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Abstract

Stream-based join algorithms are needed in modern
near-real-time data warehouses. A particular class of
stream-based join algorithms, with MESHJOIN as a
typical example, computes the join between a stream
and a disk-based relation. Recently we have presented
a new algorithm X-HYBRIDJOIN (Extended Hybrid
Join) in that class. X-HYBRIDJOIN achieves bet-
ter performance compared to earlier algorithms by
pinning frequently accessed data from the disk-based
relation in main memory. Apart from being held in
main memory, X-HYBRIDJOIN treats this frequently
accessed data no differently than other data from
the disk-based relation. In this paper we investigate
whether performance can be improved by treating
the frequently accessed data differently. We present
a new algorithm called Optimised X-HYBRIDJOIN,
which consists of two phases. One phase, called the
stream-probing phase, deals with the frequently ac-
cessed part of the disk-based relation. The other
one is called the disk-probing phase and deals with
the other part of the disk-based relation. In experi-
ments we found that the performance of Optimised X-
HYBRIDJOIN is significantly better than the perfor-
mance of X-HYBRIDJOIN. We derive the cost model
for our algorithm, which allows us to tune the compo-
nents of Optimised X-HYBRIDJOIN. We performed
an experimental study and we validate the cost model
against the experimental results.

1 Introduction

Near-real-time data warehousing plays nowadays a
prominent role in supporting overall business decision
making. By extending data warehouses from static
data repositories to active data repositories, busi-
nesses and other organizations can inform their users
better and allow them to take effective and timely
decisions.

In near-real-time data warehousing the changes
occurring at source level are reflected in data ware-
houses without any delay. Extraction, Transforma-
tion, and Loading (ETL) tools are used to access and
manipulate transactional data and then load them
into the data warehouse. An important phase in the
ETL process is a transformation where the source
level changes are mapped into the data warehouse for-
mat. Common examples of transformations are unit
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conversion, removal of duplicate tuples, information
enrichment, filtering of unnecessary data, sorting of
tuples, and translation of source data key.

Let us consider an example for the transformation
phase shown in Figure 1 that implements one of the
above features, called enrichment. In the example we
consider the source data with attributes product id,
qty, and date that are extracted from data sources.
At the transformation layer, in addition to key re-
placement (from source key product id to warehouse
key s key) there is some information added, namely
sales price denoted by s price to calculate the total
amount, and the vendor information. In the figure
these information with attributes name s key, s price,
and vendor are extracted at run time from the master
data and are used to enrich the source updates using
a join operator.

In traditional data warehousing the source updates
are buffered and the join is performed off-line. On the
other hand, in near-real-time data warehousing this
operation needs to be performed as soon as the data
are received from the data sources. In implementing
the online execution of join, one important challenge
is the different character of both inputs. The stream
input is fast and huge in volume while the disk input
is slow. The challenge here is to amortise the disk
access cost over the fast input stream.

A stream-based join algorithm called X-
HYBRIDJOIN (Extended Hybrid Join) (Naeem
et al. 2011) was proposed to deal with these chal-
lenges. In addition, the algorithm is designed to be
particular efficient for Zipfian distributions as they
are frequently found in practice. A frequently cited
rule of thumb is the 80/20 rule (Anderson 2006).
According to this rule 80% of sales in an e-commerce
setting is based on 20% of the products and therefore,
a small number of pages in master data are frequently
used during the join operation. The algorithm used
a buffer to load a specific portion of master data
into memory. To eliminate the bottleneck in the
stream the algorithm divides this buffer into two
equal segments. One segment is non-swappable and
holds a small number of the frequently accessed
page(s) of master data permanently in memory while
the other segment is swappable and exchanges its
contents on each iteration of the algorithm. The
main argument presented in the algorithm is that
storing the frequently accessed part of the master
data permanently in memory minimises the disk I/O
cost and that eventually amortises the fast incoming
stream of updates. An alternative approach would
be to try to put the whole disk-based relation into
memory. In some cases this alternative can be
feasible. But still there are a number of scenarios
where this alternative is not applicable e.g. if the join
is to be performed on a single computer where the
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Figure 1: An example of content enrichment

bulk of memory is used for other purposes. Similarly,
for intermittent streams, a main memory approach
would keep the memory occupied even when no
stream data is incoming. In the limited-memory
approaches, in contrast there is no such waste of
resources.

In X-HYBRIDJOIN, introducing the non-
swappable part in the disk buffer reduces the disk
I/O cost. However, there are some unnecessary
processing costs that negatively affect the per-
formance of the algorithm. For example in each
iteration the algorithm matches all tuples in the
non-swappable part of the disk buffer with the hash
table. It increases the unnecessary look-up cost for
the algorithm. Similarly, the algorithm stores all
stream tuples, whether they join with the swappable
or non-swappable part of the disk buffer, in memory
increasing the cost in terms of loading and unloading
the stream tuples into memory. These overheads in
terms of extra costs can be removed by improving
the architecture of the algorithm.

After considering these observations, we propose
an improved version of X-HYBRIDJOIN known as
Optimised X-HYBRIDJOIN (Optimised Extended
Hybrid Join). In Optimised X-HYBRIDJOIN we di-
vide the algorithm in two phases and both phases
can work independently. One phase deals with the
swappable part while the other phase deals with the
non-swappable part of the disk-based relation using
appropriate data structures. In the proposed algo-
rithm, due to choosing an appropriate architecture all
unnecessary costs are eliminated and performance is
improved significantly. To make our algorithm more
efficient we also present the tuning of the algorithm
based on a mathematical cost model.

