

Behaviour Anomaly on Linux Systems to

Detect Zero-day Malware Attacks

Ovais Ahmed

A thesis submitted to the Faculty of Design and Creative Technologies Auckland

University of Technology

In partial fulfilment of the requirements for the degree of Master of Information Security

and Digital Forensics

School of Engineering, Computer and Mathematical Sciences
Auckland, New Zealand, 25 February 2022

1

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and

belief, it contains no material previously published or written by another person nor material which

to a substantial extent has been accepted for the qualification of any other degree or diploma of

a University or other institution of higher learning except where due acknowledgement is made in

the acknowledgements.

Ovais Ahmed

29-11-2021

2

Abstract

Internet-connected devices have been the subject of cyber threats due to the gain

malicious actors can get by compromising these systems. Endpoint protection is

available on these systems, protecting if the malware signature is available for the

malicious software. The challenge is that if the signature is not available on the endpoint

protection, as in the case of zero-day malware, the endpoint will not detect or protect the

system. The system follows the file analysis of zero-day malware in the sandbox

environment for file identification, creating the signature and updating the endpoint

database. The process of zero-day can generate a delay which can result in substantial

damage to the systems by the time signature is updated. The research examines the

abnormal behaviour on a Linux-based operating system and evaluates the method to

explore the zero-day malware build for the platform.

Malware samples are sourced from the available public repositories. The sample files

used include known malicious and known non-malicious files. The known malicious files

have the signatures available on the antivirus tool. Therefore, the setup removes the

necessary signatures for the known malware sample files to treat them as zero-day

malware. Total twenty-two malware has been used to test the method to detect the zero-

day malware, out of which few have been tried without signature information on endpoint

antivirus to determine the consistency of the test results.

The research examines the malware behaviour on the Linux based system. It monitors

the process in the two different situations where non-malicious and known malware is

executed at different intervals. The abnormal process behaviour detects the malicious

file. The second phase of the research explores the methods to act on the file after the

detection. It discusses YARA rules and programable interface integration across the

platform to automate the file quarantine feature.

3

Table of Contents

Declaration .. 1

Abstract ... 2

Table of Contents ... 3

List of Figures ... 6

List of Tables .. 8

1. Introduction ... 9

1.1. Background and Motivation ... 9

1.2. Thesis Structure ... 12

2. Literature Review .. 14

2.1. Malware Analysis .. 14

2.2. End-Point Protection .. 16

2.3. Cyber Threat intelligence ... 17

2.4. Linux operating System ... 18

2.4.1 System Architecture ... 18

2.4.2.1 Memory Management ... 20

2.4.2.1.1 Virtual Memory ... 20

2.4.2.1.2 Abstract model of virtual memory ... 22

2.4.2.2 Process Management ... 28

2.4.2.2.1 Signal Management ... 28

2.4.2.2.2 Process Representation ... 29

2.4.2.2.3 Thread and Tasks .. 30

2.5. Related Work... 31

4

2.5.1 Malware Analysis Methods ... 31

2.5.1.1 Basic Malware Analysis Method ... 31

2.5.1.2 Analysis System Components .. 34

2.5.2 Indicators of Compromise .. 35

2.5.3 YARA ... 36

2.5.4 Sample Malware Analysis on Linux System ... 37

2.5.5 Zero Day Malware Detection .. 38

2.6 Research Questions ... 41

3. Research Design ... 43

3.1 Research Approach .. 43

3.1.1 Sample Malware .. 43

3.1.2 Design Setup ... 44

3.1.2.1 End Point Details .. 46

3.1.2.2 Programming API ... 49

3.1.2.3 Data Acquisition ... 51

3.1.2.5 YARA Rules Update ... 54

3.1.3 Analysis Method ... 55

3.1.3.1 Sample files .. 57

3.1.3.2 Monitoring Process ... 57

3.1.3.3 Maintaining Database ... 58

3.1.3.4 Abnormal Behaviour ... 58

3.1.3.5 File verification ... 59

3.1.3.6 Action ... 59

3.2 Conclusion .. 60

5

4. Results ... 61

4.1. Sample Files.. 61

4.2. Process Monitoring .. 67

4.3. File Analysis.. 68

4.5. Conclusion ... 89

5. Discussion ... 91

5.1. Sample Data Sets ... 91

5.2. Research Questions ... 94

Question 1 (Q1) .. 95

Discussion: ... 95

Question 2 (Q2)- .. 101

Discussion: ... 101

5.3. Automate Threat Intelligence ... 105

5.4. Conclusion .. 105

6. Conclusion .. 107

6.1. Summary of Research .. 107

6.2. Contribution .. 108

6.3. Limitation .. 108

6.4.1 System Requirements ... 109

6.4.2 End-Point Protection .. 109

6.4.3 Sample Malware for Data Set .. 110

6.4.4. Detection Criteria .. 110

6.4. Future Work .. 111

References .. 113

6

List of Figures

Figure 2. 1. Linux System Architecture. .. 19

Figure 2. 2. Memory Address Table ... 20

Figure 2. 3. Map Table .. 21

Figure 2. 4. Virtual Address Space ... 23

Figure 2. 5. Virtual and Physical Pages .. 24

Figure 2. 6. Memory Zones .. 27

Figure 2. 7. Malware Analysis .. 32

Figure 3. 1. Design Setup .. 45

Figure 3. 2. Programmable Interface .. 51

Figure 3. 3. Process Flow ... 56

Figure 4. 1- Sample File 1 Details From VirusTotal .. 62

Figure 4. 2 - Sample File 2 Details From VirusTotal ... 63

Figure 4. 3 - Sample File 3 Details From VirusTotal ... 63

Figure 4. 4 - Sample File 4 Details From VirusTotal ... 64

Figure 4. 5 - Sample File 5 Details From VirusTotal ... 65

Figure 4. 6 - % CPU Usage During Normal Situation ... 67

Figure 4. 7 - % CPU Usage When Sample File 1 Was Executed 68

Figure 4. 8 - Sample File 1 PIDs Map .. 69

Figure 4. 9 – Sample File 1 Execution Count ... 71

Figure 4. 10 - Sample File 1 Hex dump .. 71

Figure 4. 11 - Sample File 1 AV Directory Listing Before Signature Update 72

Figure 4. 12 - Sample File 1 AV Directory Listing After Signature update 73

7

Figure 4. 13 - Sample File 1 AV Scan Result ... 73

Figure 4. 14 - % CPU Usage When Sample File 2 Was Executed 74

Figure 4. 15 - Sample File 2 PIDs Map .. 74

Figure 4. 16 – Sample File 2 Execution Count ... 75

Figure 4. 17 - Sample File 2 Hex dump .. 76

Figure 4. 18 - Sample File 2 AV Directory Listing Before Signature Update 77

Figure 4. 19 - Sample File 2 AV Directory Listing After Signature update 77

Figure 4. 20 - Sample File 2 AV Scan Result ... 78

Figure 4. 21 - % CPU Usage When Sample File 3 Was Executed 79

Figure 4. 22 - Sample File 3 PIDs Map .. 79

Figure 4. 23 – Sample File 3 Execution Count .. 80

Figure 4. 24 - Sample File 3 Hex dump .. 81

Figure 4. 25 - Sample File 3 AV Directory Listing Before Signature Update 82

Figure 4. 26 - Sample File 3 AV Directory Listing After Signature update 82

Figure 4. 27 - Sample File 3 AV Scan Result ... 82

Figure 4. 28 - % CPU Usage When Sample File 4 Was Executed 83

Figure 4. 29 - Sample File 4 PIDs Map .. 84

Figure 4. 30 – Sample File 4 Execution Count ... 85

Figure 4. 31 - Sample File 4 Hex dump .. 85

Figure 4. 32 - Sample File 4 AV Directory Listing Before Signature Update 86

Figure 4. 33 - Sample File 4 AV Directory Listing After Signature update 86

Figure 4. 34 - Sample File 4 AV Scan Result ... 87

Figure 4. 35 - Other Sample Files % CPU Usage and Execution Count 88

8

List of Tables

Table 2. 1 Virtual Address MAP .. 22

Table 3. 1. Endpoint Hardware Architecture ... 46

Table 3. 2. Wireless Network Details .. 46

Table 3. 3. Firewall Security Policy ... 47

Table 4. 1 List of Other Sample Malware Used in the Lab Setup 65

Table 4. 2 - Sample File 1 PID .. 69

Table 4. 3 - Sample File 1 Path .. 70

Table 4. 4 - Sample File 2 PID .. 74

Table 4. 5 - Sample File 2 Path .. 75

Table 4. 6 - Sample File 3 PID .. 79

Table 4. 7 - Sample File 3 Path .. 80

Table 4. 8 - Sample File 4 PID .. 83

Table 4. 9 - Sample File 4 Path .. 84

Table 4. 10 - Sample File 5 PID .. 87

Table 5. 1 - Sample Malware Rating ... 92

Table 5. 2 - Sample Categorization .. 93

Table 5. 3 - Sample 1 Process ID and the Execution Count 96

Table 5. 4 - Process ID and the Execution Count ... 97

Table 5. 5 - Sample YARA Rule ... 103

9

1. Introduction

1.1. Background and Motivation

Malware is a computer code that is designed to disrupt, disable, or take control of

computer systems. It is usually hidden in a regular file disguised as a harmless

application (Christodorescu et al., 2007). It takes advantage of technical flaws and

vulnerabilities in the hardware, operating systems, and software. The spread of such

malicious software has become very common with easy access to the Internet, especially

when business services are moving towards the public cloud (Joseph & Mukesh, 2019).

As the business services head to an online platform, malicious actor canvas is increasing

very rapidly. The threat vector has risen sharply. The online payment systems, including

online credit card usage, phishing attacks for credential leaks, ransomware, and tools

like key loggers that can be downloaded while browsing compromised websites, are a

few types of attack vectors. The protection of such attacks is based not only on the

security controls but also on end-user awareness. Many users unknowingly click a

malicious link or browse a malicious site that may download malware in the background

without user knowledge. The malicious code can execute in the background without the

end-user noticing the behaviour. The processes are executed behind the legitimate

application. Therefore end-point protection is desirable to prevent users from being

victims of malicious activity.

Windows and Linux are two platforms that are used for client-server connectivity. In

previous days popular platforms, due to their more significant presence, were more

vulnerable to malware attacks, such as the end-point market is pretty much dominated

by Microsoft based operating systems. Now Linux systems malware are getting popular

as Linux operating systems are becoming more familiar with technology like IoT. The

world is moving towards an intelligent world. More and more IoT devices will become

10

part of our daily use. It will increase the risk of the malicious actor taking advantage of

unprotected systems. The Windows operating system is always considered more

vulnerable to malware than Linux systems, and engineers do not tend to run the OS

patching like windows considering it is more secure (Wu et al., 2012). It is not valid

anymore as there is sample malware like PHP backdoor, rootkit and many others

available for Linux based systems due to its widespread usage in IoT systems (Dmitry &

Elena, 2020). Linux servers are also becoming part of the more extensive ecosystem

where connected end-points are comprised of Linux and Microsoft operating systems.

The Linux machine can store the malicious code, which can be exploited on the Windows

machine. The attack techniques like server-side attack forgery where the request is sent

to one machine to compromise the connected machines; hence, an ecosystem where all

systems are interconnected requires serious protection from malware. Though the Linux

system has more security control than the Windows system, like file permission directory

permission, attackers can still bypass these controls to execute malware (Yaswinski et

al., 2019). Security practices like Linux server patch management, regular security audits

and logs monitoring, along with security hardening (Yaswinski et al., 2019), even cannot

detect the malicious code. Antivirus software installed on Linux systems helps detect and

remove the malware for files with signatures available for those malicious files (Mohanta

et al., 2020). The way traditional antivirus system works is based on the signature

updates, which gets the feeds from multiple threat intelligence (Martin et al., 2018).

Recent ransomware attacks are an excellent example of compromising an end-point

where the executable file encrypts the hard disk of the user machine. If such malware

does not have known signature patterns, then the end-point protection will not be able to

detect or remove it from the machine. The challenge is that if a new malware or malicious

code or zero-day malware code is sitting on the system, which is not executed yet,

traditional antivirus tools will not detect due to signature unavailability (Shah & Singh,

2016).

11

The lack of detecting zero-day malware poses a considerable threat for a single end-

point and the entire ecosystem for connected end-points.

Hence the objective is to find a method to detect the execution of the malicious code and

find the abnormal behaviour to protect the system. Documentation is available for

traditional signature-based detection for the malicious code. The methods and

techniques are available to handle the variant of the existing malicious file; however,

considerable work is required to detect zero-day malware. This research thesis aims to

analyse the gap in the detection of known and zero-day malware. The malicious file can

cause a threat when it is executed. The point when the file is executed can be addressed

to detect the zero-day malware. The research on the understanding of the malicious file

behaviour is kept as the objective of the thesis. The motivation is to understand the

behaviour and apply the control mechanism to limit the activity by quarantining the

malicious file. The work focuses on methods and processes using multiple tools to

identify the system processes initiated by the malicious code. In order to support the

thesis work, a lab setup is prepared to experiment with the known malware sources and

simulated that malware as zero-day malware. The malware file execution monitors the

behaviour of the files and compares the activities with the expected behaviour. The thesis

does not include the machine learning techniques for abnormal behaviours or the

detection of false positives but focuses on the technique to detect zero-day malware due

to abnormal behaviour. Open-source tools are used during the research for the Linux

operating systems. Tools are readily available and customisable as per the experiment

requirements. The environment is kept very controlled to avoid the spread of malware

when executed. The toolsets used are customizable as per the lab environment. The

selection of database and programming language to build the setup is only to support

the method and technique discussed in chapter 3.

The research questions are raised to determine if the processes behaviour can detect

the zero-day malware, and the second phase answers the automated method to act on

the malicious file. The focus of the research is on abnormal behaviour of the processes

12

on the Linux based operating systems. The technique discussed in chapter 3 applies to

the Windows based systems as well. However, the architecture of the Windows

operating system needs to be considered while applying the same technique, which is

not part of the thesis.

1.2. Thesis Structure

The thesis is divided into six parts. The first chapter has given the introduction of the

thesis topic and discusses its background details. The motivation for conducting this

research was briefed, and the reason for this research is emphasised. It gives a brief

overview of the threat posed by zero-day malware on the system. Also, set the scope of

the thesis work.

Chapter 2 presents the literature review and details the concepts involved with the Linux

operating system internal architecture. The internal architecture is a critical component

to study as the behaviour of the file is detected through processor utilisation. It provides

the details for the malware and its analysis techniques to prevent the end-point with the

malicious code. YARA rule concept is discussed. Challenges are identified in the

literature, which elaborates the problems with the malware, which is zero-day.

Chapter 3 details the research questions, which are to be answered by the end of the

thesis. The chapter details the method and technique used to build the lab setup to

provide answers to the research question.

Chapter 4 provides the details of the test results-driven for the environment built in

chapter 3. It includes step by step output for the method and technique defined in the

previous chapter. Results of some of the sample malware have been presented in

chapter 4 and provide an overview of the sample malware used for the experiment.

13

The discussion around the test results is presented in chapter 5. It also highlights the

relation between the challenges highlighted in the literature view and the research

question raised for this thesis.

The summary of the finding, limitations of the thesis and possible future areas are

discussed in chapter 6.

14

2. Literature Review

This chapter discusses the components which are involved during the research. The first

section provides the details for the existing malware analysis techniques and the

variations. It also discusses the available mechanism for the protection on the endpoint

with antivirus tools. It covers current tools to protect the malware and how multiple threat

intelligence collaborates to update signatures for new malicious code. Different methods

used by multiple vendors to update the database is discussed. The primary research

focuses on zero-day malware detection on Linux operating system; therefore, this

section contains a brief description of the internal architecture for the Linux operating

system. Linux is an open-source platform with multiple vendor-specific variations;

however, the base internal kernel and architecture is the same. The chapter ends with

an overview of the related work for the detection of zero-day malware protection.

2.1. Malware Analysis

Malware breaches cost companies of all sizes. IBM security cost of Data Breach

Research Report shows that the average accumulated cost is $3.86 million and alone in

the United States is $8.64 million (Klaus & Elzweig, 2020).

Malware is malicious code designed to install covertly and target systems as undetected.

It can be designed to destroy the data or install additional programs or exfiltrate it (Or-

Meir et al., 2019). It may include all the above three depending on the target agenda, like

espionage, cyber terrorism, or others. It is to compromise the confidentiality, integrity and

availability of a victim’s data. Malware has been evolving, and historically these malicious

codes were designed to take immediate action and were easy to notice. Previously, such

malware was easy to categorise depending on the various type of infection to follow the

handling procedure. Such malware is designed for stealth and stays in the system silently

or dormant for weeks or months; hence tough to be noticed and spread slowly over time

15

(Radhakrishnan et al., 2019). This way, it gets more time to gather more information to

exfiltration. These attack types usually need one procedure, and most attacks are

blended and use multiple methods. There are multiple transmission methods, including

physical access to the system, social engineering, phishing, or visiting a malicious site.

Also, there are multiple forms of malware like viruses, worms, Trojan horses, mobile

attacks and blended attacks. Viruses are self-replicating and install themselves into

compiled viruses and interpreted viruses. Compiled viruses are executed by the OS and

can be an infected file or boot sector virus. This category can trigger during the system

boot and hence can cause harm even before starting the antivirus program (Mohanta et

al., 2020). An application like macro and scripts executes the interpreted viruses. Worms

are also self-replicating programs like viruses and are usually self-contained, which can

execute and spread without user interaction (Christodorescu et al., 2007). There are two

main categories of worms, network service worms and mass-mailing worms. Network

service worms exploit network vulnerability to propagate and infect others. Mass mailing

worms only particularly to email systems to spread and target others. Trojan horse

programs are different from viruses or malware as they cannot be replicated. These

trojan horses have hidden payloads. Such malware is usually disguised in a program

and application which seems to be legit. Such software replaces legitimate files with

malicious files or adds additional components to track the host, like keyloggers. The last

attack vector to consider is the malicious mobile code. It is delivered remotely and

executed on a local host without its intervention. Java, ActiveX and VB scripts languages

are primarily used for such types of attacks. Blended attacks use a combination of

viruses, worms or trojan horses (Gandotra et al., 2017).

There are different types of malware analysis; static analysis is analysing malware

without executing or running it. The purpose of static analysis is to extract as much

metadata from the malware as possible. In the dynamic analysis, malware is executed

to understand the functionality and its behaviour. It is also performed in a containerised

way to avoid exploitation. Code analysis is the process of reviewing the code. The review

16

of code can be accompanied either using the static or dynamic method. Behavioural

analysis monitors the process execution, registries update and look for abnormal network

behaviours (Or-Meir et al., 2019).

