video data might not have been captured as intended. 

Based on suggestions by Paulun et al. (2018), the blocking algorithm attempted to simulate 

saccades by shifting the focus area of the encoding to the most active part of the frame. 

However, the locations of the associated input neurons had to stay static due to 

implementation restrictions of the JNeuCube software, effectively eliminating the gained 

improvement. This issue could be addressed in the future by either choosing a different SNN 

model implementation or by connecting more than the required number of blocks to the 

static input neurons and then only sending signals through the dynamically activated 

channels. 

 

  

 
59 See Section 3.3.1 for a more detailed discussion. 
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7.6 CHAPTER SUMMARY 

This chapter presented an experiment on a novel biologically inspired video processing 

system using the JESTER gesture recognition dataset. Several system parameters were 

optimised during the five stages of experimentation. The best performance was achieved on 

the “TAL_by_10” template with a LIF threshold of 0.45, which classified 50.48% of unseen 

test samples correctly. With regards to Research Question 3a in Section 1.3, which asked 

about the comparative performance of the model, it was found that all other studied models 

from literature performed much better than the model tested here. Research Question 3c, 

which asked about the influence of network size on model performance, could also not be 

answered affirmatively using the experimental setup in this chapter. It was found that most 

model configurations performed within a similar accuracy range, which was only about twice 

as good as by-chance selection. Even though the visual processing model did not perform as 

expected, it still constitutes an important part and necessary first step of the combined audio-

visual model, which is evaluated in Chapter 8. It was concluded that the retinal encoding 

module should be revised in future work to include more biologically plausible mechanisms. 
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8 PROTOTYPING 

THE AUDIO-VISUAL SYSTEM 

 

“Life is infinitely stranger than anything which the mind of man could invent.” 

– Sherlock Holmes in A Case of Identity 

 

8.1 CHAPTER OVERVIEW 

The final set of experiments that were performed for the work presented in this thesis ties 

back to its initial intention of studying the perception of language and semantic concepts as 

described in Section 1.2. In the experiments described in this chapter, language data 

consisting of speech files and gesture videos were analysed using the combined audio-visual 

processing system. The dataset that was used here contained five signs from New Zealand 

Sign Language (NZSL) and their equivalent spoken words. The data were encoded into 

spikes using the cochlear and retinal encoding modules described in Sections 5.3.1, 5.4.1, and 

5.4.2. The spikes were then mapped into their respective tonotopic and retinotopic locations, 

as described in Sections 5.3.3 and 5.4.4, but this time, both sound and video data were entered 

into the same network model and analysed together. 
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As for the two unimodal sets of experiments described in Chapters 6 and 7, a classification 

task was performed on the dataset and different parameter settings were compared. This 

chapter first describes how the dataset was created and how it was analysed with the model. 

In addition to classifying the combined data, the speech and sign samples were also modelled 

separately to evaluate if their combination improved the unimodal classification accuracies. 

The results of these three experiments are presented and conclusions are made about the 

model and its optimal configuration. Furthermore, the trained networks are visualised to 

assess which neurons and connections in the SNN were activated by the data and if any 

insights could be drawn from the observed patterns. The chapter closes with a discussion of 

the advantages and limitations of the model and an outlook on its potential future use cases. 
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8.2 DATASET CREATION AND DESCRIPTION 

No dataset was publicly available that combined signed videos of NZSL with their spoken 

word equivalents. Therefore, the dataset that was used for the experiments described in this 

chapter was created as part of this research from videos of five signs that were recorded by 

the thesis author. The corresponding speech samples were taken from the Tensorflow 

Speech Commands dataset (Warden, 2018), which was downloaded from 

download.tensorflow.org/data/speech_commands_v0.02.tar.gz on 21st October 2019. 

Sign languages are a group of languages that are used by the Deaf60 community and contain 

only visual components. These include manual signs and fingerspelling, but also lip 

movements, facial expressions (used, for example, to distinguish between a statement and a 

question), and body movement. Sign languages are usually based on the spoken language in 

the region in which they were developed – evident, for example, in lip movements that 

support the manual signs and follow the mouth shape of the spoken word. However, the 

grammar and sentence structure of sign languages is different from that of the related spoken 

language and no direct conversion is possible. 

As part of her PhD programme, the thesis author attended a two-semester course called 

“New Zealand Sign Language and Deaf Culture” to immerse herself more in the topic area 

and gain a deeper understanding of the functioning and usage of NZSL. Based on British 

Sign Language, NZSL was developed by hearing-impaired New Zealanders with European 

heritage and later enriched by Māori concepts. Due to its history of suppression in the 

country’s classrooms until the 1980s, several regional variants formed across the country. 

In 2006, NZSL became the third official language of New Zealand, which has improved the 

accessibility of the Deaf community to government and community services. As part of this 

recognition, an interactive NZSL dictionary was created and is maintained by Victoria 

University of Wellington that today contains over 4,500 entries (McKee, McKee, Pivac 

Alexander, Pivac, & Vale, 2011). 

The five signs that were used for the experiment described in this chapter were chosen in 

conjunction with the gestures included in the JESTER dataset studied in Chapter 7. The 

classes in the JESTER dataset were compared to signs from NZSL and five matching 

gestures were found. The initially chosen words for the experiment described in this chapter 

were “bird”, “down”, “stop”, “up”, and “who”. However, the Tensorflow Speech 

Commands dataset, which was the source of the equivalent spoken words, did not contain 

 
60 While the capitalised term Deaf is used to refer to the cultural identity of hearing-impaired people and other 
sign language users, the lower-case term deaf is used to describe the hearing ability. 

http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
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the word “who”. Therefore, this class was replaced with the sign and the spoken word “tree” 

as both “tree” and “who” are signed in a similar position of the body frame and both contain 

movement of the whole hand. The final chosen signs, “bird”, “down”, “stop”, “tree”, and 

“up”, were then signed and recorded by the thesis author based on the videos from the 

NZSL dictionary. Pictograms of these five signs and links to their dictionary videos are 

shown in Table 8-1. Each sign was repeated 50 times during the recording and the layout of 

the videos (plain, light background while wearing a plain, dark t-shirt) was intended to match 

that of the videos in the dictionary. The frame size of 320 × 180 pixels was chosen to match 

the frame size ratio of 16:9 that was already used in the video experiments described in 

Chapter 7. This meant that the developed block numbers and layouts could be reused. The 

dataset was made publicly available on GitHub at https://github.com/AnneWendt/PhD-

thesis/NZSL/videos. 

https://github.com/AnneWendt/PhD-thesis/NZSL/videos
https://github.com/AnneWendt/PhD-thesis/NZSL/videos
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TABLE 8-1: THE FIVE WORDS SELECTED AS A DATASET FOR THE SIGN LANGUAGE

EXPERIMENT. 

Word Sign pictogram Link to video 

Bird https://www.nzsl.nz/signs/4508 

Down https://www.nzsl.nz/signs/5737 

Stop https://www.nzsl.nz/signs/425 

Tree https://www.nzsl.nz/signs/1299 

Up https://www.nzsl.nz/signs/5767 

https://www.nzsl.nz/signs/4508
https://www.nzsl.nz/signs/5737
https://www.nzsl.nz/signs/425
https://www.nzsl.nz/signs/1299
https://www.nzsl.nz/signs/5767
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8.3 EXPERIMENTAL SETUP 

The main goal of the exploratory evaluation study described in this chapter was to test if 

combining the auditory and visual modalities was plausible and if the combination could 

improve the classification accuracy of the system compared to its two unimodal forms. For 

this, three experiments were performed: one on just the sound data, one on just the video 

data, and one on the combined audio-visual data. As a secondary objective, the best 

parameter configuration for the combined model was sought. This section first describes 

how the data were combined and entered into the three models. This is followed by an 

overview of the fixed and variable model parameters and, finally, the training and testing 

procedure of the experiments. 

8.3.1 DATA PREPARATION 

The procedures for preparing the sound and video data largely followed those of the 

unimodal sound and video experiments as described in Sections 6.3.1 and 7.3.1. The sound 

and video files were first converted into spikes using their respective encoding methods and 

identified parameters. However, for the combined model, the encoded signals had to be 

temporally aligned before they could be entered into the network. The theoretical design 

considerations of this process were described in detail in Section 5.5.2 and the corresponding 

code can be found in Appendix A, Listing IX. 

The different setup of two encoding algorithms caused the sampling rate of the sound files 

to be much higher than that of the video files. Since this discrepancy could lead to a 

dominance of the auditory signals in the network, attempts were made to both shorten the 

sound files and elongate the video files. Using the method described in Section 5.5.2, the 

length of the sound files was reduced by about 38%, while each spike in the video files was 

repeated three times, effectively slowing down the presentation speed of the visual data to 

the network. Two corresponding files were then combined into one sample that was entered 

into the network as a semantic unit. An example of such a combined spike file is visualised 

in Figure 8-1. The vertical axis represents the index of the input neuron into which the signals 

were entered. Since the sample shown in the figure was taken from data that was used for a 

model built with the MNI_by_4 template, the first ten rows show auditory input and the 

remaining 39 rows show visual input.61 The horizontal axis shows the time steps (i.e., data 

points) of the sample and each black dot in the diagram represents a spike. 

 
61 The numbers of auditory and visual input neurons were calculated based on volumetric ratios as described 
in Sections 5.3.2 and 5.4.3. 
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FIGURE 8-1: COMBINED SAMPLE OF SOUND AND VIDEO DATA FOR A NETWORK 

MODEL USING THE MNI_BY_4 TEMPLATE. 

After all data for the three experiments were encoded, they had to be mapped into the neural 

network models. For the two unimodal experiments, the same procedure as described in 

Sections 6.3.1 and 7.3.1 was used. However, for the combined files, the locations had to be 

merged since only one file containing the locations of the input coordinates could be passed 

into the JNeuCube software. This was done by simply appending the location file used for 

the visual system to the end of that used for the auditory system. The given coordinates in 

the combined location file then corresponded to the neuron indices shown in the vertical 

axis of Figure 8-1. No further processing was needed in this step because the brain shape of 

the network facilitated a straightforward, biologically plausible spatial integration of the two 

modalities. 

8.3.2 MODEL PARAMETERS 

As for the unimodal auditory and visual processing models, there were a variety of 

parameters that could be adjusted in the experiments described here. For the encoding of 

the sound data, the parameters that were identified as being most biologically plausible were 

used. These can be found with a detailed explanation in Section 5.3.1. For the video 

encoding, the experiments in Chapter 7 showed that more work needed to be done to find 

the most suitable set of pixel and block threshold parameters. However, a set of encoding 

parameters was identified that was deemed best for the investigated data. For better 

comparability, the experiments described in this chapter used the same values as for the final 

experiment in Chapter 7. These values are summarised in Table 8-2. 

Also, for better comparability and because little is known about their influence on the model 

performance, all parameters related to the network model were kept the same as for the 

experiments described in Chapters 6 and 7. These values are summarised in Table 8-3. 
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TABLE 8-2: RETINAL ENCODING PARAMETERS FOR THE EXPERIMENT ON THE SIGN 

LANGUAGE DATASET. 

Parameter Value 

Peripheral pixel threshold 3 

Peripheral block threshold 0.3 

Foveal pixel threshold 5 

Foveal block threshold 0.5 

 

 

TABLE 8-3: NETWORK MODEL PARAMETERS FOR THE EXPERIMENT ON THE SIGN 

LANGUAGE DATASET. 

Category Parameter name Value 

N
eu

ro
n

 m
o

d
el

 LIF reset voltage 0 (simulating a full neural discharge) 

LIF refractory time 4 

LIF resistance 1 

LIF capacitance 10 

N
et

w
o

rk
 

in
it

ia
lis

at
io

n
 SWC weight range Minimum -0.1 and maximum +0.1 

SWC radius 2.5 times the network size scaling factor 

SWC positivity rate 0.7 

S
T

D
P

 

A positive/A negative 0.001 

τ positive/τ negative 10 

Weight boundaries Upper bound +2 and lower bound -2 

d
eS

N
N

 Modulation factor 0.8 

Drift positive/negative 0.005 

C
la

ss
if

ic
at

io
n

 kNN k 3 

Number of folds 5 

Training rate 0.7 
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Another conclusion that was drawn from both the sound and the video experiments was 

that Izhikevich neurons (Izhikevich, 2003) performed poorly in the given system setup and 

that the threshold of the LIF neurons (Brunel & van Rossum, 2007) typically influenced the 

classification accuracy of the model. For these reasons, the models for the experiments 

described in this chapter contained only LIF neurons and the same 18 threshold values were 

used for parameter optimisation that had been used for the sound and video experiments 

described in Chapters 6 and 7: 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

One major deviation of the system setup that had been used for both the sound and the 

video experiments was that here, only two template sizes were used, MNI_by_4 and 

TAL_by_8. Since parameter optimisation was only a secondary objective for this study and 

the influence of network size had been investigated in the unimodal experiments described 

in Chapters 6 and 7, the focus here was shifted to comparing results of sound, video, and 

combined data. The choice of network template was informed by averaging and comparing 

the results of the two unimodal experiments. Since MNI and Talairach templates had been 

found to behave differently in the unimodal experiments, the on average best-performing 

template was chosen for each type. The best-performing MNI template was MNI_by_4 with 

67.16% accuracy and the best-performing Talairach template was TAL_by_8 with 66.30% 

accuracy.62 Therefore, only these two templates were studied here. Coincidentally, both were 

medium-sized, with MNI_by_4 containing 3,747 neurons and TAL_by_8 containing 2,960 

neurons. Since it was found that the size of the network influenced the model’s performance, 

this circumstance meant that the classification results for the experiments here were more 

easily comparable with each other. 

8.3.3 MODEL TRAINING AND TESTING PROCEDURE 

As for the studies on sound and video data, in the experiments performed here, a five-fold 

cross-validation method was first applied to 70% of the data for the parameter optimisation 

process. Each parameter set was run 30 times and all five models for each run of the cross-

validation were initialised with the same set of connections. The best-performing models 

were then tested on the unseen 30% of samples to provide a robust verification of the results 

(Brownlee, 2020). 

62 The detailed values for the averaged results can be found in Appendix B, Table B-61. 



233 

For the optimisation process, three experiments were performed on each of the two network 

templates: one on just the sound data, one on just the video data, and one on the combined 

data. That way, the three setups could be compared and conclusions could be drawn about 

how the modality influenced the results. The unimodal experiments described in this chapter 

also acted as an extension to the findings from Chapters 6 and 7. Similar to those 

experiments, the network parameter that was optimised here was the LIF threshold as 

described in Section 8.3.2. 

The final step in the experiments described here was visualising the trained network models 

to investigate if the five words in the combined dataset activated visibly different patterns. 

For this, a network model that had been trained on all samples of the dataset was replicated 

five times. All samples from only one class were then passed into the model for processing 

and the neural activity in the network was recorded. A “pruning” algorithm that had recently 

been implemented in the JNeuCube software was employed to remove those neurons and 

connections in the network that had not exhibited any activity when presented with these 

selected samples. This meant that only those neurons and connections that were relevant for 

processing a particular word could be visualised. The code for the three-dimensional 

visualisation of the pruned network models can be found in Appendix A, Listing X. 
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8.4 RESULTS 

The averaged cross-validation results of the models built for this study are shown in 

Table 8-4. While rows correspond to the LIF threshold, the columns show the six 

combinations of template size and input data. The last column and row show the average 

classification accuracy for the respective parameter. Cell background colours indicate how 

the values compare to each other, with green indicating better performance, yellow indicating 

average performance, and red indicating worse performance. The detailed results of the 

30 runs for these experiments can be found in Appendix B, Table B-62 to Table B-67. 

Figure 8-2 visualises the values from Table 8-4 in a line diagram. The blue-coloured lines 

with the triangles show the results for the TAL_by_8 models, while the orange-coloured 

lines with the diamonds show those for the MNI_by_4 models. 

TABLE 8-4: CLASSIFICATION RESULTS FOR THE EXPERIMENT ON THE SIGN 

LANGUAGE DATASET. ALL VALUES ARE GIVEN IN %. 

Size MNI_by_4 TAL_by_8 Ø 

LIF audio video combined audio video combined  

0.01 46.79 71.00 55.00 45.94 71.66 50.10 56.75 

0.02 47.77 70.58 62.47 47.44 68.30 48.54 57.52 

0.03 49.91 74.00 62.54 46.60 80.88 49.15 60.51 

0.04 51.65 74.67 65.60 43.37 76.09 48.57 59.99 

0.05 53.16 74.62 67.24 48.86 74.80 61.96 63.44 

0.06 54.79 75.88 68.03 50.62 80.50 65.82 65.94 

0.07 54.49 75.91 70.16 52.52 83.45 68.88 67.57 

0.08 54.82 75.10 69.95 53.62 78.95 69.61 67.01 

0.09 57.04 75.44 71.06 56.20 77.74 69.57 67.84 

0.10 57.75 74.87 72.39 57.93 83.09 71.02 69.51 

0.15 56.59 72.73 73.02 60.19 76.92 75.59 69.18 

0.20 50.59 71.42 71.04 55.52 78.95 74.50 67.00 

0.25 48.57 70.26 71.24 54.10 78.55 75.90 66.44 

0.30 48.19 68.64 69.69 52.34 75.66 76.28 65.13 

0.35 45.60 68.71 69.05 50.13 66.27 76.29 62.67 

0.40 43.27 68.67 67.73 48.70 70.72 74.02 62.19 

0.45 44.19 69.03 67.78 47.11 70.25 73.52 61.98 

0.50 43.46 68.29 66.40 44.62 74.80 72.32 61.65 

Ø 50.48 72.21 67.80 50.88 75.98 66.76 64.02 
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FIGURE 8-2: CLASSIFICATION RESULTS FOR THE EXPERIMENTS ON SPEECH , VIDEO, AND COMBINED DATA FROM THE SIGN LANGUAGE DATASET . 
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As can be seen in both the table and the figure, the classification accuracies varied widely 

from around 40% to just over 80%. Surprisingly, the models trained on only the sound data 

performed much worse than those trained on only the video data. For the experiments 

described in Chapters 6 and 7, where two different datasets had been used, this relationship 

between the two modalities was reversed. 

The highest accuracy of all experiments was 83.45%, which was achieved using the 

TAL_by_8 template on just the video data with a LIF threshold of 0.07. The models using 

this template and input data were also the on average best-performing, with a mean 

classification accuracy of 75.98%. In contrast, the lowest accuracy of all experiments was 

43.27%, which was achieved on the MNI_by_4 template trained on just the sound data with 

a LIF threshold of 0.4. This combination of template and input data was also the worst on 

average with a mean classification accuracy of 50.48%. 

The performance difference between sound and video data in the experiments performed 

here can be explained by the quality of the input data. The Tensorflow speech dataset 

consisted of recordings of numerous people with varying voices, accents, and background 

noise. On the other hand, the video sign dataset was collected by the thesis author with an 

emphasis on good perceptibility, modelled after the videos from the NZSL dictionary. This 

meant that the sound data were relatively “dirty”, while the video data were relatively “clean”, 

which influenced their distinguishability by the models. 

The range of the average LIF thresholds was found to be much smaller than that of the three 

input data types. On average, the best LIF threshold was 0.1 with a mean classification 

accuracy of 69.51% across all six model setups, while the worst LIF threshold was 0.01 with 

an accuracy of 56.75%. While the two models trained on only the sound data had a distinctive 

peak at a threshold of 0.1 and 0.15, the models trained on the video data did not exhibit this 

behaviour and instead stayed comparatively constant. The results of the two combined 

models are characterised by a steady increase in classification accuracy until a LIF threshold 

of about 0.15, where they start to plateau. As briefly discussed in Chapters 6 and 7, lower 

LIF thresholds lead to more spiking activity in the network, which in turn decreases the 

impact of single spikes on the final classification outcome. Higher thresholds, on the other 

hand, support the SNN’s ability to filter out noise and can thus improve the distinguishability 

of patterns and the performance of the model. 

A promising finding of this study was that for some LIF thresholds, the results for the models 

trained on the combined dataset surpassed those of the models that had been trained on 

unimodal data. For each template, four such instances were identified. These are highlighted 

in Table 8-4 by bold font and a cell frame. While the differences for the MNI template are 



237 

very small (≤ 1%), three of the four improvements on the Talairach template were found to 

be statistically significant in a t-test with p = 0.05. These models were better capable to 

identify the patterns in the data when they were trained on both modalities. This indicates 

that in these models, the combination of auditory and visual input data created some level of 

synthesis in which the two modalities supported each other. 

On the other hand, the models where this synthesis could not be observed might not have 

been able to extract the most useful bits of information. An explanation for this behaviour 

could be that too much noise was introduced by the relatively unclean sound data, which 

then adversely affected the distinguishability of the combined samples. The performance of 

the combined models was worst for LIF thresholds smaller than 0.07, which indicated that 

for larger thresholds, the noise that was introduced by the sound component could be filtered 

out by the network. In future work, the experiments combining sound and video data should 

be repeated with datasets that are in comparable states of pre-processing to investigate if the 

models will behave similarly. 

The next step of the result analysis was to identify the two best-performing models for each 

template that were trained on the combined data and use these to label the test samples that 

had been held back until this point. This test accuracy could then be reported as the final 

results of the audio-visual processing system presented in this thesis and compared with 

similar models found in the literature. Since the best classification accuracies were quite 

similar, two models of each template were chosen for this final verification instead of just 

one. The two best MNI_by_4 models were those with LIF thresholds of 0.1 and 0.15 and 

the two best TAL_by_8 models were those with LIF thresholds 0.3 and 0.35. Table 8-5 

shows the classification accuracies of these four models for the cross-validation and test 

processes. The best accuracy that could be achieved with the audio-visual processing model 

on the combined sign language data was 76.98% for the TAL_by_8 template with a LIF 

threshold of 0.35. 

TABLE 8-5: VALIDATION AND TEST ACCURACIES FOR THE TWO BEST MODELS OF 

EACH TEMPLATE THAT WERE TRAINED ON THE COMBINED SIGN LANGUAGE DATA. 

Template name LIF threshold Validation accuracy Test accuracy 

MNI_by_4 0.1 72.39% 74.78 % 

MNI_by_4 0.15 73.02% 76.11 % 

TAL_by_8 0.3 76.28% 75.53 % 

TAL_by_8 0.35 76.29% 76.98 % 
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Especially for the models built with the MNI_by_4 template, the test accuracies were better 

than those achieved during the cross-validation. While a reason for this could be that more 

training data were available for the test (all 70% training samples instead of just 56% during 

the cross-validation), this could not conclusively explain why the same improvement could 

not be observed for the TAL_by_8 models. 

Across the three types of input data that were used for the experiments described in this 

chapter, namely auditory, visual, and combined audio-visual, comparing the accuracies of the 

two brain templates identified further differences. It could be observed that the MNI_by_4 

models performed better with smaller LIF thresholds than the TAL_by_8 models, except 

for the model that had been trained on just video data. For LIF thresholds larger than 0.1, 

this relationship was reversed and the Talairach models performed better than the MNI 

models. 

Further to this accuracy comparison, it was observed that for the combined data, the training 

times of the Talairach models were almost three times as long as those of the MNI models. 

The model execution times, summarised over all tested LIF thresholds for each template and 

type of input data, are shown in Table 8-6. A similar time difference between the MNI and 

Talairach atlases had already been observed in the sound experiments described in Chapter 6, 

where no feasible explanation for this phenomenon could be found. While this difference in 

training times could also be observed in the experiments presented here for the models 

trained on just one data type, it was much more pronounced when using the combined data. 

TABLE 8-6: RUNTIMES OF THE EXPERIMENTS ON THE SIGN LANGUAGE DATASET,

SUMMARISED OVER ALL LIF THRESHOLDS. 

Brain template Input modality Number of neurons Runtime 

TAL_by_8 Audio 2,960 3 d   0 h 30 m 31 s 

TAL_by_8 Video 2,960 6 h 20 m 23 s 

TAL_by_8 Combined 2,960 3 d 22 h 54 m 42 s 

MNI_by_4 Audio 3,747 2 d 20 h 22 m   3 s 

MNI_by_4 Video 3,747 3 h 56 m 43 s 

MNI_by_4 Combined 3,747 1 d 10 h 12 m 35 s 
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The final step of the result analysis was a visualisation of the differences between the five 

signs that comprised the dataset. For this, the best parameter configuration for each template 

was selected to create two models, which were then trained on the full dataset. The 

MNI_by_4 template was used with a LIF threshold of 0.15 and the TAL_by_8 template was 

used with a LIF threshold of 0.35. After the training was completed and the dynamic patterns 

of the data had modified the connections in the network, all samples belonging to one of the 

five classes were passed through the model again for processing. The activity in the network 

that could be observed during this one-time pass of data was recorded for each combination 

of model and class and is visualised in Figure 8-3. All models in Figure 8-3 are shown from 

the left back side of the brain. However, since the SNN models are three-dimensional, they 

are difficult to visualise from just one angle, so more figures viewed from the right, top, and 

back sides of the brain can be found in Appendix B, Figure B-1, Figure B-2, and Figure B-3, 

respectively. The grey dots in the figures represent all neurons in the network template. Blue 

circles around them indicate that they were activated at least once during the one-pass 

presentation, while red crosses mark the input neurons. The blue lines highlight those 

connections that were activated. 

When comparing the visualised activity for the different classes, only very few differences 

could be identified. For example, the class “bird” was the only one that did not evoke a 

connection from the left auditory cortex to the frontal cortex in the MNI_by_4 template. In 

the TAL_by_8 template, the class “tree” was the only one that did not exhibit activity in the 

right auditory cortex. However, even though the activated patterns of neurons and 

connections in the networks looked very similar, they were sufficiently unique for the model 

to identify the correct class label for about three out of four unseen samples. 

While the visible differences between classes were found to be minimal, there is a noticeable 

disparity between the two templates. For the MNI template, neural activity extends across 

all parts of the network, whereas for the Talairach template, it seems to be confined to the 

area around the visual cortex. This observation is likely related to the previous finding that 

the two templates achieved different classification results. The Talairach model might have 

performed better because it put more emphasis on the information in the visual input data 

that was easier to classify. The MNI model, on the other hand, extended the connections 

from the input neurons to other areas of the network. However, no direct route between 

auditory and visual cortices could be found. 
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FIGURE 8-3: VISUALISATION OF THE NEURONS AND CONNECTIONS THAT WERE ACTIVATED FOR THE DIFFERENT CLASSES OF THE SIGN LANGUAGE

DATASET IN FULLY TRAINED MODELS. THE VIEWING ANGLE IS FROM THE LEFT BACK OF THE BRAIN . 
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8.5 INSIGHTS AND ANALYSIS 

The results of the experiments described in this chapter were both surprising and promising. 

Surprising, because the video processing system unexpectedly performed much better than 

the sound processing system, and promising, because combining the two modalities led to 

equal or better classification accuracy compared to their unimodal counterparts. This is an 

encouraging observation that spurs further interest to investigate potential future 

enhancements and use cases that can have an impact on people’s lives. 

Since the NZSL dataset that was used in this experiment was created as part of this research, 

no direct benchmarking comparisons, like those in Chapters 6 and 7, could be performed. 

However, it was possible to evaluate parts of the models with each other and with existing 

works. 

The TensorFlow speech command dataset that formed the sound component of the newly 

created NZSL dataset has been used by more than 300 research groups according to Google 

Scholar, with varying results. The winning group of a Kaggle competition on the TensorFlow 

dataset achieved 91.06% classification accuracy on all 30 words (Kaggle Inc., 2018). In 

contrast, the unimodal sound processing system presented in this thesis achieved a maximum 

accuracy of 60.19% on the reduced dataset with five words. Since the algorithms that were 

used by the Kaggle competition winners were not made public, it can only be speculated that 

they might have been more specialised in the task of speech recognition than the brain-

inspired methods that were used here. Compared to the promising results reported in 

Chapter 6, the decreased performance of the sound processing model that was seen in the 

experiments described in this chapter was possibly caused by the higher difficulty of the 

TensorFlow dataset, which was crowd-sourced by multiple speakers with a large variety of 

accents and background noise levels. In contrast, the data from FSDD, which had been used 

in the sound benchmark experiments described in Chapter 6, were all recorded by the same 

speaker in a noise-free environment. 

Likewise, the improved classification accuracy of the unimodal video processing system 

compared to the results reported in Chapter 7 can probably be attributed to a lower difficulty 

level of the videos that were collected for the NZSL dataset. Their static, light background 

in combination with the signer’s plain, dark clothes as well as the fixed video angle and size 

of the signer meant that these videos were less challenging than those from the JESTER 

dataset used in Chapter 7. 
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As a general conclusion from these observations, both the unimodal sound and video 

processing systems will have to be made more robust before they can be applied in real-life 

settings that naturally exhibit a great stimulus variability. 

On the topic of combining the two modalities, the observed improvements in the recognition 

rate of the bimodal models can be regarded as a biologically plausible feature. Although the 

low accuracy of the auditory model likely impacted the performance of the visual model, the 

classification accuracies of the combined model were closer to those of the better performing 

video model. The combined system learned to put more emphasis on the modality that 

provided more reliable signals for identifying a stimulus. In the same manner, the human 

brain chooses to focus on data from those sensory organs that can deliver more reliable 

information, although a bias towards vision has been observed (Meijer, Veselič, Calafiore, & 

Noppeney, 2019; Witten & Knudsen, 2005). This enhancement of systems that employ 

multimodal cross-over was also reported by other research groups in previous work, mainly 

in the area of speech recognition that was supported by images or videos of lip movements 

(Noda et al., 2015; Rathi & Roy, 2021; Sun, Harwath, & Glass, 2016; Thermos & Potamianos, 

2016). 

Multimodal signal integration has also been applied to the specific area of sign language 

recognition, which was chosen as the application domain for the experiments described in 

this chapter. Several researchers found that combining information from different sensors 

enhanced their systems’ recognition abilities. The underlying architectures used in those 

systems were usually Hidden Markov Models, Liquid State Machines, and Convolutional 

Neural Networks. No brain-inspired or SNN-based approach like the one presented in this 

thesis could be found in the literature. Furthermore, in contrast to the audio-visual system 

presented here, the modalities that were used in the models reported in the literature typically 

included a combination of visual and motion sensors that captured joint positions, 

movement trajectories, and/or 3D depth data. For example, Brashear, Starner, Lukowicz, 

and Junker (2003) developed a wearable translation system for American Sign Language that 

included a hat-mounted camera and a wrist band with an accelerometer, which significantly 

improved the recognition accuracy when combined. The same observations were made for 

Russian (Kagirov, Ryumin, & Axyonov, 2019; Kagirov, Ryumin, Axyonov, & Karpov, 2020), 

Chinese (Kamal, Chen, Li, Shi, & Zheng, 2019; Jihai Zhang, Zhou, Xie, Pu, & Li, 2016), and 

Arabic (Hassan, Assaleh, & Shanableh, 2019) sign languages where data from videos, depth 

sensors, and accelerometers were used. Due to the brain-inspired signal mapping approach 

that was introduced in this thesis, more modalities can be added to the system in the future. 
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For example, information from motion sensors could be mapped into the motor cortex. The 

challenge of this endeavour would then be to find an appropriate encoding mechanism. 

Although the related works that were found in the literature report good results for “sign 

language recognition”, the tasks that were used to assess their models largely consisted of 

“single sign classification”. From a usability point-of-view, these systems are, unfortunately, 

not very well suited to the communication needs of Deaf people, since they are usually 

approached from an engineering perspective with a focus on evaluating algorithms (Bragg et 

al., 2019; Hill, 2020). In this regard, the work by Brashear et al. (2003) is noteworthy because 

it included Deaf people in the design and development process and because the researchers 

tried to classify sequences of signs rather than single signs. There are further efforts to 

address the unique challenges of continuous sign language recognition (Hassan et al., 2019; 

Koller, Forster, & Ney, 2015), which is a more promising approach to real-life usefulness. 

However, these works need to consider linguistic characteristics, which significantly increases 

the difficulty of the problem. While hand gestures, which have conventionally formed the 

datasets used in the more engineering-focused systems, largely represent the vocabulary of a 

given sign language, its grammar and syntax are often coded in non-manual signs such as 

facial expressions, eye gaze, and body position (Caridakis, Asteriadis, & Karpouzis, 2014). 

Therefore, a system for sign language recognition should also be able to capture and interpret 

these linguistic features. In the best case, the final system includes a separate linguistic 

translation unit. 

The audio-visual processing system presented in this thesis can so far create associations 

between spoken words and front-view videos of signers. This means that the system 

automatically captures manual and non-manual signs since the whole upper body is observed. 

Including motion data in future work as suggested above could further improve the 

recognition ability of the visual processing system, for example by capturing more precise 

finger movements. However, to be fully applicable in real-life scenarios, the “audio-visual-

motor system” would need to also contain a forward-backwards language translation module. 

Without this, it can merely connect the observed NZSL signs to words from a related spoken 

language such as English or Te Reo Māori. On the other hand, these observed connections 

suggest that the introduced system architecture can be a promising approach for solving this 

task if the required components are added. 



244 

8.6 CHAPTER SUMMARY 

This chapter presented an experiment on a novel biologically inspired audio-visual 

processing system using a newly created New Zealand Sign Language dataset with auditory 

and visual components. The performance of the models when trained on just one modality 

was compared to that of models trained on the combined audio-visual data. For each of the 

two studied templates, there were four LIF thresholds with which the combined models 

outperformed their singular counterparts. The best-performing combined model was based 

on the TAL_by_8 template with a LIF threshold of 0.35, which classified 76.98% of the 

unseen test samples correctly. The findings of this exploratory proof-of-concept study 

suggest that the capabilities and boundaries of the combined approach should be investigated 

further. 

The research questions that were asked in Section 1.3 in relation to the combination of 

auditory and visual data were attempted to be answered in this chapter. Question 1b asked 

if neurological pathways could also be observed in the computational model. This could only 

be shown partially. While the models built with the TAL_by_8 template did not show any 

activity outside of the areas where the input signals were entered, more “long-distance” 

connections, as well as active connections into other areas of the network, could be observed 

in the models built with the MNI_by_4 template. Question 1c asked which aspects of human 

audio-visual processing could enhance the analysis of sound and video data. The experiments 

in this chapter showed that combining modalities in a biologically plausible way improved 

the classification accuracy of the computational system compared to their unimodal 

counterparts. 
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9 CONCLUSION 

 

“Education never ends, Watson. It is a series of lessons with the greatest for the last.” 

– Sherlock Holmes in The Adventure of the Red Circle 

 

9.1 THESIS SUMMARY 

This thesis described a biologically inspired, computational sound and video processing 

system that enables biologically plausible signal combination in a three-dimensional SNN 

model. Chapter 1 introduced the topic area and presented the motivation for this work. In 

Chapter 2, an early pilot study was described that had been conducted at the beginning of 

the candidate’s PhD studies. The conclusion of this pilot study was that the research direction 

should be adjusted and the focus should be shifted to modelling auditory and visual 

processing of the ears, eyes, and brain. Chapter 3, therefore, looked in detail at the underlying 

biological mechanisms of the hearing and vision processes as well as at the integration of 

multimodal signals in the brain. Chapter 4 then reviewed existing systems for audio-visual 

processing that had attempted to use biologically inspired algorithms. Based on the findings 

from Chapters 3 and 4, a sound and video processing system was developed to include 

multiple biologically inspired features and biologically plausible parameters. The full system 

design is described in detail in Chapter 5. The system was then evaluated on sound, video, 
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and audio-visual data, which was described in Chapters 6, 7, and 8, respectively. Finally, this 

chapter concludes the thesis, answers the research questions, points out the key advantages 

and limitations of the proposed system, and discusses potential future directions for this 

research. 
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9.2 ANSWERING THE RESEARCH QUESTIONS 

This section revisits the research questions that were formulated in Section 1.3. The 

overarching hypothesis that was postulated in this work was that copying biological 

mechanisms in a computational system would result in the demonstration of new behaviour 

and improved performance in audio-visual processing and classification. The main question 

that was asked was: 

How can a computational model of audio-visual information processing be created 

that uses brain-inspired mechanisms to analyse those data, and what can be learned 

from such a model? 

Three focus areas with three sub-questions each were derived to support answering this 

question in a systematic manner. 

(1) The first set of questions looked at the biological inspiration of the system:

a. How can the biological background of audio-visual information perception and

processing inform the design of an audio-visual computational model?

Approaches to answering this question were investigated in Chapter 3 by studying the 

relevant literature from biology and neuroscience. The chapter contains detailed explanations 

of the biological processes involved in the transformation of auditory and visual data, their 

pathways into higher cortical areas, and the extraction of signal characteristics by the auditory 

and visual cortices. The learnings from this literature collection informed the design of the 

model as described in Chapter 5. Several aspects of the biological processes served as 

inspiration for the functionality of the computational model, such as signal encoding, signal 

mapping, and unsupervised learning. 

b. Can neurological pathways of audio-visual information that are observed in the brain

also emerge in a brain-inspired computational model?

As part of the description of biological processes in Chapter 3, Sections 3.2.2 and 3.3.2 also 

look at the pre- and post-cortical signal processing pathways of auditory and visual signals, 

respectively. Section 3.4 then explains how the two modalities are combined through the 

ventral and dorsal processing streams in which the signals are sent from their respective 

cortices to other areas of the brain. These pathways could not be observed in the visualisation 

of the bimodal models that were presented in Chapter 8. While the models built with the 

TAL_by_8 template only exhibited local activity around the input regions of the signals, the 

models built with the MNI_by_4 template showed some neural extensions into other areas 

of the network. It remains an open question and further investigation is needed to see if 



248 

these connections can reliably retain their strength in different network setups or when more 

diverse data is used. 

c. What aspects of the human audio-visual processing system can enhance the analysis of 

audio and video data? 

It was found in the literature summarised in Chapter 3 that both the cochlea and the retina 

employ complex feature extraction mechanisms that are comparable to the pre-processing 

steps in machine learning systems. These enhance the capabilities of the brain to interpret 

the perceived signals. Furthermore, the integration of information from different modalities 

is a key aspect of the brain’s deduction and understanding abilities. Therefore, these 

characteristics were considered to be important for the design of the computational system 

as described in Chapter 5. The feature extraction mechanisms can be found in the encoding 

algorithms, while multimodal operations were facilitated through the network’s spatial layout. 

The experiments described in Chapter 8 showed that the system learned to pick the better 

performing modality when auditory and visual signals were combined. This led to an 

increased classification accuracy when compared to the unimodal systems. 

(2) The second set of questions aimed at creating a suitable system design, which was 

heavily influenced by the findings of the previous answers: 

a. How can audio-visual data be transformed (encoded) into electrical impulses for use in 

a spiking neural network? 

The answer to this question was given in Section 5.3.1 for auditory input data and in 

Sections 5.4.1 and 5.4.2 for visual input data. Both the cochlear and the retinal encoding 

approaches were based on the corresponding biological mechanisms of signal 

transformation. The developed encoding algorithms expect sound and video files as input 

and can convert them into spikes that represent the dynamic features of the input data. 

b. What is a biologically plausibly way to input (to map) sound and visual stimuli into the 

model? 

The network templates that were used to create the SNN models were three-dimensional 

and brain-shaped, which means that locations in the network could be linked back to specific 

areas of the brain. Based on the concepts of tonotopy and retinotopy that are present in the 

brain, auditory and visual signals are reliably mapped into their respective cortical locations 

in a predefined, systematic manner. For the models developed as part of this research, this 

mapping was replicated using data from tonotopy and retinotopy studies, as described in 

Sections 5.3.3 and 5.4.4. Feature channels in the data (frequencies in the sound data and 
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frame segments in the video data) could thus be entered into neurons of the network that 

were located and arranged in biologically plausible parts of the model. 

c. How can the use of both auditory and visual data in one combined model be facilitated 

in a biologically plausible, yet computationally feasible way? 

The shape of the network also facilitated the straightforward combination of the two 

modalities as described in Section 5.5. Since both data types could be entered into the model 

at the same time, only one round of training was necessary to connect the information. 

(3) The final set of research questions was related to the aspect system evaluation: 

a. How does the brain-inspired model perform on sound and video benchmark datasets 

compared to conventional approaches? 

This question was answered in Chapters 6 and 7. The highest classification accuracy that 

could be achieved on a sound benchmarking dataset was 90.52% and the highest accuracy 

for a video benchmarking dataset was 50.48%. While the results of the sound processing 

system were almost as good as those of comparable systems, the video processing system 

performed unexpectedly poorly. The reasons that were identified for this were shortcomings 

in the retinal encoding module and too high a degree of reduction of the training data. 

b. What are the advantages and disadvantages of using biologically plausible encoding and 

mapping approaches for processing audio-visual data? 

The biggest advantage of the proposed system architecture was the straightforward 

integration of multimodal data, which was enabled by the novel, brain-inspired mapping 

approach. The biologically plausible encoding facilitated the extraction of spike-based 

features from the input data, which could then be entered into the spiking neural network. 

Since this work aimed at biological plausibility, limitations in performance on classical 

benchmarking datasets were expected and observed. The system’s classification accuracy on 

the speech dataset was comparatively good but the video data could not be reliably labelled. 

However, the system showed promising results for the combined audio-visual data that can, 

at least in part, be attributed to the chosen signal mapping approach. A more general 

overview of the limitations of the proposed system architecture is given in Section 9.3 and 

potential future directions and applications are summarised in Section 9.4. 

c. Does the size of the neural network influence the learning processes and performance 

of the model? 

This question was investigated as part of the benchmark studies on sound and video data 

described in Chapters 6 and 7, respectively. While a clear relationship between template size, 
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network training time, and classification accuracy could be observed in the sound processing 

system, this was not found in the video system, likely due to its generally poor performance. 

However, for the sound experiment, it was concluded that the choice of network template 

size should be informed by an analysis of the studied data and the expected outcome. There 

needs to be a problem-specific evaluation to verify if the improvement in classification 

accuracy is significant enough to justify the increased training time of the model. Within the 

limitations of the two experiments described in Chapters 6 and 7, it seems that the reduced 

signal information available to the smaller networks is still sufficient for a reasonable 

classification performance of those models. It is unclear why the smaller networks perform 

well in comparison to larger networks or if feature complexity plays a role in this network 

size effect observed herein. Moreover, there is insufficient evidence in this work to speculate 

on the cause. Further work is required that explores the impact of data cleanliness and 

information density as well as the specific shape of the network and its effect. Retaining the 

different levels of complexity and connectivity used in this research would allow direct 

comparison of the findings from this future work. 
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9.3 LIMITATIONS OF THE PROPOSED SYSTEM 

While the limitations of the three systems have been discussed in the respective chapters, 

this section looks at the more general limitations of this study and its setup. Two main aspects 

affected the system design and experimental results. 

Firstly, a level of simplification had to be used, which introduced biological inaccuracies. 

Since the brain’s functionality has not yet been fully explored and understood by 

neuroscientists, the system design could only attempt to simulate biological processes within 

the confines of what is known to-date. This also involved skipping certain aspects of the 

sensory processing pathways and only including those parts that were deemed most 

important for the learning process. These choices most certainly influenced the model’s 

performance and, thus, can only be considered a starting point for this exploratory research. 

Likewise, while the accompanying experimental studies gave initial insights and directions, 

they can not provide comprehensive empirical support for or against certain choices. In 

general, it can be noted that less biological plausibility seemed to negatively affect the model’s 

classification accuracy. This could be observed when comparing the results of the unimodal 

experiments in Chapters 6 and 7. The auditory system with the highly biologically plausible 

cochlear encoding module performed significantly better than the visual system with the 

relatively implausible retinal encoding module. However, the performance also seemed to be 

largely affected by the cleanliness of the data as was shown by the experiments described in 

Chapter 8. More research is necessary to determine how more or less biological choices 

influence the model’s learning and classification processes. 

Simplifications were also necessary due to limited computational resources. While it was 

initially planned to make use of neuromorphic hardware to simulate the biological processes, 

this could not be executed due to financial constraints. Running the experiments on a 

standard PC for the most part prevented large-scale exploration of the model parameters. 

The NeuCube architecture used for this work is still relatively new, so only limited knowledge 

exists about the behaviour of its parameters in complex models. Choosing the best set of 

parameters for each model was, therefore, difficult and likely affected the results. 
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9.4 FUTURE DIRECTIONS 

The best part about research is that there is never a lack of questions that are waiting to be 

answered. This is especially true for exploratory studies like the one that was presented in 

this thesis. The main question that remains at this point is:  

How can the system be improved and made more useful for real-world applications? 

One angle to investigate this question could be to test the system on more sound, video, and 

combined audio-visual data so that weak points can be identified and fixed. Especially for 

the NeuCube, but to a lesser extent also for the encoding and data compression algorithms, 

there were a lot of parameters whose behaviour could be studied in large-scale experiments. 

The retinal encoding module could draw more inspiration from its natural counterpart to 

make use of expertise that has been maturing in nature for millions of years. From a 

computational point of view, the runtimes of the experiments could be improved by using 

an implementation of the NeuCube that makes use of Graphical Processing Units or 

neuromorphic hardware as suggested by Scott (2015). 

Apart from modifying the existing components of the model, its scope could be extended 

by more brain-inspired features. For example, more modalities, like olfactory, gustatory, and 

haptic perception, could be added as input data and mapped into their respective cortical 

processing areas. Another approach could be to integrate brain data collected by EEG or 

fMRI as suggested by Fong et al. (2018). The initial connection weights in the network, for 

example along the ventral and dorsal processing streams, could be pre-trained with actual 

brain data instead of being initialised randomly. This could help the system in identifying and 

connecting perceptual concepts. 
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9.5 CONCLUDING REMARKS 

The work presented in this thesis originated from the researcher’s ambition to replicate the 

brain’s powerful abilities to process, connect, and understand information. Observing that 

promising AI and machine learning methods were originally based on biological mechanisms 

but existed as disjointed pieces, the researcher set out to design a model that would connect 

these pieces in a biologically meaningful way. This research work had an exploratory nature 

in that it investigated a novel synthesis of components and assessed the resulting model’s 

potential use cases. While the novelty of the presented approach necessitated a focus on a 

limited number of components, the system’s modular design enables independent 

improvements in future work. 

The results achieved during the experimentation look promising for future investigation. 

Discrepancies observed between the performance of the auditory and the visual system were 

likely caused by a lack of biological plausibility and are expected to be minimised if a more 

nature-inspired approach is taken. Combining both modalities showed that the designed 

model is capable of connecting information. The network displayed emergent behaviour in 

which the simple functioning of the LIF neurons created observable patterns in the 

connections and neural activity. 

Researchers around the world continually uncover more secrets of the human brain. It is my 

firm belief that the journey of AI, on which we have only just embarked in the grand scale 

of time, can only benefit from the knowledge that can be found in this treasure cove of 

wisdom. 
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GLOSSARY 

This glossary contains, in alphabetical order, all key terms and abbreviations that were 

introduced throughout the thesis document. The table also includes a short description and 

the page number where the term was first used in the document. 

Term Description Page 

AER 

Address Event Representation. 

A communication protocol commonly used in 

neuromorphic systems. Processing units with unique 

addresses notify each other of events they observed. 

86 

ANN 

Artificial Neural Network. 

A computational method for solving high-dimensional 

problems through unsupervised learning of connection 

weights between multiple spatially distributed neurons. 

101 

Auditory nerve 

fibres 

Form the cochlear nerve and transmit electrical signals 

created from sound to the brain. 

59 

Basilar membrane 
A bone-like structure in the cochlea that vibrates with 

sound waves. 

55 

Bipolar cell 
A neuron in the retina transmitting signals from 

photoreceptors to ganglion cells. 

70 

cGMP 

Cyclic guanosine monophosphate. 

A molecule that causes photoreceptors to stay in a 

depolarised resting state in the absence of light. 

69 

CIE International Commission on Illumination. 143 

CNN 

Convolutional Neural Network. 

A type of ANN that consists of several layers that perform 

data convolution and pooling. 

84 

Cochlea The spiral-shaped hearing organ. 55 

Cochlear nucleus 
A processing station at the beginning of the primary 

auditory pathway. 

60 
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Corti 
An organ that is responsible for transforming vibrations 

from sound waves into electrochemical signals. 

58 

deSNN 

Dynamic evolving SNN. 

An algorithm that learns the connectivity of an SNN by 

connecting its connection weights to single output neurons 

and then classifying these. 

102 

DVS 

Dynamic vision sensor. 

An event-based, biologically inspired neuromorphic camera 

system that detects changes in light intensity in dynamic 

visual scenes and transforms them into spikes. 

89 

EEG 

Electroencephalography. 

A technique that captures electrical activity in the brain 

from electrodes placed on the scalp. 

33 

Extrastriate cortex 
Higher visual processing areas specialised in specific aspects 

of vision. 

72 

fMRI 

Functional magnetic resonance imaging. 

A technique that captures and visualises brain activity by 

measuring blood flow. 

49 

Fovea 
The area in the centre of the retina with the highest visual 

resolution. 

67 

FSDD 

Free spoken digits dataset. 

The dataset that was used for evaluating the sound 

processing model. 

175 

Ganglion cell 
A neuron in the retina transmitting visual information into 

further processing areas of the primary visual pathway. 

70 

Hair cell Sensory receptors in the organ of Corti. 58 

HCP Human Connectome Project. 154 

HMM 

Hidden Markov Model. 

A stochastic model based on Markov chains in which the 

states are hidden but their emissions can be observed. 

84 
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Horizontal cell 
A neuron in the retina supporting visual feature detection 

by bipolar cells. 

70 

Inferior colliculi 
A processing station of the primary auditory pathway that is 

involved in multi-modal stimulus integration. 

61 

Lateral geniculate 

nucleus 

A processing station of the primary visual pathway 

forwarding signals from the ganglion cells to the primary 

visual cortex. 

72 

LIF 

Leaky Integrate-and-Fire. 

A type of neuron that collects incoming signals until it 

reaches a threshold and fires a signal as well. 

106 

JND 

Just noticeable difference. 

The minimum required difference to distinguish between 

two colours 

146 

Medial geniculate 

body 

A processing station of the primary auditory pathway 

involved in integrating visual cues, emotional responses, 

and somatosensory input. 

62 

MFCC 
Mel-frequency cepstral coefficients. 

Method to extract perceptual features from sound data. 
84 

NeuCube 
The spiking neural network architecture used in this 

research. 

101 

NZSL 

New Zealand Sign Language. 

The primary language developed and used by the New 

Zealand Deaf community. 

224 

Optic chiasm The cross-over point of visual signals in the brain. 71 

Photoreceptor A cell in the retina that is capable of phototransduction. 68 

Phototransduction The process of converting light rays into electrical signals. 69 

Plasticity The ability of the brain to adapt to change. 64 

Primary auditory 

cortex 

The central processing unit for sound signals in the brain. 62 
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Primary auditory 

pathway 

The pathway of the brain signals from the cochleae to the 

auditory cortices. 

59 

Primary visual 

cortex 

The central processing unit for light signals in the brain. 72 

Primary visual 

pathway 

The pathway of the brain signals from the retinae to the 

visual cortex. 

71 

Retina A multi-cell layer at the back of the eye that enables vision. 67 

Retinotopy 
The mapping of locations of stimuli in the visual field to 

neural processing areas in the primary visual cortex. 

152 

RGB 
Red, green, blue. 

A colour format commonly used in computational systems. 

143 

STDP 

Spike-timing-dependent plasticity. 

An algorithm that learns patterns in spike data by adjusting 

connection weights of pre- and post-synaptic neurons based 

on their firing times. 

102 

SNN 

Spiking Neural Network 

An artificial neural network in which the neurons 

communicate by sending electrical impulses (spikes). 

101 

Striate cortex 
An alternative name for the primary visual cortex, based on 

its striped (striate) appearance. 

72 

Superior olivary 

complex 

A processing unit of the primary auditory pathway that is 

mainly responsible for sound localisation. 

60 

SVM 

Support Vector Machine. 

A supervised machine learning model that can separate data 

points by finding an optimum hyperplane in higher-

dimensional space. 

84 

SWC 

Small-world connectivity. 

The principle that during the initialisation of the network, 

neurons are only connected to neighbouring neurons within 

a defined small radius. 

107 
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Tonotopy 
The mapping of frequencies of sound stimuli to neural 

processing areas in the primary auditory cortex. 

125 

V1 Primary visual cortex. 72 

VRF 

Visual Receptive Field. 

A group of retinal neurons that process stimuli from an area 

of the visual field in union. 

157 
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APPENDICES 

APPENDIX A SOURCE CODE 

This appendix contains all code that was referenced throughout the thesis document, 

however, it does not contain all code that was written for this research. All source code and 

data that were created as an original piece of work for this PhD project can be found on 

GitHub at https://github.com/AnneWendt/PhD-thesis. 

 

LISTING I RESAMPLE_SOUND_DATA.M 

1 % resample the spoken words corpus from 8kHz to 100kHz for 

  cochlea.py 

 

2 source_folder = free-spoken-digit-dataset-master\recordings\'; 

3 target_folder = free-spoken-digit-dataset-master\upsampled\'; 

 

4 source_fs = 8000; 

5 target_fs = 100000; 

 

6 % calculate the two values that are needed for MATLAB's resample 

  function 

7 [p, q] = rat(target_fs/source_fs); 

 

8 % get all the filenames 

9 info = dir(source_folder); 

10 info = info(3:end); % the first two entries are . and .. pointing 
                      to itself and the parent directory 

 

11 for file_id = 1:length(info) 
12     filename = [source_folder info(file_id).name]; 
13     [sound, fs] = audioread(filename); 
 

14     assert(fs == source_fs); 
15     new_sound = resample(sound, p, q); 
 

16     filename = [target_folder info(file_id).name]; 
17     audiowrite(filename, new_sound, target_fs); 
18 end 
  

https://github.com/AnneWendt/PhD-thesis
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LISTING II CONVERT_JACKSON_SAMPLES_TO_CSV.PY 

1 ### This script takes the speech wav files and creates NeuCube-

compatible spike matrices 

 

2 import cochlea 

3 import matplotlib.pyplot as plt 

4 import numpy as np 

5 import thorns as th 

6 import thorns.waves as wv 

7 from scipy.io import wavfile 

8 import sys 

 

9 def scale_down(spike_matrix, left_cf, right_cf, left_target_cf, 

right_target_cf, scaling_factor): 

 

10     # we scale down vertically (time) and horizontally 

    (frequencies) using the target frequencies as cut-off values 

 

11     number_of_short_samples = int(len(spike_matrix)/scaling_factor) 

12     short_spike_matrix = np.zeros((number_of_short_samples,  

    len(left_target_cf) + len(right_target_cf) - 2), dtype=int) 

 

13     left_threshold = 2 * np.mean(spike_matrix[:, :num_freq]) 

14     right_threshold = 2 * np.mean(spike_matrix[:, num_freq:]) 

 

15     # find cut-off indices in the spike matrix based on the 

    frequency values of the target cf 

16     left_freq_indices = np.zeros(len(left_target_cf), dtype=int) 

17     right_freq_indices = np.zeros(len(right_target_cf), dtype=int) 

 

18     for idx, freq in enumerate(left_target_cf): 

19         left_freq_indices[idx] = np.where(left_cf >= freq)[0][0] 

 

20     for idx, freq in enumerate(right_target_cf): 

21         right_freq_indices[idx] = np.where(right_cf >= freq)[0][0] 

 

22     # now use these indices to compress the data 

23     for short_sam_num in xrange(number_of_short_samples): 

 

24         start_time = short_sam_num * scaling_factor 

25         stop_time = start_time + scaling_factor 

 

26         for freq in xrange(len(left_target_cf) - 1): 

 

27             start_freq = left_freq_indices[freq] 

28             stop_freq = left_freq_indices[freq + 1] 

 

29             if np.mean(spike_matrix[start_time:stop_time, 

            start_freq:stop_freq]) > left_threshold: 

30                 short_spike_matrix[short_sam_num, freq] = 1 

 

31         for freq in xrange(len(right_target_cf) - 1): 

 

32             start_freq = right_freq_indices[freq] 

33             stop_freq = right_freq_indices[freq + 1] 

 

34             if np.mean(spike_matrix[start_time:stop_time, 

            start_freq:stop_freq]) > right_threshold: 

35                 short_spike_matrix[short_sam_num, 

                freq + len(left_target_cf) - 1] = 1 

 

36     return short_spike_matrix 
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37 ### set model parameters ### 

 

38 source_folder = free-spoken-digit-dataset-master\upsampled\' 

39 target_folder = free-spoken-digit-dataset-master\samples\' 

 

40 speakers = ['jackson', 'nicolas', 'theo', 'yweveler'] 

41 sound_frequency = 100e3 

42 scaling_factor = 100  # the spike rate is quite low and the files 

are quite large, so we will sum every 100 time points together 

 

43 min_freq = 125  # lowest in cochlea.py 

44 max_freq = 8001  # highest in human hearing would be 20k but I only 

work with 8k because that is what I have Langers data for 

45 num_freq = 3500  # based on Wright et al. 1987 

46 cf = (min_freq, max_freq, num_freq) 

 

47 anf_num = (5, 2, 1)  # number of auditory nerve fibres with 

high/medium/low spontaneous spike rate - this is per CF! based on 

Liberman 1978 and 30,000 Type I fibres for 3,500 CFs (Spoendlin & 

Schrott 1989) 

48 species = 'human'  # could also be cat 

49 seed = 0  # this is a random seed parameter 

 

50 # this is to keep track of the NeuCube sample id 

51 sample_id = 0 

 

52 ### this is the big loop that does everything - per speaker, per 

digit, per recording 

53 print "Starting program..." 

 

54 for speaker in speakers: 

55    print "Reading", speaker, "..." 

 

56    # we have ten digits from 0 to 9 

57    for digit in xrange(10): 

58       sys.stdout.write(str(digit) + '...') 

 

59       # every speaker recorded every digit 50 times 

60       for speaker_sample in xrange(50): 

 

61          ### load data and make sure it is in the right format 

62          fs, sound = wavfile.read(source_folder + str(digit) + 

         '_' + speaker + '_' + str(speaker_sample) + '.wav') 

 

63          assert fs == sound_frequency, "Frequency should be 100 

         kHz for cochlea module" 

64          assert sound.dtype == 'int16', "Data type should be int16" 

65          assert sound.ndim == 1 or sound.ndim == 2, "Sound file 

         must have one or two channels" 

 

66          #normalise data (required for cochlea.py) 

67          sound = (sound / 2.**15) 

 

68          #if we only have one channel, duplicate to make it 

         stereo, otherwise extract channels 

69          if sound.ndim == 1: 

70             left = sound 

71             right = left 

72          else: 

73             left = sound[:,0] 

74             right = sound[:,1] 
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75          ### create spike trains ### 

 

76          # output is a Pandas Data Frame with headings 

           ['cf', 'duration', 'spikes', 'type'] 

77          # 'cf' is the exact frequency 

78          # 'duration' is the length of the sound sample 

79          # 'spikes' is an array of the exact spike times for that 

           particular frequency 

80          # 'type' is hsr, msr, or lsr depending on the settings 

           in anf_num 

 

81          left_trains = cochlea.run_zilany2014( 

82             sound=left, 

83             fs=sound_frequency, 

84             anf_num=anf_num, 

85             cf=cf, 

86             species=species, 

87             seed=seed 

88          ) 

 

89          right_trains = cochlea.run_zilany2014( 

90             sound=right, 

91             fs=sound_frequency, 

92             anf_num=anf_num, 

93             cf=cf, 

94             species=species, 

95             seed=seed 

96          ) 

 

97          # put the signals from the different ANFs together so that 

           we do not have so much data 

98          left_trains = th.accumulate(left_trains, ignore=['type']) 

99          right_trains = th.accumulate(right_trains,ignore=['type']) 

 

100       # the spikes are saved as time points, e.g., [0.123, 
           0.345, 0.567] 

101       # the values are between 0 and the sample length 
102       left_spikes = left_trains['spikes'] * sound_frequency 
103       right_spikes = right_trains['spikes'] * sound_frequency 
 

104       # create a matrix of zeros and replace all spike times 
           with 1 

105       # dimension is the length of the sample and 2x columns 
           (channels for left plus channels for right) 

106       # since all sound files have different length, 
           we need to set the array size dynamically 

107       sample_length = len(left) 
108       spike_matrix = np.zeros((sample_length, num_freq * 2), 

         dtype=int) 

 

109       # unpack the spike trains by frequencies 
110       for col_id in xrange(num_freq): 
111          # convert the spike times of this channel into integers 

              that we can use as index for the spike matrix 

112          row_ids = (np.fix(left_spikes[col_id])).astype(int) 
113          spike_matrix[row_ids, col_id] = 1 
 

114       for col_id in xrange(num_freq): 
115          # and now for the right side as well - remember the 

              offset to change the second half of the channels! 

116          row_ids = (np.fix(right_spikes[col_id])).astype(int) 
117          spike_matrix[row_ids, col_id + num_freq] = 1 
 

118       sample_id +=1 
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119       # get actual values for cf 
120       left_cf = np.array(left_trains['cf']) 
121       right_cf = np.array(right_trains['cf']) 
 

122       #scale down the data to different sizes and save it 
 

123       #MNI_times_2 
124       left_target_cf = np.array([166, 240, 346, 355, 368, 374, 

         390, 397, 400, 402, 409, 417, 421, 423, 425, 428, 431,  

         434, 439, 442, 444, 448, 451, 455, 457, 459, 463, 464,  

         468, 470, 471, 475, 479, 483, 486, 489, 491, 493, 495,  

         497, 498, 499, 501, 501, 503, 504, 505, 505, 507, 508,  

         509, 510, 511, 512, 513, 514, 516, 516, 517, 518, 518,  

         519, 520, 520, 521, 521, 522, 523, 523, 524, 525, 526,  

         526, 527, 528, 529, 530, 531, 531, 532, 532, 533, 534,  

         534, 535, 536, 537, 538, 538, 539, 540, 540, 541, 541,  

         542, 543, 543, 544, 544, 545, 546, 546, 547, 547, 548,  

         549, 550, 550, 551, 551, 552, 552, 553, 553, 554, 554,  

         555, 557, 557, 558, 559, 560, 560, 561, 561, 562, 562,  

         563, 563, 564, 564, 565, 566, 566, 566, 567, 567, 568,  

         569, 569, 570, 570, 570, 571, 572, 572, 573, 573, 573,  

         574, 574, 575, 575, 576, 576, 577, 577, 577, 578, 578,  

         578, 579, 579, 580, 580, 581, 581, 582, 582, 582, 582,  

         582, 583, 583, 583, 583, 584, 584, 585, 585, 585, 586,  

         586, 586, 587, 587, 587, 588, 588, 588, 589, 589, 589,  

         590, 590, 591, 591, 591, 591, 592, 592, 593, 593, 593,  

         593, 594, 594, 594, 595, 595, 596, 596, 597, 597, 597,  

         597, 598, 598, 598, 598, 599, 599, 599, 600, 600, 600,  

         600, 601, 601, 601, 602, 602, 602, 602, 603, 603, 603,  

         603, 604, 604, 604, 605, 605, 605, 605, 605, 606, 606,  

         606, 607, 607, 607, 608, 608, 608, 608, 609, 609, 609,  

         609, 610, 610, 610, 610, 611, 611, 611, 612, 612, 612,  

         612, 612, 613, 613, 613, 613, 613, 614, 614, 614, 615,  

         615, 615, 615, 616, 616, 616, 616, 617, 617, 617, 618,  

         618, 618, 618, 619, 619, 619, 619, 620, 620, 620, 620,  

         621, 621, 621, 621, 621, 622, 622, 622, 622, 622, 623,  

         623, 623, 624, 624, 624, 624, 625, 625, 625, 625, 625,  

         626, 626, 626, 626, 626, 627, 627, 627, 627, 627, 627,  

         627, 628, 628, 628, 628, 628, 628, 629, 629, 629, 629,  

         629, 629, 630, 630, 630, 630, 630, 631, 631, 631, 631,  

         631, 632, 632, 632, 632, 633, 633, 633, 633, 633, 634,  

         634, 634, 634, 634, 634, 634, 634, 634, 634, 635, 635,  

         635, 635, 635, 635, 635, 636, 636, 636, 636, 636, 636,  

         637, 637, 637, 637, 637, 638, 638, 638, 638, 638, 638,  

         638, 638, 638, 639, 639, 639, 639, 639, 639, 639, 640,  

         640, 640, 640, 640, 641, 641, 641, 641, 641, 641, 641,  

         642, 642, 642, 642, 643, 643, 643, 643, 643, 643, 643,  

         644, 644, 644, 644, 644, 645, 645, 645, 645, 645, 645,  

         646, 646, 646, 646, 646, 646, 647, 647, 647, 647, 647,  

         647, 647, 648, 648, 648, 648, 648, 648, 648, 648, 648,  

         649, 649, 649, 649, 649, 649, 649, 649, 649, 649, 650,  

         650, 650, 650, 650, 651, 651, 651, 651, 651, 651, 652,  

         652, 652, 652, 652, 652, 652, 652, 653, 653, 653, 653,  

         653, 653, 653, 653, 653, 654, 654, 654, 654, 654, 654,  

         654, 655, 655, 655, 655, 655, 655, 655, 655, 656, 656,  

         656, 656, 656, 656, 656, 657, 657, 657, 657, 657, 657,  

         657, 657, 658, 658, 658, 658, 658, 658, 658, 658, 659,  

         659, 659, 659, 659, 659, 659, 659, 659, 660, 660, 660,  

         660, 660, 660, 660, 661, 661, 661, 661, 661, 661, 661,  

         662, 662, 662, 662, 662, 662, 662, 662, 662, 662, 663,  

         663, 663, 663, 663, 663, 663, 663, 663, 664, 664, 664,  

         664, 664, 664, 664, 664, 665, 665, 665, 665, 665, 665,  

         665, 665, 666, 666, 666, 666, 666, 666, 666, 667, 667,  
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         667, 667, 667, 667, 667, 667, 668, 668, 668, 668, 668,  

         668, 668, 669, 669, 669, 669, 669, 669, 669, 669, 670,  

         670, 670, 670, 670, 670, 670, 670, 670, 670, 671, 671,  

         671, 671, 671, 671, 671, 671, 672, 672, 672, 672, 672,  

         672, 672, 672, 672, 673, 673, 673, 673, 673, 673, 674,  

         674, 674, 674, 674, 674, 674, 674, 674, 674, 675, 675,  

         675, 675, 675, 675, 675, 675, 676, 676, 676, 676, 676,  

         676, 676, 676, 677, 677, 677, 677, 677, 677, 678, 678,  

         678, 678, 678, 679, 679, 679, 679, 679, 679, 679, 679,  

         679, 680, 680, 680, 680, 680, 680, 680, 680, 681, 681,  

         681, 681, 681, 681, 682, 682, 682, 682, 682, 682, 682,  

         683, 683, 683, 683, 683, 684, 684, 684, 684, 684, 684,  

         684, 685, 685, 685, 685, 685, 685, 685, 686, 686, 686,  

         686, 686, 686, 686, 687, 687, 687, 687, 687, 687, 687,  

         688, 688, 688, 688, 688, 688, 688, 688, 688, 689, 689,  

         689, 689, 689, 689, 689, 689, 689, 690, 690, 690, 690,  

         690, 691, 691, 691, 691, 691, 692, 692, 692, 692, 692,  

         692, 692, 693, 693, 693, 693, 693, 693, 693, 693, 693,  

         694, 694, 694, 694, 694, 694, 694, 694, 694, 695, 695,  

         695, 695, 695, 695, 695, 696, 696, 696, 696, 696, 696,  

         696, 696, 697, 697, 697, 697, 697, 697, 697, 697, 697,  

         698, 698, 698, 699, 699, 699, 699, 699, 699, 699, 699,  

         700, 700, 700, 700, 700, 700, 700, 701, 701, 701, 701,  

         701, 701, 701, 701, 702, 702, 702, 702, 702, 702, 703,  

         703, 703, 703, 703, 703, 703, 703, 703, 704, 704, 704,  

         704, 704, 704, 704, 705, 705, 705, 705, 705, 705, 705,  

         706, 706, 706, 706, 706, 706, 706, 706, 707, 707, 707,  

         707, 707, 707, 708, 708, 708, 708, 708, 708, 708, 708,  

         709, 709, 709, 709, 709, 709, 710, 710, 710, 710, 710,  

         710, 710, 710, 711, 711, 711, 711, 711, 711, 711, 712,  

         712, 712, 712, 712, 712, 712, 712, 712, 713, 713, 713,  

         713, 713, 713, 713, 713, 714, 714, 714, 714, 714, 714,  

         714, 715, 715, 715, 715, 716, 716, 716, 716, 716, 716,  

         716, 716, 717, 717, 717, 717, 717, 717, 717, 718, 718,  

         718, 718, 718, 718, 718, 719, 719, 719, 719, 719, 719,  

         719, 720, 720, 720, 720, 720, 720, 720, 721, 721, 721,  

         721, 721, 722, 722, 722, 722, 722, 723, 723, 723, 723,  

         723, 723, 724, 724, 724, 724, 724, 724, 724, 724, 725,  

         725, 725, 725, 725, 726, 726, 726, 726, 726, 727, 727,  

         727, 727, 727, 727, 727, 727, 727, 728, 728, 728, 728,  

         728, 728, 728, 728, 729, 729, 729, 729, 729, 729, 730,  

         730, 730, 730, 730, 731, 731, 731, 731, 731, 731, 731,  

         732, 732, 732, 732, 732, 732, 732, 733, 733, 733, 733,  

         733, 733, 734, 734, 734, 734, 734, 734, 734, 734, 734,  

         734, 735, 735, 735, 735, 735, 735, 735, 736, 736, 736,  

         736, 736, 736, 736, 737, 737, 737, 737, 737, 737, 737,  

         738, 738, 738, 738, 738, 739, 739, 739, 739, 739, 739,  

         739, 739, 740, 740, 740, 740, 740, 740, 740, 741, 741,  

         741, 741, 741, 741, 741, 742, 742, 742, 742, 743, 743,  

         743, 743, 743, 743, 744, 744, 744, 744, 744, 744, 744,  

         744, 744, 745, 745, 745, 745, 745, 745, 745, 745, 746,  

         746, 746, 746, 746, 746, 747, 747, 747, 747, 747, 748,  

         748, 748, 748, 748, 748, 748, 749, 749, 749, 749, 749,  

         749, 750, 750, 750, 750, 750, 750, 750, 751, 751, 751,  

         751, 752, 752, 752, 752, 752, 752, 753, 753, 753, 753,  

         753, 754, 754, 754, 754, 754, 754, 754, 755, 755, 755,  

         755, 755, 755, 755, 756, 756, 756, 756, 756, 756, 756,  

         757, 757, 757, 757, 758, 758, 758, 758, 758, 759, 759,  

         759, 759, 759, 759, 759, 760, 760, 760, 760, 760, 760,  

         761, 761, 761, 761, 761, 761, 761, 762, 762, 762, 762,  

         762, 762, 763, 763, 763, 763, 763, 763, 763, 764, 764,  

         764, 764, 764, 764, 764, 765, 765, 765, 765, 765, 765,  

         765, 765, 766, 766, 766, 766, 766, 766, 766, 766, 767,  

         767, 767, 767, 767, 768, 768, 768, 768, 768, 768, 769,  
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         769, 769, 769, 769, 769, 770, 770, 770, 770, 770, 771,  