The rest of the paper is structured as follows.
The previous work related to the area is presented
in Section 2. Section 3 describes our observations for
the current algorithm. In Section 4 we present the
proposed algorithm with its execution architecture,
pseudo-code, cost model and tuning. The experimen-
tal study is described in Section 5 and finally Section
6 concludes the paper.

2 Previous work

Considerable work has been done on executing join
queries (Chen et al. 2000) (Liu et al. 2004) (Avnur

et al. 2000) (Babcock et al. 2003) (Chandrasekaran
et al. 2002) (Dobra et al. 2002). Our focus is partic-
ularly on stream-based joins. In stream-based joins
we further divide our literature review into two cat-
egories. In the first category we overview those join
operators where all the inputs are in the form of a
stream. In the second category we consider those join
algorithms in which one input comes in the form of a
stream while the other input comes from disk.

First Category: Symmetric Hash Join
(SHJ) (Hong et al. 1991) (Wilschut et al. 1991)
has exploited the concepts of the traditional hash
join algorithm by eliminating the delay for the input
stream. SHJ maintains hash tables for both input
streams in memory. Each new tuple from one stream
is joined with the other stream stored in a hash table
and the output for the joined tuple is generated.
After generating the output the tuple is stored in
its own hash table. The algorithm can generate the
output as early as both matching tuples have arrived.
However, it needs to store both inputs in memory.

XJoin (Tolga et al. 2000) is an extended form of
SHJ that handles memory overflow by flushing the
largest single partition on disk. XJoin presents a
three stage strategy to switch its execution state be-
tween disk and memory. First priority is given to the
memory-resident tuples. During times where there
are no incoming stream data, the algorithm executes
the second, disk-to-memory phase and lastly deals
with the tuples stored on disk (disk-to-disk) in the
case when the inputs are terminated. In XJoin du-
plicate tuples are avoided by using a timestamp ap-
proach.

The double Pipelined Hash Join (DPHJ) (Ives
et al. 1999) is also an extension of symmetric hash
join based on two stages. In the first stage, which
is similar to SHJ and XJoin, the algorithm joins the
tuples which are in memory. In the second stage the
algorithm marks the tuples which are not joined in
memory and joins them on the disk. In DPHJ dupli-
cation of tuples is possible in the second phase when
all tuples from both inputs have been read and the
final clean-up join is executed. This algorithm is suit-
able for medium size data and does not perform well
for large data. Hash-Merge Join (HMJ) (Mokbel et al.
2004), also one from the series of symmetric joins, is
based on push technology and consists of two phases,
hashing and merging.

All three approaches above do not consider the
metadata about the stream. Therefore, they are un-
able to recognize data which is no-longer required and
by dropping it the overhead can be reduced. In ad-
dition, the join approaches above focus on through-
put optimisation while ignoring the other optimisa-
tion goals such as the characteristics of stream data
which are equally important.

MJoin (Viglas et al. 2003), a generalised form of
XJoin, extends the symmetric binary join operators
to handle multiple inputs. MJoin uses a separate hash
table for each input. On the arrival of a tuple from an
input, it is stored in the corresponding hash table and
is probed into the rest of the hash tables. It is not
necessary to probe all hash tables for each arrival,
the sequence of probing stops when a probed tuple
does not match in a hash table. The methodology
for choosing the correct sequence of probing is deter-
mined by performing the most selective probes first.
The algorithm uses a coordinated flushing technique
that involves flushing the same partition on disk for
all inputs. All three stages from XJoin are included
in MJoin. To identify the duplicate tuples MJoin uses
two timestamps for each tuple, arrival time and de-
parture time from memory.
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Early Hash Join (Lawrence et al. 2005) is an im-
proved version of XJoin with a different flushing strat-
egy and a simplified technique to determine the du-
plicate tuples. EHJ uses a biased flushing strategy
that supports flushing the partition with large input
first.The technique used in EHJ to determine the du-
plicate tuples is based on cardinality. For one-to-one
and one-to-many relationships the algorithm does not
use any timestamp while for many-to-many relation-
ships it requires an arrival timestamp only.

In the approaches above, the algorithms expect all
inputs in the form of streams, they are not adaptive in
the context of near-real-time data warehousing where
one input normally comes from disk.

Second Category: In the near-real-time data
warehousing context, there is a need for joins between
a stream of source updates and a disk-based master
data relation. This scenario naturally arises for near-
real-time data warehouses, if an incoming stream of
user data has to be joined with master data.

The MESHJOIN (Mesh Join) algorithm (Polyzotis
et al. 2007) (Polyzotis et al. 2008) has been introduced
with the objective to amortise the slow disk access
with as many stream tuples as possible. To perform
the join, the algorithm keeps a number of chunks of
stream in memory at the same time. In each iteration
the algorithm loads a disk partition into memory and
performs the join with all these stream chunks. The
algorithm performs tuning for efficient memory distri-
bution among the join components, but we identified
in the past some issues around the access to the disk
based relation. Also MESHJOIN cannot deal with
intermittency of the stream efficiently.