The goal of malware analysis is to prepare with the available toolsets, and these tools

can help identify the malware. The next step after identification is to contain the malware

and limit its impact. The mitigation is performed to reduce the risk and recover the

services affected by the malware. It is always advisable to document the analysis and

implement a plan to control such malware to exploit the vulnerability. The open-source

platforms are more vulnerable to malware due to being publicly available. The malware

defence on the system is protected by endpoint protection which involves anti-virus tools.

Due to the reliance on signature-based alerts, the analyst will need to manually analyse

and update the signature after investigation. There are several malware analysis tools

available, like Cuckoo and Joe Sandbox.

2.2. End-Point Protection

Antivirus software provides end-points protection, which connects to the centralized

repositories and downloads the signatures for the known malware. The software

programs scan the end-point and match the files against those signatures. If files are

found with the matching condition, the files are quarantined or removed from the system

(Mohanta et al., 2020). The file removal process is also critical, as in the case that the

file is already executed or engaged in some other processes, the file will not delete

(Mcafee, 2021). However, such software tools are capable of alerting if the malicious

files cannot be deleted. The limitation of these end-point protection methods is the

dependency on malware's signature (Gandotra et al., 2017). If the vendor-specific does

not have the updated database for signature, the client will not have details for the

malicious file. If the malicious file with no signature update executes codes, then its

impact will be zero-day malware. The zero-day malware will not be blocked by traditional

17

antivirus software (Crowdstrike, 2021). The attacker uses multiple dynamic techniques,

which are challenging to block if the antivirus tool does not have available information. It

leaves a security gap for the end-point protection if the malware is zero-day.

2.3. Cyber Threat intelligence

It is gathering, evaluating, and analysing data on threats that are being faced. It then

allows strategizing the defence, which can assist in entirely preventing the threat or

reducing the impact of the damage caused. Finally, understand the full details of the

threat, including the tools used during the attack, what information is compromised, the

method used for the malware communication, and others. This information is used to

create a threat profile that can assist in the model of the impact of a specific attack that

can be used to prevent and reduce the impact of attacks (Baker, 2019). It enables to get

the multiple feeds from the public, private, dark web and aggregate the data on the threat

ATP which impacts the business. There is malware information sharing platform

available like virustotal, MISP and others. Such platforms exchange and share threat

intelligence, an indicator of compromise (IoCs) about the targeted malware and attacks,

or any intelligence within the community (Baker, 2019). Threat intelligence is the

collection of databases maintained by the different security vendors. It ensures that if the

one vendor marks the file malicious, it generates the hash, MD5 or SHA, and shares the

information with the partners. It also validates the authenticity of the malicious file. As

more vendor marks the file malicious, the more the confirmation of its malicious nature

is verified. Threat intelligence is a process that transforms the file collected for the

analyses till the final intelligence decision. It provides a guide to the cybersecurity team

(Crowdstrike, 2021).

18

2.4. Linux operating System

This section covers the architecture of a Linux based system. It will include the

dependencies of the operating system with the hardware, services, API and system

process. These areas are essential to understand as vulnerabilities in these components

can be utilized to exploit the operating system. Assessing the abnormal behaviour of the

files that have dependencies on the system's architecture is critical to understand.

Memory, CPU usage, and file location are the essential parts of detecting abnormal

behaviour. These components can be monitored to contain zero-day malware.

2.4.1 System Architecture

As shown in figure 2.1., Linux operating system has three major components. Kernel,

kernel modules and system libraries. The kernel is the core of the operating system, and

it enables the communication between the device and the software, which is also

responsible for managing the system resources. It includes four significant

responsibilities device management, memory management, manages processor for

system handling call. The Device management involves managing any Input-Output (I/O)

device where devices include Graphics cards, Sound cards, and others. The kernel

stores and use device drivers to manage the hardware. It also enables communication

between different sets of hardware. Memory and process management has been

described in more detail in section 2.5.2.1 and 2.5.2.2, respectively. Any query made by

a programmer to the kernel is handled by the function called system handling call. The

programmer needs system libraries to pass the message to the kernel. There are

variations of system libraries available for different kernels.

19

Figure 2. 1. Linux System Architecture.

(Ko et al., 2008)

Kernel modules manage the hardware layer, which includes memory, CPU and

peripheral devices. The kernel module manages physical memory using a memory

management unit. It uses virtual memory construct to use memory address space which

is more than the physical memory. It is responsible for mapping virtual memory to

physical memory, memory cache, and during the context switching, it manages the table

of process pages.

Kernel module manages CPU resources by scheduling access to resources from

processes. It is performed by enforcing the scheduling method to access the CPU while

keeping the programs transparent for the CPU resource usage. As part of the algorithm,

it creates, executes, suspends, and destroys the process. This component also works

with the memory management to give CPU resource access for active requests in the

memories.

20

2.4.2.1 Memory Management

2.4.2.1.1 Virtual Memory

Physical memory has a limited resource, and the hardware limits the memory size that

can be installed on the system. The address range for the physical memory may not be

contiguous, and these ranges vary with different system architecture (Stazi et al., 2017).

Virtual memory is used to overcome the complexity. It provides large address spaces,

which means that the system appears to have more memory than the actual available

address. It enables the protection as it makes each process have dedicated virtual

memory address space (Kim et al., 2014). Figure 2.2 depicts the impact of the system

without virtual memory and how virtual memory overcomes the problem.

Figure 2. 2. Memory Address Table

(Ko et al., 2008)

The process allocated for each application is separate due to the complete virtual

isolation of address space from one another. This segregation protects memory areas if

the rogue application tries to overwrite the data on another legitimate application (Kim et

al., 2014). It manages virtual memory for shared processes as well. This situation keeps

21

the shared process in the physical memory and logically shares the virtual address

space. It does the memory mapping in which the file's content is linked to the address

space of the virtual memory used by the process. Virtual memory also plays an essential

role if the memory address is not contiguous. The map table can adjust the non-

continuous address space by splitting the data content (Ko et al., 2008). The program

will still see it as a single address. The figure 2.3 depicts the map table.

Figure 2. 3. Map Table

(Kim et al., 2014)

22

2.4.2.1.2 Abstract model of virtual memory

When the processor executes the program, it takes the instruction from memory and

then decodes it. The data is fetched or stored from or in the memory during decoding

(Ewais et al., 2016). The memory location is accessed via a virtual address which is

mapped with the physical address. The processor is responsible for converting the virtual

address to a physical address using the table maintained by the Linux operating system.

The mapping is divided into pages to make it easier to maintain virtual and physical

memory. The pages' size may vary depending on the operating systems and preferred

the same page size to reduce the complexity. On the intel x86 system, the page size is

4K bytes. The page frame number is used to assign a unique number to each page

(PFN). On the intel system, the virtual address contains two components, bits 0 to 11 (12

bits = 4096B (4KB)) makes the offset and the remaining bits represent the virtual page

frame numbers. Table 2.1 shows a page table with a page of 4KB. It shows that if the

program accesses the address 20, then it is in the address range of 0-4069, which set

the offset of 0+20; hence on the virtual table, it maps as 20. Similarly, it adds 20 offsets

for the corresponding physical address. In this case, the physical address will be 4100,

as shown in figure 2.4.

Table 2. 1 Virtual Address MAP

23

Figure 2. 4. Virtual Address Space

(Stazi et al., 2017)

For a 32-bit machine with a physical memory of 256 MB and 4KB page size, the offset

bits of 12 bits makes the page size 4KB (2^12 = 4K).

The virtual address is 20 bits which excludes the 12 offset bits. The physical address of

16 bits is formed for 256MB of physical memory, equivalent of 2^28 by excluding the 12

offset bits.

Offset bit 12 bits with a page size of 4KB (2^12 = 4K). Figure 2.5 illustrates the page map

table where the offset value remains the same.

24

Figure 2. 5. Virtual and Physical Pages

(Ko et al., 2008)

Virtual memory is more than physical memory; hence the operating system must use the

physical memory efficiently. It is done by only loading the required data in the memory.

This way, physical memory is utilized efficiently, and the technique is called demand

paging (Nothaas et al., 2019).

The operating system marked it as a page fault when the process attempts to access a

virtual address, which is currently not available in the physical memory and hence

processor could not find the page table entry in the mapping table for that virtual address.

In such a scenario, the operating system may end processing the program as it may

consider it a rogue application that might be accessing the system in the wrong way (Kim

et al., 2014). On the other hand, if the virtual address is valid and does not have a valid

physical memory address, it may look for the address on the disk. Due to the slow nature

of the disk, it takes more time to fetch data and hence take more time to execute the

process. If it has another job during the waiting period, execute that program to avoid

any idle period. Once the access is made from the disk, the content is added to the free

available physical address, and the map table is updated. Next time when the virtual

address is called, it can directly access it from the physical address as updated in the

map table (Chen et al., 2016). Linux uses demand paging to load executable images into

25

processes virtual memory. Whenever a command is executed, the file containing it is

opened, and its contents are mapped into the process virtual memory. It is done by

modifying the data structures describing this processes memory map and is known as

memory mapping. However, only the first part of the image is brought into physical

memory. The rest of the image is left on the disk. As the image executes, it generates

page faults, and Linux uses the processes memory map to determine which parts of the

image to bring into memory for execution (Chen et al., 2016).

When there is no space available on the physical memory, the operating system must

make space for the new page by removing the page from the physical memory. If the

discarded page in the physical memory is from an image or a data file that does not need

to be written, the page is not saved. Moreover, if it again requires the image and data

file, it can be brought again to memory from the disk. In case of page modification, the

operating system must preserve the data to access later. The modified pages are

referred to as dirty pages (Yildiz Cavdar et al., 2019). These modified files are temporarily

removed from the memory and stored in a particular file called the swap file. As these

swap files are stored on the disk, it takes a longer time to process. Its operating system

manages the swap file and content in the memory to avoid long access time for the active

files. If the algorithm to operate swap files is non-efficient, like moving the swap file on

disk and the physical memory, it keeps the processor busy (Liu et al., 2016).

Any file which requires more regular access is not the ideal candidate for swap files. The

set of pages that a process is currently using is called the working set. An efficient swap

scheme would make sure that all processes have a working set in physical memory.

Linux operating system uses the Least Recently Used (LRU) technique for page aging.

It is to keep track of which pages may need to be removed from the memory. The age of

the page depends on the time it is accessed. The age of the page decreases when it is

accessed and increases when not. The old-age page file has more probably to move into

the swap file (Chen et al., 2016).

26

Different processes use different map tables to maintain the translation between virtual

and physical addresses, and some processes share the same physical address. In this

case, two different process map tables with different virtual addresses point to the same

physical address.

The Linux operating system runs on the physical address mode. Physical address mode

does not require any page table, and the processor does not look for the map table to do

the address translation.

The memory access to look for address translation is prolonged as compared to CPU

speed. To overcome the waiting time for the CPU process cycle, the CPU maintains a

cache of translation known as Translation Lookaside Buffer (TLB). Even though TLB is

not efficient if the TLB cycle is missed, to overcome this modern inefficiency CPU, allow

mapping the memory pages directly at the high hierarchy level in the page table. Such

pages in Linux operating system is called massive, and it helps improve the TLB hit rate

and enhance system performances.

Access control is also applied to ensure that the process does not take any other action

that it does not intend to.

The physical memory can be divided into zones and allocations depending on the

memory system used by I/O hardware and the processing unit. There are four categories

of zones; the first one is ZONE_DMA, which uses lower 16MB of the physical memory.

The second zone uses 32 bits address and is known as ZONE_DMA32. Due to the limit

of 32bits address, it has a limit of 4GB. On x86 intel, the first 896MB, which is the direct

memory access by the kernel, is referred to as the LOW_MEM zone, which the kernel

uses for logical addressing. This region uses the "k-malloc" and "k-free" library functions

for requesting and deallocating the kernel memory in this zone. This region also has a

mapping to the physical memory and hence does not use the swap. The high memory

zone is from 1GB to 4GB address region on a 32-bit system. This zone is only available

27

on the 32 bits system and 64, but systems only low memory zone is applicable figure

2.6.

Figure 2. 6. Memory Zones

(Wu et al., 2012)

The pointer uses the address range from 896MB to 1 GB is reserved in 32 bits systems

to reference the memory address in areas beyond the kernel logical address.

The address allocation/deallocation outside the LOW_MEM zone is done through "v-

malloc" and "v-free" library functions. The difference between "v-malloc" and "k-malloc"

is that "v-malloc" does not need to have contiguous memory in the virtual address and

physical address mapping. It also uses more entries in the TLB because of non-

contiguous allocation. The fragmentation is reduced using the memory zone allocator.

The user-mode process uses the buddy system, where it keeps track of the adjacent

memory block or splits the memory block by a power of 2. In this case, if a request

requires additional blocks, the buddy system identifies the adjacent blocks that can

handle that big request and place it accordingly to avoid the fragmentation or splitting of

28

large block spread in multiple blocks. On the other side, if the size is small, it repeatedly

reduces the size of the block by two till it gets to the defined lower limit, which can handle

the request.

2.4.2.2 Process Management

This section will brief the kernel process management. The systems call and signals

management is essential in identifying any process initiated by the malicious software.

In this section, scheduling, task and kernel synchronization is discussed

2.4.2.2.1 Signal Management

Process ID (PID) is a unique identifier assigned to each process. There is a fork system

call that is used by the process to create another process in Linux. The process that calls

or creates the process is called the parent process, and the new process is known as

the child process. It allows the image in the memory and variables associated with the

parent process to be called into the child process, enabling the child process to access

the open files used by the parent process (Tanenbaum & Bos, 2014). Multiple child

processes can be associated with the parent process, whereas the child process has

only a single parent process. When the fork() call is executed if successful, the PID of

the child is returned in the parent process, and 0 is returned in the child process. Due to

any process failure in the call, the parent process gets the value -1, and the child process

is not created. The child process generates a SIGCHLD signal to the parent process if

its interrupts or exits the process. The only condition when a child process has no parent

process is if the kernel creates it. The child process can spawn more child processes

which can create a complex process tree; hence "get-PID" system call is used by the

child process to get the process identifier of the parent process (Kerrisk, 2010).

The exec system call is used to execute a file that is residing on the active process.

When this is called, a file is executed, which replaces the previous executable. Therefore,

when the shell command is launched, it replaces the image of the environment's memory

29

and variable with the values that initiated the process. The WAITPID system call is used

if it is required to suspend the calling process. This suspension of the child process

remains till the child process state is changed. By default, if no argument is given, the

suspended process remains suspended until the child process returns the terminated

process identifier, which is -1. If the child process is completed but does not send the

exit status to the parent process, then the WAITPID system calls initiated by the parent

process will remain in the process table. Such open processes are termed Zombie

processes (Love, 2010).

As the process identifiers are unique, multiple processes send the communication signal

among the processes. The process which belongs to the same process group, also

referred to as the process family tree, can send signals to another process in the same

group. Signals can be used for multiple instructions like SIGHUP (terminate gracefully),

SIGTERM (terminate unconditionally and immediately), SIGKILL (suspend itself) (Shotts

Jr, 2012).

SIGACTION system call is used to change the action taken by a process by the receipt

of a specific signal. To kill the process immediately, SIGKILL is used and does not wait

like SIGTERM. It is not handled by SIGACTION and directly goes to the kernel

(Tanenbaum & Bos, 2014).

2.4.2.2.2 Process Representation

The task_struck data structure represents each process in the Linux system. The task

_struck has the array of pointers known as task vectors. The necessary process

information like state, memory-related information, files, process details for parent and

child processes are found in this structure. The kernel manages these pointers, and all

the active processes are double linked in the task_struck. Process identifiers are used

as the critical value of the task_struck (Tanenbaum & Bos, 2014). The size of the task

vector also represents the allowed number of maximum processes in the system. As

processes are created, a new task_struct is allocated from system memory and added

30

into the task vector. The current pointer points to the currently running process to make

it easy to find.

When the parent process creates the child process, both these processes share the

same pages in the memory. Shared pages are marked as "copy on write", which creates

the page copy before writing to the process. It protects the pages modification, which

could impact another process. It also helps in reducing the memory overhead and

requirement during the creation of the process. It also improves the efficiency as the child

process may not use the resources of the parent process, which may be terminated after

spawn or may call another program which replaces its memory image and pages (Love,

2010).

2.4.2.2.3 Thread and Tasks

The research is based on detecting the malware on the abnormal behaviour due to the

unusual process. Each process has a basic unit of execution which is known as thread

(Fox, 2014). It implies that each process has multiple threads. It is essential to

understand the components of threads to identify and stop them if it finds malicious

activity. This capability can enable the run-time analysis of the behaviour of the program

being executed successfully. The information in the kernel structure of a process can

differentiate between malicious and benign processes (Shahzad et al., 2011).

The task structure as maintained by the kernel of the operating system contains has the

record of each action and the amount of resource used by the process; hence this pattern

of records must be different for the malicious process and benign process (Shahzad et

al., 2011). The challenge for detecting malware on the processor threads is the accuracy

rate. Hence modelling of such threads is essential to reduce the false alarm.

31

2.5. Related Work

This section discusses existing work done related to the detection and analysis of

malware. This section also contains a few sandbox methods and reviews some sample

malware on the Linux system.

2.5.1 Malware Analysis Methods

The following section reviews the current literature available on numerous methods for

malware analysis.

2.5.1.1 Basic Malware Analysis Method

Malware analysis is a method to examine the malware component, its behaviour, and if

an attacker can be identified. Figure 2.7 shows the flow of the basic malware analysis

method.

32

Figure 2. 7. Malware Analysis

 (Kara, 2019)

Investigation of all analysis is done on the image (copy), and the hash method is used to

detect the integrity failure. The image includes all currently available data, deleted data or

any other data available in the storage. Image processing is the fundamental step for the

analysis (Kara, 2019).

A dedicated and isolated virtual machine is created to mount the copy of the image to analyse

the behaviour.

The behaviour analysis of malware includes registry activity, network operations, file and

directory transfers. Sometimes unintentional bugs are introduced when creating malware.

Hence, debugging can be performed with behaviour analysis. This error information is

essential. In some cases, debugging can provide information about the attacker (Kara, 2019).

33

The code analysis is performed with static, dynamic or reviewing the packaging techniques.