         771, 771, 771, 771, 771, 772, 772, 772, 772, 772, 772,  

         773, 773, 773, 773, 773, 773, 774, 774, 774, 774, 774,  

         775, 775, 775, 775, 775, 775, 776, 776, 776, 776, 776,  

         776, 777, 777, 777, 777, 777, 777, 778, 778, 778, 778,  

         778, 779, 779, 779, 779, 779, 779, 779, 779, 780, 780,  

         780, 780, 780, 781, 781, 781, 781, 781, 781, 782, 782,  

         782, 782, 783, 783, 783, 783, 783, 783, 783, 783, 784,  

         784, 784, 784, 784, 784, 785, 785, 785, 785, 785, 785,  

         786, 786, 786, 786, 786, 786, 787, 787, 787, 787, 787,  

         787, 788, 788, 788, 788, 788, 788, 788, 789, 789, 789,  

         789, 789, 789, 789, 790, 790, 790, 790, 790, 791, 791,  

         791, 791, 791, 791, 791, 791, 792, 792, 792, 792, 792,  

         792, 792, 793, 793, 793, 793, 793, 794, 794, 794, 794,  

         794, 794, 795, 795, 795, 795, 795, 795, 795, 795, 795,  

         796, 796, 796, 796, 796, 796, 796, 796, 797, 797, 797,  

         797, 797, 797, 797, 798, 798, 798, 798, 798, 798, 798,  

         799, 799, 799, 799, 799, 799, 800, 800, 800, 800, 800,  

         800, 801, 801, 801, 801, 801, 801, 802, 802, 802, 802,  

         802, 802, 803, 803, 803, 803, 803, 803, 803, 804, 804,  

         804, 804, 804, 804, 805, 805, 805, 805, 805, 805, 805,  

         806, 806, 806, 806, 807, 807, 807, 807, 807, 807, 808,  

         808, 808, 808, 808, 808, 808, 808, 809, 809, 809, 809,  

         809, 809, 809, 809, 810, 810, 810, 810, 810, 810, 810,  

         811, 811, 811, 811, 811, 811, 811, 812, 812, 812, 812,  

         812, 812, 813, 813, 813, 813, 813, 813, 813, 814, 814,  

         814, 814, 814, 814, 815, 815, 815, 815, 815, 815, 816,  

         816, 816, 816, 816, 816, 817, 817, 817, 817, 817, 817,  

         818, 818, 818, 818, 818, 818, 819, 819, 819, 819, 820,  

         820, 820, 820, 820, 820, 820, 821, 821, 821, 821, 822,  

         822, 822, 822, 822, 823, 823, 823, 823, 823, 824, 824,  

         824, 824, 824, 825, 825, 825, 825, 825, 826, 826, 826,  

         826, 827, 827, 828, 828, 828, 829, 829, 829, 829, 830,  

         830, 830, 831, 831, 831, 831, 831, 832, 832, 832, 833,  

         833, 833, 834, 834, 834, 834, 834, 835, 835, 835, 835,  

         835, 835, 836, 836, 836, 836, 836, 837, 837, 837, 838,  

         838, 838, 838, 839, 839, 839, 840, 840, 840, 840, 841,  

         841, 841, 842, 842, 842, 842, 842, 843, 843, 843, 844,  

         844, 844, 844, 844, 845, 845, 845, 846, 846, 847, 847,  

         847, 847, 848, 848, 848, 848, 849, 849, 849, 849, 850,  

         850, 851, 851, 851, 851, 852, 852, 852, 853, 853, 853,  

         854, 854, 854, 854, 855, 855, 856, 856, 856, 857, 857,  

         857, 858, 858, 858, 858, 859, 859, 860, 860, 860, 861,  

         861, 862, 862, 862, 863, 863, 864, 864, 864, 864, 865,  

         865, 866, 866, 866, 866, 867, 867, 868, 868, 868, 869,  

         869, 869, 870, 870, 871, 871, 871, 872, 872, 872, 873,  

         873, 874, 874, 875, 875, 876, 876, 877, 877, 878, 878,  

         878, 879, 879, 879, 880, 880, 880, 881, 881, 881, 882,  

         882, 882, 883, 884, 884, 884, 885, 885, 886, 887, 887,  

         888, 889, 889, 890, 890, 891, 891, 892, 892, 893, 893,  

         894, 894, 894, 894, 895, 895, 896, 897, 897, 897, 897,  

         898, 898, 898, 899, 899, 900, 900, 901, 901, 902, 902,  

         902, 903, 903, 904, 905, 905, 906, 906, 907, 907, 908,  

         908, 909, 910, 910, 911, 911, 912, 913, 914, 914, 915,  

         915, 916, 916, 917, 918, 918, 919, 919, 920, 920, 920,  

         921, 922, 922, 923, 925, 925, 926, 927, 928, 928, 930,  

         930, 931, 931, 931, 933, 933, 934, 934, 934, 935, 936,  

         937, 938, 939, 940, 940, 941, 942, 943, 944, 944, 945,  

         945, 946, 947, 947, 948, 949, 950, 950, 951, 952, 953,  

         954, 954, 955, 956, 957, 957, 958, 959, 959, 960, 961,  

         963, 964, 965, 966, 966, 966, 967, 967, 968, 969, 970,  

         971, 972, 973, 974, 975, 976, 977, 977, 978, 979, 980,  

         981, 983, 984, 985, 987, 987, 989, 991, 991, 992, 993,  

         995, 997, 999, 1001, 1001, 1002, 1003, 1004, 1006, 1007,  
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         1008, 1010, 1010, 1011, 1011, 1012, 1014, 1015, 1017,  

         1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1028,  

         1029, 1030, 1031, 1032, 1034, 1035, 1037, 1039, 1039,  

         1040, 1042, 1043, 1043, 1045, 1047, 1049, 1049, 1051,  

         1052, 1052, 1054, 1058, 1060, 1063, 1064, 1065, 1066,  

         1067, 1071, 1073, 1074, 1075, 1076, 1077, 1078, 1079,  

         1080, 1082, 1083, 1086, 1086, 1090, 1091, 1092, 1093,  

         1094, 1095, 1097, 1098, 1099, 1101, 1102, 1102, 1105,  

         1107, 1108, 1109, 1111, 1112, 1113, 1115, 1117, 1119,  

         1119, 1120, 1122, 1124, 1125, 1127, 1128, 1130, 1131,  

         1132, 1133, 1136, 1137, 1138, 1140, 1142, 1143, 1145,  

         1147, 1150, 1152, 1154, 1156, 1156, 1158, 1160, 1162,  

         1163, 1165, 1167, 1168, 1169, 1170, 1172, 1174, 1178,  

         1180, 1182, 1184, 1184, 1186, 1187, 1191, 1193, 1195,  

         1196, 1199, 1200, 1200, 1203, 1204, 1206, 1209, 1210,  

         1211, 1213, 1213, 1215, 1219, 1219, 1221, 1222, 1224,  

         1224, 1227, 1229, 1234, 1237, 1239, 1241, 1242, 1245,  

         1246, 1249, 1250, 1251, 1252, 1256, 1257, 1258, 1259,  

         1261, 1263, 1264, 1265, 1266, 1271, 1273, 1275, 1277,  

         1280, 1281, 1283, 1284, 1286, 1288, 1290, 1293, 1295,  

         1297, 1297, 1302, 1304, 1306, 1308, 1311, 1313, 1315,  

         1317, 1318, 1320, 1323, 1325, 1327, 1332, 1333, 1334,  

         1337, 1340, 1342, 1345, 1347, 1349, 1351, 1353, 1354,  

         1355, 1358, 1359, 1361, 1363, 1365, 1367, 1369, 1372,  

         1375, 1379, 1381, 1383, 1387, 1389, 1393, 1395, 1396,  

         1398, 1402, 1403, 1406, 1408, 1410, 1413, 1414, 1416,  

         1419, 1423, 1428, 1428, 1430, 1432, 1434, 1437, 1438,  

         1441, 1444, 1447, 1449, 1452, 1453, 1455, 1457, 1460,  

         1461, 1467, 1470, 1472, 1474, 1476, 1477, 1479, 1480,  

         1485, 1487, 1489, 1491, 1492, 1495, 1497, 1500, 1502,  

         1503, 1506, 1508, 1511, 1515, 1516, 1521, 1524, 1526,  

         1529, 1532, 1534, 1535, 1536, 1537, 1538, 1542, 1545,  

         1546, 1548, 1552, 1553, 1555, 1557, 1559, 1563, 1565,  

         1569, 1573, 1576, 1578, 1581, 1584, 1587, 1592, 1593,  

         1600, 1602, 1604, 1606, 1609, 1613, 1615, 1616, 1625,  

         1627, 1629, 1631, 1633, 1634, 1636, 1639, 1641, 1644,  

         1649, 1652, 1654, 1656, 1658, 1661, 1664, 1667, 1673,  

         1676, 1681, 1682, 1686, 1688, 1690, 1691, 1693, 1696,  

         1700, 1704, 1708, 1712, 1714, 1716, 1718, 1719, 1722,  

         1726, 1729, 1731, 1735, 1739, 1740, 1743, 1744, 1748,  

         1750, 1752, 1757, 1761, 1763, 1769, 1773, 1776, 1780,  

         1782, 1785, 1788, 1789, 1795, 1798, 1802, 1803, 1806,  

         1811, 1814, 1818, 1821, 1829, 1836, 1840, 1844, 1845,  

         1847, 1852, 1854, 1857, 1865, 1874, 1877, 1881, 1883,  

         1887, 1891, 1894, 1899, 1901, 1905, 1911, 1914, 1917,  

         1921, 1925, 1927, 1931, 1938, 1940, 1948, 1951, 1955,  

         1957, 1962, 1965, 1970, 1973, 1974, 1977, 1980, 1987,  

         1991, 1993, 1997, 2001, 2005, 2008, 2010, 2014, 2020,  

         2023, 2024, 2027, 2032, 2033, 2036, 2044, 2046, 2049,  

         2053, 2055, 2057, 2059, 2064, 2065, 2073, 2076, 2079,  

         2081, 2085, 2093, 2099, 2104, 2107, 2112, 2113, 2119,  

         2120, 2126, 2126, 2137, 2139, 2142, 2146, 2149, 2153,  

         2156, 2158, 2161, 2163, 2167, 2170, 2176, 2180, 2182,  

         2185, 2189, 2192, 2196, 2200, 2206, 2210, 2213, 2214,  

         2218, 2219, 2223, 2226, 2228, 2231, 2234, 2237, 2246,  

         2246, 2251, 2254, 2255, 2259, 2260, 2267, 2268, 2270,  

         2273, 2275, 2280, 2286, 2289, 2292, 2295, 2307, 2308,  

         2312, 2316, 2319, 2322, 2324, 2328, 2331, 2334, 2340,  

         2345, 2346, 2351, 2355, 2361, 2365, 2368, 2376, 2379,  

         2382, 2385, 2390, 2395, 2397, 2401, 2408, 2416, 2422,  

         2427, 2435, 2437, 2443, 2447, 2452, 2455, 2458, 2462,  

         2468, 2475, 2479, 2480, 2482, 2486, 2488, 2489, 2496,  

         2498, 2504, 2510, 2516, 2526, 2532, 2536, 2541, 2546,  

         2550, 2552, 2559, 2561, 2565, 2570, 2574, 2582, 2587,  
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         2591, 2596, 2599, 2602, 2613, 2620, 2623, 2628, 2633,  

         2639, 2642, 2650, 2656, 2660, 2665, 2674, 2676, 2679,  

         2689, 2693, 2696, 2701, 2707, 2715, 2717, 2720, 2731,  

         2740, 2746, 2753, 2758, 2766, 2774, 2778, 2788, 2796,  

         2803, 2820, 2826, 2837, 2847, 2859, 2870, 2875, 2884,  

         2895, 2905, 2916, 2938, 2955, 2968, 2976, 2995, 3005,  

         3018, 3022, 3026, 3040, 3045, 3055, 3073, 3093, 3116,  

         3134, 3175, 3182, 3202, 3212, 3238, 3251, 3276, 3304,  

         3326, 3338, 3364, 3399, 3418, 3443, 3464, 3535, 3552,  

         3563, 3594, 3627, 3664, 3714, 3754, 3775, 3806, 3863,  

         3895, 4014, 4055, 4115, 4135, 4326, 4379, 4493, 4655,  

         4747, 4868, 4989, 5196, 5294, 5401, 5747, 6067, 6337,  

         6688, 6942, 7181, 7281, 8000]) 

 

125       right_target_cf = np.array([161, 236, 288, 337, 354, 364,  
         370, 380, 384, 390, 391, 396, 398, 399, 402, 404, 406,  

         409, 413, 419, 421, 429, 432, 438, 448, 451, 459, 462,  

         465, 472, 473, 477, 480, 485, 487, 492, 494, 496, 500,  

         502, 507, 511, 511, 514, 517, 519, 521, 523, 525, 527,  

         528, 530, 531, 532, 534, 535, 535, 537, 538, 541, 541,  

         543, 545, 547, 548, 549, 550, 550, 551, 552, 553, 554,  

         555, 555, 556, 557, 558, 559, 559, 560, 560, 560, 561,  

         561, 562, 562, 563, 564, 564, 564, 565, 565, 566, 566,  

         566, 567, 567, 568, 569, 569, 570, 570, 570, 571, 572,  

         572, 572, 573, 574, 574, 575, 575, 575, 575, 576, 576,  

         576, 577, 577, 577, 578, 578, 578, 578, 579, 579, 580,  

         580, 580, 580, 581, 581, 581, 581, 582, 582, 582, 582,  

         583, 583, 584, 584, 584, 585, 585, 586, 586, 587, 587,  

         587, 587, 588, 588, 588, 589, 589, 589, 589, 590, 590,  

         590, 590, 591, 591, 592, 592, 592, 592, 593, 593, 594,  

         594, 594, 594, 595, 595, 595, 596, 596, 596, 597, 597,  

         597, 597, 598, 598, 598, 598, 598, 599, 599, 599, 600,  

         600, 600, 600, 601, 601, 601, 602, 602, 602, 602, 602,  

         603, 603, 603, 603, 603, 604, 604, 604, 604, 604, 604,  

         604, 605, 605, 605, 605, 606, 606, 606, 606, 606, 606,  

         607, 607, 607, 607, 607, 608, 608, 608, 608, 608, 609,  

         609, 609, 609, 609, 609, 610, 610, 610, 611, 611, 611,  

         611, 611, 612, 612, 612, 612, 612, 612, 613, 613, 613,  

         613, 613, 614, 614, 614, 614, 614, 615, 615, 615, 615,  

         616, 616, 616, 616, 616, 617, 617, 617, 617, 617, 618,  

         618, 618, 618, 618, 618, 619, 619, 619, 619, 620, 620,  

         620, 620, 620, 620, 621, 621, 621, 621, 622, 622, 622,  

         622, 623, 623, 623, 623, 623, 624, 624, 624, 624, 624,  

         625, 625, 625, 625, 625, 626, 626, 626, 626, 627, 627,  

         627, 627, 627, 627, 628, 628, 628, 628, 628, 629, 629,  

         629, 629, 629, 630, 630, 630, 630, 630, 631, 631, 631,  

         631, 631, 632, 632, 632, 632, 632, 632, 633, 633, 633,  

         633, 633, 633, 633, 634, 634, 634, 634, 634, 635, 635,  

         635, 635, 636, 636, 636, 636, 636, 636, 636, 637, 637,  

         637, 637, 637, 638, 638, 638, 638, 638, 639, 639, 639,  

         639, 639, 639, 640, 640, 640, 641, 641, 641, 641, 642,  

         642, 642, 642, 642, 643, 643, 643, 643, 644, 644, 644,  

         644, 644, 644, 645, 645, 645, 645, 646, 646, 646, 646,  

         646, 646, 646, 647, 647, 647, 647, 647, 648, 648, 648,  

         649, 649, 649, 649, 649, 649, 650, 650, 650, 650, 650,  

         650, 651, 651, 651, 651, 652, 652, 652, 652, 652, 653,  

         653, 653, 653, 653, 654, 654, 654, 654, 654, 655, 655,  

         655, 655, 655, 656, 656, 656, 656, 657, 657, 657, 657,  

         657, 657, 658, 658, 658, 658, 659, 659, 659, 659, 659,  

         659, 660, 660, 660, 660, 660, 661, 661, 661, 661, 661,  

         662, 662, 662, 662, 662, 662, 663, 663, 663, 663, 663,  

         664, 664, 664, 664, 664, 664, 665, 665, 665, 665, 665,  

         665, 666, 666, 666, 666, 666, 666, 667, 667, 667, 667,  

         667, 667, 667, 668, 668, 668, 668, 668, 668, 669, 669,  
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         669, 669, 669, 669, 670, 670, 670, 670, 671, 671, 671,  

         671, 671, 671, 672, 672, 672, 672, 672, 673, 673, 673,  

         673, 673, 673, 673, 674, 674, 674, 674, 675, 675, 675,  

         675, 675, 675, 676, 676, 676, 676, 676, 677, 677, 677,  

         677, 677, 678, 678, 678, 678, 678, 678, 679, 679, 679,  

         679, 679, 680, 680, 680, 680, 680, 680, 681, 681, 681,  

         681, 681, 682, 682, 682, 682, 682, 682, 683, 683, 683,  

         683, 683, 684, 684, 684, 684, 684, 684, 685, 685, 685,  

         685, 685, 686, 686, 686, 686, 686, 686, 687, 687, 687,  

         687, 687, 687, 688, 688, 688, 688, 688, 689, 689, 689,  

         689, 689, 690, 690, 690, 690, 690, 691, 691, 691, 691,  

         691, 691, 692, 692, 692, 692, 692, 692, 692, 693, 693,  

         693, 693, 693, 693, 694, 694, 694, 694, 694, 694, 695,  

         695, 695, 695, 695, 695, 696, 696, 696, 696, 696, 696,  

         697, 697, 697, 697, 697, 698, 698, 698, 698, 698, 698,  

         699, 699, 699, 699, 699, 700, 700, 700, 700, 700, 700,  

         700, 701, 701, 701, 701, 701, 701, 702, 702, 702, 702,  

         702, 702, 702, 702, 703, 703, 703, 703, 703, 703, 703,  

         703, 704, 704, 704, 704, 704, 704, 704, 705, 705, 705,  

         705, 705, 705, 705, 706, 706, 706, 706, 707, 707, 707,  

         707, 707, 707, 707, 707, 708, 708, 708, 708, 708, 708,  

         708, 708, 709, 709, 709, 709, 709, 709, 710, 710, 710,  

         710, 710, 710, 710, 710, 711, 711, 711, 711, 711, 711,  

         711, 712, 712, 712, 712, 712, 712, 712, 713, 713, 713,  

         713, 713, 714, 714, 714, 714, 714, 714, 715, 715, 715,  

         715, 715, 715, 716, 716, 716, 716, 716, 716, 716, 717,  

         717, 717, 717, 717, 717, 717, 718, 718, 718, 718, 718,  

         718, 718, 719, 719, 719, 719, 719, 719, 719, 720, 720,  

         720, 720, 720, 721, 721, 721, 721, 721, 721, 721, 721,  

         721, 721, 721, 722, 722, 722, 722, 722, 723, 723, 723,  

         723, 723, 723, 724, 724, 724, 724, 724, 724, 724, 724,  

         725, 725, 725, 725, 725, 725, 726, 726, 726, 726, 726,  

         726, 727, 727, 727, 727, 727, 727, 727, 728, 728, 728,  

         728, 728, 729, 729, 729, 729, 729, 729, 729, 730, 730,  

         730, 730, 730, 730, 730, 731, 731, 731, 731, 731, 731,  

         731, 731, 731, 732, 732, 732, 732, 732, 732, 733, 733,  

         733, 733, 733, 734, 734, 734, 734, 735, 735, 735, 735,  

         735, 735, 736, 736, 736, 736, 736, 737, 737, 737, 737,  

         737, 737, 738, 738, 738, 738, 738, 738, 738, 738, 739,  

         739, 739, 739, 739, 739, 740, 740, 740, 740, 740, 740,  

         740, 740, 741, 741, 741, 741, 741, 742, 742, 742, 742,  

         742, 742, 743, 743, 743, 743, 743, 744, 744, 744, 744,  

         744, 744, 744, 745, 745, 745, 745, 745, 746, 746, 746,  

         746, 746, 747, 747, 747, 747, 747, 747, 747, 748, 748,  

         748, 748, 749, 749, 749, 749, 749, 749, 750, 750, 750,  

         750, 750, 750, 751, 751, 751, 751, 751, 751, 751, 752,  

         752, 752, 752, 753, 753, 753, 753, 754, 754, 754, 754,  

         754, 755, 755, 755, 755, 755, 756, 756, 756, 756, 756,  

         756, 756, 757, 757, 757, 757, 757, 757, 758, 758, 758,  

         758, 758, 759, 759, 759, 759, 759, 759, 759, 760, 760,  

         760, 760, 760, 760, 761, 761, 761, 761, 761, 761, 762,  

         762, 762, 762, 762, 762, 762, 763, 763, 763, 763, 764,  

         764, 764, 764, 764, 764, 764, 765, 765, 765, 765, 765,  

         765, 766, 766, 766, 766, 766, 766, 767, 767, 767, 767,  

         767, 767, 768, 768, 768, 769, 769, 769, 769, 769, 769,  

         770, 770, 770, 770, 770, 770, 771, 771, 771, 771, 771,  

         771, 772, 772, 772, 772, 772, 773, 773, 773, 773, 773,  

         773, 774, 774, 774, 774, 774, 774, 775, 775, 775, 775,  

         775, 775, 775, 776, 776, 776, 777, 777, 777, 777, 777,  

         777, 778, 778, 778, 778, 778, 779, 779, 779, 779, 779,  

         779, 779, 779, 780, 780, 780, 780, 780, 781, 781, 781,  

         781, 781, 781, 781, 782, 782, 782, 782, 782, 783, 783,  

         783, 783, 783, 784, 784, 784, 784, 785, 785, 785, 785,  

         785, 785, 786, 786, 786, 786, 786, 786, 787, 787, 787,  
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         787, 787, 788, 788, 788, 788, 788, 788, 789, 789, 789,  

         790, 790, 790, 790, 790, 790, 791, 791, 791, 791, 791,  

         792, 792, 792, 792, 792, 793, 793, 793, 793, 793, 793,  

         794, 794, 794, 794, 795, 795, 795, 795, 795, 795, 795,  

         796, 796, 796, 796, 796, 796, 797, 797, 797, 797, 797,  

         798, 798, 798, 798, 798, 799, 799, 799, 799, 799, 799,  

         799, 800, 800, 800, 800, 800, 800, 800, 801, 801, 801,  

         801, 802, 802, 802, 802, 802, 802, 802, 802, 803, 803,  

         803, 803, 803, 804, 804, 804, 804, 804, 804, 805, 805,  

         805, 806, 806, 806, 806, 806, 807, 807, 807, 807, 808,  

         808, 808, 808, 808, 809, 809, 809, 809, 809, 810, 810,  

         810, 810, 810, 811, 811, 811, 811, 811, 812, 812, 812,  

         812, 812, 813, 813, 813, 813, 813, 814, 814, 814, 814,  

         815, 815, 815, 815, 815, 815, 816, 816, 816, 816, 816,  

         817, 817, 817, 817, 817, 817, 818, 818, 818, 818, 818,  

         818, 819, 819, 819, 819, 819, 819, 820, 820, 820, 820,  

         821, 821, 821, 821, 821, 821, 822, 822, 822, 822, 822,  

         823, 823, 823, 823, 823, 824, 824, 824, 824, 824, 825,  

         825, 825, 825, 825, 825, 826, 826, 826, 826, 826, 827,  

         827, 827, 827, 827, 827, 828, 828, 828, 828, 828, 829,  

         829, 829, 829, 830, 830, 830, 830, 830, 831, 831, 831,  

         831, 831, 832, 832, 832, 832, 832, 833, 833, 833, 833,  

         834, 834, 834, 835, 835, 835, 835, 835, 835, 836, 836,  

         836, 836, 837, 837, 837, 837, 837, 837, 838, 838, 838,  

         838, 839, 839, 839, 839, 840, 840, 840, 841, 841, 841,  

         841, 841, 842, 842, 842, 842, 843, 843, 843, 843, 844,  

         844, 844, 844, 844, 845, 845, 845, 846, 846, 846, 846,  

         846, 846, 846, 847, 847, 847, 847, 847, 848, 848, 848,  

         848, 849, 849, 849, 849, 850, 850, 850, 850, 851, 851,  

         851, 851, 851, 851, 852, 852, 852, 853, 853, 853, 853,  

         854, 854, 855, 855, 855, 855, 855, 856, 856, 856, 856,  

         857, 857, 857, 857, 858, 858, 858, 858, 859, 859, 859,  

         860, 860, 860, 860, 860, 861, 861, 861, 861, 862, 862,  

         862, 863, 863, 863, 863, 863, 864, 864, 864, 864, 865,  

         865, 865, 866, 866, 866, 866, 867, 867, 867, 868, 868,  

         868, 868, 869, 869, 869, 869, 870, 870, 871, 871, 871,  

         871, 872, 873, 873, 873, 873, 874, 874, 874, 874, 875,  

         875, 876, 876, 876, 877, 877, 877, 878, 878, 878, 878,  

         879, 879, 879, 880, 880, 881, 881, 881, 882, 882, 882,  

         882, 883, 883, 883, 883, 884, 884, 884, 885, 885, 885,  

         886, 886, 887, 887, 887, 888, 888, 888, 888, 889, 889,  

         889, 890, 890, 890, 890, 891, 891, 892, 892, 893, 893,  

         893, 894, 894, 894, 895, 895, 895, 896, 896, 897, 897,  

         898, 898, 899, 899, 899, 900, 900, 900, 901, 901, 901,  

         902, 902, 902, 903, 904, 904, 905, 905, 905, 906, 906,  

         906, 907, 907, 907, 908, 908, 908, 909, 909, 909, 909,  

         910, 910, 911, 912, 912, 913, 913, 914, 914, 914, 915,  

         915, 916, 916, 916, 917, 918, 919, 919, 919, 920, 921,  

         921, 922, 922, 923, 923, 924, 924, 924, 925, 925, 926,  

         926, 926, 928, 928, 928, 929, 929, 930, 930, 930, 931,  

         931, 932, 932, 932, 932, 933, 933, 934, 934, 935, 935,  

         936, 937, 938, 940, 940, 941, 941, 942, 943, 943, 944,  

         944, 945, 945, 946, 946, 947, 948, 948, 949, 950, 950,  

         951, 951, 952, 953, 953, 953, 954, 954, 955, 956, 956,  

         957, 958, 958, 959, 960, 960, 961, 962, 962, 963, 964,  

         965, 966, 966, 968, 968, 969, 970, 970, 972, 973, 974,  

         975, 976, 976, 976, 977, 978, 979, 980, 980, 981, 982,  

         983, 984, 985, 985, 986, 987, 988, 990, 991, 992, 993,  

         994, 995, 995, 996, 997, 997, 998, 999, 1001, 1002, 1004,  

         1005, 1007, 1008, 1009, 1009, 1010, 1010, 1011, 1012,  

         1012, 1014, 1015, 1016, 1017, 1018, 1019, 1021, 1022,  

         1023, 1024, 1025, 1026, 1028, 1028, 1030, 1031, 1033,  

         1035, 1036, 1037, 1039, 1040, 1041, 1045, 1046, 1047,  

         1049, 1050, 1052, 1053, 1054, 1055, 1056, 1058, 1059,  
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         1061, 1062, 1062, 1063, 1064, 1066, 1067, 1069, 1071,  

         1073, 1074, 1075, 1076, 1077, 1078, 1080, 1081, 1082,  

         1082, 1084, 1084, 1086, 1087, 1089, 1091, 1092, 1093,  

         1094, 1096, 1099, 1100, 1102, 1105, 1106, 1107, 1109,  

         1111, 1113, 1113, 1115, 1117, 1118, 1119, 1121, 1123,  

         1123, 1124, 1125, 1126, 1128, 1129, 1131, 1132, 1134,  

         1135, 1136, 1139, 1141, 1145, 1147, 1151, 1152, 1152,  

         1155, 1156, 1160, 1161, 1164, 1165, 1167, 1168, 1170,  

         1171, 1172, 1173, 1175, 1176, 1177, 1179, 1182, 1183,  

         1186, 1188, 1190, 1191, 1193, 1195, 1198, 1201, 1204,  

         1205, 1207, 1208, 1210, 1213, 1214, 1217, 1218, 1220,  

         1222, 1224, 1225, 1227, 1228, 1231, 1232, 1233, 1236,  

         1238, 1241, 1243, 1245, 1248, 1250, 1252, 1256, 1258,  

         1261, 1262, 1263, 1266, 1270, 1272, 1275, 1277, 1279,  

         1281, 1282, 1285, 1288, 1292, 1295, 1296, 1298, 1300,  

         1303, 1304, 1306, 1309, 1311, 1312, 1314, 1318, 1320,  

         1323, 1326, 1328, 1332, 1336, 1340, 1343, 1349, 1354,  

         1357, 1360, 1364, 1367, 1371, 1375, 1378, 1380, 1383,  

         1385, 1389, 1391, 1393, 1399, 1401, 1405, 1409, 1414,  

         1416, 1419, 1421, 1423, 1430, 1432, 1434, 1438, 1441,  

         1444, 1450, 1451, 1454, 1459, 1462, 1465, 1468, 1473,  

         1475, 1478, 1482, 1485, 1487, 1491, 1493, 1500, 1502,  

         1506, 1507, 1510, 1514, 1517, 1520, 1523, 1525, 1530,  

         1532, 1535, 1537, 1542, 1546, 1549, 1551, 1553, 1558,  

         1561, 1568, 1570, 1574, 1577, 1582, 1585, 1589, 1597,  

         1602, 1605, 1607, 1611, 1615, 1618, 1621, 1627, 1632,  

         1636, 1641, 1645, 1650, 1655, 1657, 1661, 1666, 1674,  

         1679, 1681, 1685, 1689, 1691, 1697, 1699, 1703, 1705,  

         1711, 1716, 1717, 1722, 1727, 1730, 1734, 1735, 1740,  

         1747, 1749, 1755, 1757, 1759, 1768, 1771, 1775, 1780,  

         1786, 1788, 1792, 1794, 1798, 1802, 1804, 1806, 1807,  

         1809, 1812, 1814, 1817, 1818, 1821, 1827, 1830, 1833,  

         1837, 1841, 1843, 1847, 1852, 1855, 1859, 1862, 1866,  

         1869, 1873, 1876, 1879, 1883, 1890, 1895, 1901, 1907,  

         1909, 1913, 1920, 1924, 1930, 1931, 1937, 1940, 1942,  

         1945, 1949, 1953, 1957, 1961, 1965, 1967, 1971, 1973,  

         1976, 1978, 1980, 1984, 1989, 1992, 1996, 2003, 2007,  

         2010, 2016, 2019, 2023, 2027, 2032, 2035, 2041, 2045,  

         2049, 2058, 2060, 2067, 2069, 2071, 2074, 2077, 2082,  

         2085, 2089, 2097, 2100, 2103, 2108, 2115, 2117, 2120,  

         2123, 2128, 2130, 2134, 2137, 2141, 2150, 2152, 2156,  

         2161, 2163, 2167, 2172, 2178, 2184, 2187, 2192, 2195,  

         2199, 2201, 2205, 2208, 2213, 2220, 2222, 2225, 2228,  

         2231, 2235, 2240, 2248, 2254, 2256, 2258, 2261, 2264,  

         2272, 2274, 2278, 2283, 2286, 2290, 2293, 2295, 2299,  

         2302, 2308, 2311, 2318, 2324, 2328, 2330, 2334, 2339,  

         2343, 2349, 2351, 2357, 2365, 2368, 2380, 2384, 2389,  

         2393, 2403, 2408, 2415, 2421, 2426, 2435, 2436, 2444,  

         2448, 2455, 2460, 2466, 2475, 2481, 2485, 2493, 2498,  

         2506, 2514, 2518, 2522, 2527, 2531, 2536, 2547, 2555,  

         2561, 2568, 2574, 2581, 2584, 2593, 2596, 2604, 2607,  

         2612, 2618, 2623, 2628, 2633, 2639, 2643, 2649, 2653,  

         2662, 2668, 2681, 2687, 2691, 2705, 2712, 2726, 2732,  

         2740, 2746, 2749, 2755, 2761, 2766, 2774, 2779, 2794,  

         2805, 2813, 2820, 2825, 2830, 2836, 2849, 2852, 2859,  

         2866, 2872, 2878, 2888, 2893, 2898, 2907, 2912, 2918,  

         2925, 2934, 2938, 2943, 2952, 2958, 2964, 2969, 2973,  

         2983, 2991, 3001, 3006, 3017, 3020, 3029, 3031, 3039,  

         3046, 3050, 3054, 3057, 3067, 3072, 3081, 3084, 3088,  

         3091, 3100, 3105, 3110, 3113, 3117, 3126, 3131, 3135,  

         3141, 3148, 3158, 3161, 3169, 3178, 3185, 3191, 3194,  

         3199, 3207, 3210, 3215, 3226, 3231, 3232, 3242, 3255,  

         3268, 3276, 3286, 3299, 3306, 3315, 3323, 3331, 3338,  

         3352, 3367, 3379, 3391, 3419, 3433, 3451, 3463, 3479,  
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         3503, 3522, 3532, 3570, 3598, 3621, 3642, 3657, 3699,  

         3718, 3738, 3759, 3828, 3904, 3985, 4046, 4104, 4169,  

         4239, 4374, 4659, 5105, 5734, 7805]) 

 

126       short_spike_matrix = scale_down(spike_matrix=spike_matrix, 
         left_cf=left_cf, right_cf=right_cf, left_target_cf= 

         left_target_cf, right_target_cf=right_target_cf, 

         scaling_factor=scaling_factor) 

 

127       filename = target_folder + 'bio_1l2m5h_mni0/sam' + 
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

128       np.savetxt(filename, short_spike_matrix, fmt='%i', 
         delimiter=",") 

 

129       #MNI_orig 
130       left_target_cf = np.array([166, 400, 431, 457, 479, 498,  

         507, 516, 521, 526, 532, 539, 543, 548, 553, 559, 563,  

         567, 572, 575, 578, 582, 584, 587, 589, 592, 595, 598,  

         600, 602, 604, 606, 609, 611, 613, 615, 617, 619, 621,  

         622, 625, 626, 627, 629, 630, 632, 634, 634, 636, 637,  

         638, 639, 640, 642, 643, 645, 646, 647, 648, 649, 650,  

         651, 653, 653, 654, 655, 657, 658, 659, 660, 661, 662,  

         662, 663, 664, 665, 667, 668, 669, 670, 670, 671, 672,  

         674, 674, 675, 676, 678, 679, 680, 681, 682, 683, 685,  

         686, 687, 688, 689, 690, 692, 693, 694, 694, 695, 697,  

         697, 699, 700, 701, 702, 703, 704, 706, 707, 708, 709,  

         710, 711, 712, 713, 714, 716, 717, 718, 719, 720, 722,  

         723, 724, 726, 727, 728, 729, 730, 732, 733, 734, 735,  

         736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 748,  

         749, 750, 752, 754, 755, 756, 757, 759, 760, 761, 763,  

         764, 765, 766, 767, 768, 770, 771, 773, 774, 775, 777,  

         778, 779, 781, 782, 783, 785, 786, 787, 789, 790, 791,  

         792, 794, 795, 796, 797, 798, 799, 800, 802, 803, 804,  

         805, 807, 808, 809, 810, 811, 813, 814, 815, 817, 818,  

         820, 821, 823, 824, 826, 829, 831, 833, 835, 836, 839,  

         841, 843, 845, 848, 850, 852, 855, 858, 860, 863, 866,  

         869, 872, 876, 879, 881, 885, 890, 894, 897, 900, 903,  

         908, 913, 918, 922, 929, 934, 940, 946, 952, 957, 965,  

         971, 978, 987, 998, 1008, 1016, 1026, 1036, 1046, 1060,  

         1073, 1082, 1095, 1106, 1118, 1129, 1141, 1156, 1169,  

         1184, 1199, 1212, 1224, 1245, 1257, 1272, 1287, 1306,  

         1322, 1341, 1356, 1373, 1396, 1414, 1433, 1453, 1474,  

         1491, 1508, 1531, 1546, 1564, 1591, 1615, 1635, 1657,  

         1686, 1707, 1727, 1750, 1778, 1803, 1840, 1873, 1901,  

         1930, 1964, 1992, 2021, 2048, 2075, 2111, 2141, 2167,  

         2196, 2223, 2250, 2272, 2308, 2334, 2368, 2401, 2447,  

         2480, 2510, 2552, 2591, 2633, 2676, 2717, 2774, 2847,  

         2938, 3026, 3175, 3326, 3552, 3806, 4379, 5401, 8000]) 

 

131       right_target_cf = np.array([161, 384, 406, 448, 480, 506,  
         525, 535, 547, 555, 560, 564, 567, 572, 575, 578, 580,  

         582, 585, 588, 590, 593, 595, 598, 599, 602, 603, 605,  

         606, 608, 609, 611, 613, 614, 616, 618, 619, 621, 623,  

         624, 626, 627, 629, 630, 632, 633, 635, 636, 638, 639,  

         641, 643, 645, 646, 648, 649, 651, 653, 654, 656, 657,  

         659, 660, 662, 664, 665, 666, 667, 669, 670, 672, 673,  

         675, 676, 678, 679, 681, 682, 683, 685, 686, 688, 689,  

         691, 692, 693, 695, 696, 697, 699, 700, 702, 703, 703,  

         705, 706, 707, 708, 710, 710, 712, 713, 714, 716, 717,  

         718, 719, 720, 721, 722, 724, 725, 726, 727, 729, 730,  

         731, 732, 733, 735, 737, 738, 739, 740, 741, 743, 744,  

         746, 747, 749, 750, 751, 753, 755, 756, 757, 759, 760,  

         761, 762, 764, 765, 767, 768, 770, 771, 773, 774, 775,  
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         777, 778, 779, 781, 782, 784, 785, 787, 788, 790, 792,  

         793, 795, 796, 797, 799, 800, 802, 803, 804, 806, 808,  

         809, 811, 813, 814, 816, 817, 819, 820, 822, 823, 825,  

         826, 828, 829, 831, 833, 835, 836, 838, 840, 842, 844,  

         846, 847, 849, 851, 853, 855, 857, 859, 861, 863, 865,  

         867, 869, 872, 875, 878, 880, 883, 885, 888, 890, 893,  

         896, 900, 902, 906, 908, 912, 916, 920, 924, 928, 931,  

         934, 941, 945, 950, 954, 959, 966, 972, 979, 985, 993,  

         1000, 1010, 1016, 1025, 1037, 1049, 1060, 1071, 1080,  

         1090, 1103, 1116, 1125, 1137, 1155, 1170, 1182, 1199,  

         1216, 1229, 1247, 1265, 1283, 1304, 1320, 1350, 1379,  

         1403, 1430, 1455, 1482, 1508, 1533, 1558, 1590, 1626,  

         1658, 1693, 1725, 1755, 1789, 1810, 1837, 1862, 1896,  

         1935, 1962, 1987, 2020, 2058, 2086, 2121, 2154, 2187,  

         2220, 2254, 2284, 2312, 2349, 2393, 2444, 2493, 2538,  

         2593, 2633, 2687, 2751, 2813, 2866, 2919, 2970, 3029,  

         3072, 3114, 3161, 3210, 3281, 3352, 3479, 3657, 4046,  

         7805]) 

 

132       short_spike_matrix = scale_down(spike_matrix=spike_matrix, 
         left_cf=left_cf, right_cf=right_cf, left_target_cf= 

         left_target_cf, right_target_cf=right_target_cf, 

         scaling_factor=scaling_factor) 

 

133       filename = target_folder + 'bio_1l2m5h_mni1/sam' + 
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

134       np.savetxt(filename, short_spike_matrix, fmt='%i', 
         delimiter=",") 

 

135       #MNI_by_2 
136       left_target_cf = np.array([166, 521, 564, 590, 609, 625,  

         636, 646, 655, 663, 671, 679, 688, 697, 706, 715, 725,  

         735, 744, 755, 765, 775, 786, 796, 806, 816, 829, 846,  

         867, 895, 931, 982, 1065, 1163, 1283, 1428, 1583, 1773,  

         2017, 2246, 2505, 2928, 8000]) 

137       right_target_cf = np.array([161, 547, 580, 599, 612, 625,  
         637, 650, 663, 674, 686, 697, 707, 716, 725, 735, 746,  

         758, 769, 780, 792, 803, 816, 827, 842, 856, 874, 895,  

         923, 957, 1012, 1094, 1206, 1360, 1570, 1815, 2065, 2320,  

         2691, 3115, 7805]) 

 

138       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

139       filename = target_folder + 'bio_1l2m5h_mni2/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

140       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

141       #MNI_by_3 
142       left_target_cf = np.array([166, 600, 646, 675, 706, 739,  

         775, 810, 867, 1022, 1428, 2138, 8000]) 

 

143       right_target_cf = np.array([161, 604, 646, 686, 719, 754,  
         792, 832, 888, 1012, 1430, 2233,7805]) 

 

144       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 
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145       filename = target_folder + 'bio_1l2m5h_mni3/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

146       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

147       #MNI_by_4 
148       left_target_cf = np.array([166, 658, 733, 818, 1232,  

         8000]) 

 

149       right_target_cf = np.array([161, 663, 746, 842, 1206,  
         7805]) 

 

150       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

151       filename = target_folder + 'bio_1l2m5h_mni4/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

152       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

153       #MNI_by_5 
154       left_target_cf = np.array([166, 706, 867, 8000]) 
155       right_target_cf = np.array([161, 719, 888, 7805]) 
 

156       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

157       filename = target_folder + 'bio_1l2m5h_mni5/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

158       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

159       #TAL_orig 
160       left_target_cf = np.array([166, 270, 353, 368, 374, 394,  

         398, 402, 409, 417, 421, 425, 430, 434, 439, 442, 444,  

         450, 454, 457, 460, 463, 467, 470, 473, 477, 483, 486,  

         490, 492, 495, 497, 498, 500, 501, 503, 504, 505, 507,  

         508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520,  

         520, 521, 522, 523, 524, 525, 526, 526, 528, 529, 530,  

         531, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540,  

         540, 541, 542, 543, 543, 544, 545, 546, 546, 547, 548,  

         549, 550, 551, 551, 552, 553, 553, 554, 554, 556, 557,  

         558, 559, 560, 561, 561, 562, 562, 563, 564, 564, 565,  

         566, 566, 567, 568, 569, 569, 570, 570, 571, 572, 573,  

         573, 573, 574, 574, 575, 576, 576, 577, 577, 578, 578,  

         579, 579, 580, 580, 581, 582, 582, 582, 582, 583, 583,  

         583, 584, 584, 585, 585, 586, 586, 587, 587, 587, 588,  

         588, 589, 589, 590, 590, 590, 591, 591, 592, 592, 593,  

         593, 593, 594, 594, 595, 595, 596, 596, 597, 597, 597,  

         598, 598, 598, 599, 599, 600, 600, 600, 601, 601, 602,  

         602, 602, 602, 603, 603, 603, 604, 604, 604, 605, 605,  

         605, 606, 606, 606, 607, 607, 608, 608, 608, 609, 609,  

         609, 610, 610, 610, 611, 611, 611, 612, 612, 612, 612,  

         613, 613, 613, 613, 614, 614, 615, 615, 615, 615, 616,  

         616, 616, 617, 617, 618, 618, 618, 619, 619, 619, 620,  

         620, 620, 620, 621, 621, 621, 621, 622, 622, 622, 623,  
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         623, 623, 624, 624, 624, 625, 625, 625, 625, 626, 626,  

         626, 626, 627, 627, 627, 627, 627, 628, 628, 628, 628,  

         628, 629, 629, 629, 629, 629, 630, 630, 630, 630, 631,  

         631, 631, 631, 632, 632, 632, 633, 633, 633, 633, 634,  

         634, 634, 634, 634, 634, 634, 635, 635, 635, 635, 635,  

         635, 636, 636, 636, 636, 636, 637, 637, 637, 637, 638,  

         638, 638, 638, 638, 638, 638, 639, 639, 639, 639, 639,  

         639, 640, 640, 640, 640, 641, 641, 641, 641, 641, 642,  

         642, 642, 643, 643, 643, 643, 643, 643, 644, 644, 644,  

         644, 645, 645, 645, 645, 645, 646, 646, 646, 646, 647,  

         647, 647, 647, 647, 647, 648, 648, 648, 648, 648, 648,  

         648, 649, 649, 649, 649, 649, 649, 649, 650, 650, 650,  

         650, 650, 651, 651, 651, 651, 651, 652, 652, 652, 652,  

         652, 652, 653, 653, 653, 653, 653, 653, 653, 654, 654,  

         654, 654, 654, 654, 655, 655, 655, 655, 655, 655, 656,  

         656, 656, 656, 656, 657, 657, 657, 657, 657, 657, 657,  

         658, 658, 658, 658, 658, 658, 659, 659, 659, 659, 659,  

         659, 659, 660, 660, 660, 660, 660, 660, 661, 661, 661,  

         661, 661, 662, 662, 662, 662, 662, 662, 662, 662, 663,  

         663, 663, 663, 663, 663, 663, 664, 664, 664, 664, 664,  

         664, 665, 665, 665, 665, 665, 665, 665, 666, 666, 666,  

         666, 666, 667, 667, 667, 667, 667, 667, 668, 668, 668,  

         668, 668, 668, 669, 669, 669, 669, 669, 669, 669, 670,  

         670, 670, 670, 670, 670, 670, 671, 671, 671, 671, 671,  

         671, 671, 672, 672, 672, 672, 672, 672, 672, 673, 673,  

         673, 673, 674, 674, 674, 674, 674, 674, 674, 674, 675,  

         675, 675, 675, 675, 675, 675, 676, 676, 676, 676, 676,  

         676, 677, 677, 677, 677, 677, 678, 678, 678, 678, 679,  

         679, 679, 679, 679, 679, 679, 680, 680, 680, 680, 680,  

         680, 681, 681, 681, 681, 681, 682, 682, 682, 682, 682,  

         683, 683, 683, 683, 683, 684, 684, 684, 684, 684, 685,  

         685, 685, 685, 685, 686, 686, 686, 686, 686, 686, 687,  

         687, 687, 687, 687, 687, 688, 688, 688, 688, 688, 688,  

         689, 689, 689, 689, 689, 689, 689, 690, 690, 690, 690,  

         690, 691, 691, 691, 691, 692, 692, 692, 692, 692, 692,  

         693, 693, 693, 693, 693, 693, 694, 694, 694, 694, 694,  

         694, 694, 694, 695, 695, 695, 695, 695, 696, 696, 696,  

         696, 696, 696, 697, 697, 697, 697, 697, 697, 697, 698,  

         698, 698, 699, 699, 699, 699, 699, 699, 700, 700, 700,  

         700, 700, 701, 701, 701, 701, 701, 701, 701, 702, 702,  

         702, 702, 702, 703, 703, 703, 703, 703, 703, 703, 704,  

         704, 704, 704, 704, 705, 705, 705, 705, 705, 705, 706,  

         706, 706, 706, 706, 706, 707, 707, 707, 707, 707, 708,  

         708, 708, 708, 708, 708, 709, 709, 709, 709, 709, 710,  

         710, 710, 710, 710, 710, 711, 711, 711, 711, 711, 711,  

         712, 712, 712, 712, 712, 712, 712, 713, 713, 713, 713,  

         713, 713, 714, 714, 714, 714, 714, 714, 715, 715, 715,  

         716, 716, 716, 716, 716, 716, 717, 717, 717, 717, 717,  

         717, 718, 718, 718, 718, 718, 718, 719, 719, 719, 719,  

         719, 720, 720, 720, 720, 720, 721, 721, 721, 721, 722,  

         722, 722, 722, 723, 723, 723, 723, 723, 724, 724, 724,  

         724, 724, 724, 725, 725, 725, 725, 726, 726, 726, 726,  

         726, 727, 727, 727, 727, 727, 727, 728, 728, 728, 728,  

         728, 728, 728, 729, 729, 729, 729, 730, 730, 730, 730,  

         731, 731, 731, 731, 731, 731, 732, 732, 732, 732, 732,  

         733, 733, 733, 733, 733, 734, 734, 734, 734, 734, 734,  

         734, 734, 735, 735, 735, 735, 735, 735, 736, 736, 736,  

         736, 736, 737, 737, 737, 737, 737, 737, 738, 738, 738,  

         738, 739, 739, 739, 739, 739, 739, 740, 740, 740, 740,  

         740, 740, 741, 741, 741, 741, 741, 742, 742, 742, 743,  

         743, 743, 743, 743, 744, 744, 744, 744, 744, 744, 744,  

         745, 745, 745, 745, 745, 745, 746, 746, 746, 746, 746,  

         747, 747, 747, 747, 748, 748, 748, 748, 748, 748, 749,  

         749, 749, 749, 750, 750, 750, 750, 750, 751, 751, 751,  
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         751, 752, 752, 752, 752, 753, 753, 753, 753, 754, 754,  

         754, 754, 754, 754, 755, 755, 755, 755, 755, 755, 756,  

         756, 756, 756, 756, 757, 757, 757, 758, 758, 758, 758,  

         759, 759, 759, 759, 759, 759, 760, 760, 760, 760, 761,  

         761, 761, 761, 761, 761, 762, 762, 762, 762, 762, 763,  

         763, 763, 763, 763, 764, 764, 764, 764, 764, 764, 765,  

         765, 765, 765, 765, 765, 766, 766, 766, 766, 766, 766,  

         766, 767, 767, 767, 767, 768, 768, 768, 768, 769, 769,  

         769, 769, 769, 770, 770, 770, 770, 771, 771, 771, 771,  

         771, 772, 772, 772, 772, 772, 773, 773, 773, 773, 774,  

         774, 774, 774, 775, 775, 775, 775, 775, 776, 776, 776,  

         776, 777, 777, 777, 777, 777, 777, 778, 778, 778, 778,  

         779, 779, 779, 779, 779, 780, 780, 780, 780, 781, 781,  

         781, 781, 781, 782, 782, 782, 782, 783, 783, 783, 783,  

         783, 783, 784, 784, 784, 784, 784, 785, 785, 785, 785,  

         785, 786, 786, 786, 786, 787, 787, 787, 787, 787, 788,  

         788, 788, 788, 788, 789, 789, 789, 789, 789, 789, 790,  

         790, 790, 790, 791, 791, 791, 791, 791, 791, 792, 792,  

         792, 792, 792, 793, 793, 793, 793, 793, 794, 794, 794,  

         794, 795, 795, 795, 795, 795, 795, 795, 795, 796, 796,  

         796, 796, 796, 796, 797, 797, 797, 797, 797, 798, 798,  

         798, 798, 798, 798, 799, 799, 799, 799, 800, 800, 800,  

         800, 800, 801, 801, 801, 801, 801, 802, 802, 802, 802,  

         802, 803, 803, 803, 803, 803, 804, 804, 804, 804, 804,  

         805, 805, 805, 805, 805, 806, 806, 806, 806, 807, 807,  

         807, 807, 807, 808, 808, 808, 808, 808, 808, 809, 809,  

         809, 809, 809, 809, 810, 810, 810, 810, 810, 810, 811,  

         811, 811, 811, 811, 812, 812, 812, 812, 812, 813, 813,  

         813, 813, 813, 814, 814, 814, 814, 814, 815, 815, 815,  

         815, 815, 816, 816, 816, 816, 816, 817, 817, 817, 817,  

         818, 818, 818, 818, 818, 819, 819, 819, 820, 820, 820,  

         820, 820, 820, 821, 821, 821, 822, 822, 822, 822, 823,  

         823, 823, 823, 824, 824, 824, 825, 825, 825, 825, 825,  

         826, 826, 826, 827, 827, 828, 828, 829, 829, 829, 830,  

         830, 830, 831, 831, 831, 832, 832, 832, 833, 833, 834,  

         834, 834, 834, 835, 835, 835, 835, 835, 836, 836, 836,  

         836, 837, 837, 838, 838, 838, 839, 839, 839, 840, 840,  

         840, 841, 841, 842, 842, 842, 842, 843, 843, 844, 844,  

         844, 844, 845, 845, 845, 846, 846, 847, 847, 848, 848,  

         848, 848, 849, 849, 849, 850, 850, 851, 851, 851, 852,  

         852, 853, 853, 853, 854, 854, 855, 855, 856, 856, 857,  

         857, 857, 858, 858, 858, 859, 859, 860, 860, 861, 861,  

         862, 862, 863, 863, 864, 864, 865, 865, 865, 866, 866,  

         867, 867, 868, 868, 869, 869, 869, 870, 871, 871, 871,  

         872, 872, 873, 874, 874, 874, 875, 876, 877, 877, 878,  

         878, 879, 879, 879, 880, 880, 881, 881, 882, 882, 882,  

         883, 884, 884, 885, 886, 886, 887, 888, 889, 889, 890,  

         891, 891, 892, 893, 893, 894, 894, 895, 895, 896, 897,  

         897, 897, 898, 898, 899, 899, 900, 900, 901, 902, 902,  

         902, 903, 903, 905, 905, 906, 907, 907, 908, 909, 909,  

         910, 911, 912, 913, 914, 914, 915, 916, 917, 917, 918,  

         919, 919, 920, 920, 921, 922, 923, 924, 925, 926, 927,  

         928, 930, 930, 931, 931, 933, 933, 934, 934, 935, 936,  

         938, 939, 940, 941, 942, 943, 944, 945, 945, 946, 947,  

         948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 957,  

         958, 959, 960, 962, 964, 965, 966, 966, 967, 967, 969,  

         969, 971, 972, 973, 975, 976, 977, 978, 979, 980, 982,  

         984, 985, 987, 987, 990, 991, 992, 993, 997, 999, 1001,  

         1002, 1002, 1004, 1006, 1008, 1009, 1010, 1011, 1012,  

         1014, 1015, 1017, 1019, 1021, 1023, 1024, 1025, 1026,  

         1028, 1029, 1031, 1032, 1034, 1036, 1038, 1039, 1041,  

         1042, 1043, 1045, 1048, 1049, 1051, 1052, 1054, 1057,  

         1060, 1063, 1064, 1066, 1067, 1072, 1073, 1074, 1076,  

         1078, 1078, 1080, 1082, 1084, 1086, 1090, 1091, 1092,  
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         1094, 1095, 1097, 1099, 1101, 1102, 1103, 1107, 1108,  

         1109, 1111, 1113, 1115, 1117, 1119, 1120, 1122, 1124,  

         1126, 1128, 1131, 1131, 1133, 1135, 1138, 1139, 1142,  

         1143, 1146, 1149, 1151, 1154, 1156, 1158, 1160, 1162,  

         1163, 1166, 1168, 1169, 1171, 1174, 1178, 1181, 1182,  

         1184, 1186, 1188, 1192, 1194, 1196, 1199, 1200, 1202,  

         1204, 1208, 1209, 1211, 1213, 1214, 1218, 1219, 1221,  

         1223, 1224, 1227, 1230, 1236, 1238, 1241, 1244, 1246,  

         1249, 1250, 1251, 1255, 1257, 1259, 1261, 1262, 1264,  

         1266, 1270, 1272, 1276, 1278, 1280, 1283, 1284, 1287,  

         1289, 1292, 1295, 1297, 1301, 1304, 1308, 1309, 1313,  

         1315, 1317, 1320, 1322, 1325, 1329, 1333, 1334, 1338,  

         1341, 1343, 1347, 1350, 1352, 1353, 1355, 1358, 1361,  

         1362, 1365, 1368, 1371, 1375, 1379, 1381, 1386, 1389,  

         1393, 1395, 1397, 1402, 1403, 1407, 1410, 1413, 1415,  

         1418, 1423, 1428, 1429, 1431, 1434, 1437, 1441, 1443,  

         1447, 1449, 1453, 1455, 1457, 1460, 1466, 1470, 1473,  

         1474, 1477, 1478, 1481, 1485, 1489, 1491, 1493, 1496,  

         1500, 1502, 1506, 1508, 1510, 1515, 1519, 1523, 1526,  

         1531, 1533, 1535, 1536, 1537, 1541, 1543, 1546, 1550,  

         1553, 1555, 1558, 1560, 1564, 1566, 1574, 1577, 1581,  

         1584, 1588, 1592, 1598, 1602, 1605, 1607, 1612, 1615,  

         1622, 1626, 1629, 1631, 1634, 1635, 1639, 1642, 1645,  

         1651, 1654, 1657, 1660, 1664, 1669, 1673, 1679, 1682,  

         1686, 1689, 1691, 1693, 1697, 1702, 1707, 1712, 1714,  

         1717, 1719, 1722, 1727, 1730, 1734, 1739, 1741, 1744,  

         1748, 1751, 1756, 1761, 1763, 1772, 1776, 1779, 1782,  

         1786, 1789, 1793, 1800, 1802, 1804, 1810, 1814, 1819,  

         1829, 1835, 1841, 1845, 1847, 1852, 1856, 1859, 1873,  

         1877, 1882, 1886, 1891, 1894, 1900, 1904, 1911, 1914,  

         1920, 1923, 1927, 1933, 1939, 1948, 1951, 1955, 1961,  

         1964, 1971, 1973, 1977, 1979, 1987, 1992, 1997, 2001,  

         2005, 2009, 2013, 2020, 2023, 2027, 2029, 2033, 2038,  

         2046, 2049, 2053, 2056, 2059, 2064, 2066, 2075, 2078,  

         2081, 2085, 2097, 2103, 2107, 2112, 2116, 2120, 2126,  

         2131, 2138, 2141, 2146, 2152, 2156, 2158, 2163, 2165,  

         2170, 2176, 2182, 2183, 2189, 2192, 2198, 2206, 2210,  

         2214, 2216, 2219, 2223, 2227, 2231, 2234, 2237, 2246,  

         2250, 2254, 2255, 2259, 2264, 2268, 2270, 2274, 2280,  

         2286, 2290, 2293, 2303, 2308, 2314, 2319, 2322, 2324,  

         2329, 2333, 2340, 2345, 2347, 2355, 2361, 2367, 2374,  

         2379, 2382, 2386, 2393, 2397, 2403, 2409, 2418, 2426,  

         2435, 2440, 2447, 2451, 2456, 2459, 2468, 2475, 2480,  

         2482, 2486, 2488, 2492, 2497, 2504, 2510, 2522, 2529,  

         2536, 2542, 2548, 2552, 2559, 2562, 2568, 2574, 2582,  

         2590, 2593, 2599, 2610, 2617, 2622, 2628, 2634, 2641,  

         2650, 2656, 2662, 2669, 2676, 2679, 2691, 2695, 2701,  

         2707, 2716, 2719, 2731, 2743, 2751, 2758, 2766, 2776,  

         2784, 2795, 2803, 2822, 2832, 2847, 2860, 2871, 2882,  

         2895, 2906, 2928, 2951, 2967, 2983, 3002, 3017, 3022,  

         3026, 3043, 3052, 3073, 3101, 3123, 3175, 3182, 3204,  

         3236, 3251, 3280, 3317, 3336, 3364, 3403, 3435, 3464,  

         3535, 3553, 3578, 3627, 3680, 3740, 3766, 3806, 3875,  

         3976, 4041, 4115, 4138, 4363, 4443, 4655, 4802, 4953,  

         5192, 5294, 5526, 6046, 6337, 6699, 7079, 7271, 8000]) 

 

161       right_target_cf = np.array([161, 258, 323, 348, 364, 374,  
         382, 390, 392, 396, 399, 402, 405, 408, 411, 416, 423,  

         430, 436, 448, 454, 461, 464, 472, 475, 480, 484, 487,  

         493, 496, 500, 503, 509, 511, 514, 517, 520, 523, 525,  

         527, 530, 531, 532, 535, 535, 537, 539, 541, 543, 545,  

         547, 548, 550, 550, 551, 553, 554, 555, 556, 557, 558,  

         559, 559, 560, 560, 561, 562, 562, 563, 564, 564, 565,  

         565, 566, 566, 567, 568, 568, 569, 570, 570, 571, 572,  
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         572, 572, 574, 574, 575, 575, 575, 576, 576, 576, 577,  

         577, 578, 578, 578, 579, 579, 580, 580, 581, 581, 581,  

         581, 582, 582, 582, 583, 584, 584, 584, 585, 585, 586,  

         586, 587, 587, 587, 588, 588, 589, 589, 589, 590, 590,  

         590, 591, 591, 592, 592, 592, 593, 593, 594, 594, 595,  

         595, 595, 596, 596, 597, 597, 597, 598, 598, 598, 598,  

         599, 599, 599, 600, 600, 600, 601, 601, 601, 602, 602,  

         602, 603, 603, 603, 603, 603, 604, 604, 604, 604, 604,  

         605, 605, 605, 606, 606, 606, 606, 606, 607, 607, 607,  

         607, 608, 608, 608, 608, 609, 609, 609, 609, 610, 610,  

         610, 611, 611, 611, 611, 612, 612, 612, 612, 613, 613,  

         613, 613, 614, 614, 614, 614, 614, 615, 615, 615, 616,  

         616, 616, 617, 617, 617, 617, 618, 618, 618, 618, 618,  

         619, 619, 619, 620, 620, 620, 620, 620, 621, 621, 621,  

         622, 622, 622, 623, 623, 623, 623, 623, 624, 624, 624,  

         625, 625, 625, 625, 626, 626, 626, 627, 627, 627, 627,  

         627, 628, 628, 628, 628, 629, 629, 629, 629, 630, 630,  

         630, 630, 631, 631, 631, 631, 632, 632, 632, 632, 632,  

         633, 633, 633, 633, 633, 634, 634, 634, 634, 635, 635,  

         635, 636, 636, 636, 636, 636, 636, 637, 637, 637, 637,  

         638, 638, 638, 638, 639, 639, 639, 639, 640, 640, 640,  

         641, 641, 641, 642, 642, 642, 642, 643, 643, 643, 644,  

         644, 644, 644, 645, 645, 645, 645, 646, 646, 646, 646,  

         646, 646, 647, 647, 647, 648, 648, 648, 649, 649, 649,  

         649, 650, 650, 650, 650, 650, 651, 651, 651, 651, 652,  

         652, 652, 652, 653, 653, 653, 654, 654, 654, 654, 655,  

         655, 655, 655, 656, 656, 656, 656, 657, 657, 657, 657,  

         658, 658, 658, 659, 659, 659, 659, 659, 660, 660, 660,  

         660, 661, 661, 661, 661, 662, 662, 662, 662, 663, 663,  

         663, 663, 663, 664, 664, 664, 664, 665, 665, 665, 665,  

         665, 666, 666, 666, 666, 666, 667, 667, 667, 667, 667,  

         668, 668, 668, 668, 668, 669, 669, 669, 669, 669, 670,  

         670, 670, 671, 671, 671, 671, 671, 672, 672, 672, 672,  

         673, 673, 673, 673, 673, 673, 674, 674, 674, 675, 675,  

         675, 675, 676, 676, 676, 676, 677, 677, 677, 677, 678,  

         678, 678, 678, 678, 679, 679, 679, 679, 680, 680, 680,  

         680, 680, 681, 681, 681, 682, 682, 682, 682, 682, 683,  

         683, 683, 683, 684, 684, 684, 684, 684, 685, 685, 685,  

         685, 686, 686, 686, 686, 687, 687, 687, 687, 687, 688,  

         688, 688, 688, 689, 689, 689, 689, 689, 690, 690, 690,  

         691, 691, 691, 691, 691, 692, 692, 692, 692, 692, 692,  

         693, 693, 693, 693, 694, 694, 694, 694, 694, 695, 695,  

         695, 695, 695, 696, 696, 696, 696, 697, 697, 697, 697,  

         697, 698, 698, 698, 698, 699, 699, 699, 699, 700, 700,  

         700, 700, 700, 700, 701, 701, 701, 701, 702, 702, 702,  

         702, 702, 702, 703, 703, 703, 703, 703, 703, 703, 704,  

         704, 704, 704, 704, 704, 705, 705, 705, 705, 705, 706,  

         706, 706, 706, 707, 707, 707, 707, 707, 707, 708, 708,  

         708, 708, 708, 708, 709, 709, 709, 709, 709, 710, 710,  

         710, 710, 710, 710, 711, 711, 711, 711, 711, 711, 712,  

         712, 712, 712, 712, 713, 713, 713, 713, 714, 714, 714,  

         714, 714, 715, 715, 715, 715, 715, 716, 716, 716, 716,  

         716, 717, 717, 717, 717, 717, 717, 718, 718, 718, 718,  

         718, 719, 719, 719, 719, 719, 720, 720, 720, 720, 720,  

         721, 721, 721, 721, 721, 721, 721, 721, 722, 722, 722,  

         722, 723, 723, 723, 723, 723, 724, 724, 724, 724, 724,  

         724, 725, 725, 725, 725, 725, 726, 726, 726, 726, 726,  

         727, 727, 727, 727, 727, 728, 728, 728, 728, 728, 729,  

         729, 729, 729, 729, 730, 730, 730, 730, 730, 730, 731,  

         731, 731, 731, 731, 731, 731, 732, 732, 732, 732, 733,  

         733, 733, 733, 734, 734, 734, 734, 735, 735, 735, 735,  

         736, 736, 736, 736, 737, 737, 737, 737, 737, 738, 738,  

         738, 738, 738, 738, 739, 739, 739, 739, 739, 740, 740,  

         740, 740, 740, 740, 741, 741, 741, 741, 742, 742, 742,  
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         742, 742, 743, 743, 743, 743, 744, 744, 744, 744, 744,  

         744, 745, 745, 745, 746, 746, 746, 746, 747, 747, 747,  

         747, 747, 748, 748, 748, 748, 749, 749, 749, 749, 750,  

         750, 750, 750, 750, 750, 751, 751, 751, 751, 751, 752,  

         752, 752, 753, 753, 753, 754, 754, 754, 754, 755, 755,  

         755, 755, 756, 756, 756, 756, 756, 756, 757, 757, 757,  

         757, 758, 758, 758, 758, 759, 759, 759, 759, 759, 759,  

         760, 760, 760, 760, 761, 761, 761, 761, 761, 762, 762,  

         762, 762, 762, 762, 763, 763, 763, 764, 764, 764, 764,  

         764, 764, 765, 765, 765, 765, 766, 766, 766, 766, 766,  

         767, 767, 767, 767, 768, 768, 768, 769, 769, 769, 769,  

         769, 770, 770, 770, 770, 770, 771, 771, 771, 771, 772,  

         772, 772, 772, 772, 773, 773, 773, 773, 774, 774, 774,  

         774, 774, 775, 775, 775, 775, 775, 776, 776, 776, 777,  

         777, 777, 777, 778, 778, 778, 778, 779, 779, 779, 779,  

         779, 779, 779, 780, 780, 780, 780, 781, 781, 781, 781,  

         781, 782, 782, 782, 782, 783, 783, 783, 783, 784, 784,  

         784, 784, 785, 785, 785, 785, 786, 786, 786, 786, 786,  

         787, 787, 787, 787, 788, 788, 788, 788, 789, 789, 789,  

         790, 790, 790, 790, 790, 791, 791, 791, 792, 792, 792,  

         792, 792, 793, 793, 793, 793, 793, 794, 794, 794, 795,  

         795, 795, 795, 795, 796, 796, 796, 796, 796, 797, 797,  

         797, 797, 798, 798, 798, 798, 799, 799, 799, 799, 799,  

         800, 800, 800, 800, 800, 800, 801, 801, 801, 802, 802,  

         802, 802, 802, 802, 803, 803, 803, 803, 804, 804, 804,  

         804, 804, 805, 805, 806, 806, 806, 806, 807, 807, 807,  

         807, 808, 808, 808, 808, 809, 809, 809, 810, 810, 810,  

         810, 811, 811, 811, 811, 812, 812, 812, 812, 813, 813,  

         813, 813, 814, 814, 814, 815, 815, 815, 815, 815, 816,  

         816, 816, 816, 817, 817, 817, 817, 818, 818, 818, 818,  

         818, 819, 819, 819, 819, 819, 820, 820, 820, 821, 821,  

         821, 821, 821, 822, 822, 822, 822, 823, 823, 823, 823,  

         824, 824, 824, 824, 825, 825, 825, 825, 825, 826, 826,  

         826, 826, 827, 827, 827, 827, 828, 828, 828, 828, 829,  

         829, 829, 829, 830, 830, 830, 830, 831, 831, 831, 832,  

         832, 832, 832, 833, 833, 833, 833, 834, 834, 835, 835,  

         835, 835, 836, 836, 836, 836, 837, 837, 837, 837, 838,  

         838, 838, 838, 839, 839, 839, 840, 840, 840, 841, 841,  

         841, 842, 842, 842, 843, 843, 843, 844, 844, 844, 844,  

         845, 845, 845, 846, 846, 846, 846, 846, 847, 847, 847,  

         847, 848, 848, 848, 849, 849, 849, 849, 850, 850, 851,  

         851, 851, 851, 851, 852, 852, 852, 853, 853, 853, 854,  

         854, 855, 855, 855, 855, 856, 856, 856, 857, 857, 857,  

         858, 858, 858, 859, 859, 859, 860, 860, 860, 861, 861,  

         861, 862, 862, 862, 863, 863, 863, 863, 864, 864, 864,  

         865, 865, 865, 866, 866, 866, 867, 867, 868, 868, 868,  

         869, 869, 869, 870, 870, 871, 871, 871, 872, 873, 873,  

         873, 874, 874, 874, 875, 875, 876, 876, 877, 877, 878,  

         878, 878, 879, 879, 879, 880, 880, 881, 881, 882, 882,  

         882, 883, 883, 883, 884, 884, 884, 885, 885, 886, 886,  

         887, 887, 888, 888, 888, 889, 889, 889, 890, 890, 890,  

         891, 892, 892, 893, 893, 894, 894, 894, 895, 895, 896,  

         897, 897, 898, 898, 899, 899, 900, 900, 901, 901, 901,  

         902, 902, 903, 904, 904, 905, 905, 906, 906, 906, 907,  

         907, 908, 908, 909, 909, 909, 910, 910, 911, 912, 913,  

         913, 914, 914, 915, 915, 916, 916, 917, 918, 919, 919,  

         920, 921, 922, 922, 923, 923, 924, 924, 925, 926, 926,  

         927, 928, 928, 929, 929, 930, 930, 931, 931, 932, 932,  

         932, 933, 934, 934, 935, 936, 937, 938, 940, 940, 941,  

         942, 943, 944, 944, 945, 945, 946, 947, 948, 949, 950,  

         950, 951, 952, 953, 953, 954, 954, 955, 956, 957, 957,  

         958, 959, 960, 961, 962, 963, 963, 964, 966, 966, 968,  

         969, 970, 971, 972, 973, 975, 976, 976, 977, 978, 979,  

         980, 981, 982, 983, 984, 985, 986, 988, 989, 991, 992,  
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         994, 995, 995, 996, 997, 998, 999, 1001, 1003, 1005, 1007,  

         1008, 1009, 1010, 1010, 1011, 1012, 1014, 1015, 1016,  

         1018, 1019, 1021, 1022, 1024, 1025, 1027, 1028, 1030,  

         1031, 1034, 1036, 1037, 1039, 1041, 1044, 1046, 1048,  

         1050, 1052, 1053, 1055, 1056, 1058, 1060, 1061, 1062,  

         1063, 1065, 1067, 1069, 1071, 1074, 1075, 1076, 1077,  

         1079, 1080, 1082, 1082, 1084, 1086, 1087, 1090, 1091,  

         1093, 1094, 1096, 1100, 1102, 1105, 1106, 1108, 1111,  

         1113, 1115, 1117, 1118, 1120, 1122, 1123, 1124, 1125,  

         1127, 1129, 1131, 1133, 1134, 1136, 1139, 1141, 1146,  

         1151, 1152, 1154, 1155, 1160, 1162, 1165, 1166, 1169,  

         1170, 1172, 1173, 1175, 1176, 1178, 1181, 1184, 1187,  

         1189, 1191, 1193, 1196, 1201, 1204, 1205, 1208, 1209,  

         1213, 1216, 1218, 1220, 1222, 1225, 1226, 1228, 1231,  

         1232, 1234, 1238, 1241, 1244, 1248, 1250, 1254, 1256,  

         1260, 1262, 1265, 1268, 1272, 1275, 1278, 1280, 1282,  

         1285, 1290, 1295, 1296, 1299, 1301, 1304, 1306, 1310,  

         1312, 1314, 1319, 1321, 1325, 1328, 1333, 1337, 1342,  

         1349, 1355, 1360, 1363, 1367, 1374, 1377, 1380, 1384,  

         1386, 1390, 1393, 1400, 1404, 1408, 1414, 1417, 1420,  

         1423, 1430, 1432, 1437, 1441, 1444, 1450, 1452, 1459,  

         1463, 1465, 1473, 1475, 1480, 1483, 1487, 1491, 1496,  

         1502, 1505, 1508, 1511, 1517, 1520, 1524, 1526, 1532,  

         1535, 1539, 1544, 1549, 1552, 1556, 1560, 1565, 1572,  

         1576, 1580, 1585, 1590, 1599, 1604, 1607, 1612, 1616,  

         1620, 1627, 1633, 1640, 1644, 1651, 1656, 1661, 1666,  

         1675, 1680, 1684, 1689, 1693, 1698, 1701, 1706, 1712,  

         1717, 1720, 1727, 1733, 1735, 1740, 1747, 1753, 1757,  

         1759, 1768, 1774, 1780, 1786, 1789, 1793, 1798, 1802,  

         1805, 1807, 1809, 1812, 1815, 1818, 1821, 1827, 1832,  

         1837, 1841, 1844, 1849, 1854, 1859, 1863, 1868, 1873,  

         1876, 1880, 1889, 1894, 1904, 1907, 1912, 1920, 1925,  

         1930, 1937, 1940, 1943, 1946, 1952, 1958, 1962, 1966,  

         1971, 1974, 1977, 1979, 1984, 1989, 1996, 1999, 2007,  

         2012, 2018, 2021, 2027, 2033, 2040, 2045, 2055, 2059,  

         2065, 2069, 2071, 2075, 2080, 2085, 2089, 2098, 2102,  

         2109, 2115, 2119, 2122, 2128, 2131, 2137, 2141, 2150,  

         2154, 2161, 2163, 2169, 2176, 2182, 2187, 2192, 2197,  

         2200, 2205, 2209, 2218, 2222, 2226, 2229, 2234, 2240,  

         2249, 2255, 2256, 2261, 2265, 2273, 2276, 2284, 2288,  

         2290, 2295, 2299, 2307, 2310, 2317, 2325, 2329, 2334,  

         2339, 2346, 2351, 2356, 2365, 2377, 2382, 2388, 2393,  

         2404, 2413, 2421, 2427, 2435, 2441, 2448, 2457, 2461,  

         2471, 2483, 2487, 2494, 2506, 2514, 2520, 2525, 2530,  

         2538, 2549, 2560, 2568, 2574, 2582, 2590, 2596, 2605,  

         2608, 2614, 2625, 2628, 2636, 2643, 2650, 2655, 2666,  

         2680, 2688, 2695, 2709, 2726, 2736, 2744, 2749, 2755,  

         2764, 2771, 2779, 2794, 2808, 2817, 2825, 2831, 2841,  

         2852, 2859, 2867, 2876, 2887, 2893, 2902, 2908, 2915,  

         2926, 2935, 2941, 2951, 2960, 2964, 2971, 2983, 2997,  

         3004, 3016, 3020, 3030, 3035, 3044, 3050, 3054, 3065,  

         3070, 3081, 3085, 3091, 3100, 3107, 3111, 3116, 3126,  

         3132, 3136, 3147, 3158, 3161, 3174, 3183, 3192, 3197,  

         3203, 3210, 3218, 3230, 3231, 3242, 3256, 3274, 3286,  

         3299, 3307, 3321, 3330, 3339, 3354, 3370, 3391, 3419,  

         3440, 3460, 3479, 3509, 3530, 3568, 3601, 3629, 3652,  

         3697, 3718, 3747, 3819, 3899, 3985, 4058, 4134, 4239,  

         4402, 4768, 5631, 7805]) 