R-MESHJOIN (reduced Mesh Join) (Naeem et al.
2010) is an enhanced form of MESHJOIN in which
one issue related to suboptimal distribution of mem-
ory among the join components is resolved. However,
R-MESHJOIN implements the same strategy as the
MESHJOIN algorithm for accessing the disk-based
relation.

A partition-based approach (Chakraborty et al.
2009) has been introduced to deal with intermittency
in the stream. It uses a two-level hash table to at-
tempt to join stream tuples as soon as they arrive,
and uses a partition-based waiting area for the other
stream tuples. The authors do not provide a cost
model for their approach. In addition, the algorithm
requires a clustered index or an equivalent sorting on
the join attribute and it does not prevent starvation
of stream tuples.

One recent algorithm, HYBRIDJOIN (Hybrid
Join) (Naeem et al. 2011) address the issue of ac-
cessing the disk-based relation. An effective strategy
to access the disk-based relation is introduced in HY-
BRIDJOIN. Another advantage of HYBRIDJOIN is
that it can deal with bursty streams, which is a limi-
tation of both MESHJOIN and R-MESHJOIN. How-
ever, if we consider long-tail distributions, we find
that the algorithm can be improved further.

The X-HYBRIDJOIN (Naeem et al. 2011) algo-
rithm that we focus on in this paper is an extension
of HYBRIDJOIN. This algorithm has been designed
particularly to cope with Zipfian distributions. Al-
though this is an adaptive algorithm and performs
better than other similar approaches, there are some
limitations at the architectural level that needs to be
explored further.

The motivation behind Optimised X-
HYBRIDJOIN is to refine the existing approach in
order to minimize the bottleneck in the stream of
updates.

3 Problem definition

In this section we first give an overview of X-
HYBRIDJOIN and then identify the limitations that
we observed in this algorithm. Our cost models are
based on a non-uniform distribution on foreign keys
in the stream data. In a real-world data warehous-
ing scenario, uniform distributions are rarely encoun-
tered. Instead, frequencies often follow power laws,
also known as Zipfian distributions. While power laws
are natural surface properties of large data popula-
tions, the exponent that governs the power law can
vary. Generally, smaller values of exponent give so-
called short tails, bigger values of exponent give long
tails. Long tails are interesting for scalable, very large
data warehouses, since long tails are tipped to become
more important in tomorrow’s economy, if consumer
behavior diversifies (Anderson 2006).

Before going into further detail we first explain the
major components of X-HYBRIDJOIN and the role
of each component. Figure 2 presents an overview
of X-HYBRIDJOIN showing a queue to store stream
tuples, a two-part disk buffer, and the disk-based rela-
tion R. In actual the algorithm stores stream tuples in
the hash table however, for simplicity we assume that
these stream tuples are stored in the queue. The join
is a hash join, and will be elaborated as in the more
detailed description of Optimised X-HYBRIDJOIN.

The queue allows the random deletion of tuples
and is currently implemented using a doubly linked-
list data structure. This is used for removing tuples
that have been matched. The disk buffer is another
important component used to load the disk partition
into memory. To make efficient use of relation R by
minimizing the disk access cost, the disk buffer is di-
vided into two equal parts. One is called the non-
swappable part, and stores a small but frequently ac-
cessed portion of relation R in memory permanently.
The other part of the disk buffer is swappable and
for each iteration it loads the disk partition pi from
relation R into memory.

The key idea behind how X-HYBRIDJOIN works
is that before the actual execution starts, the algo-
rithm loads the frequently used part of relation R
into the non-swappable part of the disk buffer. Af-
ter the actual execution starts, for each iteration the
algorithm reads the oldest tuple from the queue and
using this tuple as an index it loads the relevant disk
partition into the disk buffer. Then the algorithm
matches one-by-one all disk tuples available in both
the swappable and non-swappable parts of the disk
buffer with the stream tuples in the queue. If the
matching is true, the algorithm generates that stream
tuple as an output after deleting it from the queue.
In the next iteration the algorithm again reads the
oldest tuple from the queue, loads the relevant disk
partition into the disk buffer and repeats the entire
procedure.

Although in X-HYBRIDJOIN, introducing the
new component called non-swappable part of disk
buffer reduced the disk access cost, it also raised some
issues related to processing cost. Firstly, for each
iteration, the algorithm looks-up one-by-one all the
disk tuples stored in both the swappable and the non-
swappable parts of the disk buffer in the hash table.
It increases the unnecessary look-up cost for the al-
gorithm particularly when the corresponding stream
tuple does not exist in the hash table. Secondly, the
algorithm stores all stream tuples, whether they join
with the swappable or the non-swappable part of the
disk buffer, in memory. As a result, it introduces ex-
tra processing costs for algorithms in terms of loading
these tuples into the hash table and removing them
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Figure 2: X-HYBRIDJOIN working overview

from the hash table after processing. Contrarily, if
we store only those stream tuples in memory that
join with the swappable part of the disk buffer, we
can accommodate more stream tuples in memory at
the same time.

In summary, the problem that we consider in this
paper is, how can we eliminate these unnecessary pro-
cessing costs that occur in X-HYBRIDJOIN by im-
proving its architecture and consequently the way the
algorithm works.