The static analysis includes viewing the text, function used, file directory, compressed file

status, hash values and since it is activated in the system. Many attackers compressed the

malware file to escape the detection from antivirus tools; hence, it is critical to understand

malware packaging techniques (Vasilescu et al., 2014). Finally, the code is executed in a

controlled and isolated environment to observe the activities. Attackers implement

concealment methods (such as anti-sandbox, anti-VM and anti-debug) to prevent malware

from being detected by antivirus programs in the system before its execution. Therefore, the

data obtained from running malware is more critical than static analysis (Christodorescu et

al., 2007).

Memory analysis is critical as processes in computer systems need to be loaded into memory

to be executed. Even though malware might use different methods, such as hiding in the

memory of other running processes, they cannot be caught by antivirus programs but still

need to be loaded into the system.

All the activities of different processes working in the system will be in the memory. Therefore,

memory analysis allows a better option to detect all the current activities. The current state

of the system can be saved using the snapshot feature of the virtual machine. In the memory

analysis, the list of processes running in the system at the time of the memory dump, the

active or previous network connections, .dll files or codes injected into the memory areas of

the processes can be dumped.

Malicious software hides from conventional detection methods and, in some cases, can

change the way it behaves to deceive analysts. However, even in this case, they are still

resident in the memory.

However, the memory dump contains only a snapshot of the computer’s state. It is necessary

to take continuous dumps to understand what has changed after the memory dump. It is

limited by the time available for analysis. The memory dump can be retrieved on the live

system, but this poses several risks. If malware is present in the system, it may intervene in

34

this process. Data in memory is volatile. Hence make sure that the system is not shut down

as it may lose the data in the volatile memory (Gandotra et al., 2017).

2.5.1.2 Analysis System Components

The Two components provided by (Wagner et al., 2015) for malware analysis systems

are data provider and analysis environment. The data provider includes the toolset or

packages used for dynamic or static analysis of the malware samples. The Static tools

like IDA, GDB, Radare2 and others, whereas Rekall volatility, are used for dynamic

analysis. The environment to do the necessary analysis are tools like the cuckoo, threat

analyser and others. A dedicated or isolated environment is essential for the dynamic

analysis, set up on the virtual machine, bare metal or emulated environment (Wagner et

al., 2015).

Machine learning libraries can be used as well to extend the capability of malware

analysis. It helps in the learning system for the classification and detection of malware.

The output collected from the data provider is used with the machine learning algorithm

to build a more robust system (Shah & Singh, 2016)

(Boukhtouta et al., 2016) in his trial utilised the dynamic examination of malware tests

and documents to prepare the frameworks for mechanised malware recognition and

characterisation. In (Shah & Singh, 2016), the extraction of prominent API calls from

benign and malicious files was used as input to linear support vector machine (SVM).

(Boukhtouta et al., 2016) using the Threat track online sandbox for deep packet analysis

and examination of flow packet headers in malicious network traffic, trained a system

using ML algorithm. Benign traffic was sought from the Internet service provider edge

and customer traffic.

(Shah & Singh, 2016) did the malware analysis use multiple modes? Modes include user

mode, kernel mode, full system simulation or emulation, virtual machines and others.

API is used to call to collect the relevant information for the data.

35

2.5.2 Indicators of Compromise

As per the National Institute of Standards and Technology (NIST) publication on Intrusion

detection and prevention, one of the primary purposes of using IDS and IPS is to detect

attacks (Kizza & Migga Kizza, 2011) and other security breaches which cannot be

detected or prevented with the usual security methods. Abuse detection and anomaly

detections are the two standard methods to analyse the detection. In abuse detection,

if any attack occurs with the pre-defined method or warning, then such characteristic of

abuse detection is an indicator of compromise (IoC). One of the methods to determine

the IoC is to do the malware analysis (Akram & Ogi, 2020)

IoC can be determined by using the reverse engineering technique while doing the

malware analysis. It is a forensic artefact of an attack that exist either on the machine or

on the network. The data collected during the malware analysis is termed the artefact. It

may include files, URL, IP, process, and registrations that would have been used to

execute malware. The artefact collected is used to set the indicator of compromise. All

the data collected during malware analysis is not included in the indicator of compromise.

Artefacts are classified into two categories which are network and host-based artefacts.

Data collected from the network includes ports, servers, and proxies used. Tools like

packet capture are used to collect this data. The host-based can include the files,

memory, or process usage (Boukhtouta et al., 2016).

Reverse engineering for malware requires a disassembler that converts code to the

assembly language. The other component is the decompilers which convert machine

language to the high level for the easy understanding of engineers doing the reverse

engineering for the malware analysis to find the indicator of compromise (Mohanta et al.,

2020).

36

2.5.3 YARA

The rapid growth of malware incidents indicates a problem in malware analysis. This

pace of malware growth poses a challenge for malware analysts. There are multiple

techniques available for malware analysis concerning specific security incidents. In

present times YARA rules have come up as the widely accepted technique for malware

analysis due to their flexibility and customizable nature. As per (Naik, Jenkins, Cooke, et

al., 2020) It allows the analyst to create YARA rules as per the specific requirements to

handle the specific threat. It is also based on the reverse engineering technique of

different malware to include the standard indicator of compromise strings from those

samples and use this data to find similar types of malware.

The effectiveness of YARA rules determines which types of IoC strings and the numbers

of these strings in the rule. Therefore, the biggest challenge is to create an effective

YARA rule for malware analysis. These rules can be created either manually or

automatically. The manual creation of YARA rules requires much skill in specific security

areas. The automatic rules generations can be created using specific tools hence

relatively easy. The challenge with the automatic method is the optimization of

requirements and less effectiveness with multiple threats (Naik, Jenkins, Cooke, et al.,

2020). When YARA rules are triggered, it generates a malware alert if the malware

matches the string condition. If the sample condition does not match, it does not trigger

an alert and requires the rule to be updated. Note that the malware string is created using

IoC from the sample, which means the classification of the malware being analyzed is

not the same as the sample. These issues can be remedied by adding more strings;

however, size increases adversely impact the YARA rules performance. Secondly,

adding or modifying the string needs expertise in computer security (Naik, Jenkins,

Savage, et al., 2020).

Multiple open-source tools are available: python-based like YarGen, YARA generator,

Yabin, and others. Fuzzy hashing aided is one of the techniques available to improve

37

the effectiveness of the YARA rules without adding complexities. The hashing method is

applied alongside YARA rules which complement each other. Hence if the malware alert

is not triggered by one, the other method can detect it.

The Fuzzy hash method is used to find the similarity of the digital files. This assists in

making a valuable method for malware analysis because many malware and variants

contain similarities. It is different from the cryptographic hash as the variant will make the

hash of the two files differ. In the fuzzy hashing technique, the file to analyze is divided

into chunks, and it calculates the hash against each block. Then these individual hashes

are merged to form a concatenated hash called the fuzzy hash of a file. The fuzzy hash

value depends on the size of the block, the size of the file and the output size of the hash

method used. The malware analysis needs a deep knowledge of the similarity of the

known sample malware and the file being assessed for malware. It becomes crucial

when work is done to identify the variant.

2.5.4 Sample Malware Analysis on Linux System

Many machine learning methods were used to detect malware in Linux systems (Mehdi,

S.B., Tanwani, A.K., Farooq, 2009) and (Shahzad et al., 2013). Different structures were

used for these detections like (Mehdi, S.B., Tanwani, A.K., Farooq, 2009) used task

struct for the classification, whereas (Shahzad et al., 2013) worked on the ELF file

structure. The (Mehdi, S.B., Tanwani, A.K., Farooq, 2009) technique was able to get

99% accuracy using multiple malware samples, which is an excellent method to detect

zero-day malware. As per (Shahzad et al., 2013), the used system calls when ELF files

were executed, which produced 96% of accuracy.

(Damri & Vidyarthi, 2016) used dynamic analysis of malware to identify five approaches.

These uses system call, process control block, ELF, kernel and hybrid investigation,

which uses four methods. Different tools were used for the investigation of the system

calls. Some components of the ELF header were used in the research to identify the

38

difference between benign and malicious programs. Proc and memory files were used

to collect the kernel state to determine any malicious activity by the program.

(Cozzi et al., 2018) used the sample collected from the virustotal. They identified the

challenge associated with the behaviour of malware with different CPU architecture,

different obfuscation techniques. Dynamic linking and shared libraries were also

highlighted as one of the challenges for malware detection.

2.5.5 Zero Day Malware Detection

Zero-day malware is an unknown vulnerability that has been exploited and has not been

detected by anti-malware tools (AMT’s) (Ciancioso et al., 2018). The expanding volume

and assortment of malware postures a genuine security danger to all the computer these

days and is one of the most worries for the security community for the final few a long

time (Or-Meir et al., 2019). The conventional security frameworks like Interruption

Location System/Intrusion Avoidance Framework and Anti-Virus (AV) computer

programs cannot identify unknown malware as they utilize signatures-based strategies.

In arrange to illuminate this issue, static and dynamic malware analysis is being utilized

in conjunction with machine learning calculations for malware discovery and

classification. The biggest issue with these frameworks is that they have elevated wrong

favourable and wrong negative rates, and the method of building classification

demonstrated takes time (due to colossal highlight set) which ruins the early discovery

of malware (Gandotra et al., 2017). Hence, the challenge is to choose a significant set

of highlights so that the classification show can be built in less time with more accuracy.

Due to the pros and cons of both static and dynamic malware analysis approaches, it is

apparent to know about malware classification. Besides large numbers of false positives,

the classification modelling takes a long time and thus preventing the early discovery of

malware. Hence, a pertinent set of features should be selected to build the classification

in less time with more exactness. Feature choice could be a strategy of recognizing best-

39

positioned highlights. It identifies the critical features hence making it simple to dispose

of the insignificant ones.

The anti-malware tool relies on the malware database and, as per the stats, misses one-

third of malware without having prevention measures (Ciancioso et al., 2018). A method

that combines rule and algorithm are also challenging to identify zero-day malware. Such

methods are known as heuristic-based scans, and these methods do not rely on

signatures. As this method also relies on finding a specific code piece, such a method is

not adequate for future and evolving malware. If the inquiry does not contain the

instruction and is unable to read the file or code due to encryption, the malware will be

undetected. There is complex malware that can remain dormant for a specific time before

conducting any damaging work. These days most anti-virus programs use both methods,

including traditional signature matching and the heuristic-based, to detect the malware

(Ciancioso et al., 2018).

Sandboxing method is also used, which keeps the malicious code in the contained area.

It is also termed a virtual cage that prevents malware from infecting the existing operating

system. The detection of malware activities detected in the sandbox environment is kept

in a centralized database which assists in identifying the variant of the malware. Hence

an application is designed to automatically create a new variant of the malware based

on the results of previous malware. It helps in detecting zero-day malware. Hence the

more variants of malware created in a sandbox increase the possibility of zero-day

malware detection (Ciancioso et al., 2018). Sandbox alone cannot provide the complete

foolproof solution for zero-day malware detection; hence, it needs to use other invasion

methods like stalling code and blind spots. The stalling code runs after the timeout period

and hence help in detecting the malware, which keeps dormant for some time. Sandbox

also introduces a method called hooking. In this, a notification is generated whenever

any function or library is called. The challenge with this method is that modification is

required every time to make it effective.

40

Furthermore, to zero-day detection, there is malware that has evolving capabilities such

as polymorphic and metamorphic. Polymorphic malware is difficult to be detected as they

mutate by themselves and also uses encryption techniques has cause challenges in

being detected. Metamorphic malware can reprogram automatically each time they are

executed or spread in the system. Hence in such categories, signatures will not be

detected or, due to encryption, the payload cannot be read to detect the malware (Comar

et al., 2013).

A supervised classification also uses the known instance of the malware and set the

classification. It has the same limitation as to the signature-based approach for detecting

the malware as both cannot detect the new or evolving malware. Also, making a

classification table is challenging due to diverse malware classes, imbalanced

distribution and data loss issues. The unsupervised method uses the anomaly detection

technique. The significant benefit of this method is the ability to detect zero-day attacks.

The challenge with this method is the high number of false positives. Hence white

listening must be applied for the wrongly identified applications (Comar et al., 2013).

Network traffic flow can also detect malware behaviour on layer 3 / layer 4 of the OSI

layer. This method is based on the traffic features such as bytes per second, packets

per-flow and inter-arrival times. The approach is that the statistical flow level features at

level 3 or 4 remain the same even if the payload is encrypted. The challenge with this

method is that the malware must be detected during the network flow. It also possesses

the challenge of any new zero-day malware which is not detected as an anomaly.

The rise of artificial intelligence has also been involved in the cybersecurity space to

detect malware and reduce false positives. One of the studies proposed a custom log

loss function with beta parameters to the GDBT algorithm to solve the malware detection

problem. Using a rational approach to evaluate the proposal, they extracted 27 valuable

features from the PE surface analysis FFRI data set. The result shows that the custom

log loss function can reduce many false positives than a normal log loss function.

41

However, the custom log loss function increases false negatives compared to the

standard log loss function, so a hybrid model was used to keep the balance. The

reduction of FPR value with custom log loss function could reduce the priority of false

positives (Gao et al., 2021).

2.6 Research Questions

Zero-day malware poses a considerable risk as signatures are not available for the anti-

virus tools to block or remove the malicious files (Gandotra et al., 2017), as elaborated

in the literature review. Multiple techniques are available which requires sandboxing and

include dynamic or static malware file analysis techniques. Sandbox technique executes

the code in the isolated environment to analyse the behaviour of the files and, based on

it, marks it as malicious (Vasilescu et al., 2014). The need is to design a solution to

identify the malicious files and create a process that shows anomaly behaviour.

Hence the research is seeking to answer the following questions:

Question 1 (Q1) – Which system process on Linux system can detect anomaly

behaviour?

Understanding the tactics, techniques and procedures of the malicious file to perform

malware analysis requires a sandbox to analyse the pattern of the file execution (Li &

Liu, 2017). This method identifies the malicious file, which creates the signature for the

file. The signature update is shared with the threat intelligence available publicly or

privately through paid subscriptions, leading to multiple anti-viruses to update the

database to block the file in the future. The current signature-based approach will not be

able to detect exploitation by the malicious software for which signatures are not

available, and hence a process is needed to detect the zero-day malware. One source

of information that detects the malicious file when it executes is the abnormal activity

detected by active processes. Hence there is a need to create a flow process in which

42

the system process is monitored to detect such anomaly behaviour to identify the

malware and can be blocked on the run time.

Question 2 (Q2)- How can YARA rules and antivirus software be integrated after the

zero-day malware is detected?

After the process is detected to identify the malicious file, the next step is to update the

endpoint signature. The most common technique is to triage a malware and then

separate the likely and unlikely malware. YARA rules are one of the everyday use of

such triaging techniques. It identifies using the pattern or string matching, which triggers

the rule on the matching condition. There are multiple methods available for the YARA

rules detection to reduce the false positive, and one of them is fuzzy hashing (Naik,

Jenkins, Savage, et al., 2020). There is a need to make a process that updates the

malware string and pattern to update the anti-virus signature on the endpoint.

The literature review leads to a concern to detect zero-day malware analysis, and the

following hypothesis has been generated.

Hypothesis (H1):

Abnormal activities on the Linux operating system with the combination of unusual

processes and the number of times it repeats is used to detect the anomaly behaviour

of the malicious software exploitation.

The detection method of the malicious file can be used to integrate YARA rules and

endpoint antivirus tool to update the signature to detect or block the zero-day malware.

.

43

3. Research Design

This chapter discusses the design methodology and the purpose of the design decisions.

To analyse the malware for zero-day detection, it needs to acquire data samples for the

multiple processes for testing purposes (Jicha et al., 2016). This chapter covers the

technique used for collecting the data for zero-day malware detection, and the research

objective is discussed. This section highlights the method which is used for the detection

of zero-day malware. It also highlights the role of individual components used in the

setup.

3.1 Research Approach

The following section discusses the approach for setting up the environment to collect

the data for the investigation to determine the answer to the research questions. The

approach includes collecting the sample malware, briefing the suitable setup

environment and the analysis techniques.

3.1.1 Sample Malware

Malware researchers look for the sample malware to analyse the threat. One of the

sources is collecting samples of the malware available in the public or private

repositories. Researchers, anti-malware vendors and different security vendors can

share the threat intelligence through multiple public available portals. Malware is added

in the portal, which is performed a cryptographic fuzzy hash function to identify if the

newly added malware is the same as the previously added malware. Few available

repositories are free to download malware; however, lots of them require some

registration. Few available repositories include (Zeltser, 2021), (Shipp, 2020) and (Virus-

Share, 2020).

44

Virus Share has more than 38,000 malware samples available (Virus-Share, 2020) in the

repository, which can be used for training or demonstration purposes. Here the

significance is of detecting zero-day malware attacks on the Linux operating system

rather than the number of the malware. The other approach to acquire the sample

malware is the use of honeypots. In this approach, a dedicated system is configured to

attract the attacker, which gives a good understanding of the recent attacks using the

malware (Guarnizo et al., 2017). The classification of these malware depends upon the

interaction permitted (Mairh, Barik, Verma, & Jena, 2011). The level of the malware is

decided on the level of the interaction with the honeypots. This approach requires a

sandbox technique after the malware is uploaded by the attacker on the honeypot.

Sandbox provides the malware analysis of the file and helps to provide the details of the

file, which help in writing the YARA rule.

3.1.2 Design Setup

The setup involves the following components as shown in the figure 3.1.

45

Figure 3. 1. Design Setup

The following section elaborates on the components involved in the Lab setup. It details

each component's role in providing the answers to the research questions and testing

the hypothesis. It provides the details for the components installed on the end-point. It

also discusses the APIs which interconnects multiple segments of the Lab setup. The

setup includes the role of the YARA rule and its integration with the end-point. After

highlighting the roles of different segments, the section analytical method will provide the

complete flow process by joining multiple roles throughout the process. At the end of the

chapter summary of the design is presented in the concluding section of this chapter.

46

3.1.2.1 End Point Details

The Linux operating system has multiple different distributions available. For the lab

setup, CentOS Linux distribution is used. This distribution of Linux is manageable, stable

and predictable (CentOS-Org, 2021). Following table 3.1 shows the operating system

and hardware specs of the test endpoint.

Table 3. 1. Endpoint Hardware Architecture

The endpoint is connected to the wireless network with the following local network

details:

Table 3. 2. Wireless Network Details

The gateway is the device that provides dual services, including the wireless access

point, and is also connected to the service provider that connects to the Internet.

The setup does not have a firewall in front of the Internet-bound traffic; therefore host-

based firewall is enabled. The CentOS supports the FirewallD service to enable the

firewall services. The firewall is critical for controlling the traffic flow in and out of the

Linux machine on the network (Carrigan, 2020).