 

162       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 
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163       filename = target_folder + 'bio_1l2m5h_tal1/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

164       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

165       # TAL_by_2 
166       left_target_cf = np.array([166, 409, 444, 471, 498, 509,  

         518, 525, 532, 540, 546, 552, 559, 564, 570, 574, 579,  

         582, 586, 589, 592, 596, 599, 602, 604, 607, 610, 612,  

         615, 617, 620, 622, 625, 627, 628, 630, 632, 634, 635,  

         637, 638, 639, 641, 643, 645, 646, 648, 649, 650, 652,  

         653, 654, 656, 657, 658, 659, 661, 662, 663, 664, 665,  

         667, 668, 669, 670, 672, 673, 674, 675, 677, 678, 680,  

         681, 683, 684, 686, 687, 688, 689, 691, 693, 694, 695,  

         696, 698, 699, 701, 702, 703, 705, 706, 708, 709, 710,  

         712, 713, 714, 716, 718, 719, 720, 722, 724, 725, 727,  

         728, 730, 731, 733, 734, 735, 737, 739, 740, 741, 743,  

         745, 746, 748, 749, 751, 753, 754, 756, 758, 759, 761,  

         763, 764, 765, 767, 768, 770, 772, 774, 775, 777, 779,  

         780, 782, 784, 785, 787, 789, 790, 792, 793, 795, 796,  

         797, 799, 800, 802, 804, 805, 807, 808, 810, 811, 813,  

         814, 816, 818, 820, 822, 823, 826, 829, 831, 834, 836,  

         839, 842, 844, 847, 850, 853, 856, 860, 864, 867, 871,  

         875, 879, 882, 888, 893, 897, 901, 906, 912, 918, 925,  

         932, 939, 946, 954, 962, 969, 978, 991, 1004, 1015, 1027,  

         1040, 1052, 1073, 1085, 1099, 1113, 1128, 1143, 1161,  

         1180, 1199, 1213, 1232, 1252, 1270, 1289, 1313, 1334,  

         1355, 1379, 1403, 1428, 1452, 1476, 1497, 1524, 1545,  

         1569, 1602, 1631, 1657, 1688, 1716, 1743, 1776, 1807,  

         1850, 1892, 1929, 1971, 2007, 2038, 2075, 2116, 2154,  

         2186, 2222, 2254, 2288, 2325, 2368, 2416, 2460, 2497,  

         2552, 2598, 2654, 2707, 2774, 2868, 2991, 3111, 3323,  

         3594, 4055, 5196, 8000]) 

 

167       right_target_cf = np.array([161, 391, 421, 474, 508, 529,  
         542, 553, 560, 565, 570, 575, 578, 581, 584, 587, 590,  

         594, 597, 599, 602, 604, 606, 608, 609, 612, 614, 616,  

         618, 620, 622, 624, 626, 628, 630, 632, 634, 636, 637,  

         639, 642, 644, 646, 648, 650, 652, 654, 656, 658, 660,  

         662, 664, 665, 667, 668, 670, 672, 674, 676, 678, 680,  

         682, 683, 685, 687, 689, 691, 692, 694, 696, 697, 699,  

         701, 702, 703, 705, 707, 708, 710, 711, 712, 714, 716,  

         717, 719, 720, 721, 723, 724, 726, 728, 729, 731, 732,  

         734, 736, 737, 739, 740, 742, 744, 746, 747, 749, 751,  

         753, 755, 757, 758, 760, 762, 763, 765, 767, 769, 771,  

         772, 774, 776, 778, 779, 781, 783, 785, 787, 788, 791,  

         793, 795, 796, 798, 800, 801, 803, 805, 807, 809, 811,  

         813, 815, 817, 819, 821, 823, 825, 827, 828, 831, 833,  

         835, 837, 839, 842, 844, 846, 848, 851, 853, 856, 859,  

         861, 863, 866, 869, 873, 876, 879, 882, 885, 889, 892,  

         896, 900, 904, 908, 912, 916, 922, 926, 931, 935, 943,  

         949, 954, 961, 969, 977, 985, 995, 1007, 1015, 1026, 1040,  

         1055, 1068, 1081, 1094, 1112, 1124, 1140, 1163, 1176,  

         1196, 1217, 1234, 1260, 1281, 1306, 1332, 1371, 1401,  

         1434, 1468, 1502, 1533, 1568, 1608, 1653, 1693, 1733,  

         1773, 1807, 1837, 1871, 1917, 1956, 1988, 2029, 2073,  

         2116, 2155, 2199, 2235, 2279, 2318, 2366, 2427, 2486,  

         2548, 2608, 2665, 2747, 2821, 2891, 2955, 3024, 3083,  

         3134, 3199, 3274, 3379, 3568, 3904, 7805]) 

 

168       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  
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         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

169       filename = target_folder + 'bio_1l2m5h_tal2/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

170       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

171       # TAL_by_3 
172       left_target_cf = np.array([166, 487, 524, 547, 568, 583,  

         594, 604, 613, 622, 629, 634, 639, 645, 650, 655, 659,  

         663, 668, 672, 676, 681, 686, 691, 695, 700, 705, 710,  

         714, 719, 725, 730, 735, 740, 745, 750, 756, 762, 766,  

         772, 778, 784, 789, 795, 799, 805, 810, 815, 822, 830,  

         838, 848, 859, 871, 885, 901, 920, 945, 972, 1011, 1053,  

         1106, 1160, 1219, 1284, 1358, 1441, 1523, 1614, 1714,  

         1817, 1957, 2077, 2209, 2323, 2479, 2639, 2882, 3453,  

         8000]) 

 

173       right_target_cf = np.array([161, 487, 551, 570, 582, 593,  
         603, 609, 616, 623, 630, 636, 643, 650, 656, 663, 668,  

         675, 681, 687, 693, 699, 704, 709, 714, 719, 724, 729,  

         735, 740, 746, 752, 758, 764, 770, 776, 782, 788, 795,  

         800, 807, 814, 820, 827, 834, 842, 849, 857, 866, 877,  

         888, 900, 914, 930, 950, 974, 1005, 1046, 1089, 1140,  

         1206, 1277, 1376, 1486, 1607, 1740, 1859, 1989, 2130,  

         2268, 2436, 2633, 2884, 3092, 3331, 7805]) 

 

174       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

175       filename = target_folder + 'bio_1l2m5h_tal3/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

176       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

177       # TAL_by_4 
178       left_target_cf = np.array([166, 534, 580, 606, 626, 639,  

         652, 662, 672, 684, 695, 706, 718, 731, 743, 755, 768,  

         783, 795, 808, 821, 841, 867, 902, 957, 1047, 1172, 1333,  

         1526, 1750, 2055, 2351, 2758, 8000]) 

 

179       right_target_cf = np.array([161, 561, 592, 611, 627, 644,  
         660, 674, 689, 703, 715, 727, 740, 755, 769, 784, 799,  

         815, 830, 849, 870, 898, 933, 993, 1092, 1236, 1475, 1788,  

         2097, 2466, 3017, 7805]) 

 

180       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

181       filename = target_folder + 'bio_1l2m5h_tal4/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

182       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

183       # TAL_by_5 
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184       left_target_cf = np.array([166, 578, 624, 650, 670, 692,  
         713, 737, 763, 789, 813, 849, 916, 1078, 1362, 1784, 2375,  

         8000]) 

 

185       right_target_cf = np.array([161, 590, 625, 657, 686, 711,  
         735, 763, 792, 821, 856, 907, 1012, 1273, 1815, 2498,  

         7805]) 

 

186       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

187       filename = target_folder + 'bio_1l2m5h_tal5/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

188       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

189       # TAL_by_6 
190       left_target_cf = np.array([166, 612, 658, 694, 733, 775,  

         818, 906, 1232, 1971, 8000]) 

 

191       right_target_cf = np.array([161, 618, 673, 719, 766, 818,  
         888, 1108, 1951, 7805]) 

 

192       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

193       filename = target_folder + 'bio_1l2m5h_tal6/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

194       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

195       # TAL_by_7 
196       left_target_cf = np.array([166, 646, 706, 775, 867, 1428,  

         8000]) 

 

197       right_target_cf = np.array([161, 646, 719, 792, 888, 1430,  
         7805]) 

 

198       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

199       filename = target_folder + 'bio_1l2m5h_tal7/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

200       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

201       # TAL_by_8 
202       left_target_cf = np.array([166, 675, 775, 1022, 8000]) 
203       right_target_cf = np.array([161, 686, 792, 1012, 7805]) 
 

204       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 
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205       filename = target_folder + 'bio_1l2m5h_tal8/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

206       np.savetxt(filename, short_spike_matrix, fmt='%i',  
         delimiter=",") 

 

207       # TAL_by_9 
208       left_target_cf = np.array([166, 706, 867, 8000]) 
209       right_target_cf = np.array([161, 719, 888, 7805]) 
 

210       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

211       filename = target_folder + 'bio_1l2m5h_tal9/sam' +  
         str(sample_id) + '_' + speaker + '_' + str(digit) + '.csv' 

 

212       np.savetxt(filename, short_spike_matrix, fmt='%i',  
                 delimiter=",") 

 

213       # TAL_by_10 
214       left_target_cf = np.array([166, 775, 8000]) 
215       right_target_cf = np.array([161, 792, 7805]) 
 

216       short_spike_matrix = scale_down(spike_matrix=spike_matrix,  
         left_cf=left_cf, right_cf=right_cf, left_target_cf=  

         left_target_cf, right_target_cf=right_target_cf,  

         scaling_factor=scaling_factor) 

 

217       filename = target_folder + 'bio_1l2m5h_tal10/sam' +  
                 str(sample_id) + '_' + speaker + '_' + 

                 str(digit) + '.csv' 

 

218       np.savetxt(filename, short_spike_matrix, fmt='%i',  
                 delimiter=",") 

 

219    print "Done." 
220 print "Successfully created", str(sample_id), "samples." 
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LISTING III SELECT_AUDITORY_INPUT_COORDINATES.M 

1 function [ input_coordinates, indices ] = 

select_auditory_input_coordinates ( coordinates, number_of_inputs, 

by_value, plot_result ) 

2 % selects a number of evenly spaced points from a list 

3 % if by_value is true, selects them uniformly by value, assuming 

  they are sorted 

4 % otherwise just selects uniformly from list 

 

5 if (number_of_inputs < 1) 

6     error('Must select at least one input neuron!'); 

7 end 

 

8 number_of_coordinates = size(coordinates, 1); 

 

9 if (number_of_inputs == 1) 

10     % we just return the middle point 
11     indices = int16(number_of_coordinates / 2); 
12 end 
 

13 if (number_of_inputs == 2) 
14     % we just return the first and last point 
15     indices = [1, number_of_coordinates]; 
16 end 
 

17 if (number_of_inputs > 2) 
18     % stepwise selection 
 

19     if (by_value) 
20         % select uniformly based on values 
21         mini = min(coordinates(:, 4)); 
22         maxi = max(coordinates(:, 4)); 
23         values = mini:(maxi-mini) / (number_of_inputs - 1):maxi; 
 

24         indices = zeros(1, size(values, 2), 'int16'); 
25         my_copy = coordinates(:, 4); 
 

26         for i = 1:size(values, 2) 
27             [~, idx] = min(abs(my_copy - values(i))); 
28             indices(i) = idx; 
29             my_copy(idx) = 10000; 
30         end 
31     else 
32         % select uniformly based on (sorted) index 
33         indices = int16(1:(number_of_coordinates - 1) /  

        (number_of_inputs - 1):number_of_coordinates); 

34     end 
 

35     % just making sure we have the correct number 
36     if (length(indices) < number_of_inputs) 
37         indices = [indices, number_of_coordinates]; 
38     end 
39 end 
 

40 input_coordinates = coordinates(indices, :); 
 

41 if (plot_result) 
42     figure('Color','w', 'NumberTitle', 'off', 'Name', 'Selected  

           input coordinates'); 

43     plot(coordinates(:, 4), 1:number_of_coordinates); 
44     hold on; 
45     scatter(input_coordinates(:, 4), indices, 'filled') 
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46     if (by_value) 
47         title('Selected indices by value'); 
48     else 
49         title('Selected indices by index'); 
50     end 
 

51     xlabel('Values') 
52     ylabel('Indices') 
53 end 
 

54 end 
 

  



316 

LISTING IV CONVERT_JESTER_JPG_TO_MP4.PY 

1 # run this code in the directory where the folders with the jpgs 

are located 

 

2 import cv2 as cv  # OpenCV library 

3 import os 

 

4 codec = cv.VideoWriter_fourcc('m','p','4','v') 

5 fps = 12.0 

6 folders = os.listdir()  # or put in here the absolute path, 

preferably using os.path.join() 

 

7 for folder in folders: 

8     files = sorted(os.listdir(folder)) 

9     images = [] 

 

10     for file in files: 

11         if file.endswith("jpg"): 

12             images.append(file) 

 

13     if not images: 

14         print("Folder " + folder + " does not contain jpg images") 

15         continue 

 

16     frame = cv.imread(os.path.join(folder, images[0])) 

17     height, width, channels = frame.shape 

18     video = cv.VideoWriter(os.path.join("0_videos", folder) 

                           + ".mp4", codec, fps, (width, height)) 

 

19     for image in images: 

20         frame = cv.imread(os.path.join(folder, image)) 

21         video.write(frame) 

 

22     video.release() 
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LISTING V ENCODE_VISION_SAMPLES.PY 

1 # -*- coding: utf-8 -*- 

 

2 """ 

3 Converts video into spikes using retina-inspired encoding. 

4 Subsequent frames are compared with each other pixel by pixel. 

5 A frame is split into blocks, imitating peripheral vision. 

6 These blocks are converted into greyscale to compare brightness. 

7 The foveal area of the image is defined as the block with the most 

activity. 

8 This focus block is assessed using colour vision. 

 

9 How spikes are created in peripheral blocks: 

10 When a pixel's brightness changes by more than a defined threshold 

between frames, a spike is created for this pixel’s location. 

11 If there are more than a defined percentage of spikes in a block, 

the block creates a spike. 

 

12 How spikes are created in the focus/foveal block: 

13 For each pixel, the BGR values are transformed into CIELAB colour 

space. Then the CIEDE2000 formula is used to compute the delta E of 

the colours. 

14 If delta E is larger than a defined threshold, this pixel creates a 

spike. 

15 If the fovea pixels are to be summarised in blocks, a block creates 

a spike if there are more than a defined number of spikes in a 

block. 

 

16 @author: Anne Wendt 

17 """ 

 

 

18 import os 

19 import sys 

20 import time 

 

21 import colour.difference as cd 

22 import cv2  # OpenCV library 

23 import matplotlib.pyplot as plt 

24 import numpy as np 

 

 

25 ################################################################### 

26 ###                      GLOBAL PARAMETERS                      ### 

27 ################################################################### 

 

 

28 DIRECTORY = 'randomly_selected_subset' 

29 DIRECTORY2 = 'encoded_subset' 

30 FILETYPE = '.mp4'  # only these files in the directory will be 

                     encoded 

 

31 TEST_RUN = False  # play videos more slowly and do not close 

                    windows at the end 

 

32 # these thresholds are used when comparing subsequent frames on a 

  pixel base 

33 # if they differ enough, a spike is created 

34 PIXEL_THRESHOLD = 3  # applies to the outer blocks in greyscale = 

                       intensity difference 

35 FOVEA_THRESHOLD = 5  # applies to the central block in colour =  

                       DELTA E 
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36 # how many blocks do we want in each column and row for each block 
  level 

37 #            c  r 
38 # BLOCKS = [[3, 3],  # block 0 (outermost periphery) 
39 #           [6, 5],  # block 1 
40 #           [5, 4],  # block 2 
41 #           [7, 5],  # block 3 
42 #           [8, 8]]  # block 4 (fovea) 
 

 

43 # BLOCKS = [[10, 6], [15, 10], [23, 15], [35, 23], [55, 36], 
  [84, 56], [94, 85]]  # tal_orig 

44 # BLOCKS = [[6, 4], [8, 6], [12, 9], [17, 13], [30, 20], [34, 30]] 
  # tal_by_2 

45 # BLOCKS = [[4, 4], [6, 5], [7, 10], [16, 12], [18, 16]] 
  # tal_by_3 

46 # BLOCKS = [[3, 2], [4, 4], [6, 5], [9, 7], [12, 11]]  # tal_by_4 
47 # BLOCKS = [[3, 3], [5, 4], [7, 5], [8, 8]]  # tal_by_5 
48 # BLOCKS = [[2, 2], [4, 3], [6, 4], [6, 6]]  # tal_by_6 
49 # BLOCKS = [[2, 2], [3, 2], [4, 3], [5, 5]]  # tal_by_7 
50 # BLOCKS = [[3, 2], [3, 3], [4, 4]]  # tal_by_8 
51 # BLOCKS = [[2, 2], [3, 2], [4, 3]]  # tal_by_9 
52 # BLOCKS = [[3, 1], [2, 2], [3, 3]]  # tal_by_10 
53 # BLOCKS = [[9, 6], [15, 10], [23, 16], [36, 25], [64, 37], 

  [95, 66], [106, 96]]  # mni_times_2 

54 # BLOCKS = [[5, 4], [8, 6], [15, 9], [21, 15], [33, 22], [38, 34]] 
  # mni_orig 

55 # BLOCKS = [[3, 2], [6, 4], [7, 5], [12, 8], [13, 12]]  # mni_by_2 
56 # BLOCKS = [[3, 2], [5, 3], [6, 5], [7, 6]]  # mni_by_3 
57 # BLOCKS = [[2, 2], [3, 2], [3, 3], [5, 4]]  # mni_by_4 
58 BLOCKS = [[2, 2], [2, 2], [4, 3]]  # mni_by_5 
 

 

59 # threshold for a periphery block to be counted as a spike 

60 BLOCK_THRESHOLD = 0.3 

 

61 # threshold for a fovea block to be counted as a spike 

62 BLOCK_FOVEA_THRESHOLD = 0.5 

 

 

63 # how many times smaller or larger than its direct neighbours is 

  each block 

64 BLOCK_SCALING_FACTOR = 4 ** (1 / (len(BLOCKS) - 1)) 

65 if TEST_RUN: 

66     print("Block scaling factor:", BLOCK_SCALING_FACTOR) 

 

 

67 # parameters that will be used to draw the blocks 

68 # OpenCV uses BGR colour format! 

69 COLOURS = [(255, 0, 0),  # level 0 – blue 

           (255, 255, 0),  # level 1 – cyan 

           (0, 255, 0),  # level 2 – green 

           (0, 255, 255),  # level 3 – yellow 

           (0, 128, 255),  # level 4 – orange 

           (0, 0, 255)]  # level 5 - red 

 

70 LINE_WIDTH = 1  # in pixels 

 

 

71 ################################################################### 

72 ###                          FUNCTIONS                          ### 

73 ################################################################### 
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74 def clean_up_and_exit(capture, exit_message): 

75     """ 

76     Releases the video capture, closes all open windows, and exits 

    the program with a message. 

77     """ 

 

78     capture.release() 

79     if not TEST_RUN: 

80         cv2.destroyAllWindows() 

81     sys.exit(exit_message) 

 

 

82 def draw_boundaries(frame, block_info, boundaries): 

83     """ 

84     Draws the block boundaries onto the frame. 

85     """ 

 

86     # draw boundaries for each block 

87     for i in range(len(BLOCKS)): 

88         for col in range(BLOCKS[i][0] + 1): 

89             x = (col * block_info['widths'][i]) + boundaries[i][0] 

90             frame = cv2.line(frame, 

                             (x, boundaries[i][2]), 

                             (x, boundaries[i][3]), 

                             COLOURS[i], 

                             LINE_WIDTH) 

 

91         for row in range(BLOCKS[i][1] + 1): 

92             y = (row * block_info['heights'][i]) + boundaries[i][2] 

93             frame = cv2.line(frame, 

                             (boundaries[i][0], y), 

                             (boundaries[i][1], y), 

                             COLOURS[i], 

                             LINE_WIDTH) 

 

94     return frame 

 

 

95 def encode(filename): 

96     """ 

97     Transforms a video file into a sample spike file and saves the 

    sample. 

98     """ 

 

99     print("Encoding " + filename, end='\t') 

 

100     # keep in mind that OpenCV uses BGR! 
101     capture = cv2.VideoCapture(os.path.join(DIRECTORY, filename)) 
 

102     # print debug information 
103     if TEST_RUN: 
104         show_debug_information(capture) 
 

105     # check data 
106     if capture.get(cv2.CAP_PROP_FRAME_COUNT) < 3: 
107         clean_up_and_exit(capture, 

                          "File must have more than two frames") 

 

108     # create output windows 
109     cv2.namedWindow("Original", cv2.WINDOW_AUTOSIZE) 
110     cv2.namedWindow("Pixel Spikes", cv2.WINDOW_AUTOSIZE) 
111     cv2.namedWindow("Fovea Spikes", cv2.WINDOW_AUTOSIZE) 
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112     # read first frame 
113     success, frame_t0 = capture.read() 
114     if not success: 
115         clean_up_and_exit(capture, "Could not read first frame") 
 

116     # set initial focus coordinates to centre of image 
117     focus = (int(frame_t0.shape[1] / 2), 

             int(frame_t0.shape[0] / 2)) 

 

118     # calculate block size and position 
119     block_info = get_block_info(frame_t0.shape) 
 

120     # read second frame 
121     success, frame_t1 = capture.read()  # assume this one works if 

                                          t0 worked 

 

122     # create output array 
123     sample = np.zeros((1, block_info['total_number'] 

                          + block_info['fovea_number'])) 

 

124     while success: 
125         # convert frames to greyscale 
126         f0_grey = cv2.cvtColor(frame_t0, cv2.COLOR_BGR2GRAY) 
127         f1_grey = cv2.cvtColor(frame_t1, cv2.COLOR_BGR2GRAY) 
 

128         # calculate difference between pixel brightness 
129         pixel_spikes = get_frame_diff_as_spikes(f0_grey, f1_grey) 
 

130         # get current block boundaries based on current focus area 
131         boundaries = get_boundaries(frame_t0.shape, 

                                    block_info, focus) 

 

132         # get spikes for blocks and update focus 
133         spikes, focus = get_block_spikes(pixel_spikes, block_info, 

                                         boundaries, focus) 

 

134         # get colour difference for focus 
135         fovea_pixel_spikes = get_fovea_spikes(frame_t0, frame_t1, 

                                              boundaries[-1]) 

 

136         # summarise the spikes into their blocks 
137         fovea_spikes = get_block_fovea(fovea_pixel_spikes, 

                                       block_info) 

 

138         # add fovea row to spike row 
139         spikes = np.append(spikes, fovea_spikes, axis=1) 
 

140         # add spike row to final output 
141         sample = np.append(sample, spikes, axis=0) 
 

142         # draw block boundaries 
143         frame_t0 = draw_boundaries(frame_t0, block_info, 

                                   boundaries) 

 

144         # update display windows 
145         cv2.imshow("Original", frame_t0) 
146         cv2.imshow("Pixel Spikes", pixel_spikes * 255) 
147         cv2.imshow("Fovea Spikes", fovea_pixel_spikes * 255) 
 

148         # stop when Esc key is pressed 
149         if cv2.waitKey(10) == 27: 
150             break 
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151         # slow down processing to enable observation 
152         if TEST_RUN: 
153             time.sleep(0.1) 
 

154         # move to next image 
155         frame_t0 = frame_t1 
156         success, frame_t1 = capture.read() 
 

157     # remove the first line that we filled with zeros when creating 
      the sample array 

158     sample = np.delete(sample, 0, axis=0) 
 

159     save_result_file(filename, sample) 
 

160     # some stats to optimise thresholds based on spike rate 
161     periphery_spike_rate = np.mean(sample[:, 

                                    :block_info['total_number']+1]) 

162     fovea_spike_rate = np.mean(sample[:, 
                                    block_info['total_number']+1:]) 

163     print(f'Periphery {periphery_spike_rate:.6f} 
            Fovea {fovea_spike_rate:.6f}') 

 

164     return (periphery_spike_rate, fovea_spike_rate) 
 

 

165 def get_block_fovea(fovea_pixel_spikes, block_info): 
166     """ 
167     Summarises the fovea spikes into blocks to reduce the number of 

    inputs. 

168     Returns row of spikes from left to right, then top to bottom. 
169     """ 
 

170     # if we only have one fovea block, we want to keep all original 
      pixels 

171     if BLOCKS[-1] == [1, 1]: 
172         return np.reshape(fovea_pixel_spikes, (1, -1)) 
 

173     # create output row 
174     spikes = np.zeros((1, block_info['fovea_number'])) 
 

175     # keep track of the current item in the output spike row 
176     block_index = 0 
 

177     # set dynamic threshold 
178     # threshold = 2 * np.mean(fovea_pixel_spikes) 
 

179     # debug info 
180     fovea_block_width = block_info['widths'][-1] 
181     fovea_block_height = block_info['heights'][-1] 
 

182     for col in range(BLOCKS[-1][0]): 
183         col_start = (col * fovea_block_width) 
184         col_end = col_start + fovea_block_width 
 

185         for row in range(BLOCKS[-1][1]): 
186             row_start = (row * fovea_block_height) 
187             row_end = row_start + fovea_block_height 
 

188             # calculate block's spike rate 
189             block_mean = np.mean(fovea_pixel_spikes 

                            [row_start:row_end, col_start:col_end]) 

 

190             # check if we need to create a spike 
191             # if block_mean > threshold: 
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192             if block_mean > BLOCK_FOVEA_THRESHOLD: 
193                 spikes[0, block_index] = 1 
 

 

194             # increase counter to keep track of next spike index 
195             block_index += 1 
 

196     return spikes 
 

 

197 def get_block_info(frame_shape): 
198     """ 
199     Calculates the sizes of the blocks based on the size of the 

    frame. 

200     """ 
 

201     height = frame_shape[0] 
202     width = frame_shape[1] 
 

203     # count number of pixels per block and total number of blocks 
204     block_widths = [] 
205     block_heights = [] 
206     total_number_of_blocks = 0 
 

207     for i in range(len(BLOCKS)): 
208         block_widths.append(int(width / 

                     ((BLOCK_SCALING_FACTOR ** i) * BLOCKS[i][0]))) 

 

209         block_heights.append(int(height / 
                     ((BLOCK_SCALING_FACTOR ** i) * BLOCKS[i][1]))) 

 

210         total_number_of_blocks += BLOCKS[i][0] * BLOCKS[i][1] 
 

211     # remove fovea block 
212     total_number_of_blocks -= BLOCKS[-1][0] * BLOCKS[-1][1] 
 

213     # build return dict 
214     block_info = {'widths': block_widths, 'heights': block_heights, 

                  'total_number': total_number_of_blocks} 

 

215     # distinguish between pixel-wise and block-wise fovea 
216     a, b = 0, 0 
217     if BLOCKS[-1] == [1, 1]: 
218         a = block_heights[-1] 
219         b = block_widths[-1] 
220     else: 
221         a = BLOCKS[-1][0] 
222         b = BLOCKS[-1][1] 
 

223     block_info['fovea_number'] = a * b 
 

224     # debug info 
225     if TEST_RUN: 
226         print("Number of input channels required for periphery: ", 

              block_info['total_number']) 

227         print("Number of input channels required for fovea:", 
              a, "x", b, "=", block_info['fovea_number']) 

 

228         m = block_heights[-1] * BLOCKS[-1][0] 
229         n = block_widths[-1] * BLOCKS[-1][1] 
 

230         print("Size of the fovea in pixels:", m, "x", n, "=", m*n) 
 

231     return block_info 
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232 def get_block_spikes(pixel_spikes, block_info, boundaries, focus): 
233     """ 
234     Calculates which block emits a spike. Also determines the most 

    active region. 

235     Returns row of spikes going from outermost to innermost block 
    and from left to right then from top to bottom. 

236     Returns coordinates of focus. 
237     """ 
 

238     # create output row 
239     spikes = np.zeros((1, block_info['total_number'])) 
 

240     # keep track of the current item in the output spike row 
241     block_index = 0 
 

242     # set dynamic threshold 
243     # threshold = 2 * np.mean(pixel_spikes) 
 

244     # keep track of most active region 
245     highest_spike_rate = 0.0 
 

246     for i in range(len(BLOCKS) - 1): 
247         for col in range(BLOCKS[i][0]): 
248             col_start = (col * block_info['widths'][i]) 

                        + boundaries[i][0] 

249             col_end = col_start + block_info['widths'][i] 
 

250             for row in range(BLOCKS[i][1]): 
251                 row_start = (row * block_info['heights'][i]) 

                            + boundaries[i][2] 

252                 row_end = row_start + block_info['heights'][i] 
 

 

 

253                 # calculate block's spike rate 
254                 block_mean = np.mean(pixel_spikes[ 

                                         row_start:row_end, 

                                         col_start:col_end]) 

 

255                 # check if we need to create a spike 
256                 # if block_mean > threshold: 
257                 if block_mean > BLOCK_THRESHOLD: 
258                     spikes[0, block_index] = 1 
 

259                 # increase counter to keep track of next spike 
260                 block_index += 1 
 

261                 # find block with most activity 
262                 if block_mean > highest_spike_rate: 
263                     highest_spike_rate = block_mean 
264                     # set actvity centre to centre of block 
265                     focus = (int((col_start + col_end) / 2), 

                             int((row_start + row_end) / 2)) 

 

266     return spikes, focus 
 

 

 

267 def get_boundaries(frame_shape, block_info, focus): 
268     """ 
269     Calculates the current outer boundaries of the blocks. 
270     The blocks must not go over the edges of the frame. 
271     """ 
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272     max_col = frame_shape[1] 
273     max_row = frame_shape[0] 
 

274     widths = block_info['widths'] 
275     heights = block_info['heights'] 
 

276     # calculate block position for drawing 
277     boundaries = []  # one entry per block level - 

                       start_col, end_col, start_row, end_row 

278     boundaries.append([0, max_col, 0, max_row])  # level 0 always 
                                              covers the full frame 

 

279     for i in range(1, len(BLOCKS)): 
280         start_col = int(focus[0] 

                      - ((BLOCKS[i][0] / 2) * widths[i])) 

281         if start_col < 0: 
282             start_col = 0 
 

283         end_col = start_col + (BLOCKS[i][0] * widths[i]) 
284         if end_col > max_col: 
285             start_col -= (end_col - max_col) 
286             end_col = max_col 
 

287         start_row = int(focus[1] 
                      - ((BLOCKS[i][1] / 2) * heights[i])) 

288         if start_row < 0: 
289             start_row = 0 
 

290         end_row = start_row + (BLOCKS[i][1] * heights[i]) 
291         if end_row > max_row: 
292             start_row -= (end_row - max_row) 
293             end_row = max_row 
 

294         boundaries.append([start_col, end_col, start_row, end_row]) 
 

295     return boundaries 
 

 

 

296 def get_fovea_spikes(frame_t0, frame_t1, fovea_boundaries): 
297     """ 
298     Calculates if the colours of the pixels in the fovea block 

    differ enough to create a spike. 

299     For this, it uses the CIEDE 2000 Delta E method. 
300     Returns a two-dimensional matrix of spikes. 
301     """ 
 

302     # transform fovea area to CIELAB colour space 
303     # fovea boundaries are in order start_col, end_col, start_row, 

      end_row 

304     fovea0_lab = cv2.cvtColor(frame_t0[ 
                           fovea_boundaries[2]:fovea_boundaries[3], 

                           fovea_boundaries[0]:fovea_boundaries[1], 

                                      :], 

                              cv2.COLOR_BGR2Lab) 

305     fovea1_lab = cv2.cvtColor(frame_t1[ 
                           fovea_boundaries[2]:fovea_boundaries[3], 

                           fovea_boundaries[0]:fovea_boundaries[1], 

                                      :], 

                              cv2.COLOR_BGR2Lab) 

 

306     # calculate delta E for each pixel 
307     delta_e_array = cd.delta_E_CIE2000(fovea0_lab, fovea1_lab) 
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308     # set all elements > fovea_threshold to 1 
309     spikes = cv2.threshold(delta_e_array, FOVEA_THRESHOLD, 1, 

                           cv2.THRESH_BINARY)[1] 

 

310     return spikes 
 

 

 

311 def get_frame_diff_as_spikes(frame0, frame1): 
312     """ 
313     Calculates the difference between two frame arrays. 
314     frame0 is the first frame and frame1 is the frame following 

    frame0. 

315     Returns a difference matrix that has the same shape as frame0 
    and frame1 - if they are in greyscale, they have rows and 

    columns, and if they are in colour, they also have channels. 

316     (OpenCV uses BGR!) 
317     """ 
 

318     # calculate absolute differences 
319     diff = cv2.absdiff(frame0, frame1) 
 

320     # set all elements > pixel_threshold to 1 
321     pixel_spikes = cv2.threshold(diff, PIXEL_THRESHOLD, 1, 

                                 cv2.THRESH_BINARY)[1] 

 

322     return pixel_spikes 
 

 

 

323 def save_result_file(filename, sample): 
324     """ 
325     Saves the sample that was incrementally created. 
326     The file name is equal to the video name. 
327     """ 
 

328     # save file as csv 
329     np.savetxt(os.path.join(DIRECTORY2, filename[:-4]) + '.csv', 

       sample, fmt='%1.0f', delimiter=',', newline='\r\n') 

 

 

 

330 def show_debug_information(capture): 
331     """ 
332     Prints out some information about the current video. 
333     """ 
 

334     print("Frames per second:", capture.get(cv2.CAP_PROP_FPS)) 
335     print("Number of frames:", 

          capture.get(cv2.CAP_PROP_FRAME_COUNT)) 

336     print("Frame width:", capture.get(cv2.CAP_PROP_FRAME_WIDTH)) 
337     print("Frame height:", capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) 
 

 

 

 

338 ################################################################### 
339 ###                        PROGRAM LOGIC                        ### 
340 ################################################################### 
 

 

341 periphery_spike_rates = [] 
342 fovea_spike_rates = [] 
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343 with os.scandir(DIRECTORY) as directory: 
344     for item in directory: 
345         if item.is_file() and item.name.endswith(FILETYPE): 
346             periphery_spike_rate, fovea_spike_rate = 

                                                  encode(item.name) 

347             periphery_spike_rates.append(periphery_spike_rate) 
348             fovea_spike_rates.append(fovea_spike_rate) 
 

 

 

349 print("Mean periphery spike rate:", np.mean(periphery_spike_rates)) 
350 print("Mean fovea spike rate:", np.mean(fovea_spike_rates)) 
 

351 fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True) 
 

352 ax0.set_title("Fovea Spike Rates") 
353 ax0.hist(fovea_spike_rates, bins=40) 
 

354 ax1.set_title("Periphery Spike Rates") 
355 ax1.hist(periphery_spike_rates, bins=40) 
 

356 fig.tight_layout() 
357 plt.show() 
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LISTING VI UNPACKING_RETINOTOPY_DATA.M 

1 %% using grayordinates 

 

2 load("osf data\atlas.mat") 

3 wang2015 = wang2015 + 1; % indices are still 0-based but the rest 

                           is not 

4 load("osf data\prfresults.mat", "allresults") 

 

5 % allresults(values, measurement type, participant, fit) 

6 ang_all = squeeze(allresults(:,1,184,1)); 

 

7 % turn the whole thing so that 0 is at the top 

8 ang_all_top_is_0 = ang_all - 90; 

9 ang_all_top_is_0(ang_all_top_is_0 < 0) = 

                      ang_all_top_is_0(ang_all_top_is_0 < 0) + 360; 

10 ang_all_top_is_0 = 360 - ang_all_top_is_0; 

 

11 ecc_all = squeeze(allresults(:,2,184,1)); 

 

12 %% take the coordinates apart using the HCP workbench command 

 

13 % in console: 

14 % wb_command -surface-coordinates-to-metric 

15 %         S1200_7T_Retinotopy181.L.white_MSMAll.32k_fs_LR.surf.gii 

16 %         left.func.gii 

 

17 % wb_command -surface-coordinates-to-metric 

18 %         S1200_7T_Retinotopy181.R.white_MSMAll.32k_fs_LR.surf.gii 

19 %         right.func.gii 

 

20 % wb_command -metric-convert -to-nifti 

21 %         left.func.gii 

22 %         left.nii 

 

23 % wb_command -metric-convert -to-nifti 

24 %         right.func.gii 

25 %         right.nii 

 

26 left_nii = niftiread("left.nii"); 

27 right_nii = niftiread("right.nii"); 

 

28 left_xyz_nii = squeeze(left_nii(:,1,1,:)); 

29 right_xyz_nii = squeeze(right_nii(:,1,1,:)); 

 

30 % these actually contain too many points - 

31 % but files 

32 % S1200_7T_Retinotopy181.Fit1_PolarAngle_MSMAll.32k_fs_LR.dscalar 

33 % and 

34 % S1200_7T_Retinotopy181.Fit1_Eccentricity_MSMAll.32k_fs_LR.dscalar 

35 % contain a list of vertices for the left and right hemispheres 

36 % so copy those indices from one of the files (they're identical) 

 

37 left_vertex_indices = [0;1;2;3;[...];32489;32490;32491]; 

38 left_vertex_indices = left_vertex_indices + 1; % because matlab... 

39 left_xyz_91282 = left_xyz_nii(left_vertex_indices,:); 

 

40 right_vertex_indices = [0;1;2;3;[...];32489;32490;32491]; 

41 right_vertex_indices = right_vertex_indices + 1; %because matlab... 

42 right_xyz_91282 = right_xyz_nii(right_vertex_indices,:); 

 

43 all_xyz_91282 = [left_xyz_91282; right_xyz_91282]; 
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44 %% get V1 coordinates using Wang (2015) atlas 

45 v1_wang_indices = find(wang2015 == 2 | wang2015 == 3); % 2 = V1v 

                                                         3 = V1d 

46 v1_wang_all_xyz = all_xyz_91282(v1_wang_indices,:); 

 

47 %% get values for V1 using Wang (2015) atlas 

48 v1_wang_ang = ang_all_top_is_0(v1_wang_indices); 

49 v1_wang_ecc = ecc_all(v1_wang_indices); 

 

50 v1_wang_xyz_ang_ecc = [v1_wang_all_xyz, v1_wang_ang, v1_wang_ecc]; 

51 save('v1_wang_xyz_ang_ecc.mat', 'v1_wang_xyz_ang_ecc'); 
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LISTING VII GET_ANG_ECC_PIXEL.M 

1 function [col, row] = get_ang_ecc_pixel(polar_angle, eccentricity, 

                                        width, height) 

2 %GET_ANG_ECC_PIXEL Returns the pixel coordinates for a given polar 

angle and eccentricity relative to the centre of a pixel frame. 

 

3 % set default values for frame size 

4 if nargin < 3 

5     width = 176; 

6     height = 100; 

7 end 

 

8 % get central point 

9 centre_col = width/2; 

10 centre_row = height/2; 

 

11 % convert to pixels 

12 eccentricity = eccentricity * 100 / 8; 

 

13 % calculate lengths of adjacent and opposite 

14 delta_row = eccentricity .* cosd(polar_angle); 

15 delta_col = eccentricity .* sind(polar_angle); 

 

16 % adjust pixel positions from centre 

17 row = round(centre_row - delta_row); 

18 col = round(centre_col - delta_col); 

 

19 end 

 

 

LISTING VIII GET_INPUT_COORDINATES.M 

1 function [ coord ] = get_input_coordinates(blocks) 

2 %GET_INPUT_COORDINATES Returns a list of input coordinates for the 

 blocks. 

 

3 v1_data = load('v1_wang_xyz_ang_ecc.mat'); 

4 v1_data = v1_data.v1_wang_xyz_ang_ecc; 

 

5 [cols, rows] = get_block_centres(blocks); 

6 [ret_cols,ret_rows] = get_ang_ecc_pixel(v1_data(:,4),v1_data(:,5)); 

7 coord = zeros(size(cols,1), 3); 

 

8 for i = 1:size(cols,1) 

9     [~, ind] = min(sqrt((ret_cols - cols(i)).^2 

                      + (ret_rows - rows(i)).^2)); 

10     coord(i,:) = v1_data(ind, 1:3); 

11 end 

 

12 coord = round(coord); 

 

13 end 
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LISTING IX COMBINE_AUDIO_VISUAL_DATA.PY 

1 import matplotlib.pyplot as plt 

2 import numpy as np 

3 import os 

 

 

4 def fill_array_centred(array, rows): 

5     front_rows = int(rows / 2) 

6     back_rows = rows - front_rows # in case of odd number 

7     cols = np.shape(array)[1] 

 

8     return np.concatenate((np.zeros((front_rows, cols), dtype=int), 

            array, np.zeros((back_rows, cols), dtype=int)), axis=0) 

 

 

9 def fill_array_front(array, rows): 

10     cols = np.shape(array)[1] 

 

11     return np.concatenate((array, np.zeros((rows, cols), 

                                           dtype=int)), axis=0) 

 

 

12 def generate_list_of_filenames(): 

13     filenames = [] 

 

14     for sam in range(1, 251): 

15         word = '' 

 

16         if sam < 51: 

17             word = 'bird' 

18         elif sam < 101: 

19             word = 'down' 

20         elif sam < 151: 

21             word = 'stop' 

22         elif sam < 201: 

23             word = 'tree' 

24         else: 

25             word = 'up' 

 

26         filenames.append('sam' + str(sam) + '_' + word + '.csv') 

 

27     return filenames 

 

 

28 def remove_leading_rows_of_zeros(array): 

29     while True: 

30         # break if no rows left 

31         if np.shape(array)[0] == 0: 

32             return array 

 

33         # break if row with content is detected 

34         # but only if next row also has content 

35         if array[0,:].sum() > 0 and array[1,:].sum() > 0: 

36             return array 

 

37         # keep removing rows until either of the above conditions 

          is met 

38         array = np.delete(array, 0, axis=0) 
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39 def remove_trailing_rows_of_zeros(array): 

40     while True: 

41         # break if no rows left 

42         if np.shape(array)[0] == 0: 

43             return array 

 

44         # break if row with content is detected 

45         # but only if next row also has content 

46         if array[-1,:].sum() > 0 and array[-2,:].sum() > 0: 

47             return array 

 

48         # keep removing rows until either of the above conditions 

          is met 

49         array = np.delete(array, -1, axis=0) 

 

 

50 def main(template_name): 

51     print('Combining', template_name) 

 

52     audio_src = os.path.join('speech', 'encoded_samples', 

                             template_name) 

53     video_scr = os.path.join('videos', 'encoded_samples', 

                             template_name) 

54     tar_dir = os.path.join('combined', template_name) 

 

55     filenames = generate_list_of_filenames() 

 

56     # some analysis 

57     audio_rows_before = [] 

58     audio_rows_after = [] 

59     video_rows_before = [] 

60     video_rows_after = [] 

 

61     # merge files from different folders 

62     for filename in filenames: 

63         audio_file = np.loadtxt(os.path.join(audio_src, filename), 

                                dtype='int', delimiter=',') 

64         video_file = np.loadtxt(os.path.join(video_scr, filename), 

                                dtype='int', delimiter=',') 

 

65         audio_rows_before.append(np.shape(audio_file)[0]) 

66         video_rows_before.append(np.shape(video_file)[0]) 

 

67         # remove rows of zeros 

68         audio_file = remove_leading_rows_of_zeros(audio_file) 

69         audio_file = remove_trailing_rows_of_zeros(audio_file) 

70         video_file = remove_leading_rows_of_zeros(video_file) 

71         video_file = remove_trailing_rows_of_zeros(video_file) 

 

72         # adjust video file length based on biological observations 

73         video_file = np.repeat(video_file, 3, axis=0) 

 

74         audio_rows_after.append(np.shape(audio_file)[0]) 

75         video_rows_after.append(np.shape(video_file)[0]) 

 

76         # calculate how many rows need to be padded 

77         row_diff = np.shape(audio_file)[0] 

                   - np.shape(video_file)[0] 

 

78         # if video file is longer than audio file, fill audio file 

79         if row_diff < 0: 

80             audio_file = fill_array_front(audio_file,abs(row_diff)) 
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81         # if audio file is longer than video file, fill video file 

82         if row_diff > 0: 

83             video_file = fill_array_front(video_file, row_diff) 

 

84         # join files and save as one 

85         combined = np.concatenate((audio_file, video_file), axis=1) 

86         np.savetxt(os.path.join(tar_dir, filename), combined, 

                   fmt='%d', delimiter=',') 

 

87     # some statistics 

88     print("Audio file length ranged from", 

          np.min(audio_rows_before), "to", 

          np.max(audio_rows_before), "with mean", 

          np.mean(audio_rows_before)) 

89     print("Audio file length now ranges from", 

          np.min(audio_rows_after), "to", 

          np.max(audio_rows_after), "with mean", 

          np.mean(audio_rows_after)) 

90     print("Video file length ranged from", 

          np.min(video_rows_before), "to", 

          np.max(video_rows_before), "with mean", 

          np.mean(video_rows_before)) 

91     print("Video file length now ranges from", 

          np.min(video_rows_after), "to", 

          np.max(video_rows_after), "with mean", 

          np.mean(video_rows_after)) 

 

92     fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True) 

93     ax0.set_title("Audio file length before") 

94     ax0.hist(audio_rows_before, bins=40) 

95     ax1.set_title("Audio file length after") 

96     ax1.hist(audio_rows_after, bins=40) 

97     fig.tight_layout() 

98     plt.show() 

 

99     fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True) 

100     ax0.set_title("Video file length before") 
101     ax0.hist(video_rows_before, bins=40) 
102     ax1.set_title("Video file length after") 
103     ax1.hist(video_rows_after, bins=40) 
104     fig.tight_layout() 
105     plt.show() 
 

 

106 main('MNI_by_4') 
107 main('TAL_by_8') 
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LISTING X PLOT_PRUNING.M 

1 %% switch template to MNI 

2 num_feat = "49"; %#ok<NASGU> 

3 template = "mni_by_4"; %#ok<NASGU> 

4 folder = "MNI_by_4"; %#ok<NASGU> 

 

 

5 %% switch template to TAL 

6 num_feat = "39"; 

7 template = "tal_by_8"; 

8 folder = "TAL_by_8"; 

 

 

9 %% set class ID – (1) bird (2) down (3) stop (4) tree (5) up 

10 class_id = "1"; 

11 class_name = "Bird"; 

 

 

12 %% load common files 

13 all_coord = csvread(folder + "/" + template + ".csv"); 

14 input_coord = csvread(folder + "/for_" + template + ".csv"); 

 

 

15 %% plot 

16 c = csvread(folder + "/NeuCube_Pruned_Neuron_Coordinates_Classes_" 

            + class_id + "_Features_1-" + num_feat + ".csv"); 

17 m = csvread(folder + "/NeuCube_Pruned_Weight_Matrix_Classes_" 

            + class_id + "_Features_1-" + num_feat + ".csv"); 

 

18 figure('Name',class_name,'NumberTitle','off','Color','white') 

 

19 scatter3(all_coord(:,1),all_coord(:,2),all_coord(:,3), 

         50, [0.7 0.7 0.7], '.') 

20 hold on 

21 scatter3(input_coord(:,1),input_coord(:,2),input_coord(:,3), 

         50, [0.3 0.3 0.3],'*') 

22 scatter3(c(:,1),c(:,2),c(:,3), 50, 'b', 'o') 

23 axis('equal') 

24 axis off 

 

 

25 for i = 1:length(c) 

26     for j = 1:length(c) 

27         if m(i,j) > 0 

28             line([c(i,1), c(j,1)], 

                 [c(i,2), c(j,2)], 

                 [c(i,3), c(j,3)], 

                 'Color', 'b', 'LineWidth', m(i,j)*8) 

29         end 

30     end 

31 end 
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APPENDIX B SUPPLEMENTARY MATERIAL 

This appendix contains supplementary tables with detailed results and supplementary figures 

for the experiments described in the three application chapters that were referenced in the 

main text. 
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TABLE B-1: RESULTS FOR THE PRELIMINARY EXPERIMENTS USING THE SOUND 

PROCESSING MODEL WITH DIFFERENT PROPERTIES OF IZHIKEVICH NEURONS AND 

THE TAL_BY_10 TEMPLATE. 

Property Accuracy in % – 10 runs with 5-fold cross-validation Mean 

A 52.2 51.2 53.0 52.4 50.0 52.2 50.8 52.0 54.4 53.6 52.2 

B 52.6 54.4 53.2 53.6 52.8 52.8 50.8 54.2 52.0 54.0 53.0 

C 55.6 54.4 56.4 55.8 54.6 55.0 57.6 55.8 56.0 54.8 55.6 

D 55.0 54.6 54.4 54.0 52.6 53.0 55.6 55.0 53.4 53.0 54.1 

E 53.8 54.6 55.4 55.6 54.4 54.4 55.4 55.0 55.6 53.4 54.8 

F 53.0 52.6 51.4 54.0 53.6 52.6 52.2 51.6 52.6 53.8 52.7 

G 56.8 55.2 56.6 56.0 53.0 54.6 55.6 54.8 53.2 54.8 55.1 

H 51.8 51.8 53.8 52.6 54.0 52.4 52.6 54.0 52.0 51.8 52.7 

I 52.6 53.6 51.4 52.6 51.4 51.4 54.0 52.4 52.0 53.6 52.5 

J 57.0 56.4 55.8 55.2 54.8 55.4 56.0 55.4 55.6 55.4 55.7 

K 55.0 57.2 54.6 55.8 56.4 55.8 57.2 55.4 57.8 58.2 56.3 

L 52.6 54.2 53.8 54.0 55.0 53.6 53.4 55.6 55.6 55.8 54.4 

M 54.6 56.2 55.4 55.8 56.4 55.2 56.4 55.0 55.6 55.4 55.6 

N 54.2 52.6 53.8 54.2 53.8 54.0 53.6 55.2 54.4 53.4 53.9 

O 56.8 55.6 56.8 55.8 56.2 57.0 56.8 56.4 55.6 55.6 56.3 

P 63.6 62.8 62.2 63.8 63.8 65.0 64.2 64.2 63.8 64.6 63.8 

Q 64.4 62.4 65.2 64.2 65.4 65.0 65.0 62.4 63.4 65.0 64.2 

R 59.2 58.4 59.0 60.2 58.2 60.6 59.8 59.0 60.2 58.4 59.3 

S 58.6 56.4 59.0 57.0 59.4 56.4 58.8 59.6 56.2 59.2 58.1 

T out of memory 
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TABLE B-2: RESULTS FOR THE PRELIMINARY EXPERIMENTS USING THE SOUND 

PROCESSING MODEL WITH DIFFERENT THRESHOLDS FOR LIF NEURONS. 

Threshold Accuracy in % – 10 runs with 5-fold cross-validation Mean 

0.01 66.2 66.0 68.6 67.4 63.2 64.6 66.8 65.0 66.2 66.0 66.0 

0.02 67.4 65.4 69.4 67.8 68.6 70.0 67.2 68.0 66.0 65.6 67.5 

0.03 68.8 65.6 68.4 67.2 68.0 66.2 68.6 68.0 71.6 70.0 68.2 

0.04 70.8 65.4 65.4 67.4 67.6 67.4 67.8 66.0 66.4 66.6 67.1 

0.05 65.0 67.0 66.8 65.8 68.0 65.4 69.4 67.0 66.2 66.6 66.7 

0.06 68.4 69.0 66.6 65.4 64.6 70.4 69.8 62.6 68.0 67.6 67.2 

0.07 63.8 64.0 64.6 63.2 64.2 64.8 64.4 65.0 67.4 65.2 64.7 

0.08 63.4 64.2 65.4 64.0 62.2 63.6 62.8 64.2 62.8 62.8 63.5 

0.09 63.2 63.8 63.6 63.4 64.2 64.0 64.2 64.2 64.2 63.0 63.8 

0.1 64.4 65.2 63.0 64.2 63.6 64.4 63.0 63.4 65.0 63.0 63.9 

0.15 63.8 64.0 64.6 64.0 64.2 65.2 63.0 62.8 64.2 64.2 64.0 

0.2 63.6 63.0 64.2 63.2 64.6 62.0 62.4 62.4 66.6 64.2 63.6 

0.25 65.2 63.8 64.8 65.2 65.6 65.4 63.8 59.6 64.4 64.2 64.2 

0.3 64.0 65.0 65.2 65.4 65.0 65.4 64.0 63.4 62.8 65.8 64.6 

0.35 63.6 63.8 63.4 64.8 63.4 62.8 64.6 62.6 65.4 64.4 63.9 

0.4 63.0 64.4 63.2 64.2 65.2 62.8 65.2 63.8 63.0 64.2 63.9 

0.45 63.8 63.6 63.2 65.2 64.2 63.4 64.8 64.4 65.8 64.6 64.3 

0.5 64.6 63.8 63.4 64.4 64.2 65.4 65.0 64.0 65.2 64.0 64.4 

0.55 63.8 62.8 66.0 65.0 64.6 65.4 65.0 64.4 64.4 64.6 64.6 

0.6 63.6 64.8 63.4 63.2 64.6 63.6 65.0 63.6 63.4 63.4 63.9 

0.65 64.2 64.4 64.8 63.8 65.0 64.2 65.2 65.0 64.6 64.4 64.6 

0.7 64.4 64.4 63.2 63.2 64.2 64.4 65.0 64.0 63.8 64.4 64.1 

0.75 63.6 63.0 64.4 63.2 62.4 64.6 65.2 63.6 65.4 64.2 64.0 

0.8 65.0 63.6 63.4 63.6 64.8 65.2 64.8 64.6 64.0 64.2 64.3 

0.85 64.8 64.8 63.4 64.8 65.0 63.4 63.4 62.8 63.4 63.4 63.9 

0.9 65.6 65.6 63.6 63.2 64.8 64.4 63.8 64.0 64.0 65.6 64.5 

0.95 62.8 64.0 63.2 64.0 63.6 64.8 64.4 64.2 64.0 64.8 64.0 

1 65.0 65.0 63.0 64.8 63.6 64.4 65.6 65.4 63.2 63.6 64.4 

1.5 65.8 63.4 64.2 63.2 63.4 62.6 64.4 65.0 63.4 63.0 63.8 

2 62.4 65.2 64.2 64.4 62.6 61.8 65.4 63.0 62.4 65.2 63.7 
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TABLE B-3: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

MNI_BY_3 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 82.69 87.61 86.69 88.60 88.84 87.99 88.24 87.22 89.66 90.44 89.20 89.20 88.48 89.43 88.36 90.77 87.86 89.08 
Run 2 80.27 86.82 88.72 92.50 90.66 86.42 91.60 91.19 88.48 89.66 89.89 90.66 91.40 88.48 90.22 89.31 89.20 88.96 
Run 3 77.75 87.99 87.86 90.00 89.31 86.69 89.31 89.66 87.48 86.15 91.29 88.24 88.11 89.20 87.99 88.24 89.31 88.84 
Run 4 80.63 87.86 89.31 88.24 87.73 89.31 89.43 88.24 88.72 87.09 89.31 88.24 90.55 89.20 89.43 89.43 88.11 89.20 
Run 5 75.40 87.73 87.09 89.89 86.56 89.66 90.00 89.66 89.55 87.99 90.77 90.00 89.89 88.11 88.24 88.36 89.43 89.43 
Run 6 79.52 87.09 89.66 90.55 89.43 89.43 87.09 88.60 87.73 90.66 89.55 86.42 88.60 89.43 88.60 90.44 89.08 89.43 
Run 7 81.34 88.24 86.15 88.48 87.35 89.31 89.20 90.55 89.31 88.96 87.09 88.84 88.36 87.22 86.82 87.99 89.31 88.96 
Run 8 77.75 88.48 89.89 88.11 89.55 89.77 90.33 88.48 87.22 90.00 87.99 91.19 88.84 90.00 87.86 89.66 88.48 87.99 
Run 9 82.02 86.56 89.66 90.77 88.60 88.96 90.33 86.01 89.31 88.24 90.11 90.22 89.66 89.66 88.36 89.20 87.61 89.31 
Run 10 78.95 87.22 88.36 88.60 90.87 89.55 87.61 89.08 90.33 87.48 88.60 87.22 88.24 88.96 89.77 89.20 89.08 88.84 
Run 11 81.85 87.86 88.96 93.07 86.01 87.35 87.35 88.96 89.08 86.69 89.43 91.50 90.55 90.77 89.31 87.61 89.55 88.72 
Run 12 80.81 86.42 88.60 86.82 91.09 92.01 89.08 88.36 90.11 87.22 89.20 90.11 88.11 89.43 89.55 89.31 88.84 88.24 
Run 13 81.16 87.61 87.35 90.66 90.77 88.36 87.48 89.08 88.11 88.11 91.81 90.55 91.91 89.66 87.99 90.11 88.60 88.24 
Run 14 81.34 86.69 90.11 91.50 88.96 88.60 88.36 90.55 90.00 89.66 89.31 90.33 89.55 88.36 88.84 89.77 88.84 89.20 
Run 15 80.63 88.84 89.43 90.55 89.89 88.96 89.43 88.72 88.11 88.11 88.11 89.66 89.31 88.24 88.24 87.35 87.35 88.48 
Run 16 81.16 86.15 90.66 89.43 89.43 89.43 89.08 88.48 87.73 89.08 90.44 89.89 89.08 89.66 90.22 88.96 90.66 87.99 
Run 17 79.33 86.82 88.48 89.55 89.08 87.48 89.66 90.00 86.96 88.60 90.66 90.11 88.36 90.00 89.31 87.73 89.55 88.24 
Run 18 78.95 86.15 89.66 88.48 87.22 90.22 89.66 90.00 89.55 88.48 89.31 90.55 89.66 87.86 88.84 91.19 88.48 88.60 
Run 19 81.34 90.22 90.87 88.60 88.11 89.89 88.96 89.77 86.56 87.48 90.22 89.89 89.77 89.55 88.96 88.72 89.77 87.22 
Run 20 80.99 88.96 90.77 87.35 86.42 90.22 90.55 88.36 90.87 87.73 90.44 89.43 88.11 88.96 88.60 89.20 88.36 89.77 
Run 21 80.27 87.09 88.48 88.72 90.22 87.99 89.89 87.35 90.33 88.48 86.96 86.56 89.66 89.43 88.24 89.77 88.72 89.43 
Run 22 77.96 87.48 91.40 89.08 89.31 89.66 88.96 89.43 86.15 89.08 90.11 89.43 89.20 89.20 88.36 90.22 89.31 89.55 
Run 23 78.75 88.11 89.55 92.69 86.69 87.61 89.66 88.60 89.31 87.09 91.70 88.72 89.77 87.48 88.60 90.66 90.77 89.31 
Run 24 80.45 88.24 87.09 90.77 90.87 88.84 89.31 88.72 87.99 88.60 89.31 89.77 88.72 89.55 88.60 87.73 89.08 88.60 
Run 25 80.08 89.20 88.48 90.00 90.11 87.22 88.36 87.99 87.22 86.28 90.11 90.44 88.24 88.48 88.36 88.84 86.96 89.89 
Run 26 83.49 87.22 86.69 83.17 85.15 88.60 89.08 88.60 85.15 89.20 89.31 88.72 90.33 89.55 89.31 88.84 89.43 88.11 
Run 27 78.95 86.15 90.66 87.09 84.42 86.56 89.89 90.44 89.77 86.42 88.36 89.77 90.22 90.22 88.11 87.48 87.48 86.69 
Run 28 77.34 89.89 88.60 85.73 85.30 87.35 87.09 87.61 90.55 88.24 90.33 88.84 89.89 89.55 87.99 88.84 88.96 88.11 
Run 29 81.51 87.86 86.42 89.08 87.22 87.99 89.55 88.96 88.84 90.55 90.77 88.84 88.36 88.36 87.73 89.55 88.36 89.43 
Run 30 78.16 90.11 89.77 89.43 88.72 87.61 89.08 90.66 90.44 87.35 89.89 90.00 89.31 89.08 89.31 88.96 87.48 88.96 
Mean 80.03 87.75 88.85 89.25 88.46 88.63 89.12 88.98 88.69 88.30 89.65 89.45 89.34 89.10 88.67 89.12 88.80 88.76 
Std dev 0.017 0.011 0.014 0.020 0.018 0.013 0.010 0.011 0.014 0.012 0.012 0.012 0.010 0.008 0.007 0.010 0.009 0.007 



338 

TABLE B-4: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 81.68 89.66 88.11 86.82 87.35 85.87 85.15 87.73 86.56 88.96 88.72 89.08 87.35 86.42 86.69 85.44 86.15 88.96 
Run 2 75.62 85.87 87.09 82.02 86.82 83.49 87.35 89.89 89.08 88.24 87.09 88.24 88.11 87.09 87.22 87.48 85.15 88.24 
Run 3 80.08 85.01 88.72 89.31 89.55 85.44 89.20 89.89 86.56 90.55 87.22 86.56 87.09 85.15 86.96 86.69 86.15 86.69 
Run 4 82.52 86.01 86.01 84.11 88.60 87.22 88.84 87.86 88.24 89.77 85.73 85.44 87.09 87.09 88.48 85.15 87.22 88.84 
Run 5 80.27 84.71 86.69 89.43 86.69 83.17 87.22 88.24 89.55 89.20 87.73 87.48 86.56 86.01 87.61 86.01 87.22 85.44 
Run 6 78.16 87.73 85.01 85.73 87.61 88.11 86.56 87.48 89.31 87.48 86.42 86.96 87.99 85.59 88.11 85.30 85.15 87.22 
Run 7 77.55 88.24 86.96 88.11 87.09 85.73 89.55 87.99 87.73 89.43 87.73 85.87 87.22 86.82 86.42 85.87 86.96 87.22 
Run 8 78.36 87.09 87.35 88.48 85.44 84.11 84.71 85.44 87.48 88.60 89.43 87.99 88.24 86.42 88.72 86.42 87.22 85.15 
Run 9 78.16 89.89 89.43 83.49 88.72 89.89 86.69 87.48 89.31 87.35 86.42 88.84 85.73 86.56 87.99 86.28 86.69 87.35 
Run 10 79.90 83.01 87.09 84.57 88.36 88.48 87.73 90.00 87.86 89.89 88.72 86.96 85.44 86.56 85.73 88.72 85.01 85.87 
Run 11 78.56 85.44 84.71 88.36 89.89 88.72 85.73 88.60 87.48 88.36 88.48 86.69 87.09 86.15 85.44 87.61 87.09 85.30 
Run 12 79.52 85.73 86.15 87.09 90.33 86.96 85.30 87.86 88.11 89.20 87.35 87.73 87.86 85.73 86.28 87.86 86.01 86.96 
Run 13 81.85 86.82 88.11 88.36 86.69 87.09 86.96 88.11 90.66 87.61 86.96 88.72 86.15 85.87 86.42 85.87 87.73 86.15 
Run 14 81.16 88.24 87.35 87.99 87.99 86.69 85.30 89.08 88.84 92.11 86.56 89.08 86.28 85.44 87.48 85.59 85.01 85.44 
Run 15 80.81 89.43 85.15 88.48 87.35 88.48 90.00 87.35 88.48 85.87 89.66 87.22 85.59 86.15 86.69 85.59 88.24 87.22 
Run 16 79.90 87.99 87.99 85.15 87.99 88.72 88.72 86.96 89.77 91.70 86.69 86.28 86.15 86.28 88.11 87.61 86.69 85.44 
Run 17 79.90 84.71 87.73 87.99 84.42 85.15 87.22 90.66 87.73 86.82 87.61 87.35 89.77 86.96 89.08 86.01 84.26 86.15 
Run 18 84.11 86.42 87.73 87.73 85.01 85.30 88.48 87.61 87.48 88.24 89.08 86.96 86.01 88.48 86.69 86.82 88.36 87.22 
Run 19 77.55 87.22 87.22 86.96 88.60 85.73 89.55 87.09 89.77 88.48 86.28 86.28 89.08 86.56 87.86 87.73 87.73 85.30 
Run 20 80.63 85.87 86.42 88.72 86.01 87.09 85.44 88.96 87.99 88.36 86.82 87.99 86.56 86.96 87.09 86.96 86.15 87.48 
Run 21 81.16 86.15 87.61 88.72 88.11 87.99 88.60 86.82 88.36 87.61 89.20 87.48 87.48 87.73 85.73 85.15 86.82 88.36 
Run 22 80.45 88.48 87.61 85.44 88.36 87.61 90.00 86.82 90.77 88.24 87.73 87.09 88.11 84.11 86.01 85.15 87.35 86.82 
Run 23 81.16 85.30 88.48 87.48 89.55 88.48 87.86 86.42 88.72 88.96 86.82 87.22 87.09 87.48 90.00 87.99 87.35 86.69 
Run 24 77.34 87.35 85.15 88.84 87.73 83.96 86.56 90.22 88.36 88.60 87.99 88.24 86.42 86.82 86.82 85.73 86.15 85.44 
Run 25 79.71 86.15 86.69 88.84 84.11 86.28 88.11 89.31 87.35 87.61 89.55 87.99 86.96 89.55 86.82 87.73 85.44 86.15 
Run 26 79.90 87.09 91.19 86.96 89.08 89.55 88.96 85.30 87.86 88.72 89.20 87.09 86.28 88.24 86.69 86.69 87.35 86.82 
Run 27 82.19 86.96 86.96 87.22 88.84 90.00 87.73 89.55 87.48 89.31 86.96 85.59 87.99 87.99 87.61 86.69 87.73 88.24 
Run 28 80.27 86.01 83.96 88.60 89.08 87.73 86.82 88.36 89.89 89.31 87.35 85.15 88.24 86.82 87.86 86.15 85.87 88.36 
Run 29 77.96 85.87 89.20 87.35 86.69 87.22 86.96 87.61 89.55 87.35 89.55 87.61 88.96 86.82 86.28 87.35 85.73 86.28 
Run 30 80.27 86.42 85.30 85.01 86.56 87.35 86.28 89.43 90.33 87.48 88.72 88.11 86.96 87.22 87.73 86.15 85.59 85.01 
Mean 79.89 86.69 87.11 87.11 87.62 86.92 87.45 88.14 88.56 88.65 87.79 87.31 87.19 86.70 87.22 86.53 86.52 86.73 
Std dev 0.0177 0.0154 0.0152 0.0184 0.0155 0.0181 0.0150 0.0134 0.0112 0.0131 0.0113 0.0102 0.0106 0.0104 0.0104 0.0097 0.0104 0.0115 
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TABLE B-5: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

MNI_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 85.30 85.73 86.15 83.17 83.80 86.42 83.65 84.71 86.82 83.33 83.49 82.69 83.65 81.68 82.36 82.85 83.65 83.01 
Run 2 86.69 85.44 86.28 84.26 86.15 86.01 82.19 84.86 85.44 83.33 84.42 82.36 82.52 83.17 82.52 85.30 81.68 82.52 
Run 3 86.15 86.69 82.52 83.80 83.49 84.86 84.57 86.96 84.42 84.57 84.11 83.17 83.33 81.51 83.80 84.71 83.33 84.86 
Run 4 83.65 83.65 84.26 86.82 83.49 84.26 84.86 89.31 84.11 85.73 84.71 84.71 84.57 81.85 83.96 84.11 81.85 84.11 
Run 5 84.86 83.96 84.57 87.86 85.87 87.22 86.82 85.44 85.01 85.01 84.86 82.19 83.33 83.80 83.17 83.33 83.96 84.86 
Run 6 80.99 84.57 87.61 83.33 82.52 86.56 84.42 86.96 86.96 84.26 84.71 84.57 83.80 82.02 83.49 83.49 82.85 84.11 
Run 7 82.19 86.15 84.86 85.59 85.73 87.73 86.69 83.17 85.44 85.01 82.19 83.80 85.30 83.80 82.19 82.52 83.33 83.49 
Run 8 84.26 83.96 85.73 84.86 84.86 86.15 84.71 87.09 88.36 86.01 81.51 81.85 83.33 83.96 82.52 84.86 82.85 82.85 
Run 9 84.42 84.57 83.49 88.24 85.87 86.82 84.11 83.96 83.65 83.65 81.51 78.56 82.69 80.81 83.96 81.34 84.57 84.71 
Run 10 83.01 85.15 85.44 85.01 87.48 85.73 87.35 83.49 86.01 84.11 84.86 86.15 81.85 85.59 80.99 85.30 83.33 83.80 
Run 11 83.17 85.59 84.71 85.73 88.24 85.44 84.71 86.42 82.36 83.49 85.59 81.34 84.57 82.36 83.96 82.85 82.19 83.80 
Run 12 86.42 85.44 84.26 82.69 83.33 82.69 83.01 85.01 86.01 82.85 86.01 83.49 83.17 83.33 86.15 85.15 85.59 82.36 
Run 13 83.01 86.28 83.33 88.24 84.26 85.01 83.65 85.30 84.11 84.57 83.96 84.57 83.17 83.49 85.59 82.85 85.01 82.69 
Run 14 83.96 85.73 83.65 87.73 85.87 86.96 85.30 85.59 84.26 85.30 81.85 82.19 83.80 83.80 82.36 82.85 85.01 82.52 
Run 15 87.35 84.57 85.01 84.71 86.82 85.01 86.69 85.01 85.30 85.87 85.01 83.01 81.16 84.11 83.49 82.19 84.42 83.49 
Run 16 81.16 85.44 86.28 86.96 87.22 82.52 86.96 86.28 84.71 83.49 83.49 84.57 82.85 85.59 83.33 81.68 83.80 82.85 
Run 17 80.45 86.82 81.51 85.30 87.09 86.69 85.30 84.57 86.69 83.80 83.17 83.01 85.59 82.52 82.69 83.01 83.80 82.19 
Run 18 83.17 85.30 85.15 85.01 86.42 87.48 85.73 86.42 85.87 85.87 85.15 85.30 83.17 85.73 82.19 85.59 83.96 82.69 
Run 19 84.86 84.42 87.61 83.33 85.44 83.96 84.57 83.80 88.72 81.85 82.85 82.36 82.19 81.68 85.15 85.73 82.69 83.17 
Run 20 82.52 81.85 85.30 86.15 84.42 87.22 87.22 84.11 82.52 85.15 86.01 85.01 84.11 85.44 83.01 81.34 83.80 83.01 
Run 21 85.30 85.73 81.85 85.30 87.22 86.15 85.44 87.86 83.33 84.26 85.01 85.87 84.11 85.59 83.80 85.30 82.02 83.96 
Run 22 83.33 85.59 87.86 86.82 86.69 86.01 86.96 85.59 82.52 86.42 84.57 83.49 83.49 84.86 84.11 83.49 82.52 84.71 
Run 23 82.85 82.85 85.44 85.15 86.69 87.35 84.42 80.99 86.96 84.26 82.36 84.11 85.30 82.52 84.57 81.16 83.65 85.15 
Run 24 86.82 84.26 83.65 85.15 84.57 84.57 86.69 86.28 83.65 84.26 84.86 84.71 80.81 82.52 84.26 82.69 82.36 82.36 
Run 25 85.30 86.28 83.65 85.15 86.28 83.65 87.22 83.80 86.01 86.96 84.26 84.86 85.73 83.01 84.86 80.81 86.15 79.90 
Run 26 83.96 87.22 85.73 85.59 84.86 86.28 83.01 84.71 82.69 85.01 84.26 85.44 83.65 83.65 84.11 83.96 82.85 84.26 
Run 27 84.26 83.01 86.96 86.42 86.69 87.35 88.48 86.01 82.69 84.57 84.42 85.59 81.85 84.71 81.85 83.65 83.33 83.33 
Run 28 83.49 84.42 83.80 83.17 84.26 86.28 86.15 86.01 86.56 83.17 85.87 84.42 83.17 82.85 83.96 85.30 83.33 80.99 
Run 29 82.36 85.59 85.15 83.80 85.01 86.15 88.24 84.86 85.44 83.01 85.59 84.11 85.15 82.19 86.69 86.15 83.65 86.15 
Run 30 83.65 85.59 86.15 84.42 85.30 84.86 85.01 85.44 86.69 84.42 84.57 82.69 83.80 84.11 84.57 83.17 83.96 85.01 
Mean 83.96 85.06 84.93 85.33 85.53 85.78 85.47 85.33 85.11 84.45 84.17 83.67 83.51 83.41 83.66 83.56 83.52 83.43 
Std dev 0.0170 0.0120 0.0158 0.0153 0.0140 0.0136 0.0158 0.0156 0.0171 0.0114 0.0128 0.0158 0.0121 0.0136 0.0127 0.0149 0.0105 0.0127 
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TABLE B-6: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