4 Proposed solution

In this section, we propose a new algorithm called
Optimised X-HYBRIDJOIN (Optimised Extended
Hybrid Join) that overcomes the problems that
we identified in X-HYBRIDJOIN. Optimised X-
HYBRIDJOIN decomposes the algorithm into two
hash join phases that can execute separately. One
phase uses R as the probe input; the largest part of
R will be stored in tertiary memory. This phase is
called the disk-probing phase. The other join phase
uses the stream as the probe input and it is called
the stream-probing phase. This phase deals only
with a small part of relation R. For each incoming
stream tuple, Optimised X-HYBRIDJOIN first uses
the stream-probing phase to find a match for frequent
requests quickly, and if no match is found, the stream
tuple is forwarded to the disk-probing phase. The de-
tails of the proposed algorithm are presented in the
following subsections.

4.1 Memory architecture

This section gives a high-level description of Op-
timised X-HYBRIDJOIN, while a detailed walk-
through of the algorithm can be found in Section 4.2.
From the architectural point of view, the key concept
in Optimised X-HYBRIDJOIN is to execute both the
disk-probing phase and the stream-probing phase in-
dependently, using appropriate data structures. The
reason for doing this is to eliminate unnecessary costs,
as described later in this section. The memory archi-
tecture for Optimised X-HYBRIDJOIN is shown in
Figure 3. The largest components of Optimised X-
HYBRIDJOIN with respect to memory size are two
hash tables, one storing stream tuples, denoted by
HS , and the other storing tuples from the disk-based
relation, denoted by HR. The other main components
of Optimised X-HYBRIDJOIN are a disk buffer, a
queue and a stream buffer. Disk-based relation R
and stream S are the external input sources. Sim-
ilar to X-HYBRIDJOIN R is assumed to be sorted
according to the frequency of access. The hash table
HR contains the frequently-accessed part of R, which
is stored permanently in memory.

Output
. . . . . . . . . . . .
. . . . . . . . . . . .

. . .

Disk-based relation R 

If not matched

Disk buffer

Stream buffer

tm t1

Queue
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Figure 3: Memory architecture for Optimised X-
HYBRIDJOIN

Optimised X-HYBRIDJOIN alternates between
the stream-probing and disk-probing phases. The
hash table HS is used to store only that part of
the update stream which does not match tuples in
HR. A stream-probing phase ends if HS is com-
pletely filled or if the stream buffer is empty. Then
the disk-probing phase becomes active. The length
of the disk-probing phase is determined by the fact
that only a small number of disk pages of R have
to be loaded at one time in order to amortise the
costly disk access. In the disk-probing phase of Opti-
mised X-HYBRIDJOIN, the oldest tuple in the queue
is used to determine the partition of R that is loaded
for a single probe step. This is also the step where
Optimised X-HYBRIDJOIN needs an index on table
R in order to find the partition in R that matches
the oldest stream tuple. After one probe step, a
sufficient number of stream tuples are deleted from
HS , so the algorithm switches back to the stream-
probing phase. One phase of stream-probing with
a subsequent phase of disk-probing constitutes one
outer iteration of Optimised X-HYBRIDJOIN. The
disk-probing phase could work on its own, without the
stream-probing phase. Therefore, the stream-probing
phase can be switched-off if it is not required and the
memory needed for that phase would be reassigned.
The stream-probing phase is used to boost the per-
formance of the algorithm by quickly matching the
frequently-used master data. The disk buffer stores
the swappable part of R and for each iteration it loads
a particular partition of R into the memory. The
other component queue is based on a doubly-linked-
list, and is used to store the values for the join at-
tribute. Each node in the queue also contains the ad-
dresses of its neighbour nodes. The reason for choos-
ing this data structure is to allow random deletion
from the queue. The stream buffer is included in the
diagram for completeness, but is in reality always a
tiny component and will not be considered in the cost
model.

There are two key advantages of Optimised X- HY-
BRIDJOIN over X-HYBRIDJOIN. First, due to the
independent processing of each phase the stream tu-
ples can be looked-up directly in HR without loading
them into memory. This not only eliminates an un-
necessary look-up cost, but also allows more of the
stream to be accommodated in memory. In contrast
to this, X-HYBRIDJOIN stores a major part of the
stream, related to the non-swappable part, in mem-
ory and for each iteration, the algorithm looks-up all
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the tuples of the non-swappable part in the hash table
one-by-one. In the situation when the tuples do not
match, the algorithm faces an additional look-up cost.
Secondly, since Optimised X- HYBRIDJOIN does not
store a large part of the stream in memory, it elim-
inates the costs of loading and unloading that part
of the stream into the hash table, HS . These addi-
tional features in Optimised X-HYBRIDJOIN help in
reducing the overall processing cost for the algorithm
and that eventually improves the performance.

4.2 Algorithm

After dividing the available memory among the join
components, the algorithm starts its execution. The
pseudo-code for Optimised X-HYBRIDJOIN is shown
in Algorithm 1. The outer loop of the algorithm is an
endless loop (line 2). The body of the outer loop has
two main phases, the stream-probing phase and the
disk-probing phase. Due to the endless loop, these
two phases are executed alternately.