Name Version/Model/Size

Centos Version 7.6.1810

CPU Architecture x86_64

CPU Count 4

Threads per Core 2

Core per socket 2

Socket 1

Vendor ID Genuine Intel

Model Name
Intel ® Core ™ I5-4300U CPU @
1.90GHz

Memory 8GB

Wireless Lan wlo1

Endpoint IP 192.168.20.19

Mask 255.255.255.0

Gateway 192.168.20.1

47

The setup is connected to a shared network hence not inherently safe while doing the

malware testing; therefore, it is mandatory to enable the firewall services on the end-

point host. Firewalld service provides multiple security levels for different zones. A zone

must be connected to at least one network interface. The end-point in the setup

comprises a single wireless LAN card; hence does not require multiple zoning. However,

the network traffic is controlled by allowing and denying multiple services. Following

firewall policies are applied on the end-point setup.

Table 3. 3. Firewall Security Policy

Source
Zone Source host

Destination
Zone

Destination host /
Network Application Policy

out 192.168.20.19 out any HTTP Allow

out 192.168.20.19 out any HTTPS Allow

out 192.168.20.19 out 192.168.20.1 DNS Allow

out any in 192.168.20.19 all deny

Only Internet traffic for HTTP and HTTPS traffic can access the Internet. The DNS is

configured to access the local DNS server on the network. All the other inbound traffic is

blocked, including remote management. These controls are strictly applied to avoid any

compromised attack on the end-point while working on test malware. The deep packet

inspection to check the header of the application is not applicable as the end-point

encrypts and decrypts the HTTPS packet (Carrigan, 2020).

For the test setup, an open-source end-point antivirus is installed ClamAV AntiVirus. It

is an open-source (GPLv2) antivirus toolkit that has been designed especially for

scanning the emails on the mail gateway, but this antivirus engine provides sufficient

end-point protection for the lab setup. The core engine for the antivirus is the use of the

shared library to update the signature packages. The utilities include a scalable and

flexible multi-thread daemon, which supports the command line to run the scanner. It is

also equipped with advanced tools to update the databases automatically. It is designed

to scan files, and the real-time protection option, which is only available for the Linux

48

system, made it the first choice to use in the setup. It blocks the file access until the

scanning is completed (Clam-AntiVirus, 2020). This functionality is required to update

the antivirus signature database. Due to such a feature, this open-source antivirus tool

is used. The antivirus supports the detection of complex malware as it allows to use

bytecode interpreter, which helps the writer of the ClamAV signatures enhance the

remote scanner’s functionality remotely. One of the reasons to choose ClamAV is that

the platform is available to build and support CentOS7, and the following is the minimum

requirement for the setup.

Minimum recommended RAM for ClamAV for Linux system includes 2GB of memory

and 1 CPU with a minimum storage of 5GB.

ClamAV CVD and CLD database databases have been unpacked in the existing main

installed directory. The database archives, including CVD and CLD databases, are

configured to work with the custom database. CVD is referred to the database for the

ClamAV, whereas CLD files are the uncompressed version of the CVD, which is not

assigned. A custom database is required, which will be used by the interface to update

the signature of the malicious file. The custom database exists at the location

/usr/local/share/ClamAV. The default location is used to maintain simplicity. Otherwise,

the alternate path is to be added to run the clamscan. The end-point configuration file is

also tuned to work as per the setup environment. The file is referred to as DCONF

(Dynamic Configuration). These settings are spread in multiple daily.cfg files. The

categories which are opened for the test of files includes PE, ELF, DOCUMENT and

PCRE. The other available sample files MACHO, ARCHIVE, MAIL, PHISHING,

BYTECODE, and STATS are not used for testing purposes. ClamAV is also enabled to

use the Magic number mechanism to determine the type of the file. The file daily.ftm on

the end-point is adjusted to enable the File Type Magic Signature feature.

The custom signature created have used these naming conventions, -zipped suffix in the

signature of the malware file for the file type zmd. For the file type rmd the suffix of -

49

rarpwd is used to name the malware signature. The system only allowed to use of

alphanumeric. A dot (.), underscore (_), dash (-) and does not have any space, quote

mark or apostrophe. (Clamav-signature-update, 2020). Another important file while

writing the efficient signature file is the file containing the debug information from

libclamav. The library is called by calling clamscan debug and leave-temps flags. CASC

(ClamAV Signature Creator) tool is also used to perform reverse engineering in creating

ClamAV signatures (The-Talos-Group-AT-Cisco, 2018). The product is not integrated

into the setup however used for references. This product is a compatible IDA Pro plug-

in.

HTML and Text files are also normalized using “sigtool” for the respective format. The

sigtool is used to pull the libclamv and provides the clamscan, which executes at the

back end.

3.1.2.2 Programming API

As shown in figure 3.2, different components are interconnected, including database,

antivirus, Virustotal and YARA rules. These components are retrieving and sending data

to interconnected components. Application Programming Interfaces are most commonly

used to collect or send data. The setup is based on the language which is easily

accessible and has readily available interfaces with different components involved in the

setup. Python is used to perform these tasks, and the version used for the setup is 3.6.8.

The zero-day malware detection for the setup is based on reading the active process

and doing the necessary recording. For fetching the process details, Python has the built-

in library known as “psutil”. This utility provides the process and system utilities, and it is

a cross-platform library for collecting the information for the running processes and the

utilization of systems. The system utilization includes CPU, memory, disk, network,

sensor. The utility also provides monitoring of the system, setting the profiling and limiting

the process resources. The management of a running process is managed by this utility

(Pypi-org, 2020). The setup is prepared to detect the zero-day malware based on

50

detecting the abnormal process; hence, the prime focus is on the process monitoring

and management. The following essential component is to record the process details. A

programming interface is required to update the database tables. Details for the

database table can be referred to in section 3.3.2.3. Python library, which interfaces with

MySQL, is “MySQLdb”. This utility can write again the DB-API compliant MySQL module,

which can increase performance. The other component that enables Python is to install

the MYSQL Python driver (Engel, 2017). Authentication is required for the

Pythonaccessing the database. For the lab setup, a local username and password are

used. The integration to threat intelligence is to verify the signatures of the existing

malware. The Python application programmable interface supports the virustotal. The

library Python uses to integrate virustotal is “virustotal-API”. The integration allows

Python to verify the existing software malware signature using the cryptographic hash

function. The integration of the programming interface has a critical component with the

antivirus tool. In the setup, ClamAV integration with the Python API is used. The available

library for antivirus is “pyClamd”. The interface is used to detect the virus for the python-

based software. The interface is used to update the local database signature of the

antivirus on the end-point after the detection process, as detailed in section 3.3.3. Once

the signature is updated, the malicious software is deleted or blocked for execution. To

detect malware and file-based threats, ClamAV relies on the signatures to separate the

clean and malicious files (Clamav-signature-update, 2020). ClamAV signatures are

based on the text and have to be in a specific signature format. These formats are

supported and written in the YARA format. The YARA rule is used to automate the

signature update.

An API is created using Python to set up the interface. The library used for YARA from

the Python is (Alvarez, 2021). It covers all the YARA features from compiling, saving and

loading the rules from the scanning files, strings and processes (Alvarez, 2021). The

library is “Yara-python”, which is imported to update the YARA signature. The ClamAV

collects the signatures in CVD (ClamAV virus Database) files (Clam-AntiVirus, 2020).

51

The CVD file format delivers a digitally signed container that encapsulates the signatures

and confirms that any malicious third party cannot modify them. The signature in the

setup is actively verified in the public available threat intelligence Talos intelligence.

Figure 3. 2. Programmable Interface

3.1.2.3 Data Acquisition

The setup requires a database to save the process information of the operating system.

The test environment is set up using an open-source version of MySQL under the

general public license. MySql version 8 is installed on the end-point, which is currently

supported on the OS version of the end-point. The network complexity is avoided by

installing the database server on the same end-point. However, the methodology would

work even with a separate machine. MySQL was available from the portal (MySQL-Dev,

2021). The package name is “mysql80-community-release-el7-3.noarch.rpm”. For

security purposes, default settings like changing the default root password, removing the

anonymous user, disabling remote access for the root user as the DB is installed on the

same end-point. The process to monitor the data acquisition are system, daemon and

batch processes, interactive processes and zombie processes. Note that the system is

the parent of all the processes and is managed by the systemctl.

Daemons are the process that runs continuously in the background and ends with the ‘d’

like httpd. Batch processes are in the spooler area, where it is executed on a first-in, first-

out basis. The terminal sessions are initialized and control the interactive session. The

52

process which is closed but still possesses the process ID is referred to as the Zombie.

Multiple commands are considered, including “top” (Table of Process) and “ps” (Process

Status) to view the process ID (PID) of the active process. Though the top command

runs continuously in the background, it is used as part of the Python script ps command

with the flag involved “-aux”. The flag provides the information for the user, process ID,

the percentage of CPU and memory used, start time, and the command execution. The

programming interface “psutil” is executed from python. The PS utility is the interactive

command that is to be given each time the process is read from the system; therefore, a

repetitive loop is configured. The selection of schedule is also important after successive

testing. Keeping large intervals results in losing the critical process information, whereas

keeping small intervals causes a large number of data. Hence 2 min interval is kept,

which executes the PS utility and get the necessary update to populate the information

in the database. The database is created with the table that contains the field for user

detail, process id, CPU, memory, vs2, RSS, tty, stat, start, time, command, which

includes all the fields output for the ps -aux output. The insert operation for MySQL

database through Python needs to import the package for MySQL.connector package.

After the package is imported, the first step is to establish the connection using

MySQL.connector.connect() method. Username and password are required for the

authentication, and for this setup, the same root account is used to access the database.

The database name created is “processed”, which is also called during the connection

phase. A cursor object is created by calling the cursor() method with the connector

details. The information is collected from the psutility. The output is inserted into the

database by executing the cursor. Each time values are added to the table, a commit is

required in the database.

. 3.1.2.4 VirusTotal Integration

Virustotal integration provides following two services for the setup

53

• Verify the signature of the files which is creating anomaly activity.

• Update the virustotal if the anomaly detection by the file execution is malicious.

The programmable interaction with the virustotal is through API version 3. Initially, the

connectivity test was conducted via version 2, which was updated to version 3 due to

functional limitations. The setup has used the premium version of the API integration,

which allows the option to give the request rate and the daily quota of 100 requests per

day. Signature files are downloaded from the virusshare site in the JSON format to

validate the existing file. The virustotal hunting is included for the retrieval of the YARA

rule notification. The integration has enabled performance property to sample queries

along with the reverse searches. In the first use case for the setup, to upload the file

libraries os.path and pprint are also imported. The OS path gives the ability to the Python

to access the file structure of the operating system. The file which is to be tested for the

signature validation is given to the API call. It returns the JSON response, which details

the threat intelligence response from the virustotal accumulated from the known vendors

marking as the threat. Another method used to validate the file is to only send the file ID

in the form of the hash and collect the response in the same way as uploading the file.

The hash values such as MD5, SHA1, SHA256 and the fuzzy hash of the samples can

be uploaded. The second use case is to report the file to the virustotal portal, approved

by the admin to be added to the threat intelligence portal. The submitted sample file to

virustotal automatically go to the sandbox environment, and after doing the analyses, a

verdict is assigned to the file with undetected or suspicious (Virus-total, 2021). The

sample submission date indicates the life cycle of the selected malware. The addition of

date gives a good indication of the age of the reported malicious software. VirusTotal is

also used as a threat hunting in this setup, which differs from standard threat

management measures where the approach is reactive than threat hunting (Alvarez,

2021). The report generated by the virustotal has the details with the finding like

undetected, Suspicious, unable to process the file and timeout. The undetected refers to

the fact that the engine cannot detect any malicious content in the file. The suspicious

54

behaviour raises the flag that the uploaded file is malicious. If the file is not able to

recognize, then it returns the unable to process response. In unable to process and

Timeout responses virustotal unable to make any verdict (Virus-total, 2021).

3.1.2.5 YARA Rules Update

After detecting zero-day malware, the setup is required to answer one of the questions

to integrate the YARA rules and antivirus software, ClamAV. YARA version 3.11.0 is

used for setting up the test environment. This section will discuss the YARA integration

with the programming API and the signature update procedure for the ClamAV. YARA is

accessed from Python using the Yara-Python library. To support the YARA feature for

the SSL OpenSSL library is also installed. The Python API is used to verify if the unknown

malicious instance causing anomaly behaviour belongs to a known malware family or is

a novel malware. It also verifies the behaviour feature used to differentiate the instance

of one malware family from those of other families. To differentiate the existing strain

with the zero-day malware detection listed, the list of existing malware types includes

Trojan, Rootkit, Backdoor, Xfil, Worms, Ransomware and keylogger. It allows the

classification of the database to identify the category and help mark the category as zero-

day. YARA rules for the existing strain are referred to the GitHub library for the YARA

rules (Yararules, 2021). For the setup, the list of existing malware types is downloaded

from the respective git-hub repository and for the initial test manual YARA command was

executed to verify the detection of the random dummy files with and without sample

malware. The exercise is mandatory to validate the impact of the false positive for the

YARA signature. The sample malware and the YARA rules for the signatures are

presented in chapter 4. This validation was also required to justify the load on the end-

point as YARA rule verification is also performed on the same end-point, which has SQL

database and the Python API interfaces. For the setup, Python is used to call YARA

libraries to match the identified file with the existing malware families. If the signatures

are not identified, and the file is not classified as malware from the existing matching

rules Python interface is called again to create a YARA rule by analysing the file. The file

55

analysis identifies the critical string to match the signature of the file. Once the signature

matching patterns are identified Python interface is called again to create the file for the

matching YARA rule. The last step for YARA rule integration is to update the ClamAV

signatures. After the rule is created, the ClamAV scan is reinitiated to delete the

malicious file. A new file is created with the corresponding signature for the specific

signature type, e.g. .ldb extension for the logical signatures. Then a new own line is

added for the new signature in the same file. Clamscan is called using the Python

interface to load the newly added signature. The clamscan is called again using the

Python interface, which updates the local signature database. The format for the

signature is essential as, during the testing, it will throw an error with the display error in

the debug file output.

3.1.3 Analysis Method

This section discusses the analysis method used to evaluate if the process flow of the

zero-day malware detection and explains the integration of individual components as

mentioned in the sections on the Linux systems against the sample Linux malware. The

zero-day malware detection process is evaluated against the malware sample collected

from the repositories at virustotal and virus share.

Figure 3.3 illustrates the steps in detecting the zero-day malware process.

56

Figure 3. 3. Process Flow

The process flow was tested to detect the malware behaviour technique by monitoring

the malicious activity on the end-point. For the analysis of the process for zero-day

detection, some malware signatures were deliberately removed from the signature

database of the ClamAV tool. The malware was known to be the malicious file, but the

action was taken to verify the effectiveness of the process and to validate the false

negative of the file detection.

57

3.1.3.1 Sample files

Sample malware was downloaded from the virus share and virustotal repositories. These

samples were first downloaded on a sandbox machine with only an Internet connection.

The files were executed to analyse the behaviour of the malicious file. There are multiple

sandbox solutions available. However, for the setup, the only cuckoo sandbox was used.

Cuckoo is also based on the Python library that executes the test sequentially for the

analysed malware. Its integration with open-source tools like YARA, virustotal, volatility

and support on multiple virtual machine platforms like VirtualBox made it the only choice

for this setup.

The identified malware are verified with the YARA rules configuration and the available

signatures in the ClamAV antivirus. For the setup, the signatures of a few malware files

were removed from the ClamAV database. This action is required to make the signature

of these malicious files unavailable so that the traditional antivirus is unable to detect

these files. After going through the process, when the system detects the malicious

behaviour, the YARA rules can be written, and the programable interface can update the

signature.

3.1.3.2 Monitoring Process

The program, when executed, creates a process and has the associated process ID. The

process can be a parent or a child process that needs to be monitored when the program

is executed. For the setup, the PS utility is used to identify the usage of the active

processes. Python API is calling the ps utility. The sample malware which is identified in

section 3.3.3.1 is executed as part of the program. The malware was executed one at a

time to observe the process activities. The process ID, CPU utilization and files execution

that creates the process is being recorded. The PS utility is the interactive utility therefore

iterative script is executed to send the process details at regular intervals. The interval is

scheduled in such a way is to avoid the period when the malicious activity by the process

is skipped during that interval session.

58

3.1.3.3 Maintaining Database

The information is collected in the database to maintain the state of the system

processes. The interface is set up to send the process details to the database. The two

components are essential for deployment. First is the database, and second is the

interface that can collect the details from the system and store them in the database.

Mysql is deployed to receive the data input via Python API. Only a single database is

created which records the data in a tabular form, and each different field includes process

ID, user details, CPU utilization, file path for the executable. The setup has been

executed for a limited number of days when the test is to be conducted; therefore,

database purging and achieving is not considered.

The Logs are flushed regularly with the regular internal command to keep the database

running efficiently. The database role is to maintain the information inserted via API for

the process details. The second API role is to read the data from the same database to

populate the data for checking the abnormal behaviour, as discussed in section 3.3.3.4.

Python executes the “select” statement to fetch the details. The select statement uses

the connection.cursor() moreover, cursor.execute() method to retrieve the information.

The setup authentication is also maintained through the local username-password

database of MySQL. To avoid complexity root account is configured on the API call to

access the database.

3.1.3.4 Abnormal Behaviour

The data was collected and maintained in the database to detect the abnormal

behaviour in the endpoint. It gives an understanding of the standard machine process

behaviour. In the setup, the data collection was not more than 2 hours. It is a controlled

environment hence data collection for standard scenarios is not critical. The sample

malware files were executed for both scenarios, scenario1 when known malware is

executed, and signatures for the ClamAV is available. In this case, the file was blocked

by the anti-virus. In the scenario2, known malicious files were executed for which

59

signatures were disabled. Different malware had different behaviour on the process IDs

and different abnormal behaviour. The behaviour includes the detection of downloading

or installing a trojan which enables the backdoor for remote access. It includes stealing

the credential by downloading software that can install the key logger and transfer the

keylogging to the remote user. The anomaly behaviour may include process injection,

which can create a copy of the legit application and share the privilege and the memory

details to the remote attacker. When it comes to analysing the behaviour of malware,

the network activity is also monitored. Because it can be challenging for malicious

software to significantly modify its network behaviour and still achieve its objectives,

analysing malware network behaviour may provide an opportunity to identify malware

on affected hosts. The process requires extracting features from network records and

then creating patterns that help identify malware intrusions. The anomaly behaviour

detects the files and, as per the process, send the file for the verification purpose.