TAL_BY_6 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 76.06 78.36 74.01 76.06 80.99 85.15 85.15 85.87 85.30 87.61 87.73 88.48 88.96 90.33 89.31 87.73 89.66 88.24 
Run 2 79.14 80.08 77.13 78.95 83.49 87.99 86.56 87.22 85.73 86.56 87.09 86.42 87.99 88.84 90.98 88.84 88.36 89.31 
Run 3 75.40 78.75 78.75 81.34 76.92 84.86 85.87 85.87 88.72 90.00 86.69 88.24 89.31 90.11 89.20 89.66 89.31 90.66 
Run 4 76.06 80.27 78.95 82.36 80.99 83.33 83.33 89.55 87.86 86.56 88.36 87.73 91.19 90.66 87.99 89.55 89.77 88.48 
Run 5 74.94 81.51 74.71 76.50 77.34 84.26 86.96 89.20 88.60 86.69 88.96 88.24 87.86 90.98 89.43 89.20 87.86 88.96 
Run 6 80.27 81.34 75.40 79.52 79.14 85.87 86.42 86.69 85.59 86.82 88.96 86.15 89.89 91.91 90.55 88.72 86.15 88.24 
Run 7 80.27 81.34 75.84 80.81 78.75 84.42 87.22 84.86 87.35 86.56 87.35 89.20 89.31 90.00 89.66 89.66 88.48 89.89 
Run 8 75.62 80.81 78.16 83.17 79.33 86.56 86.28 86.69 87.48 87.61 89.20 89.20 88.48 90.33 88.48 87.73 87.73 88.72 
Run 9 77.96 78.16 77.75 77.13 79.14 84.42 84.26 84.11 85.87 88.72 88.11 89.66 89.66 89.66 89.08 90.33 90.66 89.66 
Run 10 77.75 77.75 83.33 82.02 83.01 84.57 83.96 86.15 87.61 82.36 88.48 87.73 88.36 89.55 90.44 89.55 88.72 89.08 
Run 11 75.40 78.75 75.40 79.14 79.90 85.73 87.09 85.73 88.11 88.24 90.55 88.60 90.66 90.00 88.24 88.84 89.77 89.31 
Run 12 74.48 79.71 72.79 76.50 83.80 83.33 86.96 86.28 87.99 88.84 88.84 87.99 90.44 87.73 89.43 87.73 88.48 88.84 
Run 13 77.75 77.13 75.62 82.02 78.95 84.86 85.15 85.44 89.31 88.84 87.48 90.44 88.48 89.89 86.82 89.20 87.09 88.60 
Run 14 76.50 76.50 80.99 71.52 80.99 85.30 85.44 88.60 88.11 87.09 88.24 87.61 89.08 88.96 90.55 89.66 88.11 88.84 
Run 15 77.55 78.75 78.75 80.45 78.75 83.96 86.42 83.65 88.72 87.35 88.11 88.24 88.36 89.55 88.11 88.48 88.48 88.11 
Run 16 74.71 80.81 82.19 80.81 79.90 83.49 86.56 87.48 90.22 86.82 89.20 87.86 91.19 91.09 87.48 89.20 88.96 88.96 
Run 17 73.04 80.45 79.90 81.34 77.34 85.87 87.48 84.86 86.42 88.96 85.30 89.20 89.20 90.22 89.66 89.31 87.35 88.48 
Run 18 77.34 80.99 73.53 76.50 79.14 85.01 86.56 88.48 87.48 86.42 87.61 88.11 88.60 89.77 89.31 89.77 87.35 89.31 
Run 19 74.94 77.13 73.29 76.92 76.50 82.85 87.86 86.01 88.36 87.99 88.96 87.61 89.43 89.43 89.66 89.55 87.99 88.36 
Run 20 77.55 80.45 81.85 80.08 76.92 86.69 87.09 85.01 85.59 87.48 89.66 89.55 91.09 91.60 88.84 89.43 88.96 89.20 
Run 21 79.90 80.81 73.29 83.01 76.71 85.30 82.36 88.48 87.99 86.01 89.08 88.36 89.55 87.73 88.96 89.66 89.89 88.36 
Run 22 75.62 77.34 78.75 71.78 79.14 86.96 83.80 88.48 88.96 88.96 87.09 90.33 90.44 89.66 90.55 86.15 90.00 89.20 
Run 23 79.52 80.63 77.13 82.69 80.63 82.69 87.35 85.73 89.66 87.48 90.00 86.82 91.40 90.22 89.20 88.84 90.55 88.48 
Run 24 77.55 77.96 83.17 76.71 79.14 80.45 87.22 84.11 88.36 86.96 87.22 88.11 90.11 88.48 88.60 89.89 87.61 87.99 
Run 25 75.17 80.45 80.63 78.95 75.62 85.87 85.30 88.48 87.61 85.59 89.55 87.09 86.28 89.55 88.36 89.31 88.96 88.48 
Run 26 76.06 82.19 81.16 76.92 77.13 86.42 86.56 86.15 86.69 85.73 87.73 88.60 88.60 89.20 90.77 88.96 89.08 89.08 
Run 27 80.45 79.52 78.75 81.34 72.03 83.33 87.48 85.87 89.20 87.61 88.84 88.36 90.44 89.66 87.35 87.73 88.60 88.84 
Run 28 77.96 80.27 73.53 80.81 81.16 84.71 87.35 85.01 87.99 89.31 87.22 90.44 88.84 89.77 90.44 88.72 89.77 87.86 
Run 29 75.62 77.75 78.36 78.75 74.48 84.57 86.56 85.30 85.15 89.66 89.08 87.86 87.61 88.72 88.84 87.48 88.84 90.44 
Run 30 78.56 79.33 76.28 76.28 74.01 83.49 86.15 87.99 87.22 87.73 86.96 87.73 89.20 90.11 89.43 88.48 89.08 89.08 
Mean 76.97 79.51 77.65 79.01 78.71 84.74 86.09 86.44 87.64 87.42 88.25 88.33 89.33 89.79 89.19 88.91 88.72 88.90 
Std dev 0.0193 0.0152 0.0307 0.0298 0.0266 0.0150 0.0135 0.0158 0.0132 0.0148 0.0112 0.0106 0.0118 0.0094 0.0104 0.0089 0.0104 0.0065 
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TABLE B-7: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

TAL_BY_7 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 76.50 77.34 77.75 84.42 83.17 86.42 84.11 85.01 87.09 85.87 86.82 87.86 88.96 87.22 87.86 88.11 86.69 86.82 
Run 2 81.16 80.99 77.55 75.62 83.65 81.51 83.65 88.11 87.35 86.82 89.55 90.44 88.60 87.61 88.11 87.61 88.24 86.69 
Run 3 75.62 79.52 82.19 73.77 83.01 83.17 83.96 85.44 87.99 84.57 87.99 90.55 87.48 90.11 88.96 88.96 88.96 88.60 
Run 4 77.75 81.85 73.29 79.52 81.34 86.01 85.87 85.87 86.82 88.24 85.73 88.11 88.48 87.99 86.28 89.43 87.61 87.35 
Run 5 79.33 81.16 79.71 77.55 83.49 83.65 87.09 83.33 86.69 87.09 88.72 90.98 88.24 87.86 86.15 89.08 87.35 86.56 
Run 6 80.81 79.33 75.40 78.36 77.13 87.22 88.48 83.49 88.24 86.56 87.22 89.66 88.11 86.15 86.42 88.11 88.48 87.99 
Run 7 80.45 78.95 77.55 83.96 83.01 85.59 84.71 83.96 86.96 87.99 86.56 88.96 89.55 87.35 85.59 85.73 86.82 87.86 
Run 8 78.95 82.02 77.13 75.40 76.71 87.22 83.17 86.82 85.87 85.87 88.36 90.22 88.11 86.56 87.35 87.99 89.20 87.86 
Run 9 78.36 81.16 76.28 81.51 82.69 86.69 87.48 85.73 88.84 86.56 85.87 90.55 91.09 87.22 87.61 86.69 86.56 86.42 
Run 10 78.36 78.95 81.34 76.92 82.19 83.65 86.69 84.26 84.26 85.59 87.48 90.98 87.22 87.09 88.72 87.09 87.86 86.42 
Run 11 77.96 78.75 76.28 75.40 83.65 89.20 83.17 83.17 85.87 86.42 88.84 88.11 87.22 88.84 87.61 86.96 87.22 87.35 
Run 12 77.34 81.85 74.71 80.99 83.17 83.33 84.26 87.09 88.48 87.09 89.55 90.33 89.77 85.87 87.61 86.56 87.61 86.42 
Run 13 74.94 78.95 80.27 74.01 77.34 86.69 86.96 88.24 89.31 84.57 89.08 88.60 87.86 87.09 87.99 86.96 87.22 87.61 
Run 14 78.56 74.25 77.55 80.63 84.86 86.56 85.01 86.82 87.22 89.31 86.15 88.60 85.73 88.36 88.84 84.71 85.87 87.86 
Run 15 77.13 80.81 76.50 73.53 80.45 86.96 86.69 86.15 88.48 85.44 88.48 90.22 87.86 87.22 87.48 88.60 86.28 87.48 
Run 16 76.71 73.04 82.52 77.34 81.85 85.59 83.33 90.00 86.42 85.87 86.01 89.77 87.09 87.09 86.01 88.96 86.96 86.82 
Run 17 77.96 74.25 76.28 76.06 77.34 86.01 85.30 85.01 84.86 85.59 86.96 89.77 87.22 86.56 87.09 87.09 87.35 85.30 
Run 18 79.71 80.81 75.62 78.16 79.52 85.01 82.85 87.61 83.80 89.31 88.11 90.77 87.22 88.24 89.89 87.35 87.73 85.15 
Run 19 75.17 81.51 78.36 83.96 82.69 83.17 86.15 88.72 83.49 87.22 87.99 90.11 91.50 88.48 86.56 87.73 87.99 88.36 
Run 20 79.52 79.71 75.17 73.77 81.34 85.87 87.61 86.96 85.59 87.48 89.89 89.55 88.11 88.60 87.09 87.48 86.56 84.57 
Run 21 76.28 81.51 80.63 81.51 83.01 86.82 84.42 85.73 87.73 86.42 85.59 89.89 88.60 86.56 87.86 88.24 88.60 87.22 
Run 22 77.34 80.63 74.71 73.04 83.80 87.61 84.26 84.71 89.08 87.73 87.35 90.00 90.87 86.15 86.42 86.28 86.96 85.59 
Run 23 80.45 80.81 77.55 75.62 79.71 86.15 84.71 85.44 84.26 87.73 87.99 90.00 87.09 86.28 87.73 88.36 86.82 87.09 
Run 24 79.14 70.99 75.40 72.79 81.16 86.69 83.80 86.82 86.56 83.33 86.96 90.33 89.55 86.96 86.15 87.09 87.61 88.72 
Run 25 79.14 79.14 74.94 75.84 80.99 86.82 87.48 87.09 87.09 89.55 87.61 90.77 87.22 86.56 87.61 87.86 87.86 87.35 
Run 26 77.75 79.14 79.14 81.51 82.02 87.22 84.71 85.73 88.11 87.22 87.22 89.43 88.96 87.48 88.11 85.87 88.24 87.35 
Run 27 76.50 70.99 73.29 74.01 78.95 83.33 84.26 85.73 88.24 86.82 87.22 90.00 87.99 86.96 88.48 87.48 86.42 88.36 
Run 28 79.71 80.63 82.52 80.81 81.34 87.09 81.85 85.15 86.56 86.69 87.48 89.77 87.48 89.55 86.28 87.61 88.60 86.69 
Run 29 77.13 82.52 82.19 77.75 80.99 86.82 86.42 85.44 81.85 88.60 86.15 88.11 92.20 87.73 88.84 86.56 86.56 85.73 
Run 30 75.62 80.45 76.06 73.53 83.01 88.36 83.33 84.71 85.01 87.61 89.20 89.20 90.98 87.99 88.11 87.35 88.48 88.72 
Mean 78.05 79.07 77.60 77.58 81.45 85.88 85.06 85.95 86.60 86.84 87.60 89.72 88.55 87.46 87.49 87.46 87.49 87.08 
Std dev 0.017 0.031 0.027 0.035 0.022 0.017 0.017 0.016 0.018 0.014 0.012 0.009 0.015 0.010 0.010 0.010 0.008 0.011 
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TABLE B-8: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 80.27 81.51 81.68 80.63 80.81 83.01 82.69 84.26 86.82 88.72 87.99 90.98 85.59 87.09 88.48 87.61 87.22 89.20 
Run 2 78.75 80.81 78.75 81.68 82.69 86.82 87.48 86.28 86.15 88.11 88.96 88.24 88.11 86.56 89.55 87.99 88.84 87.48 
Run 3 75.84 82.52 76.50 81.68 82.52 84.11 87.61 85.30 86.15 85.44 89.89 88.60 87.22 88.24 87.22 88.72 86.96 87.99 
Run 4 78.16 79.52 73.53 80.08 82.52 85.30 85.59 82.69 89.55 85.59 86.96 86.69 89.20 86.82 87.22 87.86 88.48 86.56 
Run 5 80.63 78.75 76.28 80.63 81.85 87.99 85.59 86.28 89.43 85.01 87.61 89.31 87.09 86.96 86.56 87.35 87.35 89.20 
Run 6 82.02 74.71 84.42 81.85 79.90 84.86 87.73 88.11 89.08 85.73 89.08 90.00 85.87 87.61 88.48 88.84 85.59 88.36 
Run 7 78.16 78.16 80.63 79.90 82.36 84.71 85.15 87.09 86.96 87.35 90.22 86.96 89.89 87.35 85.73 87.22 86.96 86.15 
Run 8 79.90 73.29 81.51 73.77 78.75 85.01 86.96 88.60 86.42 87.22 89.20 88.96 86.42 86.56 87.48 87.09 86.15 86.56 
Run 9 80.99 80.81 76.28 79.52 81.68 86.01 85.87 87.09 88.96 89.66 90.44 89.77 88.84 86.42 90.00 88.11 88.36 87.48 
Run 10 76.28 80.08 82.36 79.14 83.65 87.22 85.15 83.01 85.44 87.99 88.84 87.22 88.11 87.73 86.96 84.71 88.24 86.96 
Run 11 75.17 80.81 75.40 81.16 78.16 85.30 87.99 88.84 86.56 85.87 88.24 89.08 85.15 86.42 89.08 86.82 87.35 87.22 
Run 12 79.90 83.33 74.71 79.33 83.80 81.51 86.01 87.48 86.56 83.49 90.55 87.35 83.33 87.35 88.48 85.15 84.42 88.84 
Run 13 79.33 83.33 79.14 78.75 80.08 84.86 86.15 86.69 85.44 86.15 88.96 87.86 88.36 87.99 86.82 87.35 86.42 85.87 
Run 14 76.28 78.36 76.28 82.19 81.68 85.15 86.82 88.72 85.59 84.71 89.20 87.61 87.22 86.69 87.73 88.72 88.60 86.42 
Run 15 81.51 76.06 80.45 75.84 77.96 86.01 86.82 88.36 86.69 88.11 89.43 88.96 86.56 88.60 87.22 88.96 86.96 87.09 
Run 16 77.55 79.52 79.52 81.16 81.85 87.35 87.48 87.61 87.86 83.96 89.08 89.43 88.48 88.36 86.56 87.73 87.73 87.99 
Run 17 75.40 76.50 82.19 79.14 81.68 86.28 85.15 85.44 87.61 89.20 89.08 91.09 87.35 86.15 88.96 86.96 90.33 86.15 
Run 18 78.16 77.13 81.68 77.34 80.08 84.42 86.01 84.42 89.08 86.01 89.20 86.69 87.99 86.42 85.87 86.56 87.86 86.82 
Run 19 75.84 80.27 81.68 74.94 79.52 84.11 86.42 89.77 86.69 84.42 90.11 88.24 88.11 86.56 88.72 86.69 89.55 87.61 
Run 20 79.14 81.16 83.01 84.11 80.08 82.02 85.15 86.15 87.61 88.36 90.11 89.20 85.01 88.36 87.48 88.11 87.61 86.82 
Run 21 76.06 76.71 82.69 77.96 80.63 83.49 88.96 90.00 87.61 86.96 88.24 87.35 89.08 87.99 88.36 86.28 85.30 86.96 
Run 22 78.36 80.45 75.40 74.94 84.11 83.65 86.01 88.24 86.42 87.35 89.77 87.22 87.61 85.87 88.11 87.22 87.22 85.73 
Run 23 79.52 78.95 77.75 80.63 79.71 84.11 86.15 85.01 88.11 86.96 90.00 87.22 87.61 85.30 87.99 88.60 85.44 87.61 
Run 24 78.95 79.90 74.94 82.69 82.52 85.44 87.35 85.59 88.48 88.11 88.36 88.48 86.28 87.09 88.24 87.99 87.86 86.69 
Run 25 83.49 80.45 76.50 75.62 79.90 82.02 85.59 85.87 86.56 86.28 87.86 87.73 88.24 87.22 88.48 86.28 88.11 88.24 
Run 26 78.16 73.29 78.16 77.96 83.80 81.68 83.01 88.60 87.73 86.69 88.48 87.99 88.72 88.48 87.35 86.42 88.11 87.35 
Run 27 75.40 79.71 82.69 82.19 82.02 85.15 85.87 83.65 85.73 85.15 87.73 88.24 86.28 88.36 89.55 86.56 87.73 87.48 
Run 28 76.92 72.79 76.92 77.34 80.45 81.34 84.57 88.11 87.48 90.00 90.22 88.36 88.72 87.35 85.87 87.86 88.24 86.69 
Run 29 77.96 79.14 78.75 76.28 80.08 85.73 86.82 86.15 88.96 86.01 88.84 90.11 86.01 86.42 87.22 87.09 87.09 86.42 
Run 30 76.71 70.72 76.92 76.50 81.34 84.42 85.44 88.11 88.36 87.86 90.55 89.31 88.24 86.15 87.61 87.09 86.96 87.48 
Mean 78.36 78.62 78.89 79.17 81.21 84.64 86.12 86.72 87.34 86.75 89.11 88.47 87.36 87.15 87.78 87.33 87.43 87.25 
Std dev 0.0211 0.0311 0.0296 0.0261 0.0163 0.0172 0.0133 0.0190 0.0122 0.0164 0.0094 0.0118 0.0144 0.0086 0.0109 0.0100 0.0124 0.0090 
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TABLE B-9: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

TAL_BY_9 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 79.71 77.13 75.17 76.92 81.85 85.44 85.30 84.42 83.65 77.96 83.65 83.80 83.49 83.96 85.73 83.96 83.80 82.85 
Run 2 76.28 77.55 80.27 74.94 81.85 84.42 83.80 86.96 82.69 82.36 84.71 82.85 83.49 80.81 80.99 82.85 83.49 83.96 
Run 3 79.14 80.81 82.19 72.29 81.51 87.48 86.15 86.28 80.99 82.85 85.01 83.65 85.73 83.01 82.85 83.33 86.56 83.33 
Run 4 80.63 79.33 77.55 74.94 84.86 86.56 88.11 85.15 83.33 78.36 82.52 85.87 84.42 86.42 81.68 83.80 83.49 81.51 
Run 5 78.16 79.90 77.13 76.71 82.69 85.15 84.71 83.80 83.49 83.17 84.42 82.36 84.26 81.51 85.15 84.86 83.49 81.51 
Run 6 76.71 77.34 77.13 78.16 79.90 82.85 85.15 83.17 83.96 77.13 83.96 83.65 83.80 84.57 83.01 82.52 80.81 83.80 
Run 7 74.48 75.62 74.48 76.71 80.27 85.87 85.01 81.34 84.42 80.63 85.01 83.49 82.36 84.71 82.19 82.85 82.36 84.71 
Run 8 75.40 78.95 77.55 76.28 85.87 83.17 84.42 85.73 80.63 78.36 83.17 83.17 82.02 85.15 85.30 84.11 85.01 81.68 
Run 9 78.95 81.68 80.45 76.50 83.49 85.30 84.26 86.01 78.36 81.85 84.42 83.33 82.02 82.52 77.75 85.59 83.33 83.49 
Run 10 76.50 74.01 73.04 75.17 80.99 87.61 87.09 83.17 82.85 77.13 82.52 82.36 83.96 83.96 81.85 82.85 83.49 83.49 
Run 11 74.94 76.92 77.34 76.06 78.75 84.71 85.15 84.57 78.75 81.85 87.09 82.69 81.51 82.69 85.44 81.34 82.52 85.59 
Run 12 77.55 73.53 76.92 72.79 83.17 83.65 84.57 86.96 84.26 76.28 84.26 83.33 84.86 84.71 83.01 82.52 83.96 81.34 
Run 13 77.75 74.48 77.75 74.48 81.85 86.56 84.86 83.96 83.33 77.75 83.96 83.65 83.49 83.65 83.33 84.71 86.42 85.01 
Run 14 74.94 76.28 72.03 80.45 76.92 85.59 87.86 86.69 80.99 82.85 85.01 84.42 83.33 85.01 82.02 82.19 83.96 85.73 
Run 15 77.13 77.55 79.71 74.25 81.85 84.71 86.28 84.11 83.80 80.45 86.01 83.17 83.80 83.01 84.11 84.26 84.57 82.02 
Run 16 76.28 77.13 74.94 73.29 83.65 86.42 85.44 84.11 81.68 84.86 83.33 84.26 81.85 85.44 82.36 81.51 84.42 82.36 
Run 17 78.16 80.45 82.52 77.13 80.99 85.01 86.96 87.35 81.68 84.42 83.49 84.42 84.26 81.68 85.44 82.69 82.52 83.33 
Run 18 75.17 78.16 74.71 76.92 82.85 87.35 84.11 84.57 82.02 83.01 84.57 84.26 83.01 83.96 83.96 81.68 84.11 83.96 
Run 19 75.84 73.04 79.33 72.03 81.34 86.96 85.59 86.69 79.90 81.51 86.01 82.85 82.36 82.19 83.96 84.57 84.86 85.01 
Run 20 79.14 77.96 80.08 79.33 85.01 88.48 86.01 86.82 83.65 82.69 84.86 82.69 82.19 82.69 81.51 84.11 84.86 83.65 
Run 21 79.71 77.13 78.16 77.96 80.08 84.57 87.73 85.87 81.34 81.85 84.71 85.30 82.36 83.17 83.96 83.49 84.57 83.80 
Run 22 76.92 78.75 75.17 74.48 82.02 83.65 86.96 83.80 83.17 83.17 83.01 83.96 82.85 82.85 85.59 84.11 82.02 81.51 
Run 23 74.48 72.54 78.75 79.71 84.11 87.09 86.69 86.96 80.81 81.85 81.16 83.65 83.65 84.26 84.71 81.68 83.33 84.57 
Run 24 78.75 74.01 80.27 72.54 81.68 83.17 85.59 85.15 82.36 80.81 85.15 80.27 83.80 85.01 80.99 83.80 82.36 85.01 
Run 25 74.94 79.90 76.28 72.29 81.51 84.71 85.59 85.87 82.69 82.36 82.19 85.73 85.30 84.26 83.01 84.26 83.65 83.65 
Run 26 78.95 73.53 78.56 75.84 82.52 86.28 86.01 84.42 80.99 82.85 85.73 83.80 82.85 82.69 82.85 85.87 83.49 83.80 
Run 27 75.40 74.25 74.71 75.17 85.15 85.44 87.61 84.57 83.49 83.01 86.96 81.16 86.01 83.65 83.33 82.02 82.69 83.96 
Run 28 75.84 72.79 80.08 75.62 83.65 84.57 83.80 84.26 82.69 82.02 83.80 83.96 84.42 82.52 83.33 81.85 83.01 83.01 
Run 29 75.62 74.94 73.77 74.71 86.01 86.15 87.22 85.73 83.96 78.95 84.26 83.17 83.65 86.15 83.80 85.15 83.96 84.42 
Run 30 76.06 71.25 77.75 73.53 82.02 86.82 86.15 85.59 82.36 84.26 85.87 83.80 82.36 82.85 81.85 85.15 83.33 84.86 
Mean 76.98 76.56 77.46 75.57 82.28 85.52 85.81 85.14 82.28 81.22 84.36 83.50 83.45 83.64 83.17 83.46 83.68 83.56 
Std dev 0.0175 0.0273 0.0261 0.0219 0.0201 0.0143 0.0122 0.0140 0.0155 0.0235 0.0134 0.0113 0.0114 0.0134 0.0171 0.0127 0.0118 0.0124 
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TABLE B-10: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE SOUND PROCESSING SYSTEM AND THE 

TAL_BY_10 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 78.95 76.92 81.16 81.34 77.34 78.56 77.13 80.99 79.71 81.16 78.75 76.06 71.78 75.62 74.94 75.84 77.13 74.71 
Run 2 79.33 75.62 81.85 79.33 77.34 75.84 80.63 80.99 79.52 77.13 76.71 77.34 76.92 77.13 77.13 73.53 72.79 74.25 
Run 3 79.33 74.25 82.36 81.85 79.14 75.17 75.84 79.71 78.75 78.36 76.71 77.75 72.54 75.84 77.34 73.29 72.29 74.48 
Run 4 76.50 80.45 80.27 84.71 79.14 73.29 78.36 78.75 79.33 75.84 76.28 77.55 74.71 74.25 73.29 73.04 75.40 76.28 
Run 5 78.75 75.40 80.81 80.45 78.16 75.40 78.36 78.36 82.69 78.16 79.71 77.34 76.92 75.17 75.84 77.13 74.94 76.06 
Run 6 76.06 66.98 79.90 84.26 78.56 77.96 79.33 81.51 81.85 80.99 79.71 76.28 72.79 75.40 77.96 76.92 72.79 78.36 
Run 7 74.71 78.56 82.19 83.80 79.14 76.50 79.33 77.96 79.52 79.33 78.75 77.96 74.25 76.71 75.17 75.84 76.92 75.17 
Run 8 78.36 74.25 79.90 81.68 80.45 78.56 78.36 78.75 80.27 83.33 74.25 73.29 74.71 70.72 76.50 76.92 74.25 72.79 
Run 9 77.75 72.54 80.27 82.19 80.99 77.34 80.08 80.08 80.45 79.33 77.13 75.84 72.54 71.52 75.62 73.77 76.50 73.04 
Run 10 77.13 77.34 80.45 82.02 78.36 75.17 77.75 77.75 82.85 79.90 74.48 75.62 75.84 76.71 75.17 73.77 76.92 74.25 
Run 11 78.36 77.13 81.51 81.16 75.40 76.71 77.34 80.27 80.27 79.14 78.16 77.34 75.62 75.84 78.95 76.71 73.53 73.77 
Run 12 75.17 77.13 80.63 83.17 79.90 81.16 79.33 76.28 78.56 79.14 77.55 76.92 79.90 79.52 76.92 74.71 75.62 76.06 
Run 13 78.56 74.48 80.81 83.33 78.16 77.55 80.63 76.28 80.45 79.14 78.36 75.40 77.75 78.56 76.92 76.06 77.13 76.28 
Run 14 79.90 72.79 80.08 84.86 80.45 78.75 77.55 78.95 81.68 81.51 79.14 78.75 78.75 75.62 76.92 78.36 75.62 75.84 
Run 15 77.96 74.94 80.08 82.36 78.16 77.75 79.52 79.90 79.52 78.56 77.75 76.28 76.92 78.36 76.71 73.29 76.06 75.17 
Run 16 79.33 76.92 79.33 82.69 80.45 78.16 77.13 79.90 80.63 81.51 75.17 76.06 75.62 77.13 72.54 76.71 76.92 76.50 
Run 17 80.81 78.36 81.34 82.19 80.63 77.96 79.71 81.34 76.92 81.68 71.52 76.28 75.17 77.34 74.48 75.17 74.94 73.77 
Run 18 76.92 77.34 78.56 81.85 80.81 78.95 79.33 78.56 80.27 80.08 78.36 75.40 77.13 72.29 75.62 74.48 74.25 77.75 
Run 19 79.33 72.79 77.55 81.51 78.75 77.13 77.13 78.16 80.81 79.33 74.94 76.92 74.25 72.79 75.84 74.94 76.71 75.17 
Run 20 75.62 74.71 80.81 84.26 80.08 79.71 75.62 77.13 82.19 79.71 73.77 73.53 74.25 74.71 76.71 77.55 77.55 72.79 
Run 21 81.16 74.25 79.33 81.51 80.08 80.81 79.90 83.17 80.45 77.75 73.77 78.16 75.84 78.56 74.94 75.17 70.72 73.29 
Run 22 76.28 79.90 78.95 86.69 80.45 80.63 77.75 75.40 77.34 78.36 79.33 74.25 78.36 74.01 74.71 72.29 77.13 74.94 
Run 23 79.14 72.29 80.99 81.16 76.50 77.13 78.95 78.36 80.99 79.33 77.55 77.55 74.01 74.94 73.04 75.17 76.28 75.17 
Run 24 76.28 79.14 82.36 82.85 78.56 79.90 76.92 79.52 78.75 80.27 76.92 72.03 73.04 76.71 77.55 76.50 74.48 71.52 
Run 25 78.56 77.75 80.63 79.71 77.75 76.06 78.36 77.34 78.95 80.81 79.14 77.13 74.94 73.53 80.63 73.29 75.40 77.75 
Run 26 77.96 78.36 82.36 82.85 77.96 76.92 78.95 80.27 81.16 77.96 80.27 80.08 75.40 74.48 73.04 74.01 76.28 72.03 
Run 27 79.14 70.45 80.27 82.02 79.14 80.08 75.62 78.75 79.71 79.33 78.36 76.28 76.92 74.25 75.40 79.71 74.71 77.55 
Run 28 78.56 74.25 81.16 83.49 78.36 76.71 78.36 77.55 80.81 81.85 76.71 76.92 74.01 73.04 76.92 77.34 75.17 77.75 
Run 29 78.95 77.13 78.95 82.02 78.56 80.99 80.99 76.50 78.36 77.55 78.95 75.40 76.28 76.50 76.71 71.78 75.84 76.06 
Run 30 76.50 76.28 77.55 84.26 78.95 79.52 77.34 81.51 79.33 79.90 78.36 77.34 74.01 78.56 76.50 76.50 76.50 74.01 
Mean 78.05 75.62 80.41 82.52 78.92 77.88 78.39 79.00 80.07 79.55 77.22 76.44 75.37 75.53 76.00 75.33 75.36 75.09 
Std dev 0.0158 0.0287 0.0126 0.0156 0.0132 0.0192 0.0143 0.0180 0.0140 0.0158 0.0209 0.0163 0.0193 0.0216 0.0173 0.0186 0.0163 0.0176 
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TABLE B-11: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE MNI_BY_3 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 37.61 41.76 39.30 42.95 39.72 37.18 34.09 43.73 34.54 36.31 37.61 41.35 38.04 34.99 37.18 35.87 36.75 36.75 
Run 2 45.27 42.16 41.76 41.76 35.43 34.54 38.88 43.73 44.50 36.75 38.04 28.44 37.61 35.43 38.04 36.75 38.04 38.88 
Run 3 34.99 39.30 38.88 38.04 39.30 38.04 40.54 37.18 37.18 34.09 36.31 38.46 39.72 34.09 41.35 38.04 37.61 32.26 
Run 4 46.02 41.35 33.64 40.54 40.13 41.35 35.87 37.61 38.04 40.13 36.31 41.76 39.72 35.87 37.18 32.26 34.54 41.76 
Run 5 39.72 42.95 40.13 41.35 41.35 44.50 38.46 34.09 40.13 32.72 36.31 36.31 38.04 39.72 33.18 34.99 38.46 38.04 
Run 6 43.34 40.54 40.13 37.18 40.95 39.30 37.61 37.61 40.13 36.75 38.04 36.31 38.88 38.46 41.35 37.61 35.87 36.31 
Run 7 40.54 41.76 42.55 33.64 42.95 41.35 42.95 40.95 35.43 41.35 34.09 36.31 34.09 37.18 39.30 42.55 37.61 39.30 
Run 8 41.35 34.54 43.73 38.46 40.13 40.54 38.04 40.54 35.43 37.61 39.30 35.87 38.88 35.43 42.95 35.43 38.46 39.72 
Run 9 42.95 42.55 41.35 37.18 43.73 38.88 31.32 36.31 34.99 39.72 36.75 38.46 37.18 38.04 40.95 36.75 40.13 38.04 
Run 10 42.95 40.95 44.50 43.73 38.04 39.72 37.61 38.04 36.31 37.61 37.18 42.16 41.35 40.95 37.61 32.26 37.61 35.87 
Run 11 42.55 42.55 43.34 43.34 37.61 39.72 37.18 31.79 35.87 36.75 39.30 39.72 34.99 40.54 42.16 40.54 41.35 39.72 
Run 12 41.76 34.54 43.34 37.61 40.95 38.04 37.18 40.13 44.12 34.54 34.54 44.12 35.43 33.64 36.31 36.31 37.18 39.30 
Run 13 41.76 45.27 38.88 40.13 38.46 38.46 39.30 34.54 36.75 40.54 38.04 38.88 36.75 38.88 39.72 36.75 37.18 35.87 
Run 14 34.54 42.95 38.04 40.95 39.72 42.95 39.72 42.95 36.31 40.13 38.46 35.43 36.31 37.61 36.75 38.04 34.99 34.99 
Run 15 41.35 40.13 41.35 38.46 47.50 32.72 37.61 38.04 33.18 40.13 42.16 35.87 37.61 35.87 33.64 40.54 38.88 33.64 
Run 16 38.46 40.54 38.88 46.02 44.50 38.46 31.79 39.30 39.30 40.13 43.73 40.13 41.76 35.87 33.64 32.26 31.32 37.18 
Run 17 43.34 39.30 41.76 40.13 40.95 40.95 40.54 40.54 40.95 40.13 34.09 34.99 36.31 38.46 40.95 37.18 40.13 41.76 
Run 18 40.95 42.55 41.35 37.61 40.13 32.26 34.09 34.99 38.04 38.88 33.64 40.13 42.55 36.31 38.04 39.30 35.43 40.13 
Run 19 41.76 40.95 42.55 39.30 39.30 38.04 38.46 38.46 38.46 41.35 34.09 34.99 41.76 40.54 38.46 42.16 38.04 40.54 
Run 20 40.13 35.43 41.76 44.50 44.89 34.09 38.88 38.04 39.30 42.95 34.09 37.61 39.72 41.35 35.87 38.46 38.04 38.88 
Run 21 41.35 44.50 38.04 45.64 40.95 37.18 39.30 42.95 38.46 33.18 39.30 37.61 27.45 30.85 34.99 38.04 36.75 37.18 
Run 22 40.13 40.54 38.04 40.13 46.02 38.88 43.34 37.18 39.72 38.04 33.64 33.64 41.35 40.54 40.13 39.72 36.75 42.95 
Run 23 41.76 42.55 41.76 42.55 40.54 38.88 42.95 39.30 41.76 41.76 39.72 38.04 40.54 37.18 42.95 40.54 38.46 38.88 
Run 24 43.73 42.55 33.64 38.04 40.54 33.64 38.88 38.88 39.30 32.26 38.88 35.43 39.72 39.72 37.61 37.18 32.26 35.43 
Run 25 39.72 39.30 42.55 42.95 35.43 35.87 41.76 34.09 37.61 35.43 32.72 42.95 41.76 37.18 39.72 37.61 35.87 40.54 
Run 26 41.35 37.61 40.54 35.43 29.89 43.34 36.75 36.31 42.95 38.04 37.61 34.99 40.13 36.75 37.18 38.04 37.18 35.43 
Run 27 39.72 40.95 41.76 40.54 38.46 38.46 39.72 34.54 42.16 34.99 38.46 36.31 39.30 41.35 40.13 39.30 35.87 33.64 
Run 28 35.43 35.43 41.76 40.54 37.61 36.31 40.13 38.88 34.09 38.46 39.30 38.46 33.64 38.46 39.72 40.54 38.88 36.31 
Run 29 38.88 40.54 40.95 37.18 38.46 40.54 42.16 35.87 32.72 40.13 40.95 34.99 40.95 37.18 40.13 35.43 40.95 38.88 
Run 30 34.54 36.75 40.13 39.30 39.72 41.35 40.95 34.99 38.46 41.35 39.72 40.54 41.35 32.26 37.61 33.64 41.35 42.95 
Mean 40.60 40.43 40.55 40.17 40.11 38.52 38.54 38.05 38.21 38.07 37.41 37.68 38.43 37.36 38.49 37.47 37.40 38.04 
Std dev 0.0288 0.0276 0.0251 0.0291 0.0333 0.0299 0.0294 0.0299 0.0302 0.0286 0.0266 0.0317 0.0314 0.0263 0.0261 0.0268 0.0229 0.0270 
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TABLE B-12: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 38.46 36.31 37.18 40.95 40.54 35.43 44.12 50.35 38.46 39.30 30.85 43.73 36.31 42.55 40.13 40.13 40.95 35.87 
Run 2 38.46 39.72 43.73 36.75 40.54 42.16 44.12 43.34 39.72 44.12 39.30 42.16 45.64 42.55 43.34 43.34 37.18 41.35 
Run 3 37.61 35.87 35.43 38.04 36.75 43.73 38.04 44.50 40.54 40.13 43.34 40.95 38.46 41.76 44.89 35.87 43.73 39.72 
Run 4 34.54 40.54 38.04 42.16 39.72 45.64 44.12 38.46 42.55 34.99 44.12 35.43 40.13 47.50 37.61 46.76 35.87 38.46 
Run 5 33.18 35.43 43.73 38.46 38.46 44.50 39.30 46.39 37.18 41.76 44.12 44.89 42.55 44.89 43.34 44.89 39.30 41.76 
Run 6 45.27 43.73 38.46 37.18 35.87 43.73 41.76 41.76 35.87 38.04 37.18 38.88 38.46 42.95 44.50 40.95 40.54 44.89 
Run 7 38.04 40.13 40.54 39.30 39.72 40.54 35.43 41.35 35.87 39.30 34.54 33.64 46.39 40.13 36.75 42.55 39.72 44.12 
Run 8 42.95 36.75 43.34 41.76 38.04 43.34 37.61 44.50 40.54 40.13 40.95 40.13 48.22 40.13 34.99 42.16 39.30 42.95 
Run 9 41.76 38.88 42.55 40.95 40.54 34.99 42.16 42.95 42.55 41.76 47.86 41.35 39.30 40.54 43.34 38.88 44.50 40.54 
Run 10 40.54 33.18 40.54 37.18 32.26 34.09 42.95 36.31 37.18 38.88 41.35 38.46 44.50 41.35 37.61 40.54 37.18 40.95 
Run 11 37.61 41.76 42.16 42.16 42.95 43.34 35.43 38.46 38.88 40.54 37.18 46.02 38.88 38.88 45.27 41.76 42.16 42.55 
Run 12 37.61 40.54 43.34 37.18 40.13 39.72 38.88 42.55 44.50 41.76 42.95 46.76 39.72 40.95 44.89 42.16 44.89 38.04 
Run 13 34.99 34.09 39.30 43.73 40.13 41.76 39.30 45.64 38.88 38.04 40.13 38.04 44.89 38.04 40.13 44.89 34.09 38.04 
Run 14 35.43 37.61 35.43 36.75 36.31 39.72 34.09 37.18 42.95 40.95 37.61 41.76 45.27 44.12 46.76 34.09 43.73 41.76 
Run 15 38.04 41.35 44.50 43.73 40.13 41.35 39.30 42.95 38.04 38.46 39.72 42.55 40.13 40.54 39.72 43.73 35.87 38.88 
Run 16 41.35 36.31 45.64 40.13 40.54 39.72 43.34 40.95 42.16 44.50 43.34 43.34 40.13 43.73 45.64 42.55 40.13 42.16 
Run 17 38.88 33.64 36.75 38.46 38.46 39.72 42.55 39.30 37.18 40.13 42.16 37.18 46.02 36.75 44.12 44.89 45.64 43.73 
Run 18 40.13 37.61 39.72 43.73 30.37 38.46 43.34 33.64 42.95 38.04 40.13 39.30 43.34 44.89 42.95 43.73 42.95 39.30 
Run 19 33.64 40.95 36.75 35.87 40.95 38.04 42.16 39.72 46.02 40.54 39.30 41.35 40.95 42.16 45.27 39.30 40.54 39.30 
Run 20 38.46 37.61 40.13 42.95 37.18 41.76 47.86 38.46 35.87 42.55 41.35 40.13 42.55 41.35 38.04 42.95 43.34 41.76 
Run 21 43.34 41.35 42.95 40.54 39.72 41.76 40.95 38.88 39.72 35.87 42.95 43.34 40.13 40.54 43.73 43.73 40.54 36.75 
Run 22 40.54 39.72 34.99 34.09 40.95 40.54 41.76 35.43 40.13 42.95 41.35 40.54 41.35 40.54 42.95 38.04 42.16 41.76 
Run 23 33.18 35.43 36.31 40.95 43.73 37.18 44.12 40.13 44.12 37.61 44.12 39.72 40.95 37.61 38.88 44.12 43.73 39.72 
Run 24 42.95 45.64 40.95 42.16 38.88 41.76 40.95 40.95 35.87 40.13 41.35 42.55 42.55 38.88 42.55 40.95 44.12 45.64 
Run 25 37.18 35.43 34.99 43.73 41.35 40.13 38.88 42.95 39.30 38.04 41.35 39.72 42.95 44.89 44.50 46.39 42.16 41.76 
Run 26 40.54 35.87 35.87 39.72 43.73 46.76 43.73 38.88 37.18 41.35 38.46 39.72 44.89 38.04 41.76 46.39 42.16 40.95 
Run 27 44.12 37.61 36.31 43.34 41.35 40.54 40.95 43.34 37.18 39.30 35.87 43.73 44.12 43.34 35.87 39.30 44.89 39.30 
Run 28 38.04 40.54 36.75 44.50 42.16 41.76 40.95 36.31 43.34 38.88 40.54 42.16 38.88 42.16 42.95 38.04 42.55 40.95 
Run 29 44.50 39.30 37.18 47.13 40.54 42.95 38.88 35.43 38.88 39.72 44.89 39.30 35.87 40.13 45.64 45.64 40.54 47.86 
Run 30 40.13 42.55 40.13 43.73 42.55 41.35 44.12 38.46 45.64 41.35 44.50 46.76 42.16 38.46 46.39 44.12 43.73 42.95 
Mean 39.05 38.52 39.46 40.58 39.49 40.88 41.04 40.65 39.98 39.97 40.76 41.12 41.86 41.34 42.15 42.09 41.27 41.12 
Std dev 0.0330 0.0303 0.0319 0.0304 0.0294 0.0291 0.0303 0.0365 0.0300 0.0213 0.0341 0.0301 0.0301 0.0248 0.0329 0.0308 0.0293 0.0258 
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TABLE B-13: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE MNI_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.09 40.54 37.18 43.34 40.13 37.18 40.95 38.88 44.50 48.58 39.30 40.13 37.61 46.02 44.50 45.27 37.61 43.73 
Run 2 42.16 37.61 40.54 43.34 38.04 45.27 34.09 42.16 37.18 43.34 41.76 44.12 40.54 44.89 42.16 33.64 40.13 41.76 
Run 3 41.35 45.64 38.88 39.72 38.04 38.88 43.34 40.54 38.88 41.76 44.89 39.30 42.16 44.50 38.04 42.55 38.04 38.04 
Run 4 44.12 36.31 41.35 42.16 43.73 43.73 36.75 38.46 44.12 40.95 38.04 43.73 44.12 31.79 45.64 38.46 44.12 42.95 
Run 5 39.30 33.64 42.55 44.50 42.55 41.76 44.50 42.95 47.50 45.64 41.35 47.13 42.55 39.72 34.09 39.72 42.16 41.76 
Run 6 46.76 41.35 39.30 39.30 40.13 36.75 41.76 45.64 47.13 47.50 37.18 35.43 38.46 44.89 42.16 38.88 46.02 42.95 
Run 7 34.99 37.61 42.95 42.95 39.30 41.35 39.72 39.30 42.16 38.88 42.16 43.73 40.13 43.34 36.75 34.54 44.89 42.55 
Run 8 42.16 34.09 41.35 39.30 39.30 39.30 40.13 44.12 40.54 40.95 34.09 40.54 42.55 42.55 38.46 42.16 37.61 41.76 
Run 9 42.95 33.64 42.16 36.31 43.34 40.54 34.09 47.13 40.13 45.27 39.72 39.30 42.95 37.61 40.13 42.55 34.99 43.34 
Run 10 34.99 39.30 40.54 39.72 37.18 44.12 41.35 42.16 44.50 40.13 35.87 36.31 43.73 42.55 40.54 42.55 38.04 39.30 
Run 11 37.18 40.54 42.95 44.89 42.95 39.72 46.76 46.02 43.73 44.50 40.95 39.30 42.16 38.46 39.30 34.99 40.54 40.13 
Run 12 39.72 37.18 40.13 40.95 38.88 43.34 38.46 38.04 37.18 39.72 38.88 39.72 41.35 45.27 40.54 40.95 38.04 42.55 
Run 13 41.35 40.95 36.31 39.72 39.30 38.04 40.54 41.76 39.30 40.13 37.18 41.35 38.88 38.04 38.88 40.13 44.89 46.02 
Run 14 38.04 32.72 41.35 36.75 41.76 36.31 40.54 43.73 43.73 41.35 43.73 38.04 41.35 41.35 43.34 44.50 38.04 38.88 
Run 15 31.79 36.31 42.95 44.12 36.31 37.61 44.50 42.16 40.95 46.39 42.95 38.04 40.95 42.95 44.12 44.12 42.95 41.35 
Run 16 35.87 37.18 39.72 42.55 40.95 41.76 42.55 42.16 40.95 40.95 40.13 46.02 45.27 43.73 47.13 41.35 38.04 40.95 
Run 17 34.99 41.35 40.54 38.88 50.00 40.54 34.54 38.04 42.16 36.75 40.13 40.54 35.87 37.61 44.89 43.34 45.64 41.76 
Run 18 42.95 41.76 37.18 40.95 40.13 38.88 38.88 46.76 40.13 39.30 44.50 44.50 38.04 41.35 44.50 39.72 42.16 40.13 
Run 19 43.34 36.75 36.31 41.35 42.55 43.34 43.73 44.89 38.46 35.43 42.95 40.13 37.18 36.31 37.61 38.04 42.16 43.73 
Run 20 37.61 44.50 40.54 39.30 39.72 43.34 45.64 44.50 40.95 40.54 42.55 40.13 38.88 42.16 42.16 36.75 41.76 43.73 
Run 21 37.18 35.87 41.35 42.95 42.55 42.55 43.73 43.73 37.61 35.87 45.27 39.72 44.89 38.46 40.95 40.13 40.95 37.18 
Run 22 37.61 37.18 39.30 36.31 43.34 44.12 42.16 40.13 44.89 43.34 42.55 41.76 41.35 40.13 39.72 40.54 40.13 42.16 
Run 23 39.30 34.09 37.18 41.35 40.13 33.64 41.35 43.73 40.13 38.04 38.88 42.55 40.13 36.31 38.88 44.89 35.87 42.16 
Run 24 40.95 38.46 40.13 34.99 40.13 36.31 40.54 40.54 42.55 38.88 41.76 40.95 42.95 40.13 46.02 40.54 41.35 44.50 
Run 25 38.04 39.30 37.61 42.95 44.50 46.39 42.16 37.61 38.04 43.73 38.04 41.35 34.99 44.50 42.16 42.95 35.43 41.35 
Run 26 35.43 40.13 37.18 42.16 41.76 41.35 36.75 38.88 45.27 43.73 47.50 38.88 41.76 41.35 35.87 38.04 39.30 43.34 
Run 27 43.34 34.99 36.75 37.18 36.75 38.04 43.34 45.27 40.13 34.99 38.04 43.73 42.95 40.54 37.61 40.95 41.76 43.34 
Run 28 40.13 38.04 45.64 39.72 38.46 40.54 37.61 42.95 38.46 45.64 41.76 38.46 38.04 43.34 38.88 39.30 41.35 42.16 
Run 29 40.13 34.99 39.72 48.94 45.27 45.27 42.55 44.89 42.95 42.95 40.13 46.02 42.55 32.26 44.12 48.94 42.16 44.50 
Run 30 40.95 42.16 42.16 41.76 39.72 38.88 42.16 34.54 40.13 42.16 38.88 41.76 38.04 40.95 40.13 38.46 41.35 40.95 
Mean 39.29 38.14 40.06 40.95 40.90 40.63 40.84 42.05 41.48 41.58 40.70 41.09 40.75 40.77 40.98 40.63 40.58 41.97 
Std dev 0.0343 0.0323 0.0231 0.0295 0.0283 0.0309 0.0323 0.0306 0.0282 0.0346 0.0293 0.0278 0.0260 0.0355 0.0319 0.0329 0.0293 0.0193 
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TABLE B-14: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE TAL_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 35.43 38.88 36.75 41.35 40.54 42.95 37.61 38.88 39.72 46.02 39.30 39.30 43.34 44.12 47.13 44.12 46.02 46.39 
Run 2 33.64 44.12 40.95 46.39 44.50 44.50 40.95 46.76 44.12 43.34 42.95 38.46 41.35 40.54 42.55 40.54 42.95 45.64 
Run 3 41.35 39.30 43.73 39.30 44.50 44.50 37.61 42.95 40.95 41.35 40.95 40.95 42.16 41.76 46.76 40.54 46.39 38.04 
Run 4 39.30 40.95 43.34 39.72 43.34 42.95 38.46 46.39 42.95 39.30 42.16 41.76 38.88 46.39 42.95 42.16 44.50 38.88 
Run 5 37.61 42.95 42.95 38.46 46.02 42.55 42.95 46.76 43.73 40.95 41.35 42.16 44.50 40.95 45.27 43.34 47.13 47.13 
Run 6 42.16 44.50 44.89 41.76 44.12 40.13 41.76 41.76 40.13 41.35 44.50 41.35 45.64 43.34 38.88 43.73 48.94 41.76 
Run 7 34.09 39.30 40.54 42.55 43.34 35.87 44.12 40.13 40.95 42.16 39.30 42.16 40.13 46.76 42.95 47.13 37.61 44.12 
Run 8 40.54 43.73 35.43 39.72 42.16 42.55 43.34 45.64 40.54 44.89 46.39 42.55 38.46 45.64 46.02 45.64 35.87 45.64 
Run 9 38.46 42.95 40.54 44.89 41.35 42.55 38.88 40.54 48.94 45.64 42.95 40.54 38.46 47.13 37.18 43.73 42.95 43.73 
Run 10 43.73 39.72 40.54 43.73 45.27 44.50 40.54 46.39 42.55 37.61 38.88 45.27 42.55 40.13 40.54 36.75 37.18 42.55 
Run 11 34.99 44.89 42.16 41.76 46.39 42.16 36.75 45.27 43.34 40.95 34.99 44.12 44.50 43.73 39.72 44.89 43.34 47.86 
Run 12 33.64 34.09 35.43 42.95 42.16 39.30 39.30 42.55 38.88 38.88 39.72 42.95 41.35 37.61 43.73 42.55 41.35 44.12 
Run 13 38.88 46.02 43.73 41.35 38.46 41.76 40.54 44.50 44.50 41.35 44.12 42.16 39.30 46.39 48.22 47.13 46.39 44.50 
Run 14 37.18 41.76 41.35 44.50 40.54 41.76 38.46 38.88 48.22 38.46 42.55 42.55 45.27 41.76 38.46 43.34 43.73 42.95 
Run 15 35.87 44.12 43.73 37.18 40.54 42.16 41.76 39.72 42.95 39.30 42.16 42.55 38.88 43.34 36.31 43.73 38.88 48.22 
Run 16 36.31 46.39 40.95 37.18 42.95 38.04 42.16 38.04 42.95 41.76 38.88 40.95 39.72 41.35 41.35 46.39 44.50 50.00 
Run 17 38.88 40.54 49.30 42.16 42.16 44.50 42.95 40.95 43.73 42.55 44.12 40.54 35.87 39.72 38.04 43.34 47.13 50.70 
Run 18 42.16 41.76 45.27 45.27 45.64 40.13 44.50 40.95 44.12 43.73 44.12 44.50 42.16 48.22 40.54 47.13 38.88 44.89 
Run 19 37.18 37.18 39.72 46.02 44.89 34.09 43.34 42.95 47.50 44.12 45.64 43.73 37.61 42.95 37.61 41.76 37.61 50.00 
Run 20 38.88 39.72 38.04 40.13 34.09 43.34 43.34 44.12 43.73 45.64 39.30 42.95 41.35 44.12 41.76 37.61 46.76 44.50 
Run 21 36.31 33.64 42.16 39.30 37.61 42.55 38.04 39.72 40.54 45.27 43.73 38.88 43.34 39.30 45.64 40.13 44.50 37.18 
Run 22 43.73 38.46 42.55 41.35 36.31 41.76 46.39 42.55 45.27 41.35 48.22 46.39 42.95 39.30 42.55 42.55 42.95 41.76 
Run 23 40.54 39.72 44.12 42.95 40.13 35.43 41.76 45.64 43.34 42.16 40.95 39.30 42.16 40.54 41.76 41.76 43.34 50.00 
Run 24 40.95 43.34 38.88 42.95 44.50 38.88 39.72 42.55 40.95 42.55 42.55 43.34 40.54 46.76 46.02 39.30 46.02 46.39 
Run 25 39.30 43.73 43.73 38.04 45.27 44.50 41.35 41.35 46.02 43.73 47.13 43.34 47.86 43.34 46.76 44.89 44.89 44.12 
Run 26 38.04 46.02 43.34 43.34 44.89 42.95 41.76 47.86 42.95 44.12 39.30 41.35 47.13 41.76 38.46 42.95 45.64 41.76 
Run 27 36.75 37.18 47.86 43.73 36.75 38.88 36.75 43.34 42.95 41.35 42.16 47.50 36.75 46.76 39.30 40.54 45.27 40.13 
Run 28 38.46 35.87 42.95 34.99 40.13 45.64 41.76 43.34 41.35 42.95 40.54 45.27 47.13 42.95 42.55 43.73 42.95 44.89 
Run 29 38.46 42.16 37.61 36.75 39.30 38.88 41.76 44.50 41.76 44.12 42.16 39.72 44.50 43.34 43.34 41.76 48.58 41.76 
Run 30 38.88 46.02 39.72 38.88 40.13 40.13 45.27 41.76 38.04 47.50 41.76 42.95 41.76 40.95 39.72 42.16 44.12 44.50 
Mean 38.39 41.30 41.74 41.29 41.93 41.33 41.13 42.89 42.92 42.48 42.09 42.32 41.85 43.03 42.07 42.84 43.55 44.47 
Std dev 0.0270 0.0346 0.0319 0.0287 0.0313 0.0285 0.0250 0.0264 0.0254 0.0237 0.0277 0.0215 0.0307 0.0273 0.0328 0.0255 0.0342 0.0344 
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TABLE B-15: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE TAL_BY_6 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.72 39.30 36.75 41.76 35.87 36.31 43.73 38.46 44.12 40.13 38.88 36.75 37.18 46.39 38.46 40.95 41.76 41.76 
Run 2 43.34 39.30 38.88 34.09 40.95 41.76 40.13 44.50 45.27 43.34 39.72 36.31 40.13 40.95 39.30 44.12 37.61 42.55 
Run 3 39.72 42.55 36.31 38.04 39.30 39.30 40.95 42.16 34.09 40.95 42.16 42.95 37.61 35.87 39.72 37.61 43.34 43.73 
Run 4 39.30 39.72 44.89 39.72 41.76 41.76 38.88 38.88 39.30 39.72 42.95 44.12 36.75 42.55 44.12 41.35 43.34 35.43 
Run 5 43.34 44.12 48.22 40.95 40.95 40.54 36.31 41.35 42.55 39.72 37.61 38.04 41.76 35.87 40.54 42.55 39.72 36.75 
Run 6 38.46 44.89 42.95 45.64 38.88 40.54 44.89 40.95 40.54 35.87 34.09 40.95 37.61 38.46 38.46 38.04 40.95 38.04 
Run 7 34.99 44.89 39.72 42.16 42.95 40.54 38.46 42.55 35.43 44.89 44.50 40.54 40.95 45.64 34.54 42.16 45.64 42.55 
Run 8 40.95 42.55 35.87 35.87 39.30 41.35 40.13 40.95 40.13 39.72 45.27 40.54 40.13 39.72 41.76 38.46 33.64 36.31 
Run 9 41.35 39.72 42.55 42.16 39.30 40.54 44.50 39.72 45.27 40.13 41.76 41.35 38.88 37.61 38.04 43.73 41.35 40.95 
Run 10 39.30 37.61 35.87 36.75 41.76 35.87 34.99 36.31 38.88 37.18 39.30 37.18 40.54 40.13 37.61 39.72 44.50 34.99 
Run 11 40.13 42.16 34.09 41.35 40.95 42.16 46.39 39.30 37.18 44.12 39.72 38.46 39.72 44.12 34.09 39.30 45.64 39.30 
Run 12 35.87 40.13 42.55 43.34 39.30 42.16 43.73 40.13 41.35 43.73 40.95 38.88 41.76 40.54 38.04 37.61 39.72 42.55 
Run 13 44.12 41.76 37.61 42.55 42.55 40.13 39.72 42.16 39.30 44.12 34.09 41.76 45.64 35.87 38.46 36.31 41.35 40.13 
Run 14 44.12 46.39 39.72 41.35 45.64 37.61 44.89 40.13 36.75 46.02 38.04 42.95 44.12 38.46 42.95 37.61 43.73 37.61 
Run 15 35.87 38.46 40.95 48.22 35.87 40.54 37.18 42.55 34.09 42.16 36.31 37.18 39.30 35.87 41.76 43.34 42.16 38.46 
Run 16 42.16 42.16 40.54 40.54 43.73 42.16 40.13 40.95 42.55 38.88 44.12 42.55 44.12 39.30 40.54 42.55 33.64 40.13 
Run 17 38.46 39.30 38.04 42.55 44.12 40.95 38.88 38.46 40.13 40.95 40.95 42.16 41.35 40.13 40.54 44.12 42.16 38.04 
Run 18 40.54 39.30 40.95 39.30 42.95 43.34 39.72 38.04 38.04 39.72 43.34 40.95 40.54 40.54 40.95 42.95 40.95 38.04 
Run 19 41.76 39.30 41.76 38.46 44.12 41.35 44.89 46.39 38.88 40.95 40.13 43.73 43.73 41.35 42.55 37.61 38.46 40.54 
Run 20 39.72 43.34 45.27 46.02 40.54 38.88 40.13 45.27 42.55 34.54 42.16 43.73 35.43 43.34 36.75 36.75 42.55 41.35 
Run 21 38.46 42.55 38.04 45.64 43.34 36.75 38.88 49.65 43.34 40.54 36.75 38.88 35.87 40.54 31.79 40.54 43.34 37.61 
Run 22 35.87 42.95 42.16 44.89 45.27 46.02 41.35 36.75 43.73 39.72 31.32 40.13 38.46 37.18 34.99 40.54 37.61 36.31 
Run 23 39.72 45.64 44.50 41.76 39.30 39.30 38.04 36.75 42.16 38.88 36.31 43.73 39.30 38.88 42.16 44.50 39.72 42.16 
Run 24 38.88 40.95 42.16 38.46 41.35 42.55 38.88 38.88 40.13 41.76 44.12 36.75 41.35 38.04 35.87 46.02 38.46 42.95 
Run 25 38.46 36.31 39.72 38.46 43.34 43.34 43.73 37.18 41.76 40.95 38.46 42.16 44.89 36.31 43.73 38.88 42.55 38.46 
Run 26 34.09 36.75 41.76 44.50 38.46 41.35 39.72 43.73 40.13 44.50 39.72 41.35 44.89 41.35 40.13 38.88 37.18 40.13 
Run 27 42.16 42.95 40.95 44.89 44.12 35.87 35.43 42.55 40.54 38.46 39.72 38.04 43.34 42.95 37.18 37.18 44.50 38.88 
Run 28 37.18 38.04 38.88 44.12 39.30 39.72 42.55 40.54 38.88 38.46 42.16 38.04 40.95 40.95 46.02 37.61 37.61 36.75 
Run 29 43.34 41.76 42.16 41.76 41.35 38.46 42.16 39.72 40.54 36.75 41.76 35.87 41.76 40.95 39.72 42.16 40.13 36.75 
Run 30 40.54 39.30 40.54 40.95 38.46 44.12 40.54 41.35 44.89 39.72 36.31 45.64 40.95 38.04 38.46 40.95 40.54 36.31 
Mean 39.73 41.14 40.48 41.54 41.17 40.51 40.66 40.88 40.42 40.55 39.76 40.39 40.63 39.93 39.31 40.47 40.80 39.18 
Std dev 0.0266 0.0260 0.0309 0.0318 0.0249 0.0239 0.0291 0.0296 0.0297 0.0268 0.0333 0.0266 0.0268 0.0279 0.0315 0.0267 0.0303 0.0246 
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TABLE B-16: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE TAL_BY_7 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 41.76 38.04 38.88 34.99 42.16 40.54 44.89 40.54 43.34 46.76 36.75 44.12 48.94 43.73 37.18 42.16 44.50 40.95 
Run 2 38.88 37.61 47.13 40.54 40.54 47.50 42.55 38.04 46.39 46.39 39.72 42.16 37.61 42.95 43.34 34.99 40.95 44.50 
Run 3 39.72 42.55 45.27 35.87 42.55 42.16 46.39 41.76 47.50 44.89 45.27 44.89 40.13 39.30 43.73 38.04 41.76 40.95 
Run 4 36.75 37.18 44.12 38.88 42.95 39.30 47.50 45.64 43.34 44.12 39.72 37.18 38.46 42.16 46.39 39.30 38.46 38.04 
Run 5 43.34 40.13 44.12 39.72 34.54 37.61 40.54 43.73 46.39 39.72 40.54 40.95 43.34 40.54 46.39 40.13 43.34 37.18 
Run 6 39.30 36.75 39.30 39.72 41.76 43.73 39.30 37.61 39.30 42.95 45.64 41.35 42.16 45.64 42.16 42.55 42.16 47.13 
Run 7 33.64 40.13 42.55 38.46 42.16 37.61 41.35 47.13 46.76 44.50 38.46 38.88 43.34 45.64 38.46 37.61 42.16 48.94 
Run 8 41.35 36.75 38.04 42.16 42.95 45.64 34.99 39.72 44.12 44.50 37.18 47.50 43.34 47.50 43.34 40.95 37.61 43.34 
Run 9 40.95 31.79 43.34 41.76 42.16 39.72 40.95 38.88 42.95 44.12 42.16 42.95 44.50 38.04 38.46 48.22 38.46 37.18 
Run 10 32.72 35.43 40.13 38.46 40.54 39.30 40.95 43.34 46.39 39.72 36.31 39.72 38.88 37.61 37.18 44.89 40.95 40.13 
Run 11 42.55 40.13 44.12 40.13 42.16 38.04 45.27 40.54 46.76 44.12 42.95 40.95 39.30 42.55 41.76 46.76 42.95 42.55 
Run 12 36.31 36.75 40.95 42.16 42.16 39.72 46.39 39.72 41.76 42.16 41.35 42.95 42.16 44.12 39.30 33.18 35.43 38.04 
Run 13 38.46 36.75 38.46 46.02 43.34 40.95 42.16 41.35 40.95 39.72 45.27 41.35 45.27 40.95 44.12 35.87 39.72 38.88 
Run 14 34.09 39.30 43.34 39.72 37.18 46.02 42.16 44.50 50.35 39.72 44.89 38.46 39.72 46.39 43.34 39.30 46.76 42.16 
Run 15 38.88 39.30 42.95 40.13 45.27 47.50 43.34 43.34 42.55 37.61 44.12 40.54 40.95 37.18 46.02 42.16 42.55 38.88 
Run 16 40.54 35.87 37.61 37.61 40.95 42.95 34.09 39.30 41.76 31.79 42.55 39.72 42.55 41.76 38.46 39.30 41.35 39.72 
Run 17 41.76 36.75 38.04 37.61 38.88 40.54 40.13 41.35 38.46 41.35 40.13 43.73 40.13 43.34 43.73 43.34 43.34 35.43 
Run 18 42.55 38.46 38.46 42.95 38.46 46.39 39.72 40.54 46.39 44.89 39.30 42.55 37.18 47.50 32.72 46.76 46.39 45.27 
Run 19 40.54 39.72 41.35 39.30 41.35 39.30 44.89 42.16 39.72 47.50 38.04 44.89 41.35 40.54 42.55 44.89 42.55 41.76 
Run 20 39.72 35.87 43.34 44.12 36.75 41.35 40.95 43.73 43.34 42.95 39.72 39.30 42.55 46.76 47.86 43.34 37.18 42.95 
Run 21 36.75 34.99 41.76 36.75 40.95 44.89 42.55 44.50 43.34 40.54 43.34 34.99 36.75 44.89 39.30 41.76 44.12 37.18 
Run 22 35.87 33.18 39.72 37.18 40.54 38.46 45.27 40.95 49.65 43.73 40.95 39.72 49.65 41.76 48.22 41.35 40.95 40.95 
Run 23 37.61 31.79 41.76 38.46 36.31 42.16 41.76 46.39 44.50 36.31 46.02 39.72 39.30 42.16 42.55 36.31 43.73 38.46 
Run 24 39.72 34.99 38.04 42.16 42.95 38.88 42.16 46.39 44.12 48.58 40.54 41.35 45.27 46.39 39.30 43.34 43.73 41.76 
Run 25 41.76 40.13 42.95 42.95 44.89 42.16 38.88 40.13 44.12 38.46 42.95 39.72 45.64 40.54 42.16 43.34 45.27 36.31 
Run 26 41.35 37.61 37.61 45.64 42.16 43.34 40.54 41.76 46.02 43.73 44.12 37.18 44.50 41.35 41.35 43.73 41.35 39.72 
Run 27 38.04 42.95 38.04 42.55 40.95 42.55 40.13 44.12 42.16 40.54 37.18 42.55 43.73 44.89 43.34 44.50 38.88 41.35 
Run 28 38.46 37.18 45.27 38.04 36.75 42.95 42.55 39.30 38.04 42.95 40.13 36.31 42.55 39.30 45.64 44.89 41.76 36.75 
Run 29 39.30 39.30 40.54 41.35 37.61 39.30 40.13 42.95 44.12 42.16 41.35 39.72 42.55 47.50 42.16 43.34 41.35 39.30 
Run 30 40.95 39.72 35.87 40.95 37.61 44.50 39.72 40.13 38.46 39.30 37.18 42.16 43.34 42.16 35.87 46.02 40.54 41.35 
Mean 39.12 37.57 41.10 40.21 40.65 41.83 41.74 41.98 43.77 42.19 41.13 40.92 42.17 42.84 41.88 41.74 41.68 40.57 
Std dev 0.0267 0.0266 0.0282 0.0266 0.0262 0.0290 0.0297 0.0252 0.0311 0.0350 0.0285 0.0268 0.0308 0.0297 0.0360 0.0365 0.0261 0.0313 
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TABLE B-17: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 37.61 39.72 44.50 37.18 43.34 39.30 40.54 36.31 38.46 39.30 38.04 38.04 42.16 34.54 40.13 39.30 36.31 37.61 
Run 2 40.54 38.88 42.95 36.75 39.30 37.18 37.18 41.35 38.04 42.55 46.39 42.16 37.18 43.73 45.64 42.16 40.13 43.34 
Run 3 38.46 43.34 34.09 38.04 43.34 34.99 39.72 43.73 44.50 33.18 42.16 38.88 40.54 39.30 40.54 41.76 42.16 43.73 
Run 4 37.61 44.89 37.18 45.64 40.54 38.46 36.75 35.43 37.18 37.61 38.46 40.13 39.72 40.54 39.30 38.46 40.54 38.04 
Run 5 33.18 37.61 40.95 42.16 43.73 40.54 40.95 34.54 41.76 40.54 39.72 40.54 38.46 31.32 36.75 39.30 34.09 38.46 
Run 6 38.04 38.46 36.31 37.18 43.34 43.34 37.61 40.13 37.61 40.54 42.55 38.88 44.12 46.76 45.27 38.88 37.18 45.27 
Run 7 35.87 40.13 38.46 40.54 43.34 36.75 40.95 42.16 35.43 40.95 39.72 42.55 36.31 42.55 40.54 40.13 43.34 35.87 
Run 8 45.64 45.27 40.13 42.55 36.31 37.18 39.72 42.95 44.12 38.04 38.88 40.13 42.55 44.12 37.18 39.30 37.61 37.61 
Run 9 41.35 37.61 38.04 34.99 38.88 41.35 45.64 35.87 39.30 42.16 36.75 40.95 38.88 39.72 34.99 41.76 40.13 42.95 
Run 10 38.88 38.88 39.30 38.46 37.61 42.55 43.73 35.87 38.04 38.04 39.72 38.88 41.76 39.72 38.04 39.30 43.73 42.16 
Run 11 40.54 45.27 42.16 40.95 39.72 41.35 42.95 30.85 40.54 35.87 43.34 37.61 35.43 44.89 36.75 40.13 32.72 40.54 
Run 12 36.75 38.04 39.72 35.87 42.16 41.35 42.55 40.13 38.46 42.16 41.35 37.61 38.46 42.55 41.76 40.54 34.54 32.26 
Run 13 42.16 42.95 41.35 41.76 37.61 42.95 37.18 38.46 39.30 31.32 35.43 41.35 36.75 38.04 38.04 42.16 38.88 37.61 
Run 14 35.87 44.12 42.55 40.54 38.88 40.13 36.31 41.35 36.75 40.13 39.72 37.61 42.95 41.76 42.95 38.88 43.73 38.04 
Run 15 42.16 40.54 39.30 37.18 40.13 35.87 37.18 40.54 38.46 34.99 39.72 41.35 37.61 43.34 34.99 43.34 38.04 43.34 
Run 16 41.76 35.87 38.04 40.54 33.18 49.30 39.30 35.87 38.46 46.39 38.04 38.04 40.54 41.35 39.72 37.18 36.75 39.30 
Run 17 46.39 40.54 44.50 38.88 35.87 39.30 39.30 37.61 38.46 37.18 44.50 38.46 42.55 42.95 36.75 39.30 39.30 36.31 
Run 18 41.35 37.18 43.34 43.34 31.32 39.72 44.12 40.13 42.16 44.50 44.50 38.88 38.88 40.95 38.88 39.30 34.09 47.86 
Run 19 32.72 44.50 36.31 40.13 43.73 33.18 43.34 40.54 40.13 29.89 38.46 39.72 41.76 38.46 39.30 41.76 40.13 43.73 
Run 20 35.87 40.54 41.76 38.46 40.13 38.88 38.46 37.61 34.54 43.34 46.76 37.18 41.76 43.34 42.55 44.50 42.55 37.18 
Run 21 41.35 40.13 40.95 37.18 41.35 29.41 44.50 39.72 35.43 36.31 45.27 40.95 41.35 44.50 42.55 32.26 45.64 40.13 
Run 22 42.55 46.39 44.12 36.31 39.72 35.87 41.35 35.43 37.61 38.46 38.88 44.89 45.64 38.88 45.64 37.61 40.54 40.95 
Run 23 41.35 43.73 37.61 42.55 40.95 34.54 42.16 38.04 44.50 42.95 37.18 37.61 38.88 40.95 41.35 36.75 37.61 39.30 
Run 24 48.22 34.99 40.13 40.95 34.99 41.35 38.46 41.76 44.89 40.13 39.72 38.88 42.55 42.55 40.13 42.55 40.95 44.89 
Run 25 38.46 32.26 34.54 39.72 38.04 42.95 40.95 36.75 36.75 37.18 35.87 41.35 44.50 44.50 35.43 38.04 35.87 39.30 
Run 26 39.30 40.13 39.72 43.34 39.72 40.13 44.12 35.43 39.30 39.30 46.39 41.76 39.30 38.04 40.54 38.88 38.04 41.35 
Run 27 42.16 43.34 39.30 41.35 35.87 39.30 40.54 38.88 37.61 38.04 40.95 46.02 43.73 45.27 36.31 40.54 40.95 36.75 
Run 28 38.88 36.31 39.72 35.87 43.34 38.04 32.72 39.72 38.46 46.02 40.54 43.73 39.72 37.18 40.95 34.54 42.16 43.34 
Run 29 40.13 40.13 45.27 40.54 39.30 37.18 39.30 38.04 38.88 34.09 33.64 38.46 40.95 46.39 38.88 40.95 37.18 44.89 
Run 30 35.43 39.72 42.95 34.09 39.72 36.75 38.46 40.13 37.18 38.88 45.27 38.04 38.46 42.55 37.61 43.34 40.54 38.04 
Mean 39.69 40.38 40.17 39.44 39.52 38.97 40.20 38.51 39.08 39.00 40.60 40.02 40.45 41.36 39.65 39.76 39.18 40.34 
Std dev 0.0353 0.0338 0.0288 0.0277 0.0315 0.0365 0.0289 0.0284 0.0267 0.0390 0.0342 0.0223 0.0253 0.0338 0.0293 0.0255 0.0316 0.0343 
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TABLE B-18: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE TAL_BY_9 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.99 41.35 40.13 44.12 45.27 44.12 40.95 42.55 42.55 42.95 40.95 40.54 42.16 46.76 40.54 41.35 39.30 48.58 
Run 2 42.95 40.54 37.18 35.43 43.73 44.89 40.95 38.04 42.16 44.89 38.04 40.54 41.35 38.46 38.88 41.76 39.30 40.95 
Run 3 40.95 36.31 43.34 40.95 43.34 40.54 43.34 44.12 38.46 40.95 38.04 41.35 43.73 36.75 42.55 38.04 40.95 40.95 
Run 4 40.13 36.31 46.39 42.55 41.76 38.88 38.46 35.87 47.13 40.95 36.31 42.95 44.12 40.13 35.87 39.30 35.87 43.34 
Run 5 35.43 38.46 42.16 46.39 42.16 43.34 45.64 37.61 42.16 41.35 39.30 40.95 42.55 38.46 41.35 43.34 38.04 41.76 
Run 6 37.61 42.16 38.88 41.76 42.55 42.55 38.88 38.04 43.34 39.30 38.88 42.16 38.04 45.64 38.88 42.95 39.30 40.95 
Run 7 34.54 42.95 43.73 44.12 40.54 41.35 42.55 38.88 39.30 38.46 40.13 37.18 40.54 36.75 39.72 40.95 40.54 42.55 
Run 8 34.99 44.12 42.16 40.54 40.95 38.88 43.34 38.46 40.13 39.72 39.72 45.27 47.13 39.72 40.13 36.75 41.35 44.12 
Run 9 37.61 35.87 38.46 44.89 38.04 44.50 44.50 40.95 44.89 42.55 35.87 42.95 42.55 35.43 42.16 39.72 38.88 39.72 
Run 10 38.04 43.73 42.55 44.50 44.89 46.39 46.76 42.95 42.55 45.27 43.73 44.12 40.95 42.55 35.87 38.46 39.72 44.89 
Run 11 36.31 39.72 43.34 41.35 43.73 34.54 41.35 38.46 45.27 42.95 40.13 37.61 45.64 36.31 46.02 41.76 39.72 41.76 
Run 12 38.88 39.72 34.54 44.12 43.34 38.04 41.76 36.75 37.18 43.34 47.86 39.72 34.54 40.13 47.50 43.34 46.02 40.54 
Run 13 42.95 41.35 34.54 43.73 40.13 39.30 38.04 38.46 40.95 40.95 43.34 39.72 46.02 42.55 38.46 41.35 44.12 46.39 
Run 14 38.46 42.55 35.87 44.12 40.13 40.13 48.94 40.54 34.99 41.76 42.95 39.72 44.50 40.54 36.75 34.09 41.76 39.30 
Run 15 34.99 44.12 37.18 39.72 43.34 40.54 45.64 44.12 41.76 39.30 44.89 42.16 38.04 42.55 42.16 37.18 39.30 37.61 
Run 16 37.61 42.16 42.95 40.13 38.46 39.30 43.73 40.54 42.16 43.34 45.27 38.46 43.73 40.95 41.76 37.18 38.04 45.27 
Run 17 34.09 37.18 46.39 40.95 45.64 45.64 40.13 35.87 41.76 42.16 44.12 34.99 42.16 40.13 42.16 38.04 40.95 39.72 
Run 18 36.75 42.55 41.76 44.89 42.55 42.16 44.12 40.95 40.95 39.72 46.39 41.35 41.35 43.34 44.50 37.18 38.88 45.27 
Run 19 39.72 38.88 39.72 48.22 38.88 44.12 37.18 41.35 41.76 40.13 38.88 42.55 42.55 40.54 38.04 43.34 44.50 46.02 
Run 20 31.32 39.30 35.87 47.13 37.18 45.64 43.73 43.34 35.87 38.88 33.64 40.95 40.95 37.18 40.54 37.18 43.34 42.16 
Run 21 28.93 38.04 42.16 41.35 34.09 43.34 43.73 36.75 38.04 41.35 41.35 41.35 46.02 39.30 37.61 38.88 38.46 40.54 
Run 22 34.09 41.35 35.87 40.95 47.50 38.46 41.35 36.31 42.95 44.50 42.16 36.31 41.35 36.75 43.73 34.54 42.55 40.95 
Run 23 39.30 47.86 42.95 42.16 40.54 39.72 41.76 44.89 36.31 33.64 38.88 40.13 46.02 41.76 41.35 45.27 42.55 39.30 
Run 24 37.61 45.27 40.54 42.55 44.50 35.43 42.95 47.50 45.64 40.54 38.46 43.34 41.35 40.95 43.73 38.46 42.55 47.13 
Run 25 36.31 39.30 45.27 44.12 42.16 43.73 38.04 38.04 38.46 41.76 44.89 40.54 40.54 41.76 44.12 40.54 34.99 43.34 
Run 26 33.18 44.50 37.61 37.61 43.73 46.76 45.27 40.54 41.76 39.72 41.35 40.13 40.54 35.43 40.95 42.16 36.31 42.55 
Run 27 36.31 40.95 48.58 42.95 48.22 40.13 39.72 44.50 38.46 39.72 42.16 40.54 41.76 42.95 41.35 41.35 45.64 46.39 
Run 28 38.46 46.02 41.76 39.30 46.02 41.76 39.72 40.13 41.35 43.73 44.50 40.54 40.13 44.50 40.13 40.13 44.50 40.13 
Run 29 36.31 40.13 40.13 39.72 43.73 40.95 41.35 36.31 43.34 41.76 42.16 40.54 44.12 42.16 36.31 40.13 40.54 40.13 
Run 30 38.46 39.72 39.72 40.13 44.12 42.55 43.34 40.54 42.95 44.12 40.13 44.89 35.87 41.76 44.50 40.54 40.95 42.55 
Mean 36.91 41.08 40.72 42.35 42.37 41.59 42.24 40.11 41.15 41.32 41.15 40.78 42.01 40.41 40.92 39.84 40.63 42.49 
Std dev 0.0301 0.0293 0.0358 0.0273 0.0304 0.0302 0.0275 0.0302 0.0290 0.0233 0.0323 0.0230 0.0288 0.0288 0.0292 0.0263 0.0273 0.0268 
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TABLE B-19: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

DYNAMIC BLOCK THRESHOLDS AND THE TAL_BY_10 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.54 38.88 39.30 43.34 37.61 36.31 38.88 43.73 44.89 40.13 42.16 40.54 38.04 42.16 44.89 40.54 46.02 45.27 
Run 2 34.99 28.44 38.46 42.16 41.76 40.54 40.54 46.02 42.95 40.13 34.99 39.30 41.76 42.16 40.95 42.95 45.27 38.04 
Run 3 36.31 40.95 36.75 43.73 36.31 39.30 39.72 40.54 40.54 46.02 36.75 39.72 43.34 40.95 42.16 40.54 38.04 45.64 
Run 4 40.54 41.76 33.64 41.76 44.12 41.76 43.34 36.31 40.13 42.16 47.13 46.76 45.27 45.27 44.50 34.99 38.04 44.12 
Run 5 36.75 40.13 36.31 40.95 47.13 42.95 38.88 38.04 40.13 40.13 46.02 42.16 38.88 43.73 48.22 37.61 44.89 42.95 
Run 6 36.31 37.18 40.54 40.95 41.35 46.02 44.89 44.89 42.16 42.95 34.54 39.30 42.95 43.34 38.88 38.88 50.00 48.58 
Run 7 40.13 37.61 40.54 48.58 40.13 43.73 45.64 39.30 38.88 42.95 44.12 44.50 44.12 42.55 45.64 44.50 38.04 39.30 
Run 8 30.85 44.12 37.61 39.30 44.89 44.12 44.12 43.34 36.75 40.54 40.54 42.55 42.16 40.54 43.73 42.16 36.75 42.55 
Run 9 40.54 39.30 39.30 44.12 42.16 47.86 39.30 44.89 44.50 38.46 37.18 41.76 41.76 41.76 44.50 34.54 42.55 41.76 
Run 10 36.31 35.43 40.54 40.95 39.30 46.76 40.13 45.27 40.54 41.35 35.43 40.54 41.76 43.34 38.46 45.64 41.35 43.73 
Run 11 38.04 42.16 44.50 40.95 41.76 43.73 43.73 39.72 39.72 47.13 43.73 42.55 41.76 41.35 42.16 42.95 44.12 42.16 
Run 12 36.31 36.75 37.61 35.43 39.72 46.39 41.76 44.50 35.87 38.46 45.27 45.27 46.76 44.50 43.73 45.27 43.73 43.34 
Run 13 38.46 40.54 43.34 42.55 40.13 42.55 44.89 34.54 39.30 40.54 38.88 42.16 46.76 36.75 45.27 44.50 40.95 40.95 
Run 14 35.43 34.54 37.18 47.50 40.95 39.30 40.54 37.18 38.88 40.13 44.12 47.50 42.16 42.16 37.18 43.73 37.18 48.22 
Run 15 37.18 33.18 45.27 36.31 46.02 45.27 41.76 42.55 40.95 45.27 42.55 44.50 40.54 39.30 42.16 41.35 38.04 43.34 
Run 16 37.18 36.75 37.18 42.55 40.13 40.95 39.72 43.73 40.95 37.61 42.95 44.50 44.50 41.35 40.95 43.34 43.34 43.34 
Run 17 38.04 39.72 38.04 43.73 38.88 38.04 44.50 44.89 45.64 39.30 42.95 35.43 42.55 45.64 42.95 42.55 42.16 36.31 
Run 18 35.87 36.31 38.88 44.12 43.73 38.46 46.02 40.95 34.99 44.89 40.54 38.88 42.55 38.04 41.76 39.72 46.39 45.27 
Run 19 36.31 33.64 40.13 40.13 40.13 37.18 43.34 38.46 49.65 42.55 44.50 39.72 46.76 42.55 44.50 44.50 39.72 50.35 
Run 20 35.43 38.88 38.46 42.16 43.34 37.18 44.12 49.65 45.64 44.50 38.04 38.46 44.12 39.72 44.50 44.50 42.95 41.76 
Run 21 41.76 34.54 35.87 40.95 42.16 42.95 39.30 44.12 42.55 40.95 41.76 42.95 41.35 46.76 44.89 44.12 39.30 43.73 
Run 22 35.43 42.55 36.75 39.72 41.76 47.86 44.12 42.55 44.89 42.55 44.89 37.61 38.04 41.76 47.13 39.30 42.16 43.34 
Run 23 44.12 34.99 41.76 43.34 45.27 42.55 46.76 42.55 41.35 40.95 44.89 49.30 44.12 42.16 44.50 42.95 44.50 44.12 
Run 24 39.72 33.18 42.16 42.95 36.31 36.31 40.13 40.13 43.34 40.13 38.88 40.13 43.34 46.02 41.35 41.76 41.76 39.30 
Run 25 32.26 38.88 40.54 38.46 40.54 45.27 43.73 40.95 40.13 43.34 40.95 33.64 33.64 43.34 41.76 41.35 41.76 40.95 
Run 26 34.54 37.18 40.95 40.54 40.95 38.46 41.76 44.50 45.64 41.76 38.88 39.30 37.18 47.86 41.35 41.35 41.76 40.95 
Run 27 42.55 33.64 40.95 46.76 43.73 36.75 34.99 44.50 41.76 44.89 41.35 42.55 36.75 46.76 43.34 36.31 45.64 44.89 
Run 28 35.87 37.18 40.54 39.72 42.55 41.35 40.95 44.12 44.50 37.18 35.43 43.34 45.27 42.95 44.89 42.16 40.13 47.86 
Run 29 34.99 37.18 41.35 42.95 38.46 43.34 36.31 41.35 44.89 38.46 38.46 40.54 42.16 44.50 38.04 43.73 43.34 37.61 
Run 30 41.35 40.13 38.46 43.73 41.35 40.95 41.35 48.22 45.64 39.30 43.34 42.16 42.95 44.89 40.13 45.27 43.34 45.64 
Mean 37.27 37.52 39.43 42.01 41.42 41.81 41.84 42.38 41.93 41.49 41.04 41.59 42.11 42.80 42.82 41.77 42.11 43.18 
Std dev 0.0295 0.0336 0.0255 0.0281 0.0260 0.0347 0.0281 0.0337 0.0324 0.0253 0.0351 0.0332 0.0305 0.0252 0.0259 0.0293 0.0307 0.0321 
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TABLE B-20: DETAILED SPIKE RATES FOR THE SECOND SET OF EXPERIMENTS PERFORMED 

ON THE VIDEO DATA. 