Lines 3 to 11 comprise the stream-probing phase.
The stream-probing phase has to know the number of
empty slots in HS . This number is kept in variable
hSavailable. At the start of the algorithm, all the
slots in HS are empty (line 1). The stream-probing
phase has an inner loop that continues while stream
tuples as well as empty slots in HS are available (line
3). In the loop, the algorithm reads one input stream
tuple t at a time (line 4). The algorithm looks up
t in HR (line 5). In the case of a match, the algo-
rithm generates the join output without storing t in
HS (line 6). In the case where t does not match, the
algorithm loads t into HS , along with enqueuing its
key attribute value in the queue (line 8). The counter
of empty slots in HS then has to be decreased (line
9).

Lines 12 to 21 comprise the disk-probing phase.
At the start of this phase, the algorithm reads the
oldest key attribute value from the queue and loads a
partition of R into the disk buffer, using that key at-
tribute value as an index (lines 12 and 13). In an inner
loop, the algorithm looks up all tuples r from the disk
buffer in hash table HS one-by-one. In the case of a
match, the algorithm generates the join output (line
16). Since HS is a multi-hash-map, there can be more
than one match, the number of matches being f (line
17). The algorithm removes all matching tuples from
HS along with deleting the corresponding nodes from
the queue (line 18). This creates empty slots in HS
(line 19). In the next outer iteration the algorithm
fills these empty slots if stream input is available.

4.3 Cost calculation

In this section we develop the cost model for our pro-
posed Optimised X-HYBRIDJOIN. The main objec-
tive for developing our cost model is to interrelate
the key parameters like the algorithm input size w,
processing cost cloop for these w tuples, the available
memory M and the service rate μ. The other im-
portant application for our cost model is in the tun-
ing process where the optimal size is determined for
each component of the algorithm. The details about
the tuning process are presented in Section 4.4. Nor-
mally, the main costs for an algorithm are described
in terms of the distribution of memory to the compo-
nents and processing time. We calculate both of these
costs for our proposed Optimised X-HYBRIDJOIN.
Equation 1 represents the total memory used by the
algorithm except the stream buffer, and Equation 2
describes the processing cost for each iteration of the

Algorithm 1 Optimised X-HYBRIDJOIN

Input: A disk based relation R with an index on join
attribute and a stream of updates S.
Output: R �� S
Parameters: w (where w=wS+wN )tuples of S and
k pages of R.
Method:
1: hSavailable← hS
2: while (true) do
3: while (stream available AND hSavailable > 0)

do
4: READ a stream tuple t from the stream

buffer
5: if t ∈ HR then
6: OUTPUT t �� HR
7: else
8: ADD the stream tuple t into HS while also

placing its join attribute values into Q
9: hSavailable← hSavailable− 1
10: end if
11: end while
12: READ the oldest join attribute value from Q
13: READ a partition of R into the disk buffer

using the oldest join attribute value from the
queue for the index look-up.

14: for each tuple r in the disk buffer do
15: if r ∈ HS then
16: OUTPUT r �� HS
17: f ← number of matching tuples found in

HS
18: DELETE all matched tuples from HS

along with the corresponding nodes from
Q

19: hSavailable← hSavailable+ f
20: end if
21: end for
22: end while

algorithm. The notations we used in our cost model
are specified in Table 1.

4.3.1 Memory cost

The optimal size for hash table HR can be different
from the optimal size of the disk buffer. Therefore,
we distinguish between k, the number of pages for
the disk buffer, and l, the number of pages for HR.
The major portion of the total memory is assigned
to the both hash tables while a much smaller portion
comparatively is assigned to the disk buffer and the
queue. The memory for each component can be cal-
culated as given below.
Memory for disk buffer = k·vP
Memory for HR =l·vP
Memory for HS =α[M − (k + l)vP ]
Memory for the queue = (1− α)[M − (k + l)vP ]
By aggregating the above, the total memory used
by Optimised X-HYBRIDJOIN can be calculated as
shown in Equation 1.

M = (k+l)vP+α[M−(k+l)vP ]+(1−α)[M−(k+l)vP ]
(1)

Currently, the memory for the stream buffer is not
included because it is small (0.05 MB is sufficient in
all our experiments).

4.3.2 Processing cost

In this section we calculate the processing cost for the
algorithm. To make it simple we first calculate the
processing cost for individual components and then

Proceedings of the Twenty-Third Australasian Database Conference (ADC 2012), Melbourne, Australia

25



Table 1: Notations used in cost estimation of Opti-
mised X-HYBRIDJOIN
Parameter name Symbol

Total allocated memory (bytes) M
Service rate (processed tuples/sec) μ
Number of stream tuples processed
in each iteration through HR

wN

Number of stream tuples processed
in each iteration through HS

wS

Stream tuple size (bytes) vS
Disk page size (bytes) vP
Size of disk tuple (bytes) vR
Disk buffer size (pages) k
Disk buffer size (tuples) d = k vPvR
Size of HR (pages) l
Size of HR (tuples) hR = l vPvR
Size of HS (tuples) hS
Disk relation size (tuples) Rt
Memory weight for the hash table α
Memory weight for the queue 1− α
Cost to read k number of disk pages
into the disk buffer (nano secs)

cI/O(k·vP )
Cost to look-up one tuple into the
hash table (nano secs)

cH

Cost to generate the output for one
tuple (nano secs)

cO

Cost to remove one tuple from the
hash table and the queue (nano
secs)