3.1.3.5 File verification

The file verification is first performed by the public threat intelligence repository such as

virustotal. The API calls uploads the malicious file and validate the malicious content. If

the file is identified as clean, then the file is requested to virustotal for the sandbox. The

next step is to update the signature of the identified malicious file. The YARA rule is

created for the malicious file, but first, file analysis is done to identify the matching criteria

for the file. The file analysis includes the identification of the critical pattern which are

required to be matched. The pattern varies with the different types of malware files, which

also depend on the artefact of possible exploits by the malware.

3.1.3.6 Action

The signature update required the ClamAV to update the database. The clamscan is

executed using the API, which detects the malicious file. The action for the setup is to

60

kill the associated processes, including parent and child. It then deletes the files from the

path identified in the ps utility output stored in the database.

3.2 Conclusion

The research design was designed to elaborate the process to identify the zero-day

malware if the signature is not available on the traditional antivirus. It delineated the main

research questions and explained the data source of the malware. The sample malware

was taken from a public repository and signature database. It explained the requirement

to remove signatures from known malware from the local antivirus tool. It has discussed

the testing procedure and highlighted the research goals in the form of the hypothesis.

The results-driven in this chapter are presented in chapter 4. The output and the

extracted process are also explained. The analysis results drive the process for zero-day

malware detection by analysing the process id of multiple program execution and the

update of the local antivirus signature using the YARA rule.

61

4. Results

The research questions were raised based on the literature review undertaken in chapter

2, highlighting the challenges of detecting zero-day malware files. This chapter presents

the observations during the experiments conducted as per the design setup in chapter

3. The first section of the chapter provides the details of malware samples used in

investigating the process for zero-day malware. The following section provides the

details of the sample system process utilisation during the normal scenario. The normal

scenario is referred to as the time when no sample files are executed and the lab setup

machine is in an idle state. Then, the sample malware files are analysed, and the system

process's behaviour with the known and unknown signatures in the antivirus tool. The

section will also cover the results for the signature update on the antivirus with the

integration of YARA rules. The last section presents the conclusion driven from the

experiment results and answers the questions related to the research questions. The

sample files used are known files to observe the method and techniques defined in

chapter 3, and it does not include the detection of false positives.

4.1. Sample Files

A total of seventeen (17) sample malware files were extracted from the public portal

https://github.com/MalwareSamples/Linux-Malware-Samples.

Another set of five (5) non-malicious files were also used for the experiment purposes.

The following section gives an overview of the top five (5) malicious files which were

verified on the virustotal to validate the signature.

Figure 4.1 shows the details of the file when it was uploaded on the virustotal. The file

type is ELF (Executable and Linkable Format), which is the output of a compiler, and the

https://github.com/MalwareSamples/Linux-Malware-Samples

62

file format is binary. The file aae58bfd4ad444e778fc71aca23e8ddd.virus was first

submitted to virustotal on 15/01/2021, which shows that the malware is relatively new.

Figure 4. 1- Sample File 1 Details From VirusTotal

Figure 4.2. shows the file details when it was uploaded on the virustotal. The second

sample file type is ELF, and the file was first submitted on 01/17/2021, which is relatively

new.

63

Figure 4. 2 - Sample File 2 Details From VirusTotal

Figure 4.3. shows the file details when it was uploaded on the virustotal. The third sample

file type is ELF, and the file was first submitted on 01/11/2021, which is a relatively new.

Figure 4. 3 - Sample File 3 Details From VirusTotal

64

Figure 4.4. shows the file details when it was uploaded on the virustotal. The fourth

sample file type is ELF, and the file was first submitted on 01/12/2021, which is relatively

new.

Figure 4. 4 - Sample File 4 Details From VirusTotal

Figure 4.5. shows the file details when it was uploaded on the virustotal. The fifth sample

file type is ELF, and the file was first submitted on 01/17/2021, which is a relatively new.

65

Figure 4. 5 - Sample File 5 Details From VirusTotal

Table 4.1. summarizes the details of the remaining sample files used during the

experiment to verify the process for detecting malicious files due to abnormal behaviour.

Table 4. 1 List of Other Sample Malware Used in the Lab Setup

66

 File
Name

File Name Used
in Experiment

MD5 File Hash

File
Size

Upx Sample 6
0b9d850ad22de9ed4951984456e777897
93017e9df41271c58f45f411ef0c3d2

4.97
MB

xor2.exe Sample 7
10995106e8810a432ebc487fafcb7e4211
00eb8ac60031e6d27c8770f6686b4e

16.8
4 KB

Ybf Sample 8
1328f1c2c9fe178f13277c18847dd9adb94
74f389985e17126fcb895aac035f2

20.5
3 KB

Roblox Sample 9
2023eafb964cc555ec9fc4e949db9ba3ec2
aea5c237c09db4cb71abba8dcaa97

25.6
2 KB

eicarstrongp
assword.exe Sample 10

2f0b2160470e2253dc6a5c9cf950962c599
9ee209d0eb0db237a4c630cb34e7a

470.
69
KB

Andy Sample 11
2f331c4e9e33c2afb8050a9a81a6775542
000e2be810104691eb9fff4981bc56

2.18
MB

Dns Sample 12
9a7f32e59380deaedad632f1a40697d5ef4
03349f322c502599e99d81bc6dca3

512.
00
KB

XMRIG Sample 13
00ae07c9fe63b080181b8a6d59c6b3b6f9
913938858829e5a42ab90fb72edf7a

7.71
MB

real_live Sample 14
03bb1cfd9e45844701aabc549f530d56f16
2150494b629ca19d83c1c696710d7

2.49
MB

Help Sample 15
04b5e29283c60fcc255f8d2f289238430a1
0624e457f12f1bc866454110830a2

5.47
MB

view_list Sample 16
0e492a3be57312e9b53ea378fa09650191
ddb4aee0eed96dfc71567863b500a8

49.2
5 KB

unlucky Sample 17
1ea3dc626b9ccee026502ac8e8a98643c6
5a055829e8d8b1750b2468254c0ab1

37.9
0 KB

keepass Sample 18
785565ac4cf379c857f97890070e7f82afdf
72f9e65e1a71902732af0fc00110

3.2
MB

harden.bin Sample 19
9582fec10e6ca488ab506a96dfeb5da56c
9425ca32a8481e060bd06893fb1b3e

250
KB

Npee Sample 20
61dc901b9962d392d781e07977852d2cbf
db8bb58ca337fdc6f12081f33518dc

190
KB

abc.tar Sample 21
d0711f6d1fd8592385999f7ade4353a695f
802fd96501df6a3e985ca195ab0d2

6.5
MB

unknown Sample 22
8ea9fc21543e30c773adbcfac3759e8787d
e315ac25e2da7f8580cb670f68424

5.5
MB

Selected Sample malware files [Sample 1 – Sample 17] used in the experiment are

already identified as known malware. The ClamAV antivirus tool used in the lab setup

has the signature updates available for all the selected samples except sample 5; hence,

it considered all these files malicious. Signatures were removed from the antivirus

signature database to treat these files as zero-day malware. The only malicious file name

“sample4” signature is kept in the antivirus tool to verify if the process detects the other

malicious file. Sample files from 18 to 22 are confirmed non-malicious files. Therefore,

no change is required on the antivirus signature database. Files used to experiment

67

process defined in the research design covers zero-day malware [Sample 1-3, Sample

5-17], known malware [Sample 4] and normal file [Sample 17-22]. The purpose of the

experiment does not include the detection of false-positive, and the range of samples

are used to verify the effectiveness of the process.

4.2. Process Monitoring

It is essential to record the current usage of the processes in normal situations to detect

the system's unusual behaviour. The process monitoring is initially required to maintain

the process information before the manual execution of the malicious file. The process

details are stored in the SQL database, which is then used to compare any unusual

process usage due to any malicious activity. The baseline usage is set for the experiment

phase. Figure 4.6 is the sample percentage of CPU usage during the usual situation with

the time interval of 5 min.

Figure 4. 6 - % CPU Usage During Normal Situation

The database maintains the process ID, CPU usage and path location for each entry.

The abnormal usage of CPU utilization for the process ID triggers the alarm to the client

antivirus, which marks the file as malicious. As per the test results in section 4.4, the file

is deleted after the detection. The data collection is for a very limited duration and does

not include any machine learning capabilities.

0

5

10

15

CPU % Usage

68

The process to detect abnormal behaviour requires a baseline to be set. The scope of

the thesis does not cover the machine learning capability. Therefore, two components

are considered for the abnormal behaviour of the system, which deviates from the

baseline. These include CPU usage and the number of times the specific file is executed

in a certain time frame. As the purpose of the work does not include any specific machine

learning technique for abnormal behaviour; therefore, detection of false positives is also

not considered.

4.3. File Analysis

File 1 – The sample file Y0hWhAUBjQ.virus was copied on the client machine and

executed. During the execution, the CPU utilization went high and figure 4.7 shows the

utilization during the execution. The utilization went high at approx. 10:55 when the file

was executed.

Figure 4. 7 - % CPU Usage When Sample File 1 Was Executed

Table 4.2 shows the process IDs which were active during the file execution phase.

0

50

100

CPU % Usage

69

Table 4. 2 - Sample File 1 PID

PID Path

4586 /tmp/Y0hWhAUBjQ.virus

4599 New Fork

4599 bin/sh -e /proc/self/fd/9

4600 New Fork

4600 Date

4601 New Fork

4601 /usr/bin/python3 /usr/share/abrt/abrt-checkreports --system

4626 New Fork

4626 /bin/sh -e /proc/self/fd/9

4630 New Fork

4630 Date

4636 New Fork

4636 /usr/bin/python3 /etc/libreport
4653 /bin/sh -e /proc/self/fd/9

4654 New Fork

4654 Date

4663 New Fork

4663 /usr/bin/python3 /usr/share/abrt

Figure 4.8 refers to the list of process IDs which were generated and forked by the

parents process.

Figure 4. 8 - Sample File 1 PIDs Map

The process analysis indicates that the program is executing the directory enumeration.

The process IDs show the execution of ABRT (automatic bug detecting tool) on the user

70

machine. The tool helps in creating the information of the directory. The malicious file

executes the python, which runs the enumeration to identify the list of directories.

Sequence of file path were detected during the time of the file execution. The file path

indicates Python distributed package was accessed /usr/local/lib/python3.5/dist-

packages which executed the file path /usr/bin/python3 /usr/share/abrt/abrt-checkreports

–system and started running the report for /usr/bin/python3 /etc/libreport.

Table 4.3 shows the number of times the file paths were executed, which has the

malicious file.

Table 4. 3 - Sample File 1 Path

File Path Mode

Status Count

/tmp/Y0hWhAUBjQ.virus bits: - usr: -x grp: all: - successful 8

/tmp/Y0hWhAUBjQ.virus bits: - usr: -x grp: all: - successful 10

Figure 4.9 shows the comparison of other file paths accessed while the malicious file

was executed. The high count of the file execution and the high CPU utilization can be

seen in Figure 4.9 and Figure 4.7.

71

Figure 4. 9 – Sample File 1 Execution Count

After the malicious file activity is detected, the next step is to write the YARA rule for the

identified file. The file location is identified in the/tmp folder. The tool used to detect the

file type is the hex dump. Figure 4.10 shows the file type information. As mentioned in

section 4.1 the file type of the first sample is ELF which is confirmed by the hex dump

output in figure 4.9. The hex value 7f 45 4c 46 confirms the file type (Kessler, 2021).

Figure 4. 10 - Sample File 1 Hex dump

Figure 4.10 also has the information used from the magic number to set the content to

match the YARA rule condition. The following configuration shows three variables

assigned the values: ‘a’, ‘b’ and ‘c’. The first variable, ‘a’ contains the magic number,

whereas variables ‘b’ and ‘c’ are assigned other values based on the hex dump of the

0

2

4

6

8

10

12

14

16

18

20

/e
tc

/l
d

.s
o

.c
a

c
h
e

/u
s
r/

lib
/x

8
6

_
6

4
-l
in

u
x
-…

/u
s
r/

lo
c
a
l/
lib

/p
y
th

o
n

3
.5

/…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/t
m

p
/Y

0
h

W
h

A
U

B
jQ

.v
ir

u
s

/u
s
r/

s
h

a
re

/a
p

p
o

rt
/a

p
p

o
r…

/u
s
r/

lib
/x

8
6

_
6

4
-l
in

u
x
-…

/u
s
r/

lib
/x

8
6

_
6

4
-l
in

u
x
-…

/l
ib

/x
8

6
_
6

4
-l
in

u
x
-…

/u
s
r/

lib
/x

8
6

_
6

4
-l
in

u
x
-…

/l
ib

/l
ib

lt
tn

g
-u

s
t-

…

/u
s
r/

lib
/l
ib

lt
tn

g
-u

s
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

s
h

a
re

/a
p

p
o

rt
/a

p
p

o
r…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/u
s
r/

lib
/p

y
th

o
n

3
/d

is
t-

…

/e
tc

/p
a

s
s
w

d

Count

72

remainder of the file. The condition applied that if all the values match in a file that put

the description as “Sample1 virus file”.

{

Meta:

desc = “Sample 1 virus file”

strings:

$a = {7f 45 4c 46 02 01 01 00}

$b= {07 78 49 4d 20 55 7a 49}

$c= {69 31 f6 fd 24 0d 2a 2e}

Condition:

$a and $b and $c

}

The signature of “sample file 1” is removed from the anti-virus signature database. Figure

4.11 shows the Clam-AV database directory listing to ensure that signature is not

available before the file execution. Current files shown in the directory are not relevant

and It is only to provide the comparison of the results for the automatic generation of the

signature before and after the execution of the malicious file.

Figure 4. 11 - Sample File 1 AV Directory Listing Before Signature Update

The next step after the YARA rule is created to update the signature of the anti-virus tool.

Figure 4.12 shows the ClamAV database after the YARA signature is updated. An API

is executed written in the Python the to normalize the YARA Rule file automatically and

then uses the command clamscan --leave-temps --tempdir=mytempdir (Alvarez, 2021).

The file name Y0hwhAUBjQ.yara is created under the anti-virus signature database.

73

Figure 4. 12 - Sample File 1 AV Directory Listing After Signature update

The next step is to remove the malicious file from the identified location. API is executed

to run the scan. It is executed on the folder's location, which in this case is at /tmp

location. The anti-virus tool has the signature written as a YARA rule to detect the file as

malicious and remove it from the location. Figure 4.12 shows the scan output, which

indicates that one infected file has been deleted. The end time is the time when the scan

was completed and the malicious file was deleted. The size of the file indicated in figure

4.13 is the same as the file of the malicious file.

Figure 4. 13 - Sample File 1 AV Scan Result

In summary, the malicious sample file one was executed while the process usage, file

and CPU utilization behaviour were monitored. The database contains the information of

process ID, CPU utilization, and the file's path executed before and after the malicious

file execution. The abnormal behaviour of the processor utilization of the file marked the

file as malicious. The identification allowed to creation of a YARA rule specific to the file.

The magic number of the file is taken for file identification using the hexdump utility. The

YARA rule signature updated the antivirus signature database. In the end, an antivirus

74

scan was executed for the identified malicious path to delete the malicious file. The file

was removed, and the process monitoring was put back to the normal situation.

File 2: The sample file pXdN91.x68 was copied on the client machine and executed.

During the executions, the CPU utilization went high and figure 4.14 shows the utilization

during the execution. The utilization went high at approx. 17:55 when the file was

executed.

Figure 4. 14 - % CPU Usage When Sample File 2 Was Executed

Table 4.4 shows the process IDs which were active during the file execution phase.

Table 4. 4 - Sample File 2 PID

PID Path

4582 /tmp/pXdN91.x68

4597 New Fork

4598 New Fork

Figure 4.15 refers to the list of process IDs that were generated and forked by the

parent's process.

Figure 4. 15 - Sample File 2 PIDs Map

0

20

40

60

80

100

17:40 17:45 17:50 17:55 18:00 18:05 18:10 18:15 18:20 18:25 18:30

CPU % Usage

75

The process analysis indicates that the malicious software is trying to get the remote

discovery of the system. The remote discovery enables the lateral movement such that

malicious actors can hop from the compromised machine to the other machine in the

network. The use of the/net/route process identifies that the Remote discovery technique

is used (Stepanic, 2017).

The sequence of file paths was detected during the time of the file execution. The file

path indicates that multiple processes for route /proc/4582/net/route.

Table 4.5 shows the number of times the file paths were executed, which has the

malicious file.

Table 4. 5 - Sample File 2 Path

File Path Mode Status Count

/tmp/pXdN91.x68 bits: - usr: - grp: - all: - successful 1

/tmp/pXdN91.x68 bits: - usr: - grp: - all: -
successful 256

Figure 4.16 shows the comparison of other file paths accessed while the malicious file

was executed. The other file was executed only once. That is why not visible in figure

4.16. The high count of the file execution and the high CPU utilization can be verified in

Figure 4.16 and Figure 4.14.

Figure 4. 16 – Sample File 2 Execution Count

0

50

100

150

200

250

300

Count

76

After the malicious file activity is detected, the next step is to write the YARA rule for the

identified file. The file location is identified in the/tmp folder. The tool used to detect the

file type is the hex dump. Figure 4.17 shows the file type information. As mentioned in

section 4.1, the file type of the second sample file is ELF which is confirmed by the hex

dump output in figure 4.17. The hex value 7f 45 4c 46 confirms the file type (Kessler,

2021).

Figure 4. 17 - Sample File 2 Hex dump

Figure 4.17 also has the information used from the magic number to set the content to

match the YARA rule condition. The following configuration shows three variables

assigned the values: ‘a’, ‘b’ and ‘c’. The first variable, ‘a’ contains the magic number,

whereas variables ‘b’ and ‘c’ are assigned other values based on the hex dump of the

remainder of the file. The condition applied if all the values match in a file that put the

description as “Sample 2 virus file”.

Rule sample2

{

Meta:

desc = “Sample 2 virus file”

strings:

$a ={7f 45 4c 46 02 01 01 00}

$b={5f 5f 47 49 5f 5f 5f 65 }

$c={74 73 69 64 00 5f 5f 47}

77

Condition:

$a and $b and $c

}

The signature of “sample file 2” is removed from the anti-virus signature database. Figure

4.18 shows the Clam-AV database directory listing to ensure that signature is not

available before the file execution. Current files shown in the directory are not relevant

and It is only to provide the comparison of the results for the automatic generation of the

signature before and after the execution of the malicious file.

.