Template Peripheral spike rate Foveal spike rate Block levels Accuracy 

MNI_by_2 0.2488 0.3788 5 -- 

MNI_by_3 0.3441 0.5293 4 45.13% 

MNI_by_4 0.5056 0.6204 4 45.07% 

MNI_by_5 0.5889 0.6487 3 41.14% 

TAL_by_3 0.1983 0.2968 5 -- 

TAL_by_4 0.2878 0.3976 5 -- 

TAL_by_5 0.3221 0.4842 4 45.67% 

TAL_by_6 0.3805 0.5466 4 44.16% 

TAL_by_7 0.4746 0.5963 4 45.18% 

TAL_by_8 0.4680 0.6587 3 43.60% 

TAL_by_9 0.5473 0.6693 3 42.69% 

TAL_by_10 0.5803 0.6837 3 42.32% 

Average 0.4122 0.5425 -- 43.88% 
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TABLE B-21: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE MNI_BY_3 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.09 40.54 45.64 47.13 41.35 49.65 44.89 49.65 45.64 50.00 43.34 42.95 46.39 46.76 42.16 50.70 46.02 40.95 
Run 2 36.75 46.02 41.76 46.02 38.88 49.65 49.65 45.27 44.89 48.94 41.76 47.86 46.39 49.30 40.95 48.94 46.39 44.89 
Run 3 43.34 41.76 45.64 49.30 48.22 45.27 48.94 47.13 44.89 41.35 48.94 43.73 41.35 45.64 48.22 46.39 42.16 49.65 
Run 4 39.30 44.12 51.04 47.13 46.76 40.13 46.76 50.00 45.64 46.02 41.35 45.27 45.64 44.89 50.00 47.13 44.89 50.35 
Run 5 40.54 40.95 47.13 45.27 42.55 44.89 44.12 46.39 47.13 45.64 46.39 49.30 48.94 44.50 43.34 48.22 47.50 45.27 
Run 6 42.16 36.31 44.89 44.50 44.50 51.04 47.13 46.39 40.54 50.00 44.89 44.50 43.34 42.55 48.58 46.39 44.89 39.72 
Run 7 38.04 43.34 42.55 46.02 46.76 46.76 46.02 42.95 51.04 47.50 48.22 47.50 43.73 46.76 44.89 45.64 50.35 45.27 
Run 8 31.79 39.72 45.27 46.39 47.13 42.55 44.12 45.27 45.64 42.16 41.76 40.54 51.04 45.27 44.12 42.95 42.55 42.16 
Run 9 42.55 44.89 41.35 45.27 44.50 45.64 44.50 44.89 46.76 46.02 44.50 43.73 47.13 47.13 51.38 46.39 44.89 46.39 
Run 10 34.54 40.54 41.76 44.50 45.27 50.70 49.65 47.13 45.27 47.50 47.50 47.50 44.12 49.30 47.50 48.58 39.72 47.13 
Run 11 34.09 40.54 44.12 45.27 47.86 40.95 47.50 46.39 42.95 46.39 44.89 48.58 43.34 45.27 41.76 47.86 50.35 44.89 
Run 12 37.61 42.16 44.12 47.86 46.02 45.27 50.35 42.55 48.22 44.50 42.95 42.16 49.65 47.86 46.76 49.30 43.34 48.22 
Run 13 44.12 36.75 45.27 47.13 51.72 48.94 45.64 48.22 48.22 47.50 40.13 48.22 47.50 42.55 38.88 47.50 47.50 46.02 
Run 14 46.76 44.12 47.13 43.73 39.72 44.89 42.55 48.22 45.27 43.73 42.55 45.64 46.39 43.34 43.73 46.39 47.13 46.76 
Run 15 42.55 45.64 42.16 46.39 46.02 47.13 48.94 45.64 48.22 46.76 46.02 45.27 52.06 53.40 47.13 46.39 43.34 40.95 
Run 16 40.95 43.73 47.13 44.89 45.27 42.95 45.64 48.94 50.00 43.73 40.13 44.89 38.46 43.73 44.12 48.58 47.50 45.27 
Run 17 41.35 38.04 46.76 45.64 47.13 44.89 44.12 44.50 44.12 45.27 45.64 48.22 45.64 44.89 43.73 44.12 45.64 43.73 
Run 18 37.18 38.46 45.64 48.22 44.89 44.12 50.00 50.00 42.95 52.40 44.89 49.65 42.55 51.72 50.70 47.50 46.76 46.02 
Run 19 37.61 39.72 45.27 48.22 40.95 48.22 40.54 50.35 48.58 50.35 39.30 42.16 48.94 46.02 45.27 42.95 46.02 42.55 
Run 20 35.43 46.02 46.39 37.18 47.86 49.65 46.76 44.89 41.35 47.50 42.55 48.22 42.55 48.94 41.76 44.12 44.89 44.12 
Run 21 37.18 36.31 47.50 46.39 48.22 47.50 39.72 45.64 47.50 49.65 45.64 43.34 47.86 43.73 44.89 44.89 45.27 43.73 
Run 22 39.72 40.95 48.58 42.55 48.22 46.39 46.39 42.16 46.39 46.76 46.76 42.16 49.30 49.65 50.70 43.34 48.94 50.35 
Run 23 37.18 44.12 43.34 39.30 50.00 47.50 45.27 47.50 49.65 43.34 44.50 42.95 47.86 45.64 44.50 44.50 45.64 43.73 
Run 24 39.72 40.54 45.64 41.76 44.89 48.94 51.04 44.89 46.02 47.50 43.34 46.76 44.50 41.76 46.76 50.00 47.86 44.89 
Run 25 41.35 37.61 43.73 46.76 44.89 40.13 42.95 45.27 46.76 47.86 44.12 43.73 44.50 45.64 46.39 50.70 43.73 47.50 
Run 26 43.73 41.35 44.12 45.27 46.02 47.13 46.39 44.89 45.64 47.13 49.30 44.89 50.35 46.76 48.94 48.22 45.64 46.39 
Run 27 38.46 40.13 43.34 46.76 42.16 42.55 42.16 44.89 48.94 43.34 46.39 45.64 44.50 48.58 38.04 44.50 46.39 42.95 
Run 28 43.73 40.54 46.76 43.73 42.95 48.58 47.86 47.50 44.50 46.39 48.94 42.16 44.12 46.02 48.58 44.12 47.86 43.34 
Run 29 40.95 38.88 44.12 44.12 43.73 40.54 47.13 45.27 40.54 44.89 40.13 48.94 43.34 49.30 44.50 40.54 44.50 46.76 
Run 30 38.46 42.55 44.89 47.13 46.02 42.95 46.02 45.64 44.89 43.34 48.58 50.35 47.13 42.55 50.35 45.64 42.95 47.13 
Mean 39.37 41.21 45.10 45.33 45.35 45.85 46.09 46.28 45.94 46.45 44.51 45.56 45.95 46.31 45.62 46.42 45.69 45.23 
Std dev 0.0345 0.0277 0.0214 0.0253 0.0288 0.0315 0.0279 0.0212 0.0259 0.0256 0.0284 0.0266 0.0304 0.0277 0.0345 0.0245 0.0233 0.0260 
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TABLE B-22: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 45.27 39.72 42.16 46.76 46.39 42.95 44.50 40.54 45.27 48.22 45.64 49.65 47.86 40.13 41.35 47.86 41.35 44.89 
Run 2 42.55 43.34 45.27 42.95 41.35 46.02 46.02 42.95 46.76 42.16 48.22 51.38 44.89 48.58 46.39 47.13 46.76 45.27 
Run 3 44.89 47.86 46.02 44.12 42.55 47.86 46.02 47.86 50.35 47.13 41.35 45.27 44.12 45.64 42.95 46.76 41.35 46.02 
Run 4 40.54 49.30 46.76 46.02 43.73 45.64 44.89 39.72 46.76 46.39 47.13 40.95 46.76 44.89 49.30 42.16 37.18 47.50 
Run 5 42.16 49.65 47.13 51.04 46.02 45.64 43.73 50.70 48.22 46.02 50.70 46.76 46.39 45.27 42.55 42.55 46.76 44.89 
Run 6 44.89 46.39 40.54 46.76 48.22 47.13 46.02 44.12 48.22 45.27 45.64 43.73 45.27 40.13 45.64 48.22 45.27 49.30 
Run 7 45.64 45.27 47.13 44.12 43.34 51.04 44.89 47.50 43.34 47.86 49.65 41.76 42.55 46.02 42.95 47.50 46.02 40.95 
Run 8 44.50 41.76 46.02 42.95 47.50 45.64 46.02 44.50 46.76 40.54 44.12 43.34 43.73 40.54 46.39 41.76 41.76 42.55 
Run 9 40.54 43.34 47.50 46.39 42.95 44.89 47.13 47.86 46.39 44.89 46.39 43.73 40.54 51.38 44.50 43.73 47.50 46.39 
Run 10 46.02 38.88 42.16 48.58 50.00 42.55 42.16 48.22 44.12 41.76 47.50 46.76 45.64 49.30 47.13 46.39 47.50 46.76 
Run 11 40.13 48.94 43.73 45.27 45.27 47.13 47.50 49.30 47.86 48.22 45.64 46.02 45.64 46.39 47.50 43.73 42.16 48.58 
Run 12 42.16 46.76 41.35 48.22 41.76 45.64 49.65 49.30 43.34 45.64 48.22 41.35 43.34 45.27 45.27 48.22 42.95 42.55 
Run 13 39.72 42.95 47.50 41.76 43.34 45.64 48.94 47.50 44.50 50.00 46.76 38.46 47.86 44.50 46.39 44.12 42.16 48.94 
Run 14 42.16 44.12 45.27 44.89 52.73 47.13 42.95 40.13 48.58 43.34 45.27 42.16 44.89 42.95 44.12 43.34 40.54 42.95 
Run 15 40.54 42.55 44.50 46.02 40.54 44.89 46.76 44.50 47.86 44.50 51.38 45.27 42.95 43.34 44.89 48.22 46.02 46.39 
Run 16 45.64 38.88 44.89 41.35 44.12 45.64 46.39 50.35 50.00 48.22 44.50 42.95 47.13 45.27 47.13 44.89 40.54 46.39 
Run 17 43.34 42.16 42.95 48.58 44.89 44.50 46.02 49.30 48.22 42.95 49.65 44.89 46.02 45.27 46.76 40.95 49.30 43.73 
Run 18 43.34 42.95 45.64 42.16 44.50 44.89 48.58 44.89 44.50 46.76 48.58 45.64 42.55 46.02 50.00 48.58 48.58 42.95 
Run 19 39.30 48.22 45.64 46.39 40.95 46.39 42.55 41.35 45.64 46.76 46.02 44.12 38.88 42.95 36.75 42.95 45.64 41.76 
Run 20 47.86 40.13 40.54 49.65 43.73 48.94 42.55 44.50 45.64 48.22 51.38 43.73 38.46 46.39 46.76 47.86 45.27 42.16 
Run 21 39.72 45.64 42.16 41.76 47.50 43.34 44.50 47.50 42.16 39.72 47.50 46.39 47.50 45.27 45.64 43.73 38.04 45.27 
Run 22 40.13 46.02 43.34 44.50 47.13 43.73 42.16 46.76 44.89 38.04 45.27 46.76 45.64 44.89 45.27 41.76 49.65 45.64 
Run 23 45.64 47.13 41.76 49.65 46.02 43.73 45.27 42.95 44.89 50.00 48.58 45.64 47.50 46.02 46.02 44.12 39.72 48.58 
Run 24 36.31 46.39 42.16 42.95 48.58 47.50 45.64 44.12 47.50 42.95 46.39 42.16 44.89 43.34 44.12 45.64 44.50 47.13 
Run 25 43.73 43.73 40.54 43.73 42.95 50.00 43.34 44.50 46.02 49.65 42.95 44.50 41.76 44.50 45.27 44.89 47.86 44.50 
Run 26 45.27 42.16 46.39 46.76 47.50 47.13 42.16 50.35 45.64 45.27 41.76 42.95 45.27 45.27 43.34 42.95 39.30 42.95 
Run 27 44.12 48.22 44.12 43.73 49.65 39.72 44.89 43.73 46.39 44.50 46.76 47.13 46.02 43.34 44.12 46.39 43.34 44.89 
Run 28 43.73 48.22 44.12 48.58 44.12 51.72 52.06 44.89 51.38 39.72 44.12 50.35 42.95 39.30 42.95 46.39 46.76 41.76 
Run 29 37.61 44.89 47.13 42.55 44.50 39.72 45.64 48.22 50.00 41.76 44.89 50.00 42.95 43.34 45.64 46.76 46.76 40.54 
Run 30 40.13 52.06 46.39 41.76 42.16 51.04 47.50 39.72 46.39 45.27 47.13 43.73 42.95 47.50 47.86 42.95 47.86 47.13 
Mean 42.59 44.92 44.36 45.33 45.13 45.93 45.55 45.59 46.59 45.06 46.64 44.92 44.43 44.77 45.16 45.08 44.28 44.98 
Std dev 0.0274 0.0333 0.0224 0.0269 0.0289 0.0285 0.0234 0.0326 0.0218 0.0317 0.0250 0.0289 0.0243 0.0261 0.0249 0.0229 0.0342 0.0243 
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TABLE B-23: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE MNI_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 33.64 42.16 46.02 38.88 38.46 45.64 40.95 40.54 39.30 45.27 44.12 43.34 40.95 40.54 37.18 39.72 42.16 37.61 
Run 2 42.95 40.13 40.95 40.95 41.76 42.95 38.46 44.12 43.73 38.46 39.72 37.61 35.87 44.89 39.72 38.46 42.95 42.16 
Run 3 40.54 37.61 41.35 38.46 40.13 44.12 40.95 42.55 37.18 39.72 38.04 44.50 41.76 46.02 43.73 38.04 40.95 44.89 
Run 4 42.16 43.34 38.46 44.50 44.12 43.34 38.46 40.54 44.50 42.55 39.30 42.95 42.16 42.55 41.35 40.54 44.12 38.88 
Run 5 38.88 40.13 35.43 42.55 39.72 45.27 36.75 39.72 39.30 40.13 39.72 40.13 47.50 42.55 42.55 42.16 43.34 38.04 
Run 6 38.04 41.76 43.34 43.73 35.87 43.73 38.04 38.46 40.54 41.76 39.72 38.46 40.13 39.72 42.16 43.73 42.95 47.13 
Run 7 40.54 34.54 37.18 42.55 44.89 40.13 42.95 44.12 38.88 42.55 38.88 40.13 46.02 40.95 37.61 40.13 40.95 45.64 
Run 8 38.04 38.88 34.09 42.95 44.89 40.13 45.27 42.16 37.61 40.95 42.16 41.76 35.43 42.55 37.61 44.89 41.35 40.13 
Run 9 41.76 36.31 41.76 38.46 42.16 39.72 44.50 45.27 44.50 42.95 42.55 43.73 34.99 42.55 42.55 40.54 45.64 42.95 
Run 10 44.12 42.95 34.09 40.13 40.95 47.50 44.50 49.30 44.89 47.13 36.75 37.18 40.54 38.88 40.95 37.61 41.76 39.72 
Run 11 40.54 39.30 43.73 40.95 48.58 43.34 38.04 38.46 42.16 42.55 40.54 40.95 36.75 42.55 41.35 48.58 37.61 38.04 
Run 12 38.46 43.73 39.30 46.02 40.95 44.50 42.16 40.13 39.30 41.35 40.54 41.76 37.61 41.35 40.13 43.34 43.34 42.16 
Run 13 40.95 41.35 42.16 34.99 40.13 43.73 44.12 39.30 41.35 42.16 41.76 38.88 37.61 49.30 33.18 46.39 42.16 39.30 
Run 14 40.13 43.73 40.13 37.61 39.72 38.88 36.31 42.55 44.50 41.35 34.54 36.75 39.30 40.95 36.31 42.55 42.95 39.72 
Run 15 40.54 34.54 40.95 41.76 40.13 37.18 41.76 42.95 46.02 42.16 40.13 37.61 40.54 44.89 31.79 44.50 40.54 42.95 
Run 16 39.72 39.30 40.95 33.18 43.73 41.35 44.12 44.50 42.95 38.46 39.30 41.76 38.88 36.31 37.18 38.88 44.12 42.16 
Run 17 43.34 43.73 41.35 43.34 39.30 40.13 39.72 44.50 40.95 40.13 45.64 39.72 45.64 38.88 43.73 42.95 42.55 46.02 
Run 18 39.72 39.72 40.54 41.35 39.30 45.27 37.18 41.35 44.89 40.54 44.12 38.46 42.55 42.55 44.50 42.16 35.43 34.54 
Run 19 35.87 38.88 40.13 40.95 35.87 38.88 42.16 39.30 42.16 49.65 44.50 43.73 45.64 34.54 41.35 40.54 41.35 44.89 
Run 20 41.76 42.55 39.72 39.72 42.16 37.18 38.88 40.95 40.13 43.34 38.88 40.54 42.16 35.87 43.34 42.95 48.58 39.30 
Run 21 43.34 32.72 39.72 43.73 46.02 40.13 39.72 45.64 40.13 44.12 37.18 38.88 42.95 44.12 42.16 42.95 41.76 42.95 
Run 22 35.43 39.72 38.88 43.73 42.95 40.95 43.73 40.13 40.54 40.95 47.13 42.16 40.13 38.04 48.58 41.35 38.88 41.76 
Run 23 39.30 34.54 44.50 40.95 43.73 42.95 38.88 43.73 38.88 40.13 40.13 37.61 39.30 44.89 39.30 39.72 41.76 44.89 
Run 24 44.50 37.61 38.88 37.61 44.12 40.13 43.73 38.88 36.75 42.95 39.72 39.30 46.02 43.73 42.95 41.35 40.95 41.76 
Run 25 39.30 39.72 40.95 42.16 37.61 41.35 44.12 40.54 45.27 41.76 46.02 33.64 38.46 44.50 38.04 42.55 46.39 44.50 
Run 26 34.54 42.95 36.75 42.55 39.30 41.76 40.54 45.64 39.72 40.95 44.89 38.46 41.35 44.89 43.73 41.35 39.72 40.54 
Run 27 37.61 40.13 42.55 43.34 43.34 38.88 42.16 41.76 41.76 40.54 43.34 41.35 43.34 35.87 43.34 43.73 46.76 40.54 
Run 28 43.73 40.95 42.95 39.72 43.34 38.88 42.95 42.16 41.35 37.61 42.16 46.02 36.31 40.13 40.54 46.02 43.73 37.61 
Run 29 35.43 38.88 36.31 37.18 45.64 44.12 46.76 33.64 42.95 40.95 45.27 36.31 37.61 44.12 40.54 40.95 38.04 46.76 
Run 30 40.13 38.88 44.50 41.35 39.30 33.18 42.95 44.89 42.95 39.30 45.27 41.35 40.54 44.50 43.34 41.35 38.46 41.76 
Mean 39.83 39.69 40.25 40.85 41.61 41.51 41.36 41.93 41.50 41.75 41.40 40.17 40.60 41.77 40.69 42.00 42.04 41.64 
Std dev 0.0284 0.0293 0.0294 0.0283 0.0296 0.0301 0.0277 0.0297 0.0252 0.0245 0.0306 0.0272 0.0333 0.0336 0.0343 0.0248 0.0276 0.0304 
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TABLE B-24: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE TAL_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 40.54 39.72 44.12 44.89 48.58 52.73 48.22 50.70 46.76 45.27 51.04 47.86 47.50 42.16 48.58 36.31 47.13 42.95 
Run 2 46.39 38.46 42.55 47.13 46.39 48.94 47.86 47.50 48.22 49.30 47.13 46.02 43.34 43.73 46.39 48.22 43.73 40.54 
Run 3 40.95 38.46 41.76 44.50 49.30 54.05 52.06 47.13 46.76 50.00 46.76 41.76 43.34 42.55 46.39 46.39 44.50 46.76 
Run 4 40.54 39.72 46.02 46.02 50.00 47.86 47.86 46.02 47.86 44.12 44.50 44.12 46.02 42.55 46.02 42.95 47.86 41.35 
Run 5 40.54 40.95 42.95 40.95 47.50 41.35 48.58 45.27 46.02 48.22 50.35 45.27 42.16 46.39 41.35 46.76 47.50 48.58 
Run 6 41.76 42.16 48.22 45.64 46.39 44.12 50.00 52.06 50.00 45.27 49.65 47.50 43.73 47.86 44.89 45.64 45.64 46.02 
Run 7 37.18 40.13 40.54 44.89 48.58 52.73 47.50 44.50 44.50 49.65 39.72 44.50 42.95 44.50 43.73 46.02 42.16 47.86 
Run 8 45.64 37.18 42.16 49.30 47.50 52.06 46.02 43.73 50.35 49.30 49.65 50.00 42.16 43.73 54.05 45.64 45.64 44.50 
Run 9 41.35 45.64 39.30 42.55 46.76 50.70 47.13 51.38 45.64 47.13 45.64 46.02 45.64 50.00 50.70 46.76 45.64 48.94 
Run 10 45.27 40.13 42.95 42.55 45.64 49.65 46.76 49.30 47.13 48.58 47.50 47.86 42.16 47.86 45.27 43.34 40.95 41.35 
Run 11 41.35 37.18 38.88 42.55 39.72 50.00 52.06 48.94 50.35 51.72 45.27 48.22 45.64 50.70 47.86 47.86 44.50 43.34 
Run 12 40.54 40.54 34.54 45.27 50.00 48.94 48.58 49.65 47.50 47.13 46.02 49.30 41.76 46.76 48.58 42.95 46.02 40.54 
Run 13 38.04 42.95 38.88 50.00 52.40 49.30 51.72 48.94 49.30 47.50 48.22 40.95 42.95 44.89 46.39 40.95 46.02 41.76 
Run 14 44.89 36.31 38.88 46.02 52.06 49.30 51.04 49.30 48.94 46.02 46.02 47.13 42.55 43.73 44.12 49.30 46.76 42.16 
Run 15 42.55 41.76 44.12 47.86 51.04 48.94 51.38 48.22 49.65 46.39 46.76 42.55 45.27 43.73 46.39 43.73 46.76 46.02 
Run 16 42.55 39.30 38.46 48.22 51.38 46.02 47.50 46.39 49.30 48.58 50.00 45.64 48.94 46.02 40.13 45.27 43.34 46.76 
Run 17 39.30 38.88 46.02 46.02 51.04 50.35 50.35 48.94 45.64 42.95 47.13 42.55 47.13 43.73 46.02 45.27 42.16 44.50 
Run 18 34.99 41.35 33.18 44.89 48.22 45.64 49.65 43.34 44.50 52.40 48.58 49.65 46.39 42.16 52.06 46.02 45.64 46.02 
Run 19 37.61 43.73 40.54 47.13 52.40 45.27 48.58 45.64 47.86 45.27 46.76 48.22 44.50 44.50 45.64 43.73 39.30 49.65 
Run 20 40.13 40.54 38.04 48.58 48.94 47.86 45.27 48.94 48.94 53.40 50.00 52.06 45.27 44.89 45.64 48.58 49.30 48.94 
Run 21 42.55 40.13 43.34 47.50 46.76 48.22 47.13 49.65 46.76 44.89 46.39 48.94 43.34 48.94 47.13 45.64 47.50 38.46 
Run 22 43.34 42.16 41.35 41.76 44.89 48.22 48.22 49.30 49.65 40.95 50.00 45.27 47.50 40.54 42.95 44.12 41.35 49.65 
Run 23 45.64 42.16 41.35 46.76 45.64 50.35 46.76 49.65 47.13 42.16 46.76 46.76 46.76 44.89 47.86 44.89 45.27 44.89 
Run 24 40.95 40.95 42.95 46.02 49.65 48.94 51.38 47.86 46.02 48.58 43.73 45.64 40.13 47.13 45.64 40.95 43.73 49.65 
Run 25 38.46 38.88 46.02 45.64 45.64 46.76 48.58 49.30 49.30 48.58 49.65 42.95 44.12 47.86 45.64 44.50 43.34 45.64 
Run 26 44.12 39.72 47.13 51.04 44.89 54.05 44.50 48.58 46.76 46.02 49.30 46.02 43.34 42.55 44.89 39.30 48.94 48.58 
Run 27 40.95 40.13 42.95 46.39 48.94 49.65 46.39 50.00 51.72 42.16 50.00 44.89 44.12 42.95 42.55 44.89 48.58 50.00 
Run 28 39.30 42.16 45.64 48.22 46.39 49.65 44.89 49.65 50.70 45.27 49.65 42.16 44.89 43.34 43.73 41.35 42.55 45.27 
Run 29 38.46 39.72 37.61 46.02 47.13 44.89 52.06 49.65 44.12 49.30 40.13 47.50 44.50 44.12 47.50 47.86 42.95 45.27 
Run 30 40.13 40.95 42.55 46.02 54.38 46.76 50.70 51.04 49.65 44.50 47.13 43.34 50.35 45.27 36.31 44.12 42.55 44.50 
Mean 41.20 40.40 41.77 46.01 48.27 48.78 48.63 48.35 47.90 47.02 47.31 46.02 44.61 45.00 45.81 44.64 44.91 45.35 
Std dev 0.0271 0.0195 0.0348 0.0234 0.0292 0.0285 0.0220 0.0217 0.0198 0.0300 0.0272 0.0268 0.0225 0.0244 0.0334 0.0281 0.0249 0.0314 
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TABLE B-25: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE TAL_BY_6 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 40.13 37.61 40.95 44.12 42.95 45.27 44.50 38.04 42.16 47.86 47.50 48.22 42.55 46.02 46.39 44.50 47.13 41.76 
Run 2 39.30 43.73 44.50 39.72 42.16 48.94 43.73 44.12 44.50 45.27 47.13 50.00 44.89 42.55 50.35 43.73 47.13 39.30 
Run 3 35.43 39.72 36.31 39.72 46.76 45.64 44.12 46.02 42.16 42.95 40.95 50.00 44.50 49.30 47.50 48.22 50.70 45.27 
Run 4 38.04 40.13 40.13 41.35 43.73 42.16 44.50 44.89 40.95 44.89 45.27 50.00 44.12 42.16 47.13 48.94 46.76 45.27 
Run 5 38.46 38.46 41.76 44.12 37.61 49.65 45.27 48.58 42.95 44.89 47.50 54.70 50.70 42.16 46.39 46.76 42.95 47.13 
Run 6 38.88 34.09 41.35 38.04 46.39 44.50 44.89 42.55 38.88 40.54 53.40 42.16 48.94 45.27 43.73 46.02 47.86 44.12 
Run 7 38.04 38.04 38.88 45.27 44.89 46.76 49.30 45.64 44.12 41.76 47.50 49.30 43.34 43.73 46.76 41.35 44.89 45.64 
Run 8 42.16 37.18 40.54 47.50 45.27 43.34 41.35 41.35 41.76 42.55 47.13 49.65 50.00 47.86 44.50 48.58 41.35 48.94 
Run 9 39.72 41.76 39.72 42.55 45.27 47.86 45.64 44.12 42.55 42.95 46.02 50.00 45.27 46.76 48.94 45.27 44.89 44.12 
Run 10 42.16 42.16 38.46 42.55 44.50 42.55 35.87 45.27 43.34 46.39 44.12 47.13 46.76 41.35 46.76 45.27 41.35 47.13 
Run 11 39.30 38.46 38.04 44.50 46.02 46.76 47.50 45.64 44.12 41.76 44.50 46.02 41.76 46.02 45.64 46.76 52.73 52.40 
Run 12 29.89 34.54 38.04 38.46 50.35 43.34 47.13 38.88 43.34 51.72 46.39 45.64 48.22 43.34 43.73 48.94 43.34 43.34 
Run 13 37.61 38.46 36.75 41.35 42.95 50.35 43.34 42.16 45.64 43.73 45.64 48.58 47.50 46.39 45.64 44.89 48.94 47.13 
Run 14 35.43 37.18 39.30 44.12 43.34 46.39 42.16 44.50 46.39 43.73 42.55 42.55 46.76 46.02 44.12 46.76 42.95 45.27 
Run 15 38.88 39.72 39.72 42.55 46.76 38.04 42.55 50.35 50.35 42.16 46.02 44.12 44.89 37.18 49.30 47.13 41.35 48.22 
Run 16 39.72 40.95 43.73 39.30 43.73 44.12 46.02 43.34 44.50 46.76 47.13 51.04 41.76 51.38 44.89 43.34 43.73 44.89 
Run 17 37.61 33.18 43.73 45.27 46.02 40.54 43.34 43.34 39.30 44.50 46.02 42.16 48.94 47.13 47.50 46.02 52.40 42.95 
Run 18 38.04 39.30 36.31 40.13 40.95 42.95 45.27 38.88 46.02 42.16 45.64 44.89 48.58 46.39 44.89 49.30 41.76 46.76 
Run 19 42.16 42.16 38.46 42.16 46.39 39.72 40.13 43.73 46.39 45.27 47.13 47.13 48.22 46.39 50.35 53.07 44.89 41.76 
Run 20 40.95 40.54 40.95 41.76 44.89 47.13 44.89 42.16 49.65 43.34 44.89 47.86 44.89 49.30 49.30 46.76 48.22 47.13 
Run 21 38.46 39.72 33.64 39.72 44.89 48.22 42.95 44.12 45.27 47.86 41.35 45.27 48.58 44.12 50.35 43.34 50.00 42.55 
Run 22 42.55 40.95 32.26 43.34 42.16 44.50 44.89 42.55 38.04 47.50 45.27 47.13 47.13 40.13 51.38 49.30 46.39 43.73 
Run 23 34.99 38.88 38.88 41.35 44.50 49.30 47.50 46.39 42.95 44.50 43.34 42.95 50.00 47.86 51.04 51.72 46.02 48.94 
Run 24 35.87 37.18 44.89 47.50 47.86 42.55 46.76 42.16 44.12 44.89 50.70 47.13 45.64 48.22 42.16 44.50 44.50 47.50 
Run 25 38.46 34.54 40.54 38.88 46.02 44.12 42.16 44.89 39.30 41.76 41.76 44.89 47.50 47.50 52.06 47.86 49.30 44.50 
Run 26 39.72 40.95 44.89 42.16 41.76 48.94 44.12 41.76 41.35 47.13 45.64 42.95 47.50 49.65 47.86 49.30 44.89 46.76 
Run 27 36.31 35.43 40.13 38.04 47.50 42.16 39.30 45.27 41.35 47.50 48.22 42.95 49.30 44.89 41.35 48.94 46.39 46.02 
Run 28 38.04 41.76 42.95 44.89 42.55 47.50 48.22 46.02 47.13 40.54 46.02 44.50 44.50 40.13 46.76 46.76 45.64 42.16 
Run 29 41.76 40.54 38.04 42.95 46.76 40.95 44.89 43.34 39.30 48.22 42.16 51.04 47.50 44.50 43.34 47.86 40.95 43.73 
Run 30 40.54 38.04 39.30 40.54 44.12 42.16 44.89 44.12 46.39 42.16 46.76 44.12 51.04 48.94 48.22 48.58 45.64 47.86 
Mean 38.62 38.84 39.77 42.13 44.63 44.88 44.24 43.81 43.48 44.57 45.79 46.80 46.71 45.42 46.94 46.99 45.83 45.41 
Std dev 0.0261 0.0259 0.0299 0.0256 0.0241 0.0315 0.0272 0.0258 0.0299 0.0262 0.0258 0.0315 0.0255 0.0321 0.0277 0.0251 0.0317 0.0265 
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TABLE B-26: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE TAL_BY_7 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 38.46 43.34 40.54 44.12 46.39 43.34 42.95 45.27 46.02 43.34 46.39 44.12 41.35 47.50 42.95 48.94 46.76 47.50 
Run 2 37.61 42.16 44.89 40.95 47.13 43.73 47.50 44.50 44.12 46.76 43.34 42.55 41.35 51.38 47.50 47.13 52.73 44.50 
Run 3 38.04 44.12 46.76 42.55 44.89 46.39 46.02 43.73 47.13 50.70 47.13 49.30 49.30 44.50 49.65 44.89 49.30 48.58 
Run 4 38.88 43.34 48.94 44.12 47.86 46.76 41.35 47.86 46.39 45.64 44.50 46.39 46.02 46.76 46.02 46.02 44.12 44.12 
Run 5 40.54 38.88 40.54 33.64 50.00 44.89 52.06 41.35 45.64 47.13 42.55 42.55 44.50 51.72 46.02 50.70 45.64 46.39 
Run 6 41.35 39.30 44.50 46.76 50.70 46.02 42.55 46.39 48.94 47.86 42.16 46.02 48.94 43.34 46.76 46.02 40.95 43.34 
Run 7 40.54 42.16 42.95 43.34 47.50 42.16 49.65 47.50 48.22 48.58 44.89 45.27 46.02 46.02 50.00 47.13 40.95 47.50 
Run 8 41.35 39.72 43.73 46.39 46.02 48.58 51.72 47.50 46.76 48.22 45.64 46.39 50.70 47.86 45.64 44.89 49.65 46.02 
Run 9 38.04 40.54 38.04 42.55 47.50 48.58 46.39 49.65 41.35 42.95 47.50 44.89 48.58 47.86 50.00 45.27 43.34 42.16 
Run 10 38.88 43.34 44.50 45.27 42.55 42.55 44.89 46.39 48.22 45.64 40.54 43.34 47.13 49.30 46.39 46.76 43.73 45.64 
Run 11 41.76 39.72 45.64 46.76 46.76 52.06 44.50 46.02 47.86 44.50 43.73 45.27 50.35 45.64 44.12 46.02 41.35 42.16 
Run 12 38.04 39.30 40.95 50.00 44.89 41.76 43.73 48.58 38.46 50.35 46.76 46.39 45.27 53.07 47.50 44.12 46.02 46.76 
Run 13 43.34 38.88 38.04 41.76 47.50 49.65 46.76 44.50 47.13 46.76 44.12 47.50 44.12 48.22 44.12 43.73 48.22 48.58 
Run 14 43.73 38.88 40.95 40.95 42.95 50.70 47.86 38.46 47.50 46.76 47.13 39.72 44.12 46.76 40.54 49.30 46.02 41.76 
Run 15 44.12 41.76 43.34 53.07 40.95 42.16 47.13 46.02 47.13 47.86 47.86 47.13 44.89 46.76 47.50 47.13 47.13 47.86 
Run 16 41.76 38.46 41.35 46.76 43.73 45.64 42.16 43.34 44.50 43.34 48.94 46.39 43.73 46.39 50.00 47.50 44.89 48.58 
Run 17 40.13 38.88 45.27 44.50 42.95 43.73 45.64 46.76 46.76 44.12 44.50 48.94 44.89 49.65 44.12 47.13 43.73 45.64 
Run 18 39.72 46.39 37.18 42.55 52.06 44.89 48.22 45.27 50.00 44.89 44.12 47.86 46.39 45.64 46.76 44.12 46.39 50.00 
Run 19 38.04 38.04 44.50 45.64 47.86 41.76 44.89 44.50 42.55 47.50 46.02 45.27 46.02 43.73 49.30 46.02 46.39 46.02 
Run 20 43.34 41.76 38.88 45.64 48.22 41.35 46.02 48.58 48.22 44.12 40.95 46.39 51.38 49.30 51.38 46.39 46.39 44.89 
Run 21 37.18 33.64 42.16 45.27 49.30 48.94 43.34 44.89 42.55 42.95 41.76 44.12 46.02 48.22 45.27 47.13 46.02 47.13 
Run 22 36.75 38.46 42.55 47.13 42.95 53.73 44.89 44.50 47.86 48.58 39.30 42.55 41.76 45.64 42.55 52.40 46.02 46.02 
Run 23 43.73 42.55 38.04 50.35 48.94 45.64 48.58 51.72 39.72 47.50 48.22 45.64 47.50 47.50 45.64 46.02 48.22 41.35 
Run 24 38.46 38.88 42.95 43.73 46.76 46.39 46.02 42.95 45.27 49.30 48.22 50.35 44.50 39.72 45.27 48.94 45.27 47.50 
Run 25 33.64 44.12 42.55 40.95 50.35 48.94 43.34 48.22 47.50 51.72 43.34 47.13 51.04 49.65 42.55 41.76 48.22 43.73 
Run 26 41.35 42.95 34.99 44.50 42.95 47.86 48.22 44.50 47.13 44.89 46.39 47.50 45.27 49.65 46.02 44.89 46.76 50.70 
Run 27 38.04 41.76 43.73 46.76 48.94 51.38 42.55 43.73 46.02 46.02 47.50 41.35 44.12 44.12 46.39 48.94 50.00 45.64 
Run 28 41.76 35.43 39.72 42.16 45.27 39.72 50.00 41.35 46.76 46.76 47.50 49.30 46.76 43.73 44.12 46.76 45.27 50.35 
Run 29 39.30 40.54 40.13 47.13 45.27 49.65 47.86 52.40 49.65 47.13 44.89 41.76 43.34 46.02 50.35 47.50 47.50 47.86 
Run 30 39.30 30.37 43.73 47.13 44.89 47.86 44.12 48.58 47.13 42.95 47.86 45.27 47.86 44.50 44.89 46.76 44.12 48.94 
Mean 39.91 40.26 42.07 44.75 46.47 46.23 46.03 45.83 46.08 46.49 45.12 45.55 46.11 47.01 46.31 46.68 46.04 46.24 
Std dev 0.0241 0.0322 0.0305 0.0350 0.0272 0.0351 0.0274 0.0295 0.0271 0.0235 0.0252 0.0250 0.0271 0.0278 0.0261 0.0211 0.0261 0.0251 
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TABLE B-27: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.72 44.50 41.76 39.72 43.73 49.65 44.12 45.27 43.34 42.55 39.72 44.50 41.76 44.89 42.55 42.95 42.95 41.35 
Run 2 38.04 40.54 46.76 40.13 42.95 47.50 40.95 47.86 44.12 39.30 47.86 45.27 42.55 42.95 44.89 43.73 38.04 43.73 
Run 3 36.75 48.94 41.35 36.75 43.73 45.27 43.73 39.30 44.89 48.94 42.16 45.27 47.50 43.34 44.12 46.39 37.61 36.31 
Run 4 42.16 38.88 39.72 43.34 41.35 45.27 47.50 43.73 42.95 44.50 44.12 39.30 42.16 43.34 46.39 40.95 43.34 43.73 
Run 5 38.04 35.87 36.31 44.12 44.89 44.12 41.76 51.72 44.89 47.13 42.16 44.89 42.16 46.76 44.50 45.64 41.35 46.76 
Run 6 38.88 44.89 40.54 41.76 46.02 37.61 44.50 40.13 44.89 47.50 47.86 39.72 42.55 42.95 44.50 47.13 42.16 46.39 
Run 7 44.50 40.13 43.73 47.50 41.35 39.72 44.89 44.50 41.35 44.50 43.34 42.55 44.50 47.86 44.12 39.30 39.30 45.27 
Run 8 42.95 39.30 41.76 45.64 37.18 42.95 40.95 43.34 47.86 40.95 48.58 46.39 42.95 41.76 41.76 44.89 43.73 43.73 
Run 9 44.12 38.04 44.50 44.12 44.89 45.64 48.58 44.89 40.13 49.65 46.39 42.16 39.30 46.39 38.46 41.35 38.46 43.34 
Run 10 42.16 45.64 45.64 43.34 42.55 48.22 50.70 37.18 48.22 51.04 41.35 40.95 44.50 46.76 46.39 43.34 47.13 42.95 
Run 11 39.72 37.61 45.27 42.16 50.70 40.95 47.50 43.34 50.70 49.65 49.65 46.39 43.73 42.95 45.27 45.27 46.76 43.73 
Run 12 40.13 42.95 43.73 43.34 42.16 37.18 43.34 44.12 47.86 46.39 51.72 43.34 42.55 41.35 43.73 38.88 42.95 46.02 
Run 13 39.30 39.30 45.64 40.95 49.65 48.22 45.64 43.73 46.39 44.89 46.39 44.89 42.95 45.64 42.55 40.95 40.54 39.72 
Run 14 38.04 42.16 32.72 38.46 44.50 44.12 44.50 46.39 46.02 45.27 48.94 43.34 42.16 46.39 46.02 37.61 45.27 41.76 
Run 15 38.88 35.43 41.35 48.58 41.35 42.95 45.27 43.34 45.64 40.95 44.89 44.12 42.95 44.50 44.12 47.13 43.34 45.27 
Run 16 41.35 40.95 45.27 32.72 41.76 44.12 42.95 48.94 47.13 45.64 46.02 48.22 44.89 43.73 39.30 44.12 46.02 47.13 
Run 17 39.72 39.30 37.18 38.46 42.55 44.12 42.16 47.86 42.95 40.54 42.95 42.95 42.55 40.95 46.76 40.54 45.64 38.46 
Run 18 37.61 40.95 39.30 38.88 46.39 41.76 48.94 46.76 44.12 47.50 42.55 48.94 42.16 47.50 39.72 41.35 44.50 42.95 
Run 19 44.89 40.95 43.34 42.16 42.55 40.95 45.27 43.73 42.95 44.89 46.76 45.27 48.58 46.39 35.43 43.34 42.95 46.02 
Run 20 40.13 42.95 48.94 45.64 40.95 42.16 41.35 45.64 44.89 44.12 43.73 44.50 40.95 41.76 46.76 48.94 47.50 43.34 
Run 21 38.46 41.76 44.12 42.95 42.55 49.30 49.30 48.22 46.76 46.02 44.50 40.13 44.89 43.34 42.16 45.64 47.13 40.54 
Run 22 42.55 41.35 35.87 46.39 43.34 45.27 45.64 43.73 44.50 45.64 42.55 46.76 48.94 49.30 41.35 39.72 39.72 42.16 
Run 23 42.95 40.54 46.76 44.12 38.04 46.76 44.12 44.89 41.76 43.34 48.22 47.86 44.89 46.39 41.76 46.02 43.73 40.54 
Run 24 42.16 43.73 41.35 45.27 45.27 44.12 42.95 47.50 47.50 39.30 48.58 45.27 44.89 44.50 46.02 48.58 42.95 40.13 
Run 25 35.87 41.76 40.54 40.54 40.54 49.65 47.86 51.38 45.27 47.50 47.13 38.46 43.34 42.55 47.86 46.76 45.27 44.50 
Run 26 39.72 45.64 40.95 40.95 45.64 42.95 42.55 42.55 42.95 42.95 44.89 41.76 46.02 42.95 41.76 46.76 45.27 43.34 
Run 27 38.04 40.54 41.76 39.30 46.02 46.76 45.64 41.35 47.86 45.64 48.58 44.50 46.39 44.89 42.16 47.50 42.55 49.30 
Run 28 42.95 43.73 44.50 44.12 54.38 46.02 50.00 39.72 42.95 47.13 42.55 46.02 44.50 40.13 40.95 39.30 44.50 45.64 
Run 29 36.31 36.75 45.64 44.89 41.35 44.12 41.35 42.95 42.16 43.73 43.73 47.13 41.35 45.27 41.76 40.95 42.55 44.89 
Run 30 40.13 45.64 41.76 42.16 43.73 44.12 47.86 48.94 41.35 42.95 47.13 35.43 43.34 34.09 49.30 39.72 44.12 48.22 
Mean 40.21 41.36 42.27 42.28 43.74 44.38 45.06 44.77 44.81 45.00 45.50 43.88 43.73 44.05 43.41 43.49 43.24 43.57 
Std dev 0.0242 0.0309 0.0354 0.0331 0.0343 0.0315 0.0279 0.0336 0.0244 0.0297 0.0285 0.0305 0.0215 0.0287 0.0296 0.0319 0.0267 0.0286 
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TABLE B-28: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE TAL_BY_9 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.30 39.30 39.30 41.76 44.89 48.22 42.95 40.95 46.02 42.55 44.50 42.55 44.50 37.61 40.54 50.00 38.46 38.46 
Run 2 31.79 41.76 34.54 41.76 48.58 41.35 40.95 43.73 47.13 42.16 36.75 47.13 46.76 42.16 40.13 39.72 41.35 38.88 
Run 3 38.46 45.64 43.34 40.54 45.27 46.39 46.02 42.55 44.12 46.02 42.16 46.39 40.95 40.95 46.39 41.35 40.13 38.46 
Run 4 41.35 45.27 38.88 38.88 38.46 45.64 48.58 38.04 44.12 48.22 47.13 43.73 40.54 38.88 46.76 42.55 45.27 44.89 
Run 5 37.61 46.39 41.76 42.16 41.35 45.64 50.70 43.34 42.55 39.72 42.55 45.64 36.31 45.27 45.64 39.30 44.89 38.04 
Run 6 39.30 47.86 38.88 42.55 46.02 43.34 42.16 40.54 42.55 46.02 43.73 45.64 42.16 36.75 37.61 46.39 42.95 43.34 
Run 7 40.54 42.55 41.76 43.73 42.95 52.06 46.39 40.95 45.27 43.34 42.16 48.22 43.73 44.50 37.18 45.64 47.13 44.89 
Run 8 35.87 41.35 38.88 42.95 40.13 40.95 44.89 43.73 51.04 40.13 39.72 42.55 40.54 42.95 43.73 40.54 44.12 45.27 
Run 9 38.88 34.09 46.02 43.73 40.54 43.34 47.13 43.73 46.39 45.64 46.02 44.50 41.76 42.16 40.13 42.95 38.88 41.35 
Run 10 40.13 41.35 45.27 39.72 42.16 44.89 46.39 44.50 47.13 46.02 41.35 46.76 38.46 36.31 38.88 42.95 41.35 42.95 
Run 11 32.72 38.46 44.50 43.34 39.30 47.86 42.95 42.55 39.72 44.89 42.16 43.34 40.54 45.64 40.54 41.35 44.89 43.73 
Run 12 40.95 43.34 44.12 42.16 45.27 39.30 44.50 47.13 48.94 46.39 45.27 37.18 38.46 42.95 41.35 44.89 41.35 50.00 
Run 13 43.34 43.73 37.18 36.75 42.95 43.34 40.13 40.54 44.50 42.16 42.95 47.50 38.04 49.30 42.16 39.30 38.04 38.46 
Run 14 43.73 38.88 46.02 39.30 42.55 46.02 44.50 41.76 38.88 44.50 37.18 52.73 46.02 47.50 39.72 47.86 38.88 39.30 
Run 15 38.46 46.39 38.46 40.13 44.12 46.39 42.55 45.27 46.76 44.12 42.16 49.30 40.54 42.95 50.35 44.89 40.95 35.43 
Run 16 38.04 40.13 37.18 47.50 40.13 42.55 40.95 44.12 44.89 42.55 45.64 40.95 41.35 41.35 40.13 42.55 40.95 41.35 
Run 17 44.12 42.16 41.35 39.72 42.16 40.95 46.39 42.55 39.30 43.34 38.04 45.64 44.89 41.35 45.27 42.55 46.02 43.34 
Run 18 42.95 44.12 39.30 44.50 43.34 45.27 43.34 45.64 44.89 46.39 45.27 40.54 46.39 41.35 44.12 45.64 42.55 44.89 
Run 19 38.46 44.89 37.18 39.30 40.13 45.27 44.12 46.39 44.89 46.76 46.76 49.30 43.73 38.46 47.50 42.16 45.64 45.64 
Run 20 41.35 40.13 38.88 41.35 42.16 47.13 48.58 43.34 47.13 42.95 43.73 43.34 42.16 46.76 44.50 44.12 37.61 43.73 
Run 21 40.95 41.35 42.95 40.54 44.89 43.73 49.30 42.55 45.27 42.16 37.61 40.13 42.55 41.76 42.16 40.54 39.72 37.61 
Run 22 43.73 41.76 39.30 38.46 44.50 46.02 43.73 42.95 42.95 43.34 49.65 44.50 43.34 40.54 42.16 44.89 42.55 46.02 
Run 23 35.43 37.61 40.95 42.16 40.54 42.55 47.50 44.50 44.12 44.89 45.27 40.54 39.72 44.89 38.88 42.55 47.13 38.88 
Run 24 40.95 43.73 40.95 40.54 46.02 47.13 34.99 40.54 41.76 45.64 47.13 39.72 44.89 42.55 42.16 41.76 43.34 41.76 
Run 25 37.61 45.27 40.13 44.50 44.50 44.50 43.73 44.89 40.95 42.95 44.89 41.35 36.75 44.12 43.73 46.39 34.99 42.16 
Run 26 42.95 40.95 45.64 43.34 43.34 42.55 43.34 45.64 39.30 44.50 42.95 38.88 45.64 41.76 42.95 36.31 44.12 44.50 
Run 27 32.72 37.61 42.95 39.30 35.87 40.95 42.55 43.34 41.76 41.35 44.50 43.34 47.13 41.76 46.02 40.95 40.95 37.61 
Run 28 43.34 40.54 41.35 32.72 41.76 42.16 45.27 42.55 44.50 38.04 36.31 40.13 51.04 42.55 42.95 40.54 45.64 41.35 
Run 29 39.72 39.30 42.55 45.64 44.89 43.34 46.76 42.95 47.13 42.55 44.89 42.16 38.88 44.50 43.73 46.02 39.72 38.88 
Run 30 43.34 42.95 38.88 45.64 42.16 42.16 46.39 44.89 43.73 45.64 40.95 48.22 40.95 44.12 42.16 47.13 42.16 46.02 
Mean 39.60 41.96 40.95 41.49 42.70 44.37 44.59 43.21 44.26 43.83 42.98 44.06 42.29 42.46 42.65 43.13 42.06 41.91 
Std dev 0.0333 0.0305 0.0290 0.0289 0.0260 0.0267 0.0311 0.0196 0.0288 0.0227 0.0331 0.0357 0.0334 0.0296 0.0302 0.0295 0.0300 0.0334 
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TABLE B-29: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH A 