cE

Cost to read one stream tuple into
the stream buffer (nano secs)

cS

Cost to append one tuple in the
hash table and the queue (nano
secs)

cA

Total cost for one loop iteration of
the algorithm (secs)

cloop

sum up all these costs to calculate the total process-
ing cost for one iteration.
cI/O(l ·vP ) =Cost to read frequent l number of pages
of R into HR
cI/O(k · vP ) =Cost to read k number of pages (one
disk partition) into the disk buffer
wN · cH =Cost to look-up wN tuples in HR
d · cH =Cost to look-up the disk buffer tuples in HS
wN · cO =Cost to generate the output for wN tuples
wS · cO =Cost to generate the output for wS tuples
wN · cS =Cost to read the wN tuples from the stream
buffer
wS · cS =Cost to read the wS tuples from the stream
buffer
wS · cA =Cost to append wS tuples into HS and the
queue
wS · cE =Cost to delete wS tuples from HS and the
queue
The hash table HR is filled only once before the ac-
tual execution of the algorithm starts; therefore, we
exclude it from the iteration cost. By aggregation,
the total cost for one loop iteration is:

cloop(secs) = 10−9[cI/O(k · vP ) + d · cH + wS(cO + cE

+cS + cA) + wN (cH + cO + cS)]
(2)

Since in every cloop seconds the algorithm processes
wN and wS tuples of the stream S, the service rate μ

can be calculated using equation 3.

μ =
wN + wS
cloop

(3)

4.4 Tuning

Normally the stream-based join algorithms are ex-
ecuted online, where limited memory resources are
available. Due to the fixed and small amount of
available memory, each component in the join faces
a trade-off with respect to memory distribution. As-
signing more memory to one component means as-
signing less memory to some other components. On
close observation it can be seen that the components
like both hash tables require more memory compared
to the other components, such as the disk buffer, the
stream buffer and the queue.

The disk buffer and the hash table HR are the key
components for tuning, and the memory assigned to
the other components depends on them. The reason
for tuning the disk buffer is that the dominant I/O
cost is directly connected to the disk buffer.

Tuning is not performed merely using a theoretical
approach, rather the optimal tuning settings are ap-
proximated using an empirical approach. Finally the
experimentally-obtained tuning results are compared
with the results obtained using the cost model. Be-
fore proceeding further it is first necessary to describe
the hardware and software specifications for our ex-
periments.

4.4.1 Experimental arrangement

The details about the experimental setup that we
used to implement the prototypes for all comparable
algorithms are given below.

Hardware specifications: We accomplished our
experiments on Pentium-IV machine with 3G main
and 160G disk memory under WindowsXP. We im-
plemented the experiment in Java using the Eclipse
IDE 3.3.1.1. We also used built-in plugins, provided
by Apache, and nanoTime(), provided by Java API,
to measure the memory and processing time respec-
tively.

Data specifications: We analysed the perfor-
mance of the algorithms using synthetic data. The
relation R is stored on disk using a MySQL 5.0
database while the bursty stream is generated at run
time using our own benchmark algorithm described
in (Naeem et al. 2011) with an exponent value equal
to 1. As in X-HYBRIDJOIN we also assume that the
disk-based relation R is sorted according to the access
frequency. To measure the I/O cost more accurately
we set the fetch size for ResultSet equal to the disk
buffer size.

Currently the Optimised X-HYBRIDJOIN sup-
ports join for one-to-one and one-to-many relation-
ships. In order to implement the join for one-to-many
relationships it needs to store multiple values in the
hash table against one key value. However the hash
table provided by Java API does not support this fea-
ture therefore, we used Multi-Hash-Map, provided by
Apache Common Collections, to implement the hash
table in our experiments. The detailed specifications
of the data set that we used for analysis is shown in
Table 2.

Measurement strategy: The performance or
service rate of the join is measured by calculating
the number of tuples processed in a unit second. In
each experiment the algorithm runs for one hour and
we start our measurements after 10 minutes and con-
tinue it for 30 minutes. For more accuracy we take
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Table 2: Data specification
Parameter value

Disk-based data
Size of disk-based rela-
tion R

0.5 million to 8 million
tuples

Size of each tuple 120 bytes
Stream data

Size of each tuple 20 bytes
Size of each node in the
queue

12 bytes

Benchmark
Based on Zipf’s law
Characteristics Bursty and self-similar

three readings for each specification and then take
their average as a final result. Where required we
also calculate the confidence interval by considering
95% accuracy. Moreover, during the execution of the
algorithm it is assumed that no other application is
run in parallel.