Figure 4. 18 - Sample File 2 AV Directory Listing Before Signature Update

The next step after the YARA rule is to update the signature of the anti-virus tool. Figure

4.19 shows the ClamAV database after the YARA signature is updated. The API calls

the YARA rule file to normalize it automatically and then uses the command clamscan -

-leave-temps --tempdir=mytempdir (Alvarez, 2021). The file name pXdN91.yara is

created under the anti-virus signature database.

Figure 4. 19 - Sample File 2 AV Directory Listing After Signature update

78

The next step is to remove the malicious file from the identified location. API is executed

to execute the scan. It is executed on the folder's location, which in this case is at /tmp

location. The anti-virus tool has the signature written as a YARA rule to detect the file as

malicious and remove it from the location. Figure 4.20 shows the scan output, which

indicates that one infected file has been deleted. The end time is the time when the scan

was completed and the malicious file was deleted. The file size indicated in figure 4.20

is the same as the file of the malicious file.

Figure 4. 20 - Sample File 2 AV Scan Result

In summary, malicious "sample file two" was executed while the process usage, file and

CPU utilization behaviour were monitored. The database contains the information of

process ID, CPU utilization, and the file's path executed before and after the malicious

file execution. The abnormal behaviour of the processor utilization of the file marked the

file as malicious. The identification allowed to creation of a YARA rule specific to the file.

The magic number of the file is taken for file identification using the hex dump utility. The

YARA rule signature updated the antivirus signature database. In the end, an antivirus

scan was executed for the identified malicious path to delete the malicious file.

File 3: The sample file bash was copied on the client machine and executed. During the

execution, the CPU utilization went high and figure 4.21 shows the utilization during the

execution. The utilization went high at approx. 20:05 when the file was executed.

79

Figure 4. 21 - % CPU Usage When Sample File 3 Was Executed

Table 4.6 shows the process IDs which were active during the file execution phase.

Table 4. 6 - Sample File 3 PID

PID Path

4582 /tmp/bash

4596 New Fork

4597 New Fork

Figure 4.22 refers to the list of process IDs which were generated and forked by the

parents process.

Figure 4. 22 - Sample File 3 PIDs Map

The process analysis indicates that the malicious software is trying to get the remote

discovery of the system and the masquerading and non-standard port for command and

control tactics of an attack. The remote discovery enables the lateral movement such

that malicious actors can hop from the compromised machine to the other machine in

the network. The malicious software sends the traffic to the public IP address on a non-

standard port. From the details collected from process IDs, the type of attack detected in

the remote discovery.

0

20

40

60

80

100

120

19:40 19:45 19:50 19:55 20:00 20:05 20:10 20:15 20:20

CPU % Usage

80

The sequence of file paths was detected during the time of the file execution. The file

path indicates that multiple processes for route /proc/net/route.

Table 4.7 shows the number of times the file paths were executed, which has the

malicious file.

Table 4. 7 - Sample File 3 Path

File Path Mode Status Count

/tmp/bash bits: - usr: - grp: - all: - successful 256

Figure 4.23 shows the comparison of other file paths accessed while the malicious file

was executed. The high count of the file execution and the high CPU utilization can be

compared in Figure 4.23 and Figure 4.21.

.

Figure 4. 23 – Sample File 3 Execution Count

After the malicious file activity is detected, the next step is to write the YARA rule for the

identified file. The file location is identified in the/tmp folder. The tool used to detect the

file type is the hex dump. Figure 4.24 shows the file type information. As mentioned in

section 4.1, the file type of the third sample file is ELF which is confirmed by the hex

dump output in figure 4.17. The hex value 7f 45 4c 46 confirms the file type (Kessler,

2021).

0

20

40

60

80

100

120

Count

81

Figure 4. 24 - Sample File 3 Hex dump

Figure 4.24 also has the information used from the magic number to set the content to

match the YARA rule condition. The following configuration shows three variables

assigned the values: ‘a’, ‘b’ and ‘c’. The first variable, ‘a’ is assigned the file type hex

value, whereas variables ‘b’ and ‘c’ are assigned other random values from the magic

number. The condition applied that if all the values match in a file that put the description

as “Sample 3 virus file”.

Rule sample3

{

Meta:

desc = “Sample 3 virus file”

strings:

$a = {7f 45 4c 46 02 01 01 00}

$b= {6e 65 74 5f 60 64 64 72}

$c= {6e 61 6d 65 00 63 6c 6f}

Condition:

$a and $b and $c

}

The signature of “sample file 3” is removed from the anti-virus signature database. Figure

4.25 shows the Clam-AV database location to ensure that signature is not available

before the file execution. It is to provide the comparison of the results for the automatic

generation of the signature before and after the execution of the malicious file.

.

82

Figure 4. 25 - Sample File 3 AV Directory Listing Before Signature Update

The next step after the YARA rule is created to update the signature of the anti-virus tool.

Figure 4.26 shows the ClamAV database after the YARA signature is updated. The API

calls the YARA rule file to normalize it automatically and then uses the command

clamscan --leave-temps --tempdir=mytempdir (Alvarez, 2021). The file name bash. Yara

is created under the anti-virus signature database.

Figure 4. 26 - Sample File 3 AV Directory Listing After Signature update

The next step is to remove the malicious file from the identified location. API is executed

to execute the scan. It is executed on the folder's location, which in this case is at /tmp

location. The anti-virus tool has the signature written as a YARA rule to detect the file as

malicious and remove it from the location. Figure 4.27 shows the scan output, which

indicates that one infected file has been deleted. The end time is the time when the scan

was completed and the malicious file was deleted. The file size indicated in figure 4.27

is the same as the file of the malicious file.

Figure 4. 27 - Sample File 3 AV Scan Result

83

In summary, malicious sample file three was executed while the process usage, file and

CPU utilization behaviour were monitored. The database contains the information of

process ID, CPU utilization, and the file's path executed before and after the malicious

file execution. The abnormal behaviour of the processor utilization of the file marked the

file as malicious. The identification allowed to creation of a YARA rule specific to the file.

The magic number of the file is taken for file identification using the hex dump utility. The

YARA rule signature updated the antivirus signature database. In the end, an antivirus

scan was executed for the identified malicious path to delete the malicious file.

File 4: The sample file x86 was copied on the client machine and executed. During the

execution, the CPU utilization went high and figure 4.28 shows the utilization during the

execution. The utilization went high at approx. 20:05 when the file was executed.

Figure 4. 28 - % CPU Usage When Sample File 4 Was Executed

Table 4.8 shows the process IDs which were active during the file execution phase.

Table 4. 8 - Sample File 4 PID

PID Path

4583 /tmp/x86

4592 New Fork

4593 New Fork

4594 New Fork

4597 New Fork

0

10

20

30

40

50

60

70

80

90

19:4019:4519:5019:5520:0020:0520:1020:1520:20

CPU % Usage

84

4598 New Fork

4595 New Fork

4596 New Fork

Figure 4.29 refers to the list of process IDs which were generated and forked by the

parents process.

Figure 4. 29 - Sample File 4 PIDs Map

The process analysis indicates that the malicious software enabled multiple processes,

which led to masquerading, operating system credential dumping, remote discovery, and

the non-standard ports and application layers. The process ID could not track the non-

standard port and the credential dumping for the operating system. The /proc/net/route

indicates the use of remote discovery, and the execution of /dev/watchdog indicates that

the code execution was to know about the system details. The /proc/410/maps lead to

masquerading the ports mapping at the application layer.

Table 4. 9 - Sample File 4 Path

Figure 4.30 shows the comparison of other file paths accessed while the malicious file

was executed. The high count of the file execution and the high CPU utilization can be

compared in Figure 4.30 and Figure 4.28.

File Path Mode Status Count

/tmp/x86

bits: - usr: - grp: - all: - successful 10

85

.

Figure 4. 30 – Sample File 4 Execution Count

After the malicious file activity is detected, the next step is to write the YARA rule for the

identified file. The file location is identified in the/tmp folder. The tool used to detect the

file type is the hex dump. Figure 4.31 shows the file type information. As mentioned in

section 4.1, the file type of the second sample file is ELF which is confirmed by the hex

dump output in figure 4.17. The hex value 7f 45 4c 46 confirms the file type (Kessler,

2021).

Figure 4. 31 - Sample File 4 Hex dump

Figure 4.31 also has the information used from the magic number to set the content to

match the YARA rule condition. The following configuration shows three variables

assigned the values: ‘a’, ‘b’ and ‘c’. The first variable, ‘a’ is assigned the file type hex

value, whereas variables ‘b’ and ‘c’ are assigned other random values from the magic

number. The condition applied that if all the values match in a file that put the description

as “Sample 4 virus file”.

Rule sample4

{

0

2

4

6

8

10

12

Count

86

Meta:

desc = “Sample 4 virus file”

strings:

$a = {7f 45 4c 46 02 01 01 00}

$b= {6c 30 30 64 00 66 63 6e}

$c= {70 65 5f 74 6f 6c 6f 77}

Condition:

$a and $b and $c

}

The signature of “sample file 4” is removed from the anti-virus signature database. Figure

4.32 shows the Clam-AV database location to ensure that signature is not available

before the file execution. This is to provide the comparison of the results for the automatic

generation of the signature before and after the execution of the malicious file.

Figure 4. 32 - Sample File 4 AV Directory Listing Before Signature Update

The next step after the YARA rule is created to update the signature of the anti-virus tool.

Figure 4.12 shows the ClamAV database after the YARA signature is updated. The API

calls the YARA rule file to normalize it automatically and then uses the command

clamscan --leave-temps --tempdir=mytempdir (Alvarez, 2021). The file name x66.yara is

created under the anti-virus signature database.

Figure 4. 33 - Sample File 4 AV Directory Listing After Signature update

87

The next step is to remove the malicious file from the identified location. API is executed

to execute the scan. It is executed on the folder's location, which in this case is at /tmp

location. The anti-virus tool has the signature written as a YARA rule to detect the file as

malicious and remove it from the location. Figure 4.34 shows the scan output, which

indicates that one infected file has been deleted. The end time is the time when the scan

was completed, and the malicious file was deleted. The file size indicated in figure 4.34

is the same as the file of the malicious file..

Figure 4. 34 - Sample File 4 AV Scan Result

In summary, malicious sample file two was executed while the process usage, file and

CPU utilization behaviour were monitored. The database contains the information of

process ID, CPU utilization, and the file's path executed before and after the malicious

file execution. The abnormal behaviour of the processor utilization of the file marked the

file as malicious. The identification allowed to creation of a YARA rule specific to the file.

The magic number of the file is taken for file identification using the hexdump utility. The

YARA rule signature updated the antivirus signature database. In the end, an antivirus

scan was executed for the identified malicious path to delete the malicious file.

File 5: The file execution of the sample4 creates the following process IDs.

Table 4. 10 - Sample File 5 PID

PID Path

4567 /tmp/sample4

4576 New Fork

4576 /tmp/sample4

88

The signature of the files was kept on the anti-virus signature database. Therefore, as

soon as the file was executed, the file was detected and deleted. The file execution of

the sample file was run in a controlled way in such a way that the anti-virus scan was not

executed before the file run. Hence during the run phase, the anti-virus detects the

malicious behaviour and deletes the file.

Other Sample Files:

Figure 4.35 depicts the relationship between the CPU usage and the number of times

the file is executed. The details of the malicious files is shown in Table 4.1.

Figure 4. 35 - Other Sample Files % CPU Usage and Execution Count

Multiple files were executed to observe the results to experiment with the automated

process as defined in chapter 3. Sample files from 18 to 22 are known non-malicious

files. Therefore, no changes were required to update the signature of the endpoint anti-

virus tool. These results also underwent the same automatic process where the file

execution detects the abnormal activity, identifies the file, creates the YARA rule to

update the antivirus tool. And in the end, the automated API call runs the scan to

quarantine the file.

89

The experiment results above help in answering the following research question.

Question 1 (Q1) – Which system process on Linux system can detect anomaly

behaviour?

Different sample files on the Linux system were executed in different time intervals. Two

categories of sample files were executed. The first category of sample files was known

malicious; however, signatures were removed from the antivirus tool. Each malicious file

was executed to analyse the behaviour of the system. It was observed that most of the

files in the first category were detected with high CPU utilisation and the number of times

files were executed. It followed the same detection criteria as it is defined in section 4.3.

The abnormal behaviour marked the file as malicious. The next set of sample files was

normal, and most of the files were undetected as the CPU utilisation did not change

drastically, nor was the file execution count was high. Discussion on the experiment

results is explained in chapter 5 which also provides the briefing of the unsuccessful

results.

Question 2 (Q2)- How can YARA rules and antivirus software be integrated after the

zero-day malware is detected?

YARA rules and antivirus tool were integrated to act, so if the file was detected due to

anomaly behaviour could be actioned as the zero-day malicious file. The process flow in

figure 3.3 indicates that the YARA rule is written automatically using Python script. The

signature for the antivirus tool is then updated using the YARA rule API integration. The

last step is to automate the execution of the on-demand antivirus scan, which detects

and delete the malicious file.

4.5. Conclusion

The result has reported multiple processes IDs and the sample file paths executed during

the experiment phase. The automation process involving API calls at different stages

90

was also presented with the test output. The research questions were also answered

with the results. The next chapters will focus on the dataset collected during the

experiment phase and the method's effectiveness to use anomaly process detection to

find the zero-day malware.

91

5. Discussion

In chapter 4, the output of the experiment results was presented driven from the setup

as briefed in chapter 3. This chapter provides the analysis of results collected in chapter

4 and discusses the challenges of zero-day malware detection as outlined in chapter 2.

The findings in chapter 4 are used to answer the research questions as raised in chapter

3.

This chapter is divided into two main sections, section 5.2 discusses the sample data

set, and section 5.3 discusses the output of the test results and analyses if the output is

advanced or contradict as presented in chapter 2. It answers the main research

questions hence justifying the need for the study.

5.1. Sample Data Sets

The sample malware used in the lab setup is for Linux-based machines' x86 and 64 bits

CPU architecture. The results depend on the types of malware used in chapter 4, as it

has relied on detecting abnormal behaviour. A range of malware was considered during

the experiment. Some sample malware were known malware. However, the signatures

of these samples were removed from the antivirus tool due to the lab setup. The other

set of samples were known non-malware to see the effect of the process as defined in

chapter 3. Table 5.1 indicates the score rating for this malware across different threat

intelligence tools which are publicly available. The list indicates the last five sample files

are normal as these files were found to be clean on the threat intelligence websites.

92

Table 5. 1 - Sample Malware Rating

Sample Malware JoeSandbox VirusTotal Metadefender
Reversing
Lab

Y0hWhAUBjQ.virus 48/100 24/63 7/37 10/29

pXdN91.x68 56/100 31/63 17/37 16/29

bash 64/100 40/63 18/37 20/29

x86 100/100 34/63 17/37 17/29

upx 76/100 61/63 19/37 22/29

xor2.exe 88/100 54/63 27/37 29/29

ybf 100/100 45/63 28/37 15/29

roblox 78/100 31/63 14/37 18/29

eicarstrongpassword.exe 96/100 33/63 35/37 17/29

andy 86/100 59/63 16/37 21/29

dns 72/100 63/63 18/37 23/29

XMRIG 84/100 57/63 19/37 29/29

real_live 40/100 45/63 36/37 21/29

help 90/100 61/63 14/37 25/29

view_list 76/100 42/63 29/37 29/29

unlucky 68/100 39/63 25/37 13/29

keepass no record
no
record

no record no record

harden.bin no record
no
record

no record no record

npee no record
no
record

no record no record

abc.tar no record
no
record

no record no record

unknown no record
no
record

no record no record

The complex behaviour of the malicious sample files had to be verified with the security

framework mitre att&ck. The following section discusses the behaviour of the malicious

activity detected by the threat intelligence. The initial discussion explains sample file

behaviour from third-party malware analysis tools and not the output collected from

chapter 4. The information about the known malware is essential to set the baseline for

the behaviour. The action ensures that the malicious activity detected by the process

defined in chapter 3 detects this known malware as malicious files. This security

framework is a publicly available database based on the adversaries of tactics and

techniques based on real-world examples. The knowledge base is used as a foundation

for developing specific threat models and methodologies in different security

93

organisations, including vendors who develop the security products (Stepanic, 2017).

Table 5.2 shows the reference of the sample malware categorisation.

Table 5. 2 - Sample Categorization

Sample
Malware

Defense
Evasion

Credential
Access

Discovery
Command
and Control

Lateral
Movement

Exfilteration

Y0hWhAUBj
Q.virus

Security
Software
Discovery

pXdN91.x68
Remote
System
Discovery1

Non-
Standard
Port1

bash Masquerading
Remote
System
Discovery1

Non-
Standard
Port1

x86 Masquerading
OS
Credential
Dumping1

Non-
Standard
Port11

Non-
Application
Layer
Protocol1

upx

Data Transfer
Size Limits

xor2.exe

Internal
Spearphishi
ng

ybf

Protocol
Impersonati
on

roblox

 File and
Directory
Discovery

 RDP
Hijacking

eicarstrongp
assword.exe

Masquerading

Internal
Spearphishi
ng

andy

Data
Obfuscation

dns DNS

XMRIG

Exfiltration
Over Web
Service

real_live

Internal
Spearphishi
ng

help
 Bypass User
Account
Control

view_list

 Password
Cracking

unlucky
Masquerading

Data Transfer
Size Limits

keepass

harden.bin

npee

abc.tar

unknown

Masquerading may attempt to manipulate their artifact features to make them appear

legitimate to users and security tools. Masquerading occurs when the name or location

of an object, legitimate or malicious, is manipulated or abused for the sake of evading

94

defences and observation. It may include manipulating file metadata, tricking users into

misidentifying the file type, and giving legitimate task or service names.

OS Credential Dumping Adversary may attempt to dump credentials to obtain account

login and credential material, generally in the form of a hash or a clear text password,

from the operating system and software. Credentials can then be used to perform the

lateral movement, and access restricted information.

Security software adversary may attempt to get a listing of software and software

versions installed on a system or in a cloud environment. It may use the information from

Software discovery during automated discovery to shape follow-on behaviours, including

whether the adversary thoroughly infects the target and attempts specific actions.

Adversaries may attempt to enumerate software for various reasons, such as figuring

out what security measures are present or if the compromised system has a software

version that is vulnerable to exploitation for privilege escalation.

Non-application adversaries may use a non-application layer protocol to communicate

between host and server or among infected hosts within a network. Examples include

the use of network-layer protocols, such as the Internet Control Message Protocol

(ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session

layer protocols, such as Socket Secure (SOCKS).