PERIPHERAL PIXEL THRESHOLD OF 25, A FOVEAL PIXEL THRESHOLD OF 5, BLOCK THRESHOLDS OF 0, AND THE TAL_BY_10 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 33.18 39.30 40.54 43.34 41.76 38.04 41.76 45.27 43.34 44.12 44.12 46.02 40.54 48.58 37.61 38.04 42.16 44.89 
Run 2 41.35 42.55 42.16 46.76 39.30 43.34 40.95 41.76 43.34 34.99 38.46 40.54 44.89 34.54 46.76 38.46 41.76 40.95 
Run 3 39.72 44.50 38.46 40.54 44.89 41.76 44.50 36.75 42.16 38.46 47.13 38.04 43.34 38.04 44.50 41.76 46.02 40.13 
Run 4 38.04 45.27 37.61 41.35 47.50 51.04 41.35 48.58 38.88 42.95 40.54 36.75 38.88 43.34 39.30 42.55 46.39 42.16 
Run 5 41.35 40.95 42.55 43.73 41.76 37.18 47.86 48.94 39.72 44.89 42.55 38.46 46.39 46.39 40.54 42.16 44.89 45.64 
Run 6 48.94 39.30 43.73 39.72 44.50 38.88 38.88 42.16 41.76 38.04 41.35 38.04 46.02 44.12 42.16 43.34 38.46 45.64 
Run 7 42.16 38.46 37.61 41.76 44.12 40.13 41.35 42.16 48.22 42.95 42.16 42.55 41.76 40.95 43.73 41.35 40.54 43.34 
Run 8 41.35 38.46 47.13 38.88 39.72 44.12 46.02 42.55 44.12 44.12 40.95 41.76 42.55 50.00 42.16 46.76 44.50 40.54 
Run 9 39.30 43.34 38.04 42.16 45.64 44.50 39.30 44.89 37.61 38.46 44.89 43.34 40.13 41.35 39.72 46.02 38.88 48.22 
Run 10 40.13 45.64 41.35 43.34 37.61 43.73 44.50 38.46 44.50 38.04 38.46 42.55 42.55 41.76 48.22 43.34 40.95 42.55 
Run 11 35.87 44.89 40.95 40.95 45.64 39.72 46.02 39.72 43.73 42.16 47.50 38.88 35.43 39.30 47.50 43.34 42.95 42.16 
Run 12 41.35 40.95 38.88 39.30 43.34 40.13 46.02 44.89 39.72 46.76 44.50 42.95 41.35 47.13 43.73 43.73 46.02 40.54 
Run 13 46.02 44.50 40.54 44.89 43.73 43.73 43.73 42.55 44.12 41.76 43.73 42.95 41.35 37.18 43.73 39.30 43.34 40.54 
Run 14 36.75 40.13 42.95 45.64 44.89 44.50 34.54 37.18 39.30 46.02 44.12 41.35 40.13 40.95 43.34 44.50 45.64 44.89 
Run 15 38.46 43.34 39.72 43.73 42.16 38.04 39.72 44.89 40.54 45.64 39.72 44.50 39.72 37.61 42.95 42.55 42.16 44.89 
Run 16 40.95 42.16 50.35 41.76 38.88 35.87 45.27 40.95 46.02 37.18 46.02 44.89 40.95 46.76 44.89 43.34 46.39 39.72 
Run 17 37.61 43.73 34.99 42.55 40.13 43.73 38.88 39.30 40.13 47.13 46.02 42.95 44.89 42.16 44.89 42.16 41.35 37.18 
Run 18 34.54 38.04 38.04 44.12 42.95 46.76 40.54 44.89 43.73 39.72 44.12 39.72 43.73 41.76 46.02 36.75 43.73 38.88 
Run 19 37.18 46.76 47.86 42.95 47.50 39.30 45.64 42.95 39.72 44.89 39.72 38.46 47.13 40.13 48.22 44.89 40.95 42.95 
Run 20 38.46 44.50 41.35 46.76 43.73 36.31 45.64 43.73 40.54 38.46 40.13 44.50 39.30 51.04 44.12 43.73 36.75 38.04 
Run 21 41.35 45.64 40.95 40.95 42.95 39.72 44.50 38.88 42.16 44.89 36.31 43.34 50.00 37.18 39.72 41.35 43.34 44.12 
Run 22 38.04 35.43 41.76 39.30 46.76 47.50 44.12 41.35 40.95 52.40 46.39 47.13 42.16 44.50 39.72 41.76 45.64 39.72 
Run 23 47.86 39.30 37.18 44.12 41.76 43.34 40.13 41.35 44.50 40.54 47.50 41.76 38.88 47.86 42.95 42.55 36.75 44.89 
Run 24 37.61 46.39 38.04 41.35 40.13 43.73 41.35 44.50 41.76 43.34 37.61 44.89 48.22 43.34 43.73 45.64 37.61 38.46 
Run 25 40.54 43.73 44.12 45.27 38.04 42.55 39.30 41.35 42.16 34.54 47.86 45.27 36.31 38.46 43.73 46.02 45.27 48.22 
Run 26 42.55 40.95 46.02 39.30 40.95 42.95 43.73 42.55 38.88 38.46 46.76 42.16 42.95 43.34 38.88 43.73 47.86 41.76 
Run 27 42.95 51.72 41.76 40.54 43.73 39.72 45.64 39.72 44.89 43.73 41.76 39.72 42.16 38.04 48.94 47.13 40.54 42.95 
Run 28 40.54 32.26 45.27 42.16 48.58 42.55 44.50 40.95 41.76 38.46 46.39 38.04 43.34 43.73 42.55 46.76 42.95 44.12 
Run 29 40.95 45.64 38.04 42.95 41.76 42.95 44.12 44.89 41.35 42.95 42.55 39.72 39.72 42.95 43.34 46.39 38.88 41.76 
Run 30 39.72 44.50 41.76 39.72 45.64 43.73 44.50 46.02 42.16 44.50 40.95 42.55 33.64 46.76 42.16 51.38 42.55 47.13 
Mean 40.16 42.41 41.32 42.33 43.00 41.99 42.81 42.47 42.06 42.02 43.01 41.79 41.95 42.64 43.33 43.36 42.51 42.57 
Std dev 0.0339 0.0380 0.0347 0.0219 0.0284 0.0335 0.0296 0.0294 0.0235 0.0393 0.0322 0.0268 0.0357 0.0409 0.0285 0.0297 0.0301 0.0288 
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TABLE B-30: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.0. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 37.61 38.04 46.39 40.95 46.39 42.95 40.13 37.61 38.88 37.18 43.73 39.72 42.55 44.12 44.50 44.50 50.00 38.88 
Run 2 42.16 40.54 39.72 40.95 42.95 38.04 35.43 39.30 46.02 40.54 39.30 40.95 40.95 44.12 44.50 40.13 42.55 40.95 
Run 3 38.04 43.73 44.89 44.89 43.34 40.13 42.16 43.34 38.04 40.13 39.72 41.76 35.43 36.75 45.64 38.04 38.46 47.13 
Run 4 40.54 42.95 44.12 38.04 40.95 40.95 42.16 33.18 38.46 44.12 39.30 40.13 44.50 47.50 44.50 42.95 38.46 44.89 
Run 5 40.54 40.95 44.89 38.46 37.61 43.34 42.95 40.54 41.76 39.30 40.95 40.54 38.04 38.04 41.35 39.72 36.75 43.34 
Run 6 43.73 43.73 40.54 33.18 33.64 40.54 41.76 40.13 34.09 39.30 39.72 40.54 42.55 36.75 40.95 38.04 40.95 41.35 
Run 7 40.95 43.34 38.46 44.12 39.72 40.13 38.46 40.13 46.02 38.46 37.61 41.76 43.34 43.34 41.76 45.27 41.76 40.95 
Run 8 36.31 37.18 36.75 40.54 40.54 44.50 40.95 31.79 42.16 35.87 37.61 42.55 37.18 36.75 44.12 42.95 45.27 41.35 
Run 9 38.46 39.72 39.30 38.88 41.35 40.13 38.46 38.04 40.13 39.30 30.37 46.39 42.55 41.76 38.04 43.34 42.95 42.16 
Run 10 33.64 41.76 39.30 39.30 41.35 32.26 39.72 38.46 40.95 35.43 34.99 46.39 45.64 42.95 43.73 39.72 40.95 42.55 
Run 11 43.73 42.55 37.61 41.35 42.95 44.50 41.35 40.95 41.76 42.95 38.46 44.50 38.04 42.55 41.35 35.43 45.27 42.95 
Run 12 37.18 44.12 41.76 42.16 48.58 38.46 41.35 37.61 43.73 40.13 44.89 43.73 42.55 41.76 37.18 40.95 38.46 37.18 
Run 13 40.95 40.54 40.13 34.54 44.89 40.13 45.27 46.76 37.61 40.95 40.95 39.30 38.88 42.16 45.64 35.43 45.27 42.16 
Run 14 39.72 40.54 35.43 42.16 44.89 40.95 42.16 39.30 38.46 42.16 33.64 42.55 35.87 37.18 39.72 38.04 40.54 39.30 
Run 15 38.46 40.54 39.72 39.30 42.55 40.95 42.16 39.30 43.73 37.18 36.75 36.75 38.88 32.72 35.43 41.35 35.43 44.12 
Run 16 33.18 44.50 38.88 37.61 40.54 44.89 38.46 42.55 39.30 40.54 38.46 38.04 45.27 36.75 39.30 41.76 45.64 39.72 
Run 17 41.35 37.61 37.18 45.27 39.72 35.43 36.75 37.61 41.76 37.61 37.18 40.54 39.30 40.54 42.16 41.35 34.99 43.73 
Run 18 43.73 40.13 38.46 38.88 39.72 41.76 41.76 36.75 37.61 37.61 35.87 38.88 35.43 42.95 41.76 43.73 37.18 37.61 
Run 19 36.31 38.88 45.27 45.64 33.64 38.88 41.35 36.75 38.46 34.99 39.30 40.13 40.54 39.72 39.30 40.54 37.61 46.02 
Run 20 41.35 35.43 38.88 39.30 36.31 41.35 35.43 32.72 41.76 42.95 36.75 38.88 35.43 44.12 37.61 38.88 46.39 39.72 
Run 21 38.46 44.50 39.30 42.55 40.54 42.16 38.04 38.46 42.16 43.73 40.54 42.16 44.12 36.31 35.43 44.50 42.95 46.39 
Run 22 36.75 41.35 38.04 42.55 38.46 39.30 42.95 40.95 36.75 37.61 38.46 46.39 42.16 40.13 42.55 44.89 44.12 42.55 
Run 23 42.55 39.72 37.61 37.18 37.61 46.76 36.75 46.02 41.76 38.04 35.43 45.64 43.34 44.50 44.12 41.35 39.30 39.72 
Run 24 36.31 44.12 42.55 42.55 40.54 40.13 42.16 43.34 38.46 38.88 39.30 42.16 38.46 42.16 42.55 36.75 43.34 41.76 
Run 25 42.55 41.76 40.95 36.31 41.35 40.13 37.18 41.76 40.95 38.46 40.54 40.13 41.76 40.13 42.16 39.30 42.16 46.76 
Run 26 39.72 39.30 40.13 40.13 39.30 41.35 42.16 37.61 41.35 39.30 38.04 38.88 46.76 39.30 40.13 46.02 46.39 40.95 
Run 27 40.54 42.95 43.34 36.75 40.95 44.50 36.31 42.55 39.30 37.18 40.13 39.72 40.95 42.55 45.64 37.61 42.55 38.88 
Run 28 39.72 43.73 34.09 46.02 41.35 38.04 41.35 38.04 40.95 41.76 37.61 38.46 40.54 41.35 42.55 42.95 37.61 44.50 
Run 29 40.95 36.31 36.31 38.46 46.76 41.35 36.75 44.50 40.54 40.54 37.18 43.34 42.55 40.95 40.13 36.75 40.13 44.50 
Run 30 38.46 39.30 42.16 43.34 37.18 41.35 46.02 39.72 38.88 37.61 42.55 44.12 38.04 36.75 39.72 41.35 44.12 37.18 
Mean 39.47 40.99 40.07 40.38 40.86 40.84 40.26 39.53 40.39 39.33 38.51 41.50 40.72 40.55 41.45 40.79 41.58 41.97 
Std dev 0.0273 0.0249 0.0301 0.0318 0.0341 0.0283 0.0275 0.0347 0.0257 0.0235 0.0285 0.0259 0.0314 0.0321 0.0283 0.0291 0.0361 0.0276 
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TABLE B-31: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.1. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 36.31 38.88 40.95 40.54 41.76 35.87 38.88 37.61 40.13 35.43 45.64 40.13 41.76 40.95 39.72 44.50 42.55 43.34 
Run 2 34.54 42.16 39.72 35.87 38.04 37.18 46.76 41.76 40.54 37.61 37.61 41.35 44.89 36.31 38.04 40.95 37.18 36.75 
Run 3 38.88 33.64 38.04 39.72 38.04 40.95 36.31 37.61 41.35 42.16 40.54 41.35 35.87 41.76 40.54 40.13 42.55 42.95 
Run 4 34.99 38.46 39.30 39.30 38.88 37.61 40.95 37.61 41.76 42.55 44.12 39.72 40.95 44.50 40.13 38.04 38.88 39.72 
Run 5 38.46 33.18 38.04 40.95 35.43 41.35 40.13 38.04 41.35 44.89 41.76 42.55 41.76 38.46 39.72 37.18 38.46 40.95 
Run 6 35.43 43.34 41.76 38.46 37.61 31.32 40.54 38.88 37.18 42.55 43.73 42.55 39.30 42.55 40.13 42.55 35.43 42.95 
Run 7 39.30 35.87 40.13 34.54 37.61 41.76 38.04 38.88 40.13 42.95 41.35 44.89 43.34 44.50 33.18 41.35 39.72 40.95 
Run 8 38.46 34.09 37.61 46.02 39.72 38.04 38.04 40.95 38.04 44.89 34.09 50.35 43.34 34.54 39.72 39.72 35.43 40.13 
Run 9 32.72 35.43 33.64 38.04 35.43 42.16 40.13 44.89 38.04 46.76 40.95 44.12 39.72 42.16 35.87 43.34 42.16 44.12 
Run 10 33.64 39.30 34.09 37.61 36.75 42.55 39.72 40.95 42.16 42.55 35.43 39.30 38.46 35.87 42.16 43.34 40.95 44.50 
Run 11 37.61 41.35 34.99 40.54 41.35 38.46 39.72 43.34 40.13 46.02 34.09 42.95 47.50 42.95 43.34 42.16 35.87 43.34 
Run 12 39.30 34.09 34.99 38.46 42.95 43.34 36.31 37.18 40.54 40.54 38.88 39.72 40.13 39.30 35.87 42.55 44.50 40.13 
Run 13 41.35 29.41 42.16 30.85 31.79 38.04 38.04 40.13 39.30 35.87 40.13 40.13 42.55 35.87 37.18 42.55 42.16 45.27 
Run 14 38.46 42.55 36.75 37.61 38.88 42.55 37.18 42.16 45.27 38.88 39.30 33.18 38.46 40.95 41.35 46.76 36.31 40.95 
Run 15 36.31 42.95 36.75 34.99 40.54 35.87 37.18 40.95 42.16 40.13 34.09 42.55 39.72 42.95 41.76 38.46 40.95 38.04 
Run 16 40.54 40.95 39.30 40.13 40.95 41.76 36.31 41.76 40.54 46.02 37.18 42.95 46.02 40.95 45.27 40.54 44.12 43.73 
Run 17 34.99 34.09 37.61 41.35 41.76 41.35 39.30 44.50 43.73 36.31 38.46 38.04 34.09 34.99 38.88 44.50 44.12 42.16 
Run 18 32.26 42.55 36.31 38.88 35.87 34.54 41.35 35.87 41.76 39.72 43.34 44.12 42.55 40.54 38.04 40.13 38.88 43.73 
Run 19 33.64 36.31 43.34 40.13 46.02 38.46 42.95 40.13 42.95 37.18 35.87 40.54 42.95 40.13 43.34 41.76 37.61 40.54 
Run 20 38.88 36.31 40.95 39.30 38.04 39.72 35.87 34.09 38.46 44.89 40.13 40.95 38.04 40.95 41.35 40.54 41.35 38.04 
Run 21 31.32 38.46 34.54 42.16 38.46 38.04 39.30 48.22 39.72 40.13 45.64 41.76 44.50 42.16 41.35 45.64 39.30 38.88 
Run 22 39.30 42.55 39.30 38.88 34.99 38.46 38.04 47.50 38.88 35.43 40.54 41.76 42.55 44.89 34.54 40.54 40.54 41.76 
Run 23 40.13 38.46 33.18 37.18 40.13 35.87 36.31 37.61 37.18 37.61 40.54 39.72 38.46 40.54 38.46 39.72 45.64 38.46 
Run 24 33.64 39.72 34.09 36.31 39.72 38.88 40.13 38.88 42.16 41.35 41.35 41.35 38.88 41.76 37.61 38.88 44.89 44.89 
Run 25 43.73 31.79 38.04 37.18 34.09 40.54 38.46 40.54 41.76 38.88 36.75 34.99 38.46 40.54 40.95 40.95 42.95 40.13 
Run 26 38.46 35.87 38.46 34.54 37.61 39.30 38.46 42.95 43.34 42.16 34.09 38.46 33.64 44.89 39.30 42.16 37.18 38.04 
Run 27 37.61 33.64 35.43 40.13 35.87 37.61 36.75 45.64 40.95 39.30 38.04 35.43 38.88 36.31 38.46 41.76 34.09 39.30 
Run 28 33.64 39.30 38.46 40.54 38.46 38.88 42.55 31.79 37.61 34.99 39.72 40.54 35.87 39.30 40.54 38.04 35.87 36.75 
Run 29 32.26 40.95 44.12 32.72 31.32 43.34 36.75 41.35 40.13 43.73 42.55 37.61 41.76 43.73 38.04 34.54 41.76 42.55 
Run 30 38.88 32.26 34.54 33.18 35.43 39.30 41.76 34.99 40.13 39.30 43.34 44.12 42.16 40.13 34.99 40.13 34.99 42.55 
Mean 36.84 37.60 37.89 38.20 38.12 39.10 39.07 40.23 40.58 40.69 39.64 40.91 40.55 40.51 39.33 41.11 39.88 41.19 
Std dev 0.0305 0.0382 0.0292 0.0309 0.0313 0.0274 0.0240 0.0373 0.0195 0.0341 0.0336 0.0323 0.0326 0.0293 0.0270 0.0253 0.0329 0.0241 
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TABLE B-32: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.2. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 36.75 38.04 39.72 43.34 36.31 37.18 42.16 44.50 38.46 35.43 37.61 42.16 40.95 41.35 34.99 39.72 34.54 43.34 
Run 2 39.30 45.27 41.76 41.76 40.13 44.89 42.95 44.50 42.16 45.64 40.54 41.76 44.12 45.27 46.39 43.34 43.34 41.35 
Run 3 38.88 46.76 42.55 41.76 46.02 41.76 34.09 42.16 44.12 39.72 41.76 39.72 42.55 35.87 42.95 42.55 40.95 42.95 
Run 4 40.54 43.73 39.72 40.95 40.13 42.55 40.54 40.95 41.35 38.88 40.54 43.34 48.94 44.12 37.18 39.30 46.02 38.88 
Run 5 37.18 39.72 39.30 46.76 38.46 41.35 48.94 38.04 44.12 38.88 41.76 45.27 44.12 39.72 44.12 40.54 35.43 41.76 
Run 6 39.30 40.13 40.54 43.34 33.64 46.02 42.16 37.18 44.89 36.31 39.72 44.50 40.13 42.55 42.16 40.95 40.95 41.76 
Run 7 49.30 40.54 41.35 42.95 42.95 38.88 47.50 42.55 45.27 36.31 44.12 45.64 42.16 37.61 42.95 38.46 42.55 40.54 
Run 8 41.35 40.54 44.89 41.76 41.76 38.88 40.13 42.55 39.30 42.16 44.50 42.95 49.65 46.39 39.72 41.76 40.13 37.18 
Run 9 42.55 35.43 39.30 39.72 38.04 40.54 41.35 39.30 39.72 44.89 41.76 44.50 47.50 41.76 40.95 35.43 42.16 36.75 
Run 10 42.16 42.16 40.54 42.55 38.88 42.55 48.58 40.95 41.35 43.34 37.61 42.95 41.76 43.73 44.89 39.72 42.95 34.54 
Run 11 35.87 34.99 43.34 38.88 45.27 42.55 42.95 41.35 43.73 38.88 38.46 44.89 40.13 43.73 46.02 37.18 36.75 35.87 
Run 12 41.76 40.13 39.30 40.54 37.61 37.61 36.31 39.30 40.54 39.30 44.89 46.39 46.02 36.75 41.76 44.12 40.54 38.04 
Run 13 44.50 41.35 31.32 42.95 43.34 38.88 38.88 37.61 35.43 36.31 38.88 36.75 42.16 41.76 40.54 45.64 40.95 46.76 
Run 14 40.54 40.13 42.95 38.88 42.95 39.72 47.13 37.61 36.31 36.31 40.13 44.12 40.95 37.61 40.54 42.95 42.95 42.55 
Run 15 44.50 42.95 38.04 46.39 39.72 39.30 39.30 42.95 42.95 42.55 34.99 41.76 46.76 38.04 45.27 44.50 41.76 42.16 
Run 16 35.43 41.35 39.30 37.18 39.30 41.35 39.30 43.34 38.88 39.72 34.54 46.02 42.16 42.16 44.50 40.54 45.64 39.72 
Run 17 45.27 39.30 42.16 34.99 37.61 38.04 43.73 44.89 37.18 47.13 48.22 40.95 36.31 39.30 41.35 40.95 37.18 36.31 
Run 18 34.99 39.72 47.13 43.73 38.46 42.55 38.46 38.88 45.27 40.95 38.04 45.27 38.88 38.88 40.13 41.35 40.54 39.30 
Run 19 39.30 41.35 41.76 39.72 46.39 38.46 39.72 40.54 35.43 45.64 37.61 37.61 43.73 34.99 36.75 34.54 46.76 40.13 
Run 20 38.04 42.55 38.88 41.76 37.61 37.61 42.95 34.54 43.73 41.76 44.50 40.13 38.88 38.88 43.34 42.55 44.50 40.13 
Run 21 45.27 40.54 44.89 44.50 42.16 40.54 50.35 40.95 42.95 40.13 42.55 41.76 38.88 37.61 46.39 40.54 38.04 35.43 
Run 22 40.95 43.34 39.30 42.16 35.87 42.16 39.30 38.88 41.76 40.95 38.04 48.94 37.18 36.75 38.04 46.39 45.64 39.30 
Run 23 38.04 41.35 40.95 44.50 44.89 42.16 46.76 41.76 38.04 42.55 40.95 38.88 42.16 37.18 40.95 42.16 41.76 42.95 
Run 24 38.46 42.55 37.61 43.34 38.04 38.04 42.16 36.75 40.95 42.95 38.46 36.31 41.35 44.12 44.50 40.13 42.16 36.75 
Run 25 39.72 40.13 42.55 40.95 43.73 43.73 38.88 46.02 42.16 43.73 39.30 43.34 43.73 45.27 42.55 42.95 44.89 38.04 
Run 26 36.31 41.35 41.76 47.50 43.73 48.58 41.76 42.16 46.76 44.12 36.75 41.76 40.13 44.12 44.89 42.16 42.95 38.46 
Run 27 42.16 40.13 40.95 40.95 47.50 42.95 42.95 45.64 40.54 39.72 40.54 35.87 36.75 38.04 40.13 36.31 40.54 37.61 
Run 28 32.26 44.12 38.88 39.72 44.89 38.46 44.50 40.54 37.18 42.55 39.30 48.22 42.55 41.35 41.35 45.27 43.34 39.72 
Run 29 34.54 37.61 40.95 38.88 38.88 41.35 42.55 40.13 35.87 42.16 38.04 40.54 37.18 41.76 42.55 38.46 47.50 37.18 
Run 30 34.99 39.72 36.31 45.64 41.76 40.95 46.39 41.35 37.61 39.30 40.13 45.64 39.30 43.73 42.16 40.95 42.55 39.72 
Mean 39.67 40.90 40.60 41.93 40.87 40.99 42.42 40.93 40.80 40.94 40.14 42.60 41.90 40.68 42.00 41.05 41.86 39.51 
Std dev 0.0376 0.0248 0.0285 0.0278 0.0345 0.0264 0.0378 0.0274 0.0319 0.0304 0.0298 0.0331 0.0340 0.0315 0.0282 0.0284 0.0314 0.0273 
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TABLE B-33: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.3. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.30 45.64 41.35 44.50 44.89 44.12 37.61 47.13 44.89 43.73 40.54 38.88 48.94 45.64 44.50 39.30 40.95 45.27 
Run 2 48.58 42.16 43.34 44.50 44.50 38.46 42.16 40.13 46.02 40.95 39.72 43.73 44.12 47.13 44.50 44.89 38.88 44.12 
Run 3 42.16 44.12 38.88 41.76 40.13 42.95 44.12 41.76 45.27 35.43 42.16 44.89 45.64 42.16 43.34 40.13 46.76 47.50 
Run 4 40.54 44.12 42.95 42.95 50.00 38.04 40.95 40.54 42.16 37.61 42.55 44.12 44.12 42.95 44.50 48.58 49.65 50.35 
Run 5 44.50 43.34 38.46 37.18 44.12 44.12 46.02 37.18 39.72 46.39 44.89 36.31 40.13 43.34 44.12 42.16 43.73 41.35 
Run 6 43.34 42.95 45.64 40.13 40.95 44.89 44.12 43.73 44.12 43.34 47.13 45.27 45.27 43.73 40.13 45.27 45.64 48.58 
Run 7 38.46 42.95 42.55 44.50 48.94 43.34 45.27 40.95 42.16 51.04 38.88 45.27 40.54 40.54 46.02 42.95 45.64 42.16 
Run 8 47.50 46.39 39.72 43.34 46.39 41.35 38.46 42.16 42.95 40.13 45.27 46.02 44.89 50.35 41.35 41.76 42.55 43.73 
Run 9 34.09 44.89 41.35 45.27 44.89 44.12 42.95 38.04 36.31 42.95 37.18 43.34 45.64 38.46 44.50 38.88 41.76 42.55 
Run 10 40.54 44.89 44.89 46.02 39.30 43.34 40.95 42.95 42.95 42.55 40.13 43.73 41.76 44.12 45.27 44.89 43.73 48.22 
Run 11 40.13 38.88 38.46 44.50 43.34 41.35 42.55 42.55 41.35 41.35 42.16 44.89 44.12 46.39 46.02 39.30 44.89 45.27 
Run 12 42.95 41.35 42.55 40.54 39.72 42.55 49.30 47.13 42.16 42.55 41.35 44.50 43.73 47.86 42.95 44.12 45.64 43.34 
Run 13 41.76 41.76 39.30 42.55 44.50 44.12 38.46 43.34 47.50 42.16 45.27 39.72 38.04 43.34 45.64 46.39 40.95 48.94 
Run 14 40.54 42.95 47.13 40.54 44.50 44.12 48.58 43.34 40.13 41.35 46.39 41.35 47.50 46.39 46.02 43.34 38.88 39.72 
Run 15 39.30 44.89 42.95 37.18 40.13 44.12 46.02 41.35 44.89 41.76 39.30 48.58 42.55 47.13 45.27 45.27 41.35 46.02 
Run 16 40.95 43.73 47.13 41.35 42.55 40.95 42.95 47.13 40.54 47.13 45.64 45.64 44.89 39.72 46.02 43.34 44.12 47.86 
Run 17 42.16 46.76 41.76 37.61 40.54 44.89 40.95 42.16 37.61 42.95 44.50 44.50 39.72 37.18 38.04 41.35 46.39 48.58 
Run 18 42.55 39.72 42.55 43.34 42.16 37.61 38.04 40.54 45.27 39.72 47.13 44.50 43.73 44.50 41.35 44.50 42.55 40.95 
Run 19 40.54 40.13 41.76 44.12 42.55 44.89 41.76 41.76 40.54 39.30 38.88 41.76 42.95 46.02 40.95 39.72 39.72 41.76 
Run 20 44.50 46.02 35.43 45.27 46.02 41.76 38.04 43.34 40.13 45.27 39.30 40.13 44.89 40.95 41.76 44.89 42.95 43.34 
Run 21 39.30 40.95 40.54 34.99 40.13 43.73 40.54 43.73 43.34 45.64 44.89 39.30 43.73 44.12 46.76 48.58 47.50 42.55 
Run 22 43.73 38.88 44.12 41.35 42.16 39.30 45.27 39.72 40.13 44.89 40.13 42.55 47.50 42.55 42.16 46.39 43.34 48.58 
Run 23 45.27 38.46 40.95 42.95 47.86 43.34 45.64 46.39 47.13 40.54 44.89 46.02 44.12 44.12 38.46 40.95 40.13 47.50 
Run 24 40.95 42.16 42.55 40.54 40.13 40.95 46.76 42.55 43.73 41.35 45.64 44.12 38.46 44.89 42.55 46.39 42.55 41.35 
Run 25 44.50 41.35 45.64 46.76 42.16 42.95 45.27 45.64 44.89 42.55 46.39 44.89 40.13 47.13 43.34 43.34 42.95 42.95 
Run 26 42.95 42.16 39.72 44.12 46.76 46.02 41.76 43.34 40.13 40.54 41.76 41.76 47.50 42.55 45.27 41.76 39.72 43.73 
Run 27 44.50 40.13 40.54 40.13 46.76 41.76 43.73 42.16 38.46 41.35 41.76 44.89 43.73 40.95 39.72 44.12 47.50 48.58 
Run 28 44.89 37.61 42.95 47.86 46.76 36.75 47.86 46.02 42.16 37.61 43.34 42.55 47.86 46.02 48.94 44.12 42.95 43.34 
Run 29 39.72 40.54 38.88 43.73 44.50 40.95 41.35 43.73 39.30 43.34 43.73 46.39 46.02 47.50 49.65 42.55 42.16 46.02 
Run 30 41.76 45.64 41.35 43.34 46.39 40.54 42.95 40.13 39.72 44.12 45.27 47.50 40.95 44.50 45.27 40.54 41.35 38.88 
Mean 42.06 42.52 41.85 42.43 43.79 42.24 43.01 42.69 42.19 42.32 42.87 43.57 43.77 44.07 43.81 43.32 43.23 44.77 
Std dev 0.0283 0.0249 0.0264 0.0296 0.0290 0.0235 0.0315 0.0251 0.0277 0.0303 0.0280 0.0267 0.0278 0.0292 0.0274 0.0259 0.0268 0.0307 
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TABLE B-34: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.4. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.30 39.72 42.16 44.89 38.88 37.61 38.46 36.31 35.43 44.12 42.16 40.95 43.34 34.54 38.04 40.54 38.88 34.99 
Run 2 35.43 36.31 40.95 37.61 40.95 37.18 44.50 39.72 41.35 37.18 39.72 40.95 35.87 40.95 40.95 44.12 41.35 34.99 
Run 3 42.16 47.50 37.61 47.50 43.73 42.95 46.76 37.61 46.02 41.76 36.31 37.61 38.88 41.76 38.88 34.99 37.61 36.31 
Run 4 41.35 42.55 44.50 40.95 43.73 44.89 41.76 42.95 35.87 40.13 32.26 43.34 40.13 40.13 44.50 34.54 43.73 41.76 
Run 5 39.72 43.73 46.39 38.46 40.54 38.46 40.13 38.88 40.54 40.13 48.22 38.04 35.43 45.64 43.73 36.75 40.13 38.88 
Run 6 41.76 38.04 38.88 43.34 40.13 42.16 42.16 40.13 41.35 41.76 43.34 40.54 35.43 33.64 38.04 42.16 38.88 38.46 
Run 7 38.46 40.54 41.35 39.72 40.95 46.02 40.95 39.30 44.50 42.95 37.18 45.27 41.35 38.04 40.54 42.55 35.43 38.04 
Run 8 38.88 41.35 39.72 41.76 38.04 43.34 40.95 41.35 41.35 36.31 35.87 37.18 44.12 37.61 31.79 36.75 38.04 40.13 
Run 9 41.35 43.73 40.13 38.88 42.16 45.27 38.88 49.30 39.72 46.76 36.31 40.54 42.16 41.35 39.72 38.88 40.13 35.87 
Run 10 40.13 38.46 46.39 44.12 42.55 38.04 43.34 42.16 42.95 40.95 40.95 39.30 43.34 40.95 39.72 35.87 39.72 38.04 
Run 11 45.64 40.54 42.55 40.13 43.73 43.73 39.72 44.89 40.54 40.54 42.55 36.31 39.30 44.50 37.61 38.46 46.02 39.30 
Run 12 37.61 39.72 35.87 45.64 45.64 44.89 42.95 43.34 42.55 46.02 40.13 38.04 38.88 41.35 41.35 38.04 39.30 33.64 
Run 13 43.73 39.30 43.73 39.72 40.95 39.30 36.31 39.72 39.72 43.73 39.72 45.64 37.18 38.46 40.54 37.61 44.50 38.46 
Run 14 42.55 42.95 47.50 47.86 45.27 37.18 43.73 44.12 40.13 37.18 40.54 40.95 35.87 43.73 36.75 37.61 35.87 35.43 
Run 15 40.54 36.75 37.18 37.18 46.02 42.95 37.61 44.50 38.88 45.64 39.72 35.43 37.61 44.12 39.30 44.12 38.88 39.30 
Run 16 47.50 36.75 44.12 44.50 41.76 46.02 42.16 45.27 41.35 43.34 38.04 38.88 40.54 42.16 37.18 40.54 42.16 36.75 
Run 17 42.16 41.35 33.64 41.35 45.64 42.16 46.39 38.04 39.30 35.87 40.95 31.79 39.72 39.72 40.95 34.09 39.72 41.76 
Run 18 38.04 34.99 43.34 45.64 37.61 40.95 38.04 35.43 38.88 42.16 40.54 33.18 38.04 37.18 34.09 40.95 40.95 35.87 
Run 19 38.04 39.72 35.43 43.73 44.50 43.73 43.73 42.95 40.95 43.34 42.95 44.12 35.87 38.46 35.87 42.55 40.54 35.43 
Run 20 34.54 36.75 40.13 37.61 44.89 39.30 40.54 41.76 38.46 34.54 40.95 37.18 44.89 36.31 35.43 31.79 38.46 44.50 
Run 21 35.87 43.73 41.76 41.76 46.02 41.35 40.13 39.30 41.76 32.72 43.34 42.95 40.95 48.58 42.55 43.34 39.30 39.30 
Run 22 35.43 36.31 42.55 42.16 42.95 42.55 40.13 43.34 35.43 38.88 38.88 38.88 38.46 40.95 42.95 33.18 33.64 35.87 
Run 23 40.95 42.95 44.89 38.46 41.35 47.50 45.64 38.88 41.76 42.55 46.76 43.34 38.88 40.13 34.99 41.76 40.95 35.43 
Run 24 44.12 44.12 40.54 40.95 39.30 38.46 35.43 37.18 38.46 39.72 51.04 43.73 39.30 41.76 41.35 44.50 39.72 42.95 
Run 25 35.87 38.88 44.50 42.95 45.64 42.16 48.58 38.46 39.72 37.61 39.72 42.95 40.13 38.46 39.72 41.76 38.04 36.31 
Run 26 42.55 43.34 41.35 41.35 39.72 42.16 39.30 36.75 37.61 39.30 36.75 38.04 44.50 34.54 40.13 41.76 42.16 37.61 
Run 27 41.35 41.76 40.13 41.76 34.54 43.73 36.31 43.34 37.18 44.12 40.54 40.95 35.43 42.16 31.79 42.16 38.88 42.55 
Run 28 39.30 41.35 42.55 39.72 43.73 39.30 45.27 38.46 38.46 43.73 38.88 38.88 41.76 39.72 44.12 40.95 42.16 45.27 
Run 29 41.76 40.13 43.34 44.89 47.50 38.88 42.55 46.76 37.61 41.35 44.50 37.61 37.18 34.99 44.12 37.61 40.54 40.13 
Run 30 38.04 43.73 39.30 39.72 40.54 43.34 39.72 38.04 46.02 38.46 34.09 39.72 39.72 36.31 41.76 42.55 36.31 40.95 
Mean 40.14 40.57 41.42 41.81 42.30 41.85 41.40 40.94 40.13 40.76 40.43 39.74 39.48 39.94 39.28 39.42 39.73 38.48 
Std dev 0.0306 0.0292 0.0327 0.0287 0.0296 0.0285 0.0322 0.0331 0.0265 0.0341 0.0392 0.0329 0.0278 0.0344 0.0338 0.0347 0.0258 0.0296 
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TABLE B-35: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.5. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.54 40.95 42.16 47.13 37.61 38.88 42.16 42.55 40.13 40.54 44.12 46.02 41.76 45.64 45.64 43.73 45.64 42.55 
Run 2 38.88 30.37 44.89 44.12 44.50 42.16 40.13 42.95 38.88 36.75 45.27 48.58 44.89 40.95 48.22 38.46 41.35 42.55 
Run 3 41.76 41.35 36.75 37.61 40.95 37.61 42.95 34.54 40.13 44.12 44.89 40.95 47.86 47.13 40.95 40.95 43.73 38.46 
Run 4 33.64 43.73 40.95 43.34 43.34 39.72 36.31 40.13 42.16 45.27 44.12 39.30 48.94 41.35 47.50 46.76 44.89 42.55 
Run 5 37.61 41.35 40.13 42.16 39.72 42.16 36.75 42.95 43.34 38.88 38.88 45.27 43.34 44.89 43.73 47.50 39.30 41.76 
Run 6 45.64 43.73 34.99 39.30 37.61 41.76 44.89 41.35 43.34 42.55 46.39 43.73 43.34 47.86 39.72 47.13 43.73 42.55 
Run 7 40.54 38.46 38.04 38.88 38.46 40.13 42.95 40.95 39.72 39.72 40.54 42.55 38.46 44.50 48.22 42.16 44.89 45.27 
Run 8 44.89 34.99 40.13 38.46 38.46 39.30 42.95 41.76 44.12 39.30 41.76 44.89 40.95 40.54 40.54 42.95 46.02 45.64 
Run 9 44.89 41.76 46.39 42.95 44.50 39.30 38.88 40.13 40.54 38.04 42.95 45.64 44.50 47.86 42.55 43.34 45.27 43.73 
Run 10 43.73 40.95 43.34 45.27 36.75 42.55 40.54 39.72 44.12 44.89 42.16 46.39 43.34 44.50 46.39 42.55 46.02 44.12 
Run 11 38.46 35.43 39.72 45.27 41.35 39.72 45.64 44.89 45.64 40.13 41.35 43.73 45.64 39.72 44.89 46.02 46.02 48.22 
Run 12 40.13 42.16 42.55 43.73 38.88 46.02 43.73 39.30 44.12 45.27 40.54 40.95 41.76 43.34 44.12 43.34 46.02 44.50 
Run 13 42.95 40.13 39.72 38.46 38.46 38.88 45.64 46.39 43.34 43.34 45.64 45.27 46.02 41.76 44.89 41.35 44.50 46.02 
Run 14 44.89 44.89 36.31 39.72 35.87 41.76 39.72 41.35 44.50 42.95 42.55 36.31 47.50 44.89 42.55 44.89 40.95 40.13 
Run 15 41.35 38.88 37.61 43.73 39.72 37.18 42.55 42.55 39.30 38.46 43.73 45.64 38.88 44.12 45.64 40.54 38.04 42.16 
Run 16 37.61 40.13 32.72 39.72 45.27 38.88 40.95 39.72 44.50 43.73 43.73 46.02 40.95 36.31 44.89 44.50 45.64 47.13 
Run 17 38.88 45.27 38.88 44.12 40.13 41.76 44.89 41.35 42.95 44.12 40.54 44.89 47.50 44.89 40.13 46.02 44.12 42.95 
Run 18 41.76 43.34 39.72 43.73 39.72 42.95 41.76 38.88 40.13 35.87 39.72 46.02 43.34 44.12 46.02 44.89 42.55 48.22 
Run 19 42.55 42.95 43.34 39.72 40.13 47.13 41.76 42.16 43.34 40.95 42.55 44.50 41.76 44.89 38.46 45.27 43.34 38.04 
Run 20 44.12 37.18 33.18 41.35 40.95 42.55 44.50 48.22 36.75 38.04 46.02 46.76 44.89 44.89 38.46 46.76 44.12 43.73 
Run 21 31.79 42.55 36.31 40.13 38.46 41.76 37.61 39.30 42.55 45.64 39.30 45.64 42.55 48.22 43.34 44.50 42.55 42.55 
Run 22 42.55 41.76 38.46 43.73 42.55 46.39 40.95 41.35 43.73 47.50 41.35 47.50 44.50 42.16 41.76 47.13 43.34 40.54 
Run 23 40.13 40.54 40.13 42.16 38.46 39.72 40.95 44.50 40.54 42.16 36.75 45.64 45.27 49.65 52.40 48.22 46.39 44.50 
Run 24 34.99 35.87 40.54 40.13 42.55 42.55 39.72 41.76 40.13 40.13 45.64 49.30 44.12 50.35 47.86 45.27 40.13 44.50 
Run 25 37.18 42.55 42.95 38.04 38.88 40.54 44.89 42.55 41.76 46.76 48.94 44.50 50.35 47.13 41.76 43.73 42.16 45.64 
Run 26 39.30 40.13 44.89 44.12 44.12 42.16 40.95 42.55 40.95 41.76 41.76 42.95 42.95 46.76 47.13 46.39 41.76 43.73 
Run 27 40.13 38.04 41.35 38.88 45.27 43.73 45.27 42.16 48.22 40.13 42.55 39.72 47.86 41.35 44.50 42.16 48.58 49.30 
Run 28 40.95 44.50 40.54 43.34 44.12 43.34 45.27 46.39 46.76 48.58 45.27 42.95 41.76 44.89 41.35 44.89 47.50 43.34 
Run 29 34.99 40.54 36.75 43.34 44.89 38.46 38.88 43.73 41.76 46.02 41.76 42.95 48.94 41.76 40.95 45.27 42.16 46.02 
Run 30 38.88 35.87 37.61 38.46 38.88 42.16 45.64 42.16 40.95 47.50 41.35 44.12 48.58 45.27 44.50 45.64 45.64 47.86 
Mean 39.99 40.35 39.70 41.70 40.69 41.37 41.99 41.94 42.28 42.30 42.74 44.29 44.42 44.39 43.97 44.41 43.88 43.94 
Std dev 0.0355 0.0334 0.0328 0.0258 0.0272 0.0243 0.0269 0.0257 0.0245 0.0338 0.0257 0.0273 0.0300 0.0305 0.0321 0.0227 0.0240 0.0270 
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TABLE B-36: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.6. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 46.39 43.73 42.55 46.39 39.72 34.54 38.04 42.55 38.88 40.95 44.50 41.35 49.30 40.13 42.55 44.50 42.16 47.13 
Run 2 39.30 44.12 37.61 44.89 44.50 39.30 39.30 36.75 47.86 45.64 44.50 39.30 43.73 41.35 44.89 36.75 42.55 43.73 
Run 3 41.35 45.27 46.39 44.89 38.46 39.30 43.73 40.95 40.95 44.50 46.39 41.35 46.02 43.73 43.34 38.88 41.35 41.76 
Run 4 40.13 42.16 44.12 41.35 39.30 39.72 43.73 44.12 48.58 39.30 48.58 44.50 45.64 42.55 42.16 41.35 42.16 43.73 
Run 5 32.72 42.55 40.13 42.55 43.73 41.35 44.50 42.16 42.95 41.35 43.34 41.76 34.54 40.13 40.54 38.04 47.13 43.34 
Run 6 38.04 34.99 35.87 47.86 44.89 46.39 41.35 47.13 44.89 42.55 44.50 40.95 44.50 45.64 45.27 44.50 34.99 43.34 
Run 7 46.39 48.58 44.50 42.55 40.95 46.76 38.04 40.95 41.76 39.72 43.34 47.50 46.76 48.94 47.50 45.27 45.64 43.73 
Run 8 43.73 42.16 43.34 39.72 40.95 40.54 36.75 40.95 43.34 42.55 42.55 44.50 45.64 44.12 42.16 43.73 42.16 38.88 
Run 9 36.75 42.16 46.39 41.35 38.46 41.76 41.76 44.12 38.46 48.94 40.13 42.16 41.35 46.02 44.12 42.95 43.34 43.34 
Run 10 44.50 39.30 39.30 46.02 43.73 37.61 40.13 43.73 39.72 41.76 43.73 40.13 39.72 38.88 45.27 41.76 40.54 44.12 
Run 11 40.95 40.95 40.13 42.95 42.55 36.75 37.18 39.72 39.72 40.13 43.34 42.95 42.95 47.86 44.50 44.89 48.22 43.34 
Run 12 33.64 40.54 46.02 44.89 44.89 40.95 42.55 46.76 41.76 40.95 37.18 46.39 42.55 44.50 43.73 44.89 44.89 47.86 
Run 13 41.76 37.61 44.50 45.27 40.95 46.39 37.61 43.73 42.16 41.35 46.02 43.73 42.95 44.50 41.76 47.50 35.87 40.13 
Run 14 45.27 37.61 36.75 43.73 42.16 38.04 44.12 45.27 46.02 45.27 43.73 48.94 41.35 41.35 40.54 47.13 46.02 46.76 
Run 15 40.13 36.75 48.94 39.30 45.27 37.18 39.30 40.95 42.95 42.95 44.89 46.02 44.89 44.12 46.76 41.76 46.39 43.73 
Run 16 45.27 40.95 36.31 43.34 42.55 38.04 38.46 40.95 40.54 40.13 44.12 40.95 46.39 41.35 34.99 39.72 42.16 39.30 
Run 17 45.27 37.61 48.58 41.76 46.02 45.64 36.75 41.35 39.72 42.95 42.55 47.86 43.34 48.22 38.88 48.22 44.50 40.95 
Run 18 36.31 40.95 42.95 41.76 40.13 42.55 42.55 48.94 45.27 41.76 43.34 38.04 42.16 47.50 48.58 46.39 41.35 47.13 
Run 19 39.30 43.34 44.89 46.02 38.46 38.46 38.46 41.35 37.61 41.76 44.12 52.06 42.95 38.88 42.16 41.35 42.55 42.95 
Run 20 42.55 41.76 42.95 39.30 40.13 41.76 39.72 45.27 40.54 42.16 42.55 34.99 44.50 39.30 37.61 43.73 45.64 36.75 
Run 21 40.95 38.88 37.18 38.88 41.35 40.13 44.50 43.73 42.95 45.27 46.02 38.46 46.02 43.73 48.22 41.35 44.89 38.88 
Run 22 39.72 39.30 42.95 38.88 42.95 40.13 42.55 41.35 50.00 43.34 41.35 42.95 48.58 44.12 42.55 38.88 43.34 41.76 
Run 23 40.13 43.34 40.95 43.73 46.02 40.54 36.75 44.89 47.13 43.34 48.22 45.27 43.73 46.02 39.72 44.50 49.30 37.61 
Run 24 40.13 40.95 40.54 44.12 42.55 38.46 44.50 47.13 42.55 42.16 46.02 43.34 45.64 43.73 46.02 44.50 39.30 41.76 
Run 25 39.30 41.35 48.22 41.76 43.73 42.55 39.72 44.12 40.13 43.73 41.76 41.76 44.50 43.34 42.55 44.12 44.50 42.55 
Run 26 40.95 40.95 41.35 41.76 40.95 33.64 37.61 33.64 34.54 37.61 43.34 43.73 48.22 46.76 43.73 45.27 43.34 45.27 
Run 27 43.73 42.55 44.50 39.72 39.72 40.54 44.12 39.30 43.73 49.30 42.95 45.27 44.12 46.02 42.95 45.64 41.35 47.13 
Run 28 39.72 39.30 39.72 47.50 41.76 43.73 46.02 44.89 40.13 37.18 38.46 43.34 44.89 47.13 46.39 40.95 41.35 38.46 
Run 29 44.89 40.95 44.12 39.72 37.61 43.73 43.73 42.95 46.39 44.12 46.76 41.76 44.50 43.34 42.95 43.73 45.27 42.95 
Run 30 41.35 41.76 42.95 36.75 42.55 41.76 40.95 44.89 41.35 47.50 46.02 44.89 42.95 40.54 38.88 43.34 42.55 42.16 
Mean 41.02 41.08 42.49 42.62 41.90 40.61 40.82 42.82 42.42 42.67 43.81 43.21 44.15 43.79 43.04 43.19 43.16 42.68 
Std dev 0.0339 0.0268 0.0357 0.0278 0.0233 0.0321 0.0284 0.0311 0.0342 0.0281 0.0247 0.0342 0.0277 0.0284 0.0309 0.0280 0.0308 0.0288 
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TABLE B-37: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.7. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 38.46 44.89 38.88 45.27 40.13 41.76 44.89 46.76 42.16 45.64 40.13 44.50 44.89 41.35 46.02 45.27 41.35 48.58 
Run 2 44.89 42.95 43.73 36.75 44.12 44.12 41.35 40.95 37.61 43.73 36.75 42.95 45.64 47.50 44.50 46.02 40.95 46.76 
Run 3 37.61 46.02 39.72 36.75 41.76 40.54 39.30 38.04 45.27 38.88 42.55 41.35 38.04 44.89 39.72 45.27 45.27 44.50 
Run 4 43.73 45.64 39.72 42.95 43.34 39.72 42.55 41.76 43.34 38.46 38.46 42.95 42.55 47.13 47.13 42.55 45.64 42.16 
Run 5 37.18 45.64 44.89 39.30 40.13 42.55 37.61 38.46 37.61 43.73 40.54 44.50 40.95 41.76 47.13 42.55 39.30 44.12 
Run 6 42.55 39.30 46.02 45.27 45.27 35.43 46.76 35.87 43.34 38.04 38.88 45.64 42.16 44.12 40.54 46.02 41.35 42.16 
Run 7 33.64 40.54 42.55 49.65 38.46 43.34 37.61 38.04 44.89 42.95 38.88 39.30 44.12 45.64 47.86 45.64 45.27 42.55 
Run 8 40.95 38.88 38.04 42.55 41.35 43.73 36.31 47.86 42.55 38.46 43.34 38.88 41.76 44.12 44.89 48.58 48.22 43.34 
Run 9 39.30 45.64 38.46 39.30 39.30 40.54 46.39 45.27 37.61 39.72 42.55 39.72 41.76 42.55 40.13 44.89 46.39 43.73 
Run 10 43.73 35.43 42.95 39.30 41.76 41.76 39.30 38.46 35.87 37.61 43.34 44.50 41.76 45.27 42.55 44.12 48.22 46.39 
Run 11 34.54 42.55 42.95 40.54 38.04 42.55 38.88 40.95 35.43 35.43 40.54 45.27 45.64 40.95 47.50 45.64 45.27 46.02 
Run 12 37.61 40.13 44.89 42.55 38.46 42.16 36.75 39.30 38.04 39.30 37.18 40.54 46.02 44.50 45.64 41.76 48.58 44.89 
Run 13 42.95 39.72 37.61 41.35 37.18 43.34 43.34 38.88 40.54 38.04 40.54 44.50 40.13 40.13 44.12 49.30 43.34 44.50 
Run 14 35.87 38.04 41.35 42.16 43.73 44.50 39.72 38.04 42.16 47.13 31.79 46.76 39.72 43.34 46.02 44.12 43.73 44.50 
Run 15 40.54 42.16 43.73 37.61 38.88 37.18 37.61 38.88 40.95 41.35 40.13 44.89 47.50 43.34 43.34 46.39 45.64 50.00 
Run 16 37.18 47.50 46.02 46.02 41.76 33.18 33.64 38.46 41.35 42.55 40.54 42.95 46.76 46.39 43.73 45.27 40.95 48.22 
Run 17 34.54 40.13 36.75 40.54 37.61 38.46 37.61 42.55 41.76 37.61 35.43 39.72 41.76 47.86 46.76 40.54 42.95 44.50 
Run 18 37.18 37.18 38.04 43.73 36.31 34.54 39.72 43.34 41.35 38.46 43.73 41.76 41.35 41.35 43.34 43.73 44.12 47.50 
Run 19 44.12 38.46 37.18 46.76 44.12 41.35 42.16 39.30 44.12 43.34 46.02 46.76 42.95 47.13 47.13 50.00 47.86 46.76 
Run 20 36.31 42.95 40.54 42.95 35.87 37.18 36.75 45.27 45.27 47.86 40.95 40.13 43.34 44.12 44.50 46.39 44.89 45.27 
Run 21 40.13 39.30 42.55 39.72 40.95 31.79 43.73 42.55 40.54 41.76 41.76 42.95 43.34 46.02 45.27 38.88 37.18 46.02 
Run 22 31.79 38.04 46.39 39.72 37.18 38.46 42.16 42.16 43.34 40.13 37.61 48.22 42.16 42.16 40.13 47.50 42.55 41.35 
Run 23 36.75 39.72 41.76 50.35 39.72 34.54 44.89 43.34 44.12 43.34 44.89 50.70 46.02 44.50 40.95 44.50 47.13 45.27 
Run 24 41.35 38.04 42.16 44.50 37.61 42.16 42.16 30.37 42.16 43.34 38.46 46.76 43.73 45.64 42.55 35.43 43.34 45.64 
Run 25 38.88 43.73 37.61 47.50 39.72 39.30 38.04 38.88 42.55 46.76 42.16 40.54 45.27 40.54 42.95 48.94 46.39 44.89 
Run 26 43.73 39.30 40.54 40.13 43.73 38.04 41.76 42.55 34.99 42.16 34.99 47.86 42.16 41.76 47.13 45.64 47.13 46.39 
Run 27 36.31 36.75 47.13 44.50 42.16 44.50 34.09 38.88 37.61 44.12 39.30 40.95 46.76 47.50 52.06 41.76 32.26 42.16 
Run 28 37.18 38.46 39.30 38.46 38.46 45.27 34.99 35.87 40.13 40.13 40.95 35.87 42.55 43.73 46.39 42.16 39.30 46.39 
Run 29 31.79 39.72 42.55 41.76 42.16 35.43 37.61 35.43 44.12 44.12 38.88 45.64 37.61 38.88 39.30 51.72 40.95 44.89 
Run 30 46.39 38.04 35.87 38.88 47.86 35.87 36.31 38.46 38.46 36.31 36.75 46.76 34.99 47.13 47.86 47.50 44.12 47.50 
Mean 38.91 40.83 41.33 42.23 40.57 39.78 39.80 40.17 40.97 41.35 39.93 43.46 42.78 44.04 44.57 44.94 43.65 45.23 
Std dev 0.0384 0.0314 0.0312 0.0352 0.0286 0.0369 0.0350 0.0360 0.0296 0.0326 0.0304 0.0329 0.0284 0.0245 0.0295 0.0332 0.0358 0.0203 
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TABLE B-38: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.8. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 41.35 32.72 41.76 42.16 40.13 38.46 37.61 46.02 40.54 40.95 44.89 45.27 45.64 40.54 44.12 37.61 52.40 46.76 
Run 2 32.26 38.04 43.34 44.89 39.72 42.16 44.12 34.09 40.95 41.35 39.30 45.27 39.72 45.27 47.13 41.76 40.95 40.54 
Run 3 40.13 38.04 40.13 35.43 42.55 39.72 44.12 40.13 34.99 40.54 45.64 44.89 46.39 41.35 40.13 47.13 48.94 46.76 
Run 4 34.99 40.54 39.72 44.50 43.73 41.35 37.18 39.30 43.34 38.46 47.50 40.95 37.18 48.58 42.55 44.89 42.95 40.95 
Run 5 42.95 41.35 43.73 42.95 42.16 41.35 37.61 37.61 40.95 40.95 44.89 45.64 46.02 45.64 45.27 45.64 45.27 42.55 
Run 6 40.95 38.46 46.76 43.73 38.46 35.87 38.88 48.94 41.35 40.95 43.73 42.55 44.89 48.22 48.94 44.89 42.55 40.13 
Run 7 37.61 38.88 37.61 42.55 42.16 40.13 43.34 38.46 42.55 35.43 42.55 43.34 40.95 47.50 48.22 46.02 48.94 43.73 
Run 8 39.72 42.16 40.95 42.16 39.72 35.43 36.75 38.46 33.64 48.22 42.16 46.02 47.50 46.39 46.39 48.94 41.35 42.55 
Run 9 39.30 36.31 48.22 39.72 36.31 46.76 39.30 42.95 39.72 37.61 38.04 43.34 37.61 47.86 47.13 51.04 47.86 46.39 
Run 10 30.37 39.72 46.02 37.61 39.72 40.95 40.95 40.54 38.04 38.46 44.50 43.34 44.50 48.94 46.39 48.94 43.34 41.35 
Run 11 38.46 41.35 44.50 40.95 40.54 40.54 40.13 40.13 38.88 44.12 46.76 47.13 43.73 41.35 44.50 45.27 48.22 45.64 
Run 12 40.54 37.61 36.75 47.86 39.30 35.87 43.34 40.95 45.27 41.35 41.35 43.34 46.39 47.50 44.89 40.95 43.34 39.72 
Run 13 36.31 39.72 43.34 41.35 40.13 43.34 39.30 48.94 42.95 44.12 44.12 44.50 47.13 47.13 39.72 43.73 42.95 43.73 
Run 14 40.54 36.75 39.72 40.13 38.88 47.13 33.18 29.89 42.95 38.88 45.64 42.55 48.22 43.34 46.39 43.73 48.22 48.58 
Run 15 39.30 47.13 44.50 37.61 41.76 34.54 41.76 38.88 41.35 42.16 44.50 42.16 48.58 42.55 39.72 48.94 43.73 39.72 
Run 16 35.87 40.13 42.16 38.88 45.27 36.75 39.72 41.35 34.99 36.75 38.88 42.55 46.39 46.76 46.02 42.16 44.89 45.27 
Run 17 34.09 42.55 38.46 44.89 45.27 46.76 45.27 41.35 38.46 42.16 44.89 45.64 43.73 43.73 45.64 45.64 48.22 41.76 
Run 18 43.34 42.55 42.16 42.55 41.35 42.16 35.43 36.31 37.18 41.76 40.13 39.30 43.73 47.86 41.76 46.39 47.13 42.16 
Run 19 40.13 42.95 45.64 41.35 39.30 40.54 42.16 42.55 40.95 42.16 43.34 43.34 40.95 39.30 48.58 45.27 39.72 44.12 
Run 20 43.34 46.39 42.55 46.39 36.31 43.73 34.54 41.35 38.88 48.22 41.76 50.00 45.64 48.22 42.55 44.89 44.50 48.22 
Run 21 38.46 38.04 45.27 41.35 37.61 39.72 32.72 40.54 38.04 35.87 40.95 38.46 51.04 48.58 47.86 46.76 42.95 44.89 
Run 22 35.43 42.55 41.35 43.73 36.75 42.16 44.89 40.95 43.34 36.75 37.18 45.27 45.27 46.76 46.39 39.30 40.13 39.30 
Run 23 38.04 42.55 43.34 36.31 40.54 40.13 37.18 40.54 36.75 38.88 42.95 42.95 48.22 38.46 50.70 42.16 50.00 41.35 
Run 24 40.13 47.50 37.18 44.12 40.13 41.35 34.54 45.27 38.88 39.72 38.04 43.34 48.58 44.89 44.89 47.13 47.86 42.16 
Run 25 35.87 38.88 44.12 44.50 35.87 34.54 38.88 39.30 36.75 42.55 39.30 41.76 42.95 42.95 44.12 44.50 42.55 44.89 
Run 26 34.09 36.75 38.88 40.54 46.76 40.95 41.35 38.04 44.50 43.34 38.46 42.55 43.73 39.30 46.39 47.86 44.12 38.46 
Run 27 42.55 42.16 46.76 38.88 39.72 40.95 36.75 39.72 37.18 40.54 38.04 42.55 42.16 41.35 42.55 45.64 48.22 47.13 
Run 28 42.95 43.73 39.72 39.72 40.95 47.50 44.89 43.73 39.30 40.13 43.34 45.27 47.86 45.64 43.73 38.46 42.55 44.50 
Run 29 35.43 42.95 37.18 36.75 42.55 36.31 39.72 39.30 40.13 40.54 41.76 46.76 43.73 45.64 40.13 50.00 38.88 48.94 
Run 30 45.64 39.72 40.13 40.13 43.34 39.72 40.95 38.04 39.30 38.46 40.54 43.34 44.89 49.65 44.12 37.61 45.27 44.12 
Mean 38.67 40.61 42.06 41.46 40.57 40.56 39.55 40.45 39.74 40.71 42.17 43.78 44.78 45.04 44.90 44.77 44.93 43.55 
Std dev 0.0356 0.0325 0.0311 0.0299 0.0265 0.0355 0.0351 0.0377 0.0284 0.0300 0.0284 0.0227 0.0319 0.0321 0.0280 0.0348 0.0332 0.0289 
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TABLE B-39: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE PERIPHERAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.9. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.30 41.76 46.39 41.76 42.16 41.76 42.55 39.30 35.43 38.88 38.46 44.89 46.76 47.50 47.13 41.76 41.76 37.18 
Run 2 41.35 35.87 35.87 36.75 30.85 42.16 38.46 44.50 37.18 41.35 38.88 42.16 43.73 36.31 37.18 44.89 40.54 41.76 
Run 3 43.34 41.76 36.75 45.64 38.46 37.61 42.95 46.76 39.30 36.31 40.95 40.95 39.72 38.04 44.12 48.94 42.16 39.72 
Run 4 40.54 40.95 40.13 38.46 40.95 37.61 40.54 43.34 36.75 41.35 44.89 41.35 41.76 40.95 38.04 42.55 44.89 39.72 
Run 5 38.46 41.35 34.99 40.13 43.34 40.95 44.50 39.72 41.35 36.75 40.54 44.12 38.46 39.72 45.64 39.30 38.88 40.95 
Run 6 37.18 41.35 39.72 37.18 43.34 41.35 40.54 38.46 42.55 35.43 40.95 39.72 42.16 43.34 38.04 40.13 44.89 40.54 
Run 7 37.61 39.30 35.43 41.76 40.95 41.76 40.95 42.55 38.04 38.88 44.89 38.04 37.61 42.55 38.88 40.54 45.27 41.76 
Run 8 42.95 44.89 40.13 40.54 42.16 43.73 45.27 44.12 40.54 38.88 40.54 42.55 40.54 38.46 42.55 38.46 43.34 42.16 
Run 9 34.54 46.76 41.35 43.73 36.31 42.16 34.09 44.12 39.30 37.61 41.35 43.34 45.27 53.07 44.50 40.95 44.12 37.61 
Run 10 46.02 43.73 42.55 41.76 36.75 39.72 35.87 37.18 36.31 38.88 44.12 42.55 44.50 42.55 41.76 46.39 44.12 42.55 
Run 11 34.54 35.87 42.55 43.34 42.55 37.18 38.46 42.95 35.87 44.50 38.46 42.16 41.76 47.13 41.76 41.76 45.64 45.64 
Run 12 43.34 42.16 37.18 46.02 40.13 36.31 41.35 43.73 42.95 40.54 44.50 47.50 39.30 42.55 42.16 44.89 41.76 42.16 
Run 13 34.99 37.61 39.72 40.54 41.76 41.76 34.09 44.89 41.76 42.55 38.46 42.95 46.02 37.61 45.27 49.65 38.04 39.72 
Run 14 36.75 40.95 39.72 40.13 40.13 37.18 39.30 41.76 37.61 36.31 41.35 44.12 40.13 41.35 48.22 44.89 42.55 39.72 
Run 15 38.04 40.95 41.76 38.04 38.04 40.95 38.04 38.46 39.30 39.30 33.64 38.46 39.30 42.55 41.35 38.88 44.12 39.72 
Run 16 38.46 41.76 40.95 40.54 39.30 40.54 37.18 38.46 28.93 40.13 41.35 46.02 42.55 37.18 44.50 38.46 40.95 39.72 
Run 17 36.31 40.95 45.64 40.95 45.27 40.54 39.30 41.76 43.34 40.13 40.54 42.55 46.39 50.00 43.34 41.76 39.30 41.76 
Run 18 40.54 41.35 42.16 35.87 44.89 42.16 40.95 36.75 38.46 40.54 38.04 38.46 42.55 41.35 38.46 39.30 42.16 40.54 
Run 19 41.76 45.27 35.87 41.35 33.64 42.16 37.18 38.46 36.31 36.31 42.95 44.50 40.13 42.95 42.95 40.13 46.02 38.88 
Run 20 40.54 39.30 41.35 39.30 38.46 40.13 40.13 38.46 37.61 34.54 36.75 41.35 42.95 36.75 42.95 32.72 40.54 38.88 
Run 21 35.43 42.95 38.04 40.95 34.09 40.95 42.16 40.54 40.95 39.30 38.46 46.76 40.95 39.30 43.73 32.72 44.50 44.89 
Run 22 33.64 33.64 40.13 39.30 41.35 36.75 38.88 43.34 41.35 39.30 40.95 41.35 39.30 44.50 43.34 48.22 39.30 40.95 
Run 23 36.31 41.35 43.34 36.31 44.89 42.16 35.43 40.13 36.31 41.76 40.54 42.55 42.16 44.12 39.30 38.88 43.34 38.46 
Run 24 34.54 38.88 46.39 41.76 43.34 42.55 45.64 40.54 34.54 44.12 42.95 38.88 42.55 52.73 44.12 39.72 46.76 38.88 
Run 25 41.35 38.88 39.72 37.61 36.31 38.88 39.72 44.50 36.31 35.87 40.54 41.76 39.72 42.16 40.95 40.95 41.76 41.76 
Run 26 39.30 42.95 39.72 36.75 33.18 45.64 40.95 45.64 42.16 36.31 38.04 45.64 41.35 44.50 41.35 42.16 44.50 43.34 
Run 27 37.18 40.13 41.76 37.18 45.64 40.95 35.43 40.13 40.13 41.76 32.72 43.34 46.39 46.76 40.95 44.12 43.34 38.46 
Run 28 41.76 38.46 34.54 46.02 36.75 35.43 42.55 39.30 42.95 38.46 48.22 49.30 41.76 47.86 46.76 42.16 40.95 39.72 
Run 29 38.88 41.76 46.02 44.50 43.73 38.46 41.35 43.73 39.30 42.95 42.55 40.95 44.50 49.30 41.35 41.35 42.95 37.61 
Run 30 38.46 47.13 38.46 42.55 39.30 32.72 38.46 35.87 44.50 33.64 42.55 39.72 38.04 43.34 37.61 42.55 38.04 40.95 
Mean 38.78 41.00 40.28 40.56 39.93 40.07 39.74 41.32 38.91 39.09 40.64 42.60 41.94 43.22 42.28 41.64 42.55 40.52 
Std dev 0.0306 0.0296 0.0328 0.0285 0.0383 0.0271 0.0299 0.0286 0.0324 0.0274 0.0318 0.0270 0.0256 0.0444 0.0287 0.0383 0.0235 0.0199 
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TABLE B-40: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.0. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 42.55 44.89 44.12 42.95 39.30 39.72 46.02 45.64 46.02 40.13 45.27 43.34 46.39 44.50 43.73 40.54 43.34 46.02 
Run 2 46.02 34.99 39.72 34.54 42.95 38.46 39.30 43.73 42.55 46.02 46.76 35.87 42.55 44.12 44.89 40.95 46.39 41.76 
Run 3 40.13 41.76 44.12 44.12 47.86 37.61 46.76 49.30 39.72 42.95 43.34 45.27 45.64 46.76 48.22 41.76 42.16 48.94 
Run 4 34.09 38.88 47.13 45.64 40.54 42.95 40.95 48.22 39.30 39.72 40.13 45.64 49.30 46.02 42.16 46.76 43.34 36.75 
Run 5 40.54 42.55 40.54 45.64 42.55 40.95 42.95 41.35 38.88 42.55 44.50 40.13 43.73 39.72 42.55 44.89 44.12 40.54 
Run 6 36.75 37.18 40.54 39.72 39.72 40.95 48.58 46.39 42.16 41.76 39.30 41.76 44.50 42.16 45.64 44.50 43.34 44.12 
Run 7 43.34 42.55 39.30 42.16 40.54 43.73 40.54 39.30 43.73 46.76 47.86 43.34 42.16 40.13 40.54 37.61 44.12 37.18 
Run 8 42.95 39.72 45.64 42.95 46.76 41.76 46.39 40.54 43.73 46.39 45.27 49.30 37.18 39.72 43.73 42.95 44.89 40.13 
Run 9 44.50 40.13 34.99 40.54 36.75 40.95 43.73 40.13 40.13 45.27 46.76 41.35 47.50 44.89 39.30 39.72 39.30 36.75 
Run 10 39.30 39.72 39.72 38.88 39.72 40.54 43.73 42.55 45.64 40.95 42.95 43.73 46.02 45.27 34.99 44.12 47.13 42.55 
Run 11 47.13 39.72 44.50 36.75 39.30 39.30 45.64 42.55 41.35 42.16 46.02 45.64 43.73 48.58 43.34 48.58 42.95 42.55 
Run 12 34.54 38.04 43.34 43.34 41.76 37.18 43.34 35.87 42.95 47.86 40.54 44.89 41.76 40.95 41.76 42.95 43.73 44.89 
Run 13 46.02 43.34 46.02 44.89 44.50 42.95 42.95 46.76 44.12 39.72 46.02 44.89 50.70 42.95 48.22 41.76 44.50 47.50 
Run 14 40.54 39.30 42.95 41.35 35.43 46.39 38.88 42.95 43.34 38.04 37.18 42.95 43.73 44.50 43.34 43.73 41.76 46.02 
Run 15 38.04 44.12 38.46 50.35 42.95 39.30 41.35 49.30 41.76 38.46 42.95 44.50 49.30 42.55 43.34 46.02 37.18 46.02 
Run 16 50.70 41.76 43.34 41.35 38.46 45.27 45.27 32.72 42.55 42.55 40.95 44.12 38.46 43.34 42.16 41.35 42.55 41.76 
Run 17 42.95 42.16 43.73 44.89 41.76 42.55 38.88 37.18 41.76 50.00 38.88 40.95 42.55 40.95 43.34 42.16 37.61 46.02 
Run 18 38.04 48.22 39.30 40.95 46.02 44.50 45.27 38.88 42.16 42.55 43.34 42.55 42.16 45.27 44.50 46.76 44.89 42.16 
Run 19 40.54 43.34 42.95 49.30 42.95 43.73 46.02 44.12 47.50 42.95 44.50 49.30 40.95 40.13 46.02 44.50 42.55 47.50 
Run 20 39.30 39.72 38.46 42.55 43.34 34.99 47.13 36.75 46.76 42.55 43.34 44.50 42.95 44.50 43.34 49.65 44.50 45.64 
Run 21 36.31 41.35 42.55 42.55 42.55 44.12 39.72 45.64 39.30 40.54 42.55 36.75 43.34 46.39 42.16 38.88 49.30 39.72 
Run 22 41.76 40.13 44.50 42.95 50.35 42.55 42.95 41.76 40.95 36.31 41.35 42.16 43.73 50.35 38.46 38.46 47.13 46.39 
Run 23 38.04 40.95 42.55 44.12 44.50 39.30 43.34 38.88 44.50 41.35 48.58 45.27 41.76 43.73 48.22 46.02 47.86 44.50 
Run 24 44.89 39.72 41.76 46.02 41.76 45.27 42.55 47.50 39.30 38.46 45.27 46.76 46.76 42.55 44.12 41.76 42.16 42.55 
Run 25 40.95 38.88 40.95 45.27 39.72 41.76 38.88 38.46 43.73 42.16 43.34 40.54 50.00 46.39 42.55 44.50 38.46 46.02 
Run 26 32.26 44.12 41.35 45.64 45.64 37.18 44.12 41.76 46.39 44.12 44.12 46.39 42.16 40.13 41.76 44.89 42.16 42.95 
Run 27 38.46 40.13 41.76 45.64 47.50 43.73 48.22 44.12 40.54 40.13 39.30 41.76 40.54 41.76 41.35 42.95 46.02 43.73 
Run 28 37.18 47.50 43.73 40.54 40.13 43.34 41.35 42.55 46.02 42.55 45.64 42.55 42.16 44.89 48.94 39.30 47.13 50.00 
Run 29 40.95 42.55 40.54 46.76 41.35 43.73 42.55 40.13 44.89 42.55 45.64 46.02 46.02 44.12 46.39 41.35 45.64 47.50 
Run 30 41.76 43.34 39.72 42.55 37.18 41.35 42.55 45.27 41.76 40.95 40.54 44.89 44.89 44.89 42.16 40.54 50.00 47.13 
Mean 40.68 41.36 41.94 43.16 42.13 41.54 43.33 42.34 42.78 42.28 43.41 43.57 44.09 43.74 43.37 43.00 43.87 43.84 
Std dev 0.0401 0.0279 0.0259 0.0327 0.0341 0.0272 0.0275 0.0403 0.0241 0.0299 0.0281 0.0295 0.0317 0.0260 0.0296 0.0292 0.0308 0.0343 
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TABLE B-41: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.1. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 42.95 41.35 40.13 42.55 46.02 42.55 44.89 48.22 42.55 42.95 46.02 48.58 46.76 43.73 45.64 44.89 50.00 47.50 
Run 2 39.72 45.64 38.88 41.76 39.72 45.27 43.34 44.50 40.95 44.12 44.12 38.88 46.02 39.72 43.73 42.95 39.30 46.76 
Run 3 47.13 38.04 39.30 43.73 47.50 43.73 46.76 47.86 46.39 50.35 45.27 47.86 43.34 46.39 42.95 46.02 38.88 44.50 
Run 4 39.72 40.54 43.73 37.18 37.61 42.95 41.76 47.13 40.95 43.34 48.58 43.34 46.39 34.09 47.13 45.27 43.73 43.34 
Run 5 43.73 47.13 42.95 44.89 40.54 45.27 37.61 40.54 45.64 50.00 48.22 44.89 46.39 47.50 46.02 50.70 46.02 44.50 
Run 6 38.88 39.30 38.88 45.64 40.95 46.39 48.94 42.55 44.12 44.50 42.55 40.13 46.39 50.00 51.04 48.58 46.39 43.34 
Run 7 38.88 36.31 39.30 41.35 45.27 47.86 46.02 44.50 39.30 47.50 42.95 46.02 42.55 53.40 46.02 45.27 44.89 42.55 
Run 8 41.35 38.04 42.16 40.13 42.16 45.64 40.13 38.04 40.54 40.54 44.12 41.76 40.13 48.58 47.13 45.64 48.22 44.50 
Run 9 42.95 40.95 44.50 43.34 42.55 41.35 39.30 43.73 42.55 50.00 47.13 44.50 46.76 44.12 44.12 44.89 52.73 47.13 
Run 10 44.50 40.54 36.75 37.61 41.76 43.34 43.34 40.13 44.50 47.86 50.00 52.06 47.13 45.64 45.64 42.95 43.34 44.12 
Run 11 43.34 38.88 40.13 40.13 42.16 46.39 43.34 51.38 42.95 49.30 47.50 46.39 47.13 47.50 43.73 42.16 44.50 45.27 
Run 12 39.72 40.95 39.72 39.72 39.72 40.13 47.50 40.95 45.64 44.50 45.64 44.12 45.64 40.54 44.50 44.89 46.76 50.00 
Run 13 46.76 40.95 41.76 44.12 44.50 39.30 44.12 47.13 46.39 46.39 44.12 43.73 50.70 45.27 38.04 45.64 46.76 40.54 
Run 14 44.89 39.30 46.39 39.72 39.30 45.27 46.76 47.86 45.27 44.50 45.27 52.73 47.50 46.39 44.50 47.13 48.22 44.89 
Run 15 46.02 40.54 46.02 38.46 38.04 36.75 40.95 40.13 44.50 47.86 46.76 38.04 44.50 50.35 50.70 46.02 48.58 49.30 
Run 16 45.27 41.35 42.55 41.35 43.73 47.86 42.95 42.16 47.50 46.76 44.50 41.35 43.34 50.35 46.39 40.13 46.76 46.02 
Run 17 39.30 44.50 46.39 40.13 38.04 44.89 44.12 42.16 40.54 49.65 38.46 48.22 45.27 49.65 45.64 42.95 42.95 42.16 
Run 18 38.04 44.89 40.54 44.12 41.35 37.61 39.72 42.55 46.02 42.95 53.07 44.12 45.27 50.70 42.55 40.54 48.58 42.55 
Run 19 43.34 42.55 41.35 40.54 44.12 44.50 47.13 41.76 44.12 48.58 40.54 43.34 46.76 49.30 48.22 46.76 43.34 45.64 
Run 20 39.72 40.13 38.88 43.34 42.16 47.13 40.95 48.58 41.35 48.58 49.65 46.02 37.61 42.16 48.22 43.34 48.22 48.58 
Run 21 41.76 38.88 47.13 44.89 44.12 45.27 40.54 44.50 46.02 46.02 44.12 39.72 45.64 50.35 45.64 46.02 44.50 44.89 
Run 22 40.13 39.30 41.76 41.35 45.64 37.61 39.72 40.95 39.30 46.02 44.50 47.86 47.50 44.12 48.94 44.50 44.50 46.02 
Run 23 38.04 43.73 42.16 44.12 44.50 44.89 42.55 44.12 45.27 40.13 47.86 42.16 50.70 41.76 47.86 42.55 45.64 50.70 
Run 24 37.61 43.34 37.61 40.13 44.12 42.55 44.12 41.35 42.16 41.35 45.64 46.76 41.76 44.50 48.58 44.12 46.02 43.34 
Run 25 39.72 34.99 40.13 41.76 42.55 38.04 43.73 42.95 40.95 44.89 44.12 47.50 46.39 47.13 46.39 41.76 46.39 42.16 
Run 26 46.39 39.30 41.76 34.99 42.16 44.50 47.86 40.13 41.76 43.73 43.73 42.95 46.76 48.58 44.12 45.27 47.50 48.22 
Run 27 37.18 45.64 37.61 46.02 42.16 43.34 46.76 47.13 46.02 47.13 44.12 48.58 46.39 46.76 47.13 37.18 48.58 44.12 
Run 28 40.13 42.95 42.95 42.55 38.04 44.89 45.64 43.73 43.73 45.27 47.86 47.86 44.89 42.55 43.34 44.12 43.34 44.50 
Run 29 38.88 38.88 32.72 41.76 39.30 42.16 44.50 42.95 40.54 40.54 45.64 46.76 47.86 44.12 47.13 40.54 52.06 46.39 
Run 30 41.76 42.95 36.31 45.64 41.35 44.89 41.76 40.13 41.76 44.12 44.12 44.50 50.70 40.95 47.13 45.64 42.16 43.34 
Mean 41.59 41.06 41.02 41.77 42.04 43.41 43.56 43.66 43.31 45.65 45.54 45.02 45.81 45.87 45.94 44.28 45.96 45.23 
Std dev 0.0293 0.0279 0.0321 0.0265 0.0255 0.0304 0.0286 0.0317 0.0234 0.0293 0.0282 0.0351 0.0278 0.0405 0.0256 0.0264 0.0312 0.0243 
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TABLE B-42: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.2. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.72 40.54 38.04 40.54 44.12 46.02 47.50 40.95 43.73 40.54 47.86 43.73 45.64 43.34 43.73 43.73 45.27 40.95 
Run 2 39.72 42.16 38.88 47.50 47.86 39.72 45.64 42.95 46.39 47.86 42.95 42.16 43.73 38.88 44.89 40.13 39.72 40.54 
Run 3 40.54 40.54 43.73 39.72 46.02 46.02 41.35 46.02 46.76 46.02 46.02 42.55 47.50 42.95 39.72 39.30 36.75 40.95 
Run 4 41.76 41.76 38.88 44.50 41.35 46.76 47.86 43.34 41.76 48.94 45.27 44.89 50.00 43.73 46.76 43.73 37.61 40.95 
Run 5 40.13 42.55 43.34 43.73 42.55 44.50 44.89 45.64 47.13 39.30 47.86 41.76 38.46 44.89 46.76 40.95 41.35 39.72 
Run 6 39.30 42.95 46.02 39.30 40.54 43.34 42.95 44.12 45.27 44.12 43.34 48.58 44.12 40.54 44.12 44.12 42.55 42.95 
Run 7 40.54 43.73 46.39 40.95 37.18 42.55 39.72 47.86 44.12 47.86 40.13 44.50 47.13 42.55 42.55 43.34 42.95 39.30 
Run 8 45.27 46.76 44.89 41.76 47.50 47.50 40.13 40.54 41.76 41.76 37.18 49.65 45.64 42.55 46.76 44.12 44.89 45.27 
Run 9 41.35 38.88 39.30 43.73 47.86 45.64 43.34 46.76 42.95 40.13 46.02 46.02 42.16 41.35 41.76 43.73 40.13 39.72 
Run 10 43.34 46.39 46.76 42.16 48.94 49.65 40.13 44.50 42.55 44.89 42.95 47.13 46.39 50.00 42.95 43.34 44.12 42.95 
Run 11 39.30 46.76 40.13 42.95 46.02 39.30 47.50 44.12 42.95 40.95 42.95 44.12 44.50 45.64 42.55 46.39 45.64 44.50 
Run 12 42.55 46.02 45.27 47.86 44.50 47.13 50.35 41.76 41.35 42.55 42.95 50.35 41.35 42.16 39.30 43.34 41.35 45.27 
Run 13 35.43 44.50 39.30 39.72 41.76 48.58 45.64 40.13 48.22 43.34 45.64 43.34 44.12 42.95 40.95 38.46 46.76 40.95 
Run 14 46.76 45.27 40.13 44.89 42.95 38.88 42.16 44.89 42.16 44.50 46.76 47.86 42.95 44.89 45.64 36.31 41.35 40.54 
Run 15 38.46 38.04 35.87 44.50 47.86 43.34 47.50 44.12 48.22 46.39 44.12 38.04 45.27 45.64 46.02 45.27 41.35 46.39 
Run 16 41.35 44.12 44.50 43.34 46.76 49.65 46.39 50.00 46.02 40.95 43.34 44.89 40.95 45.64 37.61 43.73 44.50 44.12 
Run 17 39.72 45.27 42.55 50.70 44.89 45.27 41.76 48.94 41.76 44.50 50.00 42.95 42.16 42.16 43.73 41.35 41.76 39.72 
Run 18 45.64 40.95 43.34 45.27 44.50 42.55 43.73 49.65 44.12 42.95 43.34 38.04 42.95 44.12 39.30 40.95 42.95 35.87 
Run 19 42.16 47.13 44.89 40.54 47.86 47.86 47.13 44.12 45.64 43.34 43.73 42.95 49.30 44.89 44.50 43.73 40.95 43.73 
Run 20 34.54 40.54 41.76 41.35 45.27 38.04 42.16 44.12 43.34 38.88 47.13 45.64 40.54 45.27 42.16 37.61 36.75 40.95 
Run 21 38.04 42.95 45.27 41.35 40.95 45.64 50.00 47.86 41.76 46.76 42.55 44.12 38.88 43.73 46.76 33.18 40.54 49.30 
Run 22 43.34 44.12 42.16 39.72 47.13 38.88 45.64 44.50 40.95 42.55 42.55 37.61 40.13 47.50 47.86 50.00 42.95 40.13 
Run 23 38.46 38.46 44.50 38.88 43.34 44.89 47.86 42.16 42.16 46.76 39.30 44.12 42.55 45.64 40.13 41.35 38.88 46.02 
Run 24 42.55 39.30 48.22 38.46 45.64 47.50 44.89 42.55 47.50 38.46 37.61 45.27 39.72 43.73 45.27 49.30 45.64 43.34 
Run 25 44.89 44.12 39.30 42.95 46.02 44.89 45.64 41.35 44.89 46.02 45.27 42.95 40.54 42.95 40.95 40.95 36.75 42.16 
Run 26 38.88 47.13 39.72 43.34 35.43 42.16 46.76 50.70 38.46 44.89 42.16 46.39 44.89 42.55 45.64 36.31 45.27 43.34 
Run 27 35.87 41.76 46.02 44.50 51.38 39.72 49.30 41.76 43.34 44.89 39.30 40.54 42.95 50.00 38.88 50.35 39.30 36.75 
Run 28 36.31 43.34 44.89 45.64 43.73 42.95 42.95 46.76 42.55 47.86 41.76 44.12 41.35 40.95 47.50 44.89 47.86 41.35 
Run 29 42.16 44.12 42.55 46.39 47.50 44.12 46.02 42.55 46.76 44.89 45.64 35.43 45.27 47.13 44.50 45.64 47.86 40.54 
Run 30 43.73 42.55 46.76 37.18 49.30 38.88 44.89 45.27 43.73 44.12 37.61 43.73 43.34 42.55 43.73 44.50 45.27 40.13 
Mean 40.73 43.09 42.78 42.78 44.89 44.06 45.06 44.67 43.94 43.90 43.44 43.78 43.48 44.03 43.43 42.67 42.30 41.95 
Std dev 0.0301 0.0260 0.0311 0.0305 0.0346 0.0337 0.0287 0.0284 0.0237 0.0281 0.0314 0.0339 0.0285 0.0247 0.0281 0.0387 0.0317 0.0281 
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TABLE B-43: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.3. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 43.73 45.64 43.73 48.94 47.50 47.50 47.86 41.76 42.55 43.73 47.50 49.65 52.40 46.02 41.76 47.86 46.39 51.04 
Run 2 44.50 50.70 49.30 48.22 47.50 53.40 43.73 55.34 51.38 47.50 49.65 42.16 48.58 50.00 45.27 44.89 45.27 47.13 
Run 3 46.39 41.76 46.76 45.64 52.40 48.58 51.04 46.02 47.50 45.64 46.02 49.65 42.95 44.12 56.29 44.50 47.13 45.27 
Run 4 43.34 45.27 47.13 45.27 48.22 44.12 47.50 42.16 48.94 44.50 44.12 52.40 50.70 45.64 46.39 44.50 45.27 46.76 
Run 5 39.72 43.73 40.54 46.39 47.13 45.27 46.39 43.73 40.13 43.34 49.65 46.39 49.30 51.38 47.86 48.94 41.35 46.76 
Run 6 40.54 43.73 45.64 48.22 47.50 48.58 44.89 45.27 47.13 44.50 45.27 41.76 44.50 43.73 41.76 45.27 44.89 45.64 
Run 7 45.64 43.34 48.58 54.38 46.02 46.39 46.02 47.86 47.86 48.58 46.02 50.35 43.73 46.02 50.35 49.65 47.50 46.02 
Run 8 39.72 43.73 48.22 43.34 46.76 42.95 51.38 46.02 52.06 44.50 41.35 46.76 46.02 44.89 52.06 42.16 48.94 43.73 
Run 9 46.02 54.05 48.58 47.13 46.39 46.39 50.35 41.76 46.76 44.89 50.00 44.89 46.39 47.13 45.64 44.12 45.64 48.58 
Run 10 48.22 48.94 50.70 50.35 46.76 46.76 43.73 46.39 45.64 42.95 44.50 42.55 49.30 52.73 50.35 47.50 46.76 46.02 
Run 11 47.50 45.64 50.35 45.64 48.58 40.95 46.02 46.39 44.12 43.73 46.76 48.58 46.39 49.65 38.46 51.04 42.95 46.02 
Run 12 44.50 41.35 46.76 43.34 46.76 48.22 48.22 47.13 45.64 46.39 46.76 47.86 49.30 47.13 50.35 48.58 50.70 43.73 
Run 13 40.54 50.00 45.64 48.22 42.95 50.70 47.50 42.55 41.35 47.13 51.38 46.02 49.30 50.35 50.35 43.73 42.95 45.64 
Run 14 42.16 47.50 49.30 40.95 50.35 42.95 44.50 45.27 44.89 44.50 48.58 46.39 49.30 50.70 44.50 51.72 44.89 45.64 
Run 15 39.72 50.70 47.13 48.22 47.86 47.50 46.02 46.76 44.12 49.65 51.72 38.88 48.22 46.02 50.70 48.94 47.50 47.86 
Run 16 38.46 46.39 42.95 46.39 50.70 46.39 46.02 48.22 45.27 54.70 46.39 49.30 49.30 51.72 44.89 48.58 50.00 49.65 
Run 17 40.95 42.95 44.50 48.58 42.95 49.65 47.50 46.76 44.12 46.02 47.86 49.30 52.40 48.58 51.04 55.34 43.73 54.05 
Run 18 39.30 44.12 45.27 49.30 48.22 44.50 50.00 49.30 42.95 41.35 48.58 42.55 47.50 52.06 44.50 46.02 42.95 47.13 
Run 19 45.64 42.16 46.76 41.76 40.13 48.58 46.76 46.39 46.02 40.54 47.13 52.73 46.39 48.94 49.30 51.04 41.35 42.55 
Run 20 44.12 47.13 46.39 48.58 46.02 44.50 45.27 44.12 50.35 49.30 47.50 47.86 48.58 48.58 42.55 44.89 46.76 47.13 
Run 21 45.64 40.54 49.65 45.27 47.13 46.02 50.70 43.34 41.35 46.39 47.13 46.76 49.65 44.50 43.34 47.13 52.06 46.76 
Run 22 40.54 45.64 45.64 42.95 45.27 46.39 49.65 51.04 49.30 46.76 48.58 53.07 51.38 47.50 45.27 44.50 48.22 48.22 
Run 23 41.35 40.54 47.13 41.76 47.50 44.89 46.39 44.50 43.34 43.73 45.64 49.65 47.50 53.40 49.65 47.50 48.22 48.22 
Run 24 43.34 43.34 50.70 47.86 49.30 44.12 45.27 46.76 47.86 49.65 52.40 47.86 46.39 46.39 48.58 46.76 45.27 45.27 
Run 25 47.50 51.72 46.02 48.22 43.34 48.58 47.50 48.22 52.06 44.89 51.38 44.12 53.73 44.12 51.38 42.55 46.76 46.76 
Run 26 45.27 40.95 44.50 45.27 48.58 43.73 51.72 44.50 42.55 45.64 51.72 48.22 48.22 49.30 47.13 49.30 44.50 50.35 
Run 27 47.13 45.64 46.76 48.58 44.89 45.64 46.02 50.70 45.64 43.73 47.50 49.65 47.13 41.35 48.58 47.86 49.65 48.58 
Run 28 42.16 47.50 47.13 45.64 44.12 48.58 46.02 51.04 49.65 46.39 49.65 50.00 47.50 46.39 43.34 47.86 49.30 49.65 
Run 29 44.50 44.89 39.30 43.34 44.50 50.00 46.39 48.94 49.30 52.40 44.50 46.76 53.73 48.58 47.50 51.72 47.13 51.72 
Run 30 41.76 49.30 46.39 39.72 47.86 49.30 51.04 48.58 47.50 45.27 46.02 47.50 47.50 47.86 46.39 46.39 39.30 48.94 
Mean 43.33 45.63 46.58 46.25 46.77 46.70 47.38 46.56 46.24 45.94 47.71 47.32 48.44 47.83 47.18 47.36 46.11 47.36 
Std dev 0.0278 0.0348 0.0264 0.0311 0.0249 0.0264 0.0230 0.0304 0.0320 0.0298 0.0256 0.0333 0.0260 0.0291 0.0376 0.0297 0.0291 0.0244 
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TABLE B-44: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.4. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 44.12 48.58 45.64 49.65 46.02 44.50 47.50 49.30 46.02 50.70 48.58 49.30 47.86 48.94 47.86 48.22 50.35 47.50 
Run 2 43.73 46.76 46.39 47.13 50.35 51.04 45.64 48.22 51.04 49.30 48.94 51.72 48.94 46.39 50.70 54.70 46.39 55.66 
Run 3 44.89 48.58 48.94 47.50 53.40 50.35 43.73 50.35 46.02 46.39 50.00 48.58 48.94 50.00 47.13 52.40 48.58 53.40 
Run 4 44.50 44.89 46.76 45.27 50.35 48.94 47.86 54.38 53.07 50.70 50.00 52.40 50.00 50.00 47.86 46.76 50.00 49.30 
Run 5 41.35 46.02 45.64 47.86 47.50 48.58 48.58 51.38 52.40 48.58 48.94 46.02 48.94 49.65 49.65 51.72 45.64 46.02 
Run 6 43.73 44.12 47.86 47.86 44.89 48.94 50.35 48.22 47.50 42.95 50.00 47.50 52.06 46.39 49.65 47.13 40.54 46.02 
Run 7 40.95 50.00 48.58 44.12 44.50 49.30 49.65 52.06 46.02 51.72 46.76 49.30 51.04 51.04 52.73 48.94 51.72 47.50 
Run 8 44.12 46.39 45.64 42.55 52.06 50.00 46.76 47.86 48.58 43.73 47.50 51.04 48.94 51.72 52.73 50.00 48.22 50.70 
Run 9 44.50 50.00 42.16 47.50 45.64 49.30 46.39 50.35 49.30 47.86 39.30 50.00 48.94 50.70 47.50 48.94 46.02 44.89 
Run 10 47.50 50.35 45.64 45.27 44.50 48.94 53.40 48.94 48.58 48.94 50.00 45.27 50.35 47.86 47.86 50.00 50.70 54.05 
Run 11 46.76 45.64 47.50 47.86 44.89 49.30 49.30 54.70 42.16 51.72 52.06 49.30 50.70 51.72 53.07 47.86 47.13 52.06 
Run 12 46.39 49.30 44.89 35.43 52.73 45.64 50.70 45.27 40.54 50.35 48.94 48.94 51.04 50.35 46.02 44.89 48.22 50.35 
Run 13 51.72 49.65 48.94 44.12 46.76 44.50 54.38 47.86 52.73 44.89 47.50 51.04 48.94 48.94 47.50 51.38 47.50 51.04 
Run 14 50.00 51.04 47.86 45.27 50.00 52.06 55.02 48.94 51.04 44.89 40.13 52.40 48.22 48.22 46.76 45.27 47.50 51.04 
Run 15 50.70 48.22 47.13 49.65 44.89 46.76 50.70 49.30 46.76 49.30 50.70 46.76 49.30 49.30 48.22 46.02 44.89 50.35 
Run 16 46.76 48.22 46.02 38.88 47.86 48.58 51.04 54.05 50.00 46.02 52.06 50.00 47.13 47.13 52.40 49.65 45.64 46.76 
Run 17 45.27 50.00 44.89 50.70 46.39 48.22 43.34 49.30 53.40 49.30 47.50 47.13 47.13 44.50 49.65 40.95 55.02 49.65 
Run 18 42.95 46.02 47.13 43.34 53.73 50.35 47.86 47.86 52.40 44.50 49.30 46.02 46.76 48.94 49.30 50.00 46.39 50.00 
Run 19 45.64 47.86 44.12 41.35 49.30 44.12 49.65 52.73 52.06 53.07 48.94 48.58 48.22 50.00 48.22 48.94 46.39 49.65 
Run 20 40.54 42.95 46.02 45.27 49.30 51.38 47.86 48.22 47.50 42.16 53.73 48.58 49.30 48.22 51.04 48.58 48.22 52.40 
Run 21 48.22 42.55 52.40 45.64 52.73 50.70 49.65 47.86 50.35 44.12 51.04 43.73 52.40 51.04 48.22 51.72 44.50 51.38 
Run 22 49.65 46.39 42.55 44.50 48.58 45.64 45.27 48.94 52.06 49.30 49.65 48.58 50.35 52.73 46.02 51.04 50.35 40.54 
Run 23 49.30 41.76 51.04 55.66 47.13 49.65 53.73 52.40 51.72 51.04 55.34 54.05 49.30 50.70 47.13 48.94 47.86 48.58 
Run 24 46.76 44.50 46.76 44.12 46.39 52.06 42.55 47.13 51.04 45.27 51.04 46.39 46.02 45.64 49.65 48.58 46.76 48.22 
Run 25 47.50 46.76 45.64 46.76 47.50 52.06 48.22 48.94 51.04 43.34 49.65 50.70 49.30 51.04 45.64 51.04 45.27 46.39 
Run 26 47.86 43.34 48.22 45.64 53.07 51.72 43.73 50.00 46.76 50.35 48.94 44.89 51.72 52.40 51.72 49.30 48.22 46.76 
Run 27 44.89 46.02 50.70 49.65 48.58 49.30 46.02 53.40 50.70 45.64 51.72 44.50 52.06 48.58 49.65 53.07 47.86 48.22 
Run 28 48.22 42.55 50.35 45.64 49.65 53.07 56.91 51.04 50.70 48.94 48.22 52.06 44.12 48.58 50.70 44.89 48.22 50.70 
Run 29 42.55 47.86 47.86 44.89 47.13 48.94 45.64 49.30 47.13 44.12 47.86 53.73 48.58 44.89 47.86 46.39 51.04 50.00 
Run 30 47.86 48.22 47.86 50.00 44.50 46.02 46.02 50.35 44.12 46.02 52.40 53.40 45.27 48.94 47.50 47.50 48.22 44.50 
Mean 45.96 46.82 47.04 45.97 48.34 49.00 48.58 49.96 49.09 47.51 49.22 49.06 49.06 49.15 49.00 48.83 47.78 49.12 
Std dev 0.0284 0.0257 0.0229 0.0369 0.0289 0.0239 0.0356 0.0227 0.0322 0.0303 0.0317 0.0280 0.0196 0.0209 0.0208 0.0279 0.0261 0.0308 
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TABLE B-45: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.5. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 44.50 48.94 50.00 51.04 51.38 46.39 50.00 49.65 44.89 49.30 51.72 51.04 50.70 50.00 53.07 50.00 47.50 48.58 
Run 2 43.73 47.13 48.94 45.64 52.06 48.94 51.04 52.73 53.40 50.00 47.50 49.30 56.29 54.05 55.34 48.22 51.72 53.73 
Run 3 45.64 49.30 50.70 51.04 45.27 49.30 52.06 53.07 47.13 54.70 49.65 50.35 44.89 50.35 48.58 52.73 50.35 48.94 
Run 4 53.40 53.40 47.86 44.89 47.13 53.40 45.64 50.00 46.76 47.86 49.30 50.35 48.58 49.30 53.40 47.86 43.73 42.55 
Run 5 50.35 48.22 45.27 46.02 48.58 52.73 52.40 47.50 48.94 52.06 49.30 52.73 48.58 49.30 48.94 47.13 50.70 52.40 
Run 6 48.94 48.94 43.34 46.39 47.50 48.58 48.58 50.70 49.30 50.70 48.58 51.04 50.00 50.70 47.13 53.40 46.02 50.00 
Run 7 46.76 43.73 44.12 51.04 47.13 44.89 47.50 48.58 48.22 43.73 50.70 51.04 49.30 52.40 54.05 53.73 55.02 46.39 
Run 8 45.64 44.89 48.94 50.70 48.94 48.22 47.86 52.73 46.76 51.04 46.76 50.70 51.04 54.70 51.38 50.70 50.35 52.06 
Run 9 47.50 44.89 48.94 46.76 50.70 50.00 50.00 48.94 54.05 47.13 44.89 53.40 47.13 53.07 48.58 55.34 47.86 47.50 
Run 10 48.22 50.70 51.72 48.94 53.40 44.50 49.65 50.00 50.00 50.35 52.40 52.06 49.65 55.02 50.00 54.05 48.94 44.89 
Run 11 45.64 47.50 48.58 50.70 46.02 47.50 46.76 48.58 49.65 49.65 51.38 53.40 50.35 51.04 48.94 46.39 44.89 46.02 
Run 12 46.02 46.39 53.07 50.70 52.73 45.64 46.76 48.94 48.22 49.30 55.98 53.73 46.76 55.66 46.39 46.76 51.04 50.00 
Run 13 48.58 42.55 44.89 47.50 55.02 49.30 50.70 53.07 48.94 52.40 42.16 52.40 49.30 51.72 46.39 47.86 46.39 53.73 
Run 14 47.13 46.76 47.86 47.86 44.50 45.27 51.04 51.04 49.65 50.35 48.58 49.65 56.29 48.22 51.04 53.40 51.72 53.73 
Run 15 47.50 46.39 45.64 49.30 42.95 47.13 48.94 50.00 47.86 45.64 50.00 46.39 49.65 47.50 46.39 50.00 47.86 53.07 
Run 16 51.04 49.30 44.50 45.64 49.65 51.38 48.22 52.06 47.13 47.86 47.13 57.22 51.04 47.13 50.00 48.94 49.65 49.30 
Run 17 47.86 49.65 47.13 45.27 47.50 50.70 52.06 52.06 43.34 48.58 49.65 52.40 48.22 51.04 50.35 44.12 50.70 51.04 
Run 18 48.94 45.64 48.94 47.13 48.94 48.58 48.22 46.39 42.55 52.40 43.73 46.39 50.35 48.58 48.94 55.34 52.73 47.86 
Run 19 47.13 46.76 47.13 48.94 53.73 50.00 50.00 49.30 45.64 53.07 49.65 49.30 48.22 49.30 48.22 55.02 48.58 48.94 
Run 20 45.64 48.22 43.73 43.73 47.13 50.00 44.50 48.22 53.40 47.13 49.30 50.35 48.58 53.73 49.30 44.12 53.07 52.40 
Run 21 46.76 51.04 48.58 49.30 46.02 46.02 50.00 47.86 43.73 43.34 40.13 50.00 46.39 53.73 48.94 43.73 46.39 48.94 
Run 22 42.55 46.76 47.50 48.94 51.04 54.70 48.58 52.40 46.02 44.89 46.76 48.22 48.22 51.72 52.06 50.35 47.13 51.38 
Run 23 47.13 48.94 50.35 48.22 51.04 46.76 43.73 47.86 48.58 57.22 42.16 50.70 51.04 48.58 52.40 46.76 52.40 54.05 
Run 24 47.13 49.30 47.50 44.89 46.76 40.54 51.04 52.40 51.38 43.73 48.58 46.02 52.73 53.73 47.86 53.40 48.58 47.50 
Run 25 49.65 45.27 50.70 46.76 46.76 46.02 44.12 44.50 46.76 49.30 49.30 46.76 48.22 51.72 45.27 44.12 46.02 47.86 
Run 26 49.65 46.76 51.04 42.16 49.30 53.07 44.50 52.06 53.40 46.02 48.22 47.86 49.30 52.06 46.02 51.38 48.22 47.86 
Run 27 44.50 44.89 50.00 46.39 48.94 40.95 52.06 48.22 47.86 47.86 52.40 49.30 46.02 52.40 45.27 50.70 51.04 50.00 
Run 28 46.02 52.06 38.46 50.00 47.13 51.04 48.94 47.50 47.86 53.73 50.00 52.06 48.58 51.72 48.58 45.64 46.76 51.38 
Run 29 48.58 51.38 46.76 46.76 50.00 47.13 46.76 45.27 53.40 47.86 45.64 47.50 54.38 50.00 54.70 48.58 53.73 48.94 
Run 30 50.00 49.65 45.27 47.50 48.22 54.70 43.34 50.35 50.35 51.38 46.02 48.58 51.72 50.70 53.40 49.65 52.73 51.72 
Mean 47.41 47.84 47.58 47.67 48.85 48.45 48.50 49.73 48.51 49.29 48.25 50.34 49.72 51.31 49.70 49.65 49.39 49.76 
Std dev 0.0227 0.0251 0.0299 0.0232 0.0281 0.0346 0.0263 0.0230 0.0300 0.0329 0.0331 0.0250 0.0262 0.0223 0.0281 0.0353 0.0279 0.0279 
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TABLE B-46: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.6. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 48.94 51.72 50.70 50.35 43.34 49.65 50.70 42.95 47.86 48.22 57.53 50.00 51.04 48.22 50.00 47.50 44.89 48.22 
Run 2 43.73 45.64 51.38 51.38 48.22 48.22 48.58 47.13 51.72 52.73 52.40 49.30 48.94 43.34 52.06 54.70 51.38 54.05 
Run 3 43.73 48.22 46.39 49.65 46.39 47.13 44.50 47.86 53.40 50.35 54.05 49.65 51.72 49.65 47.86 55.34 41.35 50.70 
Run 4 41.35 47.13 47.86 45.64 44.89 47.50 52.73 49.30 48.58 51.04 51.72 55.02 47.50 53.07 44.12 48.94 40.95 46.76 
Run 5 47.86 46.39 47.86 47.86 50.35 48.58 45.27 50.70 47.13 51.72 50.70 55.02 48.22 53.07 53.40 44.50 48.94 48.58 
Run 6 44.89 45.64 47.13 48.58 43.73 48.94 47.13 44.50 51.04 47.86 49.30 48.22 46.39 48.58 54.70 49.65 42.95 44.12 
Run 7 44.50 50.35 53.07 52.73 47.13 50.35 49.65 43.34 48.22 50.00 53.40 53.40 46.76 48.94 48.94 46.76 51.38 47.13 
Run 8 50.00 47.13 48.94 47.13 54.38 45.64 51.72 44.50 47.13 46.76 50.00 50.35 48.94 45.27 45.64 46.39 51.72 44.12 
Run 9 51.04 46.76 48.22 42.16 48.94 50.35 47.86 50.00 43.73 46.02 54.70 48.22 53.07 45.64 51.04 47.13 49.65 53.73 
Run 10 50.00 43.34 47.13 46.76 47.86 48.94 51.72 52.40 49.65 48.94 46.76 47.50 50.70 46.76 48.94 51.72 46.76 51.04 
Run 11 45.64 48.22 45.64 46.76 46.76 49.30 48.22 47.86 52.06 49.65 51.04 44.12 48.22 54.05 47.86 51.38 52.06 51.38 
Run 12 43.34 46.02 47.50 48.22 42.95 48.58 51.04 41.35 53.73 53.40 52.73 47.86 49.30 54.05 50.35 51.38 47.86 42.95 
Run 13 47.13 41.35 41.35 46.76 44.12 51.04 47.86 51.04 51.04 50.70 45.64 56.60 49.65 48.94 43.34 48.58 46.39 55.34 
Run 14 47.86 44.50 48.22 47.13 51.38 47.86 44.50 46.39 45.64 45.64 50.70 47.86 49.65 48.58 50.00 53.40 46.02 46.02 
Run 15 52.73 47.13 48.58 48.58 50.70 55.34 50.35 50.35 47.13 50.35 47.13 50.35 49.30 52.06 42.55 47.13 49.65 49.30 
Run 16 47.13 44.12 47.50 46.39 50.70 50.00 45.64 51.38 50.70 50.35 50.35 51.72 50.35 47.86 47.50 52.73 47.13 44.50 
Run 17 52.06 46.02 46.76 42.95 46.02 46.02 46.39 51.04 47.50 49.30 48.58 49.30 50.35 52.40 49.30 48.58 46.02 42.95 
Run 18 42.16 43.34 44.12 43.34 47.50 45.64 53.73 48.22 42.95 48.58 51.72 53.07 44.50 41.76 39.30 47.86 51.04 50.00 
Run 19 44.12 44.50 46.76 49.65 42.16 55.02 49.30 44.12 48.94 48.58 43.34 52.06 53.73 47.86 48.22 52.06 46.02 47.13 
Run 20 46.39 51.04 47.50 48.94 52.73 48.58 47.13 48.22 50.00 52.73 53.40 48.58 49.65 49.65 48.22 51.72 46.76 48.22 
Run 21 50.00 46.76 46.39 49.30 50.70 46.76 47.50 52.40 48.58 51.04 52.06 51.72 47.50 51.72 52.06 50.70 51.38 50.35 
Run 22 42.16 48.58 48.58 47.13 48.22 46.76 52.40 46.76 47.50 45.27 46.02 56.60 48.58 54.05 45.27 54.38 56.29 48.58 
Run 23 46.02 46.76 43.34 50.35 42.16 46.02 47.86 49.30 54.38 53.40 49.30 55.34 44.89 46.76 49.30 51.72 52.06 38.88 
Run 24 46.39 51.04 42.55 43.34 54.38 49.65 53.07 44.12 49.65 51.72 51.72 53.40 47.13 42.16 49.30 49.30 46.76 52.06 
Run 25 50.00 41.76 49.65 47.86 46.39 50.00 53.40 48.22 49.65 47.50 50.70 49.65 46.76 53.40 48.58 50.00 46.02 50.00 
Run 26 48.22 50.00 46.02 46.39 49.30 48.22 48.58 46.02 48.94 50.00 47.86 54.38 51.72 48.94 53.07 49.30 40.95 46.02 
Run 27 46.76 48.58 50.35 48.22 44.50 45.64 48.94 45.64 51.38 51.04 50.00 50.70 47.50 44.89 54.05 54.70 46.76 52.06 
Run 28 39.30 46.76 48.58 54.05 49.65 47.86 45.64 46.02 42.95 49.65 51.04 47.50 52.73 46.76 52.06 43.73 49.30 53.40 
Run 29 46.02 46.39 45.27 51.38 47.13 43.34 46.02 42.55 45.27 45.64 49.30 48.22 45.64 45.64 48.58 47.50 46.39 43.34 
Run 30 44.12 46.02 45.27 39.72 49.65 52.73 48.58 51.04 48.22 52.40 51.72 47.13 46.02 46.76 50.35 49.65 52.40 51.04 
Mean 46.45 46.71 47.29 47.62 47.74 48.66 48.87 47.49 48.82 49.69 50.50 50.76 48.88 48.70 48.87 49.95 47.91 48.40 
Std dev 0.0323 0.0255 0.0248 0.0309 0.0333 0.0259 0.0267 0.0308 0.0289 0.0229 0.0289 0.0310 0.0235 0.0348 0.0344 0.0295 0.0362 0.0384 
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TABLE B-47: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.7. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 46.02 44.89 46.02 48.94 49.30 44.12 47.86 43.73 49.30 51.38 47.50 51.38 48.22 40.13 48.94 46.76 47.13 42.95 
Run 2 43.73 46.02 40.95 47.86 52.73 47.13 51.72 51.04 48.94 47.86 46.76 52.40 43.73 42.55 42.95 49.30 48.58 43.73 
Run 3 43.73 44.89 50.35 49.65 46.76 48.58 51.04 46.76 52.40 46.76 53.73 46.02 49.30 46.39 45.64 45.27 47.50 41.35 
Run 4 40.13 44.50 48.94 45.27 50.70 51.38 46.02 46.76 47.50 46.39 42.95 49.65 47.50 48.58 47.86 46.02 47.50 47.86 
Run 5 48.22 49.65 44.12 46.76 47.50 48.22 48.58 48.22 48.58 52.73 49.30 48.94 47.50 46.39 45.27 42.95 41.35 47.50 
Run 6 51.72 44.89 45.64 42.16 52.06 44.50 53.40 47.13 49.65 51.72 49.30 49.30 51.04 39.72 42.95 54.38 50.70 46.76 
Run 7 44.50 48.58 45.64 51.04 46.39 48.22 48.58 45.27 47.50 43.34 45.27 46.76 50.70 47.13 51.72 40.95 52.40 43.34 
Run 8 50.70 39.72 43.34 48.58 42.55 48.58 49.65 45.27 49.65 47.50 50.70 45.27 46.39 49.30 48.58 48.94 42.16 47.50 
Run 9 51.04 46.39 50.00 47.86 46.76 48.58 48.58 46.39 42.95 47.86 43.73 47.86 52.40 45.64 48.22 49.65 46.76 46.76 
Run 10 44.12 46.39 44.12 49.30 48.94 48.22 50.70 52.40 45.64 48.58 48.94 48.22 45.64 42.55 43.34 42.55 46.39 50.00 
Run 11 44.50 44.50 47.86 51.38 48.22 46.02 44.50 44.89 48.22 46.39 47.50 46.39 43.34 50.00 49.65 42.95 46.02 45.64 
Run 12 49.30 50.35 47.86 43.73 43.73 50.70 51.38 54.38 50.70 47.50 48.58 45.64 46.76 48.58 47.13 47.13 42.16 43.34 
Run 13 50.00 43.34 46.39 52.06 45.27 50.00 49.65 46.02 44.50 52.06 53.07 47.13 53.73 47.50 43.73 46.39 45.27 46.02 
Run 14 48.22 45.27 48.22 47.50 47.86 48.22 52.73 46.76 38.88 49.30 48.22 49.30 46.76 45.27 49.65 46.02 46.39 43.73 
Run 15 49.30 44.89 46.76 54.05 50.70 53.40 51.72 49.65 50.35 44.50 48.94 50.35 47.86 48.94 51.04 51.04 49.30 44.12 
Run 16 53.73 45.27 49.30 51.38 41.76 53.40 47.86 50.00 49.30 52.73 50.35 44.50 46.02 49.30 51.04 50.00 49.65 44.89 
Run 17 50.35 42.95 46.02 49.65 43.73 45.27 47.50 46.02 50.00 47.86 43.34 43.34 48.58 48.22 42.55 41.76 51.72 44.50 
Run 18 53.07 46.76 44.89 43.73 52.73 45.27 45.64 51.72 52.40 46.39 47.13 52.73 46.02 44.89 47.86 46.02 46.76 45.27 
Run 19 43.73 47.50 48.22 44.89 45.27 50.00 47.50 46.76 47.50 47.13 47.86 47.50 50.00 46.76 42.16 41.76 47.86 44.12 
Run 20 44.50 47.13 42.16 48.22 52.40 48.94 50.70 49.30 47.13 44.50 46.39 50.00 43.34 47.50 50.70 46.39 44.12 45.27 
Run 21 46.02 50.35 51.72 48.94 48.22 46.02 40.13 49.30 54.05 46.02 46.39 48.58 48.94 50.70 43.73 49.65 47.13 45.27 
Run 22 44.89 48.94 51.04 51.38 50.35 50.35 38.88 43.34 51.72 47.86 47.13 51.04 50.00 52.06 48.94 42.16 45.27 42.16 
Run 23 45.64 51.04 49.65 50.70 46.39 47.50 50.00 51.72 51.04 50.35 48.58 47.50 41.35 42.55 42.95 48.58 48.58 41.76 
Run 24 44.12 46.76 51.04 46.02 50.35 46.39 49.65 45.64 49.65 44.50 44.89 47.50 51.04 46.76 47.13 52.06 45.27 45.64 
Run 25 52.73 46.39 47.13 46.02 52.40 49.30 48.58 46.39 50.00 46.76 45.64 42.95 48.58 49.30 48.94 47.13 45.27 47.13 
Run 26 48.94 45.27 47.50 51.04 51.04 54.70 48.58 51.04 48.22 50.00 48.58 50.00 50.00 43.34 49.30 47.13 46.39 45.27 
Run 27 46.76 44.89 45.64 49.30 47.50 48.22 41.76 52.73 49.65 48.94 44.50 48.22 46.02 49.65 46.76 42.16 43.73 46.76 
Run 28 43.34 47.86 51.72 45.64 45.64 48.58 54.70 43.73 49.65 51.04 47.86 45.27 51.04 53.07 47.86 48.58 51.38 46.39 
Run 29 45.64 48.22 46.02 47.13 39.72 50.35 47.13 47.50 47.50 48.58 47.13 50.00 49.30 45.64 45.64 49.30 46.39 43.73 
Run 30 47.86 44.89 49.65 42.95 50.00 46.39 46.76 52.73 43.34 44.50 50.35 46.76 48.22 51.38 45.64 47.50 39.30 47.50 
Mean 47.22 46.28 47.26 48.10 47.90 48.55 48.38 48.09 48.53 48.04 47.69 48.02 47.98 46.99 46.93 46.68 46.61 45.21 
Std dev 0.0338 0.0240 0.0275 0.0291 0.0339 0.0253 0.0355 0.0300 0.0305 0.0255 0.0252 0.0244 0.0279 0.0328 0.0284 0.0334 0.0300 0.0197 
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TABLE B-48: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.8. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 47.50 46.76 45.27 43.73 45.64 43.34 44.89 44.89 42.55 44.50 45.27 45.27 48.22 45.27 48.58 53.73 45.64 46.76 
Run 2 46.76 47.13 44.50 50.70 45.64 50.70 48.58 44.89 44.89 42.95 44.12 45.27 46.76 45.27 46.76 47.86 44.50 46.76 
Run 3 46.76 51.38 45.27 50.35 44.12 45.27 42.95 47.86 46.76 44.89 42.95 45.64 44.12 42.55 45.27 47.50 42.55 45.64 
Run 4 54.05 46.76 48.94 45.64 46.02 44.50 45.27 50.00 45.27 44.89 44.50 43.73 48.58 49.65 51.72 41.35 46.76 48.22 
Run 5 46.02 46.39 44.12 52.73 44.50 45.64 43.34 43.34 47.86 44.12 48.58 46.02 44.12 46.39 41.35 51.38 49.30 52.40 
Run 6 41.76 45.27 47.50 48.22 50.35 48.94 44.12 46.76 45.64 42.95 46.39 46.39 47.13 47.50 48.94 43.73 47.13 48.22 
Run 7 48.58 52.06 47.50 54.38 51.38 40.95 40.95 46.02 48.94 47.13 43.73 47.86 40.95 44.50 46.02 44.12 47.13 44.12 
Run 8 43.73 46.76 40.54 44.50 48.22 50.35 39.72 52.73 46.02 44.89 43.73 50.70 49.30 51.38 44.89 46.02 47.50 47.86 
Run 9 55.66 51.38 43.34 50.70 48.58 47.50 42.16 47.86 44.89 48.94 51.38 46.02 45.27 50.00 48.58 48.94 48.94 47.86 
Run 10 41.76 47.86 46.39 48.58 43.34 46.76 45.64 47.86 43.34 45.64 46.02 47.50 40.95 43.73 42.95 45.64 48.94 45.64 
Run 11 41.35 48.94 51.38 38.46 48.94 40.54 47.50 48.58 49.30 48.22 49.65 48.58 45.64 47.86 49.30 43.34 47.50 45.27 
Run 12 50.70 43.73 46.76 47.50 48.58 46.76 43.73 43.73 51.38 47.86 41.35 47.13 44.89 43.73 41.76 48.94 42.95 42.95 
Run 13 48.22 51.04 44.50 48.58 47.86 43.34 47.86 42.95 45.64 47.50 40.95 49.30 49.30 52.06 47.50 52.40 46.76 50.35 
Run 14 42.95 44.50 45.27 44.50 47.50 46.02 40.13 46.39 51.38 47.13 45.27 44.50 47.50 43.73 47.13 49.30 47.50 48.58 
Run 15 42.16 44.89 49.30 40.95 45.64 50.35 47.86 47.50 47.50 49.65 50.35 44.50 49.65 46.39 53.40 53.07 41.76 49.30 
Run 16 47.13 47.86 45.64 45.64 51.04 46.76 44.89 40.13 47.86 45.64 41.76 44.50 47.13 45.27 50.35 43.34 48.22 47.86 
Run 17 47.13 45.64 47.13 46.76 47.86 48.58 46.76 46.02 46.76 47.50 44.89 47.50 45.64 43.73 46.02 44.89 44.12 52.06 
Run 18 40.54 43.34 42.16 47.50 45.64 46.02 46.02 47.13 44.12 45.27 43.73 44.89 46.76 42.16 42.95 47.50 42.16 48.22 
Run 19 48.22 42.55 43.73 47.13 44.89 43.34 44.12 42.95 46.02 45.27 44.12 46.39 49.65 50.35 48.22 46.76 44.89 49.30 
Run 20 44.89 51.38 46.02 44.89 50.35 50.00 44.12 49.30 39.72 46.76 47.50 47.50 44.50 43.73 48.94 46.39 48.94 43.34 
Run 21 47.86 47.50 42.16 40.95 47.50 44.89 42.95 44.50 48.22 48.58 41.76 49.30 49.30 47.86 43.73 50.35 47.50 47.50 
Run 22 47.13 42.16 42.55 44.89 47.86 47.50 51.38 44.12 43.34 45.27 42.95 41.76 48.58 44.50 46.39 46.76 45.27 45.64 
Run 23 41.76 47.13 50.70 46.39 47.50 44.50 46.39 42.55 47.50 43.73 46.39 46.02 47.13 42.95 47.86 48.58 46.76 46.76 
Run 24 48.58 41.76 47.50 48.22 44.12 47.13 47.50 44.89 44.12 47.50 45.27 47.50 47.13 51.04 47.13 45.27 44.50 49.30 
Run 25 46.39 48.58 47.50 54.38 51.38 44.12 42.95 45.27 47.50 50.35 47.13 46.76 46.76 47.13 51.38 53.07 45.64 46.02 
Run 26 47.86 48.22 47.50 47.86 50.00 48.94 46.39 43.73 42.55 49.30 48.22 46.76 49.30 45.27 50.00 44.12 51.04 46.02 
Run 27 52.06 44.12 42.95 49.30 47.50 49.30 45.27 43.34 52.06 44.89 45.64 49.30 46.76 52.06 46.76 47.86 51.04 44.12 
Run 28 52.06 53.07 48.94 44.89 40.95 44.12 51.38 44.12 46.39 47.50 49.65 47.50 41.76 45.27 51.04 51.38 45.64 47.50 
Run 29 46.39 46.39 50.70 47.50 48.22 40.54 48.22 46.02 39.30 49.30 46.76 43.34 47.13 44.89 45.64 45.27 47.13 44.12 
Run 30 47.50 50.00 41.35 45.64 42.16 43.73 47.13 46.39 44.12 45.27 44.50 55.02 45.64 52.73 48.22 48.22 44.12 46.02 
Mean 46.78 47.15 45.90 47.05 47.11 46.01 45.34 45.73 46.03 46.44 45.48 46.75 46.52 46.63 47.29 47.57 46.39 47.12 
Std dev 0.0370 0.0302 0.0282 0.0358 0.0265 0.0285 0.0282 0.0255 0.0300 0.0201 0.0267 0.0247 0.0239 0.0311 0.0290 0.0320 0.0238 0.0229 
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TABLE B-49: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM FOR 