4.4.2 Tuning using Empirical Approach

This section focuses on the tuning of key components,
namely the disk buffer and the hash table HR using
an empirical approach. The performance of the al-
gorithm has been tested for a set of values for both
components, rather than for every consecutive value.
It has been assumed that the total allocated memory
and the size of the disk-based relation are fixed. The
sizes for the disk buffer and the hash tableHR are var-
ied in such a way that for each size of the disk buffer
the performance is measured against a series of values
for the size of HR. The performance measurements
for the grid of values for the sizes of the disk buffer
denoted by d and the size of HR denoted by hR are
shown in Figure 4. The figure shows that, if the per-
formance for each fixed value of d is observed against
all values of hR, in the beginning the performance
increases rapidly with an increase in hR. However,
after reaching a particular value of hR, the perfor-
mance starts decreasing with further increases in hR.
A plausible reason for this behavior is that initially,
increasing hR increases the probability of matching
the stream tuples with HR rapidly. After attaining
the optimal value, further incrementing hR makes no
significant difference to the stream-matching proba-
bility, due to the skew factor in stream distribution.
On the other hand, the associated reduction in mem-
ory size for the hash table HS means that the perfor-
mance begins to decrease. Similarly when the perfor-
mance is analysed for each fixed value of hR against
all the values of d, initially the performance increases,
since the costly disk access is amortised for a larger
number of stream tuples. After attaining a maximum,
the performance decreases because of the increase in
I/O cost for loading more of R at one time in a non-
selective way.

The figure shows that the optimal memory settings
for both the disk buffer and the hash table HR can
be determined by considering the intersection of the
values of both components at which the algorithm
individually performs at a maximum.

4.4.3 Tuning based on cost model

To validate our cost model against measurements, we
tune our algorithm based on this cost model as pre-
sented in Section 4.3. According to Equation 3 the
service rate depends on the values of wS , wN and
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Figure 4: Tuning of Optimised X-HYBRIDJOIN us-
ing measurement approach

the cost cloop. Therefore, to determine the settings
at which the algorithm performs optimally it is first
necessary to calculate the sizes of wN and wS .

Mathematical model to calculate wN : The
main components that directly affect wN are the total
size of R (denoted by Rt) on the disk and the size
of the hash table HR (denoted by hR) that contains
the frequently-used part of R in the memory. If the
stream of updates S is formulated using Zipfs law
with the exponent value being equal to 1, then the
matching probability pN for stream S with HR can
be determined using Equation 4.

pN =

hR∑
x=1

1

x

Rt∑
x=1

1

x

=
ln (hR)

ln (Rt)
(4)

Now using Equation 4 the constant factors of change
can be determined in pN by changing the values of hR
and Rt individually. This assumes that pN decreases
by a constant factor φN if the value of Rt is doubled,
and increases by a constant factor ψN if the value of
hR is doubled. Knowing these constant factors the
value of wN can be calculated. Consider a hypothesis

pN = RyhzR (5)

where y and z are unknown constants whose values
need to be determined.

By doubling Rt, the matching probability pN de-
creases by a constant factor φN , Equation 5 becomes:

φNpN = (2R)yhzR

Dividing the above equation by Equation 5 we get
2y = φN and therefore, y = log

2
(φN ). Similarly by

doubling hR the matching probability pN increases
by a constant factor ψN therefore, Equation 5 can be
written as:

ψNpN = Ry(2hR)
z

By dividing the above equation by Equation 5 we get
2z = ψN and therefore, z = log

2
(ψN ). After putting

the values of constants y and z in Equation 5 we get:

pN = Rlog2(φN )h
log2(ψN )

R
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If S is the total number of stream tuples that are
processed (through both the stream-probing and disk-
probing phases) in N iterations, then wN can be cal-
culated using Equation 6

wN =
(Rlog2(φN )h

log2(ψN )

R )S

N
(6)

Mathematical model to calculate wS: The
second phase of the Optimised X-HYBRIDJOIN algo-
rithm, also called the disk-probing phase, deals with
the rest of the disk-based master data R′ (where
R′ = Rt − hR), which occurs less frequently in the
stream input as compared to that part which exists
permanently in memory. The algorithm reads R′ in
partitions while the size of each partition is equal to
the size of the disk buffer d. As mentioned earlier, the
daily market transactions typically formulate the Zip-
fian distribution, which means that matching proba-
bility for every next partition in R′ is less than the
previous one. Therefore, the matching probability for
each partition is calculated by taking the summation
over the discrete Zipfian distribution separately and
then aggregating all of them as shown below.

hR+d∑

x=hR+1

1

x
+

hR+2d∑

x=hR+d+1

1

x
+

hR+3d∑

x=hR+2d+1

1

x
+···+

hR+nd∑

x=hR+(n−1)d+1

1

x

We simplify this to:

hR+nd∑

x=hR+1

1

x
⇒

Rt∑

x=hR+1

1

x

From this the average matching probability pS can be
obtained in the disk probe phase, which is needed for
calculating wS . Let n be the total number of parti-
tions in R′, then the average matching probability pS
can be determined by dividing the above summation
by n. In the denominator, a similar normalization
term to that used in Equation 4 is used.

pS =

Rt∑
x=hR+1

1

x

n
Rt∑
x=1

1

x

=
ln(Rt)− ln(hR + 1)

n(ln(Rt) + γ)
(7)

To determine the effects of d, hR and Rt on pS the
same number of steps is required as in the case of wN .
If d is doubled then n will be halved in Equation 7 and
therefore, the value of pS increases with a constant
factor of θS . Similarly, if hR and Rt are doubled one-
by-one in Equation 7, the value of pS decreases with
a constant factor of ψS and φS respectively. A similar
hypothesis is considered here as in Equation 5.

pS = dxhyRR
z
t (8)

The values for the constants x, y and z in this case
will be x = log

2
(θS), y = log

2
(ψS) and z = log

2
(φS)

respectively. Therefore by replacing the parameters
with constants, Equation 8 will become.

pS = dlog2(θS)h
log2(ψS)

R R
log2(φS)

t

If hS are the number of stream tuples stored in the
hash table then the average value for wS can be cal-
culated using Equation 9.

wS(average) = dlog2(θS)h
log2(ψS)

R R
log2(φS)

t hS (9)

Once the values of wN and wS have been determined,
the algorithm can be tuned using Equation 3.
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Figure 5: Tuning comparisons for Optimised X-
HYBRIDJOIN using both empirical and mathemati-
cal approaches

4.4.4 Comparisons of both Tuning Ap-
proaches

In this section to validate our cost model, we com-
pare the tuning results obtained through measure-
ments with the tuning results that we calculated using
the cost model.