The behaviour of the sample file is essential to understand the technique explained in

chapter 3. It is to confirm the behaviour of the file and the test conducted by the file in

chapter 4 to support the same result. Sample file 5, “sample4”, is used to validate the

method explained in chapter 3. It is achieved by keeping the signature of the sample in

the antivirus to allow it to quarantine the file immediately as it is placed on the end-point.

5.2. Research Questions

The main objective of this study was to get the answers for the following questions:

95

Question 1 (Q1) – Which system process on Linux system can detect anomaly

behaviour?

Answer:

Multiple processes which create malicious activity on the system can detect anomaly

behaviour.

Discussion:

Sample malware was taken, which contains the binaries which targeted the CPU

utilization of the client machine. The CPU utilization was monitored before and after

different sample files were executed during different intervals. Figure 5.1. shows the

comparison of the CPU utilization compared when different sample files were executed.

Figure 5. 1 - Compare % CPU Utilization

As addressed in the literature review, the traditional antivirus uses the signatures-based

system to detect the malware on the end-points (Mohanta et al., 2020). In a traditional

environment, the malicious software analysis must be completed using static or dynamic

techniques (Kara, 2019). The results in that setup lead to the creation of the signatures

96

populated on the threat intelligence system. Different vendors utilise feeds to update the

database of the antivirus client installed on the end-point (Mohanta et al., 2020) from the

threat intelligence. Chapter 2 elaborates the challenge faced by the delay caused in

creating the signature database of the malicious file as it must go through the entire

analysis technique. A new malicious file, which does not have the signature, remains

undetected as the antivirus does not have the mechanism to detect the file and treat it

as a threat (Radhakrishnan et al., 2019). It is the risk of zero-day malware, which is new

and do not have the artefact. Chapter 2 elaborates on other techniques as well for the

detection of zero-day malware. The challenges with the techniques require the

sandboxing technique and analysis of the behaviour. Chapter 3 details the method that

does not require a sandbox environment and relies on detecting the malicious activity by

tracking the process behaviour concerning the CPU utilisation, active processes, and the

number of times the malicious file was executed. The detection of abnormal behaviour

is based on specific criteria. For the experiment purpose, the CPU usage and the

execution of a specific count of a particular process would mark the file as malicious. The

findings of chapter 3 show that if the setup flow is used to implement the track of the

malicious activity, it will answer question 1 as raised as part of the thesis. When the

sample file was executed Y0hWhAUBjQ.virus, the utilisation of the CPU went high,

Figure 4.7 for reference, during the window, the malicious file was observed to be

executed multiple times, and the series of the processes were detected. Table 5.3.

shows the relationship of the process IDs, the file path, and the count section show the

number of times the process and the file path were reported during the execution of the

malicious file.

Table 5. 3 - Sample 1 Process ID and the Execution Count

PID Path Count

4586 /tmp/Y0hWhAUBjQ.virus 18

4599 New Fork 18

4599 bin/sh -e /proc/self/fd/9 18

97

4600 New Fork 18

4600 date 18

4601 New Fork 18

4601
/usr/bin/python3 /usr/share/abrt/abrt-checkreports --
system

18

4626 New Fork 18

4626 /bin/sh -e /proc/self/fd/9 18

4630 New Fork 18

4630 date 18

4636 New Fork 18

4636 /usr/bin/python3 /etc/libreport 18

4653 /bin/sh -e /proc/self/fd/9 18

4654 New Fork 18

4654 date 18

4663 New Fork 18

4663 /usr/bin/python3 /usr/share/abrt 18

The test result shows that process IDs are essential, but the way the process is executed

makes the file malicious. The process analysis indicates that the program is executing

the directory enumeration. The process ID 4601 show the execution of ABRT (automatic

bug detecting tool) on the user machine. The tool helps in creating the information of the

directory. The malicious file executes the Python, which runs the enumeration to identify

the list of directories. The process ID 4636 indicates execution of the report collection of

the data gathered by the execution of the ABRT also indicates that information is being

gathered. The process ID associated with this action can be executed in the normal

situation for locating the file by a regular program and running a report at a specific time

using the date function; however, the combination of the malicious behaviour, which is

comprised of the CPU utilization and the number of times the execution of the same

program makes it malicious. The abnormal behaviour detected due to the process

execution has identified the malicious file execution. Table 5.4 shows the summarized

results for the other sample files used in chapter 4.

Table 5. 4 - Process ID and the Execution Count

Sample File 2 pXdN91.x68

PID Path Count

4582 /tmp/pXdN91.x68 257

4597 New Fork 257

98

4598 New Fork 257

Sample File 3 bash

4582 /tmp/bash 256

4596 New Fork 256

4597 New Fork 256

Sample File 4 x86

4583 /tmp/x86 10

4592 New Fork 10

4593 New Fork 10

4594 New Fork 10

4597 New Fork 10

4598 New Fork 10

4595 New Fork 10

4596 New Fork 10

Sample File 6 upx

4569 /tmp/upx 20

Sample File 7 xor2.exe

4588 /tmp/xor2.exe 30

Sample File 8 ybf

4859 /tmp/ybf 45

Sample File 9 roblox

4587 /tmp/roblox 60

Sample File 10 eicarstrongpassword.exe

4592 /tmp/eicarstrongpassword.exe 12

Sample File 11 andy

4855 /tmp/andy 35

Sample File 12 dns

4798 /tmp/dns 11

Sample File 13 XMRIG

4888 /tmp/XMRIG 55

Sample File 14 real_live

4898 /tmp/real_live 30

Sample File 15 help

4987 /tmp/help 55

Sample File 16 view_list

4590 /tmp/view_list 11

Sample File 17 unlucky

4592 /tmp/unlucky 60

Sample File 18 keepass

4000 /tmp/keepass 1

Sample File 19 harden.bin

4792 /tmp/harden.bin 3

Sample File 20 npee

4789 /tmp/npee 10

Sample File 21 abc.tar

4772 /tmp/abc.tar 5

99

Sample File 22 unknown

4789 /tmp/unknown 3

Sample File 2 process IDs, file path, and timely execution do not give enough

information. The process IDs only indicates the association of the process with the path.

The process IDs 4597 and 4598 create the new fork and execute the /net/route command

each time. The excessive use of /net/route process as noticed in the sample 2 execution

identifies that the Remote discovery technique is used (Stepanic, 2017).

As shown in Figure 5.4, the process opened the path /proc/4582/net/route multiple times

during the execution of the malicious sample file 2. The process ID 4582 opened multiple

processes that run/net/route while utilisation reached approximately 90%. Therefore, the

data shows that the Table 5.4 sample test with file two can identify the malicious activity

with the combined activity of CPU usage, process utilisation, and execution count. It

leads to the detection of the zero-day malware with the anomaly behaviour detected by

the process. The only difference compared to sample 1 is that the process IDs do not

directly indicate the abnormal behaviour but the fork processes that initiate the /net/route.

The /net/route process can be used in the normal situation; however, the execution with

that large number and the high CPU utilisation marked this file as malicious.

 Sample file three, same as sample file two, does not give enough information when

executed. The execution indicates that the malicious software is trying to get the remote

discovery of the system and the masquerading and non-standard port for command and

control tactics of an attack. The remote discovery enables the lateral movement such

that malicious actors can hop from the compromised machine to the other machine in

the network. The malicious software sends the traffic to the public IP address on a non-

standard port. From the details collected from process IDs, the type of attack detected in

the remote discovery. The process IDs only indicates the association of the process with

the path. The process IDs 4596 and 4597 creates the new fork and execute the /net/route

100

command each time. As shown in figure 5.4, process ID 4582 opened multiple processes

that run /net/route while utilisation reached approximately 100%.

Therefore, the data shows that the Table 5.4 sample test with file two can identify the

malicious activity with the combined activity of CPU usage, process utilisation, and

execution count. It leads to the detection of the zero-day malware with the anomaly

behaviour detected by the process. The only difference compared to sample 1 is that the

process IDs do not directly indicate the abnormal behaviour but the fork processes that

initiate the /net/route. It is the same behaviour as seen in the sample file two execution.

The /net/route process can be used in the normal situation; however, the execution with

that large number and the high CPU utilisation marked this file as malicious.

The sample file four execution initiates the process ID 4583, which results in creating

multiple new forks. The process ID 4592, 4593 and 4595 enables the /net/route, enabling

remote discovery. The process ID 4598 along with /net/route opens the /dev/watchdogs,

which supports the remote discovery of the system information. To disguise the

operation, the process IDs 4596 shows that the masquerading is performed with the

/proc/410/maps, which hides the malicious software to be executed in the legitimate

program, as shown in figure 4.30. The route, watchdog, and map can be executed in

normal circumstances, but the combination of the processes, CPU utilisation, and event

count treated the file as malicious activity.

Overall results from the study indicate that the system's process utilisation can detect

malicious activities. There are no specific processes to detect zero-day malware.

However, the processes which lead to access different file execution as sample1 file

processes use ABRT and the libre report with excessive usage which impacts CPU

utilisation, sample file 2 and 3 uses /net/route to executes the remote discovery and

sample file 4 runs the /net/route, watchdog and maps. The impact of the processes

triggers the malicious activity. The usage of the processes initiated by the files identifies

the file as malware.

101

Unexpected results were detected in two sample files, numbers 9 and 20. It was

observed that sample file 9 was a confirmed malicious file, as per multiple threat

intelligent repositories, but it did not fall under the abnormal file behaviour. The same

result was noticed when the confirmed non-malicious sample file 20 was executed. The

utilisation and the process count went high for this non-malicious file. The reason for the

failed results was due to the detection criteria of the abnormal behaviour. For the lab

setup, the abnormal behaviour was based on the combination of CPU usage and file

execution count, but these two sample files did not follow the expected pattern.

The above discussion derived from the test results in chapter 4 as designed in the setup

explained in chapter 3 shows that the system can detect zero-day malware by observing

the anomaly behaviour. The detection can lead to contains zero-day malware. It was

also observed that a robust mechanism is required to monitor the processes to avoid

false positives.

Question 2 (Q2)- How can YARA rules and antivirus software be integrated after the

zero-day malware is detected?

Answer:

The detection of the malicious file leads to classifying the file with the information used

to write the relevant YARA rules. The YARA rules can be integrated with the end-point

protection tool using a programmable application interface to update the signatures. The

programmable interface can enable the scan to remove the zero-day malicious file. The

observation assures that the programmable interface automates the containment of the

malicious file.

Discussion:

This research question looks for what method is used to remediate the malicious file after

such a file is detected. The malicious file detection is performed by the method presented

in the above section in answering question 1. The integration involves the programable

102

interface between the anti-virus tool and the program which writes the YARA rule. The

solution is to write the YARA tool and the procedure to update the anti-virus signature

locally on the client machine, as shown in figure 3.3. The first step after identifying the

file is to take the information of the file, which can be used to identify it. The method used

for the file classification is the hex dump that runs using a programmable interface which

calls the Python script. The magic number of the file and other random hex values of the

files are used. The information is then called in writing the YARA rules. The steps

explained in the coming section for the top 4 malware are performed automatically

without any manual changes.

Table 5.5 shows the summarized sample YARA rules configured for the first 4 sample

files. The variable information $a, $b and $c is extracted from the hex dump tool,

referenced in Figures 4.10, 4.17, 4.24 and 4.31, respectively.

103

Table 5. 5 - Sample YARA Rule

Sample 1 Sample 2 Sample 3 Sample 4

{
Meta:
desc = “Sample 1 virus file”
strings:
$a = {7f 45 4c 46 02 01 01
00}
$b= {07 78 49 4d 20 55 7a
49}
$c= {69 31 f6 fd 24 0d 2a
2e}
Condition:
$a and $b and $c
}

{
Meta:
desc = “Sample 2 virus
file”
strings:
$a = {7f 45 4c 46 02 01 01
00}
$b={5f 5f 47 49 5f 5f 5f 65
}
$c={74 73 69 64 00 5f 5f
47}
Condition:
$a and $b and $c
}

{
Meta:
desc = “Sample 3 virus
file”
strings:
$a = {7f 45 4c 46 02 01 01
00}
$b= {6e 65 74 5f 60 64 64
72}
$c= {6e 61 6d 65 00 63 6c
6f}
Condition:
$a and $b and $c
}

{
Meta:
desc = “Sample 4 virus file”
strings:
$a = {7f 45 4c 46 02 01 01
00}
$b= {6c 30 30 64 00 66 63
6e}
$c= {70 65 5f 74 6f 6c 6f
77}
Condition:
$a and $b and $c
}

The traditional malware detection tool detects the malicious file based on the availability

of the signatures (Christodorescu et al., 2007), which are prepared by the threat

intelligence by doing the sandboxing of the file (Joseph & Mukesh, 2019). It updates the

signature database of the antivirus tool. However, the zero-day malware will not have

the signature updated when detected the first time. The method explained in chapter 3

also relies on the signature, which is updated using the YARA rule; however, the file

detection is detected by the abnormal behaviour of the system doing the malicious file

execution. The research shows that rather than sandbox detects the malicious file the

client installed on the user machine integrated by the API using the Python in the lab

setup can write the signatures and update them on the end-point antivirus tool.

As highlighted the challenge in the literature review section, malware analyst uses the

YARA rule for threat hunting purposes. It allows them to create the YARA rule conditions

manually and then match them against the malicious files. The process is slow as all the

work is manual, whereas the technique explained in chapter 3 enables automation. This

existing technique is part of the static malware analysis where the sample malware is

examined without the sample file execution and then hash values updates on the threat

intelligent system. The information is then used by the end-point protection tool to act on

the file accordingly. Chapter 4 results confirm the use of the hex dump to identify the file

104

type and use specific parameters in Table 5.3 for the file identification. A similar

challenge is faced in the case of existing dynamic analysis. The discovery of the file is

taken place by executing the file in a sandbox environment. The malicious activity

marking it as malware, the file identification is again used to write the YARA rules, which

manually helps in either writing the antivirus signature or finding the malicious file

manually on the system. Compared to the static and dynamic analysis and the file

detection and action method, the approach explained in chapter 3 is fast to react due to

the automated API integration with the end-point antivirus tool. The steps explained in

chapter 3 after the file identification include the malicious file classification, writing the

YARA rules using the file classification details, integrating with the end-point antivirus

tool, and using the API call to execute the scan to detect and quarantine the malicious

file. Python has been used as the application programming interface to execute the list

of steps mentioned above. Other programming tools, node js and ruby language, have

been used for the API for the end-point antivirus tool, but these have slower responses

than Python. They have more computational requirements and security issues.

(Salterwaterc, 2021). The Python library for ClamAV integration gives more flexibility in

terms of usage and the available module as per the required testing in chapter 4

(Grainger, 2021). The main advantage discovered during the lab setup is the availability

of the libraries for Python. The usage has been fast in responsiveness and less memory

intensive. The significant difference with the YARA rule usage with static and dynamic

file analysis is detecting the zero-day malicious code. The time utilized by the static and

dynamic analysis technique and the manual effort for the file search does not contain the

zero-day malicious file. In contrast, the proposed setup results in chapter 4 use the

abnormal file behaviour by executing the file and marking the file as malicious. Based on

unusual behaviour, in this case, as in chapter 4, high CPU utilization and the count

detected files can be automatically searched via API and quarantined..

105

5.3. Automate Threat Intelligence

The flow for detecting the zero-day malicious file also specifies the action to update the

virustotal threat intelligence if the file is malicious. The test results have used the existing

known malware, known to the virustotal threat intelligence as mentioned in section 5.2;

therefore, the step is not included in the chapter 4 test results. However, the thesis gives

the functionality to automatically update the virustotal threat intelligence using the

programable interface and Python libraries. As per the other techniques mentioned in

chapter 2, the malware analysis techniques have been used to update the signature after

doing static or dynamic malware analysis, which updates the threat intelligence site,

including virustotal. The study shows the framework can be integrated with multiple

components to automate the process from detecting the malicious file execution based

on the processor usage. The process usage can cause anomaly activities on the system,

which can vary. In our lab set up in chapter 4, the abnormal behaviour comprised the

high resource usage and the execution of files not required in a typical scenario. The first

phase of detecting the file and the second phase action on the detected file can be

automated to quarantine zero-day malware.

5.4. Conclusion

Chapter 5 has discussed the result collected from the testing as completed in chapter 4.

It also answered the research questions posed by this study. The result depicts the

method and technique to detect zero-day malicious software. The method to integrate

the YARA rules and the end-point protection was also discussed. The sample malware

used to provide the test results in chapter 4 uses the setup as discussed in chapter 3.

The chapter concludes the discussion by detecting the abnormal activity on the Linux

system for zero-day malware and displays the technique using an application

106

programable interface to update the YARA rule and end-point anti-virus signature to

remove the zero-day malware.

107

6. Conclusion

This chapter concludes the discussion on the technique to evaluate a process to detect

zero-day malware files. The following section gives a brief overview of the previous

chapters. The following section highlight approach's contribution, followed by discussing

some of the limitations of the research that could have caused some change in the result.

The last section of the chapter discusses the activities for the following up of this work.

6.1. Summary of Research

Chapter 1 introduced the topic of zero-day malware detection from the abnormal

behaviour of the process when the malicious file is executed. It briefly overviews the

current challenges in the existing system to protect end-point from malicious software.

It also provides an initial discussion about the zero-day malware and the known malicious

file, which has gone through the proper analysis. It also highlighted the structure of the

thesis work and set the base for the motivation behind this work. Chapter 2 details the

literature review and the current challenges and security concerns while handling the

current mode of controlling zero-day malware on the Linux systems. It also deep dive

into the architecture of the Linux operating system and its underlying concepts. It covered

multiple process calls, including forks, memory architecture and briefly covered the

forensic artefacts. Chapter 2 also discussed the malware and its analysis techniques.

The current signature-based approach for the end-point protection was detected, and

the cyber threat intelligence role was overviewed. Chapter 2 ends with the current

technology for zero-day malware detection and the challenges highlighted in the current

model. It set the foundation to raise the research questions. The research questions were

driven by the challenges and concerns as indicated in chapter 2.

The study of similar research work and industry-based framework was assessed to

define the methodology and the design. The research design in chapter 3 describes the

108

method and technique. It reviews the procedure, malware source and the test setup

environment. Chapter 3 provides the details for setting up the environment. The

approach defined the test flow and defined the lab setup environment to answers the

research question.

In chapter 4, the test results were presented based on the approach defined in chapter

3. Those test results demonstrated the expected outcome in a controlled environment.

The result analysis and the finding were discussed in chapter 5. It continued to link the

literature review and explained the answers to the research questions.