OPTIMISING THE FOVEAL BLOCK THRESHOLD ON THE MNI_BY_5 TEMPLATE IN %. THE THRESHOLD VALUE TESTED HERE WAS 0.9. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 43.34 46.39 47.86 50.70 46.02 48.22 52.06 47.50 49.65 45.27 45.27 53.07 50.70 50.70 50.35 54.05 48.22 51.38 
Run 2 41.35 45.27 47.13 45.27 43.73 47.50 47.86 50.70 50.00 47.13 50.70 50.00 50.00 52.40 45.64 50.00 46.76 52.40 
Run 3 42.55 45.64 50.35 46.76 45.64 48.58 47.50 42.16 50.35 48.22 49.65 55.02 53.73 51.72 55.98 51.04 53.07 50.00 
Run 4 42.55 40.54 50.70 46.76 51.38 47.50 47.50 52.06 47.50 50.35 51.04 49.65 50.70 47.50 49.65 47.50 51.38 54.38 
Run 5 47.50 42.55 47.50 47.50 46.02 50.00 48.22 49.30 51.38 53.07 53.73 49.65 47.50 50.00 52.06 45.27 53.07 54.70 
Run 6 51.04 43.73 47.86 50.35 44.50 50.35 48.58 49.30 48.22 43.73 52.73 48.94 49.30 53.07 54.38 50.35 48.22 51.38 
Run 7 48.22 45.64 46.02 51.72 50.35 48.94 47.86 47.86 52.06 47.13 49.30 47.13 48.58 55.02 51.72 44.89 52.06 46.39 
Run 8 42.95 51.38 44.50 43.73 49.30 47.50 50.35 46.76 50.00 53.40 50.35 52.73 49.30 53.40 49.65 47.86 50.70 55.34 
Run 9 47.13 45.64 49.65 44.12 49.30 50.70 45.64 46.39 51.38 51.04 52.73 52.73 55.98 51.72 52.73 46.39 45.27 51.38 
Run 10 42.16 44.12 47.86 50.00 52.06 51.72 54.70 49.65 47.50 51.04 48.22 52.73 48.58 49.30 52.73 53.73 49.65 51.04 
Run 11 44.89 43.34 48.94 47.86 49.30 46.02 48.94 48.22 53.40 48.58 53.40 46.39 52.73 45.27 51.38 50.35 49.30 50.70 
Run 12 43.34 50.70 46.76 48.22 50.70 54.70 43.34 53.40 50.00 50.70 48.94 50.35 50.00 48.22 52.06 52.40 56.60 49.65 
Run 13 44.50 48.94 47.50 50.70 44.50 50.35 49.30 48.58 43.73 52.73 50.35 47.50 53.07 50.00 55.02 52.40 52.06 50.00 
Run 14 42.16 46.39 43.34 46.76 48.22 52.06 48.58 50.35 51.72 47.13 45.27 47.50 48.22 53.07 50.35 48.22 48.22 51.72 
Run 15 42.95 42.55 47.86 48.58 47.50 51.38 44.50 50.35 49.65 47.50 54.05 50.35 48.94 53.40 50.35 48.94 50.00 51.04 
Run 16 44.12 45.27 47.50 48.22 49.30 47.86 42.55 46.39 53.73 48.58 49.30 44.12 50.00 50.00 44.50 50.00 55.66 52.06 
Run 17 46.39 47.50 46.39 43.73 50.70 49.65 42.16 51.72 51.38 48.58 45.64 47.50 46.39 50.70 52.73 52.73 47.13 50.00 
Run 18 45.27 44.50 46.02 48.94 50.00 49.30 47.13 43.73 46.02 52.40 52.06 51.72 48.58 51.72 48.94 50.00 51.38 46.02 
Run 19 45.64 46.76 48.22 41.76 49.65 48.58 43.34 47.50 50.70 48.94 48.94 51.38 50.70 53.40 50.35 47.13 49.65 50.35 
Run 20 39.72 48.94 45.27 47.50 48.22 48.58 47.86 42.95 47.86 47.86 53.40 52.40 44.89 49.30 55.34 49.30 48.58 50.35 
Run 21 46.02 48.22 44.89 50.00 47.86 51.72 48.94 48.22 51.04 46.76 46.02 47.86 47.86 49.30 51.72 51.04 51.38 52.40 
Run 22 44.50 49.65 46.02 46.76 50.35 50.35 49.65 45.27 46.39 44.12 47.86 50.70 52.06 46.39 53.40 52.40 52.06 51.04 
Run 23 51.72 45.64 44.89 46.39 47.50 46.76 47.13 51.38 52.73 49.65 54.38 50.70 47.86 50.35 54.05 50.00 52.06 51.04 
Run 24 42.95 45.27 45.64 42.95 46.02 47.86 44.50 52.06 49.30 47.86 44.89 53.40 55.02 52.40 48.22 49.30 54.38 50.35 
Run 25 52.06 43.34 46.39 42.55 47.86 47.13 48.58 44.50 46.02 49.30 51.72 57.53 54.38 46.39 48.22 52.06 45.27 52.40 
Run 26 44.12 40.13 50.70 54.38 48.94 49.65 49.30 51.38 49.65 45.64 50.00 45.64 52.73 49.65 54.70 55.02 53.40 51.72 
Run 27 44.89 46.76 46.76 45.27 48.58 49.65 51.04 50.00 47.86 46.02 50.00 46.39 52.40 53.40 52.06 52.73 53.07 54.05 
Run 28 46.76 42.95 44.12 50.70 48.58 51.38 49.65 47.13 46.39 46.02 50.35 48.22 51.04 52.73 53.73 52.06 51.38 52.73 
Run 29 44.50 46.02 48.58 53.07 55.34 50.70 50.70 47.50 51.72 46.02 49.65 46.02 50.70 55.98 54.05 47.50 50.00 46.39 
Run 30 46.02 46.02 48.58 50.70 52.73 47.86 52.73 47.13 52.40 48.94 51.04 51.38 52.06 47.86 47.50 52.73 54.70 51.04 
Mean 45.04 45.66 47.13 47.73 48.67 49.42 48.01 48.31 49.66 48.46 50.03 49.96 50.47 50.81 51.45 50.25 50.82 51.12 
Std dev 0.0289 0.0265 0.0187 0.0312 0.0253 0.0188 0.0293 0.0278 0.0242 0.0252 0.0268 0.0300 0.0255 0.0258 0.0278 0.0256 0.0281 0.0214 
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TABLE B-50: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITHOUT 

THE FOVEAL COLOUR ENCODING ON THE MNI_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 43.34 44.50 44.12 46.39 47.13 50.00 46.02 41.76 49.30 50.70 52.73 52.73 49.30 47.86 49.65 48.94 50.70 54.38 
Run 2 39.72 40.95 51.04 45.64 44.50 47.13 49.65 47.86 54.38 50.35 49.65 51.04 55.66 43.34 48.58 42.95 47.50 48.94 
Run 3 46.76 47.86 44.12 47.13 47.50 44.50 51.72 44.89 47.86 51.72 54.70 51.04 53.07 48.94 47.86 54.70 54.38 49.65 
Run 4 42.95 44.12 50.70 50.35 46.76 47.86 45.27 48.22 49.65 50.70 52.40 52.40 48.58 49.30 51.72 53.07 51.72 45.27 
Run 5 42.95 49.30 48.94 48.22 48.58 40.95 48.22 53.07 50.70 52.06 49.30 55.02 50.70 50.00 51.38 50.70 50.70 46.02 
Run 6 48.94 46.39 43.34 42.16 47.13 46.39 49.30 53.73 48.94 53.07 50.70 45.64 51.38 49.65 52.40 53.73 53.40 49.65 
Run 7 51.04 44.50 48.22 46.76 46.76 53.73 46.39 50.35 46.76 49.30 45.27 48.94 47.86 49.30 55.98 40.95 50.35 55.66 
Run 8 46.39 51.04 47.50 43.73 50.35 46.02 44.50 50.00 53.73 53.07 48.22 46.76 50.00 53.73 51.38 46.39 48.58 48.94 
Run 9 43.73 41.76 46.02 47.50 51.04 48.94 46.76 47.86 49.65 51.38 51.72 54.05 50.70 50.35 48.58 49.65 52.06 50.35 
Run 10 47.86 47.86 44.12 43.73 42.16 47.86 47.86 50.00 44.89 53.07 56.91 54.70 51.04 47.50 51.04 47.13 50.35 50.00 
Run 11 43.34 48.22 48.22 46.76 51.04 42.95 43.34 50.35 47.50 52.40 52.40 53.07 52.40 50.35 48.94 45.27 44.12 44.50 
Run 12 43.34 49.65 51.04 51.04 44.50 46.39 44.12 56.91 39.30 50.35 47.50 47.50 42.55 53.07 46.76 52.73 50.70 47.86 
Run 13 40.13 43.73 51.72 45.64 49.65 50.00 46.02 46.39 51.38 43.34 51.04 52.06 53.07 51.72 48.94 51.72 51.72 51.72 
Run 14 44.89 48.58 49.30 48.58 52.40 40.95 44.50 47.50 53.07 49.30 50.70 51.72 50.00 50.00 49.65 54.38 49.65 48.94 
Run 15 41.76 42.95 48.58 46.39 49.30 47.86 50.00 50.70 48.58 54.70 56.29 52.06 50.00 53.73 50.00 50.70 54.70 51.04 
Run 16 42.55 48.58 50.00 49.65 48.22 47.50 48.58 45.27 54.05 53.07 51.72 55.34 52.06 43.34 48.22 47.86 49.30 48.58 
Run 17 43.73 48.94 48.58 47.13 45.27 50.00 50.35 50.35 45.64 50.70 45.27 43.73 51.38 48.58 50.70 49.65 49.30 53.07 
Run 18 48.22 46.39 49.65 47.50 48.22 50.00 55.34 52.73 46.76 52.06 53.73 50.70 52.06 46.02 51.72 46.02 55.34 46.02 
Run 19 43.34 44.12 44.89 48.94 47.13 51.38 48.94 50.35 52.73 49.65 44.50 49.65 46.76 46.02 49.30 50.35 49.65 48.94 
Run 20 39.72 44.89 51.04 43.34 47.50 44.89 47.86 46.39 44.89 50.00 54.38 51.72 50.70 52.73 49.65 51.72 46.39 48.22 
Run 21 42.16 51.04 49.30 48.94 52.40 46.02 48.58 48.58 51.04 45.64 48.94 49.30 51.72 51.72 50.00 53.07 44.89 50.70 
Run 22 45.64 48.58 41.76 51.72 46.39 49.30 47.50 44.89 49.30 51.38 53.07 50.00 52.40 51.04 49.65 53.07 48.58 51.72 
Run 23 43.34 42.55 44.12 44.50 45.64 54.05 49.65 49.65 41.35 53.40 52.40 53.07 48.58 49.30 47.86 53.07 47.86 47.50 
Run 24 48.94 51.38 52.40 45.27 45.64 48.22 51.38 47.86 49.30 52.40 45.27 47.86 48.94 48.94 50.35 45.27 55.66 44.12 
Run 25 44.89 44.50 49.30 49.30 49.30 48.58 46.76 54.38 51.72 49.65 56.29 55.34 56.60 46.39 53.07 46.76 50.00 48.94 
Run 26 47.86 44.50 46.02 44.50 43.73 44.89 46.39 46.02 52.73 59.04 52.73 44.50 53.07 45.64 50.00 47.86 44.12 51.04 
Run 27 47.86 49.65 50.00 47.13 50.70 51.72 54.38 46.39 51.04 46.02 51.04 49.30 51.38 47.13 50.00 48.94 52.40 50.35 
Run 28 43.34 38.04 43.34 44.12 52.73 45.64 51.04 48.22 51.38 48.58 49.30 52.73 47.86 46.76 48.58 48.58 51.04 47.50 
Run 29 44.12 38.88 47.13 47.50 47.13 49.30 46.02 49.30 49.65 50.35 47.50 53.73 45.27 48.22 50.35 49.30 51.38 54.38 
Run 30 45.64 44.12 45.64 42.95 47.86 50.35 54.05 47.50 52.73 45.64 47.50 50.00 48.94 51.04 44.50 55.02 50.35 49.65 
Mean 44.62 45.92 47.67 46.75 47.89 47.78 48.35 48.92 49.33 50.77 50.77 50.86 50.47 49.06 49.89 49.65 50.23 49.45 
Std dev 0.0281 0.0348 0.0288 0.0242 0.0260 0.0314 0.0300 0.0314 0.0353 0.0297 0.0335 0.0306 0.0279 0.0269 0.0204 0.0350 0.0293 0.0275 
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TABLE B-51: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION 

EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM AND IZHIKEVICH TYPE F 

NEURONS IN %. 

Template 
MNI Talairach 

by 3 by 4 by 5 by 5 by 6 by 7 by 8 by 9 by 10 

Run 1 36.75 44.50 53.07 38.88 44.89 42.55 51.38 41.35 42.16 

Run 2 36.75 41.35 46.02 39.30 36.31 43.34 45.64 46.02 47.13 

Run 3 43.34 46.02 42.55 44.12 36.31 45.64 46.02 43.34 52.06 

Run 4 35.43 42.95 48.94 37.61 40.54 38.04 42.55 42.55 49.65 

Run 5 40.54 45.27 44.12 42.16 35.43 50.70 42.16 46.02 45.64 

Run 6 40.95 45.27 51.04 43.34 40.13 44.12 51.04 42.55 46.02 

Run 7 42.16 52.06 47.13 43.34 48.58 45.64 48.22 41.76 49.30 

Run 8 41.35 44.12 49.30 44.50 43.73 38.88 45.64 46.39 46.02 

Run 9 42.55 43.34 44.89 40.13 41.35 42.95 43.73 45.27 47.50 

Run 10 44.12 45.27 51.72 43.73 41.76 42.16 46.76 42.55 43.73 

Run 11 40.13 39.72 46.39 40.13 34.99 39.72 45.64 41.35 40.13 

Run 12 38.46 38.04 45.64 44.50 43.34 40.54 45.64 40.95 47.13 

Run 13 40.95 40.54 47.50 47.86 41.35 45.64 43.34 41.76 45.64 

Run 14 37.61 40.95 45.64 43.73 42.16 47.86 42.95 42.95 43.34 

Run 15 42.16 43.34 42.95 43.73 47.13 43.34 48.94 40.54 48.58 

Run 16 42.55 48.22 51.04 44.89 38.46 43.34 43.34 42.55 50.70 

Run 17 40.54 44.50 47.13 44.12 42.16 44.12 45.64 43.34 44.12 

Run 18 44.89 42.55 52.06 43.73 40.13 41.35 44.12 46.02 45.27 

Run 19 39.30 43.34 46.76 39.72 38.04 44.89 46.39 37.18 43.34 

Run 20 46.39 40.95 45.64 39.30 42.16 44.89 46.76 46.39 46.02 

Run 21 40.13 50.70 45.27 42.16 38.04 42.95 47.13 43.34 41.35 

Run 22 42.95 43.34 48.94 40.95 33.64 44.50 48.22 47.13 43.73 

Run 23 45.27 45.27 43.34 49.30 39.72 42.55 46.76 46.76 44.12 

Run 24 41.76 47.86 42.55 40.13 40.13 40.54 47.86 38.88 51.72 

Run 25 40.54 37.18 48.22 39.72 41.76 37.61 46.76 41.35 45.64 

Run 26 35.43 38.46 51.72 41.35 42.95 41.76 42.95 40.95 49.65 

Run 27 42.95 43.34 48.58 39.72 45.64 44.50 45.64 42.95 45.64 

Run 28 38.04 38.04 44.12 40.54 42.16 44.89 47.13 44.50 42.55 

Run 29 38.04 40.95 46.02 38.46 46.76 40.13 38.46 45.27 51.38 

Run 30 44.50 45.27 42.55 44.50 42.55 41.76 49.65 46.02 51.04 

Mean 40.88 43.42 47.03 42.19 41.08 43.03 45.88 43.27 46.34 

Std dev 0.0285 0.0348 0.0304 0.0273 0.0358 0.0277 0.0271 0.0244 0.0320 



386 

TABLE B-52: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE MNI_BY_3 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 42.55 38.46 45.64 42.95 45.64 41.76 47.50 47.50 41.35 40.54 45.64 47.86 43.73 40.54 45.27 46.39 44.12 45.27 
Run 2 38.04 47.86 44.50 49.30 44.89 44.12 41.35 43.34 45.64 49.30 41.35 41.76 40.54 49.65 47.13 45.64 47.13 44.89 
Run 3 37.18 47.86 46.02 42.55 51.04 50.00 49.65 46.76 47.86 44.12 39.72 44.12 50.00 42.95 50.35 43.73 44.50 42.95 
Run 4 42.95 43.73 45.27 42.16 46.02 43.34 50.00 45.27 44.89 44.89 47.86 44.12 46.02 39.72 44.50 42.95 47.13 43.34 
Run 5 44.50 41.76 42.55 34.54 42.95 39.72 44.50 47.50 46.02 49.65 47.86 47.86 44.50 47.13 44.50 49.65 44.12 42.16 
Run 6 38.88 48.58 45.64 47.50 47.13 50.35 42.55 43.73 47.86 48.22 49.65 43.34 46.76 40.54 43.73 45.64 52.40 45.64 
Run 7 45.27 48.94 45.64 43.73 44.50 47.86 47.50 46.39 45.27 46.39 44.12 48.22 45.27 45.27 47.13 39.30 47.13 43.34 
Run 8 37.61 43.34 42.95 44.12 47.13 50.35 43.34 50.70 43.34 42.55 44.12 44.12 41.76 40.54 42.95 39.30 42.95 43.34 
Run 9 43.73 46.39 46.39 46.39 41.76 44.89 45.64 45.64 47.50 46.39 46.76 42.16 44.89 44.89 40.13 45.27 44.12 47.13 
Run 10 43.73 46.39 42.95 37.61 44.89 42.55 44.50 44.12 40.54 47.13 47.13 42.55 47.13 43.34 42.55 44.50 43.34 43.73 
Run 11 43.34 40.95 47.13 48.58 48.22 46.39 50.70 50.35 43.34 39.72 41.35 42.16 47.86 42.95 41.76 45.64 43.73 45.27 
Run 12 41.35 48.58 47.13 46.39 42.55 46.39 51.38 45.27 49.65 47.13 42.55 44.50 46.02 41.35 45.27 39.30 40.54 44.89 
Run 13 45.27 48.22 51.38 44.12 49.30 47.50 40.13 40.54 46.76 47.50 44.89 48.94 47.86 42.95 43.34 40.95 37.61 45.27 
Run 14 42.16 47.50 46.02 46.76 42.16 47.50 42.16 45.27 42.55 46.76 46.39 44.89 38.04 43.34 42.95 50.70 41.35 46.39 
Run 15 44.89 42.95 46.39 46.02 48.94 44.50 46.39 45.64 47.50 42.16 44.50 40.95 43.34 44.89 42.16 41.76 43.73 51.04 
Run 16 42.95 43.73 46.02 40.95 40.13 40.54 47.13 44.50 46.02 52.40 44.12 43.73 42.55 42.16 46.39 44.89 46.76 42.16 
Run 17 42.16 46.39 47.50 44.89 50.35 49.65 46.76 43.73 44.50 47.13 49.30 46.39 45.64 45.64 46.02 46.39 43.73 41.76 
Run 18 43.73 48.58 46.39 46.39 46.76 47.13 48.94 44.89 40.54 45.27 44.50 43.34 40.13 49.65 46.76 46.76 46.02 46.02 
Run 19 44.12 48.58 43.34 47.13 45.64 46.39 44.50 45.64 46.76 49.30 41.76 44.50 43.73 47.50 39.30 46.02 41.35 45.64 
Run 20 38.88 40.13 43.73 46.39 43.34 36.75 48.22 43.34 49.30 38.46 42.55 44.89 42.55 44.50 43.73 47.13 44.12 45.64 
Run 21 37.18 45.27 46.76 46.39 43.73 51.72 47.50 48.22 49.30 44.50 46.02 43.73 46.02 44.12 49.30 43.34 42.55 40.95 
Run 22 39.72 46.39 46.76 47.50 49.30 45.64 46.02 51.04 49.65 51.72 47.13 49.30 43.73 41.76 42.95 47.50 43.34 46.02 
Run 23 41.35 44.50 50.35 43.73 45.64 35.87 46.02 48.22 47.13 44.50 41.76 43.34 39.72 44.12 44.12 46.76 47.86 40.13 
Run 24 36.75 47.86 44.89 38.88 47.50 51.72 44.89 47.13 44.50 44.89 39.30 46.39 40.95 42.55 46.76 42.55 42.16 42.16 
Run 25 43.73 41.35 46.39 46.02 44.50 50.35 47.50 41.76 45.64 46.76 47.50 48.94 52.73 47.50 47.86 40.13 43.73 43.73 
Run 26 42.55 44.12 47.86 45.27 50.70 44.12 44.12 43.34 44.89 48.94 45.27 37.18 45.64 45.27 42.55 45.64 40.95 43.34 
Run 27 38.88 42.16 43.34 46.76 46.02 46.02 47.50 46.02 50.35 50.35 40.95 41.76 44.12 44.89 44.50 46.39 44.12 45.27 
Run 28 43.73 44.12 43.73 47.13 42.16 46.02 45.27 52.73 46.02 52.40 40.54 46.76 47.50 46.76 47.50 44.89 46.39 47.13 
Run 29 38.04 46.02 49.65 47.13 48.94 43.34 48.94 45.64 42.95 45.27 43.73 45.64 47.86 42.55 49.30 45.64 47.86 44.89 
Run 30 40.54 49.30 44.12 43.34 46.39 40.95 42.95 50.35 46.39 47.86 45.27 43.34 43.34 39.30 45.27 43.34 45.27 40.13 
Mean 41.53 45.33 45.88 44.69 45.94 45.45 46.12 46.15 45.80 46.41 44.45 44.56 44.66 43.94 44.87 44.60 44.34 44.32 
Std dev 0.0268 0.0294 0.0211 0.0325 0.0282 0.0404 0.0275 0.0280 0.0261 0.0343 0.0277 0.0268 0.0313 0.0267 0.0261 0.0283 0.0277 0.0227 
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TABLE B-53: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 41.35 46.76 45.27 48.94 47.50 49.65 48.58 49.65 46.02 43.73 42.95 43.34 48.58 48.58 50.70 54.05 45.27 52.73 
Run 2 46.76 44.89 42.16 46.76 45.64 46.02 53.07 52.40 49.65 45.27 40.54 40.95 47.86 44.89 44.50 49.65 48.94 48.94 
Run 3 43.34 44.89 49.30 46.76 48.22 48.22 50.00 40.95 46.39 47.50 47.50 45.64 45.64 46.39 46.76 48.94 46.02 46.39 
Run 4 42.95 41.76 46.76 46.02 48.22 47.86 42.95 46.39 47.13 43.73 47.86 48.58 47.50 46.02 49.65 48.22 46.76 46.39 
Run 5 48.58 48.22 48.22 51.38 48.22 47.50 47.13 53.40 51.04 50.00 51.38 48.94 48.94 51.38 48.22 45.64 49.65 50.00 
Run 6 42.95 51.38 45.64 47.13 45.64 51.38 49.30 47.13 49.65 46.76 48.94 49.65 46.76 45.27 52.73 48.94 47.50 48.94 
Run 7 42.16 50.00 45.64 43.34 47.13 48.22 50.00 48.22 47.50 47.13 48.58 48.58 45.27 53.73 48.58 50.35 50.70 49.65 
Run 8 41.76 46.02 44.89 49.65 43.34 46.39 49.30 48.94 50.00 44.12 50.00 49.30 43.73 49.30 43.73 46.02 48.58 43.34 
Run 9 43.34 42.16 46.39 48.58 42.95 44.89 53.07 46.39 47.50 45.64 46.76 50.35 44.89 41.35 47.86 48.58 48.58 52.40 
Run 10 42.95 46.76 40.54 49.30 47.13 46.39 43.73 44.89 47.50 47.50 42.95 49.65 48.22 45.27 47.86 49.65 44.50 46.76 
Run 11 41.35 49.65 47.13 47.86 52.40 46.02 49.30 43.34 47.13 44.50 42.95 47.86 47.50 44.89 52.73 45.27 50.35 48.58 
Run 12 47.13 45.27 40.13 45.64 44.50 49.30 51.72 40.54 51.38 46.76 44.50 48.58 47.86 50.00 50.70 47.13 55.34 50.35 
Run 13 45.27 44.50 47.13 50.35 49.65 52.40 51.04 47.13 46.02 48.22 46.76 50.00 50.70 51.38 49.30 50.00 48.22 47.50 
Run 14 46.02 38.88 44.50 44.89 51.72 45.64 47.50 44.12 48.22 45.64 44.50 49.30 51.04 49.65 44.50 44.50 47.86 46.39 
Run 15 35.87 45.27 47.86 51.04 48.58 53.07 50.35 43.34 46.39 46.39 46.39 51.72 48.58 52.40 46.39 49.30 51.38 48.58 
Run 16 36.31 42.55 45.64 44.50 47.86 46.39 47.50 47.13 47.50 46.39 47.86 52.73 50.35 45.64 48.22 45.27 48.22 48.22 
Run 17 43.34 41.76 45.64 49.65 49.65 48.58 47.13 46.02 51.04 54.05 44.50 45.64 46.76 45.27 44.50 48.94 50.00 50.70 
Run 18 43.73 46.02 45.64 46.76 53.40 49.65 52.06 47.50 45.27 48.58 48.22 51.38 52.40 53.40 46.76 44.89 46.02 48.94 
Run 19 46.02 48.58 48.94 42.55 46.02 44.89 50.70 45.64 49.65 48.22 46.39 48.58 52.06 47.86 47.86 46.39 48.22 50.35 
Run 20 43.34 40.54 45.27 45.64 47.86 48.22 39.30 44.50 55.02 49.30 47.50 46.76 46.76 49.30 46.76 46.76 50.70 46.39 
Run 21 44.50 48.22 46.39 49.65 44.50 46.02 47.50 44.89 45.27 47.86 46.02 46.02 44.12 47.13 49.30 47.86 50.00 52.06 
Run 22 45.27 44.12 47.13 50.00 48.58 49.30 46.76 51.38 51.72 49.30 47.13 46.39 44.12 43.73 51.38 47.50 44.12 46.76 
Run 23 45.64 47.86 46.76 40.95 44.50 50.70 48.22 47.50 43.73 52.40 51.04 48.22 48.22 45.64 46.76 44.89 49.30 46.02 
Run 24 45.27 44.50 49.30 56.29 47.86 44.89 51.04 54.05 48.94 52.40 49.30 47.86 48.94 47.50 52.40 45.27 47.86 50.00 
Run 25 43.73 43.34 46.02 49.65 48.58 50.70 51.04 46.39 49.65 48.94 50.70 46.02 49.30 49.65 47.86 46.39 44.50 49.65 
Run 26 43.73 35.87 46.76 49.65 51.04 53.40 50.00 48.94 54.70 48.22 52.73 46.02 44.12 49.30 44.89 51.72 51.38 53.40 
Run 27 42.95 40.54 44.89 45.64 46.02 48.58 53.07 42.55 53.07 49.65 46.76 48.58 44.50 50.00 45.64 49.65 44.50 49.30 
Run 28 46.02 41.76 49.65 47.50 44.50 53.07 46.02 49.30 50.35 49.30 47.13 50.70 48.58 48.22 48.58 47.50 49.30 49.30 
Run 29 43.73 46.39 40.13 38.46 49.30 47.50 41.35 46.76 54.38 48.22 51.38 45.64 44.12 49.65 47.13 48.94 48.22 43.73 
Run 30 40.54 45.64 47.13 48.58 48.58 48.58 46.02 48.94 45.64 49.65 45.27 47.13 47.50 45.64 48.22 48.94 47.50 52.06 
Mean 43.53 44.80 45.90 47.44 47.64 48.45 48.49 46.94 48.91 47.85 47.15 48.00 47.50 47.95 48.02 47.90 48.32 48.79 
Std dev 0.0269 0.0341 0.0244 0.0340 0.0254 0.0248 0.0333 0.0325 0.0292 0.0247 0.0282 0.0245 0.0241 0.0291 0.0243 0.0221 0.0244 0.0246 
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TABLE B-54: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE MNI_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 41.35 51.72 48.22 48.22 46.02 48.94 44.50 47.86 46.39 48.94 52.40 50.70 50.70 50.70 52.73 49.65 46.76 53.73 
Run 2 48.22 48.22 47.13 52.06 46.02 47.50 52.40 48.94 48.22 50.00 47.50 49.30 53.07 50.35 48.22 47.86 42.55 50.70 
Run 3 51.38 47.13 42.16 43.73 45.64 46.39 47.13 47.50 49.30 46.76 50.00 43.73 52.73 52.73 42.16 45.27 51.04 47.86 
Run 4 47.86 51.04 42.16 49.30 51.38 46.76 50.00 46.39 46.76 49.65 50.35 48.58 51.72 50.70 52.06 49.30 51.38 45.64 
Run 5 44.50 45.27 50.00 46.76 46.76 51.04 47.50 51.04 47.86 49.65 46.02 52.40 48.22 46.02 48.94 48.58 52.40 48.22 
Run 6 44.50 43.34 44.50 44.89 41.76 49.65 50.70 46.76 50.00 47.86 47.50 50.00 49.30 50.35 55.98 53.07 53.40 53.40 
Run 7 44.89 47.86 49.30 50.00 44.12 45.64 49.30 50.00 48.94 49.65 53.40 51.38 53.07 51.04 48.58 51.72 47.50 50.70 
Run 8 47.50 48.58 43.34 42.16 46.76 52.06 53.07 48.22 49.30 47.50 52.06 50.70 54.05 53.40 45.64 53.07 45.27 46.02 
Run 9 42.16 43.34 48.22 46.76 47.13 47.13 46.39 47.50 47.86 52.06 52.40 44.89 48.22 40.54 50.35 47.50 52.06 47.50 
Run 10 49.30 44.50 45.64 48.94 47.50 51.04 50.35 49.30 50.00 48.94 50.35 47.86 50.35 46.76 48.94 55.66 50.00 48.58 
Run 11 48.94 50.00 49.65 48.22 46.76 49.30 49.30 50.35 46.76 41.35 48.94 54.05 53.73 49.65 48.94 48.22 50.35 45.27 
Run 12 44.50 49.30 47.50 46.76 51.72 50.00 43.34 50.35 50.35 46.02 48.22 48.94 50.70 48.58 48.58 51.38 43.73 55.02 
Run 13 49.65 47.13 46.39 39.30 44.89 54.05 39.72 47.50 48.94 47.86 54.38 50.35 51.72 49.30 50.35 47.86 48.58 48.94 
Run 14 42.95 45.27 50.35 49.65 49.65 51.38 47.86 52.06 53.07 49.65 49.65 53.40 54.38 48.58 52.06 47.13 51.72 48.94 
Run 15 48.22 45.64 48.22 46.02 50.00 50.00 47.86 44.89 46.76 51.38 50.00 53.40 55.02 45.64 51.38 52.06 46.02 44.89 
Run 16 45.27 47.13 48.58 46.02 46.39 51.72 50.00 50.00 48.58 46.02 52.73 49.65 54.70 50.00 54.05 50.00 50.00 49.30 
Run 17 47.50 46.02 46.39 51.38 47.86 50.70 48.22 47.86 48.94 43.73 47.50 51.72 48.58 47.50 50.35 55.98 48.22 47.50 
Run 18 48.58 42.95 44.50 51.38 47.86 44.50 44.12 48.22 53.07 44.89 51.04 50.70 49.65 49.65 47.86 44.50 47.86 48.94 
Run 19 41.35 43.73 46.39 47.13 52.06 50.00 50.35 46.76 51.72 52.73 48.58 50.70 45.27 48.94 53.07 47.86 52.06 44.50 
Run 20 54.70 46.39 48.22 46.02 47.13 50.70 48.94 50.35 50.35 45.64 56.60 52.73 49.65 52.73 50.70 47.50 43.73 45.27 
Run 21 51.72 47.86 45.64 45.27 47.86 50.35 44.12 47.86 52.40 50.70 51.72 50.70 46.76 52.06 54.70 46.39 47.13 54.70 
Run 22 50.35 43.34 45.27 47.86 46.76 46.39 44.50 51.38 46.39 52.40 48.58 48.58 48.58 47.86 51.72 48.58 53.07 51.38 
Run 23 45.27 46.02 49.30 47.13 49.65 45.64 48.58 49.65 46.39 49.30 47.50 53.40 43.34 52.40 52.73 48.58 51.72 54.38 
Run 24 45.27 46.39 47.13 48.58 51.72 54.70 52.06 48.22 47.86 51.38 44.50 53.40 54.05 51.72 48.58 45.27 45.27 47.13 
Run 25 52.73 42.55 46.02 46.39 43.34 48.58 42.55 46.39 49.30 50.70 48.94 51.72 50.00 54.05 47.50 51.04 49.30 49.30 
Run 26 46.02 43.34 44.12 50.35 49.65 46.39 48.58 48.22 47.13 50.00 46.76 50.00 46.39 51.04 50.70 49.30 48.94 54.38 
Run 27 50.70 49.65 51.72 52.06 51.72 46.39 47.13 48.22 48.22 48.58 46.76 47.50 51.38 51.04 46.39 51.38 47.86 50.70 
Run 28 46.02 48.94 48.22 47.13 45.64 47.50 46.02 49.30 52.06 51.38 47.13 46.76 47.13 54.70 50.70 47.86 50.70 53.40 
Run 29 51.72 44.12 46.39 45.64 51.72 47.13 54.05 49.65 50.00 44.50 46.02 47.50 48.22 50.00 48.58 48.22 48.58 48.94 
Run 30 45.27 42.95 49.30 48.22 42.95 43.73 47.50 47.50 51.72 49.30 51.72 50.00 47.86 50.00 54.05 51.38 45.64 48.94 
Mean 47.28 46.32 47.00 47.45 47.61 48.84 47.87 48.61 49.16 48.62 49.64 50.16 50.29 49.93 50.22 49.41 48.76 49.47 
Std dev 0.0338 0.0257 0.0235 0.0279 0.0278 0.0267 0.0323 0.0163 0.0199 0.0271 0.0275 0.0248 0.0296 0.0279 0.0287 0.0277 0.0292 0.0311 