Disk buffer: In this experiment we perform tun-
ing of the disk buffer using both the measurement and
the mathematical approaches. The tuning results of
each approach are shown in Figure 5(a). From the fig-
ure it can be observed that the results in both cases
are very similar with a deviation of only 0.38%.

Hash table HR: We also made the tuning com-
parisons for hash table HR using both approaches.
The experimental results in this case are shown in Fig-
ure 5(b). From the figure, the results in both cases are
again closely related with a deviation of only 0.33%.
This proves the accuracy of our cost model.

5 Experimental study

In this section we present a series of experimental
results to support the proposed join algorithm. We
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conducted our experiments in two dimensions. In Sec-
tion 5.1 we compare the performance of Optimised
X-HYBRIDJOIN with algorithms that are directly
related to it. In Section 5.2 we compare the costs
predicted by the cost model for the algorithm with
the measured costs.

5.1 Performance evaluation

In the near-real-time data warehousing context the
total allocated memory and the size of disk-based
relation are the common parameters that can vary
and directly affect the performance of the algorithm.
Therefore, in our experiments we compare all algo-
rithms by varying both parameters one-by-one.

Performance comparisons when the size of
R varies: In this experiment we compare the per-
formance of Optimised X-HYBRIDJOIN with other
join algorithms. In our experiments we assume that
the size of disk-based relation R varies exponentially
while the total allocated memory is fixed for all val-
ues of R. The performance results are shown in Figure
6(a). From the figure it is clear that for all settings
of R the performance in the case of Optimised X-
HYBRIDJOIN is significantly better than that of the
other algorithms.

Performance comparisons for different
memory budgets: In our second experiment we
test the performance of all algorithms using differ-
ent memory budgets by keeping the size of R fixed (2
million tuples). Figure 6(b) presents the comparisons
of all approaches. From the figure, for all memory
budgets, Optimised X-HYBRIDJOIN again performs
significantly better than all the other approaches.

In both scenarios the reason for improvement in
performance is the use of an efficient architecture
in Optimised X-HYBRIDJOIN. On the contrary, in
X-HYBRIDJOIN the data structures used for some
components are ineffective causing some unnecessary
costs in processing the stream tuples and eventually
it effects the performance of the algorithm negatively.

5.2 Cost validation

In the second part of our experiments we validate the
cost model for the algorithm by comparing the pre-
dicted cost with the measured cost. Figure 7 presents
the comparisons of cost model predictions and mea-
surements for different memory settings. It can be
observed from the figure that for each memory set-
ting the predicted cost is close to the measured cost.
This proves the accuracy of the cost model.

6 Conclusions and future work

In this paper we present a significant optimisation
for a recently introduced stream-based join called X-
HYBRIDJOIN (Extended Hybrid Join). This algo-
rithm is designed to efficiently process non-uniformly
distributed data as found in real-world applications.
In our investigation we discover that the algorithm
has some architectural limitations affecting its per-
formance. Data structures used for some compo-
nents such as the non-swappable part of the disk
buffer, are not optimal, causing additional look-up
cost. In addition, the algorithm stores a major part
of the stream in memory that matches with the non-
swappable part of the disk buffer which is unneces-
sary and generates extra costs for loading and un-
loading stream tuples into memory. On the basis
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Figure 6: Performance comparisons of Optimised X-
HYBRIDJOIN with related join algorithms
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Figure 7: Costs validation

of these observations we propose an optimised ver-
sion of the existing X-HYBRIDJOIN called Opti-
mised X-HYBRIDJOIN (Optimised Extended Hybrid
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Join). In the proposed algorithm, processing of tuples
that match the swappable and non-swappable parts
of the master data are executed independently using
efficient data structures. The stream that matches
with the non-swappable part does not need to be
stored in memory. This has two advantages: (a)
It eliminates the additional costs required for load-
ing and unloading the stream tuples into memory.
(b) More stream tuples that are related to the swap-
pable part can be accommodated in memory. We
calculate the mathematical costs for our algorithm
and tune the algorithm based on both measurement
and cost model. To compare the performance with
related algorithms we implemented prototypes of all
approaches. Our experiments show that Optimised
X-HYBRIDJOIN performs significantly better than
the related approaches. We also provide the source
code for our implementations.

In the future we plan to generalise our algorithm
for other kinds of distributions. This will be particu-
larly useful for markets that do not follow the 80/20
Rule. Additionally, the generalisation of the algo-
rithm will remove the need for the disk-based relation
to be sorted.
Source URL: The source of our implementations
can be downloaded from the given URL.
https://www.cs.auckland.ac.nz/research/groups/serg/source/
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