6.2. Contribution

The thesis discusses the method to resolve the problem due to the unavailability of

signatures for the zero-day malware. Instead of sandboxing the malware for further

analysis, the technique monitors the operating system malicious file's abnormal activity

and identifies the malware on the system. The deviation of the monitoring data during

the normal situation and at the time of malicious file execution and the processes

utilisation triggers the malicious file and its location on the system. The second phase of

the thesis covers the procedure to remove the malicious file after detection using multiple

programable interfaces. The malicious file signature is written after detecting the

abnormal behaviour method using YARA rules which automatically remove the malware

from the system by integrating with the anti-virus tool.

6.3. Limitation

This section discusses some of the items which have impacted the outcome of the

research. Some of the factors might have changed the result and the techniques which

could have been improved.

109

6.4.1 System Requirements

The client endpoint is based on the specific distribution of the Linux operating system.

Different distribution has different system files and libraries, which can impact the

detection mechanism of the processes that generate abnormal behaviour on the system.

Python program is written based on the operating system's libraries and the dependency

limits the scope of the testing. The programmable interfaces will vary depending on the

CPU architecture as different CPUs have different opcodes for the instruction set. Hence

the bytes to be detected in the YARA rule might be different. The programmable

interfaces created for the monitoring of the processes on the systems would have been

different. The coding language has to use different libraries for the integration to collect

the information as different versions of Operating System may use different system

libraries. If multiple distributions were used and variations of programmable interfaces

written in multiple programming languages, then detecting the zero-day malware based

on the abnormal process execution would have been a more successful result.

6.4.2 End-Point Protection

The open-source version of end-point protection is used, which supported the

programable interface to integrate signature updates on the anti-virus installed on the

client machine. The YARA rule used on the end-point has a simplistic approach and

might have impacted complex file types. The configuration of the programable interface

to push the signatures generated by the YARA rule to automate the process to remove

the malicious file would vary on the supported version of the end-point. It has a

dependency on the available supporting library of the programming language used to

write the API. The open-source version supported removing the available signature set

from the client machine, which enabled the test setup. The lab environment would not

have provided the test result with the existing sample malware data set if the client end-

110

point would not have allowed updating the signature. However, the other option of honey-

pot setup to collect the malicious malware would have required a strict environment.

6.4.3 Sample Malware for Data Set

A different set of malwares might have impacted the outcome of the test results. The

selected malware resulted in the system's high CPU utilisation and the execution of

multiple processes. The result was tested only on the limited numbers of sample files.

More samples would have provided a different variation of how they operate and might

have impacted the test result outcome. The malware selected in the test setup is known

malware and is used in the test setup by disabling the signatures on the existing anti-

virus tool. The malware used was not zero-day malware as the signatures were already

available. Due to this reason, a programable interface to update the virustotal could not

be tested. The sample malware is also limited to the specific operating system

architecture, and different variations would have generated different results..

6.4.4. Detection Criteria

The detection criteria to monitor the processor utilization does not include the machine

learning. The lab setup monitors the CPU usage and the number of times the file is

executed to detect abnormal behaviour. Even though two results failed from the expected

detection behaviour, the result might have been different with more tests. Also,

considering the memory utilization as the detection criteria and the CPU would have

impacted the lab results. However, the detection process would have been more

effective if the detection criteria included the combined monitoring of CPU, memory, and

machine learning component.

111

6.4. Future Work

 Different areas can be driven forward from this research. One of the areas is IoT systems

security. IoT systems architecture needs to be explored to detect abnormal malware

activities. The research will also be required to understand the malware behaviour for a

different variation of IoT architecture. The abnormal behaviour on the system processes

can impact network performance for the devices connected to the same network. Hence,

the thesis can also enhance the work on analysing abnormal network behaviour if

multiple systems are involved in an abnormal activity.

The other area which can be focused on is the study of false-positive detection using the

approach for detecting and removing the malicious file based on the abnormal behaviour.

The action taken is based on the active device and not on the sandbox. This work will

strengthen the method and technique used in this research.

Multiple programmable interfaces are configured to perform the different tasks at

different stages. A work to consolidate the diverse task in one client agent can

consolidate and increase the efficiency of the method.

The chapter concludes that the detection of zero-day malware is essential with the

emerge of new techniques to exploit the vulnerabilities of the Linux based operating

system. The sample malware was tested on the active client machine, which was not

sandboxed, and observed abnormal behaviour. The deviation of the client machine from

the expected behaviour detects the malicious file. The detection is also based on the

processor utilization and the undesired process file execution. The detection of the file

and updating the end-point protection to remove the malicious file also enables the

automated process.

Total twenty-two sample malware was used to test the method and technique to detect

the zero-day malware activity, and most of the time, the system was able to detect the

malicious file. The method and technique defined in chapter 3 can determine the zero-

112

day malware by robust monitoring detection processes to identify abnormal behaviour,

which can be automated to remove the malicious file.

113

References

Akram, B., & Ogi, D. (2020). The Making of Indicator of Compromise using Malware
Reverse Engineering Techniques. 7th International Conference on ICT for Smart
Society: A IoT for Smart Society, ICISS 2020 - Proceeding, 2–7.
https://doi.org/10.1109/ICISS50791.2020.9307581

Alvarez, V. M. (2021). VirusTotal/ yara-python. Github. Retrieved from
https://github.com/VirusTotal/yara-python

Stepanic, D. (2017). Remote System Discovery. Mitre Attack. Retrieved from
https://attack.mitre.org/techniques/T1018/

Baker, K. (2019). What is Cyber Threat Intelligence? [Beginner’s Guide]. Crowdstrike.
Retreived from https://www.crowdstrike.com/epp-101/threat-intelligence/

Boukhtouta, A., Mokhov, S. A., Lakhdari, N. E., Debbabi, M., & Paquet, J. (2016).
Network malware classification comparison using DPI and flow packet headers.
Journal of Computer Virology and Hacking Techniques, 12(2), 69–100.
https://doi.org/10.1007/s11416-015-0247-x

Carrigan, T. (2020). A beginner’s guide to firewalld in Linux. Redhat. Retrieved from
https://www.redhat.com/sysadmin/beginners-guide-firewalld

CentOS-Org. (2021). CentOS. Retrieved from https://www.centos.org/about/

Chen, X., Sha, E. H. M., Jiang, W., Zhuge, Q., Chen, J., Qin, J., & Zeng, Y. (2016). The
design of an efficient swap mechanism for hybrid DRAM-NVM systems.
Proceedings of the 13th International Conference on Embedded Software,
EMSOFT 2016. https://doi.org/10.1145/2968478.2968497

Christodorescu, M., Jha, S., Maughan, D., Song, D., & Wang, C. (2007). Malware
Detection [book]. In Journal of Chemical Information and Modeling (Vol. 53, Issue
9).

Ciancioso, R., Budhwa, D., & Hayajneh, T. (2018). A framework for zero day exploit
detection and containment. Proceedings - 2017 IEEE 15th International
Conference on Dependable, Autonomic and Secure Computing, 2017 IEEE 15th
International Conference on Pervasive Intelligence and Computing, 2017 IEEE 3rd
International Conference on Big Data Intelligence and Compu, 2018-Janua, 663–
668. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.116

Clam-AntiVirus. (2020). ClamAV. Retrieved from
https://www.clamav.net/documents/introduction

Clamav-signature-update. (2020). Creating signatures for ClamAV. ClamAV. Retrieved
from https://www.clamav.net/documents/creating-signatures-for-clamav#creating-
signatures-for-clamav

Comar, P. M., Liu, L., Saha, S., Tan, P. N., & Nucci, A. (2013). Combining supervised and
unsupervised learning for zero-day malware detection. Proceedings - IEEE
INFOCOM, 2022–2030. https://doi.org/10.1109/INFCOM.2013.6567003

114

Cozzi, E., Graziano, M., Fratantonio, Y., & Balzarotti, D. (2018). Understanding Linux
Malware. Proceedings - IEEE Symposium on Security and Privacy, 2018-May,
161–175. https://doi.org/10.1109/SP.2018.00054

Crowdstrike. (2021). Zero-day Attack Explained. Crowdstrike. Retrieved from
https://www.crowdstrike.com

Damri, G., & Vidyarthi, D. (2016). Automatic Dynamic Malware Analysis Techniques For
Linux Environment. 67, 825–830.

Dmitry, M., & Elena, P. (2020). Linux Privilege Increase Threat Analysis. Proceedings -
2020 Ural Symposium on Biomedical Engineering, Radioelectronics and
Information Technology, USBEREIT 2020, 579–581.
https://doi.org/10.1109/USBEREIT48449.2020.9117739

Engel, D. (2017). Configure development environment for pymssql Pythondevelopment.
https://docs.microsoft.com/en-us/sql/connect/python/pymssql/step-1-configure-
development-environment-for-pymssql-python-development?view=sql-server-
ver15

Ewais, M. A., Omran, M. A., Raafat, A., & Alkabani, Y. (2016). A virtual memory
architecture to enhance STT-RAM performance as main memory. Canadian
Conference on Electrical and Computer Engineering, 2016-Octob.
https://doi.org/10.1109/CCECE.2016.7726657

Fox, R. (2014). Linux with Operating System Concepts. In Linux with Operating System
Concepts. https://doi.org/10.1201/b17269

Gandotra, E., Bansal, D., & Sofat, S. (2017). Zero-day malware detection. Proceedings -
2016 6th International Symposium on Embedded Computing and System Design,
ISED 2016, 171–175. https://doi.org/10.1109/ISED.2016.7977076

Gao, Y., Hasegawa, H., Yamaguchi, Y., & Shimada, H. (2021). Malware Detection Using
Gradient Boosting Decision Trees with Customized Log Loss Function.
International Conference on Information Networking, 2021-Janua, 273–278.
https://doi.org/10.1109/ICOIN50884.2021.9333999

Grainger, T. (2021.). Clamd 1.0.2. pypi. Retrieved from https://pypi.org

Jicha, A., Patton, M., & Chen, H. (2016). SCADA honeypots: An in-depth analysis of
Conpot. IEEE International Conference on Intelligence and Security Informatics:
Cybersecurity and Big Data, ISI 2016, 196–198.
https://doi.org/10.1109/ISI.2016.7745468

Joseph, L., & Mukesh, R. (2019). To Detect Malware attacks for an Autonomic Self-Heal
Approach of Virtual Machines in Cloud Computing. 5th International Conference
on Science Technology Engineering and Mathematics, ICONSTEM 2019, 220–
231. https://doi.org/10.1109/ICONSTEM.2019.8918909

Kara, I. (2019). A basic malware analysis method. Computer Fraud and Security, 2019(6),
11–19. https://doi.org/10.1016/S1361-3723(19)30064-8

Kerrisk, M. (2010). The Linux Programming Interface.

Kessler, G. (2021). GCK File Signature Table. Garykessler. Retrieved from

115

https://www.garykessler.net

Kim, J., Min, C., Kim, J., Kang, D. H., Kim, I., & Eom, Y. I. (2014). Page allocation scheme
for anti-fragmentation on smart devices. 2014 IEEE 3rd Global Conference on
Consumer Electronics, GCCE 2014, 512–513.
https://doi.org/10.1109/GCCE.2014.7031168

Klaus, T., & Elzweig, B. (2020). The impact of data breaches on corporations and the
status of potential regulation and litigation. Law and Financial Markets Review,
14(4), 255–260. https://doi.org/10.1080/17521440.2020.1833432

Ko, S., Jun, S., Ryu, Y., Kwon, O., & Koh, K. (2008). A new Linux swap system for flash
memory storage devices. Proceedings - The International Conference on
Computational Sciences and Its Applications, ICCSA 2008, 151–156.
https://doi.org/10.1109/ICCSA.2008.54

Li, M., & Liu, J. (2017). How can Advanced Sandboxing Techniques Thwart Elusive
Malware? Trend Micro Security News.
https://www.trendmicro.com/vinfo/us/security/news/security-technology/how-can-
advanced-sandboxing-techniques-thwart-elusive-malware

Liu, L., Li, Y., Ding, C., Yang, H., & Wu, C. (2016). Rethinking Memory Management in
Modern Operating System: Horizontal, Vertical or Random? IEEE Transactions on
Computers, 65(6), 1921–1935. https://doi.org/10.1109/TC.2015.2462813

Love, R. (2010). Linux Kernel Development.

Lungana-Niculescu, A. M., Colesa, A., & Oprisa, C. (2018). False positive mitigation in
behavioral malware detection using deep learning. Proceedings - 2018 IEEE 14th
International Conference on Intelligent Computer Communication and Processing,
ICCP 2018, 197–203. https://doi.org/10.1109/ICCP.2018.8516611

Martin, I., Hernandez, J. A., De Los Santos, S., & Guzman, A. (2018). Analysis and
evaluation of antivirus engines in detecting android malware: A data analytics
approach. Proceedings - 2018 European Intelligence and Security Informatics
Conference, EISIC 2018, 7–14. https://doi.org/10.1109/EISIC.2018.00010

Mcafee. (2021). What Is Endpoint Security?. Mcafee. Retrieved from
https://www.mcafee.com/

Mehdi, S.B., Tanwani, A.K., Farooq, M. (2009). IMAD: In-execution malware analysis and
detection.

Mohanta, A., Saldanha, A., Mohanta, A., & Saldanha, A. (2020). Antivirus Engines. In
Malware Analysis and Detection Engineering. https://doi.org/10.1007/978-1-4842-
6193-4_22

MySQL-Dev. (2021). MySQL Community Downloads. Retreived from
https://dev.mysql.com/downloads/repo/yum/

Naik, N., Jenkins, P., Cooke, R., Gillett, J., & Jin, Y. (2020). Evaluating Automatically
Generated YARA Rules and Enhancing Their Effectiveness. 2020 IEEE
Symposium Series on Computational Intelligence, SSCI 2020, 1146–1153.
https://doi.org/10.1109/SSCI47803.2020.9308179

Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J., Boongoen, T., & Iam-On,
N. (2020). Fuzzy Hashing Aided Enhanced YARA Rules for Malware Triaging.

116

2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, 1138–
1145. https://doi.org/10.1109/SSCI47803.2020.9308189

Nothaas, S., Beineke, K., & Schoettner, M. (2019). Optimized memory management for a
Java-based distributed in-memory system. Proceedings - 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2019,
668–677. https://doi.org/10.1109/CCGRID.2019.00086

Or-Meir, O., Nissim, N., Elovici, Y., & Rokach, L. (2019). Dynamic malware analysis in the
modern era—A state of the art survey. ACM Computing Surveys, 52(5).
https://doi.org/10.1145/3329786

Pypi-org. (2020). psutil. https://pypi.org/project/psutil/

Radhakrishnan, K., Menon, R. R., & Nath, H. V. (2019). A survey of zero-day malware
attacks and its detection methodology. IEEE Region 10 Annual International
Conference, Proceedings/TENCON, 2019-Octob, 533–539.
https://doi.org/10.1109/TENCON.2019.8929620

Salterwaterc, K. (2021.). NodeJS Clamscan Virus Scanning Utility. Npmjs. Retrieve from
https://www.npmjs.com

Shah, K., & Singh, D. K. (2016). A survey on data mining approaches for dynamic
analysis of malwares. Proceedings of the 2015 International Conference on Green
Computing and Internet of Things, ICGCIoT 2015, 495–499.
https://doi.org/10.1109/ICGCIoT.2015.7380515

Shahzad, F., Bhatti, S., Shahzad, M., & Farooq, M. (2011). In-execution malware
detection using task structures of Linux processes. IEEE International Conference
on Communications, 0–5. https://doi.org/10.1109/icc.2011.5963012

Shahzad, F., Shahzad, M., & Farooq, M. (2013). In-execution dynamic malware analysis
and detection by mining information in process control blocks of Linux OS.
Information Sciences, 231, 45–63. https://doi.org/10.1016/j.ins.2011.09.016

Shipp, R. (2020). Online Scanners and Sandboxes. https://github.com/rshipp/awesome-
malware-analysis#online-scanners-and-sandboxes

Shotts Jr, W. E. (2012). The linux command line: {A} complete introduction.

Stazi, G., Menichelli, F., Mastrandrea, A., & Olivieri, M. (2017). Introducing approximate
memory support in Linux Kernel. PRIME 2017 - 13th Conference on PhD
Research in Microelectronics and Electronics, Proceedings, 97–100.
https://doi.org/10.1109/PRIME.2017.7974116

Tanenbaum, A. S., & Bos, H. (2014). Modern Operating Systems. In Education (Vol. 2).
http://www.amazon.com/dp/0136006639

The-Talos-Group-AT-Cisco. (2018). ClamAV Signature Creator. Retrieved from
https://github.com/Cisco-Talos/CASC

Vasilescu, M., Gheorghe, L., & Tapus, N. (2014). Practical malware analysis based on
sandboxing. Proceedings - RoEduNet IEEE International Conference, 1–6.
https://doi.org/10.1109/RoEduNet-RENAM.2014.6955304

Virus-Share. (2020). Virus Share. https://virusshare.com/

117

Virus-total. (2021). VirusTotal Reports. Retrieved from
https://support.virustotal.com/hc/en-us/articles/115002719069-Reports

Wagner, M., Fischer, F., Luh, R., Haberson, A., Rind, A., Keim, D. A., & Aigner, W.
(2015). A Survey of Visualization Systems for Malware Analysis. Eurographics
Conference on Visualization (EuroVis), 105–125.
http://mc.fhstp.ac.at/sites/default/files/publications/wagner_2015_eurovis_star_mal
warevis_postprint_reduced.pdf

Wu, K., Ge, Y., Chen, W., & Zhang, T. (2012). The research and implementation of the
Linux process real-time monitoring technology. Proceedings - 4th International
Conference on Computational and Information Sciences, ICCIS 2012, 1046–1049.
https://doi.org/10.1109/ICCIS.2012.342

Yararules. (2021). Yara Rules Project. Retrieved from https://github.com/Yara-Rules/

Yaswinski, M. R., Chowdhury, M. M., & Jochen, M. (2019). Linux security: A survey. IEEE
International Conference on Electro Information Technology, 2019-May, 357–362.
https://doi.org/10.1109/EIT.2019.8834112

Yildiz Çavdar, Z., AVCI, İ., KOCA, M., & SERTBAŞ, A. (2019). A Survey of Hybrid Main
Memory Architectures. Sakarya University Journal of Science, 1–1.
https://doi.org/10.16984/saufenbilder.334645

Zeltser, L. (2021). Free Automated Malware Analysis Sandboxes and Services.

Kizza, J., & Migga Kizza, F. (2011). Intrusion Detection and Prevention Systems.
Securing the Information Infrastructure, 239–258. https://doi.org/10.4018/978-1-
59904-379-1.ch012