389 

TABLE B-55: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE TAL_BY_5 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 42.16 41.76 41.76 40.54 38.46 44.50 47.86 44.50 45.64 50.00 47.86 48.58 52.73 47.13 47.13 44.89 44.50 47.50 
Run 2 38.04 42.55 42.95 48.22 46.76 41.76 48.94 46.02 40.95 44.12 48.94 45.64 48.58 48.58 49.30 51.72 44.89 44.50 
Run 3 38.04 37.18 36.75 38.46 46.02 43.34 40.54 46.39 47.50 51.04 50.35 49.65 47.13 45.64 48.22 50.35 51.04 46.02 
Run 4 34.09 43.73 44.12 44.12 44.89 47.13 47.13 48.58 45.64 48.94 48.58 42.95 48.94 44.50 48.58 49.30 51.04 48.22 
Run 5 47.13 38.46 36.31 43.73 47.13 43.73 44.50 45.64 46.76 50.35 47.50 49.30 42.16 48.22 44.89 41.76 47.13 42.95 
Run 6 41.35 40.13 40.13 40.95 44.50 46.76 40.95 42.16 48.94 44.50 39.30 50.70 46.39 44.12 51.04 51.38 46.39 49.65 
Run 7 36.75 38.46 49.30 46.02 44.50 47.86 42.95 51.38 46.02 43.34 50.00 48.58 51.72 45.27 44.50 43.73 43.34 43.34 
Run 8 39.30 40.13 40.54 51.38 45.27 42.55 42.16 52.73 50.00 46.02 49.65 49.65 49.30 47.13 47.50 45.27 46.02 46.76 
Run 9 40.95 39.72 44.50 46.76 46.76 47.50 37.61 43.73 41.76 51.04 52.06 46.02 43.34 46.39 46.39 47.50 48.58 46.39 
Run 10 40.13 39.72 38.04 44.50 44.89 42.55 44.50 50.00 49.65 46.39 46.39 45.27 44.89 51.38 48.94 52.40 48.22 45.27 
Run 11 40.95 38.88 44.12 44.50 42.95 43.73 46.02 40.54 42.16 48.58 51.38 45.64 47.50 45.64 52.06 43.34 46.02 48.94 
Run 12 38.88 36.31 40.13 44.89 43.34 54.05 46.39 41.76 45.64 44.89 44.50 47.13 50.00 43.73 52.40 47.86 42.55 47.86 
Run 13 37.61 39.30 44.50 44.12 46.39 52.40 47.86 38.88 41.35 44.89 51.04 48.94 46.02 45.27 51.38 42.95 47.13 45.27 
Run 14 41.76 39.30 43.73 42.95 46.76 40.95 51.04 45.27 46.02 46.39 45.27 44.12 48.22 40.54 42.95 46.76 48.22 50.35 
Run 15 40.13 38.04 40.95 46.02 48.22 47.13 46.76 45.27 51.38 48.22 53.07 49.30 45.27 48.58 45.64 49.65 47.50 44.89 
Run 16 35.43 38.04 42.55 49.65 41.76 42.55 48.94 51.38 44.89 48.22 44.50 41.76 47.50 41.76 53.40 48.58 46.39 48.22 
Run 17 38.88 38.46 45.64 45.27 47.50 42.55 46.39 40.13 44.12 45.64 51.72 40.95 48.94 48.22 48.58 42.55 48.22 46.02 
Run 18 37.61 40.13 38.46 43.34 45.27 48.58 44.50 44.12 51.38 51.38 49.30 47.13 46.02 50.00 44.89 47.86 45.64 48.94 
Run 19 38.04 43.34 47.50 45.64 42.55 47.13 53.07 47.86 44.89 54.70 47.86 45.27 48.22 49.30 50.00 51.04 40.95 47.50 
Run 20 41.35 42.55 39.30 46.02 46.02 40.13 51.04 43.34 44.50 48.58 48.58 46.39 49.65 46.02 46.02 48.94 44.50 45.64 
Run 21 40.13 38.04 39.30 48.58 51.04 49.30 47.13 47.13 48.94 50.70 48.58 52.06 50.35 45.27 50.00 47.13 43.73 48.94 
Run 22 34.99 42.55 43.34 41.35 47.86 42.95 44.89 44.50 46.02 48.94 45.64 47.86 51.38 43.34 50.00 46.76 46.76 48.94 
Run 23 39.30 43.73 39.72 40.95 48.22 42.95 47.50 47.86 42.16 42.95 47.50 47.50 47.86 46.02 50.00 47.13 40.54 49.30 
Run 24 46.02 38.04 42.16 47.13 49.65 44.89 48.22 48.22 46.39 47.13 46.76 46.76 46.02 48.94 46.76 48.94 48.94 49.30 
Run 25 44.50 43.73 41.35 47.86 43.34 49.65 47.13 50.70 47.86 50.00 46.76 45.64 46.39 46.76 46.76 46.39 45.27 41.35 
Run 26 38.04 37.18 44.50 39.72 46.76 47.50 47.50 50.70 50.70 46.39 50.35 49.65 44.50 51.72 48.94 47.13 46.76 42.95 
Run 27 42.95 40.54 40.13 46.76 42.16 44.12 44.89 43.73 47.13 46.39 49.65 50.70 48.22 45.27 48.58 49.65 40.54 49.30 
Run 28 38.88 38.04 43.73 43.34 42.55 45.64 42.55 42.55 47.13 51.04 45.27 46.39 37.18 47.86 49.30 46.76 50.35 51.72 
Run 29 38.46 40.95 42.95 42.16 51.04 47.50 46.02 46.02 50.00 48.94 49.30 42.95 46.02 46.39 44.50 46.76 50.70 51.04 
Run 30 41.76 43.34 43.34 44.50 38.88 52.73 44.12 48.22 46.76 47.86 48.22 42.95 48.58 46.02 43.34 46.76 49.65 46.02 
Mean 39.79 40.08 42.06 44.65 45.38 45.80 45.97 45.98 46.41 47.92 48.20 46.85 47.30 46.50 48.07 47.38 46.38 47.10 
Std dev 0.0292 0.0221 0.0293 0.0296 0.0299 0.0348 0.0323 0.0353 0.0289 0.0272 0.0276 0.0276 0.0302 0.0250 0.0268 0.0271 0.0290 0.0253 
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TABLE B-56: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE TAL_BY_6 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 35.87 35.87 45.64 44.12 48.22 45.64 50.35 48.58 50.35 46.02 41.76 46.02 46.39 38.04 48.94 44.50 48.58 46.39 
Run 2 42.55 41.76 50.00 45.64 48.58 47.50 46.76 46.02 46.39 42.95 42.95 47.86 42.55 47.13 45.64 47.13 44.89 46.76 
Run 3 39.72 36.75 44.89 48.22 46.39 49.65 42.95 48.58 48.22 38.04 43.34 51.04 48.58 51.04 46.76 44.12 50.70 49.65 
Run 4 42.95 45.27 46.02 43.34 40.13 47.50 49.30 48.94 45.27 50.70 51.04 42.55 47.13 47.50 48.22 47.13 48.94 44.50 
Run 5 40.13 39.72 48.58 50.35 48.94 40.95 47.13 48.58 42.55 48.22 41.35 45.27 44.12 50.35 45.27 44.50 45.64 42.55 
Run 6 42.95 40.95 45.64 43.73 47.86 53.07 46.76 45.27 41.35 44.89 45.64 45.64 46.39 47.86 49.30 43.34 45.27 45.27 
Run 7 47.13 44.12 42.55 47.13 49.30 43.73 46.02 47.86 50.70 49.30 47.13 49.30 43.34 47.50 44.50 43.34 47.13 44.12 
Run 8 42.95 37.18 46.39 47.13 48.94 48.94 48.58 46.76 41.76 41.76 47.86 45.27 47.86 45.27 46.39 46.02 46.39 49.65 
Run 9 37.18 40.54 42.55 46.76 42.95 47.13 45.64 50.35 47.50 43.34 45.27 46.02 47.13 45.27 42.95 41.35 51.04 43.34 
Run 10 37.18 46.39 45.27 44.50 50.00 48.58 41.76 47.50 48.58 47.86 47.50 42.95 46.02 43.73 50.00 42.95 47.86 47.13 
Run 11 37.61 42.16 53.07 44.50 43.34 44.12 52.40 46.39 48.58 46.76 46.39 50.35 47.50 48.58 47.86 46.39 43.34 42.55 
Run 12 38.88 43.73 44.50 48.22 45.27 42.95 45.64 48.22 46.39 47.50 45.27 49.30 43.34 46.39 46.76 41.76 47.50 47.86 
Run 13 46.39 41.35 48.58 46.39 45.27 46.39 48.94 46.39 48.58 42.55 43.73 48.58 48.22 45.27 46.39 46.39 42.55 44.89 
Run 14 38.46 41.76 42.95 39.72 47.13 49.65 48.58 44.89 46.02 45.64 50.70 38.88 51.04 52.73 45.27 49.30 47.13 45.27 
Run 15 37.61 43.34 40.54 47.86 46.02 46.76 45.27 46.76 48.22 48.94 41.76 42.95 43.73 44.50 50.35 46.76 46.76 45.64 
Run 16 43.34 42.55 42.55 42.95 42.16 47.86 43.34 47.50 48.94 44.50 46.76 37.18 47.50 49.30 47.13 48.58 51.72 47.50 
Run 17 46.39 38.46 42.95 46.39 49.30 44.50 53.07 46.39 42.95 51.04 43.34 46.39 49.65 47.86 50.70 46.02 49.65 43.73 
Run 18 40.13 41.76 37.61 48.94 45.64 51.38 50.00 51.72 44.50 44.12 47.13 46.02 47.13 50.35 46.02 47.50 46.76 50.00 
Run 19 40.95 40.13 38.46 47.50 40.13 47.13 45.64 43.73 48.22 45.64 42.55 45.64 50.00 44.50 44.50 45.64 49.30 47.50 
Run 20 34.54 38.04 42.55 45.27 42.95 47.50 41.76 46.76 46.76 42.95 46.02 43.34 42.16 46.76 53.07 42.55 46.39 44.12 
Run 21 43.73 37.61 44.50 41.76 48.58 45.64 47.50 50.00 49.65 45.64 43.34 45.64 48.22 44.89 40.54 44.50 44.50 46.39 
Run 22 47.13 39.30 47.13 49.30 45.27 48.22 42.95 42.16 46.39 53.40 44.50 48.22 50.35 47.13 47.50 46.76 45.64 47.13 
Run 23 38.04 44.12 44.50 44.12 47.13 44.89 43.73 50.70 44.89 50.35 46.76 42.55 49.30 46.39 45.27 49.65 44.50 44.12 
Run 24 40.95 37.61 45.64 42.55 47.86 44.89 46.76 49.30 43.34 43.34 47.86 44.89 48.22 43.73 47.86 47.13 43.34 47.50 
Run 25 42.95 38.46 45.27 45.64 51.04 50.70 51.04 44.50 46.39 44.89 42.95 42.16 48.94 44.89 45.27 45.27 42.55 46.39 
Run 26 41.76 42.55 38.88 40.54 48.22 45.27 49.30 48.22 50.35 45.27 45.27 46.02 42.16 43.34 41.76 49.30 47.13 46.76 
Run 27 42.16 44.50 44.89 46.39 46.39 45.27 49.65 49.30 42.16 49.65 45.27 43.73 49.65 48.94 40.54 42.95 46.02 46.02 
Run 28 39.30 35.43 40.13 41.35 45.64 51.38 43.34 47.86 47.50 51.38 49.30 40.95 47.50 43.73 48.94 50.00 45.64 42.16 
Run 29 35.43 33.18 38.04 44.12 42.95 50.00 44.89 47.86 42.55 42.55 39.72 44.12 43.34 49.65 46.02 45.64 48.58 47.50 
Run 30 37.61 45.27 41.76 44.12 46.39 46.76 46.02 44.89 51.38 42.95 38.04 47.50 45.27 46.39 42.55 47.50 44.50 46.76 
Mean 40.73 40.66 44.07 45.29 46.27 47.13 46.84 47.40 46.55 46.07 45.02 45.21 46.76 46.63 46.41 45.80 46.67 45.97 
Std dev 0.0343 0.0324 0.0351 0.0261 0.0278 0.0270 0.0299 0.0211 0.0283 0.0342 0.0297 0.0313 0.0256 0.0286 0.0290 0.0232 0.0239 0.0205 
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TABLE B-57: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE TAL_BY_7 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.54 40.54 44.89 46.02 47.13 46.76 45.64 50.70 48.94 42.16 46.76 49.30 52.73 49.65 50.00 47.13 41.35 44.89 
Run 2 42.95 40.13 43.34 50.70 45.64 51.72 54.05 45.27 48.22 51.04 55.34 50.00 51.72 51.04 52.40 46.76 49.30 48.58 
Run 3 33.18 46.39 42.16 49.65 48.58 46.39 46.02 43.73 46.39 49.30 45.27 47.50 48.58 54.05 50.00 50.70 50.35 46.02 
Run 4 41.35 40.13 42.95 48.22 46.39 44.89 44.89 48.94 46.02 46.02 46.39 45.27 49.30 51.72 48.22 52.73 48.58 51.72 
Run 5 34.99 40.54 46.76 42.95 46.02 42.95 45.64 44.89 47.13 52.40 50.00 47.13 42.95 49.30 55.66 47.50 50.70 50.00 
Run 6 41.76 43.34 49.65 43.73 46.02 44.50 46.02 47.86 48.94 48.94 49.65 50.00 46.39 48.22 50.00 49.65 48.58 50.70 
Run 7 38.04 44.12 38.04 46.39 46.76 40.95 44.89 44.89 50.00 44.12 47.13 47.50 46.76 53.40 52.73 55.66 52.73 49.65 
Run 8 32.26 44.12 45.64 49.30 50.35 46.02 46.39 48.94 50.70 47.13 46.02 52.40 52.40 48.58 54.70 49.65 50.00 51.72 
Run 9 39.72 40.95 43.34 40.95 44.12 43.73 45.27 48.94 48.94 53.07 50.35 51.38 46.39 51.38 53.40 51.04 47.50 51.72 
Run 10 35.87 47.86 45.64 44.50 48.94 49.30 46.02 48.58 48.58 52.06 47.13 47.86 47.13 51.72 48.58 52.73 48.58 53.07 
Run 11 39.72 44.89 43.34 45.64 53.07 45.27 44.50 48.22 47.13 45.64 46.39 44.12 53.40 50.35 50.35 50.00 51.72 51.72 
Run 12 38.04 38.46 46.76 44.89 44.89 49.65 44.89 47.13 50.35 49.65 48.58 52.73 52.40 48.94 47.86 54.05 53.73 51.38 
Run 13 39.72 44.12 47.13 49.65 50.00 48.22 50.00 46.39 47.86 48.58 47.50 55.34 48.22 42.16 50.35 52.40 50.70 50.00 
Run 14 35.87 44.89 44.89 43.34 47.50 43.34 53.07 52.73 44.89 49.30 44.50 48.58 51.38 52.06 46.39 53.40 50.00 51.04 
Run 15 39.72 38.88 46.02 40.54 50.35 51.38 47.50 51.04 50.00 51.38 48.22 44.89 55.98 51.04 49.65 49.65 47.50 51.72 
Run 16 38.46 42.16 39.72 44.89 48.22 46.76 50.00 47.13 44.50 54.05 52.73 48.94 46.76 42.55 50.00 42.55 50.70 50.00 
Run 17 41.76 40.95 42.16 44.89 46.39 50.35 47.13 50.35 44.89 48.58 46.02 47.50 52.40 46.76 52.73 48.94 42.95 49.30 
Run 18 42.16 45.27 44.12 45.27 46.76 52.40 54.05 55.34 48.22 45.27 46.76 50.00 54.38 46.39 44.89 52.06 49.65 50.35 
Run 19 40.54 38.88 43.34 44.50 44.12 48.94 53.40 42.95 48.58 48.58 51.72 48.94 46.76 44.50 50.00 48.22 46.02 54.05 
Run 20 40.54 46.39 45.27 47.13 45.64 51.04 47.13 47.13 50.00 48.94 48.58 48.94 51.72 57.53 51.38 49.30 50.00 51.38 
Run 21 40.54 35.43 45.64 48.94 42.55 45.64 46.76 47.13 46.76 45.64 45.64 46.76 48.58 46.02 51.72 50.35 51.38 50.35 
Run 22 34.99 46.76 45.64 47.86 46.02 49.30 37.18 43.34 48.94 51.04 51.72 48.94 51.04 53.07 50.00 48.58 50.00 52.73 
Run 23 38.88 42.16 46.39 41.35 46.39 52.40 48.94 47.86 47.50 48.58 52.40 50.35 50.00 48.58 46.39 46.76 49.65 49.30 
Run 24 44.89 40.54 46.39 46.02 45.64 44.50 48.94 45.64 45.64 44.12 46.76 51.38 53.07 53.07 54.38 51.38 50.00 50.70 
Run 25 46.39 36.31 38.04 44.12 46.39 40.95 51.72 52.73 45.64 45.64 50.35 45.64 49.30 48.58 50.35 45.64 54.05 48.58 
Run 26 43.34 40.13 46.02 40.54 49.30 50.35 49.65 51.38 50.35 47.86 51.04 49.30 48.22 48.22 49.30 49.65 51.72 51.04 
Run 27 40.95 40.54 41.35 40.54 48.94 48.22 47.50 46.02 47.86 47.13 53.07 51.04 50.35 51.72 53.07 50.35 49.30 48.22 
Run 28 42.95 43.34 40.13 49.30 42.16 45.27 46.39 46.02 48.58 45.64 45.64 47.50 43.34 44.89 52.40 49.30 50.00 47.86 
Run 29 42.55 37.18 44.12 46.02 47.50 47.50 55.98 51.72 43.73 47.50 46.76 44.50 46.76 52.06 51.72 48.58 48.94 49.30 
Run 30 39.72 42.16 42.95 42.95 44.50 39.30 48.94 47.86 43.34 46.02 42.55 50.35 49.65 49.65 47.86 47.86 53.73 47.50 
Mean 39.55 41.92 44.06 45.36 46.88 46.93 47.95 48.03 47.62 48.18 48.37 48.80 49.60 49.57 50.55 49.75 49.65 50.15 
Std dev 0.0337 0.0312 0.0266 0.0292 0.0235 0.0348 0.0373 0.0295 0.0203 0.0283 0.0291 0.0253 0.0309 0.0340 0.0250 0.0265 0.0270 0.0197 
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TABLE B-58: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 34.99 41.76 44.89 47.13 49.65 46.39 47.13 50.00 44.12 51.72 47.50 44.89 47.13 48.22 52.73 49.30 43.73 48.94 
Run 2 46.39 36.75 50.70 44.12 48.22 45.27 48.94 47.50 46.39 45.27 52.06 43.73 44.89 48.94 45.64 50.35 48.58 45.64 
Run 3 41.35 41.76 49.30 49.65 47.50 42.55 43.34 51.38 46.02 47.50 46.02 46.39 49.30 55.02 44.12 51.04 48.58 54.38 
Run 4 40.54 36.31 47.13 44.50 50.00 45.27 44.89 48.58 49.65 44.89 47.86 51.38 49.30 51.04 46.39 50.35 49.65 50.00 
Run 5 46.76 40.54 40.95 43.73 44.50 48.94 48.22 50.35 54.38 49.65 47.13 51.38 45.27 47.13 51.72 44.89 48.94 50.35 
Run 6 42.55 31.79 45.64 47.50 49.65 45.64 49.65 52.06 46.76 51.04 47.86 50.35 46.39 51.72 50.00 50.35 49.65 50.70 
Run 7 42.16 38.88 40.54 41.35 44.12 49.30 43.73 51.04 51.72 47.50 49.65 50.35 49.65 54.05 48.58 50.35 49.30 54.70 
Run 8 44.12 41.76 44.89 48.22 44.12 47.86 47.13 48.58 49.65 42.16 52.40 50.00 50.70 53.40 49.30 50.70 46.39 50.70 
Run 9 42.95 38.04 47.50 46.76 50.00 46.76 51.72 48.58 48.58 50.00 44.89 49.30 48.22 52.73 49.65 47.13 53.73 50.70 
Run 10 45.64 40.13 47.13 41.76 42.95 48.58 48.58 44.89 49.30 49.65 48.22 47.86 46.02 50.00 47.86 45.27 48.94 48.94 
Run 11 41.76 46.02 47.86 45.64 46.02 42.55 47.50 51.72 50.70 47.86 52.40 47.86 53.07 47.13 49.65 48.94 44.89 51.04 
Run 12 46.76 36.75 41.76 42.16 38.46 49.65 48.22 47.50 42.55 56.60 42.95 46.76 43.73 46.02 52.40 50.00 53.07 47.50 
Run 13 44.12 47.13 43.34 45.64 45.27 45.27 50.00 48.58 51.38 50.35 52.73 54.05 49.30 47.86 51.72 50.35 48.22 53.73 
Run 14 41.76 43.34 47.50 40.95 50.70 48.58 47.50 50.35 51.04 49.30 49.30 50.35 48.94 53.73 52.73 44.50 45.64 46.76 
Run 15 37.61 43.34 42.95 46.76 46.02 46.39 48.94 45.27 51.72 48.94 47.50 47.50 51.04 50.35 51.72 46.76 51.04 48.22 
Run 16 40.95 39.72 44.89 45.27 48.22 44.50 50.35 52.73 50.35 45.64 48.22 46.39 52.73 48.94 52.40 51.38 53.73 53.07 
Run 17 36.75 44.12 44.89 47.13 44.50 47.86 52.06 47.86 52.06 50.70 49.30 46.76 50.35 53.07 55.34 44.50 48.22 48.22 
Run 18 37.61 31.79 50.00 44.89 47.86 48.22 49.65 46.02 49.30 49.65 46.76 44.12 45.27 50.35 50.70 48.94 52.40 53.07 
Run 19 34.09 37.61 47.50 49.30 47.86 44.50 45.27 52.06 44.12 51.04 52.40 50.00 51.38 49.30 48.94 48.58 47.50 49.30 
Run 20 38.04 41.35 52.40 46.02 50.35 51.72 48.22 47.50 50.00 48.58 52.06 50.70 50.70 53.40 51.04 51.72 50.70 48.22 
Run 21 38.88 43.34 44.12 47.86 46.02 44.50 50.35 48.22 48.58 47.13 48.22 47.13 50.70 49.65 51.38 51.04 44.12 46.76 
Run 22 38.88 44.12 45.64 43.73 49.65 48.58 47.50 55.66 47.13 48.94 46.76 46.02 50.00 48.58 53.40 50.70 46.02 51.04 
Run 23 40.13 40.54 43.34 48.58 46.76 47.13 47.13 47.86 45.64 52.73 52.06 49.65 45.27 49.30 44.89 49.30 48.58 51.72 
Run 24 47.13 42.16 41.76 52.73 42.55 46.02 45.27 48.22 52.06 51.38 51.72 49.65 51.38 50.00 48.94 50.70 51.04 51.04 
Run 25 42.95 39.30 47.13 46.02 48.94 38.46 52.40 47.50 43.73 50.70 52.40 50.35 50.00 50.35 47.13 50.00 49.30 44.12 
Run 26 33.64 44.12 54.70 46.02 48.22 51.38 46.39 51.04 45.27 47.50 50.00 50.00 45.27 52.73 53.40 50.35 47.13 51.38 
Run 27 34.09 41.76 43.34 48.58 45.64 45.64 46.02 51.72 46.02 52.40 48.22 51.04 49.65 50.00 44.89 56.29 51.38 47.50 
Run 28 46.02 43.34 44.50 46.39 43.73 44.50 47.50 50.70 46.39 54.05 46.76 48.22 42.55 49.30 51.04 50.00 46.39 48.94 
Run 29 43.73 40.13 46.39 47.13 44.89 47.50 52.73 47.86 48.94 51.72 55.98 53.07 51.72 50.35 52.06 48.22 43.34 53.07 
Run 30 39.72 46.02 47.50 47.50 44.12 46.39 47.13 46.39 48.22 47.86 50.00 48.58 47.86 46.76 52.40 50.70 54.70 41.35 
Mean 41.07 40.79 46.00 46.10 46.55 46.53 48.12 49.26 48.39 49.41 49.31 48.79 48.59 50.31 50.07 49.42 48.83 49.70 
Std dev 0.0394 0.0365 0.0324 0.0257 0.0281 0.0267 0.0238 0.0240 0.0289 0.0285 0.0280 0.0245 0.0274 0.0232 0.0282 0.0242 0.0297 0.0298 
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TABLE B-59: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE TAL_BY_9 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.30 35.43 40.13 43.34 44.89 42.55 42.95 56.91 48.58 50.00 43.73 47.86 50.00 46.76 48.58 49.30 51.38 46.76 
Run 2 31.79 39.30 43.34 42.95 47.50 44.50 44.12 48.58 48.22 42.55 42.16 53.07 52.73 49.65 53.73 47.50 51.04 48.22 
Run 3 34.99 39.72 38.88 42.95 45.64 43.73 42.95 46.39 43.34 44.50 51.72 49.65 50.00 47.50 47.86 46.39 50.00 44.12 
Run 4 36.31 46.76 35.87 41.35 45.27 44.50 48.58 46.02 40.95 48.22 52.40 49.65 50.70 48.22 49.30 48.58 51.38 46.02 
Run 5 38.46 38.46 41.76 43.34 46.02 45.64 43.34 46.02 50.00 47.13 50.70 43.73 51.04 46.02 47.13 52.40 48.22 50.00 
Run 6 40.13 35.43 38.88 47.86 42.55 49.30 46.02 46.02 50.00 46.02 50.00 49.30 50.35 45.27 48.22 53.73 46.39 43.73 
Run 7 41.35 37.18 39.72 39.72 44.89 45.27 42.95 42.95 47.13 41.76 48.22 44.50 43.73 53.07 45.27 51.72 51.04 52.40 
Run 8 42.16 35.87 46.39 43.34 42.16 41.35 45.64 47.13 43.34 45.64 47.50 46.39 52.73 49.65 47.13 48.94 47.50 50.00 
Run 9 37.61 33.64 47.50 42.16 48.94 55.02 47.13 43.73 40.95 47.86 47.86 50.35 45.64 46.02 46.39 51.38 47.50 50.35 
Run 10 39.72 35.87 39.30 37.18 51.72 48.22 41.35 47.13 46.39 48.22 46.76 50.70 48.22 53.73 51.38 44.12 49.30 48.58 
Run 11 39.30 41.35 42.16 38.46 38.46 48.22 46.02 40.95 46.39 43.73 48.94 47.86 43.34 48.58 48.58 51.04 45.64 47.86 
Run 12 33.18 44.12 40.13 45.27 46.02 48.22 48.58 47.13 49.30 46.02 45.27 44.50 48.22 48.94 50.35 53.07 49.65 46.76 
Run 13 35.87 42.16 38.46 38.88 40.95 40.95 50.35 44.12 48.22 42.16 46.02 46.02 51.38 51.72 51.72 50.00 50.35 46.76 
Run 14 37.61 40.54 41.76 41.35 50.70 51.38 45.64 51.38 48.58 51.38 47.13 47.50 50.35 42.55 46.39 48.94 49.65 44.50 
Run 15 34.54 35.43 43.34 38.46 45.64 43.73 52.40 45.64 47.13 50.00 47.86 46.02 46.76 46.02 49.65 45.27 50.35 51.38 
Run 16 41.76 41.76 44.50 42.55 44.50 47.13 42.95 51.38 50.00 44.89 49.30 51.04 48.58 50.70 50.35 48.94 50.70 43.34 
Run 17 38.46 40.95 35.43 39.72 42.95 43.73 42.16 43.34 46.76 42.95 50.70 44.50 50.70 51.38 53.07 52.40 47.13 48.94 
Run 18 36.75 38.04 39.30 39.30 44.89 41.35 50.00 47.86 49.65 48.94 46.76 48.94 51.72 49.30 51.04 56.29 45.64 46.02 
Run 19 39.30 41.76 41.35 44.89 40.95 46.02 48.22 48.58 46.76 44.12 44.89 49.65 48.22 48.94 49.65 50.00 51.72 48.94 
Run 20 39.72 46.02 40.54 42.16 41.35 50.35 45.27 46.39 50.70 46.39 48.58 48.22 48.22 50.35 49.65 40.54 49.65 50.35 
Run 21 41.76 41.76 42.55 41.76 47.86 49.30 44.12 51.04 48.94 44.12 45.64 53.07 50.00 46.02 50.35 47.50 43.73 52.73 
Run 22 35.87 44.12 36.31 38.88 46.76 48.22 42.95 44.50 40.95 50.00 48.58 51.04 49.30 52.73 51.38 51.72 45.27 51.04 
Run 23 40.54 33.64 40.54 48.94 43.73 46.39 48.22 47.86 49.30 51.72 46.39 51.72 51.38 51.04 52.06 47.13 47.13 46.76 
Run 24 44.50 41.76 36.31 49.30 47.13 45.64 48.94 44.50 48.58 45.64 47.86 45.64 44.89 51.04 52.40 51.38 47.13 51.72 
Run 25 40.54 41.76 40.54 48.94 44.50 47.50 46.02 47.50 47.13 52.40 46.76 48.58 51.72 48.22 52.06 48.58 45.27 49.65 
Run 26 40.54 40.13 41.35 43.73 49.30 48.22 47.86 42.55 48.58 52.73 51.72 46.02 47.13 53.40 54.05 44.50 47.86 48.58 
Run 27 43.73 37.61 40.13 47.86 46.02 42.95 49.30 45.64 48.58 53.07 50.70 51.04 53.73 50.70 53.73 48.58 48.58 44.89 
Run 28 37.18 40.54 37.61 44.50 42.16 43.34 52.06 42.55 46.39 50.70 50.70 51.04 49.30 44.89 45.64 47.86 51.04 48.94 
Run 29 37.61 35.43 38.88 44.12 48.94 43.73 47.86 48.22 48.58 48.22 52.06 50.70 46.76 41.76 53.07 54.05 47.86 44.12 
Run 30 38.04 42.55 38.88 46.39 43.34 46.02 41.76 48.22 49.30 44.12 50.70 50.00 45.64 50.00 52.06 47.86 46.76 48.94 
Mean 38.62 39.64 40.40 42.99 45.19 46.08 46.19 46.68 47.29 47.17 48.25 48.61 49.08 48.81 50.08 49.32 48.50 48.08 
Std dev 0.0290 0.0347 0.0281 0.0334 0.0301 0.0317 0.0305 0.0319 0.0271 0.0331 0.0253 0.0259 0.0264 0.0301 0.0249 0.0325 0.0217 0.0263 
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TABLE B-60: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS USING THE VIDEO PROCESSING SYSTEM WITH 

OPTIMISED RETINAL ENCODING THRESHOLDS ON THE TAL_BY_10 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 39.72 46.76 47.13 49.65 50.00 46.02 50.00 46.76 51.04 46.39 48.58 46.76 42.55 48.94 54.38 50.35 50.35 47.86 
Run 2 35.43 40.95 45.64 47.13 50.00 48.94 48.94 47.13 48.94 48.58 45.64 52.40 50.35 51.72 48.94 43.73 52.73 54.38 
Run 3 41.76 38.88 47.86 44.50 46.02 42.55 44.12 46.76 48.22 47.86 47.86 55.34 48.22 51.04 52.06 48.22 48.58 51.04 
Run 4 42.55 43.34 48.22 38.88 48.22 52.06 43.34 40.95 47.13 46.76 42.55 45.64 54.38 45.27 51.04 49.65 54.38 47.50 
Run 5 47.13 46.02 44.50 46.76 47.50 49.30 49.30 44.50 49.30 47.13 48.58 48.94 51.04 46.02 57.53 45.27 51.72 46.39 
Run 6 40.13 46.76 48.22 49.65 46.02 48.22 43.73 49.30 42.95 46.76 52.40 49.65 49.30 47.86 54.38 50.70 49.30 48.94 
Run 7 40.13 35.43 42.16 46.76 43.34 47.13 48.22 51.72 50.00 51.04 46.76 43.73 47.50 51.38 47.86 50.00 51.72 51.38 
Run 8 46.76 44.89 41.76 42.95 45.64 51.04 43.34 51.38 54.38 49.65 56.60 48.58 53.40 51.72 49.65 46.02 44.89 54.05 
Run 9 48.94 45.27 48.22 43.34 46.76 45.64 49.65 49.30 43.73 46.02 48.22 50.70 44.89 50.35 46.76 46.76 49.30 47.86 
Run 10 41.35 45.27 46.39 48.22 46.76 47.50 52.73 46.02 47.86 52.73 48.58 43.34 50.35 50.70 54.05 44.89 48.22 47.86 
Run 11 38.04 39.72 45.27 43.34 46.76 47.13 48.22 39.72 53.40 46.76 50.00 42.16 45.64 48.58 51.38 49.65 48.22 46.39 
Run 12 43.34 35.43 47.13 47.86 46.39 45.64 48.22 42.95 48.58 47.13 46.39 53.40 46.02 48.94 59.04 51.72 49.65 50.00 
Run 13 49.30 41.76 45.27 47.50 40.13 48.22 52.73 46.39 44.12 50.70 42.16 46.02 47.13 53.40 51.38 50.00 51.04 47.13 
Run 14 43.34 43.73 44.50 46.76 51.38 48.94 52.40 51.38 43.73 50.35 48.22 46.39 52.73 52.06 49.65 49.65 51.72 47.50 
Run 15 40.95 45.27 45.64 46.76 46.76 48.94 49.65 48.58 48.22 49.65 46.76 51.04 47.86 49.65 47.86 48.94 50.35 46.76 
Run 16 40.54 39.30 44.12 48.58 43.73 52.40 44.12 47.50 48.22 47.13 48.22 49.30 55.02 55.98 57.84 46.39 53.07 56.29 
Run 17 46.02 42.55 50.35 42.55 46.76 47.13 44.50 47.13 44.50 51.38 46.02 47.50 53.07 57.53 51.38 56.29 49.30 52.73 
Run 18 42.55 37.18 47.86 48.22 49.30 45.64 47.86 52.40 42.95 43.73 47.13 45.64 49.30 54.05 48.22 48.22 55.34 51.38 
Run 19 42.16 43.34 48.22 48.22 48.22 51.04 52.40 50.70 46.02 48.94 49.65 47.86 47.50 55.98 46.76 50.00 46.02 50.70 
Run 20 40.54 45.27 43.73 45.27 48.58 46.76 46.76 43.34 52.06 48.94 52.40 45.27 46.02 51.04 48.58 47.86 56.29 50.00 
Run 21 39.72 45.27 42.95 46.39 45.64 45.64 47.86 47.13 46.02 44.89 48.22 53.07 47.50 44.12 54.05 53.73 48.58 48.94 
Run 22 35.43 40.95 44.89 53.73 48.94 45.64 48.58 47.50 46.39 46.39 52.06 48.58 47.50 52.40 48.58 49.65 52.73 47.50 
Run 23 44.89 42.55 47.50 48.22 42.95 48.58 50.35 47.86 47.50 53.07 41.35 54.38 44.89 48.94 46.02 54.70 51.72 53.40 
Run 24 38.88 39.30 48.58 44.50 44.12 48.58 46.39 46.39 46.39 46.39 38.46 45.64 48.22 48.58 51.38 50.35 49.65 47.13 
Run 25 40.95 40.13 45.64 47.50 48.58 51.38 43.73 48.58 50.35 50.70 47.50 48.58 49.30 46.76 55.02 47.50 50.70 50.00 
Run 26 44.89 38.04 47.13 47.50 45.27 49.30 47.86 40.95 50.35 44.89 47.50 46.02 47.86 47.13 48.22 48.58 49.65 49.65 
Run 27 44.89 44.12 46.39 46.39 44.89 46.76 53.07 42.16 47.13 47.13 46.76 47.86 52.40 52.73 51.04 52.73 47.13 51.72 
Run 28 42.95 41.76 42.95 44.50 45.64 47.50 53.40 46.76 51.72 53.07 47.50 52.40 52.40 59.34 56.91 54.05 53.73 46.76 
Run 29 44.50 47.50 44.89 49.30 48.94 46.02 46.39 51.04 49.65 45.27 48.58 50.70 48.22 49.65 48.22 52.40 46.76 48.58 
Run 30 47.50 44.12 46.02 47.86 48.94 51.72 52.06 47.50 49.65 43.73 48.22 50.00 47.13 48.58 52.40 52.73 51.04 49.65 
Mean 42.51 42.36 45.97 46.63 46.74 48.05 48.33 46.99 48.02 48.11 47.63 48.56 48.92 50.68 51.35 49.69 50.46 49.65 
Std dev 0.0347 0.0330 0.0206 0.0272 0.0239 0.0229 0.0315 0.0329 0.0296 0.0261 0.0342 0.0328 0.0301 0.0348 0.0351 0.0295 0.0263 0.0258 
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TABLE B-61: AVERAGED RESULTS OF THE SOUND AND VIDEO CROSS-VALIDATION 

EXPERIMENTS IN %. 

Size MNI Talairach Ø 

LIF by 3 by 4 by 5 by 6 by 7 by 8 by 9 by 10  

0.01 80.03 79.89 83.96 76.97 78.05 78.36 76.98 78.05 79.04 

0.02 87.75 86.69 85.06 79.51 79.07 78.62 76.56 75.62 81.11 

0.03 88.85 87.11 84.93 77.65 77.60 78.89 77.46 80.41 81.61 

0.04 89.25 87.11 85.33 79.01 77.58 79.17 75.57 82.52 81.94 

0.05 88.46 87.62 85.53 78.71 81.45 81.21 82.28 78.92 83.02 

0.06 88.63 86.92 85.78 84.74 85.88 84.64 85.52 77.88 85.00 

0.07 89.12 87.45 85.47 86.09 85.06 86.12 85.81 78.39 85.44 

0.08 88.98 88.14 85.33 86.44 85.95 86.72 85.14 79.00 85.71 

0.09 88.69 88.56 85.11 87.64 86.60 87.34 82.28 80.07 85.79 

0.10 88.30 88.65 84.45 87.42 86.84 86.75 81.22 79.55 85.40 

0.15 89.65 87.79 84.17 88.25 87.60 89.11 84.36 77.22 86.02 

0.20 89.45 87.31 83.67 88.33 89.72 88.47 83.50 76.44 85.86 

0.25 89.34 87.19 83.51 89.33 88.55 87.36 83.45 75.37 85.51 

0.30 89.10 86.70 83.41 89.79 87.46 87.15 83.64 75.53 85.35 

0.35 88.67 87.22 83.66 89.19 87.49 87.78 83.17 76.00 85.40 

0.40 89.12 86.53 83.56 88.91 87.46 87.33 83.46 75.33 85.21 

0.45 88.80 86.52 83.52 88.72 87.49 87.43 83.68 75.36 85.19 

0.50 88.76 86.73 83.43 88.90 87.08 87.25 83.56 75.09 85.10 

Ø 88.39 86.90 84.44 85.31 84.83 84.98 82.09 77.60 84.32 
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TABLE B-62: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS ON THE SIGN LANGUAGE DATASET USING ONLY 

THE SOUND DATA FOR TRAINING ON THE MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 44.89 48.58 47.86 47.86 48.58 55.98 52.06 53.40 59.04 56.60 47.86 39.30 49.30 39.30 32.26 45.64 45.64 32.26 
Run 2 40.95 50.70 51.38 49.30 55.34 53.40 52.06 53.40 50.70 56.60 57.22 47.13 47.13 40.95 38.46 39.30 50.70 46.39 
Run 3 50.70 41.76 47.86 58.44 48.58 49.30 54.70 47.13 57.22 56.60 62.50 49.30 57.84 40.95 51.38 47.13 43.34 47.13 
Run 4 48.58 47.86 54.05 52.06 51.38 50.00 53.40 57.22 50.00 64.15 52.73 47.13 48.58 55.34 47.13 48.58 44.89 40.13 
Run 5 46.39 45.64 52.73 48.58 52.73 57.22 54.05 58.44 61.37 60.22 57.84 50.70 51.38 44.12 45.64 50.70 50.70 49.30 
Run 6 47.13 45.64 52.06 55.98 56.60 50.00 51.38 55.34 54.70 55.34 51.38 54.05 58.44 45.64 44.89 40.95 41.76 54.05 
Run 7 50.70 47.13 55.98 58.44 52.73 51.38 60.22 50.00 56.60 57.84 59.04 56.60 57.84 46.39 44.12 48.58 43.34 41.76 
Run 8 41.76 44.89 52.73 56.60 54.05 52.73 47.86 58.44 61.37 59.04 57.84 55.98 45.64 46.39 55.34 47.86 45.64 34.09 
Run 9 55.34 44.12 48.58 43.34 57.84 54.05 65.22 59.04 58.44 55.98 53.40 57.22 52.06 46.39 47.86 40.13 48.58 37.61 
Run 10 46.39 51.38 42.55 52.73 49.30 51.38 64.69 55.34 52.06 62.50 52.73 53.40 44.89 48.58 53.40 41.76 45.64 40.13 
Run 11 45.64 48.58 50.70 52.06 49.30 60.80 59.04 57.84 57.84 62.50 55.34 53.40 47.86 44.12 44.89 40.13 49.30 35.87 
Run 12 51.38 47.86 50.00 54.05 56.60 55.98 49.30 54.70 59.04 66.78 58.44 55.98 55.98 50.00 44.89 48.58 48.58 47.86 
Run 13 47.13 44.89 54.70 46.39 59.63 61.94 55.34 47.13 54.05 54.05 65.22 54.70 49.30 40.95 37.61 44.12 42.55 40.95 
Run 14 46.39 54.05 47.86 50.70 40.13 54.05 52.06 53.40 55.98 56.60 46.39 47.13 46.39 55.34 48.58 50.70 45.64 47.13 
Run 15 51.38 55.34 47.86 44.12 54.70 63.60 50.00 50.70 61.37 57.22 55.34 59.63 50.70 44.12 44.12 40.13 44.89 48.58 
Run 16 42.55 48.58 48.58 55.98 55.34 56.60 62.50 52.06 59.04 62.50 52.06 52.06 50.70 45.64 50.00 38.46 38.46 42.55 
Run 17 51.38 52.73 46.39 55.98 55.34 54.05 52.73 55.34 52.73 59.04 57.84 48.58 49.30 56.60 57.84 43.34 40.13 44.89 
Run 18 40.13 55.98 48.58 47.86 54.05 58.44 57.84 60.80 55.98 47.86 57.84 54.70 44.89 48.58 40.13 42.55 38.46 46.39 
Run 19 53.40 44.12 41.76 52.06 58.44 55.34 41.76 60.22 67.80 59.63 57.22 52.73 38.46 45.64 45.64 47.86 39.30 45.64 
Run 20 44.89 45.64 49.30 57.22 54.70 57.22 52.73 44.89 59.63 58.44 57.84 50.00 41.76 46.39 47.86 37.61 44.12 51.38 
Run 21 43.34 38.46 59.04 57.22 53.40 60.22 57.84 62.50 54.05 59.04 52.06 45.64 43.34 55.98 52.73 45.64 47.13 47.86 
Run 22 40.13 48.58 49.30 47.86 45.64 54.05 52.06 55.34 55.34 51.38 60.22 44.12 42.55 59.04 37.61 40.13 51.38 42.55 
Run 23 47.13 44.12 41.76 44.89 53.40 44.89 51.38 57.84 62.50 47.86 58.44 40.95 51.38 44.12 37.61 43.34 47.86 44.12 
Run 24 46.39 43.34 52.73 48.58 55.98 59.04 54.05 50.70 55.34 55.34 60.22 49.30 44.89 48.58 39.30 43.34 41.76 49.30 
Run 25 44.89 52.73 52.73 55.98 47.13 55.34 55.34 61.94 51.38 59.63 66.78 44.89 48.58 55.34 53.40 37.61 36.75 37.61 
Run 26 54.05 46.39 47.13 46.39 53.40 50.00 54.05 52.73 54.70 52.06 57.84 53.40 44.89 50.00 47.13 38.46 43.34 40.13 
Run 27 44.12 46.39 55.34 48.58 50.70 54.70 60.22 54.70 57.22 61.37 56.60 44.12 47.13 48.58 41.76 43.34 43.34 34.99 
Run 28 47.13 44.89 51.38 49.30 54.05 47.86 60.22 55.34 58.44 63.06 59.63 52.73 51.38 56.60 55.34 39.30 45.64 44.89 
Run 29 48.58 47.86 45.64 59.63 59.04 60.80 54.05 52.06 55.34 54.05 57.84 53.40 41.76 42.55 37.61 47.86 40.95 45.64 
Run 30 40.95 54.70 50.70 51.38 56.60 53.40 46.39 56.60 61.94 59.04 52.06 49.30 52.73 53.40 43.34 34.99 35.87 42.55 
Mean 46.79 47.77 49.91 51.65 53.16 54.79 54.49 54.82 57.04 57.75 56.59 50.59 48.57 48.19 45.60 43.27 44.19 43.46 
Std dev 0.0409 0.0413 0.0400 0.0460 0.0422 0.0432 0.0515 0.0427 0.0389 0.0435 0.0442 0.0488 0.0489 0.0540 0.0624 0.0425 0.0405 0.0524 
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TABLE B-63: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS ON THE SIGN LANGUAGE DATASET USING ONLY 

THE VIDEO DATA FOR TRAINING ON THE MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 69.77 71.66 71.19 76.09 76.51 71.66 78.15 76.09 75.24 72.12 76.09 72.12 75.24 69.28 73.93 69.77 69.28 66.78 
Run 2 74.80 68.79 76.51 73.48 76.51 76.09 75.24 75.66 73.48 78.55 74.37 69.77 70.72 63.60 69.77 73.48 66.78 69.77 
Run 3 68.79 73.93 78.55 74.80 72.12 73.03 75.24 74.37 65.74 69.28 70.72 73.03 66.27 66.27 64.69 69.28 67.29 69.77 
Run 4 70.72 70.25 77.34 79.73 72.58 75.66 73.48 73.93 77.74 76.92 68.79 71.66 66.27 75.66 63.60 71.19 70.25 67.29 
Run 5 67.29 74.80 71.19 67.80 76.09 74.80 71.19 77.74 76.09 78.55 77.34 72.58 68.30 69.77 64.69 67.80 68.79 71.66 
Run 6 70.25 70.72 73.48 74.37 80.12 81.26 75.66 76.09 74.37 69.77 72.58 73.93 70.25 67.80 72.58 73.93 67.80 69.28 
Run 7 73.03 70.25 67.80 80.12 75.66 75.66 71.19 77.34 72.12 76.92 72.58 72.12 75.66 71.66 66.27 65.74 69.28 66.27 
Run 8 76.09 72.58 71.19 71.66 75.24 76.09 73.93 79.73 76.09 74.37 70.72 68.79 69.77 68.30 68.30 66.78 66.27 68.79 
Run 9 70.25 72.58 80.12 77.34 71.66 73.03 80.12 76.51 81.26 73.48 72.58 71.66 73.93 67.29 71.19 69.28 67.80 70.25 
Run 10 71.19 69.77 80.50 74.37 76.09 76.92 80.12 75.66 75.66 77.74 76.92 64.69 64.69 65.22 64.69 67.80 74.80 66.78 
Run 11 71.19 66.78 75.24 74.80 75.24 72.12 77.74 72.58 72.12 78.95 73.93 75.66 68.79 68.79 67.29 76.09 71.66 71.19 
Run 12 69.77 71.19 74.37 72.58 73.03 73.48 77.34 72.12 75.66 78.95 71.66 69.28 66.78 63.06 69.28 66.78 71.19 73.03 
Run 13 73.03 70.25 73.93 77.74 77.74 75.24 73.93 73.03 75.24 74.37 74.80 72.12 73.03 67.29 68.30 70.25 73.48 65.74 
Run 14 74.37 69.28 74.80 73.03 78.95 75.66 75.24 73.93 76.09 77.74 70.25 72.58 68.30 70.72 70.25 68.30 67.29 65.22 
Run 15 72.12 72.12 72.12 77.74 75.24 81.63 78.15 73.93 77.74 78.95 71.19 73.48 71.19 68.79 65.22 70.25 63.60 61.94 
Run 16 71.19 69.77 73.03 77.74 76.09 72.58 74.37 74.80 76.51 74.80 71.66 69.28 68.30 68.79 68.79 70.72 69.77 67.80 
Run 17 69.77 70.25 76.92 74.37 76.51 69.77 78.55 79.34 75.24 76.51 71.19 73.03 68.30 66.78 77.74 64.15 73.03 69.28 
Run 18 69.28 70.72 67.80 73.93 71.66 80.50 73.93 72.12 75.24 73.48 69.77 72.58 66.78 69.77 64.69 71.66 72.12 71.66 
Run 19 74.80 70.72 77.34 70.72 75.24 76.09 79.73 73.48 71.19 71.19 71.66 69.28 70.25 68.79 70.72 67.29 67.29 65.74 
Run 20 70.72 68.30 73.93 74.37 73.48 74.37 76.51 73.03 79.34 70.25 74.80 70.72 73.93 70.25 66.78 66.78 66.27 72.58 
Run 21 68.79 75.66 66.78 75.66 72.12 80.88 75.66 77.74 77.74 79.34 69.77 73.93 70.25 72.58 66.27 68.30 67.80 71.66 
Run 22 70.25 70.25 76.92 73.93 74.37 77.34 70.72 69.28 76.51 76.92 72.58 73.03 68.79 67.80 68.79 65.74 69.77 71.66 
Run 23 70.25 75.24 73.93 73.48 74.37 80.12 74.37 74.80 75.66 75.24 78.95 72.58 73.03 65.74 69.77 65.22 61.94 67.80 
Run 24 67.80 65.22 70.72 74.80 73.03 79.73 81.26 74.37 77.74 74.80 67.80 67.29 74.80 69.77 69.77 70.25 70.25 64.69 
Run 25 73.93 71.66 73.48 76.92 76.09 76.09 73.48 73.03 77.34 72.58 75.24 68.79 71.19 73.93 70.25 62.50 68.30 64.15 
Run 26 70.25 69.77 75.24 75.66 72.12 79.34 76.92 78.55 76.92 75.24 72.58 74.80 72.58 72.12 70.72 73.48 75.24 73.03 
Run 27 68.79 67.29 73.48 77.34 72.12 72.12 76.51 80.50 75.66 73.03 75.24 69.77 68.30 71.19 70.72 69.77 68.30 66.27 
Run 28 73.03 72.12 73.93 71.19 74.37 72.58 74.37 78.55 77.34 76.09 73.48 69.77 70.25 64.15 68.79 69.28 67.80 61.94 
Run 29 68.79 68.30 74.37 76.92 72.58 74.80 74.80 72.58 69.28 72.12 69.77 70.25 69.28 64.15 70.25 64.15 65.22 69.28 
Run 30 69.77 67.29 73.93 67.29 71.66 77.74 79.34 72.12 76.92 67.80 73.03 73.93 72.58 69.77 67.29 64.15 72.12 67.29 
Mean 71.00 70.58 74.00 74.67 74.62 75.88 75.91 75.10 75.44 74.87 72.73 71.42 70.26 68.64 68.71 68.67 69.03 68.29 
Std dev 0.0219 0.0241 0.0326 0.0295 0.0221 0.0312 0.0270 0.0265 0.0296 0.0317 0.0260 0.0236 0.0284 0.0297 0.0303 0.0317 0.0302 0.0304 
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TABLE B-64: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS ON THE SIGN LANGUAGE DATASET USING THE 

COMBINED SOUND AND VIDEO DATA FOR TRAINING ON THE MNI_BY_4 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 56.60 65.74 65.22 66.27 67.29 69.77 66.78 64.69 66.27 76.09 71.66 66.78 72.58 72.58 72.12 70.72 70.72 67.29 
Run 2 61.37 64.69 65.22 57.84 65.74 66.78 67.80 73.48 71.19 71.66 73.48 71.66 70.25 66.78 68.30 60.22 67.80 69.28 
Run 3 52.06 60.22 65.74 66.78 66.27 71.19 70.25 73.93 70.72 64.69 77.74 67.80 73.03 73.93 70.25 65.74 76.09 65.74 
Run 4 59.04 64.15 60.80 67.80 60.22 57.84 69.77 72.58 68.79 70.25 76.09 68.79 74.80 68.30 71.19 69.77 69.77 70.72 
Run 5 58.44 66.78 64.15 61.37 67.80 63.60 71.66 68.79 64.15 78.95 76.92 66.27 71.19 70.25 71.66 69.28 70.25 67.80 
Run 6 47.86 59.04 63.06 59.04 70.25 60.22 74.37 70.72 65.74 77.34 68.30 71.66 74.37 70.72 61.94 67.80 71.19 66.78 
Run 7 47.86 64.15 63.06 57.22 69.77 71.19 64.15 66.78 77.34 69.28 76.09 70.72 70.72 65.22 70.72 70.25 69.28 66.78 
Run 8 47.13 60.22 60.22 64.69 66.78 64.15 71.19 71.19 73.48 67.29 72.58 80.50 67.29 64.15 69.77 66.27 63.06 67.80 
Run 9 62.50 59.04 63.60 66.27 61.37 66.78 70.72 65.74 72.12 75.66 77.74 70.25 65.74 65.22 70.25 74.37 64.69 64.15 
Run 10 50.70 60.80 61.37 66.27 67.80 70.25 70.72 73.48 73.93 76.51 76.09 68.79 67.80 64.69 72.58 65.22 61.94 65.74 
Run 11 66.27 64.69 66.27 73.93 71.66 75.66 71.19 65.74 69.28 74.37 72.58 73.93 74.80 71.19 73.48 73.93 67.80 69.77 
Run 12 54.05 60.22 63.60 61.94 72.58 63.60 71.19 74.80 72.58 77.34 71.66 67.80 72.12 68.79 68.30 64.15 66.78 66.78 
Run 13 50.70 61.37 63.60 68.30 69.77 69.77 64.15 70.25 73.03 72.58 66.78 68.30 67.80 74.80 65.22 63.60 69.77 63.60 
Run 14 53.40 63.06 59.63 62.50 64.69 65.74 68.79 71.66 69.28 72.58 75.66 70.72 70.72 70.25 67.29 60.80 68.30 63.60 
Run 15 54.70 62.50 59.04 65.22 69.77 72.12 65.74 63.60 75.24 71.19 72.58 72.12 69.77 69.77 60.22 56.60 65.22 65.22 
Run 16 52.73 66.78 61.37 59.04 64.69 71.66 72.58 65.74 64.15 65.74 70.25 71.66 77.34 73.03 69.77 68.30 71.19 69.77 
Run 17 55.98 60.22 60.22 64.69 67.29 69.77 67.80 66.78 69.77 72.58 76.51 76.51 67.80 67.80 63.60 61.37 68.79 59.04 
Run 18 52.73 64.69 60.80 64.69 66.78 68.30 69.77 66.78 71.19 72.12 70.72 76.09 72.58 68.79 70.72 69.28 68.79 74.80 
Run 19 57.22 64.69 67.80 75.66 63.60 71.66 73.03 66.27 68.30 68.30 69.77 71.19 66.78 69.28 63.06 68.79 72.12 72.12 
Run 20 52.06 66.27 62.50 66.78 69.28 64.69 68.79 75.66 73.03 72.58 76.92 71.66 76.51 71.66 72.58 71.19 73.93 64.69 
Run 21 54.70 59.04 51.38 67.29 56.60 66.78 72.58 71.19 75.24 65.74 74.37 69.28 73.48 67.80 63.60 71.66 66.27 63.60 
Run 22 54.05 72.12 61.37 70.72 66.27 63.60 75.66 63.60 71.66 71.19 76.51 77.74 79.73 69.28 67.29 64.69 63.60 66.27 
Run 23 54.70 64.15 65.74 78.15 68.79 69.77 69.77 72.12 75.24 68.30 73.48 76.09 67.29 72.12 69.77 69.28 71.19 61.94 
Run 24 52.73 57.22 59.63 61.94 69.28 70.25 71.19 68.30 74.37 75.24 65.74 68.79 68.79 73.93 75.66 59.63 63.60 66.27 
Run 25 57.84 59.04 59.63 66.78 66.78 65.74 73.48 75.24 66.78 77.74 70.72 70.72 72.12 76.92 67.80 67.80 69.77 57.22 
Run 26 61.94 61.94 67.29 64.15 68.30 71.66 71.66 67.29 71.19 69.77 69.77 70.25 60.22 69.77 64.15 71.19 64.69 65.22 
Run 27 60.22 60.22 61.37 66.27 67.80 71.19 62.50 71.19 73.03 73.03 80.12 73.03 74.80 71.66 69.77 71.66 64.69 67.29 
Run 28 48.58 62.50 64.15 62.50 68.30 63.60 70.72 73.93 69.77 73.48 69.28 61.37 71.66 76.09 69.28 76.09 66.78 66.78 
Run 29 55.98 57.22 64.15 65.74 73.48 68.79 71.19 75.66 75.66 73.93 65.74 73.03 71.66 60.22 77.34 73.48 65.22 66.27 
Run 30 55.98 61.37 64.15 68.30 68.30 74.80 75.66 71.19 69.28 76.09 74.80 67.80 73.48 65.74 73.93 68.79 60.22 69.77 
Mean 55.00 62.47 62.54 65.60 67.24 68.03 70.16 69.95 71.06 72.39 73.02 71.04 71.24 69.69 69.05 67.73 67.78 66.40 
Std dev 0.0456 0.0325 0.0315 0.0472 0.0346 0.0407 0.0315 0.0370 0.0339 0.0376 0.0372 0.0378 0.0388 0.0371 0.0402 0.0467 0.0359 0.0348 
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TABLE B-65: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS ON THE SIGN LANGUAGE DATASET USING ONLY 

THE SOUND DATA FOR TRAINING ON THE TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 49.30 50.70 41.76 40.95 47.13 55.98 50.00 54.70 55.34 55.98 60.22 55.98 57.22 52.73 52.73 37.61 44.89 37.61 
Run 2 43.34 43.34 47.13 35.87 47.86 48.58 56.60 55.34 60.22 57.22 49.30 60.22 54.70 52.73 54.70 44.89 46.39 40.13 
Run 3 42.55 50.00 54.70 47.13 48.58 55.34 51.38 54.70 56.60 59.63 65.74 50.00 49.30 55.98 49.30 44.12 45.64 44.12 
Run 4 34.09 46.39 47.13 50.70 49.30 47.86 51.38 55.34 54.05 61.37 57.22 52.73 54.05 47.86 57.84 52.06 48.58 50.00 
Run 5 49.30 45.64 36.75 46.39 52.06 50.70 54.70 52.06 63.06 60.22 57.22 57.22 49.30 52.06 54.70 44.89 50.00 40.13 
Run 6 49.30 51.38 44.12 54.05 47.13 52.06 56.60 50.00 52.06 59.63 61.37 54.70 51.38 52.06 52.06 59.04 58.44 49.30 
Run 7 50.70 49.30 47.13 46.39 41.76 47.13 54.70 52.06 52.06 54.70 57.84 56.60 61.94 50.00 44.89 50.00 54.05 45.64 
Run 8 49.30 52.06 44.89 43.34 53.40 49.30 58.44 54.70 65.22 57.84 56.60 52.06 54.05 56.60 47.86 41.76 45.64 47.86 
Run 9 42.55 51.38 53.40 37.61 54.05 43.34 51.38 54.05 54.70 63.06 64.69 50.70 47.86 50.00 42.55 44.89 40.95 41.76 
Run 10 40.13 46.39 47.86 42.55 50.70 49.30 49.30 52.73 61.94 54.70 55.34 53.40 54.05 54.05 51.38 40.13 48.58 47.86 
Run 11 53.40 44.12 55.98 40.95 48.58 51.38 49.30 52.73 58.44 63.06 62.50 61.37 52.06 50.00 55.34 55.34 43.34 40.13 
Run 12 44.12 40.13 47.13 47.86 56.60 54.05 55.98 54.70 49.30 58.44 58.44 56.60 56.60 57.22 47.13 47.13 47.86 37.61 
Run 13 53.40 43.34 48.58 35.87 52.06 53.40 50.00 52.06 48.58 53.40 60.22 59.04 55.98 52.73 58.44 52.06 40.13 42.55 
Run 14 47.86 48.58 41.76 40.13 55.34 53.40 46.39 52.06 65.22 54.70 53.40 53.40 55.98 53.40 54.05 45.64 44.89 43.34 
Run 15 47.13 52.73 45.64 52.06 51.38 50.00 58.44 57.84 53.40 53.40 63.60 62.50 48.58 57.22 52.73 54.70 47.13 45.64 
Run 16 43.34 50.00 39.30 42.55 47.86 52.73 53.40 52.73 59.04 52.73 61.37 50.00 58.44 59.04 53.40 50.00 37.61 46.39 
Run 17 47.86 46.39 51.38 38.46 40.95 48.58 50.70 48.58 54.05 68.30 59.04 64.69 55.34 55.34 47.86 43.34 50.00 47.13 
Run 18 48.58 47.13 46.39 44.12 33.18 47.13 53.40 54.05 54.05 57.84 60.80 57.22 57.22 46.39 48.58 47.13 46.39 52.73 
Run 19 40.95 48.58 46.39 40.13 50.70 50.70 57.84 52.73 54.70 56.60 62.50 61.94 58.44 47.86 49.30 52.73 53.40 45.64 
Run 20 39.30 44.12 46.39 46.39 52.73 44.89 52.73 54.70 53.40 61.94 55.98 52.06 48.58 52.06 37.61 49.30 38.46 49.30 
Run 21 41.76 42.55 44.12 43.34 50.00 55.34 50.70 55.34 58.44 57.84 61.94 52.73 60.22 51.38 43.34 51.38 47.13 44.12 
Run 22 41.76 44.12 45.64 41.76 47.86 53.40 40.95 54.70 50.00 58.44 60.22 50.70 52.73 54.05 54.05 55.34 51.38 40.95 
Run 23 44.89 52.06 50.00 42.55 53.40 53.40 52.73 49.30 51.38 56.60 59.63 49.30 55.34 54.70 39.30 45.64 44.12 44.89 
Run 24 32.26 44.12 51.38 43.34 47.86 52.73 54.05 52.73 57.22 52.73 65.22 58.44 52.73 55.98 52.06 47.86 44.12 37.61 
Run 25 52.06 48.58 44.89 45.64 47.86 49.30 49.30 56.60 55.34 60.80 65.74 58.44 54.05 51.38 55.34 59.63 45.64 46.39 
Run 26 49.30 49.30 44.12 37.61 50.00 46.39 46.39 55.98 56.60 63.60 65.74 54.05 53.40 42.55 54.70 44.89 54.70 34.99 
Run 27 48.58 47.86 52.73 47.86 36.75 61.94 54.05 52.06 59.63 58.44 60.80 52.73 55.34 50.70 46.39 50.00 40.95 47.86 
Run 28 52.06 42.55 40.13 47.13 50.70 41.76 56.60 51.38 53.40 61.37 63.06 54.70 53.40 52.73 49.30 54.70 53.40 47.13 
Run 29 52.73 54.05 49.30 42.55 47.86 50.70 54.70 56.60 55.98 49.30 60.80 57.22 55.34 49.30 52.73 43.34 44.89 52.73 
Run 30 46.39 46.39 41.76 35.87 52.06 47.86 53.40 55.98 62.50 54.05 59.04 54.70 49.30 52.06 44.12 51.38 54.70 47.13 
Mean 45.94 47.44 46.60 43.37 48.86 50.62 52.52 53.62 56.20 57.93 60.19 55.52 54.10 52.34 50.13 48.70 47.11 44.62 
Std dev 0.0529 0.0350 0.0446 0.0463 0.0501 0.0405 0.0385 0.0217 0.0438 0.0398 0.0376 0.0399 0.0347 0.0347 0.0515 0.0533 0.0502 0.0445 
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TABLE B-66: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS ON THE SIGN LANGUAGE DATASET USING ONLY 

THE VIDEO DATA FOR TRAINING ON THE TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 72.12 67.29 78.15 74.80 73.48 78.95 78.95 80.50 77.74 82.37 73.03 76.51 76.09 78.55 64.15 68.79 72.12 71.66 
Run 2 74.37 73.93 78.55 76.92 76.09 80.12 82.73 80.88 79.34 78.95 81.63 81.26 80.88 77.34 75.24 65.74 72.12 69.28 
Run 3 71.19 70.25 78.55 78.15 75.66 75.66 78.55 80.12 77.34 81.63 76.09 75.24 74.37 75.24 77.74 74.80 74.37 70.25 
Run 4 73.03 77.34 80.88 74.80 79.34 78.15 80.12 79.73 79.73 80.12 80.50 75.24 78.95 78.15 73.93 76.51 70.72 70.72 
Run 5 72.58 71.66 81.63 69.28 77.74 78.15 78.15 76.92 74.37 81.63 83.45 81.26 78.15 75.24 70.72 71.19 73.48 70.25 
Run 6 70.72 70.72 74.37 76.09 78.55 82.73 78.15 79.34 75.66 82.37 79.73 76.51 79.34 75.66 72.58 71.66 72.12 72.58 
Run 7 73.93 69.77 79.34 77.34 73.93 82.37 82.37 77.74 81.26 82.00 78.15 78.95 78.15 79.73 75.66 71.19 71.19 71.19 
Run 8 73.48 73.03 79.34 78.15 77.34 71.66 80.50 77.34 82.37 78.95 76.09 79.34 76.92 80.12 77.74 75.24 73.93 66.27 
Run 9 71.19 74.80 80.12 73.03 76.92 77.34 77.74 80.88 78.55 80.50 74.37 78.55 75.24 76.09 76.09 70.72 73.48 66.78 
Run 10 72.58 73.93 75.24 74.37 72.12 75.24 75.24 82.37 80.88 77.34 75.24 74.80 76.09 80.12 73.93 75.66 74.80 72.58 
Run 11 66.27 68.79 80.12 71.19 76.09 77.74 80.88 75.24 76.09 79.73 76.09 80.50 77.34 70.25 73.03 69.77 67.29 72.58 
Run 12 68.30 68.79 73.03 81.63 74.37 73.03 80.12 79.34 78.95 82.00 77.34 77.34 80.50 77.34 73.48 69.77 67.80 73.93 
Run 13 71.66 69.28 80.50 77.34 82.73 77.74 81.63 77.34 79.73 78.55 74.80 80.50 72.58 73.93 77.34 74.37 72.58 73.48 
Run 14 70.72 69.77 81.26 73.48 73.93 80.50 79.34 78.95 74.80 80.12 82.73 78.55 74.80 77.34 74.37 73.93 70.25 70.72 
Run 15 74.37 69.77 79.34 78.15 79.34 70.25 80.12 78.95 79.73 80.12 75.66 79.34 76.92 76.51 70.72 70.25 70.72 74.37 
Run 16 70.25 68.79 80.12 77.34 76.09 78.95 82.37 76.92 74.80 81.63 74.37 80.50 82.00 73.93 74.37 73.93 66.78 70.25 
Run 17 69.28 67.80 77.34 75.66 77.34 77.34 78.15 79.34 76.92 75.66 78.55 81.26 72.12 78.95 73.03 69.77 71.19 72.12 
Run 18 73.93 72.58 76.09 76.51 79.73 77.74 78.55 81.26 74.37 75.24 79.34 74.37 76.51 76.51 71.66 70.25 72.58 69.28 
Run 19 70.72 68.79 76.09 75.66 75.66 77.34 77.34 82.00 76.92 80.88 77.74 83.45 79.34 79.73 73.03 71.66 74.80 72.58 
Run 20 71.66 73.03 80.12 78.55 79.34 82.73 78.95 78.55 79.34 78.95 76.09 79.73 75.24 73.48 74.80 70.72 72.12 74.37 
Run 21 73.48 70.25 78.95 74.80 73.93 78.15 76.51 80.50 75.66 78.15 76.51 79.34 74.80 77.74 76.51 73.48 74.80 73.03 
Run 22 71.66 75.66 75.66 75.66 80.88 80.88 78.15 80.50 76.51 75.24 77.34 78.55 78.55 74.80 73.03 78.55 68.79 65.22 
Run 23 72.12 67.80 76.09 75.24 73.03 76.51 76.92 83.09 70.25 72.58 78.95 77.34 78.55 78.15 68.79 71.66 71.19 67.29 
Run 24 73.48 73.93 79.34 77.34 80.88 73.93 82.37 77.34 78.15 78.95 78.15 76.51 73.03 79.34 76.51 74.80 67.80 66.27 
Run 25 72.58 67.29 78.15 72.58 81.63 82.37 79.34 80.50 78.55 83.45 77.34 78.95 80.50 78.15 76.51 75.66 68.79 73.48 
Run 26 72.12 70.72 75.24 79.34 78.55 76.09 73.03 81.63 73.48 80.50 76.51 77.74 78.55 75.24 69.77 71.19 69.77 71.19 
Run 27 71.66 68.30 80.88 76.09 74.80 80.50 83.45 78.95 77.74 83.09 76.92 78.95 78.55 75.66 66.27 70.72 70.25 74.80 
Run 28 73.48 71.19 78.15 78.95 71.66 80.50 76.92 80.88 77.34 77.34 81.26 80.50 76.92 73.03 73.93 74.37 70.25 69.77 
Run 29 74.80 70.25 80.50 76.09 72.58 76.09 78.55 80.12 75.24 75.24 77.34 75.66 81.63 76.51 75.66 70.25 68.79 75.66 
Run 30 73.48 73.93 79.73 76.09 80.12 75.24 78.55 76.51 79.73 81.26 76.51 78.15 74.37 74.37 77.74 71.19 70.25 64.15 
Mean 72.04 70.98 78.43 76.02 76.80 77.80 79.12 79.46 77.38 79.48 77.59 78.50 77.23 76.57 73.61 72.26 71.17 70.87 
Std dev 0.0186 0.0262 0.0222 0.0247 0.0299 0.0310 0.0229 0.0187 0.0258 0.0265 0.0246 0.0218 0.0260 0.0234 0.0324 0.0269 0.0228 0.0295 
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TABLE B-67: DETAILED RESULTS FOR THE 30 RUNS OF THE CROSS-VALIDATION EXPERIMENTS ON THE SIGN LANGUAGE DATASET USING THE 

COMBINED SOUND AND VIDEO DATA FOR TRAINING ON THE TAL_BY_8 TEMPLATE IN %. 

Threshold 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Run 1 49.30 48.58 47.86 53.40 63.06 61.94 72.58 62.50 68.30 68.79 79.73 69.28 75.66 77.34 73.03 76.92 76.92 75.66 
Run 2 52.06 46.39 51.38 39.30 58.44 71.66 62.50 70.72 67.80 71.66 77.74 67.29 73.48 72.12 71.66 69.77 70.72 72.12 
Run 3 51.38 46.39 54.70 42.55 62.50 61.94 74.80 69.28 75.24 67.80 76.92 73.93 72.12 77.74 74.80 72.12 75.66 76.51 
Run 4 44.12 44.89 48.58 55.34 64.15 66.27 66.78 70.72 70.72 67.80 78.15 72.12 79.34 73.03 78.15 63.06 70.72 73.03 
Run 5 49.30 50.00 40.13 52.73 65.22 66.27 67.29 70.72 66.78 72.58 74.37 76.92 80.50 78.55 78.55 73.93 78.15 72.12 
Run 6 46.39 50.00 53.40 54.70 63.60 67.80 68.30 76.09 74.37 70.25 73.03 76.51 76.51 79.73 76.09 81.63 76.09 71.19 
Run 7 51.38 49.30 54.70 52.06 61.37 61.94 63.06 73.93 67.29 73.03 75.24 72.12 73.48 70.25 78.15 77.74 74.80 76.09 
Run 8 54.05 41.76 50.70 47.13 57.22 62.50 69.28 68.79 66.27 73.48 73.03 72.12 76.92 70.25 74.37 75.66 74.37 73.03 
Run 9 52.73 49.30 54.70 43.34 58.44 71.19 65.74 72.58 72.58 76.51 72.58 73.03 76.09 79.34 80.12 74.80 63.06 65.74 
Run 10 57.22 55.98 44.12 47.13 60.22 61.37 65.74 64.69 66.78 73.48 73.93 73.93 79.73 74.80 75.66 78.55 76.92 73.03 
Run 11 54.05 44.12 48.58 50.70 57.22 57.22 70.25 70.72 66.27 73.93 80.88 76.51 77.74 79.34 75.66 75.24 75.24 78.15 
Run 12 51.38 53.40 51.38 41.76 63.60 69.28 69.77 64.69 71.66 68.30 70.72 76.51 78.15 75.24 78.95 75.66 71.19 68.79 
Run 13 48.58 51.38 47.13 47.86 66.27 62.50 69.28 66.27 67.80 71.66 78.95 71.66 75.66 72.12 77.34 77.74 74.80 81.26 
Run 14 47.86 57.84 39.30 52.06 60.22 61.94 65.22 71.66 69.77 71.66 77.74 75.66 76.09 77.74 70.72 77.74 71.66 68.30 
Run 15 50.70 52.06 49.30 54.05 55.98 72.12 61.94 76.92 73.48 72.12 78.15 73.48 76.09 78.15 73.03 73.93 71.66 67.80 
Run 16 49.30 52.73 44.89 54.70 64.15 70.72 76.09 72.12 73.93 70.72 76.92 76.92 76.51 76.09 81.26 69.77 70.72 71.66 
Run 17 47.13 50.70 43.34 43.34 59.63 66.27 65.22 68.30 69.28 66.78 77.34 78.55 73.03 77.34 79.34 74.37 75.66 70.72 
Run 18 48.58 44.12 54.05 49.30 62.50 66.78 69.77 71.66 65.74 76.92 73.48 79.34 72.58 79.73 82.00 71.19 76.09 71.19 
Run 19 52.06 49.30 47.86 49.30 60.22 64.15 67.80 66.27 67.29 68.79 76.09 78.15 70.25 78.55 81.26 74.80 78.15 74.37 
Run 20 46.39 39.30 44.12 50.00 63.60 62.50 70.72 65.74 67.29 69.77 80.50 74.37 79.34 77.74 82.37 75.66 72.12 72.12 
Run 21 54.05 47.13 48.58 45.64 62.50 64.15 70.72 67.29 69.28 76.51 76.51 74.37 80.88 74.80 76.09 72.58 71.66 66.27 
Run 22 59.04 49.30 47.13 47.13 64.69 65.22 62.50 65.74 76.09 69.28 77.74 76.09 72.58 75.66 71.66 77.74 69.28 66.78 
Run 23 42.55 52.06 50.70 48.58 62.50 67.80 72.12 69.28 64.15 66.78 71.19 78.55 79.34 80.12 72.12 68.30 76.51 75.66 
Run 24 55.34 39.30 48.58 48.58 66.27 69.77 76.51 66.78 65.22 68.79 71.66 74.80 75.24 69.28 73.48 69.28 73.93 65.22 
Run 25 43.34 41.76 54.70 46.39 67.80 69.28 71.19 71.19 67.29 73.03 73.93 78.95 72.12 78.55 78.55 73.93 73.03 70.25 
Run 26 47.86 48.58 55.34 45.64 65.74 66.78 68.79 67.80 72.12 73.03 70.72 68.79 76.09 78.55 75.66 70.72 75.66 76.92 
Run 27 53.40 51.38 51.38 47.13 64.15 64.69 73.48 64.15 71.66 68.79 69.28 72.12 73.03 74.37 71.66 76.51 73.93 73.03 
Run 28 46.39 52.73 50.70 47.86 63.06 69.77 72.12 73.48 69.28 71.66 77.74 72.58 71.19 76.92 82.37 74.80 71.19 73.03 
Run 29 47.86 46.39 47.13 50.70 55.34 64.15 65.22 73.48 73.48 68.79 72.58 74.80 81.26 77.34 73.48 74.37 73.93 73.48 
Run 30 49.30 50.00 50.00 48.58 59.04 66.78 71.66 74.80 69.77 67.80 80.88 75.66 76.09 77.74 71.19 72.12 71.66 76.09 
Mean 50.10 48.54 49.15 48.57 61.96 65.82 68.88 69.61 69.57 71.02 75.59 74.50 75.90 76.28 76.29 74.02 73.52 72.32 
Std dev 0.0386 0.0442 0.0418 0.0401 0.0317 0.0361 0.0390 0.0366 0.0317 0.0281 0.0323 0.0299 0.0299 0.0300 0.0360 0.0365 0.0309 0.0379 
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FIGURE B-1: VISUALISATION OF THE ACTIVATED NEURONS AND CONNECTIONS FOR THE FIVE CLASSES OF THE SIGN LANGUAGE DATASET IN THE 

TWO BEST MODELS TRAINED ON THE COMBINED DATA . THE VIEWING ANGLE IS FROM THE RIGHT SIDE OF THE BRAIN . 
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FIGURE B-2: VISUALISATION OF THE ACTIVATED NEURONS AND CONNECTIONS FOR THE FIVE CLASSES OF THE SIGN LANGUAGE DATASET IN THE 

TWO BEST MODELS TRAINED ON THE COMBINED DATA . THE VIEWING ANGLE IS FROM THE TOP OF THE BRAIN. 
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FIGURE B-3: VISUALISATION OF THE ACTIVATED NEURONS AND CONNECTIONS FOR THE FIVE CLASSES OF THE SIGN LANGUAGE DATASET IN THE 

TWO BEST MODELS TRAINED ON THE COMBINED DATA . THE VIEWING ANGLE IS FROM THE BACK OF THE BRAIN. 
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APPENDIX C COPYRIGHT LETTERS FOR FIGURES 

Figure 3-1 (page 55) 
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Figure 3-2 (page 56) 
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Figure 3-5 (page 60) and Figure 3-11 (page 71) 
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Figure 3-6 (page 61) 
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Figure 3-7 (page 63) 
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Figure 3-8 (page 66) 
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Figure 3-9 (page 67) 
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Figure 3-10 (page 68) 
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Figure 3-12 (page 73) 
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Figure 3-13 (page 78) 

 



417 

 

 

 

 

 

 

 

 

 

 

 

 

 



418 

Figure 5-7 (page 126) 
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Figure 5-8 (page 127) 
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Figure 5-16 (page 152) 
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Figure 5-17 (page 153) 
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Figure 5-20 (page 158) 

 

From “Piled Higher and Deeper” by Jorge Cham: (source; Reproduced with permission.) 

  

http://phdcomics.com/comics/archive.php?comicid=1047
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The end. 


